
 

 

 

 

      
     

  

 

 

 

 

 

  

 

 

  

 

 

            

 

Comments Received on SP 800-90A 

On 9/11/13 12:06 AM, "Robert Bushman" <bob@traxel.com> wrote: 

"Draft Special Publication 800-90A, Recommendation for Random Number Generation Using Deterministic Random Bit Generators" cannot be 
trusted to secure our citizens and corporations from cyber-attack, for reasons that should be quite apparent. Please terminate it or replace the 
PRNG algorithm without the participation of the NSA. 

On 9/21/13 1:25 PM, "peter bachman" <peterb@cequs.com> wrote: 

See enclosed random.pdf for comment 

(A picture was attached) 

From: Mike Stephens <Mike.Stephens@microsoft.com> 

Date: Friday, October 18, 2013 2:47 PM 

[MS] 1 10.3 Page 60 te Published cryptanalysis shows that Dual EC DRBG outputs
are biased. This should disqualify the algorithm from 

Remove DUAL_EC_DRBG from SP 800-90. 

mailto:bob@traxel.com
mailto:peterb@cequs.com
mailto:Mike.Stephens@microsoft.com


     

 

      
 

   
 

        
  

     

 

      
   

   
    

   
 

 

     

 

 

  

 

 

 

 

       

 

     
    

inclusion in the standard.i ii 

[MS] 2 10.3 Page 60 ge Recent publications regarding Dual EC DRBG have 
significantly compromised public trust in the algorithm to
the extent that correcting any mathematical properties of
the algorithm would not regenerate confidence in it. 
Continued inclusion of Dual EC DRBG will harm the 
credibility of the SP-800 series of standards. 

Remove DUAL_EC_DRBG from SP 800-90. 

[MS] 3 11 Page 72 ge The SP-800 series standardizes algorithms, not 
implementation aspects. Self-test requirements should
come from FIPS 140-2. The current self-test requirements
in SP 800-90 do not align with or cooperate with FIPS 140-2 
requirements. Should the self-test requirements remain in
SP 800-90; then, harmonize these requirements with those
in FIPS 140. 

Remove self-test requirements from SP800-90. 

On 11/3/13 7:58 AM, "Thomas Hales" <hales@pitt.edu> wrote: 

Dear NIST committee 800-90A, 

I am submitting two documents in response to your request for public comments on Special Publication 800-90A. 

The first document "NSA back door to NIST" will be published in the Notices of the American Mathematical Society. The first part of that article 
discusses the familiar Ferguson-Shumow back door to the elliptic curve pseudo-random generator. The second part of that article shows that the 

mailto:hales@pitt.edu


     

    

 

    
    

        

 

     
        

      
 

 

      
     

         
 

 

  

 

 

 

 

 

design of the back door is based on Diffie-Hellman key exchange. Because of specific mathematical 

structures in the back door, I conclude that the design is not accidental. 

The second document "Formalizing NIST cryptographic standards" argues that the standard 800-90A exhibits pervasive sloppiness in its use of 
mathematics and advocates formal verification methods as a remedy. NIST has suffered damage to its reputation as a result of 800-90A. That 
reputation cannot be recaptured by repeating the same old process, but it can be regained by elevating the standard through formal methods. 

I offer my perspective not as a cryptographer, but as a mathematician who has devoted much of his career to making it possible to do mathematics 
more reliably by computer. I direct one of the the largest formal verification projects ever undertaken (the Flyspeck project for the formal 
verification of the Kepler conjecture), which is now almost complete. I speak from experience, when I conclude that it is technologically feasible 
for NIST to adopt formal methods. 

My honors include the Moore Prize on reliable computing (2004), the Fulkerson Prize of the Mathematical Programming Society and the 
American Mathematical Society (2009), and the Robbins Prize of the AMS (2007). My speaking honors include an invited plenary address at the 
International Congress on Mathematical Software (Kobe Japan, 2010) and an invited talk at the International Congress of Mathematicians (Beijing 
China, 2002). 

(Documents not yet included in this file) 

On 11/5/13 12:52 PM, "Stephan Mueller" <stephan.mueller@atsec.com> wrote: 

1 Suggestions For Changes To SP800-90A 

mailto:stephan.mueller@atsec.com


  
  

   
 

    
   

  

 

  

   
   

     
  

 

     
   

      
   

  

   
 
 

 

     

With the reopening of the SP800-90A standard for comments, I would like to take this opportunity to inform the authors about issues that were 
identified during the implementation of all three DRBGs defined in this standard (skipping the Dual EC DRBG for obvious reasons). 

The common theme of the issues identified has to do with the complexity of the state transition function supported by the derivation function 
defined by SP800-90A. 

The discussion starts with some mathematical considerations on which the comments are based on to ensure that the mathematical model for 
maintaining entropy is preserved. Next, the general theme of the comments is outlined. Lastly, the general theme is then broken down to concrete 
comments regarding the three different types of DRBG. 

1.1 Mathematical Considerations 

Before starting the details of the issues, please consider the following mathematical backgrounds applied for the discussion. 

The specification of the deterministic random numbers have an associated cryptographic strength which correlates with the strength of the 
underlying cipher. This strength defines the upper boundary of the entropy that can be maintained by the DRBG. If the internal state of the DRBG 
would contain more entropy than this strength, entropy will be lost in either the state transition function or the output function. Thus, to maintain 
entropy that equals to the associated strength of the DRBG, it is sufficient to have an internal state that equals that strength. 

2 General Concerns 

The general concerns brought forward is the sheer complexity of the DRBG. To illustrate the complexity, please consider the following numbers 
(the abbreviation LOC means Lines of Code). The following groups of numbers are to be read as: first number are the LOCs for the common 
DRBG core, the second number are the LOCs for the Hash-DRBG specific code, the third number are the LOCs for the HMAC-DRBG specific 
code, and the last number are the LOCs for the CTR-DRBG specific code. To obtain the complete number for one instance of DRBG, please add 
the specific code number with the common core code. 

LOCs HMAC Implementation LOCs Core LOCs Hash DRBG LOCs CTR DRBG DRBG 

OpenSSL 550 320 220 380 



     

 
    

 

         
    

  
  

  

 

   
    

       
   

     

     
     

   
        

 

    
     

      
        

Mozilla N/A 750 N/A N/A 

My own 470 240 90 320implementation 

Please compare that to an implementation of a typical micro kernel which contains about 5000 lines of code. One can see that for the task of 
stirring numbers from entropy sources, about one fifth to one sixth of the size of a micro kernel is needed, which is way too much, especially when 
using the DRBG in sensitive environments, such as operating system kernels or high assurance environments. Every line of code that is not needed 
is one line too much. 

The goal of the suggested changes is to reduce the complexity. 

2.1 General State Maintenance Concerns 

The different DRBGs defined in SP800-90A have a cryptographic strength associated with them. The cryptographic strengths are always equal to 
the cryptographic strength of the ciphers. That means that the state, which holds the entropy, does not need to be larger than the strength of the 
ciphers and thus the overall security rating of the DRBG. If the state is larger, and potentially contains more entropy than the cipher used for the 
output function, the additional entropy will be lost, because SP800-90A defines the DRBGs with an associated cryptographic strength. If that 
cryptographic strength is smaller than the entropy the state can hold, that additional entropy will be lost. 

For example, the Hash DRBG specification mandates 440 bits of state for the SHA-256 Hash DRBG. That DRBG is defined to have a strength of 
256 bits, equal to the strength of SHA-256 which is the output function for the DRBG. Therefore, the state of 440 can be considered too big for the 
DRBG, because any entropy above 256 bits that the state may have will be compressed to at most 256 bits. Therefore, the maintenance of a state 
above the cryptographic strength rating of the output function and thus the DRBG is considered to be not needed to retain the strength of the 
DRBG. 

In addition to the entropy consideration, another aspect regarding the state maintenance should be considered. SP800-90A defines different state 
transition functions for the different DRBGs. These state transition functions include XORs or the addition of some data with the state of the 
DRBG. The implementation of such state transition functions adds complexity. However, it must be asked why not use the respective underlying 
cipher for the state transition function? The mathematical properties of the cipher can be considered to be at least as good as the state transition 



       
      

  
       

     

 

   
  

     

     

        
     

     
    

       

    
     

       
    

 
     

  

functions defined in SP800-90A in terms of maintaining entropy. When using the cipher for the state transition, only one code invocation to the 
cipher is needed instead of multiple lines of code implementing some hand-crafted state transition logic. 

When applying the consideration about the size of the state and its entropy, we can conclude that when having a state that is equal to the 
cryptographic strength of the cipher and applying the cipher for the state transition function, complexity can be reduced significantly. 

The following chapters explain in detail the suggested changes for the different DRBG types. 

3 HMAC DRBG 

The HMAC DRBG can be used as a good example for the other two classes of DRBG (Hash, CTR), as the general state maintenance concerns 
raised above are covered: 

• The state of the HMAC DRBG is equal to the cryptographic strength of the used hash. 

• Furthermore, the state is equal in size to the blocksize of the cipher. 

• Finally, the state transition of the HMAC DRBG is implemented with the HMAC function itself. The state transition can be defined with the 
following two formulas: Keyt+1=HMAC(Keyt ,V t∥0∥Seedt) Vt+1=HMAC(Keyt+1,V t) The limited complexity can be seen with the lines 
of code needed to implement the HMAC core: it is the smallest implementation of the three types. However, one small complexity is 
added that is considered to be not warranted: SP800-90A section 10.1.2.2 requires the calculation of the Keyt+1 and Vt+1 using two 
rounds of the above mentioned formula as follows, if the caller provides seed material (i.e., additional input): Keyinterim=HMAC(Keyt 
,Vt∥0∥Seedt) 

Vinterim=HMAC(Keyinterim,Vt) Keyt+1=HMAC(Keyinterim ,V interim∥1∥Seedt) 
Vt+1=HMAC(Keyt+1,V interim) It is 

unclear why the last two operations to obtain a new value for K and V again are needed. The entropy that is present in the seed is 
transferred into K and V with the first two operations already. Moreover, using the cipher for the state transition, any concerns about 
secrecy of the state are not warranted. Therefore, I would recommend to drop steps 4 and 5 in the HMAC DRBG update process defined 
in section 10.1.2.2 – the last two calculation steps mentioned above shall simply be dropped in case of additional input present. 
Backtracking resistance is still maintained as the values for K and V are still recalculated. However, if that second iteration is required for 
ensuring backtracking or prediction resistance, please disregard this request. 



 

 

   
     

 

     
    

      
 

    
     

     
   

    
  

  

    

  

         
     

     
 

4 Hash DRBG 

The Hash DRBG is significantly more complex than the HMAC DRBG as both concerns regarding the state maintenance are applicable: the state 
is bigger than the cipher and the state transition is performed with an operation different than the cipher. 

Figure 1: Hash DRBG State Transition (Not included in this file) 

Figure 1 outlines the state transition for the example of a SHA-256 Hash DRBG. That figure skips details about the input to the hash (Vt plus 
additional input) as well as the subsequent concatenation of Vt+1 with C. These skipped steps may be preserved and are thus not further discussed. 

The state of 440 bits is hashed using the cipher, generating a resulting value of 256 bits. This resulting value is now added to the state at always the 
same location. 

The dark gray shaded boxes are the bits that will always be touched by the addition operation. However, the state bits above 256 bits are being 
touched by the addition operation infrequently. The more the bits are above from the 256 threshold, the less often the bit is touched – this is 
symbolized by the lighter shadings of gray which fade out to white. The reason for this is that these bits above the 256 bit threshold are only 
touched if the addition operation produces an overflow. An analogy to help put this in perspective: the state is a 7 digit integer (i.e., up to 
9,999,999). Now the value to be added into the state only has three digits (i.e., at most 999). How often will the digit for the thousand, the ten 
thousand, the hundred thousand or the million be changed? Much less than the lower three digits which are changed every time. The same applies 
to the bits above the 256 threshold. 

Moreover, considering the cryptographic strength of the SHA-256 hash to have 256 bits, the state size of 440 bits is not warranted. 

Therefore, I propose the following: 

• The state of the Hash DRBG is equivalent to the block size of the cipher. For up to SHA- 256 that implies that the state is also equal to the 
cryptographic strength of the cipher defined by SP800-90A. For SHA-384 and SHA-512, this is not true anymore, but the reason for the 
larger state size will be clear with the next bullet point. In any case, the state size is sufficient to hold as much entropy to fulfill the 
mathematical background outlined above. 



   
   

  

     
    

    

    

 

   
     

      
   

        

   
  

           

     
   

    
    

 
      

   

    

• The state transition function of the Hash DRBG shall be the cipher itself, when considering that the different addition operations (section 
10.1.1.4, step 2.2 and 5, step 4.3 in the hashgen process) should all be replaced and consolidated into an invocation of the cipher where the 
output of the cipher is the new state value. 

• Due to the reduction in size of the state, the constant C must be equally reduced in size. This also implies that the DF function will be much 
smaller as it only needs to Last update: 2013-11-05 Classification: atsec confidential Status: Released Version: 1.0 ©2013 atsec 
information security corporation perform one cipher operation instead of invoking the cipher in a loop and truncate the last block. 

The basic idea is to use the concept defined for the HMAC DRBG for the Hash DRBG as well. 

5 CTR DRBG 

The CTR DRBG is the most complex of the three DRBGs. One of the reasons is the problem of translating the size of buffers using the bijective 
function of AES. The other two DRBGs use the surjective function of hashes which automatically implement the compression of input data into a 
fixed output length if the input data length (e.g., the seed data) is larger than the block size of the cipher. When using that block size of the cipher 
for the state maintenance (as suggested), no further translation of buffer sizes is needed. However, for a bijective function, any translation of buffer 
sizes (shrink a larger input buffer to a smaller output buffer or vice versa) requires additional operations beyond the invocation of the cipher. 

Therefore, the basic requirement should always be to either prevent translation of buffer sizes, or only use one type of translation (i.e., either 
shrinking or enlarging), but not both at the same time. 

Figure 2: CTR DRBG: DF and BCC Buffer Size Translation I (Not included in this file) 

However, the derivation function together with the BCC function implements just that: first the input is shrunken and then subsequently enlarged. 
Figure 2 outlines the operation with some sample buffer sizes. This figure illustrates the operation of the DF and BCC function on the seed and 
additional input/personalization string data. In this example, the seed has a length of 72 bytes. The first step is to collapse the 72 bytes into a string 
of 16 bytes, i.e., the block size of AES. Subsequently, the data is now enlarged using multiple AES rounds to the required seed size. 

The first question that can be raised is the appropriateness of this operation for the mathematical model to maintain entropy. The collapse of data 
to one AES block and the subsequent enlargement of that block implies that entropy of the seed data is reduced to 16 bytes. The subsequent 
enlargement will not increase the entropy any more. 

In addition, the two translation operations of the buffer size by first shrinking and then enlarging the buffer requires the implementation of two 



         
   

  

 

    
   

        
  

 

                   

 

 

  

     
   

   

   

 
      

  

  
     

loops: the first loop applies the AES cipher blockwise on the seed data and XORs the output of the different AES rounds (the BCC operation) and 
the subsequent enlargement to the right seed size by invoking the BCC operation several times. This complicated processing of input data could be 
made less complex by considering the following suggestions. 

5.1 Use of Compression Translation Function 

The first consideration is the only use of a compression translation operation by processing the seed data as follows: The internal state is defined as 
a bit string with the key size of K of the cipher. When iterating blockwise over the input data and apply the AES encryption operation, XOR the 
output of the AES of the first input data block with the first 16 bytes of K. If K is 32 bytes (in case of AES 256), XOR the AES output of the 
second input data block with the second 16 bytes of K, otherwise again with the first 16 bytes – marked as round robin schema 
below: 

for (i=1, i <= num_of_input_blocks, i++) 

} 

*K = *K XOR AES(input_block_i) 

/* implement a round-robin schema to modify each AES-blocksize portion of K equally as much as possible – if there are numbers 
of input blocks that are not multiples of (length(K)/block_length(AES)), the code treats this as unproblematic */ 

K = K + (16*i mod (length of K in bytes)) 

The state value V to be encrypted can be derived the same way as for the HMAC DRBG by simply encrypting 16 bytes of the resulting value K. 

If there is the concern that the first 16 bytes of K are modified too often compared to the second 16 bytes, a reminder can be stored which of the 
two 16 byte blocks of K was modified last. For a complete new round of this logic, that reminder is considered and the respective other 16 byte 
block is used as start value. 

On the other hand, if the derivation of V from K is not considered to be appropriate. The above mentioned loop can be implemented to create the 
interim value I that holds the concatenation of K and V. This loop would look like: 



                   

                    

                   

                   

                           

   
         

 

  

                   

                      

                     

 

    
        

         
 

    

  

       
    

I = K || V
 

length(I) = length(K) + block_length(AES)
 

for (i=1, i <= num_of_input_blocks, i++)
 

{
 

*I = *I XOR AES(input_block_i) 

/* implement a round-robin schema to modify each AES-blocksize portion of I equally as much as possible – if 
there are numbers of input blocks that are not multiples of (length(I)/block_length(AES)), the code treats this as 
unproblematic */ 

I = I + (16*i mod (length of I in bytes)) 

}
 

K = first 16 or 32 bytes of I
 

State V = remaining 16 bytes
 

In the case of using AES192, the above mentioned loop is applied with K assumed to be 32 bytes in length (equal to 256). When using the value 
K, the implementation simply truncates the superfluous 8 bytes from the 32 byte value K to obtain the 24 byte key needed for AES192. 

The above loops can be used for a shrinking of the buffer size or for a state function where the buffer size of the input equals that to the output. But 
it does not enlarge a buffer. 

The entire step 9 in section 10.4.2 including the invocation of the BCC function can be replaced with this simple logic. 

The discussed loops are applicable for a state transition with or without additional input: 

• Without additional input: the input to the loop is the value K (or I in case the second approach is used) which is equal in size than the required 
output size K (or I). Thus, the bijective operation of AES does not need to perform a translation of buffer sizes. 



        

  

   
  

  
     

 

     
   

     

   

 

 

 

  

 

 
    

• With additional input: the loop is appropriate to shrink the larger input buffer size to the needed output size.   

5.2 State Transition Function 

When using the result of the loop above for the value K and the state value, the seed data is already mixed into the state of the DRBG. It then has 
the same basic logic as used for the HMAC DRBG. 

Therefore, the subsequent XORing of the data from the DF operation as specified in steps 3 through 7 in section 10.2.1.2 would not be needed 
anymore. The update of the state consisting of K and V is implemented with the above specified state transition. 

5.3 Additional Considerations 

In addition to re-define the DF and BCC function, the following smaller items add complexity that may not be needed as they do not add entropy 
and the avalanche effect of AES ensures an appropriate update of the state without adding some more constants: 

• The definition of L and N to be used in the state transition (step 2 through 4 in section 10.4.2 – only the padding of the input size is needed). 

• The definition and maintenance of the value "i" (step 7 section 10.4.2) is not needed any more. 

From: <Nicholls>, Tom <Tom.Nicholls@thalesesec.com> 

Date: Wednesday, November 6, 2013 10:46 AM 

Legend (type of comment); E = Editorial; G = General; T = Technical 

mailto:Tom.Nicholls@thalesesec.com


  

 

   

       
   

 
 

   
  

 
  

  
 

 
 

    
    

  
   

  
   

 
   

    
  

  
 

  
 

  
   

  
  
 

ID SECTION, 
SUBJECT 
& PARA. 

TYPE COMMENT RESOLUTION 

1 10.3.1 G Since the potential for a 'backdoor' in the recommended parameters for 
EC_Dual_DRBG was pointed out the year after its publication (Shumow 
and Ferguson, 2007) it's been regarded with extreme suspicion, which has 
recently been more or less vindicated. At the very least the 
'recommended' (unsourced) choices of P and Q should be removed. Even 
apart from that issue, it has been shown to have significant biases in its 
output (e.g. Schoenmakers and Sidorenko, 2006), as well as being 
extremely slow, so should probably be removed entirely from the 
standard. If it is desired to include a DRBG based on the hardness of a 
number- theoretical problem then this should be the focus of a future 
consultation. 

Please remove the EC_Dual_DRBG 
from the standard. 

2 10.2.1 & E.3 T It is implied that the security strength of a CTR_DRBG scheme matches 
that of the key -- so that a 256-bit AES key would give 256-bit security 
for the DRBG, for example. However, the security strength is really 
determined by the block size of the cipher (128 bits in this case). 
Campagna (2006) constructs a distinguisher between the DRBG output 
and a random source, provided one knows at what points reseeding 
occurs. It works by requesting some number M of L-bit blocks (where L 
is the cipher block size) that are known not to include a reseed, and 
checking if they are all distinct. This is repeated q times. If all q 
sequences consisted of M distinct blocks, we guess that the sequence is 
the DRBG output; otherwise we guess is it random. This distinguisher has 
an advantage of about q * M^2 / 2^L. The key size doesn't come into it 
(provided it's at least L). (For maximum advantage, choose M to be the 
reseeding interval in bits divided by L.) 

A conseqence is that the 3-key TDEA, 
AES- 192 and AES-256 variants do not 
provide the claimed strength. The 
security claims made for these should 
therefore be downgraded. 



      

  
  

   
 

    
   

  
  

 
      

  
  

    
  

   
    

  
   

  

  
  

 
 

 
   

 

 

    
 

  
  

3 8.6.5 T Bullet point 3 implies that it is possible to 'stretch' an entropy source 
indefinitely. Suppose we have a DRBG D_1, seeded from real entropy, 
that requires reseeding with K bits of 'entropy' once every I bits of output. 
We use the output of this solely to reseed another identical DRBG D_2. 
Then D_2 will produce (I/K)^2 bits of output per bit of entropy input. 
And so on: by chaining r of these together we can get a DRBG D_r that 
produces (I/K)^r bits of output per bit of entropy -- i.e., as much as we 
want. Furthermore, the work required to generate a bit from D_r is only 
slightly more (by a factor of at most 1/(1-K/I)) than the work required for 
a single bit from D_1. 

SP 800-90C section 7 discusses this configuration in more detail. The 
only proviso is that: "If the target DRBG is intended to support requests 
for prediction resistance, then an SEI that has access to a Live Entropy 
Source shall be used." 

However, even a DRBG that does not support requests for prediction 
resistance may have a maximum reseed interval. Indeed, all those 
specified in SP 800-90A do. This requirement becomes pointless if the 
new seed comes from another DRBG within the same security boundary. 
Indeed, in such a configuration each individual DRBG would remain 
prediction-resistant in the sense that if you know its internal state you can 
only predict up to I of its future values. But this is not true of the chain as 
a whole: knowing the internal state of all of the DRBGs would allow you 
to predict an unbounded number of future values. 

Please explain what value the 
compulsory reseed interval in the 
approved DRBGs actually adds, since 
any guarantees of prediction resistance 
that it may provide can be circumvented 
by the chaining construction. 

Alternatively remove the compulsory 
reseed interval in these scenarios. 

4 Pages 43, E Some elements of the document (I guess they're equations) have been Please re-populate these unchanged 
66, 68, 81 rendered as empty boxes on the draft! We can only presume that they are sections into the standard. 
(2), 83, 84, unchanged from the previously approved version of the document. 
89, 90 (3), 
97, 113. 



 

 

  

 

   

 

  

      

     

     

  
   

 

 

 

 

 

    
     

       
      

From: Brian Smithson <bsmithson@ricohsv.com>
 

Date: Wednesday, November 6, 2013 2:41 PM
 

Please consider the following comment, sent on behalf of Ricoh.
 

Comment: For software DRBGs, the following tests should not be mandatory. 

• Known-answer testing of the generate function "at reasonable intervals" (11.3.3 para 1), 

• Known-answer testing of the instantiate function "prior to creating each operational instantiation" (11.3.2 para 1), and, 

• Self-testing of the reseed function whenever the reseed function is invoked (11.3.4 para 3 list item 2) 

Rationale: Software does not tend to wear out, and it is as likely that the test program will be broken as that the program being tested will be 
broken. Therefore, the value of such testing is not worth the burden of performing the tests, except after power-up. 

On 11/6/13 4:41 PM, "Sandy Maitland" <SMAITLAND@spyrus.com> wrote: 

General Comments on SP 800-90A: 

1) The removal of Dual_EC_DRBG from SP 800-90A and related standards is supported. Given the development in the press, there is no 
way the reputation of this algorithm can be rehabilitated. We would go further to say that the category of "number-theoretic" DBRGs, in general, 
has become tainted in the industry and public opinion. It may well be wise not to attempt to replace it with anything in that general category for the 
time being. The SP 800-90A hash-based and block-cipher based algorithms seem well suited to fill the void. 

mailto:bsmithson@ricohsv.com
mailto:SMAITLAND@spyrus.com


   
      

        
     

     

 

 

  

 

 

  

 

    

 

   

 

       

   

      

       

      

2) Given that this "problem" was first noted in the 2006 timeframe, should there not be a more proactive review of DBRG algorithms that 
responds to public domain flaw reporting? It takes very little to cast doubt on security standards and technology, and the public goodwill cannot 
afford to be taken for granted. For those in the industry who wholeheartedly and in good faith support NIST standards in their products and 
through FIPS 140-2 validations, the risk of future repeat occurrences of this can lead to serious loss of market share and revenue. 

3) Would it be possible at this time to extend the base of the Hash_DRBG and possibly HMAC_DRBG to include SHA-3? 

From: Rene Struik <rstruik.ext@gmail.com> 

Date: Thursday, November 7, 2013 8:11 AM 

I have the following comments on the NIST SP 800-90A draft: 

1. Some of the formulae seem missing, e.g., p. 66, Step 1 of EC-DRBG Generate process. 

2. I have two recommendations re the EC-DRBG generator: 

a) Include the output of the verifiably random pick for G and Q in the specification (e.g., in Appendix A.2.1). 

b) Change the EC-DRBG random number generator more fundamentally, so as to 

(1) remove reliance on the public key Q; 

(2) lower distinguishability of the output bit string; 

(3) tighten security reductions; 

mailto:rstruik.ext@gmail.com


       

   
    

 

  

 

    

 

  
 

  

(4) provide potential resilience against quantum cryptographic attacks (should these become a long-term threat). 

c) For RNGs based on number-theoretic problems (such as EC-DRBG), it would be beneficial to produce outputs in the underlying field, rather 
than bit strings, while specifying post-processing that would map elements of the underlying field to binary strings. 

For more details re #2 above, please see the attached summary document of how this could potentially be realized in detail. 

I would be happy to discuss the technical proposal re "tweaks" to EC-DRBG in more detail with you. 

(A paper titled “Visiting Discrete-Logarithm Based Random Number Generators (A Summary)” was attached to the email, and is provided on the 
following pages below.) 



Revisiting Discrete-Logarithm Based Random
 
Number Generators
 

–
 
(Summary Findings)
 

René Struik 

rstruik.ext@gmail.com 

Abstract. We revisit constructions for deterministic random bit gener­
ators based on discrete logarithm problems, triggered by the reopening of 
the review of the NIST SP 800-90A specification [15, 18]. Constructions 
in the literature mostly rely on the intractability of the Diffie-Hellman 
problem and crucially depend on the difficulty of computing the dis­
crete logarithm of some public key Q relative to a base point G in the 
Diffie-Hellman group. We suggest various constructions, so as to (1) re­
move reliance on the public key Q; (2) lower distinguishability of the 
output bit string; (3) tighten security reductions; (4) provide potential 
resilience against quantum cryptographic attacks (should these become 
a long-term threat). 

Cautionary Note: This summary report is based on a careful analysis of 
the literature on discrete-log based random number generators, intractability 
assumptions, and, e.g., results on finite fields. However, so far, results have only 
been partially vetted and formal proofs are still lacking (since requiring more 
time than afforded by the review time window). 

1 The Elliptic Curve Random Number Generator 

Let E(Fq) be an elliptic curve with cyclic subgroup G of prime order n, generated 
by some base point G. One has |E(Fq)| = n · h, where the co-factor h assumes a 
small value (with NIST curves, one has h = 1 if it concerns a prime curve, and 
h = 2 or h = 4 if it concerns a binary curve). Each point P on this curve (except 
the so-called point of infinity) can be represented as a pair (x, y) in Fq × Fq, in 
which case one denotes x := x(P ). 

The elliptic curve random number generator EC-DRBG specified in [6, 5, 15] is 
defined in terms of an elliptic curve E(Fq), base point G and random point Q 
in G and produces, upon a random input k ≥ Zq, a deterministic sequence of 
outputs out1, . . . , outℓ, each in Zb, as depicted in Algorithm 1 below1 . 

1 We omit details that are irrelevant for our exposition (such as re-seeding). 

mailto:rstruik.ext@gmail.com


Algorithm 1 EC-DRBG Generator 
Input: k ≥ Zq , b < q, ℓ ? 0 
Output: ℓ pseudorandom numbers in Zb 

for i := 1 to ℓ do 
Set (R, S ) + (kG, kQ); 
Set (k, outi) + (x(R)(mod q), x(S)(mod b)); 

end for 
Return (out1, . . . , outℓ) 

With EC-DRBG, the value of parameter b is a power of two, so that each output 
is obtained from the x-coordinate of an elliptic curve point via truncation. With 
EC-DRBG, the bit-size of b is at least 13 + ⌈log2 h⌉ less than the bit-size of the 
order of the finite field Fq and byte-length oriented. While smaller values of b 
are allowed, it is recommended that b is picked as large as possible, sub ject to 
the above constraints [15, §10.3.1.4]. 

With EC-DRBG, default values of G and Q are specified for the NIST prime 
curves P-256, P-384, and P-521 [15, Appendix A.1], although picking alternative 
points G and Q is allowed, provided these are generated verifiably at random [15, 
Appendix A.2]. 

In what follows, we mainly consider curves with co-factor h = 1. 

2	 Security of the Elliptic Curve Random Number 
Generator 

The security of the elliptic curve random number generator was analyzed in [1, 
13, 4], with main results as follows: 

1. The procedure by which the default points	 G and Q specified in [15, Ap­
pendix A.1] have been picked is unknown (and cannot be checked to have 
been generated verifiably at random). As a result, one does not know whether 
logG(Q) is known to those who specified these points. Here, one should ob­
serve that if d := logG(Q), the internal state R can be efficiently determined 
from S, since R := d−1S. Since the only two points with x-coordinate x(S) 
are S and −S and truncation only removes roughly 16 bits from x(S), it 
follows that in that case one can determine R from an observed output in 
roughly 216 guesses for S [13]. 

2. The output of the EC-DRBG is distinguishable from a random bit string. 
Here, one should observe that the set of x-coordinates of valid elliptic curve 
points form a subset of Fq of cardinality roughly q/2. Since one can easily 
check whether a value x ≥ Fq is in this set, one can efficiently distinguish 
an output from the EC-DRBG (without truncation) from a random element 
of Fq : the latter elements pass this check only half of the time, whereas the 

2 



former always do. Differentiability also remains with truncation, if one does 
not remove sufficiently many bits from x(S) [1, 4]. For binary curves, the 
x-coordinate of an elliptic curve point in G has a fixed so-called trace value, 
thereby potentially resulting in an affine relationship between a known set of 
bit positions (dependent on the basis for F2m ). Here, truncation might need 
to be quite extensive to mitigate this effect. For the NIST curves B-409 and 
K-409, the lowest-order output bit always has a fixed value, so no truncation 
is capable of removing this bias [1]). 

3. The hardness of the so-called	 x-logarithm problem, on which the security 
of EC-DRBG relies, is difficult to quantify and the security reduction of a 
related security problem (AXLP) to the well-known decisional Diffie-Hellman 
problem (DDH) is rather loose [1]. 

The extent to which these drawbacks present a problem depends on context: 
with Result 1 above, any exposed output (e.g., if used as nonce in a challenge-
response protocol), would result in complete exposure of the internal state of 
the EC-DRBG and, thereby, in a total break; with Result 2, if the output is 
used as input to a key derivation function (and the curve has co-factor h = 1), 
the impact may be less severe in practice. Whether or not Result 3 presents a 
security problem in practice, is hard to evaluate (since not all schemes believed 
to be secure have tight security reductions). 

3	 Improvements to the Elliptic Curve Random Number 
Generator 

3.1 Addressing Part of the Problem 

The attack in the event of a potential backdoor (Result 1 above) can be prevented 
by truncating the output to roughly (log2 q)/2 bits, since then inverting the ∈ 
mapping x(S) - x(S)(mod b) requires O( n) operations, which is the same 
computational complexity as generic DLP solvers (Pollard’s rho method, etc.). 
This would also most likely make each output of the EC-DRBG (for curves with 
co-factor h = 1) indistinguishable from a random element of Zb. Since this would 
reduce the efficiency of the EC-DRBG by a factor two, this would make the EC­
DRBG – already a relatively slow random number generator in the first place 
– very unattractive to use in practice. We, therefore, do not consider this as a 
viable option. 

Of course, any potential backdoor can be prevented, by simply picking Q veri­
fiably at random, as also suggested as alternative in [15, Appendix A.2]. Here, 
one does not need to generate both G and Q verifiably at random, as [15] seems 
to suggest: fixing G and picking Q subsequently at random suffices. Here, it is 
preferable to just generate Q in this way and publish the result in the speci­
fication, so that this is easy to verify once and for all. This would avoid each 
implementer having to implement verification tests (and having to implement 
SHA-512). 

3 



3.2 Addressing the Entire Problem 

Both changes above would remove suspicion that the public key Q was concocted 
in a particular way or would simply thwart exploiting a concocted key. However, 
this does not address the other drawbacks of the EC-DRBG mentioned above. 
Here, we will show that one could potentially mitigate all drawbacks, via a 
simple change in the EC-DRBG itself. We consider several alternatives, each 
with slightly different properties. 

Construction A: DDH Generator with Tight Reduction 
Our first construction depends on three random public keys Q1, . . . , Q3 (rather 
than one, as in the original EC-DRBG). The random number generator is as 
depicted in Algorithm A below. Notice that b := q (i.e., there is no need to 
truncate outputs). 

Algorithm A DDH Generator with tight reduction 
Input: k ≥ Zq , ℓ ? 0 
Output: ℓ pseudorandom numbers in Zq 

for i := 1 to ℓ do 
Set (R, S1, S2, S3) + (kG, kQ1, kQ2, kQ3); 
Set (k, outi) + (x(R) + x(S1), x(S2) + x(S3))(mod q); 

end for 
Return (out1, . . . , outℓ) 

Assuming the intractability of the DDH problem, one may assume that all el­
liptic curve points in each round are random points and can show that both the 
updated value of k and the output element are indistinguishable from random 
elements of Fq. This results in a tight reduction. 

Construction B: Optimized DDH Generator with Tight Reduction 
Our second construction depends on two random public keys Q1, Q2 (rather 
than one, as in the original EC-DRBG). The random number generator is as 
depicted in Algorithm B below. Notice that b := q (i.e., there is no need to 
truncate outputs). 

Algorithm B Optimized DDH Generator with tight reduction 
Input: k ≥ Zq , ℓ ? 0 
Output: ℓ pseudorandom numbers in Zq 

for i := 1 to ℓ do 
Set (R, S1, S2) + (kG, kQ1, kQ2); 
Set (k, outi) + (x(R) + x(S1), x(S1) + x(S2))(mod q); 

end for 
Return (out1, . . . , outℓ) 

Assuming the intractability of the DDH problem, one may assume that all el­
liptic curve points in each round are random points and can show that both the 
updated value of k and the output element (and any nontrivial linear combina­

4 



tion of both) are indistinguishable from random elements of Fq. This results in 
a tight reduction. 

Construction C: DDH Generator with Looser Reduction 

Our third construction depends on one random public key Q (as did the original 
EC-DRBG). The random number generator is as depicted in Algorithm C below. 
Notice that b := q (i.e., there is usually no need to truncate outputs [caveat 
discussed below]). 

Algorithm C Efficient DDH generator (with looser reduction) 
Input: k ≥ Zq , ℓ ? 0 
Output: ℓ pseudorandom numbers in Zq 

for i := 1 to ℓ do 
Set (R, S ) + (kG, kQ); 
Set (k, outi) + (2x(R) + x(S)), x(R) + x(S))(mod q); 

end for 
Return (out1, . . . , outℓ) 

Assuming the intractability of the DDH problem, one may assume that all el­
liptic curve points in each round are random points and can show that both the 
updated value of k and the output element are indistinguishable from random 
elements of Fq. However, in this case, if one has access to an output, the secu­
rity now relies on the hardness of the x-logarithm problem (as did the original 
EC-DRBG). This results in a looser reduction (assuming the same reduction as 
the AXLP problem). If one has access to internal state, but not to the output, 
one can show that this last output can be distinguished from random elements 
from Zq with probability roughly half. Whether this is problematic remains to be 
seen, since this happens only once internal state becomes available (presumably 
a rare event). If this would be problematic, one could resort to truncation of the 
output. 

Notice the strong similarity with the original EC-DRBG, where small changes 
result in significantly improved security assurances. 

Construction D: Preferred DDH Generator with Tight Reduction 

Our fourth construction is similar to Construction B, but does not depend on any 
random public keys (rather than one, as in the original EC-DRBG). The random 
number generator is as depicted in Algorithm D below. Notice that b := q (i.e., 
there is no need to truncate outputs). 

5 



Algorithm D Preferred DDH Generator with tight reduction 
Input: k ≥ Zq , ℓ ? 0 
Output: ℓ pseudorandom numbers in Zq 

for i := 1 to ℓ do 
Set (R, S1, S2) + (kG, k2G, k3G); 
Set (k, outi) + (x(R) + x(S1), x(S1) + x(S2))(mod q); 

end for 
Return (out1, . . . , outℓ) 

Assuming the intractability of the DDH problem and the decisional square DH 
problem (DSqDH [8]) and decisional cube DH problem2, one may assume that 
all elliptic curve points in each round are random points and can show that 
both the updated value of k and the output element (and any nontrivial linear 
combination of both) are indistinguishable from random elements of Fq. This 
results in a tight reduction. 

Notice that this construction does not require authentic storage of any public 
keys and, thereby, also does not require protection against key swaps. Moreover, 
since all scalar multiples are relative to the same base point, one can take ad­
vantage of more efficient mechanisms for batch computing of multiple points (or 
pre-compute tables). 

Construction E: Preferred DDH Generator with Looser Reduction 
Our fifth construction is similar to Construction C, but does not depend on any 
random public keys (rather than one, as in the original EC-DRBG). The random 
number generator is as depicted in Algorithm E below. Notice that b := q (i.e., 
there is no need to truncate outputs). 

Algorithm E Preferred DDH Generator (with looser reduction) 
Input: k ≥ Zq , ℓ ? 0 
Output: ℓ pseudorandom numbers in Zq 

for i := 1 to ℓ do 
Set (R, S ) + (kG, k2G); 
Set (k, outi) + (2x(R) + x(S)), x(R) + x(S))(mod q); 

end for 
Return (out1, . . . , outℓ) 

Assuming the intractability of the DDH problem and the decisional square DH 
problem (DSqDH [8]), one may assume that all elliptic curve points in each 
round are random points and can show that both the updated value of k and 
the output element. However, as with Construction C, if one has access to an 
output, the security now relies on the hardness of the x-logarithm problem (as 
did the original EC-DRBG). This results in a looser reduction (assuming the 
same reduction as the AXLP problem). If one has access to internal state, but 

2	 One can easily show that the computational versions of these problems are equivalent 
to the ordinary CDH. 

6 



not to the output, one can show that this last output can be distinguished 
from random elements from Zq with probability roughly half. Whether this is 
problematic remains to be seen, since this happens only once internal state 
becomes available (presumably a rare event). If this would be problematic, one 
could resort to truncation of the output. 

Notice that this construction does not require authentic storage of any public 
keys and, thereby, also does not require protection against key swaps. Moreover, 
since all scalar multiples are relative to the same base point, one can take ad­
vantage of more efficient mechanisms for batch computing of multiple points (or 
pre-compute tables). 

4 Concluding Remarks 

All the constructions of the previous section produced as output pseudo-random 
elements of Zq, rather than pseudo-random bit strings. However, it is trivial to 
map elements of Zq to Zb via the mapping x - x(mod b). One can easily pick 
b, so that the statistical distance of truncating an element of Zq can be bounded 
above by s. For NIST prime curves, the prime is always close to a power of two, 
in which case the statistical distance introduced by truncation is quite small. For 
Brainpool curves, however, one may have to truncate the output considerably, 
should one wish to obtain a good indistinguishability bound. Please do note that 
for some applications it seems wasteful to not work with elements of Zq, e.g., 
with generation of ephemeral private keys for the same curve (or its twist) – in 
that case, working with Zq-entries results in a factor two efficiency improvement 
compared to working with binary strings. 

All the constructions of the previous section produced as output s := x(F ) + 
x(G)(mod q), where F, G are elliptic curve points. For each nonzero s ≥ Fq, 
there are roughly q/4 solutions (F, G). Moreover, for each candidate solution 
(F, G), it is not immediately clear how one could check whether this solution is 
valid. It would be of interest to check whether this offers resilience in the event 
quantum cryptographic attacks would become a threat: a quantum set search on ∈ 
these pairs takes roughly O( q) operations [23]. In this case, Algorithms D and 
E could be of special interest, since these do not depend on storage of long-term 
public keys Qi and would require online quantum computing calculations to be 
effective. This would also provide resilience in case the underlying curve would 
have some heretoforth unknown hidden weakness that, at some moment in the 
future, might be exposed. 

All constructions presented here can be extended to work for binary curves, 
prime curves with co-factor h > 1, Montgomery curves, Edwards curves, and 
twisted Edwards curves, with essentially the same results. 

7 



Final Note: Remember the caveat that results are preliminary at this stage. 
The author is happy to discuss the material further. 

References 

1.	 D.R.L. Brown, K. Gjøsteen, ‘A Security Analysis of the NIST SP 800-90 Elliptic 
Curve Random Number Generator,’ in Proceedings of Advances of Cryptology – 
CRYPTO 2007, A. Menezes, Ed., Lecture Notes in Computer Science, Vol. 4622, 
pp. 466-481, Berlin: Springer, 2007. 

2.	 R.R. Farashahi, B. Schoenmakers, A. Sidorenko, ‘Efficient Pseudorandom Gen­
erators Based on the DDH Assumption,’ in Proceedings of 10th International 
Conference on Practice and Theory in Public-Key Cryptography – PKC 2007, 
T. Okamoto, X. Wang, Eds., Lecture Notes in Computer Science, Vol. 4450, 
pp. 426-441, Berlin: Springer, 2007. 

3.	 P.L. Montgomery, ‘Speeding the Pollard and Elliptic Curve Methods of Factoriza­
tion,’ Mathematics of Computation, Vol. 48, No. 177, pp. 243-264, 1987. 

4.	 B. Schoenmakes, A. Sidorenko, ‘Cryptanalysis of the Dual Elliptic Curve Pseudo­
random Generator,’ IACR ePrint 2006-190. 

5.	 NIST SP 800-90, Recommendation for Random Number Generation Using Deter­
ministic Random Bit Generators, National Institute of Standards and Technology, 
Department of Commerce, 2007. 

6.	 ANS X9.82: Part 3-2007, Random Number Generation, Part 3: Deterministic Ran­
dom Bit Generators, American National Standard for Financial Services, Accred­
ited Standards Committee X9, Annapolis, MD, 2007. 

7.	 D. Brown, R. Gallant, ‘The static Diffie-Hellman Problem,’ International Associa­
tion for Cryptologic Research, IACR ePrint 2004-306. 

8.	 N. Koblitz, A. Menezes, ‘Intractable Problems in Cryptography,’ in Finite Fields: 
Theory and Applications, Contemporary Mathematics, 518, pp. 279-300, 2010. 

9.	 P-A. Fouque, A. Joye, M. Tibouchi, ‘Injective Encodings to Elliptic Curves,’ in 
18th Australasian Conference on Information Security and Privacy – ACISP 2013, 
C. Boyd, L. Simpson, Eds., Lecture Notes in Computer Science, Vol. 7959, pp. 203­
218, New York: Springer, 2013. 

10.	 D.J. Bernstein, M. Hamburg, A. Krasnova, T. Lange, ‘Elligator: Eliptic-Curve 
Points Indistinguishable from Uniform Random Strings,’ in Proceedings of 20th 
ACM Conference on Computer and Communications Security – ACM-CCS 2013, 
2013. 

11.	 D.F. Aranha, P.S.L.M. Barreto, G.C.C.F. Pereira, J.E. Ricardini, ‘A Note on High-
Security General-Purpose Elliptic Curves,’ International Association for Crypto­
logic Research, IACR ePrint 2013-647. 

12.	 J.H. Cheon, ‘Discrete Logarithm Problems with Auxiliary Inputs,’ J. of Cryptology, 
2010. 

13.	 D. Shumow, N. Ferguson, ‘On the Possibility of a Backdoor in the NIST SP 800-90 
Dual-ECC PRNG,’ Rump Session, Crypto 2007. 

14.	 FIPS Pub 186-2, Digital Signature Standard (DSS), Federal Information Process­
ing Standards Publication 186-2, US Department of Commerce/National Institute 
of Standards and Technology, Springfield, Virginia, January 27, 2000. (Includes 
Change Notice, October 5, 2001.) 

15.	 NIST SP 800-90A, Recommendation for Random Number Generation Using the 
Deterministic Random Bit Generators, Revision 1, Draft, National Institute of 

8 



Standards and Technology, U.S. Department of Commerce, Gaithersburg, MD, 
September 9, 2013. 

16.	 NIST SP 800-90B, Recommendation for the Entropy Sources Used for Random Bit 
Generation, Draft, National Institute of Standards and Technology, U.S. Depart­
ment of Commerce, Gaithersburg, MD, September 6, 2012. 

17.	 NIST SP 800-90C, Recommendation for Random Bit Generation Constructions, 
Draft, National Institute of Standards and Technology, U.S. Department of Com­
merce, Gaithersburg, MD, September 6, 2012. 

18.	 NIST, NIST Supplemental ITL Bulletin for September 2013, National Institute 
of Standards and Technology, U.S. Department of Commerce, Gaithersburg, MD, 
September 9, 2013. 

19.	 D.R. Hankerson, A.J. Menezes, S.A. Vanstone, Guide to Elliptic Curve Cryptogra­
phy, New York: Springer, 2003. 

20.	 R. Lidl, H. Niederreiter, Finite Fields, 2nd Edition, Cambridge: Cambridge Uni­
versity Press, 1997. 

21.	 Bundesamt für Sicherheit in der Informationstechnik, Technical Gideline TR-03111 
– Elliptic Curve Cryptography, Version 1.11, April 17, 2009. 

22.	 RFC 5639, Elliptic Curve Cryptography (ECC) Brainpool Standard Curves and 
Curve Generation, March 2010. 

23.	 L.K. Grover, ‘A Fast Quantum Mechanical Algorithm for Database Search,’ STOC 
1996. 

9 



  

 
 

  

 

  

 

-

January 9, 2014



Revisiting Discrete-Log Based


Random Number Generators


(or: How to Fix EC-DRBG?)
(or: How to Fix EC DRBG?)



−−−−


René Struik 
 

(Struik Security Consultancy)



e-mail: rstruik.ext@gmail.com 
Slide 1 René Struik (Struik Security Consultancy) 

mailto:rstruik.ext@gmail.com


  

 
  

 
 

 
 

  

January 9, 2014
 


Outline 
1.	 	 Notation 
2.	 	 NIST EC-DRBG 

− Description of Generator 
− Security Caveats 

3.	 	 EC-DRBG “Fixes” 
− Main Objectives 
− Five Constructions 

4. 4.	 	 Conclusions Conclusions 

Slide 2	 	 René Struik (Struik Security Consultancy) 



  

    
      

   
  

    

            

 

            
   

 

-

January 9, 2014
 


Notation 
E(Fq): elliptic curve over field Fq 

G: 	 cyclic subgroup of E(Fq), of prime-order n 
G: 	 base point of G 
h: 	 co-factor (usually, small) 

One has 	|E(Fq)| = n⋅h 

x(P): 	 x coordinate of point P on the curve (not being point at infinity), when x(P): 	 x-coordinate of point P on the curve (not being point at infinity), when 
represented in affine coordinates 

Slide 3 	 René Struik (Struik Security Consultancy) 



  

  
   

    
    

   
   

       
 

   

 

   

 
           
              

          
       

          
       

 

 

1 l

January 9, 2014
 


NIST EC-DRBG Generator
 

Algorithm 1: EC-DRBG Generator
 

Input: k∈Zq, b ≤ q, Ɩ ≥ 0 
Output: l pseudorandom numbers in Zb 

for i:=1 to l do
 

Set (R, S) ← (kG, kQ);
 

Set (k, outi) ← (x(R) (mod q), x(S) (mod b));
 


end for 
Return (out , …, out )Return (out1, …, outl) 

NIST EC-DRBG:
 

− b: a power of two (i.e., output obtained via truncation of x-coordinate)
 

− b: at least 13 + log2 h bits less than bit-size of order of finite field Fq (byte-oriented)
 


(recommendation was to pick b as large as possible, for efficiency reasons) 
− E(Fq): NIST prime curves P-256, P-384 (and others) 
− G, Q: default values specified for NIST prime curves P-256, P-384 

(alternative values allowed, provided generated verifiably at random) 

Slide 4 René Struik (Struik Security Consultancy) 



  

 
  

            
         

           
           
            

           
      

 

      
              
             

        
          

  
  

           
             

     

 

-

January 9, 2014
 


Security of NIST EC-DRBG
 

1. Potential back-door EC-DRBG 
Unknown whether default base point G and public key Q generated verifiably at random 
Unknown if logG(Q) known to those who specified G and Q 
− If d:= logG(Q), one can determine internal state R from S, since R:=d-1S 
− One can determine S from x(S), since only two points with same x-coordinate 
− One can determine x(S) from truncated version, since only roughly 16 bits removed 
So, if logG(Q) known, then internal state leaked from observed output outi 

2. 	 Output ECOutput EC -DRBG distinguishable from random bit string DRBG distinguishable from random bit string 2.	 
−		 Set of x-coordinates of valid point forms subset of Fq of cardinality roughly q/2 and 

easy to check whether x ∈ Fq is in this set. So, output of EC-DRBG (without 
truncation) is easily distinguished from random element of Fq 

−		 Distinguishability remains with truncation, if one does not remove sufficiently many 
bits from x(S) 

3. Loose security reduction 
Hardness of so-called x-Logarithm Problem, on which security of core EC-DRBG relies, 
is hard to quantify and security reduction of related security problem (AXLP) to Diffie-
Hellmann problem (DDH) is rather loose 

Slide 5	 	 René Struik (Struik Security Consultancy) 



  

  
         

     
    
  
         
   

 

         
       

           
            

      
         
       

 

January 9, 2014
 


NIST EC-DRBG “Fixes” 
Minor “tweaks” of EC-DRBG suffice to obtain the following properties: 

1.	 	 Reduce/remove reliance on public key Q 
2.	 	 Lower distinguishability of output bit string 
3.	 	 Tighten security reductions 
4.	 	 Provide potential resilience against quantum cryptographic attacks (should these 

become a long-term threat) 

Claims: 
− Techniques apply to short Weierstrass curves (e.g., NIST, Brainpool), Montgomery 

curves, Edwards and twisted Edwards curves, binary curves. 
− Techniques do not add additional computational cost (mostly, far more efficient) 
− Techniques can do without public key Q, thus eliminating key substitution attacks 

NOTE: builds upon existing cryptanalysis EC-DRBG ([1]) 
− uses tight bounds on character sums and Kloosterman sums ([18]) 
− uses presumed difficulty of Diffie-Hellman problems ([7]) 

Slide 6	 	 René Struik (Struik Security Consultancy) 



  

  
  

    
    

   
   

       
 

   

   
  

    
   

   
        

 
   

   

 

 

 

1 l

January 9, 2014
 


Example of ‘Fix’ (roughly “Construction C”)
 

Original EC-DRBG Generator
 

Input: k∈Zq, b ≤ q, Ɩ ≥ 0 
Output: l pseudorandom numbers in Zb 

for i:=1 to l do 
Set (R, S) ← (kG, kQ); 
Set (k, outi) ← (x(R) (mod q), x(S) (mod b)); 

end for 
Return (out , …, out ) 

“Algorithm C”: DDH Generator 
Input: k∈Zq, Ɩ ≥ 0 
Output: l pseudorandom numbers in Zb 

for i:=1 to l do 
Set (R, S) ← (kG, kQ); 
Set (k, outi) ← (x(R) (mod q), (x(R) + x(S)) (mod b); 

end for 
Return (out1, …, outl) 

Return (out1, …, outl) 

Slide 7 



  

    

 
   

   
 

 
   
   

 

   
  

   
  

 

          
     

        
 

-

January 9, 2014
 


NIST EC-DRBG vs. New DDH Constructions
 

Construction	 NIST A B C D E D(k)


#Public keys Q 1 3 2 1 − − − 
≈ # rnd. bits/curve size 1 1 1 1 1 1 k 
Rate1 1/2 1/4 1/3 1/2 1/3 1/2 k/(k+2) 
Backdoor possible? Yes unlikely unlikely unlikely No No No 
Indistinguishable output poor 
- if state R not known tight	 tight tight tight tight tight 

tight tight - if state if state RR known tight poor poor tight poor 
known tight	 tight tight poor tight 
Reduction next state AXLP 
- if output not known tight tight tight tight tight tight 
- if output known tight tight AXLP tight AXLP tight 
Quantum-crypto secure? No perhaps perhaps perhaps likely likely likely 

Notes: 
− Five constructions submitted to NIST (as comment re-opened SP 800-90A spec) 
− Full details in draft technical paper 

1Rate: #random bits (as multiple of bit-size curve)/#scalar multiplications 
Slide 8	 René Struik (Struik Security Consultancy) 



  

      
     

         
       

        
     

  

     

    
      

          

January 9, 2014
 


Conclusions 

Security weaknesses EC-DRBG relatively easy to fix 
− Five constructions, with slightly differing properties 
− Simplest fix: only change w.r.t. original EC-DRBG is single modular addition 
− Some suggested fixes possibly resistant to quantum-cryptographic attacks 

Constructions work for “short” Weierstrass curves (e.g., NIST, Brainpool), Edwards 
curves, twisted Edwards curves, Montgomery curves curves, twisted Edwards curves, Montgomery curves 

Contrary to popular belief, NIST EC-DRBG can be made highly secure 

Notes: 
− Main constructions submitted to NIST 
− Full details to appear in technical paper 

Slide 9 René Struik (Struik Security Consultancy) 



  

 

               
             
            

            
             

               
      

            
  
            

  

            
          

             
           

  
           

   
             

       
              

             
            

4. NIST SP 800-90, Recommendation for Random Number Generation Using Deterministic Random Bit

January 9, 2014
 


Further Reading 


1.	 	 D.R.L. Brown, K. Gjøsteen, “A Security Analysis of the NIST SP 800-90 Elliptic Curve Random 
Number Generator,” in Proceedings of Advances of Cryptology – CRYPTO 2007, A. Menezes, Ed., 
Lecture Notes in Computer Science, Vol. 4622, pp. 466-481, Berlin: Springer, 2007. 

2.	 	 R.R. Farashahi, B. Schoenmakers, A. Sidorenko, “Efficient Pseudorandom Generators Based on the 
DDH Assumption,” in Proceedings of 10th International Conference on Practice and Theory in Public-
Key Cryptography – PKC 2007, T. Okamoto, X. Wang, Eds., Lecture Notes in Computer Science, Vol. 
4450, pp. 426-441, Berlin: Springer, 2007. 

3.	 	 B. Schoenmakes, A. Sidorenko, “Cryptanalysis of the Dual Elliptic Curve Pseudorandom Generator,” 
IACR ePrint 2006-190. 

4.	 	 NIST SP 800-90, Recommendation for Random Number Generation Using Deterministic Random Bit 
Generators, National Institute of Standards and Technology, Department of Commerce, 2007. 

5.	 	 ANS X9.82: Part 3-2007, Random Number Generation, Part 3: Deterministic Random Bit Generators, 
American National Standard for Financial Services, Accredited Standards Committee X9, Annapolis, 
MD, 2007. 

6.	 	 D. Brown, R. Gallant, “The static Diffie-Hellman Problem,” International Association for Cryptologic 
Research, IACR ePrint 2004-306. 

7.	 	 N. Koblitz, A. Menezes, “Intractable Problems in Cryptography,” in Finite Fields: Theory and 
Applications, Contemporary Mathematics, 518, pp. 279-300, 2010. 

8.	 	 P-A. Fouque, A. Joye, M. Tibouchi, “Injective Encodings to Elliptic Curves,” in 18th Australasian 
Conference on Information Security and Privacy – ACISP-2013, C. Boyd, L. Simpson, Eds., Lecture 
Notes in Computer Science, Vol. 7959, pp. 203-218, New York: Springer, 2013. 

Slide 10	 	 René Struik (Struik Security Consultancy) 



  

 

            
             

     
            

        
            

                 
    

           
           

  

           
           

            
              

      
              

            
   

           
             

Publication 186-2, US Department of Commerce/National Institute of Standards and Technology,

January 9, 2014
 


Further Reading (cont’d) 


9.	 	 D.J. Bernstein, M. Hamburg, A. Krasnova, T. Lange, “Elligator: Eliptic-Curve Points Indistinguishable 
from Uniform Random Strings,” in Proceedings of 20th ACM Conference on Computer and 
Communications Security – ACM-CCS 2013, 2013. 

10.	 	 D.F. Aranha, P.S.L.M. Barreto, G.C.C.F. Pereira, J.E. Ricardini, “A Note on High-Security General-
Purpose Elliptic Curves,” International Association for Cryptologic Research, IACR ePrint 2013-647. 

11.	 	 J.H. Cheon, “Discrete Logarithm Problems with Auxiliary Inputs,” J. of Cryptology, 2010. 
12.	 	 D. Shumow, N. Ferguson, “On the Possibility of a Backdoor in the NIST SP 800-90 Dual-ECC PRNG,” 

Rump Session, Crypto 2007. 
13.	 	 FIPS Pub 186-2, Digital Signature Standard (DSS), Federal Information Processing Standards 

Publication 186-2, US Department of Commerce/National Institute of Standards and Technology, 
Springfield, Virginia, January 27, 2000. (Includes Change Notice, October 5, 2001.) \ 

14.	 	 NIST SP 800-90A, Recommendation for Random Number Generation Using the Deterministic Random 
Bit Generators, Revision 1, Draft, National Institute of Standards and Technology, U.S. Department of 
Commerce, Gaithersburg, MD, September 9, 2013. 

15.	 	 NIST SP 800-90B, Recommendation for the Entropy Sources Used for Random Bit Generation, Draft, 
National Institute of Standards and Technology, U.S. Department of Commerce, Gaithersburg, MD, 
September 6, 2012. 

16.	 	 NIST SP 800-90C, Recommendation for Random Bit Generation Constructions, Draft, National 
Institute of Standards and Technology, U.S. Department of Commerce, Gaithersburg, MD, September 6, 
2012. 

Slide 11	 	 René Struik (Struik Security Consultancy) 



  

 

             
  

             
            

     
           

 
           

  

January 9, 2014
 


Further Reading (cont’d) 

17.	 	 D.R. Hankerson, A.J. Menezes, S.A. Vanstone, Guide to Elliptic Curve Cryptography, New York: 
Springer, 2003. 

18.	 	 R. Lidl, H. Niederreiter, Finite Fields, 2nd Edition, Cambridge: Cambridge University Press, 1997. 
19.	 	 BSI , Technical Guidance TR-03111 – Elliptic Curve Cryptography, Version 2.0, June 28, Bundesamt 

fur Sicherheit in der Informationstechnik, Bonn, Germany, 2012. 
20.	 	 RFC 5639, Elliptic Curve Cryptography (ECC) Brainpool Standard Curves and Curve Generation, 

March 2010. 
21.	 	 L.K. Grover, “A Fast Quantum Mechanical Algorithm for Database Search,” STOC 1996. 

Slide 12	 	 René Struik (Struik Security Consultancy) 



 

 

 

 

   

  

   

 

  

 

 

  

 

  

 

   

  

   

 

On 11/8/13 4:54 PM, "David Johnston" <dj@deadhat.com> wrote: 

1 Comment - Typo 

Location: SP800-90A, Page 1, heading 1 

Type: Editorial 

Issue: 

Extraneous ‘b’ on the clause heading 

Proposed resolution: 

Replace 

1 Authorityb 

With 

1 Authority 

2 Comment – SEI Definition 

Location: SP800-90A, Page 9, SEI Definition 

Type: Normative 

Issue: 

mailto:dj@deadhat.com


  
 

 
     

  
 

   
    

   

 
    

 

       
 

 

 

 

     
  

      

 

     
  

  

The specification restricts an SEI to include only an approved entropy source, within the context of the SP800-90 definition of an approved 
entropy source. 

Common practice in common cryptographic RNGs, especially in operating systems, E.G the linux kernel random number service, take the 
approach that multiple entropy sources be mixed. The security of the resulting system relying on at least one of those sources being sufficiently 
entropic. If any sources are malicious, the system will still be secure provided at least one source is entropic. This is a powerful security construct, 
since it enables 

•	 Systems to be built with redundant sources from different entropy source types. 
•	 Users to guarantee the security of their random numbers by adding in a source they control that they know to be 

entropic, while the RNG continues to use the provided source at the same time. 

By limiting to only approved SEIs, it is guaranteed that such robust approaches to a secure RNG are non compliant. This makes SP800-90 
compliant RNG unacceptable to a large audience of educated users and system builders. It also leads to fragile systems with single points of 
failure. 

The types of SEI are listed as three optional things. You need at least one, so the clause should be written to make it mandatory that the source be 
one of three types. 

Proposed resolution: 

Replace 

A component of a DRBG that outputs bitstrings that can be used as entropy input by a DRBG mechanism. An SEI may be an approved 
entropy source, an approved RBG employing an approved entropy source to obtain entropy input for its DRBG mechanism, or a nested 
chain of approved RBGs whose initial member employs an approved entropy source to obtain entropy input for its DRBG mechanism. 

With 

A component of a DRBG that outputs bitstrings that can be used as entropy input by a DRBG mechanism. An SEI shall employ at least 
one approved entropy source. An SEI shall be one of (1) An approved entropy source with 0 or more additional entropy sources, (2) an 
approved RBG employing an approved entropy source with 0 or more additional entropy sources to obtain entropy input for its DRBG 



    
   

   

  

   

 

      
      

  

   

 

 

    
  

 

 

    
 

    

   

  

   

mechanism, or (3) a nested chain of approved RBGs whose initial member employs an approved entropy source and 0 or more additional 
entropy sources to obtain entropy input for its DRBG mechanism. 

3 Comment – Ambiguous optionality 

Location: SP800-90A, Page 13, clause 7 

Type: Normative 

Issue: 

The diagram shows inputs to functions including entropy, personalization string, nonce and Additional input. However the text calls out only the 
nonce input as being optional. By omission it leaves the optionality of the other inputs ambiguous. In a specification, where there is a list of items, 
some optional, some mandatory, it is necessary to identify the optional or mandatory nature of every item. 

Also, “depending on the implementation” is redundant and adds no meaning. 

Proposed resolution: 

Replace 

Figure 1 provides a functional model of a DRBG (i.e., one type of RBG). A DRBG uses a DRBG mechanism and a source of entropy 
input, and may, depending on the implementation of the DRBG mechanism, include a nonce source. The components of this model are 
discussed in the following subsections. 

With 

Figure 1 provides a functional model of a DRBG (i.e., one type of RBG). A DRBG shall implement an approved DRBG algorithm and at 
least one approved source of entropy input, and may include additional optional sources including a nonce source, personalization string, 
and additional input. The components of this model are discussed in the following subsections. 

4 Comment – Inappropriate use of the term ‘bias’ 

Location: SP800-90A, Page 13, Clause 7.1, second paragraph 

Type: Normative 



 

      
    

   
 

 

       

    
    

 

 

    
      

     

 

  
     

    
 

 

   

  

   

Issue: 

The text says “however, the DRBG mechanisms have been specified to allow for some bias in the entropy input by allowing the length of the 
entropy input to be longer than the required amount of entropy” 

This is neither sufficient nor true. Bias is the least likely form of deviation from pure randomness in a deliberately designed physical entropy 
source. Circuits designed specifically to be an entropy source typically use feedback to ensure even bias, while introducing correlation and non 
stationarity. 

The text should explain that non full entropy inputs are suitable inputs where there is sufficient total entropy. 

Also, entropy is a bulk property of groups of things. Entropy is not bits or data, it is measured in bits, but groups of bits and data have entropy, 
they are not themselves entropy. The use of language should reflect this. 

Proposed resolution: 

Replace 

Ideally, the entropy input will have full entropy; however, the DRBG mechanisms have been specified to allow for some bias in the 
entropy input by allowing the length of the entropy input to be longer than the required amount of entropy (expressed in bits). The entropy 
input can be defined to be a variable length (within limits), as well as fixed length. 

With 

Ideally, the entropy input will have full entropy; however, the DRBG mechanisms have been specified to allow for non-full entropy input 
by allowing the length of the entropic input data to be longer than the required entropy (expressed in bits) such that the total entropy of the 
data meets the requirements of the algorithm. The entropy input can be defined to be a variable length (within limits), as well as fixed 
length. 

5 Comment – Ambiguous optionality 

Location: SP800-90A, Page 14, clause 7.2, second paragraph 

Type: Normative 



 

 
     

 

 

 

   
 

 

      
  

 

 

   

  

   

 

 

  
  

Issue: 

“may be required” is no sort of language for a specification. It is mandatory or is it optional? Optionally mandatory is not a useful definition. 

Proposed resolution: 

Replace 

During DRBG instantiation, a nonce may be required, and if used, it is combined with the entropy input to create the initial DRBG seed. 
The nonce and its use are discussed in Sections 8.6.1 and 8.6.7. 

With 

During DRBG instantiation, a nonce may be supplied as input, and if used, it is combined with the entropy input to create the initial 
DRBG seed. The nonce and its use are discussed in Sections 8.6.1 and 8.6.7. 

6 Comment – Ambiguous optionality 

Location: SP800-90A, Page 14, Clause 7.2, third paragraph 

Type: Unclear 

Issue: 

What does “strongly advises” mean? Is it mandatory or is it optional? 

I cannot know if this is an informative section or a normative section with this sort of language. Does the strength of the advice constitute a 
requirement? I cannot know from reading the text. 



      
      

     
   

     
  

   
    

  

 

 

 
    

   
  

 

   
       

   
 

 

   

   

   

The idea that an instantiation can have a personalization string implies that the context of the instantiation is ephemeral. That the state comes into 
being with the instantiation and there may be more than one. This is a reasonable property of a software algorithm, but any true RBG necessarily 
includes a hardware component and a hardware implementation does not have ephemeral state. The flip-flops of a hardware implementation are 
instanced at the semiconductor factory, not at the call of a software function. 

This type of language and the ‘strong recommendation’ therein is symptomatic of the software centric approach of this specification. The standard 
should describe requirements independent of the means of implementation. 

The specification makes a requirement that the personalization string be unique. However this is an input to the system. The compliant 
implementation has no control over the uniqueness of the personalization string, so this should not be a mandatory requirement. ‘should’ is the 
appropriate term, indicating that there are consequences if the personalization string is not unique. 

Proposed resolution: 

Replace 

This Recommendation strongly advises the insertion of a personalization string during DRBG instantiation; when used, the personalization 
string is combined with the entropy input bits and possibly a nonce to create the initial DRBG seed. The personalization string shall be 
unique for all instantiations of the same DRBG mechanism type (e.g., all instantiations of HMAC_DRBG). See Section 8.7.1 for 
additional discussion on personalization strings. 

With 

A personalization string may be an input during DRBG instantiation; when used, the personalization string is combined with the entropy 
input bits and possibly a nonce to create the initial DRBG seed. The personalization string should be unique for all instantiations of the 
same DRBG mechanism type (e.g., all instantiations of HMAC_DRBG). See Section 8.7.1 for additional discussion on personalization 
strings. 

7 Comment – Unnecessary restriction on sources 

Location: SP800-90A, Page 21. Clause 8.6.5, first sentence. 

Type: Normative 



 

  

 

 

      

 

       

 

   

   

   

 

       

    
  

    

       
   

      
 

Issue: 

The argument here is the same as in comment 2. 

Proposed resolution: 

Replace 

The source of the entropy input (SEI) shall be either: 

With 

The source of the entropy input (SEI) shall include at least one of: 

8 Comment – Incompatible control flow descriptions 

Location: SP800-90A, Page 21. Clause 8.6.5, final paragraph 

Type: Unclear 

Issue: 

The text indicates that with the first two options, the SEI is the slave of the DRBG, providing entropic bits at the request of the DRBG.
 

The text also indicates that the third option, the DRBG is a slave to the supplying DRBG, providing fresh entropy only when the upstream DRBG
 
supplies fresh entropy.
 

However the chain in the third type much always terminate in a DRBG of the first or second type. So the chain of dependency is in conflict.
 

The reality is that SEIs may be caused to produce entropy by the consumer, but it will only produce entropy at the rate imposed by the physical
 
limits of the device. Ultimately, the DRBG is left waiting for the SEI, not the other way around.
 

It is unnecessary for the specification to concern itself with the locus of control in a DRBG, it should concern itself only in the algorithms and the 

entropic properties of the data processed by those algorithms. 




 
  

 

 

    
    

     
  

 

   

   

   

 

  
 

      
  

   
 

 
    

    
   

The paragraph adds nothing, and appears to constrain solutions that cause a reseed when SEI data is available, rather than causing data to be 
available when a reseed is desired. 

Proposed resolution: 

Strike the indicated parts of the paragraph. 

In cases 1 and 2, the SEI provides fresh entropy bits upon request. In case 3, the SEI can provide fresh entropy bits only if it has access to 
an entropy source or NRBG at the time of the request; otherwise, the entropy input provided by the SEI has a maximum security strength 
that is (at most) the security strength of the DRBG serving as the SEI. Further discussion about entropy and entropy sources is provided in 
[SP 800-90B]; further discussion on RBG construction and SEIs is provided in [SP 800-90C]. 

9 Comment – Incompatibility with FIPS140-2 

Location: SP800-90A, Page 23. Clause 8.7, both paragraphs 

Type: Technical 

Issue: 

The text addresses other input to the DRBG besides the SEI, when they may be provided, the role of the provider and the secrecy of the values to 
others and to the provider. 

However this text and the text it refers to (8.6.1 & 8.7.2) are undermined by FIPS 140-2. A FIPS 140-2 compliant DRBG is required by that 
standard to comply with SP800-90. However 140-2 places explicit rules on data and control passing over the FIPS security boundary into the 
DRBG. Namely, any input, whether data, control or configuration (except for a human-typed password) must be from an authenticated entity and 
the data must be authenticated. 

This presents a chicken and egg problem. The DRBG in a FIPS 140-2 crypto system would provide random values necessary for key agreement, 
secure encryption, nonces, keyed hashes and other primitives that would be used in the authentication and session establishment necessary to 
authenticate and securely communicate with authenticated entities. But those are the same entities that FIPS 140-2 requires be authenticated before 
they can input additional entropy, nonces and personalization strings, necessary to get the random numbers necessary to do the authentication. 



    
  

      
 

 

 

     
   

 

   

  

   

 

      

    
   

   

 

 

   
     

        
     

The only identified effective way of complying with both FIPS140-2 and SP800-90 is to have no inputs - no nonces, no personalization strings, no 
extra entropy and no configuration input. Then there is no authentication requirement. 

SP800-90 needs to carve out an exception for the authentication of entities supplying input data and configuration at an SP800-90 boundary that is 
coincident with a FIPS boundary. 

Proposed resolution: 

Add a new paragraph to section 8.7 

Entities supplying data and configuration inputs to an SP800-90 DRBG, including the request parameters, nonces, personalization strings 
and additional entropy are exempt from the entity authentication requirements as described in section 4 of FIPS 140-2. 

10 Comment – Ambiguous optionality 

Location: SP800-90A, Page 24. Clause 8.7.2 

Type: Normative 

Issue: 

“is allowed” is not clear specification language. Is it mandatory, optional or informative? 

In this case, the addition entropy input may optionally be supported. This language has led directly to misinterpretation by certification test labs 
that implementations must support additional entropy in case the consuming application wants to supply it. This is wrong and the language must 
be clarified in terms of the requirements on the implementation not the data. 

Proposed resolution: 

Replace 

During each request for bits from a DRBG and during reseeding, the insertion of additional input is allowed. This input is optional, and the 
ability to enter additional input may or may not be included in an implementation.   Additional input may be either secret or publicly 
known; its value is arbitrary, although its length may be restricted, depending on the implementation and the DRBG mechanism. The use 
of additional input may be a means of providing more entropy for the DRBG internal state that will increase assurance that the entropy 



    
    

 

         
   
    

    
    

   

 

     

  

   

 

     
 

  
  
   
  

 
   

requirements are met. If the additional input is kept secret and has sufficient entropy, the input can provide more assurance when 
recovering from the compromise of the entropy input, the seed or one or more DRBG internal states. 

With 

A DRBG may support the insertion of additional input during reseeding and generate requests. This input is optional for both the DRBG 
and the consuming application, and the ability to enter additional input may or may not be included in an implementation.   Additional 
input may be either secret or publicly known; its value is arbitrary, although its length may be restricted, depending on the implementation 
and the DRBG mechanism. The use of additional input may be a means of providing more entropy for the DRBG internal state that will 
increase assurance that the entropy requirements are met. If the additional input is kept secret and has sufficient entropy, the input can 
provide more assurance when recovering from the compromise of the entropy input, the seed or one or more DRBG internal states.  

11 Comment – Resource constrained solutions – lack thereof. 

Location: SP800-90A, Section 10, all of it 

Type: Technical 

Issue: 

The 4 approved DRBGs (hash, hmac, ctr and dual_ec) are all based on cryptographic primitives that take substantial resources in terms of state, 
silicon area or time. Since this specification began development we have: 

•	 New mathematics describing smaller more efficient PRNGs 
•	 New hash algorithms with more efficient native PRNG modes 
•	 New NSA published algorithms, such as Simon and Speck aimed directly as resource constrained environments 
•	 PRNG algorithms where the reseeding (SP800-90A) and conditioning (SP800-90B) are both performed as part of the same 

reseeding algorithm. 
•	 A growing market for very small, lightweight, resource constrained devices 



 
     

  

   
 

 

  
  

    
     

 

 

   
 

 

   

   

   

 

  

 

 

 

The algorithms on offer render this specification obsolete, with respect to modern cryptography and device requirements. In order to remain 
relevant, it must adopt new algorithms that support resource constrained devices, such as wearable electronics, smart cards, RFIDs and isolated on 
chip security functions. 

A basic fast 10 clock AES silicon implementation within inline key schedule takes between 30k and 100k NAND gate equivalents, depending on 
the synthesis constraints. The majority of the logic going to implement the SBOXes. This is incompatible with the power and size profile of 
RFIDs, smartcards and heavily re-used on chip circuits. 

With current knowledge it is possible to create very compact, resource efficient RNGs that condition raw entropy and output full entropy, with no 
intermediate DRBG. The DRBG’s primary role in an RBG is to match a slow entropy source to a high demand for random numbers. Modern 
metastability based entropy sources are fast compared to digital DRBG implementations. A simple serial XOR accumulator, sufficiently iterated 
can reach full entropy from a serial entropy source. Simple serial pattern counting online health test algorithms can be more discriminatory that the 
tests described in this specification. 

Proposed resolution: 

Adopt one or more new approved DRBG functions in section 10 with application aimed directly at resource constrained environments. Solicit 
input for such functions for review at the next RNG workshop. 

12 Comment – Dual EC DRBG 

Location: SP800-90A, Page 60. Clause 10.3, all of it 

Type: Normative 

Issue: 

The Dual EC DRBG is sad and unloved. 

Proposed resolution: 

Remove section 10.3 and all reference in this document and SP800-90B and C to the Dual EC DRBG. 

Remove appendix A. 



 

 

 

 

 

   

  

   

 

 

   
    

       

 
       

   

 

 

 

 

 

Remove appendix C.
 

Remove appendix D.5
 

13 Comment – FIPS 140-2 incompatible output tests 

Location: FIPS 140-2, 4.9.2 

Type: Unclear 

Issue: 

Section 4.9.2 of FIPS 140-2 says: 

“If each call to a RNG produces blocks of n bits (where n > 15), the first n-bit block generated after power-up, initialization, or reset shall 
not be used, but shall be saved for comparison with the next n-bit block to be generated. Each subsequent generation of an n-bit block 
shall be compared with the previously generated block. The test shall fail if any two compared n-bit blocks are equal.” 

This completely undermines SP800-90. A true random sequence will generate adjacent identical values in sequences of 16 bits frequently. By 
eliminating those adjacent values, the randomness of the sequence is reduced below the (1-epsilon) threshold for full entropy defined in SP800-90. 

It is an ad-hoc RNG output test that ignores the testing required by SP800-90. 

Proposed resolution: 

Add text to exempt SP800-90 DRBGs and ENRNGs from 4.9.2 of FIPS 140-2. Fix 140-2. 



  



 
 

 

 

 

  

 

    

    

 

 
 

   

  
 

 

  
 

 
  

   

  
 

  

 
   

 
 

  
   

 

  
  

 
 

 

 
   

 
 

 

Comments Received on SP 800-90B 

On 10/11/13 3:22 PM, "Stephanie Eckgren" <seckgren@infogard.com> wrote: 

# 

1 General There is not a clear mapping between A validation or documentation It appears that the developer might 
the validation requirements in Section requirement should not be listed more work from Sections 4.1 and 6.1 but the 
4.1 (Entropy Estimation and than once within the document. tester will work from 7.0. This may 
Validation), Section 6.1 (General Consider revising the structure slightly cause issues in the validation. 
Requirements for Design and so that the developer and tester are 

Validation), and Section 7.0 (Validation 
 working from the same “validation” 

Data and Documentation
 requirements.
 
Requirements).
 

2 General The term “developer” is used Clarify the term “developer”. Consider The “developer” of the entropy source 
throughout SP 800-90B. Does this mean using a more general term (e.g., will not always be the one writing 
that an outside party cannot test/analyze “vendor” as used in FIPS 140). documentation and obtaining a 
a purchased entropy source? validation. 

3 General Will FIPS 140-2 Annex C be updated to Clarify if there will be a new category To mesh well with FIPS 140-2 and 
include SP 800-90B and C once these in Annex C for Approved Entropy inform vendors and laboratories on how 
are out of draft and published? Source. these guidelines fit into the validation 

scheme, this point should be addressed If not, clarify where SP 800-90B 
prior to final publication of the SP 800­Approved mechanisms will be listed. 
90 suite. 

Section, 
Paragraph, 
or Page 

Comment Suggested Revisions Rationale for Revisions 

mailto:seckgren@infogard.com


  

 

    

 
 

  
 

  
 

 
 

   
  

 
 

 
 

 

 
    

 

 
 

 

 
 

 
 

 
 

   
 

  
  

 
   

 
 

 

  
   

  
 

 
 

4 

# Section, 
Paragraph, 
or Page 

Section 6.1, 
Page 23, #2 

5 Section 
6.5.1.2, Page 
30 

Comment 

This states that the security boundary 
“shall be the same as or be contained 
within a [FIPS 140] cryptographic 
module boundary”. This implies that an 
SP 800-90B implementation must have 
both a CAVP certificate AND a CMVP 
certificate to be valid. How will this be 
handled during validation? 

Many implementations of RNG use a 
HW RNG to generate a seed and/or 
seed key, and the HW RNG is not 
otherwise used by the module. 
Is continuous testing meaningful in this 
scenario? 

Suggested Revisions 

Consider allowing a standalone CAVP 
certificate. Then if the vendor chooses, 
they can embed it within a FIPS 140 
module. 

Clarify intent for this scenario. 

Rationale for Revisions 

This is different than other algorithms 
because they can have a standalone 
CAVP certificate and still be valid. It 
needs to be clarified if this is not the 
case for SP 800-90B. 

Assuming a HW RNG must meet SP 
800-90B SEI requirements, the value of 
continuous testing of the SEI in this 
one-shot use scenario is not clear. 
The current Implementation Guidance 
recognizes this scenario in the 
Additional Comments section of IG 9.8: 
"If the design of the cryptographic 
module is such that the Approved RNG 
or RBG is only seeded (seed and seed 
key) once from an NDRNG after 
cryptographic module power-on and 
never re-seeded (seed and seed key) 
until the module is powered-off, and the 
NDRNG is not used for any other 
function or purposes, than the module 
does not need to implement a 
Continuous Random Number Generator 



  

 

    

   
  

 

 
 

 

  

 

 
 

  

 

 

 

 
  

 
 

   
 

 
 

 
  

 
  

7 

# 

Test on the output of the NDRNG." 
Is NIST policy for SP 800-90B 
continuous testing expected to have a 
similar provision? 

6 Section FIPS 140-2 guidance will be required to Update FIPS 140-2 guidance coincident A vendor should not fail AS09.42 if 
6.5.1.2, Page clarify that Repetition Count Test with publication of SP 800-90B. Section 6.5.1.2 is implemented. Section 
30 supersedes the current AS09.42 6.5.1.2 appears more permissive. 

requirement. 

Section, 
Paragraph, 
or Page 

Comment Suggested Revisions Rationale for Revisions 

Section 
6.5.1.2.2, 
Page 32 

Definition of A is not entirely clear. The Define A as the previous sample value 
intent seems to be that A is the previous (if S != N). 
value, not the current value. 

There are 2 samples in this algorithm: 
the previous value and the current 
value. 
- A is defined as the “current sample 
value” (item #1 in definitions). 
- Process step 3b: “If A = the current 
sample value…” 
So it would always be true. 



  

 

    

 

 

 
 

  
 
 

 
  

 

 
 

 

  
 

 
  

   
 

 

 
 

 
 

 

 

 
  

  
 

  

  

   
  

  

 
 

 
 

   
  

 
 

 
 

 

   

 
  

 
 

 
  

 

8 

9 

10 

# Section, 
Paragraph, 
or Page 

Section 7.1, 
Page 38, 
Paragraph 1 

Section 7.1, There is no specific requirement for the Insert a bullet #1 that says: “Data shall It is a crucial step that must be taken. 
Page 38, #1 tester to verify and record the version(s) be collected from the entropy source Though it seems obvious, it is 

of the entropy source equipment. under validation. The version(s) shall be sometimes not setup properly by the 
recorded prior to gathering entropy.” developer or the tester may miss the 

step. 

Comment Suggested Revisions Rationale for Revisions 

Section 7.1, 
Page 38, 
Paragraph 1 

The following statement is very 
important and one of the main purposes 
of SP 800-90B: 
“The entropy source will have no more 
entropy than that provided by the noise 
source, and as such, the noise source 
requires special attention during 
validation testing.” 
Unfortunately, there does not appear to 
be any concrete information in this 
standard about good/bad noise sources. 

Again, the statement that “the noise 
source requires special attention during 
validation testing” is very important and 
one of the main purposes of SP 800­
90B. 
Has NIST determined if the noise 
source(s) will be categorized and 
requested by the CAVP? 

Add an Appendix to SP 800-90B titled 
“Known Noise Sources”. This appendix 
can have tables listing known good 
noise sources and known bad noise 
sources. Or tables could potentially list 
pros/cons of certain noise sources. 

Consider requiring noise source 
categories to be, at a minimum, 
submitted to the CAVP/CMVP during 
testing (e.g., selections in the CAVS 
tool). The categories could align with 
the “Known Noise Sources” appendix 
suggested in the previous comment. 

The hardest part of SP 800-90B for the 
developer and testing lab is determining 
whether the noise source (in theory) is 
sufficient. If developers and testing labs 
are given no common concrete 
information on good/bad noise sources, 
almost any “noise source” could be 
accepted with a reasonable argument 
(even if it is inaccurate). 

This will help introduce accountability 
into the SP 800-90B validations. If this 
information is not requested by NIST, 
there may be some hand waving by 
developers/testers that do not yet fully 
understand “noise sources”. 



  

 

    

 

 

  
   

 
  

  
 

  
    

  
 

 
 

 
 

 
  

  
   

 
 

  

 
 

  
 

  

  
  

   

 
    

  
 

 
 

# Section, 
Paragraph, 
or Page 

Comment Suggested Revisions Rationale for Revisions 

11 Section 7.1, 
Page 39, 
Bullet 1 

“Data collection will be performed in 
one of two ways 1) by the developer 
with a witness from the testing lab, or 
2) by the testing lab itself.” 
Option 1 leaves many interpretations ­
“witness” can be interpreted as being 
physically present at all times or as 
being remotely present for just the setup 
of data collection software. This can be 
complicated because gathering 
1,000,000 samples could potentially 
take weeks and/or many overnight 
running scripts. The meaning and 
intention of “witness” should be 
clarified. 

Recommendation #1: Remove the 
language for how the lab must perform 
the data collection. Simplify the 
sentence as follows: “Data collection 
will be performed in accordance with 
NVLAP standards.” 
Recommendation #2: If 
Recommendation #1 is unacceptable, 
add the following footnote to option 1 
(“by the developer with a witness from 
the testing lab”): 
“At a minimum, the witness must be 
remotely present (e.g., via a video 
conference or WebEx) for the startup of 
the entropy gathering equipment. 
Physical presence of a witness is highly 
recommended but not required.” 

Physical presence of a witness can be 
expensive, time consuming, and 
difficult for those travelling. This is 
especially true if physical presence is 
needed for potentially weeks of entropy 
gathering. At a minimum, a remote 
presence is sufficient in order to gain 
assurance that entropy is being gathered 
properly and that the gathering 
methodology is consistent with 
developer documentation. 



  

 

    

 

 

  
   

 
  

 
 

 
 

 
   

 
   

 
  

 
   

 

 
    

   
 

 

   
 

  
 

 

 

 

 
  

 

  
 

 
 

   
  

  

 

 
 

 
  

 
 

 

 

  
 

 
   

 

 
  

 
  

  

12 

13 

14 

# Section, 
Paragraph, 
or Page 

Section 7.1, 
Page 39, 
Bullet 2 

Section 7.1, If claiming “full entropy”, should more If this is true, please add a statement In the past, we have required a very
 
Page 39, 
 than 1,000,000 samples be required?
 about the number of sample required in large amount of data in order to pass 
Bullet 4 claiming full entropy. full entropy tests in tools such as STS. 

Min-entropy tools can handle much less 
data than full entropy tools. 

Comment Suggested Revisions Rationale for Revisions 

Section 7.1, 
Page 39, 
Bullet 4 

In some scenarios, noise sources run 
under normal operating conditions only 
during start up (e.g., entropy data is 
collected within the first 20 seconds at 
start up). In order to collect 1,000,000 
samples, will a source need to be 
restarted many times? 

Please clarify the meaning of 
“consecutive” samples and make an 
allowance if gathering “consecutive” 
samples is not possible. 

Permit a single collection session only 
if the vendor provides an acceptable 
rationale. Otherwise, require the vendor 
to collect data under their normal 
operating conditions (i.e., with 
intervening power cycles between 
entropy data collection). Note that the 
practicality of this approach must be 
examined (how long will this data 
collection require?). 
Consider adding a footnote to clarify 
this scenario and what is permitted. 

Allow for the case where gathering 
1,000,000 “consecutive” samples is not 
possible (e.g., where multiple start ups 
must occur to gain 1,000,000 samples). 
Add the following statement: 
“If generating 1,000,000 consecutive 
samples is not possible, concatenation 
of smaller consecutive samples is 
allowed.” 

It is a common occurrence that entropy 
data is collected at start up of a module. 
A known mistake in this case is to 
simply start up the module once and 
collect 1,000,000 samples (without 
restarting). Doing this can cause 
misleading entropy data (with likely a 
higher min-entropy). If the vendor 
cannot provide some acceptable 
rationale for gathering without multiple 
start ups, then samples need to be 
collected over multiple start ups. 

Collecting 1,000,000 samples can be 
challenging, and collecting 1,000,000 
“consecutive” samples even more so. 
There needs to be an allowance for 
consecutive samples smaller than 
1,000,000 (i.e., by concatenating). 



  

 

    

 

 

 
 

   
  

 
 

 
   

 
  

 

   

 
  

  

  
  

  
  

 

 

 
  

  
  

    

 
 

 
  

 

 
 

  

 
 

  
  

   
  

 
  

  
  

   

15 

16 

# Section, 
Paragraph, 
or Page 

Section 7.1, 
Page 40, #3, 
Bullet 3 

Section 7.1, 
Page 40, #3, 
Bullet 3 

Comment 

This specifically allows the technical 
argument for the noise source to be “in 
broad terms” and with “a rough 
description of the behavior of the noise 
source”. This is going to allow a 
developer to simply write a ½ page 
argument for their noise source(s). 

Bullet 3 does not clearly require the 
developer to define their entropy rate 
prior to writing a technical argument 
and testing their data. 

Suggested Revisions 

Consider creating an appendix that 
contains an example argument for a 
noise source. This example should 
represent what is expected at a 
minimum. 

Bullet 3 should be clarified as follows: 
“Documentation shall provide an 
explicit statement of the expected 
entropy rate and provide a technical 
argument for why the noise source can 
support that entropy rate.” 
Additionally, the CAVS tool (or 
equivalent) should request the expected 
entropy rate as input. If the calculated 
min-entropy is less than the expected 
min-entropy, the test fails. 

Rationale for Revisions 

As it stands, bullet #3 will allow for the 
noise sources to be described with 
minimal information from the 
developer, and the test laboratory will 
have no choice but to accept most 
arguments (even if they are poor). Since 
the noise sources are so important and 
are essential to the security of a module, 
more than a “rough description” “in 
broad terms” should be required.  

If documentation is not specifically 
required for the “expected entropy rate” 
before validation testing, developers 
will be likely to write the 
documentation after the fact and just 
insert the min-entropy given by the 
CAVP. Instead, it is important for the 
developer to have an estimate of their 
min-entropy in order to back up their 
technical argument (before sending 
entropy data to the CAVP). 



  

 

    

 

 

 
  

  
 

 
 

 
 

 
 

  
  

 
 

 
  

   

 
 

 

  
 
  

  
 

  

 
  
 

 
 

 
  

  

 
  

 
 

  
  

 
 

 

 
 

  

 

17 

18 

19 

# Section, 
Paragraph, 
or Page 

Section 7.1, 
Page 40, #3, 
Bullet 4 

Section 8.4, This section seems mislabeled; the This content seems to be covered by Section 6.5.1 specifies health test 
Page 47 content is about an alternative approach statements in Sections 6.5.1.2 and 10. requirements; Section 6.5.1.2 specifies 

to health testing if the specified the requirements for continuous testing. Remove this section, consolidating any 
methods are not implemented. non-redundant information into Section 

6.5.1.2 or Section 10. 

Comment Suggested Revisions 

Section 7.1, 
Page 40, #3 

It should be specifically asked whether 
all noise sources will be available when 
the module is deployed in the field. 
Also, if all noise sources will not be 
available, how should the entropy 
estimate be affected? 

It will be beneficial to add a bullet 
requiring documentation about known 
vulnerabilities and the potential 
attacker. Example: If part of the noise 
source comes from human key strokes, 
could the potential attacker 
methodically repeat key strokes to get 
the same entropy data? 

Add a bullet or a sentence to bullet #4 
stating the following: 
“Documentation shall specify if all 
noise sources will be available in the 
field”. 
If all noise sources will not be available 
in the field, entropy data collected 
should not include data from a noise 
source that will not be available in the 
field. 

Add a bullet to #3 (Documentation for 
Validation Testing) as follows: 
“Documentation shall describe the 
known vulnerabilities of the entropy 
source and the potential attacker.” 

Rationale for Revisions 

It seems obvious that any noise source 
being discussed will be available in the 
field, but this is not always the case. 

If a noise source is very vulnerable, 
then the noise source itself is very 
weak. 



 
 

 

 

 

        
        

     

 

      
       

    

 

 

 

     
         

        
     

 

 

 

On 10/22/13 6:43 PM, "Tom Tkacik" <tom.tkacik@freescale.com> wrote: 

I would like to thank NIST and the authors for the publication of the two new documents SP800-90B and SP800-90C. These fill a hole in reliable 
implementation of Random Bit Generation. Without being able to measure the entropy from an entropy source, it has been difficult to know one is 
indeed any good. That measurement process will lead to overall improvements in entropy generation. 

I do have a question about the concept of full entropy. SP800-90B gives a definition of full entropy, that an n-bit string have at least (1-e)n bits of 
entropy (e <= 2^-64). (The definition does not state if this is shannon entropy or min-entropy. I assume it is meant to be min-entropy.) Can the 
raw, unconditioned, output of an entropy source ever be claimed to have full-entropy? 

Here are some more specific comments on SP800-90B: 

Section 6.4.2 specifies how to assess the min-entropy of conditioned output. However, the assessed output entropy is not a monotonic function of 
the input entropy. An input string S with m=n-1 bits of entropy, will assess the output Y with n-1 bits of entropy. But an input string S with m=n 
bits of entropy, will assess the output Y with n/2 bits of entropy. Increasing the entropy of the input will result in an output entropy decrease. I do 
not know the intention of this assessment, but it cannot be correct. 

Figure 2 has the X and Y labels reversed. 

mailto:tom.tkacik@freescale.com


          
  

 

             

     

             

             

              

              

              

              

               

               

                

               

               

               

               

               

               

Section 6.5.1.2.2.1.2 gives values for the cutoff value C. For N=64 and N=256, the values are not correct. (They are correct for N=4096 and 
N=65536.) Here are the correct values (using the critbinom() function given in footnote 1): 

N 64 256 

H 

1 55 176 

2 39 108 

3 27 68 

4 20 44 

5 15 29 

6 11 21 

7 9 15 

8 7 11 

9 6 9 

10 5 7 

11 4 6 

12 4 5 

13 3 4 

14 3 4 

15 3 3 



               

               

               

               

               

 

 

      
          

         
   

 

     
 

 

         
       

 

      
        

     
       

 

16 2 3 

17 2 3 

18 2 2 

19 2 2 

20 2 2 

Section 8.2.1.a.i states "the entropy estimate for each output of the conditioning component is min(outlen, entropy_in), where outlen is the length 
of the output from the conditioning component, and entropy_in is the amount of entropy per bit in the input to the conditioning component". I 
believe that "entropy per bit in the input" should be "entropy per sample in the input". However, this is still inconsistent with section 6.4.2.1 where 
the output has 1/2 the entropy of the input. 

The relationship between entropy input to an approved conditioning function, and the entropy of the output needs to be better understood, or 
articulated. 

Section 8.2.1.b.ii.a.ii states "Let S be the entropy estimate for the noise source (i.e., the number of bits of entropy per bit of noise source 
output.)" I believe that S is actually the number of bits of entropy per sample of noise source output, not entropy per bit. 

Section 8.3.1.a.i states "For full-entropy sources with no conditioning component: Credit for full-entropy will be given only if the data is verified 
to be IID, and a full-entropy estimate is produced by the tests in this Recommendation." The test is given in Section 9.2. However, greater than 
2^128 samples would be required before raw binary data could be estimated to have full-entropy, according to this test. This is not practical. If the 
raw output of an entropy can never achieve full-entropy, the document should state that a condition of achieving full entropy is to be the output of 
an approved conditioning function. 

http:8.2.1.b.ii.a.ii


 

     

 

       

 

 

   

 

  

    

  

       
        

 

     
      

  
    

  

 

 

If raw output can achieve full entropy, the document should give realistic requirements that can be actually be met. 

Section 9.1.2.4.1.b "W_i = hamming_weight(s_i, ..., s_i+7)" should be "W_i = hamming_weight(s_8i, ..., s_8i+7)". 

From: <Scott>, Michael2 <michael2.scott@rsa.com> 

Date: Sunday, November 3, 2013 10:28 PM 

The feedback from the RSA BSAFE development team concerning the draft of SP800-90B from August 2012 is: 

1.	 Section 6.5.1.3 states: At a minimum, the start-up tests shall consist of one full cycle of the continuous tests to ensure that the continuous tests 
have had an opportunity to verify that the device is working before it is used. Could a precise definition of one full cycle be given for each of 
the continuous tests? 

2.	 In section 6.5.1.2.2.1.2 the footnote for the critical value calculation states: C would be computed as =CRITBINOM(N,2^(-H),1-T). However 
the term T is not defined in the document. Should the term 1-T be replaced with α? 

3.	 In the same section, Table 2 illustrates the cutoff values for given entropy per sample and window size. If the table is extended to entropy per 
sample values greater than 20 then zeroes appear in table. Should the occurrence of a zero values be indicated by the document and their 
impact on tests be defined? 

mailto:michael2.scott@rsa.com


  

 

  

     
   

  

 

  

         

  

        
   

    
  

  

      
     

    
  

  

   
    

 

From: <Thomas>, Ryan <ry.thomas@cgi.com> 

Date: Tuesday, November 5, 2013 3:49 PM 

Please find the CGI ITSETF’s (an NVLAP-accredited laboratory and a candidate NIAP Common Criteria Laboratory) comments on NIST 
DRAFT SP 800-90B in response to the public comment period on the NIST Computer Security Publications website. 

NIST SP 800-90B 

1. Section 7.1 General Validation Requirements on page 39: 

“Data collection will be performed in one of two ways 1) by the developer with a witness from the testing lab, or 2) by the testing lab itself. The 
entropy source shall contain an interface that enables access to raw bits from the noise source and conditioned outputs from the conditioning 
component (if utilized). This interface shall consume the noise source outputs (i.e., these outputs shall not be used for anything else once received 
by the interface). The interface shall be accessible during validation testing but may be disabled, otherwise.” 

CGI Comment: We have concerns with the witness testing requirements for data collection in the 90B draft SP as a CST Laboratory that will be 
responsible for facilitating and/or performing this testing as a part of FIPS 140-2 module validations. In our experience this testing can take 
upwards of 2-3 days to complete and it is not feasible/practical/economical from a cost perspective for a lab member to be on-site the entire time 
for witness testing. 

There is not much to observe during this process and it can take a very, very long time. The requirement for a lab member to witness the entropy 
testing will likely mean additional expenses and cost to the lab/vendor and in our opinion it adds very little value in terms of assurance of the 
testing process and results. 

mailto:ry.thomas@cgi.com


  

  
 

  

           
 

            
  

  

     
     

    
      

 

  

        
 

   

  

         

  

   
 

  

In our opinion, the objective of assurance in the data collection during the validation process can be met in several other ways - a couple of 
suggestions: 

· An affirmation form signed by the vendor stating that the samples collected are from the entropy source and were tested on a certain 
date; 

· Sample testing that can be performed on the entropy source during the FIPS functional testing to verify the results are consistent with 
previously collected results 

We believe that a review of the entropy source (and entropy testing once 90B is published) should be one of the first things performed during the 
module validation process. Currently, we are seeing a need to make substantial changes to the entropy and entropy sources in the module or the 
module’s operating environment (random drivers in the underlying operating system) in order to meet the requirements in 90B and the FIPS 140-2 
Implementation Guidance. From a lab perspective we request that our clients implement make the required changes prior to performing CAVP 
algorithm testing and FIPS 140-2 functional testing. 

If this remains the case it is very likely the lab will have to make multiple trips - this is not cost effective or practical for the lab or many vendors 
(example: a North American lab that has a vendor based in Asia or Europe). We request that NIST please consider adding additional (more 
practical) methods for ensuring the integrity of the data collection process. 

2. Section 7.1 General Validation Requirements on page 39: 

“Data shall be collected from the noise source and conditioning component (if available) under normal operating conditions (i.e., when it is 
reasonable to expect entropy in the outputs).” 



        
    

  

     
     

  

         

  

   
     

  

   
     

  

         

 

  
  

  

  
      

  

CGI Comment: What can vendors/labs do if there are constraints and no direct access to the module’s raw entropy source (before conditioning) is 
exposed? - ie. output of a COTS chip that is conditioned internally. 

Can NIST please provide a brief definition of “Normal Operating Conditions” so that vendors and labs have a clear and unambiguous 
understanding of the expectations for when it is acceptable for samples to be gathered (vs. it when it not acceptable)? 

1. Section 7.1 General Validation Requirements on page 39: 

“Data collected from the noise source for validation testing shall be raw, digitized, but otherwise unprocessed, sample values. NIST will provide 
guidance as to the appropriate format of the data for input to the validation tests.” 

CGI Comment: Can NIST please advise where this guidance when (and in what document) guidance on the appropriate format of the data for 
input to the validation tests will be provided? 

1. Section 7.1 General Validation Requirements on page 39: 

“One long dataset of at least 1,000,000 consecutive sample values obtained directly from the noise source (i.e., raw and unprocessed samples) 
shall be collected for validation” 

CGI Comment: Can NIST please elaborate or provide an explanation/rationale as to why NIST selected 1,000,000 samples in an Appendix? Can 
NIST provide some additional guidance on general principles should the lab or vendor be aware of when making sure the sample size selected is a 
sufficient sample size for testing/validation purposes? 



  

         

  

      

     

     

     

     

     

   

  

    

  

    
  

  

     
      

 

  

  

2. Page 28 of NIST 800-90B states the following: 

“Assessed entropy (m)
 

Output length (n)
 

Credit entropy output (Y)
 

Relationship	 if( m >= 2n ) then Y = n 

if( 2n > m >= n ) then Y = m/2 

if( m < n ) then Y = m 

(For the purposes of this exercise, I am going to let n = 160 bits because I am interested in the SHA1 hashing output.)” 

CGI Comment: It is the lab’s understanding that there are some distributive properties of the SHA hash function (well, any acceptable has 
function, really) that NIST is making use of when trying to credit entropy after it has gone through the hash. 

The problem, in our opinion is when you actually graph m vs. Y you get an odd discontinuity at 160 bits (since n is a constant). You end up with 
the state where having a certain amount of MORE entropy than your output length is a detriment to your credited entropy. That makes no sense to 
me, but I’m not a crypto expert. 

From a Common Criteria perspective, NIAP has asked the labs to follow 800-90B as a guideline in their NDPP v1.1 Addendum (http://www.niap­

http://www.niap-ccevs.org/pp/pp_nd_v1.1-add1.pdf


     
 

 

  

 

  

   
 

  

 

  

          

ccevs.org/pp/pp_nd_v1.1-add1.pdf). We want to make sure that we are not unduly penalizing vendors if they happen to get an entropy rate that 
makes them fall into a weird part of the graph. It would be greatly appreciate if we could have something that assumes an average rate of decline 
for the time-being as a reasonable intermediate analysis step. 

During some research on this subject CGI located and interesting set of slides on the NIST website at: 
http://csrc.nist.gov/groups/ST/rbg_workshop_2012/kelsey_800-90b.pdf 

Slide 19 states: “Our math in SP 800-90B is messed up” 

Since this could mean *anything* it is hard to determine the intention and implication of this statement. However, since the scope of that slide is 

http://www.niap-ccevs.org/pp/pp_nd_v1.1-add1.pdf
http://csrc.nist.gov/groups/ST/rbg_workshop_2012/kelsey_800-90b.pdf


   

  

  
 

  

      

 

 
  

 

   

 

   
    

     

 

      
   

   

 

   

on the “assessed” entropy and the NEXT slide discusses the whole “2n” relationship, I wonder if they are, in fact, talking about this discontinuity. 

From a validation perspective can the testing lab be more lenient if a developer claims a hashing function on an input string assessed at some level 
of entropy and they fall into this “weird” discontinuity? 

Please do not hesitate to let me know if you require any clarification on the comments. Thank-you in advance for your consideration. 

On 11/6/13 2:48 PM, "Brian Smithson" <bsmithson@ricohsv.com> wrote: 

Please consider the following comment, sent on behalf of Ricoh. 

Comment: Entropy source documentation requirements (6.1, 7.1 list item 3) is difficult, and in some circumstances, not possible when third-party 
sources are used. Nonetheless, those requirements are mandatory even when the intended purpose of conforming to the Recommendation is to 
fulfill requirements of another validation process at a far lower level of information assurance. 

The SP 800-90 Recommendations would be more broadly useful if they provided two or more levels of conformance requirements, similar to FIPS 
140, so that references to SP 800-90 series could be made at a more appropriate level. At the lower conformance level, testing methods specified in 
Chapter 9 should be sufficient without also requiring detailed documentation. 

Rationale: Other validation processes, such as Common Criteria certification in NIAP, references the SP 800-90 series. And yet, current NIAP 

mailto:bsmithson@ricohsv.com


     
     

 

 

  

 

 

  

 

         
  

  

 

      

        
    

 
  

 

 

 

    

policies for Common Criteria certification limit the assurance level to EAL 2 or lower. Detailed documentation is not required at CC EAL 2, and 
so it is remarkably inconsistent to require such documentation in the referenced NIST recommendation. 

From: Rene Struik <rstruik.ext@gmail.com> 

Date: Thursday, November 7, 2013 8:11 AM 

I have the following comments on the NIST SP 800-90B draft: 

1) At the review last year (2012) I expressed concern that the language of the draft would effectively rule out using physically unclonable 
functions as a source of true randomness. This would be highly unfortunate, since this could prove to become quite an attractive low-cost true 
randomness source with high min-entropy. Since the draft did not change since last year, I thought I should re-emphasize this point. 

2) I would like to make you aware of the recently published paper 

Key Derivation Without Entropy Waste (Yevgeniy Dodis, Krzysztof Pietrzak, Daniel Wichs, IACR ePrint 2013-708). It seems worth 
investigating whether the bounds on entropy-loss in that paper would justify loosening the requirements on how much min-entropy a true 
randomness source would need to have to justify derived keys to be considered fully random (it seems one would gain a factor almost 2x in 
efficiency this way). 

This relates to my comment from the review last year re 

Section 6.2, p. 24, 2nd item: It is not entirely clear where the “double block size requirement” comes from. Assuming the input to the conditioning 

mailto:rstruik.ext@gmail.com


        
    

       
 

 

 

        

 

   

   

 

      
 

 

 

  
  

 

  
  

 

function (with output size n bits) to be “full entropy”, this suggests that this requires at least 2n-bit entropy. Again, this suggests that – with 
the use of an only the SHA-x family of hash functions as approved conditioning functions – one is stuck with noise sources with 2n> 320 of 
entropy and cannot use a noise source offering n=128 bits of min-entropy in case on throws in a conditioning function. This needs some more 
explanation. 

On 11/8/13 4:54 PM, "David Johnston" <dj@deadhat.com> wrote: 

Location: SP800-90B, , Page ii, abstract KEY WORDS 

Type: Informative 

Issue: 

The primary role of this spec is to define NRBGs up to and including the conditioning part. So it would be appropriate to include them in the 
keywords 

Proposed resolution: 

Replace: 

KEY WORDS: deterministic random bit generator (DRBG); entropy; hash function; random number generator; noise source; entropy 
source; conditioning component 

With 

KEY WORDS: deterministic random bit generator (DRBG); entropy; hash function; random number generator; non-deterministic random 
bit generator (NRBG); entropy source;  entropy conditioner 

mailto:dj@deadhat.com


    

 

  
 

   

 

   
  

   

 

14 Comment – Taxonomy of RBGs 

Location: SP800-90B Page 8, 1.0 Scope, paragraph 1, SP800-90B Page 10, Definition, SP800-90B, page 12, Definition, SP800-90B 
Page 13, Definitions 

Type: Informative 

Issue: 

The taxonomy of RBGs appears to be unclear. Paragraph one states that SP800-90 A & C covers DRBGs and RBGs. However SP800-90C 
differentiates NRBGs and Enhanced NRBGs and the definitions in SP800-90C defines enhanced-NRBG but not NRBG, while the text in SP800­
90B uses entropy-source and NRBG interchangeably. 

There should be a clear taxonomy, with the definitions in sync. E.G. following the diagram below: 

RBG 
random bit generator 

DRBG 
deterministic random bit generator 

NRBG 
non-deterministic random bit generator 

Basic-NRBG or 
Entropy Source 

NRBG without conditioner 

Enhanced-NRBG 
NRBG+DRBG in XOR or oversampling 

construction 

SP800-90C Scope SP800-90B Scope 



  

         
 

 

 

 

 

  
   

   
   

 

 

  
   

     

 
 

 

 

 

  

Figure 1 Hierarchy of RNG Types 

Enhanced-NRBGs  are out of scope in SP800-90B. ‘Noise Source’ is a subset of ‘Entropy Source’ and ‘Entropy Source’ is equivalent to ‘Basic-
NRBG’. 

So the SP800-90B definitions should cover RBG, NRBG, Noise Source, Entropy Source and Basic-NRBG 

The SP800-90C definitions should cover RBG, NRBG, Noise Source, Entropy Source, Basic-NRBG and Enhanced-NRBG. 

Proposed resolution: 

Replace at SP800-90B Page 8, 1.0 Scope, paragraph 1: 

Cryptography and security applications make extensive use of random numbers and random bits. However, the generation of random bits 
is problematic in many practical applications of cryptography. The purpose of NIST Special Publication (SP) 800-90B is to specify the 
design and testing requirements for entropy sources that can be validated as approved entropy sources by NIST‘s CAVP and CMVP. SPs 
800-90A and 800-90C address the construction of approved Deterministic Random Bit Generator (DRBG) mechanisms and approved 
Random Bit Generators (RBGs) that utilize the entropy sources and DRBG mechanisms, respectively. 

With 

Cryptography and security applications make extensive use of random numbers and random bits.  However, the generation of random bits 
is problematic in many practical applications of cryptography.  The purpose of this Recommendation is to specify approved Non­
deterministic Random Bit Generators (NRBG) for use in random bit generators (RBGs).  NIST Special Publication 800-90A addresses the 
construction of approved Deterministic Random Bit Generator (DRBG) mechanisms. NIST Special Publication 800-90C addresses 
approved Random Bit Generators (RBGs) that utilize Enhanced-Non-Deterministic Random Bit Generators  (Enhanced-NRBG) using 
both NRBG and DRBG mechanisms together. 

Replace at SP800-90B Page 10, Definition: 

Deterministic Random Bit Generator (DRBG) 



    
        

 

  

     
     

 

 

 

    

  

 

  

    
  

 

  

    

 

  

   

An RBG that employs a DRBG mechanism and a source of entropy input. A DRBG produces a pseudorandom sequence of bits from an 
initial secret value called a seed (and, perhaps additional input). A DRBG is often called a Pseudorandom Bit (or Number) Generator. 

With the authoritative text from SP800-90A 

Deterministic Random Bit Generator (DRBG) 


An RBG that includes a DRBG mechanism and a source of entropy input. The DRBG produces a pseudorandom sequence of bits from a
 
secret initial value called a seed, along with other possible inputs. A DRBG is often called a Pseudorandom Number (or Bit) Generator.
 

Add at SP800-90B, page 12, Definitions: 

Enhanced Non-Deterministic Random Bit Generator (Enhanced-NRBG) 

An RBG that uses both an NRBG and a DRBG together to produce a full entropy output. 

Replace at SP800-90B Page 14, Definitions 

Random Bit Generator (RBG) 

A device or algorithm that is capable of producing a random sequence of (what are effectively indistinguishable from) statistically 
independent and unbiased bits. An RBG is classified as either a DRBG or an NRBG. 

With 

Random Bit Generator (RBG) 

A device or algorithm that outputs a random sequence. An RBG is one of a DRBG, an NRBG or an Enhanced-NRBG. 

Location: SP800-90B 6.5.1.2 

Type: Technical (very) 



 

 

      
    

   

       
   

     
     

     
    

  
    

   
         

 
      

     
     

  
      

    
 

   
   

    
       

Issue: 

The continuous testing section 6.5.1.2 appears to conflate the false positive rate of the noise source health tests with the failure tests of the entropy 
source. These are not the same thing. Two tests are defined, but the first is a test suitable for per-sample health tests and the second is appropriate 
for producing an entropy source failure indication. 

Continuous tests fall into to two types: per-sample health tests and longer term failure tests. The text should reflect this so that the appropriate 
requirements can apply to the appropriate test type. 

The requirement for a low false positive error rate on the noise source test is not a conservative requirement. There is a linear trade-off between 
false positive error rate and false negative error rate. To be conservative in noise source testing, we want to require low false negative error rate, 
which implies a high false positive error rate at the noise source. At the entropy source level we want the identified unhealthy noise source data to 
either be used but not counted or not used at all. Any conditioning present must take this into account so that the entropy source output has a very 
low failure rate. This implies short range per-sample tests for the noise source to tag samples as healthy or not, while having longer term metrics 
that determine if the rate of unhealthy tagged samples are indicative of a failed source. 

The tests specified do not fit with these concepts. They appear as independent tests on the noise source that raise an entropy source failure, with a 
low probability. The tests require a large amount of buffering and are not realizable in hardware at reasonable cost in many applications. 

The focus of the tests should be separated into distinguishing healthy samples from unhealthy samples, and distinguishing a failed from a 
functional noise source. The latter tests may depend on the output of the former tests. Sliding windows tests that apply bitwise tests to a range of 
bits as they ‘slide’ by in a shift register are appropriate for fast hardware implementation since the incremental work per sample can be low, while 
the statistical strength of the test over the sliding window can be high. 

Any test identifying healthy from unhealthy samples is simply separating all the possible bit strings into two sets, the healthy ones and the 
unhealthy ones. For a binary symmetric source, all strings are equally likely, so in practice we need to choose tests that favor strings that are less 
indicative of hardware failure but should be conservative so that we reject more data than is necessary to ensure that hardware failures are detected 
quickly. 

In a hypothetical example system with noise source tests that test 512 bit samples, and tag them as healthy or unhealthy, a subsequent long range 
window test need only buffer and analyze 1 bit of health data per 512 bits of noise source data, while effectively monitoring the rate of health 
output. In combination with a practice of “use every sample, but only count the healthy samples”, the high false positive rate of the noise source 
tests will not diminish the entropy rate out of the entropy source, but will diminish the entropy throughput by the ratio of false positive error 



      
 

     
       

 

    
        

 
     

     
    

  

    
       

        
    

  

    
 

     
  

     
  

      
 

   
 

samples to total number of samples. e.g. A 10% false positive error rate on a healthy noise source will reduce the throughput by 10% but will have 
very conservative failure detection properties. 

The two tests provided are specific algorithms. It would be better to specify the conditions that must be detected and let the developer show that 
their implemented test detects those conditions. For a well modeled noised source, it should be simple to show the false positive error detection 
rate for a functioning noise source and simple to show the false negative rate for any specific hardware failure. 

It seems inappropriate to suggest that data may be output before the data has been tested. However in a practical hardware implementation this is 
not necessary. It is easy to design hardware to produce the result of a test in parallel with the production of the samples, so that test result and 
sample are available simultaneously. The specification should be stricter about this, since the implementation impacts of the stricter model are 
negligible. The parallel form of implementation is the more natural form in traditional RTL design. 

The tests defined appear to operate over a stream of values, updating their state as values are generated and passed on. The determination of an 
error may occur only at the end of the defined failure sequence and the contributing bits have already been passed to the conditioner or entropy 
source output. 

While noise sources will typically be single bit serial, or have relatively narrow fundamental bit widths, conditioning algorithms, such as CBC­
MAC or HMAC will typically have wide block width inputs. Therefore it is appropriate to permit the test hardware to gather test data units of 
multiple bits (that are likely to match an integer multiple of the input width of the conditioner) and perform the tests over the test data unit such 
that the health status of the test data unit is known before the data unit is passed to the conditioner or entropy source output. It is wrong to allow 
noise source data to be used until its health has been assessed. 

It is not reasonable to specify test algorithms without reference to the implementation context (e.g. hardware vs. software, parallel vs. sequential, 
undoable vs. non undoable results), particularly when the necessary tests will be focused on the expected failure modes specific to the noise source 
in ways that cannot be anticipated by this specification. Minimum test conditions should be specified but it should be expected that the test 
implementation will go beyond the minimums, to test expected failure modes specific to the noise source. 

The text of 6.5.1.2 uses bullet points for the specific requirements, but previous text uses numerical prefixes, so the requirements are numbered. 
This section should follow the numbered form. 

I do not see how the adaptive proportion test finds the most frequent value. It appears to only count the frequency of the first sample seen in every 
N bits. Is there an else clause missing from test part 3? 

I propose that the recommendations around false positive error rate be substantially changed to require a high enough false positive rate to have a 
low false negative rate. 



       
    

 

      
      

 

        
     

       
        

     
     

   

       
   

   

      
      

   

 

 

 

  

   

I propose that these constraints be applied to the noise source per sample tests but not the entropy source failure mode detection tests, which 
should have a low probability of false positive error at the cost of having a per time throughput diminished by the false positive error rate of the 
per sample test, while maintaining a reliable high entropy rate. 

I propose that instead of specifying specific test algorithms, the conditions the algorithms detect be specified, so that the developers are free to 
implement more general or more stringent tests that detect the specified conditions while potentially detecting a broader set of error conditions in 
the same test suite. 

I propose that the adaptive proportion test be dropped in favor of a test that uses the long term ratio of healthy to unhealthy samples be used to 
determine the failure of the noise source. The adaptive proportion test appears to be aimed at the failure mode of certain specific implementations, 
whereas it would be powerless against other implementations that wouldn’t fail in a way detectable by this test. The requirement that the developer 
documents known likely failure modes and tests for them is stronger than this test. A simple inspection of the noise source will reveal the nature of 
likely failure modes and it can be seen if the provided tests detect them. The adaptive proportion test would for instance be powerless against a 
serial noise source that oscillated 0101010101, as would the stuck bit tests. However in the text proposed below, a design prone to such an output 
would be obliged to test for the condition. 

The writers of this specification should be aware that modern fast electronic entropy gathering circuits are just as likely to fail to an oscillating 
state as to a constant state, given the feedback necessary in such designs. This commenter has witnessed such behavior in on silicon 
implementations taken outside their design envelope. 

I propose that the terms continuous noise source health tests (CNSH tests) and continuous noise source failure tests (CNSF tests) be used to 
differentiate the two classes of continuous test. I also propose that the requirements on these two classes of test be defined separately. 

I propose that bullet points be replaced by a numeric index so that requirements are enumerated. 

Proposed Resolution: 

Replace 6.5.1.2 with 

Continuous tests include 

• Continuous Noise Source Health Tests (CNSH tests) 

• Continuous Noise Source Failure Tests (CNSF tests) 



       
    

 
     

 

    
    

       
  

    

 

    

       

     

   

    

 

   
    

     
    

       
       

The purpose of noise source health testing is to allow the entropy source to detect many kinds of disastrous failures in its underlying noise 
source.  These tests are run continuously on all noise source outputs. 

The purpose of noise source failure tests is to detect a catastrophic failure of the entropy source or underlying noise source by detecting a 
failure or failures that persist over time, to differentiate them from transient statistical false positive errors. 

In the case of per-sample health tests of noise source data, there is a linear tradeoff between sensitivity to the false positive and false 
negative error detection properties of the applied test or tests. To ensure that it is unlikely that low entropy samples from a defective noise 
source be unrecognized as such by the applied continuous test, the test sensitivity should be set to reject healthy entropic data from a 
functioning noise source at a relatively high rate, e.g. In a specific implementation, between 1% and 10% might be an appropriate 
percentage of the per sample false positive error rate, to achieve a very low false negative error rate. 

The requirements for the continuous per-sample health tests are: 

1. The per-sample health test or tests shall detect the excessive repetition count condition described below in 6.5.1.2.1. 

2. The per-sample health test or tests may detect other conditions in excess of those defined in 6.5.1.2.1. 

3. The developer shall describe the test algorithms 

4. The developer shall show how the test algorithms detect the condition in 6.5.1.2.1. 

Entropy source failure tests that produce the final failure mode determination should be tolerant of a relatively high per sample error rate. 
Such tests should raise a failure signal when indications of per sample failures happen too frequently, for example in a specific 
implementation, a per sample error rate above 50% over a certain window of time might be a threshold that triggers a failure indication. It 
is easy to compute the false positive failure rate for a sliding window over per sample health test results and it is practical to achieve a very 
low probability of a false positive failure rate. The developer is required to show that the probability of a failure indication from an 
entropy source with a functioning noise source is low enough that it is unlikely to be seen over the lifetime of a device. 



  
 

   

   

     

      

     

       
 

   

     
 

   

    

 

 

  

 

   
 

   

The developer is required to define the expected lifetime of the device and the acceptable false positive failure rate for the entropy source. 
These values may be very dependent on the application. 

The requirements for the continuous entropy source failure tests are: 

1. The developer shall define the expected lifetime of the device 

2. The developer shall define the acceptable false positive error rate of the device 

3. The entropy source failure test or tests shall detect the conditions described below in 6.5.1.2.2. 

4. The entropy source failure test or tests may detect other conditions in excess of those defined in 6.5.1.2.2. 

5. The developer shall show that the continuous entropy source failure test or tests yield a false positive error rate equal to or below 
the acceptable false positive error rate for the device. 

6. The developer shall document any known likely failure modes of the device 

7. The developer shall describe the false negative error rate of the implemented tests for the known likely failure modes of the 
device. 

8. The developer shall describe the test algorithms 

9. The developer shall show how the test algorithms detect the condition in 6.5.1.2.2. 

Change title of 6.5.2.1 to Excessive Repetition Condition 

At SP800-90B 6.5.2.1 Repetition Count Test, change text to 

Where : 

A test data unit is a number of bits collected from the noise source that is tested by the per sample health tests independent from other tests 
data units.
 

N = The number of bits of data gathered from a noise source into each test data unit.
 



 

  

   

   

  

 

  

  

     

    

  

  

 

      
     

   

  

  

   

  

S = The number of values of data gathered into each test data unit.
 

H = The per value entropy of the output data of the noise source.
 

C = The sequential cutoff limit.
 

w = The fundamental width of the noise source output in bits.
 

Note that N = wS.
 

W = The acceptable false positive error probability per test data unit
 

and where C= ⌈ 1+((-log(W)))/H⌉
 

The excessive repetition count condition is defined as true when the following condition hold true, over a test data unit of N bits: 

There exists a contiguous sequence of values of the same value, equal to or longer than C. 

At SP800-90B 6.5.2.2 Adaptive Proportion Test for the Most Common Value: Change title to Noise Source Failure Condition 

Change text of 6.5.1.2.2 to: 

Where :
 

A tested data unit is a number of bits collected from the noise source that is tested by the per sample health tests, along with the result of
 
the per sample health test. It includes the binary health result and the N bit data value.
 

N = The number of bits of data gathered from a noise source into each tested data unit.
 

R = The result of the per-sample test where 1=healthy and 0=not healthy.
 

P = The failure cutoff ratio.
 

m = The length of a memory M of the health of the last m tested data units
 

M = The memory of the health status of the last m tested data units.
 



   

    

  

  

 

 

 

 

 

   
 

 
 

 
 

 
   

  
  

 
 

  
 

 
 

  

H = The number of bits = 1 in the memory M. 

The noise source failure condition is defined as true when the following condition hold true, over the last m health status bits: 

(H/(m-H))<P 

Therefore it is required that of the last m tested data units from the noise source at least P/M of them are healthy. 

Delete SP800-90B 6.5.1.2.2.1 

Delete SP800-90B 6.5.1.2.2.2.2 

Delete SP800-90B 6.5.1.2.3 

From: <Nicholls>, Tom <Tom.Nicholls@thalesesec.com> 
Date: Wednesday, November 6, 2013 10:46 AM 

Legend (type of comment)
 
E = Editorial G = General T = Technical
 

ID 
SECTION, 
SUBSECT 
& PARA. 

TYPE COMMENT RESOLUTION 

1 6.1.1 & 
6.3.2 G 

Estimates of entropy from physical sources can 
only really be justified with reference to details of 
the hardware device that may not be in the public 
domain. 

Consider modifying the requirements to 
facilitate the use of 3rd party hardware 
noise sources by reducing the level of 
detail required for documenting the 
internal structure and/or Intellectual 
Property required to satisfy this 

mailto:Tom.Nicholls@thalesesec.com


 

   

 
 

 

 
 

 

  
 

   
 

   
 

 
  

 

  
 

 
 

 
 

   

 
  

 

 

 
 

 

specification. 

2 6.1.5 G 

An interface to the raw noise must be available, 
and capable of being sampled at a sufficient rate; 
this may be difficult under normal operating 
conditions. 

Consider modifying the requirements to 
facilitate the use of 3rd party hardware 
noise sources by reducing the level of 
detail required for documenting the 
internal structure and/or Intellectual 
Property required to satisfy this 
specification. 

3 6.2 G 

The required information on the conditioning 
algorithm in use within third-party components 
may not be available due to 3rd party Intellectual 
Property concerns. 

Consider modifying the requirements to 
facilitate the use of 3rd party hardware 
noise sources by reducing the level of 
detail required for documenting the 
internal structure and/or Intellectual 
Property required to satisfy this 
specification. 

Alternatively, if such documentation 
cannot be provided could the 
specification say that the output must be 
treated as if it were unconditioned 
entropy? 

4 6.2 T 

We would expect that the amount of input data 
required by the conditioning function to be 
correlated to the equivalent bit strength of the 
underlying cryptographic primitive (as defined in 
SP800-57, Part 1) and the entropy per bit ratio in 
order to deliver its full security strength given the 

Update the second sentence in the second 
bullet-point to reflect this or clarify to the 
contrary. 

Is this related to the statement in section 
6.4.2.2 that an approved conditioning 



  

 
  

 
   

  

 
 

 

 

   

  
 

 

 

 

  
  

 
 

 
 

   
 
 

  
   

    
    

 

 
  

   
 

  
   

  
 

intended operation. function should produce n bits of full-
entropy output from an input having 2n 
bits of entropy, if so should this 
statement be referenced here? 

5 
6.3.3, 
6.3.4, 6.5.1 
& 7.1 G 

When using 3rd party components which provide 
the entropy source it may not always be possible to 
get direct access to the noise source (i.e. bypassing 
the conditioning function). 

Provide a method for validating entropy 
sources in these scenarios rather than the 
noise source. 

6 6.4 T 

If using a 3rd party entropy source that internally 
has an unapproved conditioning component (e.g. a 
Von Neumann algorithm for bias removal) is it 
possible to use an approved conditioning 
component on the entropy source (after the Von 
Neumann) to allow the vendor to claim ‘full 
entropy’? 

Please clarify this scenario. 

7 6.4.2.1.1 & 
6.4.2.2 T 

These sections describe approved (keyed and 
unkeyed) conditioning functions. They both say 
that entropy should be assessed as follows: "If the 
input string S was assessed at 2n bits of min­
entropy or more (i.e., m >= 2n), then Y may be 
considered to have n bits of full entropy output. If 
S was assessed at m bits of min-entropy and 2n > 
m >= n, then Y shall be assessed at m/2 bits of 
min-entropy. If S was assessed at m bits of min­
entropy and m < n then Y shall be assessed at m 
bits of min-entropy."  W e be 
wrong. In particular, it defines a function from the 

We think it should read: "If the input 
string S was assessed at 2n bits of min­
entropy or more (i.e., m >= 2n), then Y 
may be considered to have n bits of full 
entropy output. If S was assessed at m 
bits of min-entropy and m < 2n, then Y 
shall be assessed at m/2 bits of min­
entropy." 



 
 

  
  

 

 
 

 

 
 

  
  

 
 

 
 

  
 

 

 

 
 

 
 

 

 

 

  
  

 
  

 

 
 

  
 

 

  
  

 
 

entropy m of the input string to the assessed 
entropy of the output that is non-monotone: it has a 
downward step from n to n/2 at m = n. 

8 General 
comment G 

As a general comment we feel that the specification 
should be more closely linked to the statistical test 
suite for random and pseudorandom number 
generators for cryptographic applications (SP800­
22). 

If this is a deliberate separation please 
clarify why this standard does not 
reference SP800-22. 

9 General 
comment G 

We would like to see credit given to entropy 
sources that are already validated to other 
certifications/standards (e.g. AIS 31). 

Please clarify this scenario. 

10 General 
Comment 

G 

What happens in the scenario where a FIPS 140-2 
Level validated modules uses an external source 
for it entropy. A situation could arise when this 
entropy source has not been evaluated to the same 
levels (e.g. environmental factor testing). 

We propose that all level 3 and level 4 
modules should not be allowed to have 
an external entropy source. This will also 
promote good security practice by 
keeping the entropy within the validated 
enclosure. 

11 General 
Comment G 

Entropy validation testing currently requires a lab 
to collect the raw data or for the lab to be present at 
data collection. 

This is contrary to the current algorithm testing 
format. There has to be a level of trust between 
NIST, the lab and the vendor. With current 
algorithm testing a vendor could run the vectors 
against a completely different module and the lab 

We propose that this requirement be 
dropped to bring this testing in line with 
the current algorithm testing procedures. 
The current requirement has the potential 
to dramatically increase both time and 
costs of entropy source validation for 
vendors and labs. 



 

  
  

  
 

  
 

  
 

 

 

  

would be none-the-wiser. 

12 General 
Comment G 

Is the importing of entropy into a module (i.e. from 
outside the security boundary of the system) 
permitted? For example, is the import of entropy 
from a live source via a file allowed? 

If so, is there any guidance for this type of 
operation? 

Please clarify this scenario. 



 
 

  

 
 

 

         

 

    

 

 

       

 

 

                                                             

 

 

   
 

   

Comments Received on SP 800-90C 

On 10/22/13 6:43 PM, "Tom Tkacik" <tom.tkacik@freescale.com> wrote: 

Here are some more specific comments on SP800-90C (only typos): 

Section 5.6. "An SEI may be an entropy source that conforms" should be "An SEI may be an entropy source that conforms". 

Section 8, line 2. "and examples of DRBGs are provided in Appendix B" should be 

"and examples of DRBGS are provided in Appendix D". 

Section C.1, bottom of page. "Note that using a single permutation algortihm" should be "Note that using a single permutation algorithm". 

***** 

On 11/8/13 4:54 PM, "David Johnston" <dj@deadhat.com> wrote: 

1 Comment – Health Test Requirements 

Location: SP800-90C definitions, SP800-90C 

mailto:tom.tkacik@freescale.com
mailto:dj@deadhat.com


                                                                                                                                                                                                                                                                               

   

 

 

  
   

    
 

  

 

 

 

    
      
 

  

 
 

  
 

 

 

Type: Technical 

Issue: 

The text on the health tests on the conditioning component appears to have unnecessary discussion of matters not pertinent to the 
testing. The cryptographic nature of a conditioner is immaterial to how to test its correct construction. Verifying the BIST testing of 
the correctness of construction of the logic gates is a practice called ‘fault grading’ and is a practice that works without reference to 
the underlying algorithm being tested. This proposed change addresses both the ‘bias vs. entropy rate’ and the health testing issues that 
would otherwise be addressed in a later section. 

Proposed Resolution: 

Replace at SP800-90B, 6.5.2 

6.5.2 Health Tests on the Conditioning Component 

The role of the conditioning component is to reduce the bias that would otherwise be present in the entropy source output 
and/or to ensure that the output bitstrings provide entropy at an acceptable rate. The conditioning component will implement a 
deterministic algorithm. 

The functional requirements for the health tests of the conditioning component are: 

1. The conditioning component shall be tested during start-up with known answer tests necessary to establish that the 
conditioning component is working as designed. 

2. The developer shall describe the health tests implemented for the conditioning component to include the failure conditions 
covered by the tests chosen. 

With 



                                                                                                                                                                                                                                                                               

 

    
  

 

 

  

 
 

  

   

     
  

 

 

   
 

 
 

6.5.2 Health Tests on the Conditioning Component
 

The role of the conditioning component is increase where possible the entropy rate of the data at the conditioning component
 
output relative to the data present in the entropy source output and/or to ensure that the output bitstrings provide entropy at an
 
acceptable rate.
 

The conditioning component shall implement a deterministic algorithm.
 

The requirements for the health testing of the conditioning component are
 

1. The conditioning component shall be tested during the startup period with known answer tests necessary to establish 

that the conditioning component is working as designed.
 

2. The developer shall describe the health tests implemented for the conditioning component
 

3. The developer shall show the fault coverage of the health tests implemented for the conditioning component.
 

4. The developer shall show that the fault coverage of the health tests is sufficient to ensure a negligible probability of a
 
construction error in the conditioning component going undetected.
 

From: <Nicholls>, Tom <Tom.Nicholls@thalesesec.com> 
Date: Wednesday, November 6, 2013 10:46 AM 

Legend (type of comment)
 
E = Editorial G = General T = Technical
 

mailto:Tom.Nicholls@thalesesec.com


                                                                                                                                                                                                                                                                               

 
 

 
   

   

  

  
 

 

 
 

   

 

 

   

 

 
 

 
  

 
 

ID 
SECTION, 
SUBSECT 
& PARA. 

TYPE COMMENT RESOLUTION 

1 4.2.1 G 

Why does the specification require 2𝑛 bits of entropy 
to be input into an approved conditioning function, 
where 𝑛 is the length of the output block of the 
approved derivation function (SP800-90B) to enable 
the entropy source to achieve full entropy? 

Please explain the rationale for 
choosing 2𝑛. 

2 4.2.1 G 

How do security strengths and block sizes relate to 
conditioning algorithms? 

As an example; using the approved CMAC 
conditioning function with AES-256 as the underlying 
cipher would provide the same level of entropy as a 
CMAC function with AES-128 as the underlying 
cipher because the block size of both is 128 bits. 

Is there any benefit to using a higher security strength 
conditioning function or is it purely based on the block 
size? 

Please explain why the input/output 
sizes of the conditioning functions are 
based upon block sizes and not 
security strengths. 



                                                                                                                                                                                                                                                                               

   

  
  

 

   
 

   
  

 
 

 
 

  
 

 

  
 

 

 

  

   

  
 

 

   

   
 

 

3 5.4 & 7.2 T 

The specification asserts that a DRBG without access 
to a ‘Live’ entropy source cannot achieve full entropy 
output or output with prediction resistance. 

Is it permitted to buffer and securely store (in a 
manner equivalent to the internal state of the DRBG) 
the output of a ‘Live’ entropy source (to avoid delays 
in the production of entropy or when operating in a 
power-limited environment) for later use? Then when 
this entropy is used for it to be still considered a ‘Live’ 
entropy source? 

Whether the entropy is being directly provided at the 
time of reseeding or from a stored buffer becomes 
irrelevant assuming the level of protection on the 
buffered entropy is sufficient. 

Please clarify this scenario. 

4 7.4 E We believe ‘than’ should be ‘then’. Resolve grammatical mistake. 

5 8.2 E 

There appears to be a contradiction between ‘A 
(target) DRBG without access to an entropy source 
after instantiation....’ and the second bullet ‘An 
entropy source or NRBG is made available to the 
target DRBG expressly for the purposes of reseeding’. 

Are you referring to a scenario where the DRBG has 
periodic access to an NRBG for reseeding purposes? 

Resolve or clarify the contradiction. 



        

 


	1 Comment - Typo
	2 Comment – SEI Definition
	3 Comment – Ambiguous optionality
	4 Comment – Inappropriate use of the term ‘bias’
	5 Comment – Ambiguous optionality
	6 Comment – Ambiguous optionality
	7 Comment – Unnecessary restriction on sources
	8 Comment – Incompatible control flow descriptions
	9 Comment – Incompatibility with FIPS140-2
	10 Comment – Ambiguous optionality
	11 Comment – Resource constrained solutions – lack thereof.
	12 Comment – Dual EC DRBG
	13 Comment – FIPS 140-2 incompatible output tests
	14 Comment – Taxonomy of RBGs

