Recommendation for the Entropy Sources Used for Random Bit Generation

Meltem Sönmez Turan
Elaine Barker
John Kelsey
Kerry A. McKay
Mary L. Baish
Mike Boyle

This publication is available free of charge from:
http://dx.doi.org/10.6028/NIST.SP.XXX
Recommendation for the Entropy Sources Used for Random Bit Generation

Meltem Sönmez Turan
Elaine Barker
John Kelsey
Kerry McKay

Computer Security Division
Information Technology Laboratory

Mary L. Baish
Mike Boyle
National Security Agency
Fort Meade, MD

This publication is available free of charge from:
http://dx.doi.org/10.6028/NIST.SP.XXX

January 2016
Authority

This publication has been developed by NIST in accordance with its statutory responsibilities under the Federal Information Security Modernization Act (FISMA) of 2014, 44 U.S.C. § 3541 et seq., Public Law (P.L.) 113-283. NIST is responsible for developing information security standards and guidelines, including minimum requirements for federal information systems, but such standards and guidelines shall not apply to national security systems without the express approval of appropriate federal officials exercising policy authority over such systems. This guideline is consistent with the requirements of the Office of Management and Budget (OMB) Circular A-130.

Nothing in this publication should be taken to contradict the standards and guidelines made mandatory and binding on federal agencies by the Secretary of Commerce under statutory authority. Nor should these guidelines be interpreted as altering or superseding the existing authorities of the Secretary of Commerce, Director of the OMB, or any other federal official. This publication may be used by nongovernmental organizations on a voluntary basis and is not subject to copyright in the United States. Attribution would, however, be appreciated by NIST.

National Institute of Standards and Technology Special Publication 800-90B
CODEN: NSPUE2

This publication is available free of charge from:
http://dx.doi.org/10.6028/NIST.SP.XXX

Certain commercial entities, equipment, or materials may be identified in this document in order to describe an experimental procedure or concept adequately. Such identification is not intended to imply recommendation or endorsement by NIST, nor is it intended to imply that the entities, materials, or equipment are necessarily the best available for the purpose.

There may be references in this publication to other publications currently under development by NIST in accordance with its assigned statutory responsibilities. The information in this publication, including concepts and methodologies, may be used by Federal agencies even before the completion of such companion publications. Thus, until each publication is completed, current requirements, guidelines, and procedures, where they exist, remain operative. For planning and transition purposes, Federal agencies may wish to closely follow the development of these new publications by NIST.

Organizations are encouraged to review all draft publications during public comment periods and provide feedback to NIST. Many NIST cybersecurity publications, other than the ones noted above, are available at http://csrc.nist.gov/publications.

Public comment period: January 25, 2016 through May 9, 2016
All comments are subject to release under the Freedom of Information Act (FOIA).

National Institute of Standards and Technology
Attn: Computer Security Division, Information Technology Laboratory
100 Bureau Drive (Mail Stop 8930) Gaithersburg, MD 20899-8930
Email: rgb_comments@nist.gov
The Information Technology Laboratory (ITL) at the National Institute of Standards and Technology (NIST) promotes the U.S. economy and public welfare by providing technical leadership for the Nation’s measurement and standards infrastructure. ITL develops tests, test methods, reference data, proof of concept implementations, and technical analyses to advance the development and productive use of information technology. ITL’s responsibilities include the development of management, administrative, technical, and physical standards and guidelines for the cost-effective security and privacy of other than national security-related information in Federal information systems. The Special Publication 800-series reports on ITL’s research, guidelines, and outreach efforts in information system security, and its collaborative activities with industry, government, and academic organizations.

Abstract

This Recommendation specifies the design principles and requirements for the entropy sources used by Random Bit Generators, and the tests for the validation of entropy sources. These entropy sources are intended to be combined with Deterministic Random Bit Generator mechanisms that are specified in SP 800-90A to construct Random Bit Generators, as specified in SP 800-90C.

Keywords

Conditioning functions; Entropy source; health testing; IID testing; min-entropy; noise source; predictors; random number generators

Acknowledgements

The authors of this Recommendation gratefully acknowledge and appreciate contributions by their colleagues at NIST, Apostol Vassilev and Timothy A. Hall, and also Aaron H. Kaufer and Darryl M. Buller of the National Security Agency, for assistance in the development of this Recommendation. NIST also thanks the many contributions by the public and private sectors.

Conformance Testing

Conformance testing for implementations of this Recommendation will be conducted within the framework of the Cryptographic Algorithm Validation Program (CAVP) and the Cryptographic Module Validation Program (CMVP). The requirements of this Recommendation are indicated by the word “shall.” Some of these requirements may be out-of-scope for CAVP or CMVP validation testing, and thus are the responsibility of entities using, implementing, installing or configuring applications that incorporate this Recommendation.
To facilitate public review, we have compiled a number of open issues for which we would like reviewer input. Please keep in mind that it is not necessary to respond to all questions listed below, nor is review limited to these issues. Reviewers should also feel free to suggest other areas of revision or enhancement to the document as they see fit.

- **Post-processing functions (Section 3.2.2):** We provided a list of approved post-processing functions. Is the selection of the functions appropriate?

- **Entropy assessment (Section 3.1.5):** While estimating the entropy for entropy sources using a conditioning component, the values of n and q are multiplied by the constant 0.85. Is the selection of this constant reasonable?

- **Multiple noise sources:** The Recommendation only allows using multiple noise sources if the noise sources are independent. Should the use of dependent noise sources also be allowed, and how can we calculate an entropy assessment in this case?

- **Health Tests:** What actions should be taken when health tests raise an alarm? The minimum allowed value of a type I error for health testing is selected as 2^{-50}. Is this selection reasonable?
Table of Contents

1 Introduction .. 1
 1.1 Scope ... 1
 1.2 Symbols .. 1
 1.3 Organization .. 2

2 General Discussion ... 3
 2.1 Min-Entropy .. 3
 2.2 The Entropy Source Model .. 3
 2.2.1 Noise Source ... 4
 2.2.2 Conditioning Component ... 5
 2.2.3 Health Tests ... 5
 2.3 Conceptual Interfaces ... 5
 2.3.1 GetEntropy: An Interface to the Entropy Source ... 5
 2.3.2 GetNoise: An Interface to the Noise Source ... 6
 2.3.3 HealthTest: An Interface to the Entropy Source ... 6

3 Entropy Source Validation .. 7
 3.1 Validation Process .. 7
 3.1.1 Data Collection ... 9
 3.1.2 Determining the track: IID track vs. non-IID track ... 9
 3.1.3 Initial Entropy Estimate ... 10
 3.1.4 Restart Tests .. 10
 3.1.5 Entropy Estimation for Entropy Sources Using a Conditioning Component 12
 3.1.6 Using Multiple Noise Sources ... 14
 3.2 Requirements for Validation Testing .. 15
 3.2.1 Requirements on the Entropy Source .. 15
 3.2.2 Requirements on the Noise Source ... 16
 3.2.3 Requirements on the Conditioning Component .. 17
 3.2.4 Requirements on Data Collection ... 17

4 Health Tests .. 18
 4.1 Health Test Overview ... 18
 4.2 Types of Health Tests ... 18
4.3 Requirements for Health Tests

4.4 Approved Continuous Health Tests

4.4.1 Repetition Count Test

4.4.2 Adaptive Proportion Test

4.5 Vendor-Defined Alternatives to the Continuous Health Tests

4.6 Alternative Health Test Criteria

5 Testing the IID Assumption

5.1 Permutation Testing

5.1.1 Excursion Test Statistic

5.1.2 Number of Directional Runs

5.1.3 Length of Directional Runs

5.1.4 Number of Increases and Decreases

5.1.5 Number of Runs Based on the Median

5.1.6 Length of Runs Based on Median

5.1.7 Average Collision Test Statistic

5.1.8 Maximum Collision Test Statistic

5.1.9 Periodicity Test Statistic

5.1.10 Covariance Test Statistic

5.1.11 Compression Test Statistics

5.2 Additional Chi-square Statistical Tests

5.2.1 Testing Independence for Non-Binary Data

5.2.2 Testing Goodness-of-fit for non-binary data

5.2.3 Testing Independence for Binary Data

5.2.4 Testing Goodness-of-fit for Binary Data

5.2.5 Length of the Longest Repeated Substring Test

6 Estimating Min-Entropy

6.1 IID Track: Entropy Estimation for IID Data

6.2 Non-IID Track: Entropy Estimation for Non-IID Data

6.3 Estimators

6.3.1 The Most Common Value Estimate

6.3.2 The Collision Estimate

6.3.3 The Markov Estimate

6.3.4 The Compression Estimate
List of Appendices

Appendix A—Acronyms ... 54
Appendix B—Glossary ... 55
Appendix C—References ... 60
Appendix D—Min-Entropy and Optimum Guessing Attack Cost 61
Appendix E—Post-processing Functions ... 63
Appendix F—The Narrowest Internal Width 64
Appendix G—CBC-MAC Specification .. 64
Appendix H—Different Strategies for Entropy Estimation 65
H.1 Entropic Statistics ... 65
 H.1.1 Approximation of $F(1/z)$.. 66
H.2 Predictors ... 66
List of Figures

232 Figure 1 Entropy Source Model .. 4
233 Figure 2 Entropy Estimation Strategy ... 8
234 Figure 3 Entropy of the Conditioning Component ... 12
235 Figure 4 Generic Structure of Permutation Testing ... 25
236 Figure 5 Pseudo-code of the Fisher-Yates Shuffle ... 26
237

List of Tables

240 Table 1 The narrowest internal width and output lengths of the vetted conditioning functions ... 13
241 Table 2 Adaptive proportion test on binary data for various entropy/sample levels with $W=1024$ 23
242 Table 3 Adaptive proportion test on non-binary data for various entropy/sample levels with $W=512$... 23
Introduction

1.1 Scope

Cryptography and security applications make extensive use of random numbers and random bits. However, the generation of random bits is problematic in many practical applications of cryptography. The NIST Special Publication (SP) 800-90 series of Recommendations provides guidance on the construction and validation of Random Bit Generators (RBGs) in the form of Deterministic Random Bit Generators (DRBGs) or Non-deterministic Random Bit Generators (NRBGs) that can be used for cryptographic applications. This Recommendation specifies how to design and test entropy sources that can be used by these RBGs. SP 800-90A addresses the construction of approved Deterministic Random Bit Generator (DRBG) mechanisms, while SP 800-90C addresses the construction of RBGs from the mechanisms in SP 800-90A and the entropy sources in SP 800-90B. These Recommendations provide a basis for validation by NIST's Cryptographic Algorithm Validation Program (CAVP) and Cryptographic Module Validation Program (CMVP).

An entropy source that conforms to this Recommendation can be used by RBGs to produce a sequence of random bits. While there has been extensive research on the subject of generating pseudorandom bits using a DRBG and an unknown seed value, creating such an unknown seed has not been as well documented. The only way for this seed value to provide real security is for it to contain a sufficient amount of randomness, e.g., from a non-deterministic process referred to as an entropy source. This Recommendation describes the properties that an entropy source must have to make it suitable for use by cryptographic random bit generators, as well as the tests used to validate the quality of the entropy source.

The development of entropy sources that construct unpredictable outputs is difficult, and providing guidance for their design and validation testing is even more so. The testing approach defined in this Recommendation assumes that the developer understands the behavior of the noise source within the entropy source and has made a good-faith effort to produce a consistent source of entropy. It is expected that, over time, improvements to the guidance and testing will be made, based on experience in using and validating against this Recommendation.

This Recommendation was developed in concert with American National Standard (ANS) X9.82, a multi-part standard on random number generation.

1.2 Symbols

The following symbols and functions are used in this Recommendation.

\[A = \{ x_1, x_2, \ldots, x_k \} \]

The set of all possible distinct sample outputs from a noise source, i.e. the alphabet.

\[H \]

The min-entropy of the samples from a (digitized) noise source or of the output from an entropy source; the min-entropy assessment for a noise source or entropy source.
H_I
Initial entropy estimate.

$\log_b(x)$
The logarithm of x with respect to base b.

$max(a,b)$
A function that returns the maximum of the two values a and b.

k
The number of possible sample values, i.e., the size of the alphabet.

α
The probability of falsely rejecting the null hypothesis (type I error).

$|a|$
A function that returns the absolute value of a.

p_i
The probability for an observation (or occurrence) of the sample value x_i in A.

p_{max}
The probability of observing the most common sample from a noise source.

$S=(s_1,…,s_L)$
A dataset that consists of an ordered collection of samples, where $s_i \in A$.

x_i
A possible output from the (digitized) noise source.

$[a,b]$
The interval of numbers between a and b, including a and b.

$\lceil x \rceil$
A function that returns the smallest integer greater than or equal to x; also known as the ceiling function.

$\lfloor x \rfloor$
A function that returns the largest integer less than or equal to x; also known as the floor function.

\parallel
Concatenation.

\oplus
Bit-wise exclusive-or operation.

1.3 Organization

Section 2 gives a general discussion on min-entropy, the entropy source model and the conceptual interfaces. Section 3 explains the validation process and lists the requirements on the entropy source, data collection, documentation, etc. Section 4 describes the health tests. Section 5 includes various statistical tests to check whether the entropy source outputs are IID (independent and identically distributed) or not. Section 6 provides several methods to estimate the entropy of the noise source. The appendices include a list of acronyms, a glossary, references, a discussion on min-entropy and the optimum guessing attack cost, descriptions of the post-processing functions, information about the narrowest internal width and the underlying information on different entropy estimation strategies used in this Recommendation.
2 General Discussion

The three main components of a cryptographic RBG are a source of random bits (an entropy source), an algorithm for accumulating and providing random bits to the consuming applications, and a way to combine the first two components appropriately for the cryptographic applications. This Recommendation describes how to design and test entropy sources. SP 800-90A describes deterministic algorithms that take an entropy input and use it to produce pseudorandom values. SP 800-90C provides the “glue” for putting the entropy source together with the algorithm to implement an RBG.

Specifying an entropy source is a complicated matter. This is partly due to confusion in the meaning of entropy, and partly due to the fact that, while other parts of an RBG design are strictly algorithmic, entropy sources depend on physical processes that may vary from one instance of a source to another. This section discusses, in detail, both the entropy source model and the meaning of entropy.

2.1 Min-Entropy

The central mathematical concept underlying this Recommendation is entropy. Entropy is defined relative to one’s knowledge of an experiment’s output prior to observation, and reflects the uncertainty associated with predicting its value – the larger the amount of the entropy, the greater the uncertainty in predicting the value of an observation. There are many possible types of entropy; this Recommendation uses a very conservative measure known as min-entropy, which measures the difficulty of guessing the most likely output of the entropy source.

In cryptography, the unpredictability of secret values (such as cryptographic keys) is essential. The probability that a secret is guessed correctly in the first trial is related to the min-entropy of the distribution that the secret was generated from. The min-entropy is closely related to the negative logarithm of the maximum probability using the optimal guessing strategy [Cac97] (see Appendix D for more information).

The min-entropy of an independent discrete random variable X that takes values from the set $A=\{x_1, x_2, ..., x_k\}$ with probability $\Pr(X=x_i) = p_i$ for $i = 1, ..., k$ is defined as

$$H = - \min_{1 \leq i \leq k} (-\log_2 p_i),$$

$$= - \log_2 \max_{1 \leq i \leq k} p_i.$$

If X has min-entropy H, then the probability of observing any particular value for X is no greater than 2^{-H}. The maximum possible value for the min-entropy of a random variable with k distinct values is $\log_2 k$, which is attained when the random variable has a uniform probability distribution, i.e., $p_1 = p_2 = ... = p_k = 1/k$.

2.2 The Entropy Source Model

This section describes the entropy source model in detail. Figure 1 illustrates the model that this Recommendation uses to describe an entropy source and its components: a noise source, an
optional conditioning component and a health testing component.

![Entropy Source Model](Figure 1)

2.2.1 Noise Source

The noise source is the root of security for the entropy source and for the RBG as a whole. This is the component that contains the non-deterministic, entropy-providing activity that is ultimately responsible for the uncertainty associated with the bitstrings output by the entropy source.

If the non-deterministic activity being sampled produces something other than binary data, the sampling process includes a digitization process that converts the output samples to bits. The noise source may also include some simple post-processing operations that can reduce the statistical biases of the samples and increase the entropy rate of the resulting output. The output of the digitized and optionally post-processed noise source is called the raw data.

This Recommendation assumes that the sample values obtained from a noise source consist of fixed-length bitstrings.

If the noise source fails to generate random outputs, no other component in the RBG can compensate for the lack of entropy; hence, no security guarantees can be made for the application relying on the RBG.

In situations where a single noise source does not provide sufficient entropy in a reasonable amount of time, outputs from multiple noise sources may be combined to obtain the necessary amount of
entropy. When multiple noise sources are used, the relationship between sources affects the entropy of the outputs. If the noise sources are independent, their entropy assessments can be added. Thermal noise and mouse movements can be given as examples of independent noise sources (i.e., the output of the noise sources are independent). However, for some combinations of noise sources, such as the ones based on dependent processes (e.g., packet arrival times in a communication network and hard drive access times), the total entropy produced is harder to estimate. This Recommendation only considers the use of independent noise sources.

2.2.2 Conditioning Component

The optional conditioning component is a deterministic function responsible for reducing bias and/or increasing the entropy rate of the resulting output bits (if necessary to obtain a target value). There are various methods for achieving this. The developer should consider the conditioning component to be used and how variations in the behavior of the noise source may affect the entropy rate of the output. In choosing an approach to implement, the developer may either choose to implement a cryptographic algorithm listed in Section 3.1.5.1.1 or use an alternative algorithm as a conditioning component. The use of either of these approaches is permitted by this Recommendation.

2.2.3 Health Tests

Health tests are an integral part of the entropy source design that are intended to ensure that the noise source and the entire entropy source continue to operate as expected. When testing the entropy source, the end goal is to obtain assurance that failures of the entropy source are caught quickly and with a high probability. Another aspect of health testing strategy is determining likely failure modes for the entropy source and, in particular, for the noise source. Health tests are expected to include tests that can detect these failure conditions.

The health tests can be separated into three categories: start-up tests (on all components), continuous tests (primarily on the noise source), and on-demand tests.

2.3 Conceptual Interfaces

This section describes three conceptual interfaces that can be used to interact with the entropy source: GetEntropy, GetNoise and HealthTest. However, it is anticipated that the actual interfaces used may depend on the entropy source employed.

These interfaces can be used by a developer when constructing an RBG as specified in SP 800-90C.

2.3.1 GetEntropy: An Interface to the Entropy Source

The GetEntropy interface can be considered to be a command interface into the outer entropy source box in Figure 1. This interface is meant to indicate the types of requests for services that an entropy source may support.

A GetEntropy call could return a bitstring containing the requested amount of entropy, along with an indication of the status of the request. Optionally, an assessment of the entropy can be
provided.

<table>
<thead>
<tr>
<th>GetEntropy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input:</td>
</tr>
<tr>
<td>\textit{bits_of_entropy}: the requested amount of entropy</td>
</tr>
<tr>
<td>Output:</td>
</tr>
<tr>
<td>\textit{entropy_bitstring}: The string that provides the requested entropy.</td>
</tr>
<tr>
<td>\textit{status}: A Boolean value that is TRUE if the request has been satisfied, and is FALSE otherwise.</td>
</tr>
</tbody>
</table>

2.3.2 GetNoise: An Interface to the Noise Source

The \textbf{GetNoise} interface can be considered to be a command interface into the noise source component of an entropy source. This could be used to obtain raw, digitized and optionally post-processed outputs from the noise source for use in validation testing or for external health tests. While it is not required to be in this form, it is expected that an interface be available that allows noise source data to be obtained without harm to the entropy source. This interface is meant to provide test data to credit a noise source with an entropy estimate during validation or for health testing. It is permitted that such an interface is available only in “test mode” and that it is disabled when the source is operational.

This interface is not intended to constrain real-world implementations, but to provide a consistent notation to describe data collection from noise sources.

A \textbf{GetNoise} call returns raw, digitized, samples from the noise source, along with an indication of the status of the request.

<table>
<thead>
<tr>
<th>GetNoise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input:</td>
</tr>
<tr>
<td>\textit{number_of_samples_requested}: An integer value that indicates the requested number of samples to be returned from the noise source.</td>
</tr>
<tr>
<td>Output:</td>
</tr>
<tr>
<td>\textit{noise_source_data}: The sequence of samples from the noise source with length \textit{number_of_samples_requested}.</td>
</tr>
<tr>
<td>\textit{status}: A Boolean value that is TRUE if the request has been satisfied, and is FALSE otherwise.</td>
</tr>
</tbody>
</table>

2.3.3 HealthTest: An Interface to the Entropy Source

A \textbf{HealthTest} call is a request to the entropy source to conduct a test of its health. Note that it may not be necessary to include a separate \textbf{HealthTest} interface if the execution of the tests can be initiated in another manner that is acceptable to FIPS 140 [FIPS140] validation.
HealthTest

Input:

- `type_of_test_requested`: A bitstring that indicates the type or suite of tests to be performed (this may vary from one entropy source to another).

Output:

- `status`: A Boolean value that is TRUE if the entropy source passed the requested test, and is FALSE otherwise.

3 Entropy Source Validation

Entropy source validation is necessary in order to obtain assurance that all relevant requirements of this Recommendation are met. This Recommendation provides requirements and guidance that will allow an entropy source to be validated for an entropy assessment that will provide evidence that the entropy source produces bitstrings providing entropy at a specified rate. Validation consists of testing by an NVLAP-accredited laboratory against the requirements of SP 800-90B, followed by a review of the results by NIST’s CAVP and CMVP. Validation provides additional assurance that adequate entropy is provided by the source and may be necessary to satisfy some legal restrictions, policies, and/or directives of various organizations.

The validation of an entropy source presents many challenges. No other part of an RBG is so dependent on the technological and environmental details of an implementation. At the same time, the proper operation of the entropy source is essential to the security of an RBG. The developer should make every effort to design an entropy source that can be shown to serve as a consistent source of entropy, producing bitstrings that can provide entropy at a rate that meets (or exceeds) a specified value. In order to design an entropy source that provides an adequate amount of entropy per output bitstring, the developer must be able to accurately estimate the amount of entropy that can be provided by sampling its (digitized) noise source. The developer must also understand the behavior of the other components included in the entropy source, since the interactions between the various components may affect any assessment of the entropy that can be provided by an implementation of the design. For example, if it is known that the raw noise-source output is biased, appropriate conditioning components can be included in the design to reduce that bias to a tolerable level before any bits are output from the entropy source.

3.1 Validation Process

An entropy source may be submitted to an accredited lab for validation testing by the developer or any entity with an interest in having an entropy source validated. After the entropy source is submitted for validation, the labs will examine all documentation and theoretical justifications submitted. The labs will evaluate these claims, and may ask for more evidence or clarification.

The general flow of entropy source validation testing is summarized in Figure 2. The following sections describe the details of the validation testing process.
Start validation

Data collection (Section 3.1.1)

Determine the track (Section 3.1.1)

Non-IID track

IID track

Estimate entropy - IID track (Section 6.1)

Estimate entropy - Non-IID track (Section 6.2)

Apply Restart Tests (Section 3.1.4)

Pass restart tests?

Yes

Update entropy estimate (Section 3.1.4)

Is conditioning used?

No

Yes

Update entropy estimate (Section 3.1.5)

Validation at entropy estimate.

Validation fails. No entropy estimate awarded.

Figure 2 Entropy Estimation Strategy
3.1.1 Data Collection

The submitter provides the following inputs for entropy estimation, according to the requirements presented in Section 3.2.4.

1. A sequential dataset of at least 1,000,000 consecutive sample values obtained directly from the noise source (i.e., raw samples) shall be collected for validation. If the generation of 1,000,000 consecutive samples is not possible, the concatenation of several smaller sets of consecutive samples (generated using the same device) is allowed. Smaller sets shall contain at least 1,000 samples. The concatenated dataset shall contain at least 1,000,000 samples. If multiple noise sources are used, a dataset of at least 1,000,000 samples from each noise source shall be collected.

2. If the entropy source includes a conditioning component that is not listed in Section 3.1.5.1.1, a conditioned sequential dataset of at least 1,000,000 consecutive samples values obtained as the output of the conditioning component shall be collected for validation. The output of the conditioning component shall be treated as a binary string for testing purposes. Note that the data collected from the noise source for validation may be used as input to the conditioning component for the collection of conditioned output values.

3. For the restart tests (see Section 3.1.4), the entropy source must be restarted 1000 times; for each restart, 1000 consecutive samples shall be collected directly from the noise source. This data is stored in a 1000x1000 restart matrix M, where $M[i][j]$ represents the jth sample from the ith restart.

4. If multiple noise sources are used, sequential and restart datasets from each noise source shall be collected, as specified in item 1. If a conditioning component that is not listed in Section 3.1.5.1.1 is used, a single conditioned dataset shall be collected as an output of the entropy source.

3.1.2 Determining the track: IID track vs. non-IID track

According to this Recommendation, entropy estimation is done using two different tracks: an IID-track and a non-IID track. The IID-track (see Section 6.1) is used for entropy sources that generate IID (independent and identically distributed) samples, whereas the non-IID track (see Section 6.2) is used for noise sources that do not generate IID samples.

The track selection is done based on the following rules. The IID track shall be chosen only when all of the following conditions are satisfied:

1. The submitter makes an IID claim on the noise source, based on his analysis of the design. The submitter shall provide rationale for the IID claim.

1 Providing additional data beyond what is required will result in more accurate entropy estimates. Lack of sufficient data may result in lower entropy estimates due to the necessity of mapping down the output values (see Section 6.4). It is recommended that, if possible, more data than is required be collected for validation. However, it is assumed in subsequent text that only the required data has been collected.
2. The sequential dataset described in item 1 of Section 3.1.1 is tested using the statistical tests described in Section 5 to verify the IID assumption, and the IID assumption is verified (i.e., there is no evidence that data is not IID).

3. The row and the column datasets described in item 3 of Section 3.1.1 are tested using the statistical tests described in Section 5 to verify the IID assumption, and the IID assumption is verified.

4. If a conditioning component that not listed in Section 3.1.5.1.1 is used, the conditioned sequential dataset is tested using the statistical tests described in Section 5 to verify the IID assumption, and the IID assumption is verified.

If any of these conditions are not met, the estimation process shall follow the non-IID track.

3.1.3 Initial Entropy Estimate

After determining the entropy estimation track, a min-entropy estimate per sample, denoted as H_{original}, for the sequential dataset is calculated using the methods described in Section 6.1 (for the IID track) or Section 6.2 (for the non-IID track). If the size of the sample space is greater than 256, it shall be reduced to at most 256, using the method described in Section 6.4.

If the sequential dataset is not binary (i.e., the size of the sample space k is more than 2), an additional entropy estimation (per bit), denoted $H_{\text{bitstring}}$, is determined (based on the entropy estimation track, as specified in the previous paragraph), considering the sequential dataset as a bitstring. The bits after the first 1,000,000 bits may be ignored. The entropy per sample is estimated to be $n \times H_{\text{bitstring}}$ where n is the size of the fixed-length samples.

The submitter shall provide an entropy estimate for the noise source, which is based on the submitter’s analysis of the noise source (see Requirement 8 in Section 3.2.2). This estimate is denoted as $H_{\text{submitter}}$.

The initial entropy estimate of the noise source is calculated as $H_I = \min (H_{\text{original}}, n \times H_{\text{bitstring}}, H_{\text{submitter}})$ for non-binary sources and as $H_I = \min (H_{\text{original}}, H_{\text{submitter}})$ for binary sources.

3.1.4 Restart Tests

The entropy estimate of a noise source, calculated from a single, long-output sequence, might provide an overestimate if the noise source generates correlated sequences after restarts. Hence, an attacker with access to multiple noise source output sequences after restarts may be able to predict the next output sequence with much better success than the entropy estimate suggests. The restart tests described in this section re-evaluate the entropy estimate for the noise source using different outputs from many restarts of the source.

3.1.4.1 Constructing Restart Data

To construct restart data, the entropy source shall be restarted $r = 1000$ times; for each restart, $c = 1000$ consecutive samples shall be collected directly from the noise source. The output samples are stored in an r by c matrix M, where $M[i][j]$ represents the j^{th} sample from the i^{th} restart.
Two datasets are constructed using the matrix M:

- The row dataset is constructed by concatenating the rows of the matrix M, i.e., the row dataset is $M[1][1] || \ldots || M[1][c] || M[2][1] || \ldots || M[2][c] || \ldots || M[r][1] || \ldots || M[r][c]$.

- The column dataset is constructed by concatenating the columns of the matrix M, i.e., the column dataset is $M[1][1] || \ldots || M[r][1] || M[1][2] || \ldots || M[r][2] || \ldots || M[1][c] || \ldots || M[r][c]$.

3.1.4 Validation Testing

The restart tests check the relations between noise source samples generated after restarting the device, and compare the results to the initial entropy estimate, H_t (see Section 3.1.3).

First, the sanity check described in Section 3.1.4.3 is performed on the matrix M. If the test fails, the validation fails and no entropy estimate is awarded.

If the noise source does not fail the sanity check, then the entropy estimation methods described in Section 6.1 (for the IID track) or Section 6.2 (for the non-IID track) are performed on the row and the column datasets, based on the track of the entropy source. Let H_r and H_c be the resulting entropy estimates of the row and the column datasets, respectively. The entropy estimates from the row and the column datasets are expected to be close to the initial entropy estimate H_t. If the minimum of H_r and H_c is less than half of H_t, the validation fails, and no entropy estimate is awarded. Otherwise, the entropy assessment of the noise source is taken as the minimum of the row, the column and the initial estimates, i.e., $\min(H, H_c, H_t)$.

If the noise source does not fail the restart tests, and the entropy source does not include a conditioning component, the entropy source will be validated at $\min(H, H_c, H_t)$. If the entropy source includes a conditioning component, the entropy assessment of the entropy source is updated as described in Section 3.1.5.

3.1.4.3 Sanity Check - Most Common Value in the Rows and Columns

This test checks the frequency of the most common value in the rows and the columns of the matrix M. If this frequency is significantly greater than the expected value, given the initial entropy estimate H_t calculated in Section 3.1.3, the restart test fails and no entropy estimate is awarded.

Given the 1000 by 1000 restart matrix M and the initial entropy estimate H_t, the test is performed as follows:

1. Let α be $0.01/(k \times 2000)$, where k is the sample size.
2. For each row of the matrix, find the frequency of the most common sample value F_{r_i} for $1 \leq i \leq 1000$. Let F_R be the maximum of $F_{r_1}, \ldots, F_{r_{1000}}$.
3. Repeat the same process for the columns of the matrix, i.e., find the frequency of the most common sample value F_{c_i} for $1 \leq i \leq 1000$. Let F_C be the maximum of $F_{c_1}, \ldots, F_{c_{1000}}$.
4. Let $F = \max(F_R, F_C)$.
5. Let $p = 2^{-H_t}$. Find the upper bound U of the $(1-\alpha)\%$ confidence interval for the frequency of the most common value as $U = 1000p + Z_{(1-\alpha)}\sqrt{1000p(1-p)}$.

11
If F is greater than U, the test fails.

3.1.5 Entropy Estimation for Entropy Sources Using a Conditioning Component

The optional conditioning component can be designed in various ways. Section 3.1.5.1.1 provides a list of vetted cryptographic algorithms/functions for conditioning the noise source outputs. Submitters are allowed to use other conditioning components; however, the entropy assessment process differs from the case where a vetted conditioning component is used. If a conditioning component from Section 3.1.5.1 is used, the entropy estimation is done as described in Section 3.1.5.1.2; if a non-listed algorithm is used, the entropy estimation is done as described in Section 3.1.5.2.

Let the amount of entropy in the input to the conditioning component be h_{in} bits. This input may include multiple samples from one or more noise sources. For example, if the input includes w samples from a noise source with h bits of entropy per sample, h_{in} is calculated as $w \times h$. If multiple noise sources are used, h_{in} is calculated as the sum of amount of entropy from each noise source.

The submitter **shall** state the value of h_{in}, and the conditioning component **shall** produce output only when at least h_{in} bits of entropy are available in its input.

Let the output size of the conditioning component be n_{out} (see Figure 3), and the narrowest internal width within the conditioning component be q. Information on determining the narrowest internal width is given in Appendix F. Denote the entropy of the output from the conditioning component as h_{out}, i.e., h_{out} bits of entropy are contained within the n_{out}-bit output.

Since the conditioning component is deterministic, the entropy of the output is at most h_{in}. However, the conditioning component may reduce the entropy of the output.

![Figure 3 Entropy of the Conditioning Component](image)

3.1.5.1 Using Vetted Conditioning Components

Both keyed and unkeyed algorithms have been vetted for conditioning. Section 3.1.5.1.1 provides a list of vetted conditioning components. Section 3.1.5.1.2 discusses the method for determining the entropy provided by a vetted conditioning component.

3.1.5.1.1 List of Vetted Conditioning Components

Three keyed algorithms have been vetted for a keyed conditioning component:

1. HMAC, as specified in FIPS 198, with any **approved** hash function specified in FIPS 180 or FIPS 202,
2. CMAC, as specified in SP 800-38B, with the AES block cipher (see FIPS 197), and
3. CBC-MAC, as specified in Appendix G, with the AES block cipher. This Recommendation does not approve the use of CBC-MAC for purposes other than as a conditioning component in an RBG.

The keys used by the keyed conditioning components shall be selected by the submitter in advance (per implementation or per device). The submitter shall document how the selection is done, and specify the key to test the correctness of the implementation.

Three unkeyed functions have been vetted for unkeyed conditioning component:

1. Any approved hash function specified in FIPS 180 or FIPS 202,
2. Hash_df, as specified in SP 800-90A, using any approved hash function specified in FIPS 180 or FIPS 202, and
3. Block_CIPHER_df, as specified in SP800-90A using the AES block cipher (see FIPS 197).

The narrowest internal width and the output length for the vetted conditioning functions are provided in the following table.

Table 1: The narrowest internal width and output lengths of the vetted conditioning functions.

<table>
<thead>
<tr>
<th>Conditioning Function</th>
<th>Narrowest Internal Width (q)</th>
<th>Output Length (n_out)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMAC</td>
<td>hash-function output size</td>
<td>hash-function output size</td>
</tr>
<tr>
<td>CMAC</td>
<td>AES block size = 128</td>
<td>AES block size = 128</td>
</tr>
<tr>
<td>CBC-MAC</td>
<td>AES block size = 128</td>
<td>AES block size = 128</td>
</tr>
<tr>
<td>Hash Function</td>
<td>hash-function output size</td>
<td>hash-function output size</td>
</tr>
<tr>
<td>Hash_df</td>
<td>hash-function output size</td>
<td>hash-function output size</td>
</tr>
<tr>
<td>Block_CIPHER_df</td>
<td>AES key size</td>
<td>AES key size</td>
</tr>
</tbody>
</table>

For HMAC, CMAC, CBC-MAC and the hash functions, the output length (n_out) specified in the table is the “natural” output length of the function. For Hash_df and Block_cipher_df, the output length indicated in the table shall be the value of no_of_bit_to_return used in the invocation of Hash_df and Block_CIPHER_df (see SP 800-90A).

3.1.5.1.2 Entropy Assessment using Vetted Conditioning Components

When using a conditioning component listed in Section 3.1.5.1.1 (given the assurance of correct implementation by CAVP testing), the entropy of the output is estimated as

\[h_{out} = \begin{cases}
\min(h_{in}, 0.85n_{out}, 0.85q), & \text{if } h_{in} < 2 \min(n_{out}, q) \\
\min(n_{out}, q), & \text{if } h_{in} \geq 2 \min(n_{out}, q)
\end{cases} \]
When the input entropy is at least \(2 \times \min(n_{\text{out}}, q)\), \(n_{\text{out}}\) full-entropy output bits are produced. Otherwise, the size of the output and the narrowest internal width are multiplied by the constant\(^2\) 0.85 for a conservative estimate.

If validation testing of the vetted algorithm indicates that it has not been implemented correctly, the conditioning component shall be treated as not vetted, and the procedure described in Section 3.1.5.2 shall be followed.

The entropy source will be validated at the min-entropy per conditioned output, \(h_{\text{out}}\), computed above.

Note that it is acceptable to truncate the outputs from a vetted conditioning component. If this is done, the entropy estimate is reduced to a proportion of the output (e.g., if there are six bits of entropy in an eight-bit output and the output is truncated to six bits, then the entropy is reduced to \(3/4 \times 6 = 4.5\) bits).

3.1.5.2 Using Non-vetted Conditioning Components

For non-vetted conditioning components, the entropy in the output depends, in part, on the entropy of the input \((h_{\text{in}})\), the size of the output \((n_{\text{out}})\), and the size of the narrowest internal width \((q)\). The size of the output and the narrowest internal width is multiplied by the constant 0.85 for a conservative estimate, as was done for the vetted conditioning functions listed in Section 3.1.5.1.1. However, an additional parameter is needed: the entropy of the conditioned sequential dataset (as described in item 2 of Section 3.1.1), which shall be computed using the methods described in Section 6.1 and Section 6.2 for IID and non-IID data, respectively. Let the obtained entropy estimate per bit be \(h'\).

The output of the conditioning component \((n_{\text{out}})\) shall be treated as a binary string, for purposes of the entropy estimation.

The entropy of the conditioned output is estimated as

\[
h_{\text{out}} = \min(h_{\text{in}}, 0.85n_{\text{out}}, 0.85q, h' \times n_{\text{out}}).
\]

The entropy source will be validated at the min-entropy per conditioned output, \(h_{\text{out}}\), computed above.

Note that truncating subsequent to the use of a non-vetted conditioning component shall not be performed before providing output from the entropy source.

3.1.6 Using Multiple Noise Sources

If multiple independent noise sources are used, the sum of the entropies provided by each noise source is used as the entropy input to the conditioning component. For example, if the conditioning component inputs \(w_1\) samples from Noise Source 1 with an entropy of \(h_1\) bits per sample, and \(w_2\)

\(^2\) The constant 0.85 used in the equation was selected after some empirical studies.
samples from Noise Source 2 with an entropy of h_2 bits per sample, then the h_{in} is calculated as $w_1h_1+w_2h_2$.

3.2 Requirements for Validation Testing

In this section, high-level requirements (on both submitters and testers) are presented for validation testing.

3.2.1 Requirements on the Entropy Source

The intent of these requirements is to assist the developer in designing/implementing an entropy source that can provide outputs with a consistent amount of entropy and to produce the required documentation for entropy source validation.

1. The entire design of the entropy source **shall** be documented, including the interaction of the components specified in Section 2.2. The documentation **shall** justify why the entropy source can be relied upon to produce bits with entropy.

2. Documentation **shall** describe the operation of the entropy source, including how the entropy source works, and how to obtain data from within the entropy source for validation testing.

3. Documentation **shall** describe the range of operating conditions under which the entropy source is claimed to operate correctly (e.g., temperature range, voltages, system activity, etc.). Analysis of the entropy source’s behavior at the edges of these conditions **shall** be documented, along with likely failure modes.

4. The entropy source **shall** have a well-defined (conceptual) security boundary, which **should** be the same as or be contained within a FIPS 140 cryptographic module boundary. This security boundary **shall** be documented; the documentation **shall** include a description of the content of the security boundary. Note that the security boundary may extend beyond the entropy source itself (e.g., the entropy source may be contained within a larger boundary that also contains a DRBG); also note that the security boundary may be logical, rather than physical.

5. When a conditioning component is not used, the output from the entropy source is the output of the noise source, and no additional interface is required. In this case, the noise-source output is available during both validation testing and normal operation.

6. When a conditioning component is included in the entropy source, the output from the entropy source is the output of the conditioning component, and an additional interface is required to access the noise-source output. In this case, the noise-source output **shall** be accessible via the interface during validation testing, but the interface may be disabled, otherwise. The designer **shall** fully document the method used to get access to the raw noise source samples. If the noise-source interface is not disabled during normal operation, any noise-source output using this interface **shall not** be provided to the conditioning component for processing and eventual output as normal entropy-source output.

7. The entropy source **may** restrict access to raw noise source samples to special circumstances that are not available to users in the field, and the documentation **shall** explain why this
restriction is not expected to substantially alter the behavior of the entropy source as tested during validation.

An optional, recommended feature of the entropy source is as follows:

8. The entropy source may contain multiple noise sources to improve resiliency with respect to degradation or misbehavior. Only independent noise sources are allowed by this Recommendation. When multiple noise sources are used, the requirements specified in Section 3.2.2 shall apply to each noise source.

9. If multiple noise sources are used, documentation shall specify whether all noise sources will be available operationally; datasets obtained from noise sources that will not be available in the field shall not be used for entropy assessment.

3.2.2 Requirements on the Noise Source

The entropy source will have no more entropy than that provided by the noise source, and as such, the noise source requires special attention during validation testing. This is partly due to the fundamental importance of the noise source (if it does not do its job, the entropy source will not provide the expected amount of security), and partly because the probabilistic nature of its behavior requires more complicated testing.

The requirements for the noise source are as follows:

1. The operation of the noise source shall be documented; this documentation shall include a description of how the noise source works and rationale about why the noise source provides acceptable entropy output, and should reference relevant, existing research and literature. Documentation shall also include why it is believed that the entropy rate does not change significantly during normal operation.

2. Documentation shall provide an explicit statement of the expected entropy rate and provide a technical argument for why the noise source can support that entropy rate. This can be in broad terms of where the unpredictability comes from and a rough description of the behavior of the noise source (to show that it is reasonable to assume that the behavior is stable).

3. The noise source state shall be protected from adversarial knowledge or influence to the greatest extent possible. The methods used for this shall be documented, including a description of the (conceptual) security boundary’s role in protecting the noise source from adversarial observation or influence.

4. Although the noise source is not required to produce unbiased and independent outputs, it shall exhibit random behavior; i.e., the output shall not be definable by any known algorithmic rule. Documentation shall indicate whether the noise source produces IID data or non-IID data. This claim will be used in determining the test path followed during validation. If the submitter makes an IID claim, documentation shall include rationale for the claim.

5. The noise source shall generate fixed-length bitstrings. A description of the output space of the noise source shall be provided. Documentation shall specify the fixed sample size (in bits) and the list (or range) of all possible outputs from each noise source.
6. An ordered ranking of the bits in the n-bit samples shall be provided. A rank of ‘1’ shall correspond to the bit assumed to be contributing the most entropy to the sample, and a rank of n shall correspond to the bit contributing the least amount. If multiple bits contribute the same amount of entropy, the ranks can be assigned arbitrarily among those bits. The algorithm specified in Section 6.4 shall be used to assign ranks.

7. The noise source may include simple post-processing functions to improve the quality of its outputs. When a post-processing function is used, the noise source shall use only one of the approved post-processing functions: Von Neumann’s method, the linear filtering method, or the length-of-runs method. The descriptions of these methods are given in Appendix E. If other post-processing functions are approved in the future, they will be included in the implementation guidance [IG140-2].

3.2.3 Requirements on the Conditioning Component

The requirements for the conditioning component are as follows:

1. If the entropy source uses a vetted conditioning component as listed in Section 3.1.5.1.1, the implementation of that conditioning component shall be tested to obtain assurance of correctness.

2. For entropy sources containing a conditioning component that is not listed in Section 3.1.5.1.1, a description of the conditioning component shall be provided. Documentation shall state the narrowest internal width and the size of the output blocks from the conditioning component.

3. Documentation shall include the minimum amount of entropy h_{in} in the input of the conditioning component.

3.2.4 Requirements on Data Collection

The requirements on data collection are listed below:

1. The data collection for entropy estimation shall be performed in one of the three ways described below:
 - By the submitter with a witness from the testing lab, or
 - By the testing lab itself, or
 - Prepared by the submitter in advance of testing, along with the following documentation: a specification of the data generation process, and a signed document that attests that the specification was followed.

2. Data collected from the noise source for validation testing shall be raw output values (including digitization and optional post-processing).

3. The data collection process shall not require a detailed knowledge of the noise source or intrusive actions that may alter the behavior of the noise source (e.g., drilling into the device).
4. Data **shall** be collected from the noise source and any conditioning component that is not listed in Section 3.1.5.1.1 (if used) under normal operating conditions (i.e., when it is reasonable to expect entropy in the outputs).

5. Data **shall** be collected from the entropy source under validation. Any relevant version of the hardware or software updates **shall** be associated with the data.

6. Documentation on data collection **shall** be provided so that a lab or submitter can perform (or replicate) the collection process at a later time, if necessary.

4 Health Tests

Health tests are an important component of the entropy source, as they aim to detect deviations from the intended behavior of the noise source as quickly as possible and with a high probability. Noise sources can be fragile, and hence, can be affected by the changes in operating conditions of the device, such as temperature, humidity, or electric field, which might result in unexpected behavior. Health tests take the entropy assessment as input, and characterize the expected behavior of the noise source based on this value. Requirements on the health tests are listed in Section 4.3.

4.1 Health Test Overview

The health testing of a noise source is likely to be very technology-specific. Since, in the vast majority of cases, the noise source will not produce unbiased, independent binary data, traditional statistical procedures (e.g., randomness tests described in NIST SP 800-22) that test the hypothesis of unbiased, independent bits will almost always fail, and thus are not useful for monitoring the noise source. In general, tests on the noise source have to be tailored carefully, taking into account the expected statistical behavior of the correctly operating noise source.

The health testing of noise sources will typically be designed to detect failures of the noise source, based on the expected output during a failure, or to detect a deviation from the expected output during the correct operation of the noise source. Health tests are expected to raise an alarm in three cases:

1. When there is a significant decrease in the entropy of the outputs,
2. When noise source failures occur, or
3. When hardware fails, and implementations do not work correctly.

4.2 Types of Health Tests

Health tests are applied to the outputs of a noise source before any conditioning is done. (It is permissible to also apply some health tests to conditioned outputs, but this is not required.)

Start-up health tests are performed after powering up or rebooting. They ensure that the entropy source components are working as expected before they are used during normal operating conditions, and nothing failed since the last time that the start-up tests were run. The samples drawn from the noise source during the startup tests **shall not** be available for normal operations until the tests are completed; after testing, these samples may simply be discarded.
Continuous health tests are run indefinitely while the entropy source is operating. Continuous tests focus on the noise source behavior and aim to detect failures as the noise source runs. The purpose of continuous tests is to allow the entropy source to detect many kinds of failures in its underlying noise source. These tests are run continuously on all digitized samples obtained from the noise source, and so tests must have a very low probability of raising a false alarm during the normal operation of the noise source. In many systems, a reasonable false positive probability will make it extremely unlikely that a properly functioning device will indicate a malfunction, even in a very long service life. Note that continuous tests are resource-constrained — this limits their ability to detect noise source problems, so that only gross failures are likely to be detected.

Note that the continuous health tests operate over a stream of values. These sample values may be output as they are generated; there is no need to inhibit output from the noise source or entropy source while running the test. It is important to understand that this may result in poor entropy source outputs for a time, since the error is only signaled once significant evidence has been accumulated, and these values may have already been output by the entropy source. As a result, it is important that the false positive probability be set to an acceptable level. In the following discussion, all calculations assume that a false positive probability of approximately once in 2^{40} samples generated by the noise source is acceptable; however, the formulas given can be adapted for different false positive probabilities selected by the submitter.

On-demand health tests can be called at any time. This Recommendation does not require performing any particular on-demand testing during operation. However, it does require that the entropy source be capable of performing on-demand health tests. Note that resetting, rebooting, or powering up are acceptable methods for initiating an on-demand test if the procedure results in the immediate execution of the start-up tests. Samples collected from the noise source during on-demand health tests shall not be available for use until the tests are completed, and may simply be discarded.

4.3 Requirements for Health Tests

Health tests on the noise source are a required component of an entropy source. The health tests shall include both continuous and startup tests.

1. The submitter shall provide documentation that specifies all entropy source health tests and their rationale. The documentation shall include a description of the health tests, the rate and conditions under which each health test is performed (e.g., at start-up, continuously, or on-demand), and rationale indicating why each test is believed to be appropriate for detecting one or more failures in the entropy source.

2. The developer shall document any known or suspected noise source failure modes, and shall include vendor-defined continuous tests to detect those failures.

3. Appropriate health tests tailored to the noise source should place special emphasis on the detection of misbehavior near the boundary between the nominal operating environment and abnormal conditions. This requires a thorough understanding of the operation of the noise source.

4. The submitter shall provide source code for any tests implemented as an alternative or in addition to those listed in this Recommendation.

5. Health tests shall be performed on the noise source samples before any conditioning is done.
6. Additional health tests may be performed on the outputs of the conditioning function. Any such tests shall be fully documented.

7. In the case where a sufficiently persistent failure is detected, the entropy source shall notify the consuming application (e.g., the RBG) of the error condition. The entropy source may detect intermittent failures and react to them in other ways, e.g., by inhibiting output for a short time, before notification of the error. The submitter shall describe the conditions for intermittent and persistent failures.

8. The expected false positive probability of the health tests signaling a major failure to the consuming application shall be documented.

9. The continuous tests shall include either:
 a. The approved continuous health tests, described in Section 4.4, or
 b. Some vendor-defined tests that meet the requirements to substitute for those approved tests, as described in Section 4.5. If vendor-defined health tests are used in place of any approved health tests, the tester shall verify that the implemented tests detect the failure conditions detected by the approved continuous health tests, as described in Section 4.4. The submitter can avoid the need to use the two approved continuous health tests by providing convincing evidence that the failure being considered will be reliably detected by the vendor-defined continuous tests. This evidence may be a proof or the results of statistical simulations.

10. If any of the approved continuous health tests are used by the entropy source, the false positive probability for these tests shall be set to at least 2^{-50}. The submitter shall specify and document a false positive probability suitable for their application.

11. The continuous tests may include additional tests defined by the vendor.

12. The entropy source's startup tests shall run the continuous health tests over at least 4096 consecutive samples.

13. The samples subjected to startup testing may be released for operational use after the startup tests have been passed.

14. The startup tests may include other tests defined by the vendor.

15. The entropy source shall support on-demand testing.

16. The entropy source may support on-demand testing by restarting the entropy source and rerunning the startup tests, or by rerunning the startup tests without restarting the entropy source. The documentation shall specify the approach used for on-demand testing.

17. The entropy source's on-demand testing may include other testing.

4.4 Approved Continuous Health Tests

This recommendation provides two approved health tests: the Repetition Count test, and the Adaptive Proportion test. If these two health tests are included among the continuous health tests of the entropy source, no other tests are required. However, the developer is allowed to include additional health tests.
Both tests are designed to require minimal resources, and to be computed on-the-fly, while noise source samples are being produced, possibly conditioned, and output. Neither test delays the availability of the noise source samples.

Like all statistical tests, both of these tests have a false positive probability – the probability that a correctly functioning noise source will fail the test on a given output. A reasonable choice for the false positive probability in many applications is $\alpha = 2^{-40}$; this value will be used in all the calculations in the rest of this section. The submitter of the entropy source must determine a reasonable false positive probability, given the details of the entropy source and its consuming application. In order to ensure that these tests have enough power to detect major failures, the lowest allowed false positive probability for these approved tests is $\alpha = 2^{-50}$.

4.4.1 Repetition Count Test

The goal of the repetition count test is to quickly detect catastrophic failures that cause the noise source to become "stuck" on a single output value for a long period of time. It can be seen as an update of the "stuck test" which was previously required for random number generators within FIPS-approved cryptographic modules.

Given the assessed min-entropy H of a noise source, the probability\(^3\) of that source generating n identical samples consecutively is at most $2^{H(n-1)}$. The test declares an error if a sample is repeated more than the cutoff value C, which is determined by the acceptable false-positive probability α and the entropy estimate H. The cutoff value of the repetition count test is calculated as:

$$C = \left[1 + \log_2 \frac{\alpha}{H}\right].$$

This value of C is the smallest integer satisfying the inequality $\alpha \geq 2^{H(C-1)}$, which ensures that the probability of obtaining a sequence of identical values from C consecutive noise source samples is no greater than α. For example, for $\alpha = 2^{-40}$, an entropy source with $H = 2.0$ bits per sample would have a repetition count test cutoff value of $\lceil 1 + 40/2.0 \rceil = 21$.

Given a dataset of noise source observations, and the cutoff value C, the repetition count test is performed as follows:

1. Let A be the current sample value.
2. Initialize the counter B to 1.
3. If the next sample value is A, increment B by one.
 - If B is equal to C, return an error.
 - else:
 - Let A be the next sample value.

\(^3\) This probability can be obtained as follows. Let a random variable take possible values with probabilities p_i for $i=1,...,k$, where $p_1 \geq p_2 \geq \ldots \geq p_k$. Then, the probability of producing any C identical consecutive samples is $\sum p_i^C$. Since, $\sum p_i^C$ is less than or equal to $p_1 p_1^{C-1} + p_1 p_2^{C-1} + \ldots + p_1 p_k^{C-1} = p_1^{C+1} + \ldots + p_k^{C-1} = 2^{H(C-1)}$.

Initialize the counter B to 1.

Repeat Step 3.

Running the repetition count test requires enough memory to store:

A: the most recently observed sample value,

B: the number of consecutive times that the sample A has been observed, and

C: the cutoff value.

This test's cutoff value can be applied to any entropy estimate, H, including very small and very large estimates. However, it is important to note that this test is not very powerful – it is able to detect only catastrophic failures of a noise source. For example, a noise source evaluated at eight bits of min-entropy per sample has a cutoff value of six repetitions to ensure a false-positive rate of approximately once per one trillion samples generated. If that noise source somehow failed to the point that each sample had a 1/16 probability of being the same as the previous sample, so that it was providing only four bits of min-entropy per sample, it would still be expected to take about sixteen million samples before the repetition count test would notice the problem.

4.4.2 Adaptive Proportion Test

The adaptive proportion test is designed to detect a large loss of entropy that might occur as a result of some physical failure or environmental change affecting the noise source. The test continuously measures the local frequency of occurrence of a sample value in a sequence of noise source samples to determine if the sample occurs too frequently. Thus, the test is able to detect when some value begins to occur much more frequently than expected, given the source's assessed entropy per sample.

The test counts the number of times the current sample value is repeated within a window of size W. If the sample is repeated more frequently than a cutoff value C, which is determined by the false positive probability α and the assessed entropy/sample of the source, H, the test declares an error. The window size W is selected based on the alphabet size, and shall be assigned to 1024 if the noise source is binary (that is, it produces only two distinct values) and 512 if the noise source is not binary (that is, it produces more than two distinct values).

Given a sequence of noise source observations, the cutoff value C and the window size W, the test is performed as follows:

1. Let A be the current sample value.
2. Initialize the counter B to 1.
3. For $i = 1$ to $W-1$
 - If the next sample is equal to A, increment B by 1.
4. If $B > C$, return error.
5. Go to Step 1.

Running the test requires enough memory to store

A: the sample value currently being counted,

B: the number of times that A has been seen in the current window,
W: the window size,

i: the counter for the number of samples examined in the current window, and

C: the cutoff value at which the test fails.

The cutoff value C is chosen such that the probability of observing more than C identical samples in a window size of W is at most α. Mathematically, C satisfies the following equation4:

$$ Pr(B > C) = \alpha,$$

where $p = 2^{-H}$. The following tables give cutoff values for various min-entropy estimates per sample and window sizes with $\alpha = 2^{-40}$. For example, the cutoff value for binary sources with $H=0.4$ is 867, and the probability of detecting a loss of 50% of the entropy using 1024 samples is 0.86, and the probability of detecting the same failure is almost 1 during the startup tests that use at least 4096 samples. Note that the noise source failures whose probability of detection is listed in the tables are of a very specific form – some value becomes much more common than it should be, given the source’s entropy estimate, so that the maximum probability p_{max} is much higher, and thus $h = -\log_2(p_{\text{max}})$ is much lower than claimed by the noise source’s entropy estimate.

Table 2 Adaptive proportion test on binary data for various entropy/sample levels with $W=1024$

<table>
<thead>
<tr>
<th>H</th>
<th>Cutoff value</th>
<th>Probability of detecting noise source failure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>50% entropy loss</td>
</tr>
<tr>
<td></td>
<td></td>
<td>in one window</td>
</tr>
<tr>
<td>0.2</td>
<td>960</td>
<td>0.25</td>
</tr>
<tr>
<td>0.4</td>
<td>867</td>
<td>0.86</td>
</tr>
<tr>
<td>0.6</td>
<td>779</td>
<td>0.81</td>
</tr>
<tr>
<td>0.8</td>
<td>697</td>
<td>0.76</td>
</tr>
<tr>
<td>1</td>
<td>624</td>
<td>0.71</td>
</tr>
</tbody>
</table>

Table 3 Adaptive proportion test on non-binary data for various entropy/sample levels with $W=512$

<table>
<thead>
<tr>
<th>H</th>
<th>Cutoff value</th>
<th>Probability of detecting noise source failure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>50% entropy loss</td>
</tr>
<tr>
<td></td>
<td></td>
<td>in one window</td>
</tr>
<tr>
<td>0.2</td>
<td>491</td>
<td>0.25</td>
</tr>
<tr>
<td>0.5</td>
<td>430</td>
<td>0.43</td>
</tr>
<tr>
<td>1</td>
<td>335</td>
<td>0.70</td>
</tr>
<tr>
<td>2</td>
<td>200</td>
<td>0.50</td>
</tr>
<tr>
<td>3</td>
<td>122</td>
<td>0.35</td>
</tr>
<tr>
<td>4</td>
<td>77</td>
<td>0.25</td>
</tr>
<tr>
<td>5</td>
<td>50</td>
<td>0.18</td>
</tr>
</tbody>
</table>

4 This probability can be computed using widely-available spreadsheet applications. In Microsoft Excel, Open Office Calc, and iWork Numbers, the calculation is done with the function =CRITBINOM(). For example, in Microsoft Excel, C would be computed as =CRITBINOM(W, power(2,(-H)),1-α).
4.5 Vendor-Defined Alternatives to the Continuous Health Tests

Designer-defined tests are always permitted in addition to the two approved tests listed in Section 4.4. Under some circumstances, the vendor-defined tests may take the place of the two approved tests. The goal of the two approved continuous health tests in Section 4.4, is to detect two conditions:

a. Some value is consecutively repeated many more times than expected, given the assessed entropy per sample of the source.

b. Some value becomes much more common in the sequence of noise source outputs than expected, given the assessed entropy per sample of the source.

The designer of the entropy source is in an excellent position to design health tests specific to the source and its known and suspected failure modes. Therefore, this Recommendation also permits designer-defined alternative health tests to be used in place of the approved tests in Section 4.4, so long as the combination of the designer-defined tests and the entropy source itself can guarantee that these two conditions will not occur without being detected by the source with at least the same probability.

4.6 Alternative Health Test Criteria

For concreteness, these are the criteria that are required for any alternative continuous health tests:

a. If a single value appears more than \(\lceil 100/H \rceil \) consecutive times in a row in the sequence of noise source samples, the test shall detect this with probability of at least 99%.

b. Let \(P = 2^{H} \). If the noise source's behavior changes so that the probability of observing a specific sample value increases to at least \(P^* = 2^{-H/2} \), then the test shall detect this with a probability of at least 50% when examining 50,000 consecutive samples from this degraded source.

The submitter can avoid the need to use the two approved continuous health tests by providing convincing evidence that the failure being considered will be reliably detected by the vendor-defined continuous tests. This evidence may be a proof or the results of statistical simulations.

5 Testing the IID Assumption

The samples from a noise source are considered to be independent and identically distributed (IID) if each sample has the same probability distribution as every other sample, and all samples are mutually independent. The IID assumption significantly simplifies the process of entropy estimation. When the IID assumption does not hold, i.e., the samples are either not identically distributed or are not independently distributed (or both), estimating entropy is more difficult and requires different methods.

This section includes statistical tests that are designed to find evidence that the samples are not IID.
and if no evidence is found that the samples are non-IID, then it is assumed that the samples are

IID (see Section 3.1.1). These tests take the sequence $S = (s_1, \ldots, s_L)$, where $s_i \in A = \{x_1, \ldots, x_k\}$, as input, and test the hypothesis that the values in S are IID. If the hypothesis is rejected by any of the tests, the values in S are assumed to be non-IID.

Statistical tests based on permutation testing (also known as shuffling tests) are given in Section 5.1. Five additional chi-square tests are presented in Section 5.2.

5.1 Permutation Testing

Permutation testing is a way to test a statistical hypothesis in which the actual value of the test statistic is compared to a reference distribution that is inferred from the input data, rather than a standard statistical distribution. The general approach of permutation testing is summarized in Figure 4. This is repeated for each of the test statistics described in Sections 5.1.1 – 5.1.11. The shuffle algorithm of step 2.1 is provided in Figure 5.

\begin{figure}[h]
\centering
\begin{minipage}{0.9\textwidth}
\textbf{Input:} $S = (s_1, \ldots, s_L)$

\textbf{Output:} Decision on the IID assumption

1. For each test i
 1.1. Assign the counters $C_{i,0}$ and $C_{i,1}$ to zero.
 1.2. Calculate the test statistic T_i on S: denote the result as t_i.

2. For $j = 1$ to 10,000
 2.2. For each test i
 2.2.1. Calculate the test statistic on the permuted data: denote the result as t_i'.
 2.2.2. If ($t_i' > t_i$), increment $C_{i,0}$. If ($t_i' = t_i$), increment $C_{i,1}$.

3. If (($C_{i,0} + C_{i,1} \leq 5$) or ($C_{i,0} \geq 9995$)) for any i, reject the IID assumption; else, assume that the noise source outputs are IID.

\end{minipage}
\caption{Generic Structure of Permutation Testing}
\end{figure}

If the samples are IID, permuting the dataset is not expected to change the value of the test statistics significantly. In particular, the original dataset and permuted datasets are expected to be drawn from the same distribution; therefore, their test statistics should be similar. Unusually high or low test statistics are expected to occur infrequently. However, if the samples are not IID, then the original and permuted test statistics may be significantly different. The counters $C_{i,0}$ and $C_{i,1}$ are used to find the ranking of the original test statistics among permuted test statistics (i.e., where a statistic for the original dataset fit within an ordered list of the permuted datasets). Extreme values for the counters suggest that the data samples are not IID. If the sum of $C_{i,0}$ and $C_{i,1}$ is less than 5, it means that the original test statistic has a very high rank; conversely, if $C_{i,0}$ is greater than 9995, it means that the original test statistics has a very low rank. The cutoff values for $C_{i,0}$ and $C_{i,1}$ are
calculated using a type I error\(^5\) of 0.001.

The tests described in the following subsections are intended to check the validity of the IID assumption. Some of the tests (e.g., the compression test) are effective at detecting repeated patterns of particular values (for example, strings of sample values that occur more often than would be expected by chance if the samples were IID), whereas some of the other tests (e.g., the number of directional runs test and the runs based on the median test) focus on the association between the numeric values of the successive samples in order to find an indication of a trend or some other relation, such as high sample values that are usually followed by low sample values.

\[\text{Input: } S = (s_1, \ldots, s_L)\]

\[\text{Output: Shuffled } S = (s_1, \ldots, s_L)\]

1. \(i = L\)
2. While \((i > 1)\)
 a. Generate a random integer \(j\) that is uniformly distributed between 0 and \(i\).
 b. Swap \(s_j\) and \(s_i\)
 c. \(i = i - 1\)

\textbf{Figure 5 Pseudo-code of the Fisher-Yates Shuffle}

For some of the tests, the number of distinct sample values, denoted \(k\) (the size of the set \(A\)), significantly affects the distribution of the test statistics, and thus the type I error. For such tests, one of the following conversions is applied to the input data, when the input is binary, i.e., \(k = 2\).

- \textit{Conversion I} partitions the sequences into 8-bit non-overlapping blocks, and counts the number of ones in each block. For example, let the 20-bit input be \(1,0,0,0,1,1,0,1,1,0,1,0,1,0,1,1,0,1,1\). The first and the second 8-bit blocks include four and six ones, respectively. The last block, which is not complete, includes two ones. The output sequence is \((4, 6, 2)\).

- \textit{Conversion II} partitions the sequences into 8-bit non-overlapping blocks, and calculates the integer value of each block. For example, let the input message be \((1,0,0,0,1,1,0,1,1,0,1,1,0,0,1,1)\). The integer values of the first two blocks are 142, and 219. Zeros are appended when the last block has less than 8 bits. Then, the last block becomes \((0,0,1,0,0,0,0,0)\) with an integer value of 48. The output sequence is \((142, 219, 48)\).

Descriptions of the individual tests will provide guidance on when to use each of these conversions.

\textbf{5.1.1 Excursion Test Statistic}

The excursion test statistic measures how far the running sum of sample values deviates from its average value at each point in the dataset. Given \(S = (s_1, \ldots, s_L)\), the test statistic \(T\) is the largest

\(^5\) A type I error occurs when the null hypothesis is true, but is rejected by the test.
deviation from the average and is calculated as follows:

1. Calculate the average of the sample values, i.e., \(X = (s_1 + s_2 + \ldots + s_L) / L \)

2. For \(i = 1 \) to \(L \)

 Calculate \(d_i = |\sum_{j=1}^{L} s_j - i \times X| \)

3. \(T = \max (d_1, \ldots, d_L) \).

Example 1: Let the input sequence be \(S = (2, 15, 4, 10, 9) \). The average of the sample values is 8, and \(d_1 = |2 - 8| = 6; d_2 = |(2+15) - (2\times8)| = 1; d_3 = |(2+15+4) - (3\times8)| = 3; d_4 = |(2+15+4+10) - (4\times8)| = 1 \) and \(d_5 = |(2+15+4+10+9) - (5\times8)| = 0 \). Then, \(T = \max (6, 1, 3, 1, 0) = 6 \).

Handling Binary data: The test can be applied to binary data, and no additional conversion steps are required.

5.1.2 Number of Directional Runs

This test statistic determines the number of runs constructed using the relations between consecutive samples. Given \(S = (s_1, \ldots, s_L) \), the test statistic \(T \) is calculated as follows:

1. Construct the sequence \(S' = (s_1', \ldots, s'_{L-1}) \), where

 \[s_i' = \begin{cases}
 -1, & \text{if } s_i > s_{i+1} \\
 +1, & \text{if } s_i \leq s_{i+1}
 \end{cases} \]

 for \(i = 1, \ldots, L-1 \).

2. The test statistic \(T \) is the number of runs in \(S' \).

Example 2: Let the input sequence be \(S = (2, 2, 2, 5, 7, 7, 9, 3, 1, 4, 4) \); then \(S' = (+1, +1, +1, +1, +1, +1, -1, -1, +1, +1) \). There are three runs: \((+1, +1, +1, +1, +1), (-1, -1) \) and \((+1, +1) \), so \(T = 3 \).

Handling Binary data: To test binary input data, first apply Conversion I to the input sequence.

5.1.3 Length of Directional Runs

This test statistic determines the length of the longest run constructed using the relations between consecutive samples. Given \(S = (s_1, \ldots, s_L) \), the test statistic \(T \) is calculated as follows:

1. Construct the sequence \(S' = (s_1', \ldots, s'_{L-1}) \), where

 \[s_i' = \begin{cases}
 -1, & \text{if } s_i > s_{i+1} \\
 +1, & \text{if } s_i \leq s_{i+1}
 \end{cases} \]

 for \(i = 1, \ldots, L-1 \).

2. The test statistic \(T \) is the length of the longest run in \(S' \).

Example 3: Let the input sequence be \(S = (2, 2, 2, 5, 7, 7, 9, 3, 1, 4, 4) \); then \(S' = (+1, +1, +1, +1, +1, +1, -1, -1, +1, +1) \).
+1, +1, −1, −1, +1, +1). There are three runs: (+1, +1, +1, +1, +1, +1), (−1, −1) and (+1, +1), so \(T = 6 \).

Handling Binary data: To test binary input data, first apply Conversion I to the input sequence.

5.1.4 Number of Increases and Decreases

This test statistic determines the maximum number of increases or decreases between consecutive sample values. Given \(S = (s_1, \ldots, s_L) \), the test statistic \(T \) is calculated as follows:

1. Construct the sequence \(S' = (s'_1, \ldots, s'_{L-1}) \), where
\[
s'_i = \begin{cases}
-1, & \text{if } s_i > s_{i+1} \\
+1, & \text{if } s_i \leq s_{i+1}
\end{cases}
\]
for \(i = 1, \ldots, L-1 \).

2. Calculate the number of −1’s and +1’s in \(S' \); the test statistic \(T \) is the maximum of these numbers, i.e., \(T = \max \) (number of −1’s, number of +1’s).

Example 4: Let the input sequence be \(S = (2, 2, 2, 5, 7, 7, 9, 3, 1, 4, 4) \); then \(S' = (+1, +1, +1, +1, -1, -1, +1, +1) \). There are eight +1’s and two −1’s in \(S' \), so \(T = \max \) (number of +1’s, number of −1’s) = max (8, 2) = 8.

Handling Binary data: To test binary input data, first apply the Conversion I to the input sequence.

5.1.5 Number of Runs Based on the Median

This test statistic determines the number of runs that are constructed with respect to the median of the input data. Given \(S = (s_1, \ldots, s_L) \), the test statistic \(T \) is calculated as follows:

1. Find the median \(\bar{X} \) of \(S = (s_1, \ldots, s_L) \).

2. Construct the sequence \(S' = (s'_1, \ldots, s'_L) \) where
\[
s'_i = \begin{cases}
-1, & \text{if } s_i < \bar{X} \\
+1, & \text{if } s_i \geq \bar{X}
\end{cases}
\]
for \(i = 1, \ldots, L \).

3. The test statistic \(T \) is the number of runs in \(S' \).

Example 5: Let the input sequence be \(S = (5, 15, 12, 1, 13, 9, 4) \). The median of the input sequence is 9. Then, \(S' = (-1, +1, +1, -1, +1, +1, -1) \). The runs are (−1), (+1, +1), (−1), (+1, +1), and (−1). There are five runs, hence \(T = 5 \).

Handling Binary data: When the input data is binary, the median of the input data is assumed to be 0.5. No additional conversion steps are required.
5.1.6 Length of Runs Based on Median

This test statistic determines the length of the longest run that is constructed with respect to the median of the input data and is calculated as follows:

1. Find the median \tilde{X} of $S = (s_1, \ldots, s_L)$.
2. Construct a temporary sequence $S' = (s'_1, \ldots, s'_L)$ from the input sequence $S = (s_1, \ldots, s_L)$, as

$$s'_i = \begin{cases} -1, & \text{if } s_i < \tilde{X} \\ +1, & \text{if } s_i \geq \tilde{X} \end{cases}$$

for $i = 1, \ldots, L$.
3. The test statistic T is the length of the longest run S'.

Example 6: Let the input sequence be $S = (5, 15, 12, 1, 13, 9, 4)$. The median for this data subset is 9. Then, $S' = (-1, +1, +1, -1, +1, +1, -1)$. The runs are $(-1), (+1, +1), (-1), (+1, +1), and (-1)$. The longest run has a length of 2; hence, $T = 2$.

Handling Binary data: When the input data is binary, the median of the input data is assumed to be 0.5. No additional conversion steps are required.

5.1.7 Average Collision Test Statistic

The average collision test statistic counts the number of successive sample values until a duplicate is found. The average collision test statistic is calculated as follows:

1. Let C be a list of the number of the samples observed to find two occurrences of the same value in the input sequence $S = (s_1, \ldots, s_L)$. C is initially empty.
2. Let $i = 1$.
3. While $i < L$
 a. Find the smallest j such that (s_i, \ldots, s_{i+j-1}) contains two identical values. If no such j exists, break out of the while loop.
 b. Add j to the list C.
 c. $i = i + j + 1$
4. The test statistic T is the average of all values in the list C.

Example 7: Let the input sequence be $S = (2, 1, 1, 2, 0, 1, 0, 1, 1, 2)$. The first collision occurs for $j = 3$, since the second and third values are the same. 3 is added to the list C. Then, the first three samples are discarded, and the next sequence to be examined is $(2, 0, 1, 0, 1, 1, 2)$. The collision occurs for $j = 4$. The third sequence to be examined is $(1,1,2)$, and the collision occurs for $j = 2$. There are no collisions in the final sequence (2). Hence, $C = [3,4,2]$. The average of the values in C is $T = 3$.

Handling Binary data: To test binary input data, first apply Conversion II to the input sequence.
5.1.8 Maximum Collision Test Statistic

The maximum collision test statistic counts the number of successive sample values until a duplicate is found. The maximum collision test statistic is calculated as follows:

1. Let C be a list of the number of samples observed to find two occurrences of the same value in the input sequence $S = (s_1, \ldots, s_L)$. C is initially empty.
2. Let $i = 1$.
3. While $i < L$

 a. Find the smallest j such that (s_i, \ldots, s_{i+j-1}) contains two identical values. If no such j exists, break out of the while loop.
 b. Add j to the list C.
 c. $i = i + j + 1$
4. The test statistic T is the maximum value in the list C.

Example 8: Let the input data be $(2, 1, 1, 2, 0, 1, 0, 1, 1, 2)$. $C = [3, 4, 2]$ is computed as in Example 7. $T = \max(3, 4, 2) = 4$.

Handling Binary data: To test binary input data, first apply Conversion II to the input sequence.

5.1.9 Periodicity Test Statistic

The periodicity test aims to determine the number of periodic structures in the data. The test takes a lag parameter p as input, where $p < L$, and the test statistic T is calculated as follows:

1. Initialize T to zero.
2. For $i = 1$ to $L - p$

 If $(s_i = s_{i+p})$, increment T by one.

Example 9: Let the input data be $(2, 1, 2, 1, 0, 1, 0, 1, 1, 2)$, and let $p = 2$. Since $s_i = s_{i+p}$ for five values of i (1, 2, 4, 5 and 6), $T = 5$.

Handling Binary data: To test binary input data, first apply Conversion I to the input sequence.

The test is repeated for five different values of p: 1, 2, 8, 16, and 32.

5.1.10 Covariance Test Statistic

The covariance test measures the strength of the lagged correlation. The test takes a lag value $p < L$ as input. The test statistic is calculated as follows:

1. Initialize T to zero.
2. For $i = 1$ to $L - p$

 $T = T + (s_i \times s_{i+p})$
Example 10: Let the input data be (5, 2, 6, 10, 12, 3, 1), and let p be 2. T is calculated as $(5 \times 6) + (2 \times 10) + (6 \times 12) + (10 \times 3) + (12 \times 1) = 164$.

Handling Binary data: To test binary input data, first apply Conversion I to the input sequence. The test is repeated for five different values of p: 1, 2, 8, 16, and 32.

5.1.11 Compression Test Statistics

General-purpose compression algorithms are well adapted for removing redundancy in a character string, particularly involving commonly recurring subsequences of characters. The compression test statistic for the input data is the length of that data subset after the samples are encoded into a character string and processed by a general-purpose compression algorithm. The compression test statistic is computed as follows:

1. Encode the input data as a character string containing a list of values separated by a single space, e.g., “$S = (144, 21, 139, 0, 0, 15)$” becomes “144 21 139 0 0 15”.
2. Compress the character string with the bzip2 compression algorithm provided in [BZ2].
3. T is the length of the compressed string, in bytes.

Handling Binary data: The test can be applied directly to binary data, with no conversion required.

5.2 Additional Chi-square Statistical Tests

This section includes additional chi-square statistical procedures to test independence and goodness-of-fit. The independence tests attempt to discover dependencies in the probabilities between successive samples in the (entire) sequence submitted for testing (see Section 5.2.1 for non-binary data and Section 5.2.3 for binary data); the goodness-of-fit tests attempt to discover a failure to follow the same distribution in ten data subsets produced from the (entire) input sequence submitted for testing (see Section 5.2.2 for non-binary data and Section 5.2.4 for binary data). The length of the longest repeated substring test is provided in Section 5.2.5.

5.2.1 Testing Independence for Non-Binary Data

Given the input $S = (s_1, \ldots, s_L)$, where $s_i \in A = \{x_1, \ldots, x_k\}$, the following steps are initially performed to determine the number of bins q needed for the chi-square tests.

1. Find the proportion p_i of each x_i in S, i.e., $p_i = \frac{\text{number of } x_i \text{ in } S}{L}$. Calculate the expected number of occurrences of each possible pair (z_i, z_j) in S, as $e_{i,j} = p_i p_j (L - 1)$.
2. Allocate the possible (z_i, z_j) pairs, starting from the smallest $e_{i,j}$, into bins such that the expected value of each bin is at least 5. The expected value of a bin is equal to the sum of the $e_{i,j}$ values of the pairs that are included in the bin. After allocating all pairs, if the expected value of the last bin is less than 5, merge the last two bins. Let q be the number of bins constructed after this procedure.

After constructing the bins, the Chi-square test is executed as follows:
1. For each pair \((s_j, s_{j+1})\), \(1 \leq j \leq L-1\), count the number of observed values for each bin, denoted as \(o_i\), \((1 \leq i \leq q)\).

2. The test statistic is calculated as \(T = \sum_{i=1}^{q} \frac{(o_i - E(Bin_i))^2}{E(Bin_i)}\). The test fails if \(T\) is greater than the critical value of the Chi-square test statistic with \(q-1\) degrees of freedom when the type I error is chosen as 0.001.

Example 11: Let \(S\) be \((2, 2, 3, 1, 3, 2, 3, 2, 1, 3, 1, 1, 2, 3, 1, 1, 2, 2, 3, 3, 2, 3, 2, 3, 1, 2, 2, 3, 3, 2, 3, 2, 3, 1, 2, 2, 3, 3, 2, 3, 2, 3, 1, 1)\). The sample space consists of \(k=3\) values \(\{1, 2, 3\}\); and \(p_1, p_2,\) and \(p_3\) are 0.21, 0.41 and 0.38, respectively. With \(L=100\), the sorted expected values are calculated as:

<table>
<thead>
<tr>
<th>((z_i, z_j))</th>
<th>(1,1)</th>
<th>(1,3)</th>
<th>(3,1)</th>
<th>(1,2)</th>
<th>(2,1)</th>
<th>(3,3)</th>
<th>(2,3)</th>
<th>(3,2)</th>
<th>(2,2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(e_{i,j})</td>
<td>4.41</td>
<td>7.98</td>
<td>7.98</td>
<td>8.61</td>
<td>8.61</td>
<td>14.44</td>
<td>15.58</td>
<td>15.58</td>
<td>16.81</td>
</tr>
</tbody>
</table>

The pairs can be allocated into \(q = 8\) bins.

<table>
<thead>
<tr>
<th>Bin</th>
<th>Pairs</th>
<th>(E(Bin_i))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(1,1), (1,3)</td>
<td>12.39</td>
</tr>
<tr>
<td>2</td>
<td>(3,1)</td>
<td>7.98</td>
</tr>
<tr>
<td>3</td>
<td>(1,2)</td>
<td>8.61</td>
</tr>
<tr>
<td>4</td>
<td>(2,1)</td>
<td>8.61</td>
</tr>
<tr>
<td>5</td>
<td>(3,3)</td>
<td>14.44</td>
</tr>
<tr>
<td>6</td>
<td>(2,3)</td>
<td>15.58</td>
</tr>
<tr>
<td>7</td>
<td>(3,2)</td>
<td>15.58</td>
</tr>
<tr>
<td>8</td>
<td>(2,2)</td>
<td>16.81</td>
</tr>
</tbody>
</table>

The frequencies for the bins are calculated as 13, 9, 8, 8, 10, 19, 18 and 14 respectively, and the test statistics is calculated as 3.2084. The hypothesis is not rejected, since the test statistics is less than the critical value 24.322.

5.2.2 Testing Goodness-of-fit for non-binary data

The test checks whether the distribution of samples are identical for different parts of the input. Given the input \(S = (s_1, \ldots, s_L)\), where \(s_i \in A = \{x_1, \ldots, x_k\}\), perform the following steps to calculate the number of bins \(q\) for the test.
1. Let \(c_i \) be the number of occurrences of \(x_i \) in \(S \), and let \(e_i = c_i / 10 \), for \(1 \leq i \leq k \). Note that \(c_i \) is divided by ten because \(S \) will be partitioned into ten data subsets.

2. Let \(\text{List}[i] \) be the sample value with the \(i \)th smallest \(e_i \) (e.g., \(\text{List}[1] \) has the smallest value for \(e_i \); \(\text{List}[2] \) has the next smallest value, etc.)

3. Starting from \(\text{List}[1] \), allocate the sample values into bins. Assign consecutive \(\text{List}[i] \) values to a bin until the sum of the \(e_i \) for those binned items is at least five, then begin assigning the following \(\text{List}[i] \) values to the next bin. If the expected value of the last bin is less than five, merge the last two bins. Let \(q \) be the number of bins constructed after this procedure.

4. Let \(E_i \) be the expected number of sample values in Bin \(i \); \(E_i \) is the sum of the \(e_i \) for the listed items in that bin. For example, if Bin 1 contains \((x_1, x_{10} \text{ and } x_{50})\), then \(E_1 = e_1 + e_{10} + e_{50} \).

Example 12: Let the number of distinct sample values \(k \) be 4; and let \(c_1=43, c_2=55, c_3=52 \) and \(c_4=10 \). After partitioning the input sequence into 10 parts, the expected value of each sample becomes \(e_1=4.3, e_2=5.5, e_3=5.2 \) and \(e_4=1 \). The sample list starting with the smallest expected value is formed as \(\text{List} = [4, 1, 3, 2] \). The first bin contains sample 4 and 1, and the expected value of Bin 1 becomes 5.3 (= \(e_1+e_2 \)). The second bin contains sample 2, and the last bin contains sample 3. Since the expected value of the last bin is greater than five, no additional merging is necessary.

The chi-square goodness-of-fit test is executed as follows:

1. Partition \(S \) into ten non-overlapping sequences of length \(\left\lfloor \frac{L}{10} \right\rfloor \), where \(S_d = (s_{d(\lfloor L/10 \rfloor)+1}, \ldots, s_{(d+1)\lfloor L/10 \rfloor}) \) for \(d = 0, \ldots, 9 \). If \(L \) is not a multiple of 10, the remaining bits are not used.

2. \(T = 0 \).

3. For \(d = 0 \) to 9

 3.1. For \(i = 1 \) to \(q \)

 3.1.1. Let \(o_i \) be the number of sample values from Bin \(i \) in the data subset \(S_d \).

 3.1.2. \(T = T + \frac{(o_i - E_i)^2}{E_i} \)

The test fails if the test statistic \(T \) is greater than the critical value of chi-square with \(9(q-1) \) degrees of freedom when the type I error is chosen as 0.001.

5.2.3 Testing Independence for Binary Data

This test checks the independence assumption for binary data. A chi-square test for independence between adjacent bits could be used, but its power is limited, due to the small output space (i.e., the use of binary inputs). A more powerful check can be achieved by comparing the frequencies of \(m \)-bit tuples to their expected values that are calculated by multiplying the probabilities of each successive bit, i.e., assuming that the samples are independent. If nearby bits are not independent, then the expected probabilities of \(m \)-bit tuples derived from their bit probabilities will be biased for the whole dataset, and a chi-square test statistic will be much larger than expected.

Given the input binary data \(S = (s_1, \ldots, s_L) \), the length of the tuples, \(m \), is determined as follows:
1. Let p_0 and p_1 be the proportion of zeroes and ones in S, respectively, i.e., $p_0 = \frac{\text{number of zeroes in } S}{L}$, and $p_1 = \frac{\text{number of ones in } S}{L}$.

2. Find the maximum integer m such that $(p_0)^m > \frac{5}{L}$ and $(p_1)^m > \frac{5}{L}$. If m is greater than 11, assign m to 11. If m is 1, the test fails. For example, for $p_0 = 0.14$, $p_1 = 0.86$, and $L = 1000$, the value of m is selected as 3.

The test is applied if $m \geq 2$.

1. Initialize T to 0.

2. For each possible m-bit tuple (a_1, a_2, \ldots, a_m)
 a. Let o be the number of times that the pattern (a_1, a_2, \ldots, a_m) occurs in the input sequence S. Note that the tuples are allowed to overlap. For example, the number of times that $(1,1,1)$ occurs in $(1,1,1,1)$ is 2.

 b. Let w be the number of ones in (a_1, a_2, \ldots, a_m).

 c. Let $e = p_1^w (p_0)^{m-w} (L - m + 1)$.

 d. $T = T + \frac{(o - e)^2}{e}$.

The test fails if the test statistic T is greater than the critical value of chi-square with 2^m-1 degrees of freedom, when the type I error is chosen as 0.001.

5.2.4 Testing Goodness-of-fit for Binary Data

This test checks the distribution of the number of ones in non-overlapping intervals of the input data to determine whether the distribution of the ones remains the same throughout the sequence. Given the input binary data $S = (s_1, \ldots, s_L)$, the test description is as follows:

1. Let p be the proportion of ones in S, i.e., $p = \frac{\text{the number of ones in } S}{L}$.

2. Partition S into ten non-overlapping sub-sequences of length $\left\lfloor \frac{L}{10} \right\rfloor$, where $S_d = (s_{d(L/10)+1}, \ldots, s_{(d+1)(L/10)})$ for $d = 0, \ldots, 9$. If L is not a multiple of 10, the remaining bits are discarded.

3. Initialize T to 0.

4. Let the expected number of ones in each sub-sequence S_d be $e = p \left\lfloor \frac{L}{10} \right\rfloor$.

5. For $d = 0$ to 9
 a. Let o be the number of ones in S_d.

 b. $T = T + \frac{(o - e)^2}{e}$.

T is a chi-square random variable with 9 degrees of freedom. The test fails if S is larger than the critical value at 0.001, which is 27.88.
5.2.5 Length of the Longest Repeated Substring Test

This test checks the IID assumption using the length of the longest repeated substring. If this length is significantly longer than the expected value, then the test invalidates the IID assumption. The test can be applied to binary and non-binary inputs.

Given the input $S = (s_1, \ldots, s_L)$, where $s_i \in A = \{x_1, \ldots, x_k\}$,

1. Find the proportion p_i of each possible input value x_i in S, i.e., $p_i = \frac{\text{number of } x_i \text{ in } S}{L}$.
2. Calculate the collision probability as $p_{col} = \sum_{i=1}^{k} p_i^2$.
3. Find the length of the longest repeated substring W, i.e., find the largest W such that, for at least one $i \neq j$, $s_i = s_j$, $s_{i+1} = s_{j+1}$, ..., $s_{i+W-1} = s_{j+W-1}$.
4. The number of overlapping subsequences of length W in S is $L-W+1$, and the number of pairs of overlapping subsequences is $\binom{L-W+1}{2}$.
5. Let E be a binomially distributed random variable with parameters $N = \binom{L-W+1}{2}$ and a probability of success p_{col}. Calculate the probability that E is greater than or equal to 1, i.e., $\Pr (E \geq 1) = 1 - \Pr (E = 0) = 1 - (1 - p_{col})^N$.

The test fails if $\Pr (E \geq 1)$ is less than 0.001.

6 Estimating Min-Entropy

One of the essential requirements of an entropy source is the ability to reliably create random outputs. To ensure that sufficient entropy is input to an RBG construction in SP 800-90C, the amount of entropy produced per noise source sample must be determined. This section describes generic estimation methods that will be used to test the noise source and also the conditioning component, when non-vetted conditioning components are used.

Each estimator takes a sequence $S = (s_1, \ldots, s_L)$ as its input, where each s_i comes from an output space $A = \{x_1, \ldots, x_k\}$ that is specified by the submitter. The estimators presented in this Recommendation follow a variety of strategies, which cover a range of assumptions about the data. For further information about the theory and origins of these estimators, see Appendix H. The estimators that are to be applied to a sequence depend on whether the data has been determined to be IID or non-IID. For IID data, the min-entropy estimation is determined as specified in Section 6.1, whereas for non-IID data, the procedures in Section 6.2 are used.

The estimators presented in this section work well when the entropy-per-sample is greater than 0.1. For alphabet sizes greater than 256, some of the estimators are not very efficient. Therefore, for efficiency purposes, the method described in Section 6.4 can used to reduce the sample space of the outputs.

6.1 IID Track: Entropy Estimation for IID Data

For sources with IID outputs, the min-entropy estimation is determined using the most common
value estimate described in Section 6.3.1. It is important to note that the estimate provides an overestimation when the samples from the source are not IID.

6.2 Non-IID Track: Entropy Estimation for Non-IID Data

Many viable noise sources fail to produce IID outputs. Moreover, some sources may have dependencies that are beyond the ability of the tester to address. To derive any utility out of such sources, a diverse and conservative set of entropy tests are required. Testing sequences with dependent values may result in overestimates of entropy. However, a large, diverse battery of estimates minimizes the probability that such a source’s entropy is greatly overestimated.

For non-IID data, the following estimators are calculated on the outputs of the noise source, outputs of any conditioning component that is not listed in Section 3.1.5.1.1 and outputs of any vetted conditioning function that hasn’t been validated as correctly implemented, and the minimum of all the estimates is taken as the entropy assessment of the entropy source for this Recommendation:

- The Most Common Value Estimate (Section 6.3.1),
- The Collision Estimate (Section 6.3.2),
- The Markov Estimate (Section 6.3.3),
- The Compression Estimate (Section 6.3.4),
- The t-Tuple Estimate (Section 6.3.5),
- The Longest Repeated Substring (LRS) Estimate (Section 6.3.6),
- The Multi Most Common in Window Prediction Estimate (Section 6.3.7),
- The Lag Prediction Estimate (Section 6.3.8),
- The MultiMMC Prediction Estimate (Section 6.3.9), and
- The LZ78Y Prediction Estimate (Section 6.3.10).

6.3 Estimators

6.3.1 The Most Common Value Estimate

This method first finds the proportion \(\hat{p} \) of the most common value in the input dataset, and then constructs a confidence interval for this proportion. The upper bound of the confidence interval is used to estimate the min-entropy per sample of the source.

Given the input \(S = (s_1, \ldots, s_L) \), where \(s_i \in A = \{ x_1, \ldots, x_k \} \),

1. Find the proportion of the most common value \(\hat{p} \) in the dataset, i.e.,
\[
\hat{p} = \max_i \frac{\# \{ x_i \ in S \}}{L}.
\]

2. Calculate an upper bound on the probability of the most common value \(p_u \) as
\[p_u = \min \left(1, \hat{p} + 2.576 \sqrt{\frac{\hat{p} (1 - \hat{p})}{L}}\right) \]

3. The estimated min-entropy is \(-\log_2(p_u)\).

Example: If the dataset is \(S = (0, 1, 1, 2, 0, 1, 2, 2, 0, 2, 1, 0, 2, 2, 1, 0, 2, 1)\), with \(L = 20\), the most common value is 1, with \(\hat{p} = 0.4\). \(p_u = 0.4 + 2.576\sqrt{0.012} = 0.6822\). The min-entropy estimate is \(-\log_2(0.6822) = 0.5518\).

6.3.2 The Collision Estimate

The collision estimate, proposed by Hagerty and Draper [HD12], measures the mean number of samples to the first collision in a dataset, where a collision is any repeated value. The goal of the method is to estimate the probability of the most-likely output value, based on the collision times. The method will produce a low entropy estimate for noise sources that have considerable bias toward a particular output or value (i.e., the mean time until a collision is relatively short), while producing a higher entropy estimate for a longer mean time to collision.

Given the input \(S = (s_1, \ldots, s_L)\), where \(s_i \in A = \{x_1, \ldots, x_k\}\),

1. Set \(v = 1\), \(\text{index} = 1\).
2. Beginning with \(s_{\text{index}}\), step through the input until any observed value is repeated; i.e., find the smallest \(j\) such that \(s_i = s_j\), for some \(i\) with \(\text{index} \leq i < j\).
3. Set \(t_v = j - \text{index} + 1\), \(v = v + 1\), and \(\text{index} = j + 1\).
4. Repeat steps 2-3 until the end of the dataset is reached.
5. Set \(v = v - 1\).
6. If \(v < 1000\), map down the noise source outputs (see Section 6.4), based on the ranking provided, and retest the data.
7. Calculate the sample mean \(\bar{X}\), and the sample standard deviation \(\hat{\sigma}\), of \(t_i\) as
 \[\bar{X} = \frac{1}{v} \sum_{i=1}^{v} t_i, \quad \hat{\sigma} = \sqrt{\frac{1}{v} \sum_{i=1}^{v} (t_i - \bar{X})^2} \]
8. Compute the lower-bound of the confidence interval for the mean, based on a normal distribution with a confidence level of 99%,
 \[\bar{X}' = \bar{X} - 2.576 \frac{\hat{\sigma}}{\sqrt{v}} \]
9. Let \(k\) be the number of possible values in the output space. Using a binary search, solve for the parameter \(p\), such that
 \[\bar{X}' = pq^{-2} \left(1 + \frac{1}{k} (p^{-1} - q^{-1})\right) F(q) - pq^{-1} \frac{1}{k} (p^{-1} - q^{-1}) \]
where

\[q = \frac{1 - p}{k - 1}, \]

\[p \geq q, \]

\[F(1/z) = \Gamma(k + 1, z)z^{-k-1}e^z, \]

and \(\Gamma(a,b)\) is the incomplete Gamma function.\(^6\)

10. If the binary search yields a solution, then the min-entropy estimation is the negative logarithm of the parameter, \(p\):

\[\text{min-entropy} = -\log_2(p). \]

If the search does not yield a solution, then the min-entropy estimation is:

\[\text{min-entropy} = \log_2(k). \]

Example: Suppose that \(S = (2, 2, 0, 1, 0, 2, 0, 1, 2, 1, 2, 0, 1, 2, 1, 0, 0, 0, 0)\). After step 5, \(v=6\), and the sequence \((t_1, \ldots, t_v)\) is \((2, 3, 4, 4, 4, 3)\). For purposes of illustration, step 6 is skipped in this example. Then \(\bar{X} = 3.3333, \bar{\sigma} = 0.7454\), and \(\bar{X}' = 2.5495\). The solution to the equation is \(p = 0.7063\), giving an estimated min-entropy of 0.5016.

6.3.3 The Markov Estimate

In a first-order Markov process, the next sample value depends only on the latest observed sample value; in an \(n^{th}\)-order Markov process, the next sample value depends only on the previous \(n\) observed values. Therefore, a Markov model can be used as a template for testing sources with dependencies. The Markov estimate provides a min-entropy estimate by measuring the dependencies between consecutive values from the input dataset. The min-entropy estimate is based on the entropy present in any subsequence (i.e., chain) of outputs, instead of an estimate of the min-entropy per output.

The key component in estimating the entropy of a Markov process is the ability to accurately estimate the transition matrix probabilities of the Markov process. The main difficulty in making these estimates is the large data requirement necessary to resolve the dependencies. In particular, low-probability transitions may not occur often in a “small” dataset; the more data provided, the easier it becomes to make accurate estimates of transition probabilities. This method, however, avoids large data requirements by overestimating the low-probability transitions; as a consequence, an underestimate of min-entropy is obtained with less data.

\(^6\) The equation presented here uses the incomplete gamma function, which has known efficient computation methods and can be found in many software libraries. An efficient approximation for the incomplete Gamma function is provided in Appendix H. For additional representations of the \(\bar{X}'\) calculation in step 9, see [HD12].
The data requirement for this estimation method depends on the number of output samples k (i.e., the alphabet size); the largest k accommodated by this test is 2^6. An alphabet size greater than 2^6 cannot be accommodated, since an unreasonable amount of data would be required to accurately estimate the matrix of transition probabilities—far more than is specified in Section 3.1.1. For 16-bit samples, for instance, a transition matrix of size $2^{16} \times 2^{16}$, containing 2^{32} sample entries, would have to be approximated, and the data requirement for this would be impractical.

As an alternative for datasets with a number of samples greater than 64, the method in Section 6.4 for mapping noise source outputs (based on a ranking of the bits in the output) shall be implemented. This will reduce the data requirement to a more feasible quantity.

Samples are collected from the noise source, and specified as d-long chains of samples. From this data, probabilities are determined for both the initial state and transitions between any two states. Any values for which these probabilities cannot be determined empirically are overestimated to guarantee that the eventual min-entropy estimate is a lower bound. These probabilities are used to determine the highest probability of any particular d-long chain of samples. The corresponding maximum probability is used to determine the min-entropy present in all such chains generated by the noise source. This min-entropy value is particular to d-long chains and cannot be extrapolated linearly; i.e., chains of length wd will not necessarily have w times as much min-entropy present as a d-long chain. It may not be possible to know what a typical output length will be at the time of testing. Therefore, although not mathematically correct, in practice, calculating an entropy estimate per sample (extrapolated from that of the d-long chain) provides estimates that are close.

The following algorithm uses output values as list indices. If the output set does not consist of consecutive values, then the values are adjusted before this algorithm is applied. This can be done without altering entropy estimates, as the data is categorical. For example, if the output set is $\{0, 1, 4\}$, and the observed sequence is $(0, 0, 4, 1, 0, 4, 0, 1)$, 0 can stay the same, 1, can stay the same, but 4 must be changed to 2. The new set is $\{0, 1, 2\}$, and the new sequence is $(0, 0, 2, 1, 0, 2, 0, 1)$.

Given the input $S = (s_1, \ldots, s_L)$, where $s_i \in A = \{x_1, \ldots, x_k\}$,

1. Define the confidence level to be $\alpha = \min(0.99^{k^2}, 0.99d)$, where $d = 128$ is the assumed length of the chain.
2. Estimate the initial probabilities for each output value. Let P be a list of length k. For i from 1 to k:

$$P_i = \min\left\{1, \frac{o_i}{L} + \varepsilon\right\},$$

where o_i denotes the number of times that value x_i has occurred in S, and ε is defined by:

7 This statement assumes that the output space is defined such that it contains all 2^k (or more) possible outputs; if, however, the output space is defined to have 2^k or less elements, regardless of the sample size, the test can accurately estimate the transition probabilities with the amount of data specified in Section 3.1.1.
3. Let \(o_{s_L} = o_{sL} - 1 \). This step removes one from the count of the last symbol of the sequence, which is necessary to compute sample proportions in the next step.

4. Let \(T \) be a \(k \times k \) matrix. Estimate the probabilities in the bounding matrix \(T \), overestimating where

\[
T_{i,j} = \begin{cases}
1 & \text{if } o_i = 0 \\
\min \left\{ 1, \frac{o_{ij}}{o_i} + \varepsilon_i \right\} & \text{otherwise},
\end{cases}
\]

and \(o_{ij} \) is the number of transitions from state \(x_i \) to state \(x_j \) observed in the sample, and \(\varepsilon_i \) is defined to be

\[
\varepsilon_i = \sqrt{\frac{\log_2 \left(\frac{1}{1-\alpha} \right)}{2o_i}}.
\]

5. Using the bounding matrix \(T \), find the probability of the most likely sequence of outputs, \(\hat{p}_{max} \), using a dynamic programming algorithm as follows:

a. For \(j \) from 1 to \(d - 1 \):
 i. Let \(h \) be a list of length \(k \).
 ii. Find the highest probability for a sequence of length \(j+1 \) ending in each sample value. For \(c \) from 1 to \(k \):
 1. Let \(P' \) be a list of length \(k \).
 2. For \(i \) from 1 to \(k \):
 a. \(P'_i = P_i \times T_{i,c} \)
 3. \(h_c = \max_{i=1,k}(P'_i) \)
 iii. Store the highest probability for a sequence of length \(j+1 \) ending in each value in \(P \). For all \(i \in \{1, \ldots, k\} \), set \(P_i = h_i \).

b. \(\hat{p}_{max} = \max_{i=1,k}(P_i) \)

6. The min-entropy estimate is the negative logarithm of the probability of the most likely sequence of outputs, \(\hat{p}_{max} \):

\[
\text{min-entropy} = -\frac{1}{d} \log_2(\hat{p}_{max}).
\]

Example: Suppose that \(k = 3 \), \(L = 21 \) and \(S = (2, 2, 0, 1, 0, 2, 0, 1, 2, 1, 2, 0, 1, 2, 1, 0, 0, 1, 1, 0, 0) \). In step 1, \(\alpha = \min(0.99^9, 0.99^d) = 0.2762 \). After step 2, \(\varepsilon = 0.0877 \), \(P_1 = 0.4687 \), \(P_2 = 0.4211 \), and \(P_3 = 0.3734 \). After step 4, the bounding matrix \(T \) has values:
After step 5a, the loop iteration for \(j = 1 \) completes, \(P_1 = 0.2480 \) \(P_2 = 0.3390 \), and \(P_3 = 0.2444 \).

This represents the most probable sequence of length two ending in \(x_1 = 0 \), \(x_2 = 1 \), and \(x_3 = 2 \), respectively. After step 6, the highest probability of any chain of length 128 generated by this bounding matrix is \(1.7372 \times 10^{-24} \), yielding an estimated min-entropy of 0.6166.

6.3.4 The Compression Estimate

The compression estimate, proposed by Hagerty and Draper [HD12], computes the entropy rate of a dataset, based on how much the dataset can be compressed. This estimator is based on the Maurer Universal Statistic [Mau92]. The estimate is computed by generating a dictionary of values, and then computing the average number of samples required to produce an output, based on the dictionary. One advantage of using the Maurer statistic is that there is no assumption of independence. When output with dependencies is tested with this statistic, the compression rate is affected (and therefore the entropy), but an entropy estimate is still obtained. A calculation of the Maurer statistic is efficient, as it requires only one pass through the dataset to provide an entropy estimate.

Given a dataset from the noise source, the samples are first partitioned into two disjoint groups. The first group serves as the dictionary for the compression algorithm; the second group is used as the test group. The compression values are calculated over the test group to determine the mean, which is the Maurer statistic. Using the same method as the collision estimate, the probability distribution that has the minimum possible entropy for the calculated Maurer statistic is determined. For this distribution, the entropy per sample is calculated as the lower bound on the entropy that is present.

The following algorithm uses output values as list indices. If the output set does not consist of consecutive values, then the values must be adjusted before this algorithm is applied. This can be done without altering entropy estimates, as the data is categorical. For example, if the output set is \(\{0, 1, 4\} \), and the observed sequence is \((0, 0, 4, 1, 0, 4, 0, 1) \), 0 can stay the same, 1 can stay the same, but 4 must be changed to 2. The new set is \(\{0, 1, 2\} \), and the new sequence is \((0, 0, 2, 1, 0, 2, 0, 1) \).

Given the input \(S = (s_1, \ldots, s_L) \), where \(s_i \in A = \{x_1, \ldots, x_k\} \),

1. Partition the dataset into two disjoint groups. These two groups will form the dictionary and the test data.
 a. Create the dictionary from the first \(d = 1000 \) observations, \((s_1, s_2, \ldots, s_d) \).
 b. Use the remaining \(v = L - d \) observations, \((s_{d+1}, \ldots, s_L) \), for testing.
2. Initialize the dictionary `dict` to an all zero array of size `k`. For `i` from 1 to `d`, let `dict[s_i] = i`. `dict[s_i]` is the index of last occurrence of each `s_i` in the dictionary.

3. Run the test data against the dictionary created in Step 2.
 a. Let `D_i` be a list of length `v`.
 b. For `i` from `d + 1` to `L`:
 i. If `dict[s_i]` is non-zero, then `D_{i-d} = i - dict[s_i]`. Update the dictionary with the index of the most recent observation, `dict[s_i] = i`.
 ii. If `dict[s_i]` is zero, add that value to the dictionary, i.e., `dict[s_i] = i`. Let `D_{i-d} = i`.

4. Let `b = \lceil \log_2(\text{max}(x_1, ..., x_k)) \rceil + 1`, the number of bits needed to represent the largest symbol in the output alphabet. Calculate the sample mean, \bar{X}, and sample standard deviation, $\hat{\sigma}$, of $(\log_2(D_1), ..., \log_2(D_v))$.

 \[\bar{X} = \frac{\sum_{i=1}^{v} \log_2 D_i}{v}, \]

 \[c = 0.7 - \frac{0.8}{b} + \frac{ \left(4 + \frac{32}{b} \right) v^{-3/b} }{15} \]

 and

 \[\hat{\sigma} = c \sqrt{ \frac{\sum_{i=1}^{v} (\log_2 D_i)^2}{v} - \bar{X}^2 }. \]

5. Compute the lower-bound of the confidence interval for the mean, based on a normal distribution using

 \[\bar{X}' = \bar{X} - \frac{2.576 \hat{\sigma}}{\sqrt{v}}. \]

6. Using a binary search, solve for the parameter `p`, such that the following equation is true:

 \[\bar{X}' = G(p) + (n - 1)G(q), \]

 where

 \[G(z) = \frac{1}{v} \sum_{t=d+1}^{L} \sum_{u=1}^{t} \log_2 (u) F(z, t, u). \]

8 Note that a correction factor is applied to the standard deviation, as described in [Maurer]. This correction factor reduces the standard deviation to account for dependencies in the D_i values.
\[F(z, t, u) = \begin{cases} z^2(1-z)^{u-1} & \text{if } u < t \\ z(1-z)^{t-1} & \text{if } u = t \end{cases} \]

and

\[q = \frac{1 - p}{k - 1}. \]

7. If the binary search yields a solution, then the min-entropy is the negative logarithm of the parameter, \(p \):

\[\text{min-entropy} = -\log_2(p). \]

If the search does not yield a solution, then the min-entropy estimation is:

\[\text{min-entropy} = \log_2(k). \]

Example: For illustrative purposes, suppose that \(d = 10 \) (instead of 1000), \(k = 3 \), \(L = 21 \) and \(S = (2, 2, 0, 1, 0, 2, 0, 1, 2, 1, 2, 1, 0, 1, 0, 0, 0) \). The dictionary sequence is \((2, 2, 0, 1, 0, 2, 0, 1, 2, 1, 2, 1, 0, 1, 0, 0, 0) \). The dictionary is initialized, \(dict[0] = 7 \), \(dict[1] = 10 \), and \(dict[2] = 9 \). In Step 4, \(b \) is calculated as 2. After processing the test sequence, \(\bar{X} = 1.098 \), \(\hat{\sigma} = 0.2620 \) and \(\bar{X}' = 0.8944 \). The value of \(p \) that solves the equation is 0.7003, and the min-entropy estimate is 0.5139.

6.3.5 t-Tuple Estimate

This method examines the frequency of \(t \)-tuples (pairs, triples, etc.) that appears in the input dataset and produces an estimate of the entropy per sample, based on the frequency of those \(t \)-tuples. The frequency of the \(t \)-tuple \((x_1, x_2, \ldots, x_t)\) in \(S = (s_1, \ldots, s_L) \) is the number of \(i \)'s such that \(s_i = x_1, s_{i+1} = x_2, \ldots, s_{i+t-1} = x_t \). It should be noted that the tuples can overlap.

Given the input \(S = (s_1, \ldots, s_L) \), where \(s_i \in A = \{x_1, \ldots, x_k\} \),

1. Find the largest \(t \) such that the number of occurrences of the most common \(t \)-tuple in \(S \) is at least 35.

2. Let \(Q[i] \) store the number of occurrences of the most common \(i \)-tuple in \(S \) for \(i = 1, \ldots, t \). For example, in \(S = (2, 2, 0, 1, 0, 2, 0, 1, 2, 1, 2, 0, 1, 2, 1, 0, 1, 0, 0, 0) \), \(Q[1] = \max(\#0's, \#1's, \#2's) = \#0's = 9 \), and \(Q[2] = 4 \) is obtained by the number of \(01 \)'s in \(S \).

3. For \(i = 1 \) to \(t \), an estimate for \(p_{max} \) is computed as
 a. Let \(P[i] = Q[i] / (L-i+1) \), and compute an estimate on the maximum individual sample value probability as \(p_{max}[i] = P[i]^{1/i} \).

4. The entropy estimate is calculated as \(-\log_2 \max (p_{max}[1], \ldots, p_{max}[t])\).

6.3.6 Longest Repeated Substring (LRS) Estimate

This method estimates the collision entropy (sampling without replacement) of the source, based on the number of repeated substrings (tuples) within the input dataset. Although this method
estimates collision entropy (an upper bound on min-entropy), this estimate handles tuple sizes that are too large for the t-tuple estimate, and is therefore a complementary estimate.

Given the input $S = (s_1, \ldots, s_L)$, where $s_i \in A = \{ x_1, \ldots, x_k \}$,

1. Find the smallest u such that the number of occurrences of the most common u-tuple in S is less than 20.
2. Find the largest v such that the number of occurrences of the most common v-tuple in S is at least 2 and the most common $(v+1)$-tuple in S occurs once. In other words, v is the largest length that a tuple repeat occurs. If $v < u$, this estimate cannot be computed.
3. For $W=u$ to v, compute the estimated W-tuple collision probability
 \[P_W = \sum_{i=1}^{L-W+1} \binom{C_i}{2}, \]
 where C_i is the number of occurrences of the i^{th} unique W-tuple.
4. For each P_W, compute the estimated average collision probability per string symbol
 \[P_{\text{max}, W} = P_W^{1/W}. \]

The collision entropy estimate is calculated as $-\log_2 \max(P_{\text{max}, u}, \ldots, P_{\text{max}, v})$.

6.3.7 Multi Most Common in Window Prediction Estimate

The Multi Most Common in Window (MultiMCW) predictor contains several subpredictors, each of which aims to guess the next output, based on the last w outputs. Each subpredictor predicts the value that occurs most often in that window of w previous outputs. The MultiMCW predictor keeps a scoreboard that records the number of times that each subpredictor was correct, and uses the subpredictor with the most correct predictions to predict the next value. In the event of a tie, the most common sample value that has appeared most recently is predicted. This predictor was designed for cases where the most common value changes over time, but still remains relatively stationary over reasonable lengths of the sequence.

Given the input $S = (s_1, \ldots, s_L)$, where $s_i \in A = \{ x_1, \ldots, x_k \}$,

1. Let window sizes be $w_1=63$, $w_2=255$, $w_3=1023$, $w_4=4095$, and $N = L - w_1$. Let correct be an array of N Boolean values, each initialized to 0.
2. Let scoreboard be a list of four counters, each initialized to 0. Let frequent be a list of four values, each initialized to Null. Let $\text{winner} = 1$.
3. For $i = w_1 + 1$ to L:
 a. For $j = 1$ to 4,
 i. If $i > w_j$, let frequent_j be the most frequent value in $(s_{i-w_j}, \ldots, s_{i-1})$. If there is a tie, then frequent_j is assigned to the most frequent value that has appeared most recently.
 ii. Else, let $\text{frequent}_j = \text{Null}$.

b. Let $\text{prediction} = \text{frequent}_{\text{winner}}$.

c. If ($\text{prediction} = s_i$), let $\text{correct}_{i-w_1} = 1$.

d. Update the scoreboard. For $j = 1$ to 4,

i. If ($\text{frequent}_j = s_i$)

1. Let $\text{scoreboard}_j = \text{scoreboard}_j + 1$

2. If $\text{scoreboard}_j \geq \text{scoreboard}_{\text{winner}}$, let $\text{winner} = j$

4. Let C be the number of ones in correct.

5. Calculate a 99% upper bound on the predictor’s global performance $P_{\text{global}} = \frac{C}{N}$ as:

$$P'_{\text{global}} = P_{\text{global}} + 2.576 \sqrt{\frac{P_{\text{global}} (1 - P_{\text{global}})}{N - 1}}.$$

6. Calculate the predictor’s local performance, based on the longest run of correct predictions. Let r be one greater than the length of the longest run of ones in correct. Use a binary search to solve the following for P_{local}:

$$0.99 = \frac{1 - P_{\text{local}} x}{(r + 1 - rx) q} \times \frac{1}{x^{N+1}}.$$

where $q = 1 - P_{\text{local}}$ and $x = x_{10}$, derived by iterating the recurrence relation

$$x_j = 1 + q P'_{\text{local}} x_{j-1}^{r+1}$$

for j from 1 to 10, and $x_0 = 1$.

7. The min-entropy is the negative logarithm of the greater performance metric

$$\text{min-entropy} = -\log_2 (\max (P'_{\text{global}}, P_{\text{local}})).$$

Example: Suppose that $S = (1, 2, 1, 0, 2, 1, 1, 2, 2, 0, 0, 0)$, so that $L = 12$. For the purpose of the example, suppose that $w_1 = 3$, $w_2 = 5$, $w_3 = 7$, $w_4 = 9$ (instead of $w_1 = 63$, $w_2 = 255$, $w_3 = 1023$, $w_4 = 4095$). Then $N = 9$. In step 3, the values are as follows:

<table>
<thead>
<tr>
<th>i</th>
<th>frequent (step 3b)</th>
<th>scoreboard (step 3b)</th>
<th>Winner (step 3b)</th>
<th>prediction</th>
<th>s_i</th>
<th>correct_{i-w_1}</th>
<th>scoreboard (step 3d)</th>
<th>(step 3d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>(1, --, --, --)</td>
<td>(0, 0, 0, 0)</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>(0, 0, 0, 0)</td>
<td>(0, 0, 0, 0)</td>
</tr>
<tr>
<td>5</td>
<td>(0, --, --, --)</td>
<td>(0, 0, 0, 0)</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>(0, 0, 0, 0)</td>
<td>(0, 0, 0, 0)</td>
</tr>
<tr>
<td>6</td>
<td>(2, 2, --, --)</td>
<td>(0, 0, 0, 0)</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>(0, 0, 0, 0)</td>
<td>(0, 0, 0, 0)</td>
</tr>
<tr>
<td>7</td>
<td>(1, 1, --, --)</td>
<td>(0, 0, 0, 0)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>(1, 1, 0, 0)</td>
<td>(1, 1, 0, 0)</td>
</tr>
<tr>
<td>8</td>
<td>(1, 1, 1, --)</td>
<td>(1, 1, 0, 0)</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>(1, 1, 0, 0)</td>
<td>(1, 1, 0, 0)</td>
</tr>
<tr>
<td>9</td>
<td>(1, 2, 2, --)</td>
<td>(1, 1, 0, 0)</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>(1, 2, 1, 0)</td>
<td>(1, 2, 1, 0)</td>
</tr>
<tr>
<td>10</td>
<td>(2, 2, 2, 2)</td>
<td>(1, 2, 1, 0)</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>(1, 2, 1, 0)</td>
<td>(1, 2, 1, 0)</td>
</tr>
<tr>
<td>11</td>
<td>(2, 2, 2, 2)</td>
<td>(1, 2, 1, 0)</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>(1, 2, 1, 0)</td>
<td>(1, 2, 1, 0)</td>
</tr>
<tr>
<td>12</td>
<td>(0, 0, 2, 0)</td>
<td>(1, 2, 1, 0)</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>(2, 3, 1, 1)</td>
<td>(2, 3, 1, 1)</td>
</tr>
</tbody>
</table>
After all of the predictions are made, \(correct = (0, 0, 0, 1, 0, 1, 0, 0, 1) \). Then, \(P_{\text{global}} = 0.3333 \), \(P'_{\text{global}} = 0.7627 \), \(P_{\text{local}} = 0.5 \), and the resulting min-entropy estimate is 0.3909.

6.3.8 The Lag Prediction Estimate

The lag predictor contains several subpredictors, each of which predicts the next output, based on a specified lag. The lag predictor keeps a scoreboard that records the number of times that each subpredictor was correct, and uses the subpredictor with the most correct predictions to predict the next value.

Given the input \(S = (s_1, \ldots, s_L) \), where \(s_i \in A = \{x_1, \ldots, x_k\} \),

1. Let \(D = 128 \), and \(N = L - 1 \). Let \(\text{lag} \) be a list of \(D \) values, each initialized to \(\text{Null} \). Let \(\text{correct} \) be a list of \(N \) Boolean values, each initialized to 0.
2. For \(i = 2 \) to \(L \):
 a. For \(d = 1 \) to \(D \):
 i. If \(d < i \), \(\text{lag}_d = s_{i-d} \).
 ii. Else \(\text{lag}_d = \text{Null} \).
 b. Let \(\text{prediction} = \text{lag}_{\text{winner}} \).
 c. If \(\text{prediction} = s_i \) let \(\text{correct}_{i-1} = 1 \).
 d. Update the \(\text{scoreboard} \). For \(d = 1 \) to \(D \):
 i. If \(\text{lag}_d = s_i \)
 1. Let \(\text{scoreboard}_d = \text{scoreboard}_d + 1 \).
 2. If \(\text{scoreboard}_d \geq \text{scoreboard}_{\text{winner}} \), let \(\text{winner} = d \).
3. Let \(C \) be the number of ones in \(\text{correct} \).
4. Calculate a 99% upper bound on the predictor’s global performance \(P_{\text{global}} = \frac{c}{N} \) as:
 \[
 P'_{\text{global}} = P_{\text{global}} + 2.576 \sqrt{\frac{P_{\text{global}}(1-P_{\text{global}})}{N-1}}.
 \]
5. Calculate the predictor’s local performance, based on the longest run of correct predictions.
 Let \(r \) be one greater than the length of the longest run of ones in \(\text{correct} \). Use a binary search to solve the following for \(P_{\text{local}} \):
 \[
 0.99 = \frac{1 - P_{\text{local}}x}{(r + 1 - rx)q} \times \frac{1}{x^{N+1}},
 \]
 where
 \[
 q = 1 - P_{\text{local}}
 \]
and \(x = x_{10} \), derived by iterating the recurrence relation
\[
x_j = 1 + q P_{\text{local}}^{r} x_{j-1}^{r+1}
\]
for \(j \) from 1 to 10, and \(x_0 = 1 \).

6. The min-entropy is the negative logarithm of the greater performance metric
\[
\text{min-entropy} = -\log_2 (\max(P_{\text{global}}', P_{\text{local}})).
\]

Example: Suppose that \(S = (2, 1, 3, 2, 1, 3, 1, 3, 1, 2) \), so that \(L = 10 \) and \(N = 9 \). For the purpose of the example, suppose that \(D = 3 \) (instead of 128). The following table shows the values in step 3.

<table>
<thead>
<tr>
<th>(i)</th>
<th>lag</th>
<th>scoreboard (step 3b)</th>
<th>Winner (step 3b)</th>
<th>prediction</th>
<th>(s_i)</th>
<th>correct (_{i-1})</th>
<th>scoreboard (step 3d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>(2, --, --)</td>
<td>(0, 0, 0)</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>(0, 0, 0)</td>
</tr>
<tr>
<td>3</td>
<td>(1, 2, --)</td>
<td>(0, 0, 0)</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>(0, 0, 0)</td>
</tr>
<tr>
<td>4</td>
<td>(3, 1, 2)</td>
<td>(0, 0, 0)</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>(0, 0, 1)</td>
</tr>
<tr>
<td>5</td>
<td>(2, 3, 1)</td>
<td>(0, 0, 1)</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>(0, 0, 2)</td>
</tr>
<tr>
<td>6</td>
<td>(1, 2, 3)</td>
<td>(0, 0, 2)</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>(0, 0, 3)</td>
</tr>
<tr>
<td>7</td>
<td>(3, 1, 2)</td>
<td>(0, 0, 3)</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>(0, 1, 3)</td>
</tr>
<tr>
<td>8</td>
<td>(1, 3, 1)</td>
<td>(0, 1, 3)</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>(0, 2, 3)</td>
</tr>
<tr>
<td>9</td>
<td>(3, 1, 3)</td>
<td>(0, 2, 3)</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>(0, 3, 3)</td>
</tr>
<tr>
<td>10</td>
<td>(1, 3, 1)</td>
<td>(0, 3, 3)</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>(0, 3, 3)</td>
</tr>
</tbody>
</table>

After all of the predictions are made, \(\text{correct} = (0, 0, 0, 1, 0, 0, 0, 0, 0) \). Then, \(P_{\text{global}} = 0.2222 \), \(P_{\text{global}}' = 0.6008 \), \(P_{\text{local}} = 0.6667 \), and the resulting min-entropy estimate is 0.5850.

6.3.9 The MultiMMC Prediction Estimate

The MultiMMC predictor is composed of multiple Markov Model with Counting (MMC) subpredictors. Each MMC predictor records the observed frequencies for transitions from one output to a subsequent output (rather than the probability of a transition, as in a typical Markov model), and makes a prediction, based on the most frequently observed transition from the current output. MultiMMC contains \(D \) MMC subpredictors running in parallel, one for each depth from 1 to \(D \). For example, the MMC with depth 1 creates a first-order model, while the MMC with depth \(D \) creates a \(D \)-th-order model. MultiMMC keeps a scoreboard that records the number of times that each MMC subpredictor was correct, and uses the subpredictor with the most correct predictions to predict the next value.

Given the input \(S = (s_1, \ldots, s_L) \), where \(s_i \in A = \{x_1, \ldots, x_k\} \),

1. Let \(D = 16 \), and \(N = L - 2 \). Let \(\text{subpredict} \) be a list of \(D \) values, each initialized to \(\text{Null} \). Let \(\text{correct} \) be an array of \(N \) Boolean values, each initialized to \(0 \).

2. For \(d = 1 \) to \(D \), let \(M_d \) be a list of counters, where \(M_d[x, y] \) denotes the number of observed transitions from output \(x \) to output \(y \) for the \(d \)-th-order MMC.
3. Let scoreboard be a list of D counters, each initialized to 0. Let winner = 1.

4. For i=3 to L:
 a. For d = 1 to D:
 i. If d < i-1, increment MMC\(d[(s_{i-d-1}, \ldots, s_{i-2}), s_{i-1}]\) by 1.
 b. For d = 1 to D:
 i. Find the y value that corresponds to the highest \(M_{d}[\ldots, s_{i-1}, y]\) value, and denote that y as ymax. Let subpredict_d = ymax. If all possible values of \(M_{d}[\ldots, s_{i-1}, y]\) are 0, then let subpredict_d = Null.
 c. Let prediction = subpredict_winner.
 d. If (prediction = s_i), let correct_i-2 = 1.
 e. Update the scoreboard. For d = 1 to D:
 i. If (subpredict_d = s_i)
 1. Let scoreboard_d = scoreboard_d + 1.
 2. If scoreboard_d ≥ scoreboard_winner, let winner =d.

5. Let C be the number of ones in correct.

6. Calculate a 99% upper bound on the predictor’s global performance \(P_{global} = \frac{C}{N}\) as:
\[
P'_{global} = P_{global} + 2.576 \sqrt{\frac{P_{global}(1-P_{global})}{N-1}}.
\]

7. Calculate the predictor’s local performance, based on the longest run of correct predictions. Let r be one greater than the length of the longest run of ones in correct. Use a binary search to solve the following for \(P_{local}\):
\[
0.99 = \frac{1 - P_{local}x}{(r + 1 - rx)q} \times \frac{1}{x^{N+1}},
\]
where
\[
q = 1 - P_{local}
\]
and \(x = x_{10}\), derived by iterating the recurrence relation
\[
x_j = 1 + qP_{local}x_{j-1}^{r+1}
\]
for \(j\) from 1 to 10, and \(x_0=1\).

8. The min-entropy is the negative logarithm of the greater performance metric
\[
\text{min-entropy} = -\log_2(\max(P'_{global}, P_{local})).
\]

Example: Suppose that \(S = (2, 1, 3, 2, 1, 3, 1, 3, 1)\), so that \(L = 9\) and \(N = 7\). For the purpose of
example, further suppose that $D=3$ (instead of 16). After each iteration of step 4 is completed, the values are:

<table>
<thead>
<tr>
<th>i</th>
<th>subpredict</th>
<th>$\text{scoreboard (step 4c)}$</th>
<th>Winner (step 4c)</th>
<th>prediction</th>
<th>s_i</th>
<th>correct $\cdot 2$</th>
<th>$\text{scoreboard (step 4e)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>(Null, Null, Null)</td>
<td>(0, 0, 0)</td>
<td>1</td>
<td>Null</td>
<td>3</td>
<td>0</td>
<td>(0, 0, 0)</td>
</tr>
<tr>
<td>4</td>
<td>(Null, Null, Null)</td>
<td>(0, 0, 0)</td>
<td>1</td>
<td>Null</td>
<td>2</td>
<td>0</td>
<td>(0, 0, 0)</td>
</tr>
<tr>
<td>5</td>
<td>(1, Null, Null)</td>
<td>(0, 0, 0)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>(1, 0, 0)</td>
</tr>
<tr>
<td>6</td>
<td>(3, 3, Null)</td>
<td>(1, 0, 0)</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>(2, 1, 0)</td>
</tr>
<tr>
<td>7</td>
<td>(2, 2, 2)</td>
<td>(2, 1, 0)</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>(2, 1, 0)</td>
</tr>
<tr>
<td>8</td>
<td>(3, Null, Null)</td>
<td>(2, 1, 0)</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>(3, 1, 0)</td>
</tr>
<tr>
<td>9</td>
<td>(2, 2, Null)</td>
<td>(3, 1, 0)</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>(3, 1, 0)</td>
</tr>
</tbody>
</table>

Let $\{x \rightarrow y; c\}$ denote a nonzero count c for the transition from x to y. Models M_1, M_2, and M_3 are shown below after step 4a (the model update step) for each value of i.

<table>
<thead>
<tr>
<th>i</th>
<th>M_1</th>
<th>M_2</th>
<th>M_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>${2 \rightarrow 1:1}$</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>4</td>
<td>${1 \rightarrow 3:1}$, ${2 \rightarrow 1:1}$</td>
<td>${(2, 1) \rightarrow 3:1}$</td>
<td>--</td>
</tr>
<tr>
<td>5</td>
<td>${1 \rightarrow 3:1}$, ${2 \rightarrow 1:1}$, ${3 \rightarrow 2:1}$</td>
<td>${(1, 3) \rightarrow 2:1}$, ${(2, 1) \rightarrow 3:1}$</td>
<td>${(2, 1, 3) \rightarrow 2:1}$</td>
</tr>
<tr>
<td>6</td>
<td>${1 \rightarrow 3:1}$, ${2 \rightarrow 1:2}$, ${3 \rightarrow 2:1}$</td>
<td>${(1, 3) \rightarrow 2:1}$, ${(2, 1) \rightarrow 3:1}$, ${(3, 2) \rightarrow 1:1}$</td>
<td>${(1, 3, 2) \rightarrow 1:1}$, ${(2, 1, 3) \rightarrow 2:1}$</td>
</tr>
<tr>
<td>7</td>
<td>${1 \rightarrow 3:2}$, ${2 \rightarrow 1:2}$, ${3 \rightarrow 2:1}$</td>
<td>${(1, 3) \rightarrow 2:1}$, ${(2, 1) \rightarrow 3:2}$, ${(3, 2) \rightarrow 1:1}$</td>
<td>${(1, 3, 2) \rightarrow 1:1}$, ${(2, 1, 3) \rightarrow 2:1}$, ${(3, 2, 1) \rightarrow 3:1}$</td>
</tr>
<tr>
<td>8</td>
<td>${1 \rightarrow 3:2}$, ${2 \rightarrow 1:2}$, ${3 \rightarrow 1:1}$, ${3 \rightarrow 2:1}$</td>
<td>${(1, 3) \rightarrow 1:1}$, ${(1, 3) \rightarrow 2:1}$, ${(2, 1) \rightarrow 3:2}$, ${(3, 2) \rightarrow 1:1}$</td>
<td>${(1, 3, 2) \rightarrow 1:1}$, ${(2, 1, 3) \rightarrow 2:1}$, ${(3, 2, 1) \rightarrow 3:1}$</td>
</tr>
<tr>
<td>9</td>
<td>${1 \rightarrow 3:3}$, ${2 \rightarrow 1:2}$, ${3 \rightarrow 1:1}$, ${3 \rightarrow 2:1}$</td>
<td>${(1, 3) \rightarrow 1:1}$, ${(1, 3) \rightarrow 2:1}$, ${(2, 1) \rightarrow 3:2}$, ${(3, 1) \rightarrow 3:1}$, ${(3, 2) \rightarrow 1:1}$</td>
<td>${(1, 3, 1) \rightarrow 3:1}$, ${(1, 3, 2) \rightarrow 1:1}$, ${(2, 1, 3) \rightarrow 1:1}$, ${(2, 1, 3) \rightarrow 2:1}$, ${(3, 2, 1) \rightarrow 3:1}$</td>
</tr>
</tbody>
</table>

After the predictions are all made, $\text{correct} = (0, 0, 1, 1, 0, 1, 0)$. Then, $P_{\text{global}} = 0.4286$, $P_{\text{global}}' = 0.9490$, $P_{\text{local}} = 0.6667$, and the resulting min-entropy estimate is 0.0755.
6.3.10 The LZ78Y Prediction Estimate

The LZ78Y predictor is loosely based on LZ78 encoding with the Bernstein's Yabba scheme [Sal07] for adding strings to the dictionary. The predictor keeps a dictionary of strings that have been added to the dictionary so far, and continues adding new strings to the dictionary until the dictionary has reached its maximum capacity. Each time that a sample is processed, every substring in the most recent B samples updates the dictionary or is added to the dictionary.

Given the input $S = (s_1, \ldots, s_L)$, where $s_i \in A = \{x_1, \ldots, x_k\}$,

1. Let $B = 16$, and $N = L - B - 1$. Let correct be an array of N Boolean values, each initialized to 0. Let $\text{maxDictionarySize} = 65536$.
2. Let D be an empty dictionary. Let $\text{dictionarySize} = 0$.
3. For $i=B+2$ to L:
 a. For $j=B$ down to 1:
 i. If $(s_{i-j-1}, \ldots, s_{i-2})$ is not in D, and $\text{dictionarySize} < \text{maxDictionarySize}$:
 1. Let $D[s_{i-j-1}, \ldots, s_{i-2}]$ be added to the dictionary.
 2. Let $D[s_{i-j-1}, \ldots, s_{i-2}][s_{i-1}] = 0$.
 3. $\text{dictionarySize} = \text{dictionarySize} + 1$
 ii. If $(s_{i-j-1}, \ldots, s_{i-2})$ is in D,
 1. Let $D[s_{i-j-1}, \ldots, s_{i-2}][s_{i-1}] = D[s_{i-j-1}, \ldots, s_{i-2}][s_{i-1}] + 1$.
 b. Use the dictionary to predict the next value, s_i. Let $\text{prediction} = \text{Null}$, and let $\text{maxcount} = 0$. For $j = B$ down to 1:
 i. Let $\text{prev} = (s_{i-j}, \ldots, s_{i-1})$.
 ii. If prev is in the dictionary, find the $y \in \{x_1, \ldots, x_k\}$ that has the highest $D[\text{prev}][y]$ value.
 iii. If $D[\text{prev}][y] > \text{maxcount}$:
 1. $\text{prediction} = y$.
 2. $\text{maxcount} = D[\text{prev}][y]$.
 c. If $(\text{prediction} = s_i)$, let $\text{correct}_{i-B+1} = 1$.
4. Let C be the number of ones in correct. Calculate a 99% upper bound on the predictor’s global performance $P_{\text{global}} = \frac{C}{N}$ as:

\[
P'_{\text{global}} = P_{\text{global}} + 2.576 \sqrt{\frac{P_{\text{global}}(1-P_{\text{global}})}{N-1}}.
\]
5. Calculate the predictor’s local performance, based on the longest run of correct predictions. Let r be one greater than the length of the longest run of ones in correct. Use a binary search to solve the following for P_{local}:
0.99 = \frac{1 - P_{local}x}{(r + 1 - rx)q} \times \frac{1}{x^{N+1}},

where \(q = 1 - P_{local} \) and \(x = x_{i0} \), derived by iterating the recurrence relation

\[x_j = 1 + qP_{local}x_{j-1}^r \]

for \(j \) from 1 to 10, and \(x_0 = 1 \).

6. The min-entropy is the negative logarithm of the greater performance metric

\[\text{min-entropy} = -\log_2 \left(\max(P_{global}', P_{local}) \right) \].

Example: Suppose that \(S = (2, 1, 3, 2, 1, 3, 1, 2, 1, 3, 2) \), and \(L=13 \). For the purpose of example, suppose that \(B=4 \) (instead of 16), then \(N=8 \).

<table>
<thead>
<tr>
<th>(i)</th>
<th>Add to (D)</th>
<th>prev</th>
<th>Max (D[\text{prev}]) entry</th>
<th>prediction</th>
<th>(s_i)</th>
<th>correct, b-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>(D[2, 1, 3, 2][1]) (D[1, 3, 2][1]) (D[3, 2][1]) (D[2][1])</td>
<td>(1, 3, 2, 1) Null</td>
<td>Null</td>
<td>Null</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>(D[1, 3, 2][1]) (D[3, 2][1]) (D[2][1])</td>
<td>(3, 2, 1) Null</td>
<td>Null</td>
<td>Null</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>(D[3, 2][1]) (D[2][1])</td>
<td>(2, 1) Null</td>
<td>Null</td>
<td>Null</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>(D[2][1]) (D[1][3])</td>
<td>(1) Null</td>
<td>Null</td>
<td>Null</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>(D[1, 3, 2, 1][1]) (D[3, 2, 1][1]) (D[2, 1][1]) (D[1][3])</td>
<td>(3, 2, 1, 3) Null</td>
<td>Null</td>
<td>Null</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(D[3, 2, 1][1]) (D[2, 1][1]) (D[1][3])</td>
<td>(2, 1, 3) Null</td>
<td>Null</td>
<td>Null</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(D[2, 1][1]) (D[1][3])</td>
<td>(1, 3) Null</td>
<td>Null</td>
<td>Null</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>(D[1][3])</td>
<td>(3) Null</td>
<td>Null</td>
<td>Null</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>(D[3, 2, 1, 3][1]) (D[2, 1, 3][1]) (D[1, 3][1]) (D[3][1])</td>
<td>(2, 1, 3, 1) Null</td>
<td>Null</td>
<td>Null</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>(D[2, 1, 3][1]) (D[1, 3][1]) (D[3][1])</td>
<td>(1, 3, 1) Null</td>
<td>Null</td>
<td>Null</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(D[1, 3][1]) (D[3][1])</td>
<td>(3, 1) Null</td>
<td>NULL</td>
<td>NULL</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>(D[3][1])</td>
<td>(1) Null</td>
<td>NULL</td>
<td>NULL</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>(D[2, 1, 3, 1][1]) (D[1, 3, 1][1]) (D[3, 1][1]) (D[1][3])</td>
<td>(3, 1, 3, 1) Null</td>
<td>Null</td>
<td>NULL</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(D[1, 3, 1][1]) (D[3, 1][1]) (D[1][3])</td>
<td>(1, 3, 1) Null</td>
<td>NULL</td>
<td>NULL</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>(D[3, 1][1]) (D[1][3])</td>
<td>(3, 1) Null</td>
<td>NULL</td>
<td>NULL</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>(D[1][3])</td>
<td>(1) Null</td>
<td>NULL</td>
<td>NULL</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>(D[1, 3, 1, 3][1]) (D[3, 1, 3][1]) (D[1, 3][1]) (D[3][1])</td>
<td>(3, 1, 3, 1) Null</td>
<td>Null</td>
<td>NULL</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(D[3, 1, 3][1]) (D[1, 3][1]) (D[3][1])</td>
<td>(1, 3, 1) Null</td>
<td>NULL</td>
<td>NULL</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(D[1, 3][1]) (D[3][1])</td>
<td>(3, 1) Null</td>
<td>NULL</td>
<td>NULL</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(D[3][1])</td>
<td>(1) Null</td>
<td>NULL</td>
<td>NULL</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>11</td>
<td>(D[3, 1, 3, 1][2]) (D[1, 3, 1][2]) (D[3, 1][2]) (D[1][2])</td>
<td>(1, 3, 1, 2) Null</td>
<td>Null</td>
<td>NULL</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(D[1, 3, 1][2]) (D[3, 1][2]) (D[1][2])</td>
<td>(3, 1, 2) Null</td>
<td>NULL</td>
<td>NULL</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(D[3, 1][2]) (D[1][2])</td>
<td>(1, 2) Null</td>
<td>NULL</td>
<td>NULL</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>(D[1][2])</td>
<td>(2) Null</td>
<td>NULL</td>
<td>NULL</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>12</td>
<td>(D[1, 3, 1, 2][1]) (D[3, 1, 2][1]) (D[1, 2][1]) (D[2][1])</td>
<td>(3, 1, 2, 1) Null</td>
<td>Null</td>
<td>NULL</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>
After the predictions are all made, \(\text{correct} = (0, 0, 1, 1, 0, 1, 1, 0) \). Then, \(P_{\text{global}} = 0.5 \), \(P'_{\text{global}} = 0.9868 \), \(P_{\text{local}} = 0.6667 \), and the resulting min-entropy estimate is 0.0191.

6.4 Reducing the Sample Space

It is often the case that the data requirements for a test on noise source samples depend on the number of possible different bitstrings from the noise source (i.e., the size of the alphabet \(A \)). For example, consider two different noise sources. The first source outputs four-bit samples, and thus has a possible total of \(2^4 = 16 \) different outputs, and the second source outputs 32-bit samples, for a possible total of \(2^{32} \) different outputs.

In many cases, the variability in the output that contributes to the entropy in a sample may be concentrated among some portion of the bits in the sample. For example, consider a noise source that outputs 32-bit high-precision clock samples that represent the time it takes to perform some system process. Suppose that the bits in a sample are ordered in the conventional way, so that the lower-order bits of the sample correspond to the higher resolution measurements of the clock. It is easy to imagine that in this case, the low-order bits would contain most of the variability. In fact, it would seem likely that some of the high-order bits may be constantly 0. For this example, it would be reasonable to truncate the 32-bit sample to a four-bit string by taking the lower four bits, and perform the tests on the four-bit strings. Of course, it must be noted that in this case, only a maximum of four bits of min-entropy per sample could be credited to the noise source.

The description below provides a method for mapping the \(n \)-bit samples, collected as specified in Section 3.1.1, to \(m \)-bit samples, where \(n \geq m \). The resulting strings can be used as input to tests that may have infeasible data requirements if the mapping were not performed. Note that after the mapping is performed, the maximum amount of entropy possible per \(n \)-bit sample is \(m \) bits.

Given a noise source that produces \(n \)-bit samples, where \(n \) exceeds the bit-length that can be handled by the test, the submitter shall provide the tester with an ordered ranking of the bits in the \(n \)-bit samples (see Section 3.2.2). The rank of ‘1’ corresponds to the bit assumed to be contributing the most entropy to the sample, and the rank of \(n \) corresponds to the bit contributing the least amount. If multiple bits contribute the same amount of entropy, the ranks can be assigned arbitrarily among those bits. The following algorithm, or its equivalent, is used to assign ranks.

Input: A noise source and corresponding statistical model with samples of the form \(X = a_1a_2\ldots a_n \), where each \(a_i \) is a bit.

Output: An ordered ranking of the bits \(a_1 \text{ through } a_n \), based on the amount of entropy that each bit is assumed to contribute to the noise source outputs.

1. Set \(M = \{ a_1, a_2, \ldots, a_n \} \).
2. For $i = 1$ to n:
 a. Choose an output bit a from M such that no other bit in S is assumed to contribute
 more entropy to the noise source samples than a.
 b. Set the rank of a to i.
 c. Remove a from M.

Given the ranking, n-bit samples are mapped to m-bit samples by simply taking the m-bits of

 greatest rank in order (i.e., bit 1 of the m-bit string is the bit from an n-bit sample with rank 1, bit
 2 of the m-bit string is the bit from an n-bit sample with rank 2, … and bit m of the m-bit string is
 the bit from an n-bit sample with rank m).

Note that for the estimators in Section 6, a reference to a sample in the dataset will be interpreted

 as a reference to the m-bit subsets of the sample when the test necessitates processing the dataset

 as specified in this section.
Appendix A—Acronyms

Selected acronyms and abbreviations used in this paper are defined below.

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AES</td>
<td>Advanced Encryption Standard</td>
</tr>
<tr>
<td>ANS</td>
<td>American National Standard</td>
</tr>
<tr>
<td>CAVP</td>
<td>Cryptographic Algorithm Validation Program</td>
</tr>
<tr>
<td>CMVP</td>
<td>Cryptographic Module Validation Program</td>
</tr>
<tr>
<td>DRBG</td>
<td>Deterministic Random Bit Generator</td>
</tr>
<tr>
<td>FIPS</td>
<td>Federal Information Processing Standard</td>
</tr>
<tr>
<td>HMAC</td>
<td>Hash-based Message Authentication Code</td>
</tr>
<tr>
<td>IID</td>
<td>Independent and Identically Distributed</td>
</tr>
<tr>
<td>LRS</td>
<td>Longest Repeated Substring</td>
</tr>
<tr>
<td>NIST</td>
<td>National Institute of Standards and Technology</td>
</tr>
<tr>
<td>NRBG</td>
<td>Non-deterministic Random Bit Generator</td>
</tr>
<tr>
<td>NVLAP</td>
<td>National Voluntary Laboratory Accreditation Program</td>
</tr>
<tr>
<td>RBG</td>
<td>Random Bit Generator</td>
</tr>
<tr>
<td>SP</td>
<td>NIST Special Publication</td>
</tr>
</tbody>
</table>
Appendix B—Glossary

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alphabet</td>
<td>A finite set of two or more symbols.</td>
</tr>
<tr>
<td>Alphabet size</td>
<td>See sample size.</td>
</tr>
<tr>
<td>Algorithm</td>
<td>A clearly specified mathematical process for computation; a set of rules that, if followed, will give a prescribed result.</td>
</tr>
<tr>
<td>Approved</td>
<td>FIPS-approved or NIST-Recommended.</td>
</tr>
<tr>
<td>Array</td>
<td>A fixed-length data structure that stores a collection of elements, where each element is identified by its integer index.</td>
</tr>
<tr>
<td>Assessment (of entropy)</td>
<td>An evaluation of the amount of entropy provided by a (digitized) noise source and/or the entropy source that employs it.</td>
</tr>
<tr>
<td>Biased</td>
<td>A value that is chosen from a sample space is said to be biased if one value is more likely to be chosen than another value. (Contrast with unbiased.)</td>
</tr>
<tr>
<td>Binary data (from a noise source)</td>
<td>Digitized and possibly post-processed output from a noise source that consists of a single bit; that is, each sampled output value is represented as either 0 or 1.</td>
</tr>
<tr>
<td>Bitstring</td>
<td>A bitstring is an ordered sequence of 0’s and 1’s. The leftmost bit is the most significant bit.</td>
</tr>
<tr>
<td>Collision</td>
<td>An instance of duplicate sample values occurring in a dataset.</td>
</tr>
<tr>
<td>Conditioning (of noise source output)</td>
<td>A method of processing the raw data to reduce bias and/or ensure that the entropy rate of the conditioned output is no less than some specified amount.</td>
</tr>
<tr>
<td>Confidence interval</td>
<td>An interval, ([low, high]), where the true value of a parameter (p) falls within that interval with a stated probability. E.g., a 95% confidence interval about an estimate for (p) yields values for (low) and (high) such that (low \leq p \leq high) with probability 0.95.</td>
</tr>
<tr>
<td>Continuous test</td>
<td>A type of health test performed within an entropy source on the output of its noise source in order to gain some level of assurance that the noise source is working correctly, prior to producing each output from the entropy source.</td>
</tr>
<tr>
<td>Consuming application (for an RBG)</td>
<td>An application that uses the output from an approved random bit generator.</td>
</tr>
<tr>
<td>Dataset</td>
<td>A sequence of sample values. (See Sample.)</td>
</tr>
</tbody>
</table>
Deterministic Random Bit Generator (DRBG)

An RBG that includes a DRBG mechanism and (at least initially) has access to a source of entropy input. The DRBG produces a sequence of bits from a secret initial value called a seed, along with other possible inputs. A DRBG is often called a Pseudorandom Number (or Bit) Generator.

Developer

The party that develops the entire entropy source or the noise source.

Dictionary

A dynamic-length data structure that stores a collection of elements or values, where a unique label identifies each element. The label can be any data type.

Digitization

The process of generating bits from the noise source.

DRBG mechanism

The portion of an RBG that includes the functions necessary to instantiate and uninstantiate the RBG, generate pseudorandom bits, (optionally) reseed the RBG and test the health of the DRBG mechanism. Approved DRBG mechanisms are specified in SP 800-90A.

Entropy

A measure of the disorder, randomness or variability in a closed system. Min-entropy is the measure used in this Recommendation.

Entropy rate

The rate at which a digitized noise source (or entropy source) provides entropy; it is computed as the assessed amount of entropy provided by a bitstring output from the source, divided by the total number of bits in the bitstring (yielding assessed bits of entropy per output bit). This will be a value between zero (no entropy) and one.

Entropy source

The combination of a noise source, health tests, and an optional conditioning component that produce random bitstrings to be used by an RBG.

Estimate

The estimated value of a parameter, as computed using an estimator.

Estimator

A technique for estimating the value of a parameter.

False positive

An erroneous acceptance of the hypothesis that a statistically significant event has been observed. This is also referred to as a type 1 error. When “health-testing” the components of a device, it often refers to a declaration that a component has malfunctioned – based on some statistical test(s) – despite the fact that the component was actually working correctly.
<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Health testing</td>
<td>Testing within an implementation immediately prior to or during normal operation to determine that the implementation continues to perform as implemented and as validated.</td>
</tr>
<tr>
<td>Independent</td>
<td>Two random variables X and Y are independent if they do not convey information about each other. Receiving information about X does not change the assessment of the probability distribution of Y (and vice versa).</td>
</tr>
<tr>
<td>Independent and Identically Distributed (IID)</td>
<td>A sequence of random variables for which each element of the sequence has the same probability distribution as the other values, and all values are mutually independent.</td>
</tr>
<tr>
<td>List</td>
<td>A dynamic-length data structure that stores a sequence of values, where each value is identified by its integer index.</td>
</tr>
<tr>
<td>Markov model</td>
<td>A model for a probability distribution where the probability that the i^{th} element of a sequence has a given value depends only on the values of the previous n elements of the sequence. The model is called an n^{th} order Markov model.</td>
</tr>
<tr>
<td>Min-entropy</td>
<td>The min-entropy (in bits) of a random variable X is the largest value m having the property that each observation of X provides at least m bits of information (i.e., the min-entropy of X is the greatest lower bound for the information content of potential observations of X). The min-entropy of a random variable is a lower bound on its entropy. The precise formulation for min-entropy is $(\log_2 \max p_i)$ for a discrete distribution having probabilities $p_1,...,p_k$. Min-entropy is often used as a worst-case measure of the unpredictability of a random variable.</td>
</tr>
<tr>
<td>Narrowest internal width</td>
<td>The maximum amount of information from the input that can affect the output. For example, if $f(x) = \text{SHA-1}(x) \</td>
</tr>
<tr>
<td>Noise source</td>
<td>The component of an entropy source that contains the non-deterministic, entropy-producing activity. (e.g., thermal noise or hard drive seek times)</td>
</tr>
<tr>
<td>Non-deterministic Random Bit Generator (NRBG)</td>
<td>An RBG that has access to an entropy source and (when working properly) produces outputs that have full entropy (see SP 800-90C). Also called a true random bit (or number) generator. (Contrast with a DRBG)</td>
</tr>
</tbody>
</table>
On-demand test
A type of health test that is available to be run whenever a user or a relying component requests it.

Output space
The set of all possible distinct bitstrings that may be obtained as samples from a digitized noise source.

P-value
The probability that the chosen test statistic will assume values that are equal to or more extreme than the observed test statistic value, assuming that the null hypothesis is true.

Predictor
A function that predicts the next value in a sequence, based on previously observed values in the sequence.

Probability distribution
A function that assigns a probability to each measurable subset of the possible outcomes of a random variable.

Probability model
A mathematical representation of a random phenomenon.

Pseudorandom
A deterministic process (or data produced by such a process) whose output values are effectively indistinguishable from those of a random process, as long as the internal states and internal actions of the process are unknown. For cryptographic purposes, “effectively indistinguishable” means “not within the computational limits established by the intended security strength.”

Random
A non-deterministic process (or data produced by such a process) whose output values follow some probability distribution. The term is sometimes (mis)used to imply that the probability distribution is uniform, but no uniformity assumption is made in this Recommendation.

Random Bit Generator (RBG)
A device or algorithm that outputs a random sequence that is effectively indistinguishable from statistically independent and unbiased bits. An RBG is classified as either a DRBG or an NRBG.

Raw data
Digitized and possibly post-processed output of the noise source.

Run (of output sequences)
A sequence of identical values.

Sample
An observation of the raw data. Common examples of output values obtained by sampling are single bits, single bytes, etc. (The term “sample” is often extended to denote a sequence of such observations; this Recommendation will refrain from that practice.)
Sample size

The number of possible distinct values that a sample can have. May also be called *alphabet size*.

Security boundary

A conceptual boundary that is used to assess the amount of entropy provided by the values output from an entropy source. The entropy assessment is performed under the assumption that any observer (including any adversary) is outside of that boundary.

Seed

A bitstring that is used as input to (initialize) an algorithm. In this Recommendation, the algorithm using a seed is a DRBG. The entropy provided by the seed must be sufficient to support the intended security strength of the DRBG.

Sequence

An ordered list of quantities.

Shall

The term used to indicate a requirement that needs to be fulfilled to claim conformance to this Recommendation. Note that *shall* may be coupled with *not* to become *shall not*.

Should

The term used to indicate an important recommendation. Ignoring the recommendation could result in undesirable results. Note that *should* may be coupled with *not* to become *should not*.

Start-up testing

A suite of health tests that are performed every time the entropy source is initialized or powered up. These tests are carried out on the noise source before any output is released from the entropy source.

###Submitter

The party that submits the entire entropy source and output from its components for validation. The submitter can be any entity that can provide validation information as required by this Recommendation (e.g., developer, designer, vendor or any organization).

###Testing laboratory

An accredited cryptographic security testing laboratory

Unbiased

A value that is chosen from a sample space is said to be unbiased if all potential values have the same probability of being chosen. (Contrast with biased.)
Appendix C—References

[1791]

Appendix D—Min-Entropy and Optimum Guessing Attack Cost

Suppose that an adversary wants to determine at least one of several secret values, where each secret value is independently chosen from a set of M possibilities, with probability distribution $P = \{p_1, p_2, \ldots, p_M\}$. Assume that these probabilities are sorted so that $p_1 \geq p_2 \geq \ldots \geq p_M$. Consider a guessing strategy aimed at successfully guessing as many secret values as possible. The adversary’s goal would be to minimize the expected number of guesses per successful recovery. Such a strategy would consist of guessing a maximum of k possibilities for a given secret value, moving on to a new secret value when either a guess is correct or k incorrect guesses for the current value have been made. In general, the optimum value of k can be anywhere in the range $1 \leq k \leq M$, depending on the probability distribution P. Note that when $k = M$, the M^{th} guess is considered a valid (though trivial) guess. Regardless of the value of k chosen, it is clear that the k guesses selected for a given secret value should be the k most likely possible values, in decreasing order of probability.

The expected work per success can be computed for this attack as follows. For $1 \leq j \leq k - 1$, the attacker will make exactly j guesses if the secret value is the jth most likely value, an event having probability p_j. The attacker will make exactly k guesses if the secret value is not any of the $k - 1$ most likely values, an event having probability $1 - \sum_{j=1}^{k-1} p_j$. Thus, the expected number of guesses for the attack is given by the following:
\[
p_1 + 2p_2 + \cdots + (k - 1)p_{k-1} + k \left(1 - \sum_{j=1}^{k} p_j\right).
\]

Since this attack will be successful if and only if the secret value is one of the \(k\) most likely possibilities, which is the case with probability \(\sum_{j=1}^{k} p_j\), the expected number of times the attack must be performed until the first success is the reciprocal of this probability. Multiplying this reciprocal by the expected number of guesses per attack gives the following as the expected work per success:

\[
W_k(P) = \frac{p_1 + 2p_2 + \cdots + (k - 1)p_{k-1} + k \left(1 - \sum_{j=1}^{k-1} p_j\right)}{\sum_{j=1}^{k} p_j}.
\]

It is not critical to determine the value \(k^*\) that minimizes \(W_k(P)\), since the min-entropy of \(P\) leads to an accurate approximation (and sometimes the exact value) of \(W_k(P)\). Stated more precisely, \(W_1(P) = \frac{1}{p_1}\) is an upper bound of \(W_k(P)\), and it can be shown that \(W_k(P) \geq \frac{1}{2p_1} + \frac{1}{2}\) for all \(k\) such that \(1 \leq k \leq M\). Since the min-entropy of \(P\) is \(-\log_2(p_1)\), these two bounds imply that the error between the min-entropy of \(P\) and \(\log_2(W_k(P))\) can be bounded as follows:

\[
0 \leq -\log_2(p_1) - \log_2(W_k(P)) \leq 1 - \log_2(p_1 + 1).
\]

Notice that since \(\frac{1}{M} \leq p_1 \leq 1\), the upper bound on the error approaches 0 as \(p_1 \to 1\), and alternatively, this bound approaches 1 as \(M \to \infty\) and \(p_1 \to \frac{1}{M}\). In other words, the min-entropy of \(P\) either corresponds to the exact expected work, measured in bits, needed to perform the optimum guessing attack or over-estimates this work by at most one bit.

In order to prove the claim that \(W_k(P) \geq \frac{1}{2p_1} + \frac{1}{2}\), for \(1 \leq k \leq M\), rewrite the expected work per success as

\[
W_k(P) = \frac{1 + (1 - p_1) + (1 - p_1 - p_2) + \cdots + (1 - p_1 - p_2 - \cdots - p_{k-1})}{p_1 + p_2 + \cdots + p_k}.
\]

Consider an alternative probability distribution on a set of \(M\) possibilities \(P' = \{p_1, p_1', \ldots, p_1, r, 0, \ldots, 0\}\), where \(p_1\) occurs \(t = \left\lfloor \frac{1}{p_1} \right\rfloor\) times and \(r = 1 - tp_1\). It is straightforward to see that \(W_k(P) \geq W_k(P')\), since each term in the numerator of \(W_k(P)\) is at least as large as the corresponding term in \(W_k(P')\), and the denominator of \(W_k(P')\) is at least as large as the denominator of \(W_k(P)\).

Now to show that \(W_k(P') \geq \frac{1}{2p_1} + \frac{1}{2}\). Based on the above formula for \(W_k(P)\), for \(1 \leq k \leq t + 1\), the numerator of \(W_k(P')\) can be written as
\[
\sum_{i=0}^{k-1} (1 - i p_1) = k - \frac{k(k - 1)}{2} p_1 = kp_1 \left(\frac{1}{p_1} - \frac{k - 1}{2} \right).
\]

Consider the following two cases where \(1 \leq k \leq t\) and \(k = t + 1\). These are the only cases to check, since if \(M > t + 1\), then \(W_k(P') = W_{t+1}(P')\) for \(k > t + 1\), because the remaining probabilities are all zero. Furthermore, \(r = 0\) if and only if \(\frac{1}{p_1}\) is an integer, and when this happens, only the first case needs to be addressed since \(W_{t+1}(P') = W_t(P')\).

For \(1 \leq k \leq t\), the denominator of \(W_k(P') = kp_1\). Then,

\[
W_k(P') = \frac{kp_1 \left(\frac{1}{p_1} - \frac{k-1}{2} \right)}{kp_1} = \frac{1}{p_1} - \frac{k - 1}{2},
\]

\[
\geq \frac{1}{p_1} - \frac{1}{2} \left(\left| \frac{1}{p_1} \right| - 1 \right),
\]

\[
\geq \frac{1}{p_1} - \frac{1}{2} \left(\frac{1}{p_1} - 1 \right),
\]

\[
\geq \frac{1}{2p_1} + \frac{1}{2}.
\]

For \(k = t + 1\), the denominator of \(W_k(P')\) is \(tp_1 + r = 1\). Let \(x = \frac{1}{p_1} - \left\lfloor \frac{1}{p_1} \right\rfloor\), so \(0 \leq x < 1\). This implies

\[
W_k(P') = kp_1 \left(\frac{1}{p_1} - \frac{k - 1}{2} \right) = \left(\left\lfloor \frac{1}{p_1} \right\rfloor + 1 \right) p_1 \left(\frac{1}{p_1} - \frac{1}{2} \left\lfloor \frac{1}{p_1} \right\rfloor \right),
\]

\[
= \left(\frac{1}{p_1} - x + 1 \right) \left(\frac{1}{2} + \frac{p_1 x}{2} \right),
\]

\[
= \frac{1}{2p_1} + \frac{1}{2} + \frac{p_1 x(1 - x)}{2},
\]

\[
\geq \frac{1}{2p_1} + \frac{1}{2}.
\]

Therefore, it has been shown that \(W_k(P) \geq W_k(P') \geq \frac{1}{2p_1} + \frac{1}{2}\) for \(1 \leq k \leq M\). Note that this lower bound is sharp, since \(W_k(P)\) achieves this value when \(P\) is a uniform distribution.

Appendix E—Post-processing Functions

This section provides the details of the allowed post-processing functions for a noise source.

Von Neumann’s method: This method produces independent unbiased random bits for a source that generates independent biased output bits. This method divides the sequence into pairs and applies the following mapping:
For a source that produces independent biased random bits \((s_1, s_2, \ldots) \), with \(\Pr(s_i = 0) = p \), and \(p \neq \frac{1}{2} \), the method extracts approximately \(np(1 - p) \) unbiased bits from \(n \) biased bits. Independent of the value of \(p \), the method throws away a pair of bits at least half of the time. It should be noted that the bias in the correlated sources might increase after applying the technique.

Linear filtering method: This method divides the sequence into non-overlapping blocks of \(w \) bits and applies a linear function to each block. Mathematically, the output of the \(j \)th block is calculated as \(f(s_{jw+1}, \ldots, s_{(j+1)w}) = c_1s_{jw+1} + \ldots + c_ws_{(j+1)w} \), where the \(c_i \) values are predetermined binary constants. A typical value of \(w \) may be between 16 and 64; this Recommendation does not put a restriction on the selection of the block size \(w \).

Length of runs method: This method outputs the length of the runs in \((s_1, s_2, \ldots) \), where the \(s_i \)'s are bits.

Appendix F—The Narrowest Internal Width

The narrowest internal width of a conditioning component is the maximum amount of information from the input that can affect the output. It can also be considered as the logarithm of an upper bound on the number of distinct outputs, based on the size of the internal state.

Example: Let \(F(X) \) be a function defined as follows:

1. Let \(h_1 \) be the output of SHA256\((X)\) truncated to 64 bits.
2. Return SHA256\((h_1 || h_1)\) truncated to 128 bits.

This function takes an arbitrarily-long input \(X \) and will yield 128-bit output value, but its internal width is only 64 bits, because the value of the output only depends on the value of 64-bit \(h_1 \).

Appendix G—CBC-MAC Specification

A conditioning component may be based on the use of CBC-MAC using a 128-bit **approved** block-cipher algorithm. This CBC-MAC construction **shall not** be used for any other purpose than as the algorithm for a conditioning component, as specified in Section 3.1.5.1.1. The following notation is used for the construction.

Let \(E(\text{Key}, \text{input_string}) \) represent the **approved** encryption algorithm, with a \(\text{Key} \) and an \(\text{input_string} \) as input parameters. The length of the \(\text{input_string} \) **shall** be an integer multiple of the output length \(n \) of the block-cipher algorithm and **shall** always be the same length (i.e., variable length strings **shall not** be used as input).

Let \(n \) be the length (in bits) of the output block of the **approved** block cipher algorithm, and let \(w \)
be the number of n-bit blocks in the \textit{input_string}.

Let \textit{output_string} be the n-bit output of CBC-MAC.

\textbf{CBC-MAC:}

\textbf{Input:} bitstring \textit{Key}, \textit{input_string}.

\textbf{Output:} bitstring \textit{output_string}.

\textbf{Process:}

1. Let $s_0, s_1, \ldots, s_{w-1}$ be the sequence of blocks formed by dividing \textit{input_string} into n-bit blocks; i.e., each s_i consists of n bits.

2. $V = 0$.

3. For $i = 0$ to $w-1$

 $V = E(\textit{Key}, V \oplus s_i)$.

4. Output V as the CBC-MAC output.

\begin{table}[h]
\centering
\begin{tabular}{|c|c|}
\hline
\textbf{Appendix H—Different Strategies for Entropy Estimation} & \\
\hline
Each of the estimation methods presented in Section 6 follows one of two approaches to estimating min-entropy. The first approach is based on entropic statistics, first described for IID data in [HD12], and later applied to non-IID data [HD12]. The most common value test estimates entropy by bounding the probability of the most-common output. In the IID case, the collision and compression estimators in Section 6.3 provide a lower bound on min-entropy by fitting the distribution to a near-uniform distribution, where one probability is highest, and the rest are all equal. Empirically, these estimators appear to be conservative for independent, but not necessarily identically distributed samples, as well. The final estimator proposed in [HD12] and specified in Section 6.3.3 constructs a first-order Markov model and estimates entropy from the most-probable sequence. \\

\hline
\textbf{H.1 Entropic Statistics} & \\
\hline
The entropic statistics presented in [HD12], each designed to compute a different statistic on the samples, provide information about the structure of the data: collision, collection, compression, and Markov. While the estimators (except for the Markov) were originally designed for application to independent outputs, the tests have performed well when applied to data with dependencies. Given empirical evidence and the confidence level of the tests, their application to non-IID data will produce valid, although conservative, entropy estimates. \\

The estimators assume that a probability distribution describes the output of a random noise source, but that the probability distribution is unknown. The goal of each estimator is to reveal information about the unknown distribution, based on a statistical measurement. \\

The collision and compression estimators in Section 6 each solve an equation for an unknown parameter, where the equation is different for each estimator. These equations come from the target statistic’s expected value using a near-uniform distribution, which provides a lower bound for min-entropy. A near-uniform distribution is an instance of a one-parameter family of probability distributions parameterized by p, P_p: \\
\end{tabular}
\end{table}
\[P_p(i) = \begin{cases} \frac{p}{k-1}, & \text{if } i = 0 \\ 1 - \frac{p}{k-1}, & \text{otherwise} \end{cases} \]

where \(k \) is the number of states in the output space, and \(p \leq \frac{1-p}{k-1} \). In other words, one output state has the maximum probability, and the remaining output states are equally likely. For more information, see [HD12].

H.1.1 Approximation of \(F(1/z) \)

The function \(F(1/z) \), used by the collision estimate (Section 6.3.2), can be approximated by the following continued fraction\(^9\):

\[
\frac{1}{z + \frac{-n}{1 + \frac{1}{z + \frac{1-n}{1 + \frac{2-n}{z + \frac{3}{1 + \ldots}}}}}}
\]

H.2 Predictors

Shannon first published the relationship between the entropy and predictability of a sequence in 1951 [Shan51]. Predictors construct models from previous observations, which are used to predict the next value in a sequence. The prediction-based estimation methods in this Recommendation work in a similar way, but attempt to find bounds on the min-entropy of integer sequences generated by an unknown process (rather than \(N \)-gram entropy of English text, as in [Shan51]).

The predictor approach uses two metrics to produce an estimate. The first metric is based on the global performance of the predictor, called accuracy in machine-learning literature. Essentially, a predictor captures the proportion of guesses that were correct. This approximates how well one can expect a predictor to guess the next output from a noise source, based on the results over a long sequence of guesses. The second metric is based on the greatest number of correct predictions in a row, which is called the local entropy estimate. This metric is useful for detecting cases where a noise source falls into a highly predictable state for some time, but the predictor may not perform well on long sequences. The calculations for the local entropy estimate come from the probability theory of runs and recurrent events [Fel50]. For more information about min-entropy estimation using predictors, see [Kel15].