

NISTIR 8060 (Final Public Draft) 1

 2

Guidelines for the Creation of 3

Interoperable Software Identification 4

(SWID) Tags 5

 6

David Waltermire 7

Brant A. Cheikes 8

Larry Feldman 9

Greg Witte 10

 11

 12

 13

 14

 15

 16

NISTIR 8060 (Final Public Draft) 17

 18

Guidelines for the Creation of 19

Interoperable Software Identification 20

(SWID) Tags 21

 22

David Waltermire 23

Computer Security Division 24

Information Technology Laboratory 25

 26

Brant A. Cheikes 27

The MITRE Corporation 28

Bedford, Massachusetts 29

 30

Larry Feldman 31

Greg Witte 32

G2, Inc. 33

Annapolis Junction, Maryland 34

 35

December 2015 36

 37

 38

 39
 40
 41

U.S. Department of Commerce 42
Penny Pritzker, Secretary 43

 44
National Institute of Standards and Technology 45

Willie May, Under Secretary of Commerce for Standards and Technology and Director 46

ii

National Institute of Standards and Technology Internal Report 8060 47
103 pages (December 2015) 48

Certain commercial entities, equipment, or materials may be identified in this document in order to describe an 49
experimental procedure or concept adequately. Such identification is not intended to imply recommendation or 50
endorsement by NIST, nor is it intended to imply that the entities, materials, or equipment are necessarily the best 51
available for the purpose. 52

There may be references in this publication to other publications currently under development by NIST in 53
accordance with its assigned statutory responsibilities. The information in this publication, including concepts and 54
methodologies, may be used by Federal agencies even before the completion of such companion publications. Thus, 55
until each publication is completed, current requirements, guidelines, and procedures, where they exist, remain 56
operative. For planning and transition purposes, Federal agencies may wish to closely follow the development of 57
these new publications by NIST. 58

Organizations are encouraged to review all draft publications during public comment periods and provide feedback 59
to NIST. All NIST Computer Security Division publications, other than the ones noted above, are available at 60
http://csrc.nist.gov/publications. 61

Public comment period: December 17, 2015 through January 8, 2016 62

National Institute of Standards and Technology 63
Attn: Computer Security Division, Information Technology Laboratory 64

100 Bureau Drive (Mail Stop 8930) Gaithersburg, MD 20899-8930 65
Email: nistir8060-comments@nist.gov 66

 67

http://csrc.nist.gov/publications

iii

Reports on Computer Systems Technology 68

The Information Technology Laboratory (ITL) at the National Institute of Standards and 69

Technology (NIST) promotes the U.S. economy and public welfare by providing technical 70

leadership for the Nationôs measurement and standards infrastructure. ITL develops tests, test 71

methods, reference data, proof of concept implementations, and technical analyses to advance 72

the development and productive use of information technology. ITLôs responsibilities include the 73

development of management, administrative, technical, and physical standards and guidelines for 74

the cost-effective security and privacy of other than national security-related information in 75

Federal information systems. 76

Abstract 77

This report provides an overview of the capabilities and usage of software identification (SWID) 78

tags as part of a comprehensive software lifecycle. As instantiated in the International 79

Organization for Standardization /International Electrotechnical Commission 19770-2 standard, 80

SWID tags support numerous applications for software asset management and information 81

security management. This report introduces SWID tags in an operational context, provides 82

guidelines for the creation of interoperable SWID tags, and highlights key usage scenarios for 83

which SWID tags are applicable. 84

Keywords 85

software; software asset management; software identification; SWID; software identification tag 86

iv

Acknowledgments 87

The authors would like to thank Harold Booth, Bob Byers, and Alex J. Nelson of the National 88

Institute of Standards and Technology (NIST); Steve Klos of TagVault.org and 1E; Charles 89

Schmidt of The MITRE Corporation; Piotr Godowski of IBM, and Hopeton Smalling of OQI 90

Cares, Inc. for their reviews of and contributions of feedback to this report. 91

Note to Reviewers 92

This document represents a final discussion draft of this report. The authors have conducted a 93

number of iterations of this report to further develop the concepts and guidelines contained 94

herein based on public feedback. This is the final iteration of public review before finalizing this 95

initial revision of the report. 96

For this final draft, reviewers should focus their reviews on the overall report. Detailed review of 97

all the guidelines in Sections 5 and 6 is also requested to ensure that the guidelines appropriately 98

balance the needs of tag providers and consumers. 99

Trademark Information 100

Any mention of commercial products or reference to commercial organizations is for information 101

only; it does not imply recommendation or endorsement by NIST, nor does it imply that the 102

products mentioned are necessarily the best available for the purpose. 103

All names are trademarks or registered trademarks of their respective owners. 104

Document Conventions 105

This report provides both informative and normative guidance supporting the use of SWID tags. 106

The key words ñMUSTò, ñMUST NOTò, ñREQUIREDò, ñSHALLò, ñSHALL NOTò, 107

ñSHOULDò, ñSHOULD NOTò, ñRECOMMENDEDò, ñMAYò, and ñOPTIONALò in this 108

report are to be interpreted as described in Request for Comment (RFC) 2119. When these words 109

appear in regular case, such as ñshouldò or ñmayò, they are not intended to be interpreted as RFC 110

2119 key words. 111

Some of the requirements and conventions used in this report reference Extensible Markup 112

Language (XML) content. These references come in two forms, inline and indented. An example 113

of an inline reference is: A patch tag is differentiated by the fact that the value of the @patch 114

attribute within the <SoftwareIdentity > element is ñtrue ò. 115

In this example, the notation <SoftwareIdentity > can be replaced by the more verbose 116

equivalent ñthe XML element whose qualified name is SoftwareIdentity ò. 117

The general convention used when describing XML attributes within this report is to reference 118

the attribute as well as its associated element, employing the general form ñ@attributeName 119

for the <prefix:localName >ò. Attribute values are indicated in quotations, such as the 120

example ñtrue ò above. 121

v

In cases where any valid value may be provided for an XML attribute, this report specifies 122

ñ<any>ò as the attribute value. 123

This report defines a number of new XML attributes that are extensions to the SWID 124

specification. These extension attributes are defined in a new XML namespace 125

http://csrc.nist.gov/ns/swid/2015-extensions/1.0. These new attributes will be assigned the prefix 126

ñn8060ò mapped to this namespace. In guidelines and examples, extension attributes will be 127

provided in the form ñ@n8060 :attributeName ò. The schema for these extensions can be 128

found in Appendix A. 129

Indented references are intended to represent the form of actual XML content. Indented 130

references represent literal content by the use of a fixed-length font, and parametric (freely 131

replaceable) content by the use of an italic font. Square brackets ñ[]ò are used to designate 132

optional content. 133

Both inline and indented forms use qualified names to refer to specific XML elements. A 134

qualified name associates a named element with a namespace. The namespace identifies the 135

XML model, and the XML schema is a definition and implementation of that model. A qualified 136

name declares this schema to element association using the format ñprefix:element-nameò. The 137

association of prefix to namespace is defined in the metadata of an XML document and varies 138

from document to document. 139

Many portions of this document include cross-references to other sections. Such references are 140

often indicated by the use of the ñsection symbolò (§) or to multiple sections (§§).141

http://csrc.nist.gov/ns/swid/2015-extensions/1.0

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

 vi

Table of Contents 142

1 Introduction .. 1 143

1.1 Problem Statement ... 1 144

1.2 SWID Tag Benefits ... 2 145

1.3 Purpose and Audience .. 4 146

1.4 Section Summary .. 5 147

1.5 Report Structure.. 6 148

2 SWID Tag Concepts ... 7 149

2.1 SWID Tag Types and the Software Lifecycle .. 7 150

2.1.1 Corpus Tags ... 8 151

2.1.2 Primary Tags .. 9 152

2.1.3 Patch Tags ... 10 153

2.1.4 Supplemental Tags... 12 154

2.2 SWID Tag Creation ... 13 155

2.3 SWID Tag Placement ... 13 156

2.3.1 Placement During Installation ... 13 157

2.3.2 SWID Tag Generation from Existing Package Management Data 15 158

2.3.3 Placement in a Repository of SWID Tags .. 16 159

2.4 Summary .. 16 160

3 SWID Tag Overview ... 18 161

3.1 SWID Tag Data Elements ... 18 162

3.1.1 <SoftwareIdentity>: The Root of a SWID Tag 18 163

3.1.2 <SoftwareIdentity> Sub-Element: <Entity> ... 21 164

3.1.3 <SoftwareIdentity> Sub-Element: <Evidence> 23 165

3.1.4 <SoftwareIdentity> Sub-Element: <Link> ... 24 166

3.1.5 <SoftwareIdentity> Sub-Element: <Meta> .. 26 167

3.1.6 <SoftwareIdentity> Sub-Element: <Payload> 27 168

3.2 Authenticating SWID Tags .. 28 169

3.3 A Complete Primary Tag Example .. 29 170

3.4 Summary .. 30 171

4 Implementation Guidance for All Tag Creators ... 32 172

4.1 Limits on Scope of Guidelines .. 32 173

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

 vii

4.2 Authoritative and Non-Authoritative Tag Creators .. 33 174

4.3 Implementing <SoftwareIdentity> Elements .. 33 175

4.4 Implementing <Entity> Elements .. 34 176

4.4.1 Providing Detailed Information about Entities 35 177

4.4.2 Preventing Complex Entity Specifications .. 35 178

4.4.3 Distinguishing Between Authoritative and Non-Authoritative Tags 36 179

4.4.4 Furnishing Information about the Software Creator 37 180

4.5 Implementing <Link> Elements ... 37 181

4.5.1 Linking a Source Tag to a Known Target Tag 37 182

4.5.2 Linking a Tag to a Collection of Tags ... 38 183

4.6 Implementing <Payload> and <Evidence> Elements 42 184

4.6.1 Providing Sufficient File Information ... 42 185

4.6.2 Hash Function Selection ... 43 186

4.6.3 Handling of Path Separators and Environment Variables 45 187

4.7 Providing Attribute Values in Multiple Languages ... 46 188

4.7.1 Specifying Product Names in Multiple Languages 47 189

4.7.2 Specifying <Entity> Elements in Multiple Languages 48 190

4.7.3 Specifying <Payload> Elements in Multiple Languages 49 191

4.8 Updating Tags... 50 192

4.9 Summary .. 51 193

5 Implementation Guidance Specific to Tag Type .. 52 194

5.1 Implementing Corpus Tags ... 52 195

5.1.1 Setting the <SoftwareIdentity> @corpus Attribute 52 196

5.1.2 Specifying the Version and Version Scheme in Corpus Tags 52 197

5.1.3 Specifying the Corpus Tag Payload ... 54 198

5.2 Implementing Primary Tags .. 54 199

5.2.1 Setting the <SoftwareIdentity> Tag Type Indicator Attributes 54 200

5.2.2 Specifying the Version and Version Scheme in Primary Tags 54 201

5.2.3 Specifying Primary Tag Payload and Evidence 55 202

5.2.4 Specifying Product Metadata Needed for Targeted Search 57 203

5.3 Implementing Patch Tags ... 59 204

5.3.1 Setting the <SoftwareIdentity> @patch Attribute 59 205

5.3.2 Linking Patch Tags to Related Tags ... 59 206

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

 viii

5.3.3 Specifying Patch Tag Payload and Evidence 59 207

5.4 Implementing Supplemental Tags... 60 208

5.4.1 Setting the <SoftwareIdentity> @supplemental Attribute 60 209

5.4.2 Linking Supplemental Tags to Other Tags ... 61 210

5.4.3 Establishing Precedence of Information ... 61 211

5.5 Summary .. 62 212

6 SWID Tag Usage Scenarios... 63 213

6.1 Minimizing Exposure to Publicly-Disclosed Software Vulnerabilities 63 214

6.1.1 US 1 ï Continuously Monitoring Software Inventory 63 215

6.1.2 US 2 - Ensuring that Products Are Properly Patched 68 216

6.1.3 US 3 - Correlating Inventory Data with Vulnerability Data to Identify 217

Vulnerable Endpoints .. 69 218

6.1.4 US 4 - Discovering Vulnerabilities Due to Orphaned Software 219

Components .. 71 220

6.2 Enforcing Organizational Software Policies .. 72 221

6.2.1 US 5 - Preventing Installation of Unauthorized or Corrupted Software 222

Products .. 73 223

6.2.2 US 6 - Discovering Corrupted Software and Preventing Its Execution 74 224

6.3 US 7 - Preventing Potentially Vulnerable Endpoints from Connecting to 225

Network Resources ... 75 226

6.4 Association of Usage Scenarios with Guidelines .. 76 227

List of Appendices 228

Appendix Að SWID Extension Schema .. 80 229

Appendix Bð Acronyms .. 82 230

Appendix Cð References .. 84 231

Appendix Dð Change Log ... 86 232

List of Figures 233

Figure 1: SWID Tags and the Software Lifecycle .. 8 234

Figure 2: Primary Tag Relationships ... 10 235

Figure 3: Patch Tag Relationships .. 11 236

Figure 4: Supplemental Tag Relations .. 12 237

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

 ix

 238

 List of Tables 239

Table 1: How Tag Types Are Indicated ... 20 240

Table 2: <Link> Relations .. 25 241

Table 3: Allowed Values of @versionScheme ... 53 242

Table 4: Relationship of Guidelines to Usage Scenarios... 78 243

244

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

 1

1 Introduction 245

The International Organization for Standardization (ISO) and the International Electrotechnical 246

Commission (IEC) has published ISO/IEC 19770-2, an international standard for software 247

identification tags, also referred to as SWID tags. A SWID tag is a structured set of data elements 248

that identify and describe a software product. The first version of the standard, ISO/IEC 249

19770-2:2009 [ISO/IEC 19770-2:2009], was published in November 2009. A significantly 250

revised version of the standard, ISO/IEC 19770-2:2015, was published in October 2015, and is 251

referenced herein as the SWID specification. 252

This report provides an overview of the capabilities and usage of SWID tags defined by the 253

ISO/IEC 19770-2:2015 standard. Additionally, this report describes the use of SWID tags as part 254

of comprehensive software asset management lifecycles and cybersecurity procedures. Section 255

1.1 discusses the software asset management and cybersecurity problems that motivated the 256

development of SWID tags. Section 1.2 highlights the stakeholder benefits that can be gained as 257

SWID tags become more widely produced and consumed within the software marketplace. 258

Section 1.3 describes the purpose and target audiences of this report. Section 1.4 summarizes this 259

sectionôs key points, and Section 1.5 describes how the rest of this report is organized. 260

1.1 Problem Statement 261

Software is part of the critical infrastructure for the modern world. Enterprises and individuals 262

routinely acquire software products and deploy them on the physical and/or virtual computing 263

devices they own or operate. ISO/IEC 19770-5 [ISO/IEC 19770-5:2013], a companion standard 264

to the SWID specification, defines software asset management (SAM) as ñcontrol and protection 265

of software and related assets within an organization, and control and protection of information 266

about related assets which are needed in order to control and protect software assets.ò A core 267

SAM process is software inventory managementðthe process of building and maintaining an 268

accurate and complete inventory of all software products deployed on all of the devices under an 269

organizationôs or individualôs operational control. 270

Accurate software inventories of enterprise-managed devices are needed to support higher-level 271

business, information technology, and cybersecurity functions. For example, enterprises need to 272

know how many copies of a given product are installed in order to ensure compliance with 273

software license agreements. To ensure they are not paying for unneeded licenses, enterprises 274

also need to know where specific copies are installed and whether they are in active use. As 275

another example, operations personnel need accurate and complete software inventories to 276

ensure that all deployed software assets are authorized, appropriately patched, free of known 277

exploitable weaknesses, and configured according to their organizationsô security policies. 278

Organizations may also use software inventory information to plan software investments and 279

resources needed to support upgrades to and replacement of legacy systems. 280

Effective software inventory management depends on the ability to discover, identify, and 281

contextualize software products installed on enterprise-managed devices. Software discovery 282

processes analyze observable states of a managed device to detect and enumerate discrete units 283

of installed software. Discovery is technically challenging due to the enormous variation across 284

the software industry in what it means to be a unit of software. For example, a single unit of 285

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

 2

software may consist of a combination of executable files, data files, configuration files, library 286

files, and so forth. A single unit of software may also include supporting software units which 287

may be independently installed and executed, as well as changes to the underlying operating 288

environment, such as the addition of device drivers and entries in operating-system maintained 289

tables and databases. Discovery processes need to be able to handle all these sources of variation 290

while avoiding ñfalse positivesò (i.e., erroneous claims that a unit of software is present) as well 291

as ñfalse negativesò (i.e., failures to discover a unit of software that is actually present). 292

Once the discrete units of software have been enumerated on a device, software identification 293

processes assign identifying labels to those units. These labels are used in various contexts to 294

refer to the products, report their presence, and correlate with other sources of information. A 295

key requirement of the labeling process is that when the same unit of software is discovered on 296

different devices, it must be assigned the same label. Identification is technically challenging 297

because the identifying labels typically are not physically part of the software units and cannot 298

be discovered in the same manner as the software units. Instead, the labels are assigned using 299

inferential techniques based on observable features that vary widely by software provider, 300

operating environment, and device. These inferential techniques may be inaccurate, unreliable, 301

and/or proprietary. 302

Assuming software units can be discovered and identified, software contextualization processes 303

associate the identifying label with other sources of enriching information. For example, the 304

label of a software unit may be used to collect key descriptive characteristics such as the 305

software unitôs exact version, license keys, patch level, associated files in device storage areas, 306

and associated configuration settings. As another example, the assigned software identifier may 307

also be used to search for related patches, upgrades, vulnerabilities and remedies, and 308

configuration checklists. Contextualization is technically challenging to the extent that it depends 309

on widespread agreement on and dissemination of the identifying labels to be assigned to units of 310

software. 311

The SWID tag standard was developed to help overcome the technical challenges associated 312

with software discovery, identification, and contextualization, and thereby enhance the accuracy 313

and reliability of software asset management processes. SWID tags aid discovery by furnishing a 314

standardized indicator of a software productôs presence on a device. Tags aid identification by 315

including a consistent label for a product within its tag. Finally, tags aid contextualization by 316

allowing a wide variety of related product details to be supplied, including the productôs full 317

name and version. 318

1.2 SWID Tag Benefits 319

SWID tags offer benefits to creators of software products as well as those who acquire and use 320

those software products. The SWID specification identifies these stakeholders as: 321

¶ Tag producers: Organizations and entities that create SWID tags for use by others in the 322

market. Ideally, the organizations involved in creating, licensing, and/or distributing 323

software products will also create the tags that accompany their products. This is because 324

these organizations are best able to ensure that the tags contain correct, complete, and 325

normalized data. In other cases, tags may be produced and distributed by other entities, 326

including third parties and through the use of automated tools. 327

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

 3

¶ Tag consumers: Organizations and entities that use information contained in SWID tags 328

to support higher-level, software-related business and cybersecurity functions. Categories 329

of tag consumers include software consumers, inventory/discovery tools, inventory-based 330

cybersecurity tool providers (e.g., providers of software vulnerability management 331

products, which rely on accurate inventory information to support accurate vulnerability 332

assessment), and organizations that use these tools. 333

The implementation of SWID tags supports these stakeholders throughout the entire software 334

lifecycleðfrom software creation and release through software installation, management, and 335

de-installation. As more software creators also become tag producers, by releasing their products 336

with SWID tags, more consumers of software products are enabled to consume the associated 337

tags. This gives rise to a ñvirtuous cycleò where all stakeholders gain a variety of benefits 338

including the ability to: 339

¶ Consistently and accurately identify software products that need to be managed for any 340

purpose, such as inventory, licensing, cybersecurity, or the management of software and 341

software dependencies. 342

¶ Use stable software identifiers to report changes to a deviceôs software load as changes 343

occur when software is installed, patched, upgraded, and removed. 344

¶ Exchange software information between software producers and consumers in a 345

standardized format regardless of software creator, platform, or management tool. 346

¶ Identify and manage software products equally well at any level of abstraction, regardless 347

of whether a product consists of a single application or one or more groups or bundles. 348

¶ Correlate information about installed software with other information including list(s) of 349

authorized software, related patches, configuration settings, security policies, and 350

advisories. 351

¶ Automatically track and manage software license compliance and usage by combining 352

information within a SWID tag with independently-collected software entitlement data. 353

¶ Aggregate software asset information for deployed software across an enterprise, 354

providing the organization with knowledge of what software is deployed on specific 355

devices. 356

¶ Record details about the deployed footprint of installed products on devices, such as the 357

list of supporting software components, executable and data files, system processes, and 358

generic resources that may be included in the installation (e.g., device drivers, registry 359

settings, accounts). 360

¶ Identify all organizational entities associated with the installation, licensing, maintenance, 361

and management of a software product on an ongoing basis. This identification includes 362

entities external to the software consumer (e.g., software creators, software licensors, 363

packagers, and distributors) as well as those internal to the software consumerôs 364

organization. 365

¶ Through the optional use of digital signatures, validate that information within a tag 366

comes from a known source and has not been corrupted. 367

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

 4

1.3 Purpose and Audience 368

This report has three purposes. First, it provides a high-level description of SWID tags in order to 369

increase familiarity with the standard. Second, it provides tag implementation guidelines that 370

supplement the SWID tag specification. Lastly, it presents a set of operational usage scenarios, 371

which illustrate how SWID tags conforming to these guidelines can be used to achieve a variety 372

of cybersecurity goals. By following the guidelines in this report, tag producers can have 373

confidence they are providing all the necessary data, with the requisite data quality, to support 374

the operational goals of each tag usage scenario. Additionally, tag consumers can have 375

confidence that the tags they are using adequately support each tag usage scenario. 376

This report addresses four distinct audiences. The first audience is software providers, the 377

individuals and organizations that develop, license, and/or distribute commercial, open source, 378

and custom software products, to include software developed solely for in-house use. This report 379

helps providers understand the problems addressed by SWID tags, why providersô participation 380

is essential to solving those problems, and how providers may produce and distribute tags that 381

meet the needs of a wide range of usage scenarios. 382

The second audience is providers of software build, packaging, and installation tools, the 383

individuals and organizations that develop tools used by software providers to build, package, 384

release, and support installation of software. These tools provide much of the information that is 385

needed to create SWID tags. If these tools generate SWID tags as part of their normal functions, 386

this saves software providers from needing to take any specialized actions to produce SWID 387

tags. This makes SWID tag production automatic for any software release managed by the tool, 388

increasing the availability of SWID tags for related products. This is critical for ensuring that 389

SWID tags are provided as part of all commercial and open source software releases. 390

Furthermore, installation tools can support consistent management of installed tags on devices 391

during software installation, upgrade, patch, and removal processes. This report offers guidance 392

on the information that needs to be included in a SWID tag to ensure that tags generated by these 393

tools support SWID tag usage scenarios required by software consumers. 394

The third audience is providers of inventory-based products and services, the individuals and 395

organizations that develop tools for discovering, monitoring, and managing software assets for 396

any reason, including securing enterprise networks using standardized inventory information. 397

This audience needs consistency in the content and interpretation of data in SWID tags collected 398

from computing devices to make full use of this information. This report offers guidance to 399

software providers on how to consistently implement tags to support SWID tag usage scenarios. 400

The degree of consistency supported by this guidance helps inventory-based product providers to 401

use tag data to materially enhance the quality and coverage of software information collected and 402

utilized by their products. 403

The fourth audience is software consumers, the individuals and organizations that install and use 404

commercial, open source, and/or in-house developed software products, and inventory-based 405

products and services. This report helps software consumers understand the benefits of software 406

products that are delivered with SWID tags, and why they should encourage software providers 407

to deliver products with SWID tags that meet their anticipated usage scenarios. The guidance 408

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

 5

provided in this report to software providers also ensures that provided tags are useful in meeting 409

the usage scenarios required by software consumers. 410

Through the definition of a set of usage scenarios, this report identifies how the goals of these 411

four audiences are interrelated. Consumers are trying to cope with software management and 412

cybersecurity challenges that require accurate software inventory. They want to address these 413

challenges in a way that promotes a low total cost of ownership for the software they manage. 414

Consumers need to understand how SWID tags can help them, need providers to supply high-415

quality tags, and need implementers of inventory-based tools to collect and utilize tags. Providers 416

need to recognize that adding tags to their products will make their products more useful and 417

more manageable, and also need this recognition to be reinforced by consumer demand for tag 418

support. Software build and installation tool providers can assist software providers with 419

producing tags for software releases and to manage tags as part of software installation 420

processes. Inventory-based tool implementers are uniquely positioned to recognize how tags can 421

make their products more reliable and effective, and to work constructively with both consumers 422

and providers to promote software tagging practices. 423

1.4 Section Summary 424

The following are the key points of this section: 425

¶ The ISO/IEC 19770-2:2015 international standard specifies the data format for SWID 426

tags described by this report. 427

¶ SWID tags were developed to help enterprises meet the need for accurate and complete 428

software inventories to support higher-level business and cybersecurity functions. 429

¶ SWID tags provide benefits to organizations that create and use tags. 430

¶ Four audiences have interrelated goals pertaining to SWID tags and tagging practices: 431

o Software providers may want to increase the manageability of their products for 432

their customers. To justify investing the resources necessary to become tag 433

providers, they need consumers to send clear signals that they value product 434

manageability as much as features, functions, and usability. 435

o Providers of software build, packaging, and installation tools may want to 436

support SWID tags in their tools. This support can assist software providers that 437

use their tools with generating tags during product build and release processes. 438

Additionally, these tools can support the management of installed tags on devices 439

during software installation, upgrade, patch, and removal processes. They need 440

clear guidance on what information needs to be included in a SWID tag to ensure 441

that they generate useful tags for software consumers. 442

o Providers of inventory-based products and services may want to use SWID tags 443

as their primary method for identifying software. They need more tags to become 444

available to make their specialized tools more reliable and effective based on tag 445

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

 6

data. They act as software providers as well as software consumers, and thus have 446

the needs and goals of both audiences. 447

o Software consumers are trying to cope with the challenges of maintaining an 448

accurate software inventory and addressing software-related management and 449

cybersecurity issues. They need software providers to supply tags along with their 450

products as a common practice. 451

¶ This report seeks to raise awareness of the SWID tag standard, promote understanding of 452

the business and cybersecurity benefits that may be obtained through increased adoption 453

of software tagging standards and practices, and provide detailed guidance to both 454

producers and consumers of SWID tags to promote consistency and interoperability. 455

1.5 Report Structure 456

The remainder of this report is organized into the following sections and appendices: 457

¶ Section 2 reviews key SWID tag concepts that are helpful for understanding the different 458

types of tags, how tags are created, and how tags are made available for use. This section 459

will be of interest to all audiences. 460

¶ Section 3 presents a high-level overview of the SWID tag standard. This section will be 461

of interest to all audiences, as it explains what a SWID tag is and how a tag encodes a 462

variety of identifying and descriptive data elements about a software product. 463

¶ Section 4 provides implementation guidelines that address common issues related to tag 464

deployment and processing on information systems. These guidelines are intended to be 465

broadly applicable to common IT usage scenarios that are relevant to both public and 466

private sector organizations. 467

¶ Section 5 provides implementation guidelines for specific types of tags. 468

¶ Section 6 presents usage scenarios for software asset management and software integrity 469

management. These are not intended to represent an exhaustive or conclusive list of 470

possible SWID applications; they provide informative examples regarding the use of 471

SWID tags based on the SWID specification and guidance in this report to address 472

various organizational needs. 473

¶ Appendix A provides the XML schema for the extensions defined in this report. 474

¶ Appendix B presents a list of acronyms used in this report. 475

¶ Appendix C provides the references for the report. 476

¶ Appendix D provides the change log for the report. 477

 478

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

 7

2 SWID Tag Concepts 479

A SWID tag is a standardized XML format for a set of data elements that identify and describe a 480

software product. When a software product is installed on a computing device, one or more 481

SWID tags associated with that product can be installed or otherwise become discoverable on 482

that device. When a product is uninstalled from a device, all associated tags are expected to be 483

removed.1 When software is upgraded, any SWID tags representing the old software version are 484

expected to be replaced with one or more SWID tags for the newer version. In this way, the 485

presence of a tag on a device serves as evidence of the presence of the related versioned software 486

product on that device. The SWID specification defines these behaviors and related behaviors 487

associated with software licensing, patching, and upgrading. This report uses the term tagged 488

software product (or, simply, tagged product) to refer to a software product that is installed on a 489

device along with one or more discoverable tags describing that product. 490

This section is intended to provide a general understanding of basic SWID tag concepts. The 491

remainder of this section is organized as follows. Section 2.1 describes the four types of SWID 492

tags and the distinct roles they play at key points in the software lifecycle. Section 2.2 discusses 493

common methods for creating tags. Section 2.3 discusses expectations regarding where SWID 494

tags can be placed after they are created. Finally, Section 2.4 concludes with a summary of key 495

points from this section. 496

2.1 SWID Tag Types and the Software Lifecycle 497

The SWID specification defines four types of SWID tags: corpus, primary, patch, and 498

supplemental. Corpus, primary, and patch tags have similar functions in that they describe the 499

existence and/or presence of different types of software, and, potentially, different states of 500

software products. These three tag types come into play at different points in the software 501

lifecycle, and support software management processes that depend on the ability to accurately 502

determine where each software product is in its lifecycle. Figure 1 illustrates the steps in the 503

software lifecycle, the relationship among those lifecycle events, supported by the four types of 504

SWID tags, as follows: 505

¶ Software Deployment. Before the software product is installed (or pre-installation), and 506

while the product is being deployed, a corpus tag provides information about the 507

installation files and distribution media (e.g., CD/DVD, distribution package). 508

¶ Software Installation. A primary tag will be installed with the software product (or 509

subsequently created) to uniquely identify and describe the software product. 510

Supplemental tags are created to augment primary tags with additional site-specific or 511

extended information. Patch tags provide information about software fixes included with 512

the installation. 513

1 On devices that have filesystems, the SWID tag for an installed software product should be discoverable in a directory

labeled ñswidtagò that is either at the same level as the productôs installation directory, or is an immediate sub-directory of

the productôs installation directory. Alternatively, or on devices without filesystems, tags should be accessible through

platform-specific interfaces and/or maintained in platform-specific storage locations.

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

 8

¶ Software Patching. When a new patch is applied to the software product, a new patch 514

tag is provided, supplying details about the patch and any of its dependencies. 515

¶ Software Upgrade. As a software product is upgraded to a new version, new primary 516

and supplemental tags replace previously deployed tags, enabling timely and accurate 517

tracking of updates to software inventory. 518

¶ Software Removal. Upon removal of the software product, relevant SWID tags are 519

removed. This removal event can trigger timely updates to software inventory reflecting 520

the productôs removal. 521

 522

Figure 1: SWID Tags and the Software Lifecycle 523

The software lifecycle events described in Figure 1 and the tag types related to these events are 524

discussed in the following subsections. 525

2.1.1 Corpus Tags 526

Before software is installed, it is typically delivered or otherwise made available to an endpoint, 527

a networked computing device, in the form of a software installation package. The installation 528

package contains the software in a pre-installation condition, often compressed in some manner. 529

Common formats for installation packages include TAR and ZIP files, and ñself-unpackingò 530

executable files. In all cases, an installation procedure must be run to cause the software 531

contained in an installation package to be unpacked and deployed on a target endpoint. The 532

SWID specification defines corpus tags for vendors and distributors to use to identify and 533

describe products in such a pre-installation state. The availability of software identification and 534

descriptive information for a software installation package enables verification of the software 535

package and authentication of the organization releasing the package. 536

Corpus tags may be used by consumers to verify the integrity of an installable product and to 537

authenticate the issuer of the installation before carrying out the installation procedure (see §3.2). 538

If a manifest of the installation files is included in the corpus tag (see §3.1.6 on the <Payload> 539

element), installation package tampering can be detected prior to installation. When combined 540

with other licensing data, corpus tags may aid consumers in confirming whether they have a 541

valid license for a product before they install it. All of this information can be used as part of an 542

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

 9

automated policy decision to allow or prevent the software installation (see §6.2.1) on an 543

endpoint. 544

2.1.2 Primary Tags 545

As illustrated earlier in Figure 1, primary tags are involved in different software lifecycle events. 546

The SWID specification defines primary tags to identify and describe software products once 547

they have been successfully installed on an endpoint. The primary tag for each tagged product 548

needs to furnish values for all data elements that are designated ñmandatoryò in the SWID 549

specification. A minimal primary tag supplies the name of the product (as a string), a globally 550

unique identifier for the tag, and basic information identifying the tagôs creator. 551

Ideally, the software provider is also the creator of that productôs primary tag; however, the 552

SWID specification allows other parties (including automated tools) to create tags for products in 553

cases where software providers have declined to do so or have delegated this responsibility to 554

another party. 555

A globally unique tag identifier is essential information in many usage scenarios because it may 556

be used as a globally unique proxy identifier for the software installation. The tag identifier of a 557

primary tag can be considered a proxy identifier for the tagged product because there is a one-to-558

one relationship between the primary tag and the installed software it identifies. In some contexts 559

it will be more efficient in terms of data transmission and processing costs for inventory and 560

discovery tools to identify and report tagged products using only their primary tag identifiers, 561

rather than their fully populated primary tags. 562

When a product is upgraded, the primary tag(s) associated with the old version are removed and 563

replaced with a primary tag(s) for the new version. When a product is removed from a device, its 564

primary tag(s) are removed as well. By strictly maintaining the one-to-one association between 565

installed software and associated tags, it is possible to continuously monitor installed software 566

inventory and track software updates using SWID tag data (see §6.1.1). 567

Because software products may be furnished as suites or bundles or as add-on components for 568

other products, the SWID specification defines a <Link> element (see §3.1.4), which may be 569

used within a SWID tag to document relationships between the product described by the tag and 570

other products or items that may be available. Three types of relationships are worth noting here: 571

¶ Parent. To document situations where the product described by the primary tag is part of 572

a larger group of installed software, the primary tag points to the primary tag of the larger 573

software group using a <Link> element where the @rel attribute is set to ñparent ò. 574

¶ Component. To document situations where the product described by the primary tag has 575

a separately installable software product as one of its components, the productôs primary 576

tag points to the primary tag of the component product using a <Link> element where 577

the @rel attribute is set to ñcomponent ò. 578

¶ Requires. To document situations where the product described by the primary tag 579

depends on a separately installable software product, the primary tag points to the 580

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

 10

primary tag of the required product using a <Link> element where the @rel attribute is 581

set to ñrequir esò. 582

The relationships that may be expressed in primary tags are illustrated in Figure 2, below. 583

 584
Figure 2: Primary Tag Relationships 585

This illustration shows how primary SWID tags indicate the associations among several software 586

components. An overarching Productivity Suite will have a component relationship with each of 587

its supporting applications, such as a Word Processor and Presentation Software. These 588

subsidiary software products will each have a parent relationship to the Productivity Suite. 589

These subsidiary products may also require other component software (e.g., language pack, 590

spell checking software). 591

2.1.3 Patch Tags 592

A software provider may release patches to correct errors in or add new features to a product. 593

When a patch is installed on a device, changes are made to a productôs installation footprint. 594

Since a patch augments an existing installation, these changes need to be tracked separately. The 595

SWID specification defines patch tags for software providers to identify and describe each patch. 596

When a patch is installed, a patch tag is placed on the device in the same location where the 597

patched product resides A patch tag can also be created by discovery tools, when a patch tag was 598

not provided by a software provider, to indicate the previous application of a patch. In contrast 599

with a patch, an upgrade is defined as a complete replacement of a productôs installation 600

footprint. An upgrade typically changes the productôs version number and/or release details. 601

The data elements contained in a patch tag identify and describe the patch rather than the product 602

to which the patch is applied. For example, the product name and version recorded in a patch tag 603

need not match the product name and version recorded in the patched productôs primary tag. 604

Instead, these attributes can be used to record the name and version of the patch as assigned by 605

the software provider. 606

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

 11

A patch tag can document relationships between the patch described by the patch tag and other 607

products or patches that may be available using the <Link> element (see §3.1.4). Three types of 608

relationships are worth noting here: 609

¶ Patches. Patch tags are required to document a relationship to the primary tag of the 610

patched product that indicates that the patch applies to the patched product. In this way 611

patch tags may assist in determining whether an installed product has all required patches 612

applied. Expressed using a <Link> element where the @rel attribute is set to 613

ñpatche sò with a pointer to the patched productôs primary tag. 614

¶ Requires. To document that a patch described by the patch tag requires the prior 615

installation of another patch. Expressed using a <Link> element where the @rel 616

attribute is set to ñrequires ò with a pointer to the patch tag of the required patch. 617

¶ Supersedes. To document that a patch described by a patch tag can entirely replace 618

another patch. If the other patch is installed, it will be removed when the new patch is 619

installed. Expressed using a <Link> element where the @rel attribute is set to 620

supersedes with a pointer to the patch tag of the superseded patch using. 621

When used in this way, patch tags may assist in determining whether an installed product has all 622

required patches applied (see §6.1.2). Figure 3 illustrates the tag relationships for four product 623

patches that can be applied over time. 624

 625
Figure 3: Patch Tag Relationships 626

All patches have @rel=patches Product, since they all patch the same product. 627

Patch 2 has @rel=requires Patch 1, since Patch 1 must be installed before Patch 2. 628

Patch 3 has @rel=supersedes Patch 2, since Patch 3 entirely replaces Patch 2. 629

Patch 4 is completely independent of the other three patches, so its patch tag does not include 630

any <Link> elements pointing to any of the other patch tags. 631

A patch will likely also include a manifest of the new and/or changed files (see §3.1.6 for 632

discussion on the <Payload> element), which can be used to verify that the actual patched 633

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

 12

files are present on the device. This allows for confirmation that the patch has been correctly 634

installed, preventing a malicious actor from deploying files that misrepresent the installation 635

status of a patch. 636

2.1.4 Supplemental Tags 637

The SWID specification requires that tags may not be modified by any entity other than the tag 638

creator. In order to provide a mechanism whereby consumers and software management tools 639

may add arbitrary post-installation information of local utility, the SWID specification allows for 640

any number of supplemental tags to be installed, either at the same time the primary tag is 641

installed or at any time thereafter. 642

Any entity may create a supplemental tag for any purpose. For example, supplemental tags may 643

be created by automated tools in order to augment an existing primary tag with additional site-644

specific information, such as license keys and contact information for local responsible parties. 645

Each supplemental tag contains a pointer to the tagged productôs primary tag using a <Link> 646

element where the @rel attribute is set to supplemental. When supplemental tags are present, a 647

tag consumer may create a complete record of the information describing a product by 648

combining the data elements in the productôs primary tag with the data elements in any linked 649

supplemental tags. 650

The relationships that may be expressed in supplemental tags are illustrated in Figure 4. 651

 652
Figure 4: Supplemental Tag Relations 653

Supplemental tags may also be employed to augment non-primary tags. For example, a 654

supplemental tag could add local information about a patch tag (e.g., to record a timestamp 655

indicating when the patch was applied), or even about another supplemental tag (as illustrated in 656

#3 above). In such situations, the supplemental tag also contains a <Link> element pointing to 657

the tag that is having its information augmented. 658

A supplemental tag is intended to furnish data values that augment and do not conflict with data 659

values provided by the primary tag and any of the productôs other supplemental tags. If conflicts 660

are detected, data in the primary tag, if provided by the software producer, is considered the most 661

reliable, and tools can be expected to ignore conflicting data or to report all conflicting data as 662

exceptions. For example, the mandatory product name recorded in a supplemental tag should 663

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

 13

match the product name recorded in the productôs primary tag, but if they are different, the name 664

recorded in the primary tag should be used as the most reliable name. 665

As Figure 1 earlier illustrates, after a software product is upgraded, all primary and patch tags 666

associated with the pre-upgrade version of the product should be removed. If needed, new 667

supplemental tags associated with the upgraded version may be deployed, and the no longer 668

relevant supplemental tags should be removed. When a software product is removed, all primary, 669

patch, and supplemental tags associated with the product should be removed. 670

2.2 SWID Tag Creation 671

A SWID tag for a software package, product, or patch could be created on any of these 672

occasions: 673

¶ During a productôs build/release process by an authoritative source 674

¶ During an endpoint-scanning process by a non-authoritative source (e.g., by an 675

automated software discovery tool) 676

¶ As the result of a technical analytic process performed by an entity that obtains a copy of 677

a product after its release to market 678

2.3 SWID Tag Placement 679

This section describes various factors regarding the placement of SWID tags relative to the 680

software products they describe. Section 2.3.1 describes how and where SWID tags should be 681

placed as the result of installing new software, applying a patch or performing an update to 682

existing software. Section 2.3.2 describes the placement of SWID tags that are generated from 683

existing package management data. Section 2.3.3 provides information about storing SWID tags 684

within a repository separate from a software installation. 685

2.3.1 Placement During Installation 686

The first and most common method of tag deployment is for a tag to be incorporated into the 687

productôs installation package, which then causes the tag to be installed on an endpoint as part of 688

the software installation procedure. Such a procedure may be run as the result of installing new 689

software, or by applying a patch or update to existing software. This method of tag deployment is 690

available when the tag creator is in a position to ensure that the tag is included in the installation 691

package. 692

During software installation a SWID tag is placed relative to the product it identifies and 693

describes. The SWID specification makes the following statements about SWID tag placement in 694

this situation: 695

On devices with a file system, but no API defined to retrieve SWID tags, the SWID tag 696

data shall be stored in an XML file and shall be located on a deviceôs file system in a sub-697

directory named ñswidtagò (all lower case) that is located in the same file directory or 698

sub-directory of the install location of the software component with which they are 699

installed. It is recommended, but not required, that the swidtag directory is located at the 700

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

 14

top of the application installation directory tree. Any payload information provided must 701

reference files using a relative path of the location where the SWID tag is stored. On 702

devices that do not have a file system, the SWID tag data shall be stored in a data storage 703

location defined and managed by the platform provider for that device. [é] On devices 704

that utilize both a file system for software installation as well as API access to the SWID 705

tag files, it is recommended that the SWID tag data be stored in the API managed 706

repository as well as stored as a file on the system. [é] Finally, the SWID tag data may 707

also be accessible via a URI, or other means [é] [ISO/IEC 19770-2:2015, pp. 6-7]. 708

These statements suggest that the SWID tag for a product is placed on the same device where the 709

product is installed. While this is correct as a general rule, as the IT market has evolved, the 710

concept of an ñinstalled software productò has become increasingly nuanced, and this has 711

complicated the issue of where SWID tags may be placed. 712

The SWID specification provides the following rules and recommendations that shall be used 713

when creating names for SWID tag files: 714

Filenames should be restricted to use only the characters listed in the Portable Filename 715

Character Set defined in IEEE 1003.1:2013, 3.278 to maximize interoperability between 716

platforms. If this limitation is too restrictive, the tag creator shall ensure that the 717

characters used in the filename are valid characters for all platforms where their SWID 718

tags may be stored on a file system. SWID tag base filenames (i.e. the filename without 719

the .swidtag extension) shall be structured to be globally unique for the tag creator and 720

product. SWID tag creators may use different approaches to defining the base portion of 721

the SWID tag filename; however, if the filename aligns with the following structure, the 722

filename will be unique for the product and recognizable by a system administrator 723

<name of the tag creator> + <product name>.swidtag. The .swidtag file extension shall 724

be used for all software identification tags. [ISO/IEC 19770-2:2015, p. 8] 725

Following this guidance, for example, the SWID tag referencing product name ñACME 726

Roadrunnerò from the software creator ñacme.comò would be stored in the filename, 727

ñacme.com.acmeroadrunner.swidtag ò. 728

The simplest concept of an ñinstalled software productò is software that can be loaded into 729

memory and executed on a computing device by virtue of being physically stored on that device. 730

Software is physically stored on a computing device if it is recorded in a persistent storage 731

component that is itself part of the hardware comprising the computing device.2 This report is 732

primarily concerned with the use of SWID tags to identify software products and discover where 733

they are stored, because it is generally assumed that where a product is stored also determines 734

where (and often by whom) that product may be executed. 735

The assumption that software products are physically stored on the same computing devices used 736

to execute them is not always true. For example, through the use of high-performance 737

2 Software present on removable media (e.g., a USB thumb drive or SD memory card) that is plugged into a computing device

is considered physically stored on the computing device according to this definition.

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

 15

networking technologies, a software product can be physically stored on a network-attached 738

storage (NAS) device, then executed seamlessly on any computing device able to access that 739

NAS device. In situations like these, products and their tags co-reside on the NAS device, and 740

inventory tools will likely consider the products to be part of the inventory of the NAS device. In 741

other words, storage location matters more than the location where a product can be executed 742

when determining tag placement. The locations where a product can be executed may need to be 743

considered, however, when determining the effective software inventory of an endpoint. 744

As another example, consider removable media devices such as USB thumb drives and SD 745

memory cards. Once a software product is installed on such removable media, it can become 746

executable on an endpoint immediately upon insertion of the media. In this scenario, the product 747

tag resides with the product on the removable media. The product is considered part of the 748

inventory of the removable media, but may also be considered part of the effective software 749

inventory of the endpoint during the time the removable device is attached. 750

The rise of virtualization technology further clouds the issue, as it changes the definition of what 751

it means to be a computing device, and introduces the prospect of virtual devices that are created, 752

inventoried, and destroyed all in the space of mere moments. In general, SWID tags for software 753

products that are installed on virtual machines reside within the virtual machine images, and are 754

accountable to the virtual machines rather than to the physical host machines. When software 755

products are installed on a virtual machine that is powered down, inactive, and stored somewhere 756

as a machine image, those products are considered to exist in the inventory of the virtual 757

machine, not the inventory of the device that stores the machine image. In this sense, a powered-758

down virtual machine is treated the same as a powered-down physical machine, effectively 759

rendering the installed products unavailable, but not removing them from the software inventory. 760

In contrast, destroying a virtual machine is treated the same as the decommissioning of a 761

physical machine. In the latter case, all installed software products are removed from the 762

software inventory. 763

Finally, computing innovations such as ñsoftware as a serviceò and ñcontainerizationò are 764

challenging the basic notion of what a ñsoftware productò fundamentally is. These concepts rely 765

on short-lived software, often executed in a browser, which breaks the linkage between where 766

products are installed and where they are executed. When a software application is operated 767

remotely as a service, it is considered to be installed on the remote server rather than on the 768

client device. But when a product is containerized and delivered to a client device for execution, 769

that product becomes part of the client deviceôs product inventory, however transiently. 770

In summary, the general rule for SWID tag placed during installation processes is that tags reside 771

on the same physical or virtual storage device as where the tagged product resides. Although tag 772

consumers may infer that a product is executable on the same device where it is stored, they will 773

benefit from distinguishing cases where products may be executable on devices elsewhere within 774

the enterprise. 775

2.3.2 SWID Tag Generation from Existing Package Management Data 776

A second method of tag deployment is implicit. Some operating environments furnish native 777

package management systems that, when properly used to install products within those 778

environments, automatically record all the information needed to populate required data elements 779

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

 16

in a tag. In these situations, software installation systems are able to avoid explicit preparation 780

and deployment of a tag on a device, as long as the native package manager provides a published 781

interface allowing valid tags to be obtained. When a tag is produced dynamically on the 782

installation host in this way, it will not be possible for this tag to be digitally signed. As a result, 783

it will not be possible to verify the integrity of the tag based on a digital signature unless an 784

equivalent tag is also produced using the first method described above. Without being able to 785

verify the tagôs signature, processes on the device and downstream consumers that use the 786

information within a SWID tag will have less assurance of the tags authenticity and integrity. 787

This will limit the usefulness of the SWID tag information to address some usage scenarios that 788

require a high degree of assurance. 789

2.3.3 Placement in a Repository of SWID Tags 790

A third method of tag deployment is to store SWID tags in accessible repositories. By retrieving 791

specific tags from an appropriate repository, software consumers can do the following: 792

¶ Confirm that a tag which has been discovered on an endpoint has not been modified; this 793

can done by comparing the tag found on the endpoint with the same tag found in the 794

repository 795

¶ Restore a tag that has been inadvertently deleted 796

¶ Correct a tag that has been improperly modified 797

¶ Utilize the information in the tag to support various software-related management and 798

analysis processes 799

2.4 Summary 800

This section covered basic SWID tag concepts. The SWID specification defines four different 801

types of SWID tags to support various portions of the software lifecycle, including pre-802

installation, product installation, patching, software updates, and software decommissioning. 803

¶ Corpus SWID tags provide information about a software distribution, to include 804

information about the files that are included as part of the distribution. This information 805

may be used to verify the integrity and/or authenticity of the software distribution. 806

¶ Primary SWID tags provide specific information (e.g., product naming information, the 807

software creator, lists of files expected to be included) regarding a software product that 808

has been installed. 809

¶ Patch SWID tags provide specific information about a software patch that has been 810

provided to correct errors in or add new features to a product. A patch tag supplies 811

information about the changes that a patch makes to the patched software productôs 812

installation footprint including files added, removed, or changed. 813

¶ Supplemental SWID tags provide a mechanism to describe additional information 814

related to tags of other types. 815

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

 17

Any entity may create a supplemental tag for any purpose. For example, supplemental tags 816

may be created by automated tools in order to augment an existing primary tag with 817

additional site-specific information, such as license keys and contact information for local 818

responsible parties. 819

By placing SWID tags in consistent locations relative to the software products they identify, 820

inventory processes and automated tools are able to consistently and accurately maintain 821

software inventory. 822

SWID tags may also be placed in accessible repositories to make tag information available 823

to be used by other management and cybersecurity processes. 824

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

 18

3 SWID Tag Overview 825

This section presents a high-level description of SWID tag data elements as specified in the 826

SWID specification. The material presented here is intended to provide a general understanding 827

of how SWID tags may be used to identify and describe software products. To correctly 828

implement tags, interested readers may want to obtain the ISO specification and the 829

corresponding XML schema definition (XSD). When used with a validating XML parser, the 830

XSD can be used to check that a SWID tag is conformant with the SWID specification. The 831

XSD may be downloaded from: 832

http://standards.iso.org/iso/19770/-2/2015/schema.xsd 833

This section is intended to provide an overview of the data model used to express and 834

authenticate SWID tags. 835

The remainder of this section is organized as follows. Section 3.1 presents an overview of the 836

basic data elements that comprise a SWID tag. Section 3.2 discusses how SWID tags may be 837

authenticated. Section 3.3 presents an example of the primary tag type, and Section 3.4 838

concludes with a summary of key points from this section. 839

3.1 SWID Tag Data Elements 840

This section discusses the basic data elements of a SWID tag. This discussion will also explain 841

how the four tag types described in Section 2.1 are distinguished from each other. 842

A SWID tag (whether corpus, primary, patch, or supplemental) is represented as an XML root 843

element with several sub-elements. <SoftwareIdentity> is the root element, and it is 844

described in Section 3.1.1. The following sub-elements are used to express distinct categories of 845

product information: <Entity> (see §3.1.2), <Evidence> (see §3.1.3), <Link> (see 846

§3.1.4), <Meta> (see §3.1.5), and <Payload> (see §3.1.6). 847

3.1.1 <SoftwareIdentity>: The Root of a SWID Tag 848

Besides serving as the container for all the sub-elements described in later subsections, the 849

<SoftwareIdentity> element provides attributes to record the following descriptive 850

properties of a software product: 851

¶ @name: the string name of the software product or component as it would normally be 852

referenced, e.g., ñACME Roadrunner Management Suiteò. A value for @name is 853

required. 854

¶ @version : the detailed version of the product, e.g., ñ4.1.5ò. In the SWID specification, 855

a value for @version is optional and defaults to ñ0.0ò. (Note that later in this report, 856

guidelines are provided that require a value for @version in corpus and primary tags.) 857

¶ @versionScheme : a label describing how version information is encoded, e.g., 858

ñmultipartnumeric ò. In the SWID specification, a value for @versionScheme is 859

optional and defaults to ñmultipartnumeric ò. Sections 5.1.1 and 5.2.1 of this report 860

http://standards.iso.org/iso/19770/-2/2015/schema.xsd

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

 19

provide guidelines that require a value for @version Scheme in corpus and primary 861

tags, respectively. 862

¶ @tagId : a globally unique identifier that may be used as a proxy identifier in other 863

contexts to refer to the tagged product. A value for @tagId is required. 864

¶ @tagVersion : an integer that allows one tag for a software product to supersede 865

another without suggesting any change to the underlying software product being 866

described. Typical reasons for an increment in @tagVersion include: 1) fixes of 867

erroneous information in an older version of a tag; or, 2) the addition of new information 868

that was not included in a previously deployed tag. A value for @tagVersion is 869

optional and defaults to ñ0ò. 870

Under normal conditions, it would be unexpected to discover multiple tags present in the 871

same location on a device that all identify the same installed product, by having the same 872

@tagId attribute value, but different @tagVersion attribute values. Such a situation 873

probably reflects a failure to properly maintain the deviceôs inventory of SWID tags. 874

Nevertheless, should such a situation be encountered, the tag with the highest 875

@tagVersion is considered to be the most up-to-date tag, and the others may be 876

ignored. When considering tags in this situation, it is important to verify tag signatures, if 877

available, to ensure that the most up-to-date tag being considered contains a valid XML 878

signature (see §3.2). Furthermore, it is important that this signature contain a valid 879

certificate to avoid using a tag that might have been produced by an unauthorized party. 880

For example, if the most-up-to-date tag is found to contain an invalid signature, then a 881

valid tag with the next lowest @tagVersion value is likely to be safer to use. 882

¶ @supplemental : a boolean value that, if set to ñtrue ò, indicates that the tag type is 883

supplemental (see §2.1.4). A value for @supplemental is optional and defaults to 884

ñfalse ò. 885

¶ @patch : a boolean value that, if set to ñtrue ò, indicates that the tag type is patch (see 886

§2.1.3). A value for patch is optional and defaults to ñfalse ò. 887

¶ @corpus : a boolean value that, if set to ñtrue ò, indicates that the tag type is corpus 888

(see §2.1.1). A value for @corpus is optional and defaults to ñfalse ò. 889

Table 1 illustrates how the tag type may be determined by inspecting the values of @corpus , 890

@patch , and @supplemental . If all these values are false, the tag type is primary. This 891

report provides guidelines requiring that at most one of @corpus , @patch , or 892

@supplemental be set to true (see §§ 5.1.1, 5.2.1, 5.3.1, and 5.4.1). In Sections 5.3.1 and 893

5.4.1 of this report, guidelines are provided that require patch and supplemental tags to include a 894

<Link> element associating them with the tags to which they are related. 895

 896

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

 20

Table 1: How Tag Types Are Indicated 897

Tag Type @supplemental @patch @corpus <Link> required @rel

Corpus f alse f alse t rue N/A

Primary f alse f alse f alse N/A

Patch f alse t rue f alse patches

Supplemental t rue f alse f alse supplemental

 898

3.1.1.1 Example 1ðPrimary Product Tag 899

This example illustrates a primary tag for version 4.1.5 of a product named ñACME Roadrunner 900

Management Suite Coyote Edition.ò The globally unique tag identifier, or @tagId , is 901

ñcom.acme.rms-ce-v4-1-5-0ò. The <Entity> element (see §3.1.2) is included so the example 902

illustrates all data values required in a minimal tag that conforms to the SWID specification. Any 903

additional identifying data (not shown) would appear in place of the ellipsis. 904

<SoftwareIdentity 905
 xmlns="http://standards.iso.org/iso/19770/ - 2/201 5/schema.xsd" 906
 name="ACME Roadrunner Management Suite Coyote Edition " 907
 tagId=" com.acme.rms - ce - v4- 1- 5- 0" 908

 tagVersion="0 " 909
 version="4.1.5" > 910
 <Entity 911

 name=" The ACME Corporation " 912
 regid= " acme.com " 913
 role= " tagCreator softwareCreator " /> 914
 é 915

</SoftwareIdentity> 916
 917

3.1.1.2 Example 2ðSupplemental Tag 918

This example illustrates a supplemental tag for an already installed product. The globally unique 919

identifier of the supplemental tag is ñcom.acme.rms-sensor-1ò. The <Entity> element (see 920

§3.1.2) is included so the example illustrates all data values required in a minimal tag that 921

conforms to the standard. The <Link> element (see §3.1.4) is included to illustrate how a 922

supplemental tag may be associated with the primary tag shown above in Section 3.1.1.1. This 923

supplemental tag may be supplying additional installation details that are not included in the 924

productôs primary tag (e.g., site-specific information such as contact information for the 925

information steward.) These details would appear in place of the ellipsis. 926

<SoftwareIdentity 927

 xmlns =" http://standards.iso.org/iso/19770/ - 2/2015/schema.xsd " 928
 name="ACME Roadrunner Management Suite Coyote Edition " 929
 tagId="com.acme.rms - sensor - 1" 930

 supplemental="true"> 931

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

 21

 <Entity 932
 name="The ACME Corporation" 933

 regid="acme.com" 934
 role="tagCreator softwareCreator"/> 935
 <Link 936
 rel="related" 937

 href="swid:com.acme.rms - ce - v4 - 1- 5- 0"> 938
 é 939
</SoftwareIdentity> 940

3.1.1.3 Example 3ðPatch Tag 941

This example illustrates a patch tag for a previously installed product. The name of the patch is 942

ñACME Roadrunner Service Pack 1ò, and its globally unique tag identifier is ñcom.acme.rms-ce-943

sp1-v1-0-0ò. <Entity> and <Link> elements are illustrated as before. Any additional 944

identifying data (not shown) would appear in place of the ellipsis. 945

<SoftwareIdentity 946

 xmlns="http://sta ndards.iso.org/iso/19770/ - 2/2015 /schema.xsd" 947
 name="ACME Roadrunner Service Pack 1 " 948
 tagId=" com.acme.rms - ce - sp1 - v1- 0- 0" 949
 patch="true" 950

 version="1.0.0" > 951
 <Entity 952
 name=" The ACME Corporation " 953

 regid= " acme.com " 954
 role= " tagCreator softwareCreator " /> 955
 <Link 956
 rel= " patches " 957

 href= " swid:com.acme.rms - ce - v4- 1- 5- 0" > 958
 é 959
</SoftwareIdentity> 960

3.1.2 <SoftwareIdentity> Sub-Element: <Entity> 961

Every SWID tag identifies, at minimum, the organizational or individual entity that created the 962

tag. Entities having other roles associated with the identified software product, such as its 963

creator, licensor(s), or distributor(s), may optionally be identified. These entities are identified 964

using <Entity> elements contained within the <SoftwareIdentity> element. Each 965

<Entity> element provides the following attributes: 966

¶ @name: the string name of the entity, e.g., ñThe ACME Corporationò. A value for 967

@name is required. 968

¶ @regid : the ñregistration identifierò of the entity (further discussed below.) A value for 969

@regid is required when the <Entity> element is used to identify the tag creator 970

(e.g., @role =ñtagCreator ò), otherwise @regid is optional and defaults to 971

ñinvalid.unavailable ò. 972

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

 22

¶ @role : the role of the entity with respect to the tag and/or the product identified by the 973

tag. Every <Entity> element contains a value for @role , and additionally, every tag 974

contains an <Entity> element identifying the tag creator. The @role attribute can list 975

multiple roles with a space separating each role. Values for @role can be selected from 976

an extensible set of allowed tokens, including these: 977

o aggregator: An organization or system that encapsulates software from their 978

own and/or other organizations into a different distribution process (as in the case 979

of virtualization), or as a completed bundle to accomplish a specific task (as in the 980

case of a value added reseller) 981

o distributor: An entity that furthers the marketing, selling and/or distribution 982

of software from the original place of manufacture to the ultimate user without 983

modifying the software, its packaging or its labelling 984

o licensor: A person or organization that owns or holds the rights to issue a 985

software license for a specific software package 986

o softwareCreator: A person or organization that creates a software product 987

o tagCreator: The entity that creates a given SWID tag 988

¶ @thumbprint : for SWID tags which are digitally signed (see §4.6), this value provides 989

a hexadecimal string containing a hash of the entityôs signing certificate. This allows the 990

digital signature to be directly related to the entity specified. 991

Values for @regid are URIs as described in RFC 3986 [RFC 3986]. Values for @regid are 992

not required to be dereferenceable on the Internet. To ensure interoperability and to allow for 993

open source project support, Section 6.1.5.2 of the SWID specification recommends that tag 994

creators do the following when creating a value for @regid : 995

¶ Unless otherwise required, the URI should utilize the http scheme. 996

¶ If the http scheme is used, the ñhttp:// ò may be left off the regid string (a string 997

without a URI scheme specified is defined to use the ñhttp:// ò scheme.) 998

¶ Unless otherwise required, the URI should use an absolute URI that includes an authority 999

part, such as a domain name. 1000

¶ To ensure consistency, the absolute URI should use the minimum string required (for 1001

example, example.com should be used instead of www.example.com). 1002

For tag creators that do not have a domain name, the mailto scheme may be used in place of 1003

the http scheme to identify the tag creator by email address, e.g., mailto:foo@bar.com . 1004

The example below illustrates a SWID tag containing two <Entity> elements. The first 1005

<Entity> element identifies the single organization that is both the software creator and the 1006

tag creator, and a second element identifies the organization that is the softwareôs distributor: 1007

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

 23

<SoftwareIdentity é> 1008
 é 1009

 <Entity 1010
 name=" The ACME Corporation " 1011
 regid= " acme.com " 1012
 role= " tagCreator softwareCreator " /> 1013

 <Entity 1014
 name=" Coyote Services, Inc. " 1015
 regid= " mycoyote.com " 1016

 role= " distributor " /> 1017
 é 1018
</SoftwareIdentity> 1019

3.1.3 <SoftwareIdentity> Sub-Element: <Evidence> 1020

Not every software product installed on a device will be supplied with a tag. When a tag is not 1021

found for an installed product, third-party software inventory and discovery tools will continue to 1022

be used to discover untagged products residing on devices. In these situations, the inventory or 1023

discovery tool may generate a primary tag on the fly to record the newly discovered product. The 1024

optional <Evidence> element may then be used to store results from the scan that explain why 1025

the product is believed to be installed. To that end, the <Evidence> element provides two 1026

attributes and four sub-elements, all of which are optional: 1027

¶ @date: the date the evidence was collected. 1028

¶ @deviceI d: the identifier of the device from which the evidence was collected. 1029

¶ <Directory> : filesystem root and directory information for discovered files. If no 1030

absolute directory is provided, the directory is considered to be relative to the directory 1031

location of the SWID tag. 1032

¶ <File> : files discovered and believed to be part of the product. If no absolute directory 1033

path is provided, the file location is assumed to be relative to the location of the SWID 1034

tag. If a parent <Directory> includes a nested <File> , the indicated file is relative 1035

to the parent location. 1036

¶ <Process>: related processes discovered on the device. 1037

¶ <Resource> : other general information that may be included as part of the product. 1038

Note that <Evidence> is represented in a SWID tag in the same manner as <Payload> (see 1039

§3.1.6). There is a key difference, however, between <Evidence> and <Payload> data. The 1040

<Evidence> element is used by discovery tools that identify untagged software. Here the 1041

discovery tool creates a SWID tag based on data discovered on a device. In this case, the 1042

<Evidence> element indicates only what was discovered on the device, but this data cannot be 1043

used to determine whether discovered files match what a software provider originally released or 1044

what was originally installed. In contrast, <Payload> data supplies information from an 1045

authoritative source (typically the software provider or a delegate), and thus may be used, for 1046

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

 24

example, to determine if files in a directory match the files that were designated as being 1047

installed with a software component or software product. 1048

The example below illustrates a SWID tag containing an <Evidence> element. The evidence 1049

consists of two files discovered in a folder named ñrrdetectorò within the deviceôs standard 1050

program data area: 1051

<SoftwareIdentity é> 1052

 é 1053
 <Evidence date= " 11- 28- 2014 " deviceId= " mm123- pc.acme.com " > 1054
 <Directory location =" .. " name=" rrdetector " > 1055
 <File name= " rrdetector.exe " size= " 532712 " /> 1056

 <File name= " sensors.dll " size= " 13295 " /> 1057
 </Directory> 1058
 </Evidence> 1059

 é 1060
</SoftwareIdentity> 1061

In cases where the evidence is collected from a shared location (e.g., a NAS device), the 1062

provided @deviceId could reference that shared location rather than the endpoint where the 1063

discovery occurs. Using this approach helps to prevent a situation where software installed in a 1064

shared location is tagged multiple times with conflicting @deviceId values. 1065

3.1.4 <SoftwareIdentity> Sub-Element: <Link> 1066

Modeled on the HTML [LINK] element, SWID tag <Link> elements are used to record a 1067

variety of relationships between tags and other items. A typical use of the <Link> element is to 1068

document a relation that exists between a product or patch described by a source tag (the tag 1069

containing the <Link> element) and a product or patch described by a target tag (the tag to 1070

which the <Link> element points). <Link> elements may also be used to associate a source 1071

tag with other arbitrary information elements. 1072

A <Link> element is often used to associate a patch tag or supplemental tag to a primary tag 1073

(see §2.1.3 and §2.1.4). Other uses include pointing to documents containing applicable licenses, 1074

vendor support pages, and installation media. The <Link> element has a number of attributes, 1075

two of which are required, as follows: 1076

¶ @href : the value is a URI pointing to the item to be referenced. The href can point to 1077

several different values including: 1078

o a relative URI 1079

o a physical file location with any system-acceptable URI scheme (e.g., file://, http://, 1080

https://, ftp://) 1081

o a URI with "swid:é" as the scheme, which refers to another SWID tag by tagId 1082

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

 25

o a URI with "swidpath:..." as the scheme, which contains an XPATH query [XPATH 1083

2.0]. This XPATH would need to be resolved in the context of the system by software 1084

that can lookup other SWID tags and select the appropriate tag based on the query. 1085

¶ @rel : the value specifies the type of relationship between the SWID tag and the item 1086

referenced by @href . 1087

 1088

Table 2 lists the pre-defined values of the @rel attribute defined in the SWID specification. 1089

Note that this list may be extended to support future needs. 1090
 1091

Table 2: <Link> Relations 1092

Relation Meaning
ancestor Defines a link to an ancestor of the product. This relation may be

used to indicate a pre-upgrade version of the product.
component Defines a link to a component of the product. A component could

be an independently functioning application that is part of a product

suite or bundle, as well as a shared library, language pack, etc.
feature Defines a link to a part of the product that can be enabled or

disabled separately without necessarily modifying any physical

files.
installationmedia Defines a link to the installation media used to install the software

product.
packageinstaller Defines a link to a tool or entity required to install the product.
parent Defines a link to the parent of the product.
patches Defines a link to the product to which the patch was applied.
requires Defines a link to a required patch, or to any other software product

that is required in order for the product described by the source tag

to function properly.
see - also Defines a link to other software products that may relate in some

manner to the software identified in the source tag. Such other

products might be add-ons or extensions that may be of interest to

the user/administrator of the device.
supersedes Defines a link to a superseded patch.
supplemental Defines a link to a supplemental tag.
<any> Additional relationships can be specified by referencing the Internet

Assigned Numbers Authority (IANA) Link Relations registration

library.3

3 See http://www.iana.org/assignments/link-relations/link-relations.xhtml for the current list of defined link relations.

http://www.iana.org/assignments/link-relations/link-relations.xhtml

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

 26

The example below illustrates how a <Link> element may be used to associate a patch tag with 1093

the tag for the patched product: 1094

<SoftwareIdentity 1095

 é 1096
 name="ACME Roadrunner Service Pack 1 " 1097
 tagId=" com.acme.rms - ce - sp1 - v1- 0- 0" 1098

 patch="true" 1099
 version ="1.0.0" > 1100
 é 1101
 <Link 1102

 rel= " patches " 1103
 href= " swid:com.acme.rms - ce - v4- 1- 5- 0" > 1104
 é 1105
</SoftwareIdentity> 1106

The patch in this example is linked to the patched productôs tag using that productôs @tagId . 1107

3.1.5 <SoftwareIdentity> Sub-Element: <Meta> 1108

<Meta> elements are used to record an array of optional metadata attributes related to the tag or 1109

the product. Several <Meta> attributes of interest are highlighted below: 1110

¶ @activationStatus : identifies the activation status of the product. The SWID 1111

specification provides several example values (e.g., ñTrial ò, ñSerialized ò, 1112

ñLicensed ò, and ñUnlicensed ò), but any string value may be supplied. Valid values 1113

for @activationStatus are expected to be worked out over time by tag 1114

implementers. 1115

¶ @colloquialVersion : the informal version of the product (e.g., 2013). The 1116

colloquial version may be the same through multiple releases of a software product where 1117

the @version specified in <SoftwareIdentity> is much more specific and will 1118

change for each software release. 1119

¶ @edition : the variation of the product, e.g., Home, Enterprise, Professional, Standard, 1120

Student. 1121

¶ @product : the base name of the product, exclusive of vendor, colloquial version, 1122

edition, etc. 1123

¶ @revision : the informal or colloquial representation of the sub-version of the product 1124

(e.g., SP1, R2, RC1, Beta 2). Whereas the <SoftwareIdentity> elementôs 1125

@version attribute will provide exact version details, the @revision attribute is 1126

intended for use in environments where reporting on the informal or colloquial 1127

representation of the software is important. For example, if, for a certain business 1128

process, an organization decides that it requires Service Pack 1 or later of a specific 1129

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

 27

product installed on all devices, the organization can use the revision data value to 1130

quickly identify any devices that do not meet this requirement. 1131

In the example below, a <Meta> element is used to record the fact that the product is installed 1132

on a trial basis, and to break out the full product name into its component parts: 1133

<Softwa reIdentity é> 1134

 é 1135
 name="ACME Roadrunner Detector 2013 Coyote Edition SP1 " 1136
 tagId=" com.acme.rd2013 - ce - sp1 - v4- 1- 5- 0" 1137
 version="4.1.5" > 1138

 é 1139
 <Meta 1140
 activationStatus="trial" 1141

 product="Roadrunner Detector" 1142
 colloquialVersion="2013" 1143
 edition ="coyote" 1144
 revision="sp1"/> 1145

 é 1146
</SoftwareIdentity> 1147

3.1.6 <SoftwareIdentity> Sub-Element: <Payload> 1148

The optional <Payload> element is used to enumerate the items (files, folders, license keys, 1149

etc.) that may be installed on a device when a software product is installed. In general, 1150

<Payload> lists the files that may be installed with a software product, and will often be a 1151

superset of those files (i.e., if a particular optional component is not installed, the files associated 1152

with that component may be included in the <Payload> , but are not installed on the device.) 1153

The <Payload> element is a container for <Directory> , <File> , <Process> , and/or 1154

<Resource> elements, similar to the <Evidence> element (see §3.1.3). When the 1155

<Payload> element is used, information contained in the element is considered to be 1156

authoritative information about the software. This differs from the use of the <Evidence> 1157

element, which is used to store results from a scan that indicate why the product is believed to be 1158

installed. 1159

The following example illustrates a primary tag with a <Payload> element describing two files 1160

in a single directory: 1161

<SoftwareIdentity é> 1162
 é 1163
 <Payload> 1164
 <Directory root="%programdata%" name="rrdetector"> 1165

<File name= " EPV12.cab" size="1024000" 1166

 SHA256:hash="a314fc2dc663ae7a6b6bc6 787594057396e 1167

6b3f569cd50fd5ddb4d1bbafd2b6a" /> 1168

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

 28

 <File name="installer.exe" size="524012" 1169

 SHA256:hash="54e6c3f569cd50fd5ddb4d1bbafd2b6ac41 1170

28c2dc663a e7a6b6bc67875940573" /> 1171

 </Directory> 1172
 </Payload> 1173
 é 1174

</SoftwareIdentity> 1175

3.2 Authenticating SWID Tags 1176

Because SWID tags are XML documents discoverable on a device (see §2.3.1, §2.3.2) or by 1177

retrieving a tag from a repository (see §2.3.3), they are vulnerable to unauthorized or inadvertent 1178

modification like any other document. To recognize such tag modifications, it is necessary to 1179

validate that a SWID tag was produced by a known, trusted entity and has not been altered after 1180

creation. XML digital signatures embedded within a SWID tag can be used to prove the 1181

authenticity of the tag signer and to validate that changes have not been made to the original tag 1182

that was signed. 1183

Applying an XML digital signature to a tag directly after it is created addresses the following 1184

risks: 1185

¶ Creation of a tag by an unauthorized creator. Any entity can create a tag for a 1186

software product. By including a certificate acquired from a trusted certificate authority 1187

in the tagôs digital signature, it is possible to validate the certificate, ensure that it has not 1188

been revoked, and determine that the signature was produced while the certificate is 1189

valid. By linking the signature to the <Entity> element having a @role value of 1190

ñtagCreator ò and using the @thumbprint attribute (see §3.1.2) to record the 1191

thumbprint of the certificate, it is possible to identify that the tag creator is also the tag 1192

signer. This provides a method for source authentication of a tagôs creator. 1193

¶ Detecting unauthorized changes to a tag. Changes made to a tag after it is created can 1194

be detected by validating the tagôs signature. Such changes may occur due to accidental 1195

modification, incomplete copying, network errors, filesystem corruption, or by an 1196

attacker wishing to misrepresent the installation state of installed software or the 1197

information contained within a tag. The use of an XML digital signature in this way 1198

provides a means to measure the integrity of a tag. When coupled with authenticating the 1199

creator of a tag, this greatly increases the assurance of the tag data. 1200

¶ Detecting unauthorized changes to software installation media and packages. If the 1201

creator of a corpus tag can be authenticated and the integrity of the tag can be verified, it 1202

is then possible to use the information in the tagôs <Payload> element, if provided, to 1203

measure the integrity of software installation media or packages. This can be useful for 1204

detecting unauthorized changes to software installation media and packages, and can 1205

inform policy decisions pertaining to authorizing software installations (see §6.2.1). 1206

¶ Detecting unauthorized changes to installed software. If the creators of primary and 1207

patch tags related to an installed software product can be authenticated and the integrity 1208

of the tags can be verified, it is then possible to use the information in each tagôs 1209

<Payload> element, if provided, to measure the integrity of the related installed 1210

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

 29

software product. This can be useful for detecting unauthorized changes to installed 1211

software and can inform policy decisions pertaining to authorizing software execution 1212

(see §6.2.2). 1213

When considering the totality of these risks, SWID tags can enhance the assurance of software 1214

before and after it is installed, in a standardized way, regardless of the target platform or software 1215

product installed. 1216

Section 6.1.10 of the SWID specification states that: 1217

Signatures are not a mandatory part of the software identification tag standard, and can be 1218

used as required by any tag producer to ensure that sections of a tag are not modified 1219

and/or to provide authentication of the signer. If signatures are included in the software 1220

identification tag, they shall follow the W3C recommendation defining the XML 1221

signature syntax which provides message integrity authentication as well as signer 1222

authentication services for data of any type. 1223

Digital signatures use the <Signature > element as described in the W3C XML Signature 1224

Syntax and Processing (Second Edition) specification [xmldsig-core] and the associated 1225

schema.4 Users may also include a hexadecimal hash string (the ñthumbprintò) to document the 1226

relationship between the tag entity and the signature, using the <Entity > @thumbprint 1227

attribute. 1228

Section 6.1.10 of the SWID specification also requires that a digitally-signed SWID tag enable 1229

tag consumers to: 1230

Utilize the data encapsulated by the SWID tag to ensure that the digital signature was 1231

validated by a trusted certificate authority (CA), that the SWID tag was signed during the 1232

validity period for that signature, and that no signed data in the SWID tag has been 1233

modified. All of these validations shall be able to be accomplished without requiring 1234

access to an external network. If a SWID tag consumer needs to validate that the digital 1235

certificate has not been revoked, then it is expected that there be access to an external 1236

network or a data source that can provide [access to the necessary] revocation 1237

information. 1238

Additional information on digital signatures, how they work, and the minimum requirements for 1239

digital signatures used for U.S. Federal Government processing can be found in the Federal 1240

Information Processing Standards (FIPS) Publication 186-4, Digital Signature Standard (DSS) 1241

[FIPS-186-4]. 1242

3.3 A Complete Primary Tag Example 1243

A complete tag is illustrated below, combining examples from the preceding subsections. This 1244

example illustrates a primary tag that contains all mandatory data elements as well as a number 1245

of optional data elements. This example does not illustrate the use of digital signatures. 1246

4 See http://www.w3.org/TR/xmldsig-core/#sec-Schema.

http://www.w3.org/TR/xmldsig-core/#sec-Schema

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

 30

<SoftwareIdentity 1247
 xmlns="http://sta ndards.iso.org/iso/19770/ - 2/2015 /schema.xsd" 1248

 name="ACME Roadrunner Detector 2013 Coyote Edition SP1 " 1249
 tagId=" com.acme.rrd2013 - ce - sp1 - v4- 1- 5- 0" 1250
 version="4.1.5" > 1251
 <Entity 1252

 name=" The ACME Corporation " 1253
 regid= " acme.com " 1254
 role= " tagCreator softwareCreator " /> 1255

 <Entity 1256
 name=" Coyote Services, Inc. " 1257
 regid= " mycoyote.com " 1258
 role= " distributor " /> 1259

 <Link 1260
 rel= " license " 1261
 href= " www.gnu.org/licenses/gpl.txt / " > 1262

 <Meta 1263
 activationStatus="trial" 1264
 product="Roadrunner Detector" 1265
 colloquialVersion="2013" 1266

 edition="coyote" 1267
 revision="sp1"/> 1268
 <Payload> 1269
 <Direc tory root= " %programdata% " name=" rrdetector " > 1270

 <File name="rrdetector.exe" size="532712" 1271
SHA256:hash="a314fc2dc663ae7a6b6bc6787594057396e6b3f569c1272

d50fd5ddb4d1bbafd2b6a" /> 1273

 <File name="sensors.dll" size="13295" 1274
SHA256:hash ="54e6c3f569cd50fd5ddb4d1bbafd2b6ac4128c2dc661275

3ae7a6b6bc67875940573" /> 1276
 </Directory> 1277

 </Payload> 1278
</SoftwareIdentity> 1279

3.4 Summary 1280

SWID tags are rich sources of information useful for identifying and describing software 1281

products, whether in a pre-installation state or when installed on devices. A relatively small 1282

number of elements and attributes is required in order for a tag to be considered valid and 1283

conforming to the specification. Many other optional data elements and attributes are provided 1284

by the SWID specification to support a wide range of usage scenarios. 1285

A minimal valid and conforming tag uses a <SoftwareIdentity> element to record a 1286

productôs name and the tagôs globally unique identifier, and contains an <Entity> element to 1287

record the name and registration identifier of the tag creator. While such a minimal tag is better 1288

than no tag at all in terms of enhancing the ability of SAM tools to discover and account for 1289

installed products, it falls short of satisfying many higher-level business and cybersecurity needs. 1290

To meet those needs, the SWID specification offers several additional elements, such as 1291

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

 31

<Evidence> for use by scanning tools to record results of the discovery process, <Link> to 1292

associate tags with other items, including other tags, <Meta> to record a variety of metadata 1293

values, and <Payload> to enumerate files, etc., that comprise the installed product. Finally, 1294

digital signatures may optionally be used by any tag producer to ensure that the contents of a tag 1295

are not accidentally or deliberately modified after installation, and to provide authentication of 1296

the signer. 1297

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

 32

4 Implementation Guidance for All Tag Creators 1298

Sections 4 and 5 provide implementation guidance for creators of SWID tags. The primary 1299

purpose of this guidance is to help tag creators understand how to implement SWID tags in a 1300

consistent manner that will address common cybersecurity and operational IT usage scenarios, 1301

such as those defined in Section 6. In doing so this will satisfy the tag handling requirements of 1302

both public and private sector organizations. 1303

Each guideline in the next two sections is prefixed with a coded identifier for ease of reference. 1304

Such identifiers have the following format: CAT-NUM, where ñCATò is a three-letter symbol 1305

indicating the guidance category, and NUM is a number. Guidelines are grouped into the 1306

following categories: 1307

¶ GEN: General guidelines applicable to all types of SWID tags 1308

¶ COR: Guidelines specific to corpus tags (see §5.1) 1309

¶ PRI: Guidelines specific to primary tags (see §5.2) 1310

¶ PAT: Guidelines specific to patch tags (see §5.3) 1311

¶ SUP: Guidelines specific to supplemental tags (see §5.4) 1312

This section provides implementation guidelines that address issues common to all situations in 1313

which tags are deployed and processed. Section 5 provides guidelines that vary according to the 1314

type of tag being implemented. 1315

4.1 Limits on Scope of Guidelines 1316

This report assumes that tag creators are familiar with the SWID specification and ensure that 1317

implemented tags satisfy all requirements contained therein. 1318

GEN-1. When producing SWID tags, tag creators MUST produce SWID tags that conform 1319

to all requirements defined in the ISO/IEC 19770-2:2015 specification. 1320

Guideline GEN-1 establishes a baseline of interoperability that is needed by all adopters of 1321

SWID tags. 1322

All guidelines in this report are intended solely to extend and not to conflict with any guidelines 1323

provided by the SWID specification. Guidelines in this report either: 1324

¶ Strengthen existing guidelines contained in the SWID specification by elevating 1325

ñSHOULDò clauses contained in the SWID specification to ñMUSTò clauses, or 1326

¶ Add guidelines to address implementation issues where the SWID specification is silent 1327

or ambiguous by adding new ñSHOULDò or ñMUSTò clauses. 1328

In no cases should this reportôs guidelines be construed as either weakening or eliminating 1329

existing guidelines in the SWID specification. 1330

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

 33

4.2 Authoritative and Non-Authoritative Tag Creators 1331

SWID tags may be created by individuals, organizations, or automated tools under different 1332

conditions. The entity that creates a tag, as well as the conditions under which a tag is created, 1333

profoundly affect how it can be used based on the quality, accuracy, completeness, and 1334

trustworthiness of the data contained in that tag. 1335

Tags may be created by authoritative or non-authoritative entities. For the purposes of this report, 1336

an authoritative tag creator is a first- or second-party that creates a tag as part of the process of 1337

releasing software. A first-party authoritative tag creator is the software creator. A second party 1338

authoritative tag creator aggregates, distributes, or licenses software on behalf of the software 1339

creator. Such parties typically possess accurate, complete, and detailed technical knowledge that 1340

is needed for creation of authoritative tags containing reliable information. 1341

A non-authoritative tag creator is defined as an entity that is in a third-party relation to the 1342

creation, maintenance, and distribution of the software. Non-authoritative tag creators typically 1343

create tags using product information that is gathered using forensic methods while discovering 1344

installed software. 1345

As a shorthand, this report uses the term ñauthoritative tagò to refer to tags created by 1346

authoritative entities, and ñnon-authoritative tagò to refer to tags created by non-authoritative 1347

entities. Unless otherwise specified, guidelines in this report are directed equally at both 1348

authoritative and non-authoritative tag creators. Guidelines prefixed with ñ[Auth]ò are directed 1349

specifically at authoritative tag creators, and guidelines prefixed with ñ[Non-Auth]ò are directed 1350

specifically at non-authoritative tag creators. 1351

4.3 Implementing <SoftwareIdentity> Elements 1352

This section provides guidelines to be observed by tag creators when implementing SWID tag 1353

<SoftwareIdentity> elements. 1354

The SWID specification defines an international standard intended to be adopted and used 1355

worldwide. To support an international audience it is necessary to permit tag creators to provide 1356

language-dependent attribute values in region-specific human languages. For example, a 1357

Japanese software provider may want to specify the value of a particular productôs 1358

<SoftwareIdentity> @name attribute as a string of Japanese characters. 1359

The SWID tag XML schema provides multi-language support in two ways. First, the schema 1360

specifies UTF-8 as the allowed character encoding scheme for SWID tag files. Second, the 1361

schema allows the optional @xml:lang attribute to be included on all tag elements. By taking 1362

advantage of these features, a Japanese software provider could issue a SWID tag like this: 1363

<SoftwareIdentity 1364

 xmlns="http://standards.iso.org/iso/19770/ - 2/2015/schema.xsd" 1365
 xml:lang="ja - jp" 1366

 name="◖fiⱧꜙכ♃ ◦☻♥ⱶ 2015" 1367

 tagId="jp.largecomputer co. ♃◓ 1" 1368

 version="1.0"> 1369

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

 34

 <Entity 1370

 name=" ◖fiⱧꜙכ♃ " 1371

 regid="largecomputerco.jp" 1372
 role="tagCreator softwareCreator"/> 1373

 é 1374
</SoftwareIdentity> 1375

According to W3C documentation, language tags ñare used to indicate the language of text or 1376

other items in HTML and XML documentsò [W3C-langtags]. By supplying the language tag 1377

ñja - jp ò as the value of the <SoftwareIdentity> @xml:lang attribute, the tag creator 1378

signals to tag consumers that various language-dependent attributes, such as the 1379

<SoftwareIdentity> @name attribute, are provided in Japanese. Additionally, the SWID 1380

schema is designed such that any value of @xml:lang specified on any tag element is inherited 1381

by all of that elementôs child elements, unless explicitly overridden. As a result, the value 1382

specified for the <SoftwareIdentity> @xml:lang attribute will, in effect, establish the 1383

preferred language that is used for all language-dependent attributes within the tag. 1384

Knowing the preferred language of SWID tag attribute values can be very useful to tag 1385

consumers, and can relieve them of the need to attempt to perform language auto-detection. The 1386

following guideline requires that tag creators always specify the preferred language of a tag: 1387

GEN-2. Every <SoftwareIdentity> element MUST specify a @xml:lang attribute 1388

with a non-blank value to indicate the default human language used for expressing all 1389

language-dependent attribute values. 1390

Guideline GEN-2 is directed towards both authoritative and non-authoritative tag creators. While 1391

authoritative tag creators can always be expected to know the default language of the tag, non-1392

authoritative creators may need to use local knowledge to ascertain the most appropriate default 1393

language. This document recommends that non-authoritative tag creators supply the default 1394

language of the device where the tagged product resides. 1395

GEN-3. [Non-Auth] When specifying a value for the <SoftwareIdentity> 1396

@xml:lang attribute, non-authoritative tag creators SHOULD use the language tag 1397

corresponding to the default language of the device where the tagged product resides. 1398

In some cases, tag creators may want to specify various SWID tag attribute values in more than 1399

one human language. This presents a number of challenges and potential interoperability issues; 1400

these are discussed further in Section 4.7. 1401

4.4 Implementing <Entity> Elements 1402

This section provides guidelines to be observed by tag creators when implementing SWID tag 1403

<Entity> elements. The guidelines in this section address four issues: 1404

1. Providing detailed information about entities (see §4.4.1) 1405

2. Preventing unnecessarily complex entity specifications (see §4.4.2) 1406

3. Distinguishing between authoritative and non-authoritative tags (see §4.4.3) 1407

4. Furnishing information about the software creator (see §4.4.4) 1408

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

 35

4.4.1 Providing Detailed Information about Entities 1409

The first issue to be addressed concerns the need for detailed information about the various 1410

entities associated with tags and/or tagged products. 1411

Section 8.2 of the SWID specification requires that every SWID tag contain an <Entity> 1412

element where the @role attribute has the value ñtagCreator ò, and the @name attribute is 1413

also provided. Although <Entity> elements may furnish @regid attribute values, the 1414

specification does not require this information to be provided. Instead, the specification defaults 1415

the @regid attribute value to ñhttp://invalid.unavailable ò when a value is not 1416

explicitly provided in the element. Because the @regid attribute serves as a unique reference to 1417

an organization, this report provides guidelines to ensure that explicit values are provided 1418

whenever possible. 1419

The ability to provide @regid attribute values varies depending on whether a tag creator is 1420

authoritative or non-authoritative. For authoritative tag creators, it is reasonable to require the 1421

@regid value on all <Entity> elements: 1422

GEN-4. [Auth] Every <Entity> element MUST provide an explicit (i.e., non-default) 1423

@regid attribute value. 1424

Non-authoritative tag creators may be less able to provide reliable @regid information. While 1425

they can be expected to provide a @regid value for the <Entity> element with the 1426

ñtagCreator ò @role that identifies their organization, they can only be encouraged to 1427

provide @regid information for entities in other roles. This leads to the following two 1428

guidelines: 1429

GEN-5. [Non-Auth] Every <Entity> element SHOULD provide an explicit (i.e., non-1430

default) @regid attribute value when such a value can be determined. 1431

GEN-6. [Non-Auth] The <Entity> element containing the @role ñtagCreator ò 1432

MUST provide an explicit (i.e., non-default) @regid attribute value. 1433

4.4.2 Preventing Complex Entity Specifications 1434

The second issue to be addressed concerns the potential for unnecessarily complex specifications 1435

of entities and roles associated with the tag and/or the tagged product. The SWID specification 1436

allows a tag to furnish multiple <Entity> elements in order to support situations in which 1437

different organizations play different roles with respect to the tag and/or the tagged product. So if 1438

one organization were the tag creator and a second organization were the software creator, this 1439

information could be specified as follows: 1440

<Entity 1441

 name="Organization 1 Corp" 1442
 role="tagCreator"/> 1443
<Entity 1444
 name=" Organization 2 Corp " 1445

 role="softwareCreator"/> 1446

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

 36

This ability to furnish multiple <Entity> elements has an undesirable side effect, however. It 1447

now becomes possible for role information associated with a single organization to be spread 1448

across multiple <Entity> elements, as illustrated by this example: 1449

<Entity 1450
 name="Organization 1 Corp" 1451
 role="tagCreator"/> 1452

<Entity 1453
 name=" Organization 1 Corp " 1454
 role="softwareCreator"/> 1455

Such spreading of role information across <Entity> elements is discouraged. Furnishing entity 1456

information in this way increases the size of the tag unnecessarily as well as creates additional 1457

processing complexity for tag consumers. To preclude this, the following guideline is provided: 1458

GEN-7. All <Entity> elements that provide the same @regid attribute value MUST 1459

provide the same @role attribute values. 1460

Guideline GEN-7 works in concert with guidelines GEN-4 through GEN-6 to achieve the 1461

desired effect. It should be clear that the following example satisfies these guidelines: 1462

<Entity 1463
 name="Organization 1 Corp" 1464
 regid= " org1.com " 1465
 role="tagCreator softwareCreator "/> 1466

<Entity 1467
 name="Organization 2 Corp" 1468
 regid= " org2.com " 1469

 role=" licensor "/> 1470

As will be seen later in Section 4.7, guidelines GEN-4 through GEN-7 also play an important 1471

role in addressing potential interoperability issues that could arise when tag creators specify 1472

attribute values in multiple human languages. 1473

4.4.3 Distinguishing Between Authoritative and Non-Authoritative Tags 1474

The third issue to be addressed here concerns the process by which a tag consumer may rapidly 1475

determine whether the tag creator is authoritative or non-authoritative. 1476

 1477

When a tag contains an <Entity> element that specifies only a single @role of 1478

ñtagCreator ò, tag consumers can safely assume that the tag creator is non-authoritative. To 1479

enable tag consumers to accurately determine that a tag is created by an authoritative source, 1480

authoritative tag creators are required to provide an <Entity> element that indicates that the 1481

entity having the ñtagCreator ò role also has one or more of these additional predefined roles: 1482

ñaggregator ò, ñdistributor ò, ñlicensor ò, or ñsoftwareCreator ò. 1483

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

 37

GEN-8. [Auth] Authoritative tag creators MUST provide an <Entity> element where the 1484

@role attribute contains the value ñtag Creator ò and at least one of these additional role 1485

values: ñaggregator ò, ñdistributor ò, ñlicensor ò, or ñsoftwareCreator ò. 1486

If this guideline is observed, tag consumers may reliably distinguish between authoritative and 1487

non-authoritative tags according to this rule: 1488

If a tag contains an <Entity> element with a @role value that includes ñtagCreator ò 1489

as well as any of ñaggregator ò, ñdistributor ò, ñlicensor ò, or 1490

ñsoftwareCreator ò, then the tag is authoritative, otherwise it is non-authoritative. 1491

4.4.4 Furnishing Information about the Software Creator 1492

The fourth issue to be addressed here concerns the furnishing of information about the software 1493

creator, when that information is known. 1494

Explicit knowledge of the software creator is important for many software inventory scenarios, 1495

but the SWID specification does not require that this information be provided. To support 1496

software inventory scenarios, authoritative tag creators are expected to furnish information on 1497

the software creatorôs identity. If the tag creator is not the same as the software creator, 1498

authoritative tag creators are expected to know the appropriate @name and @regid attribute 1499

values for the software creator. 1500

GEN-9. [Auth] Authoritative tag creators MUST provide an <Entity> element where the 1501

@role attribute contains the value ñsoftwareCreator ò. 1502

Non-authoritative tag creators may be unable to accurately determine and identify the various 1503

entities associated with a software product, including the software creator. Nevertheless, because 1504

tag consumers may obtain substantial benefits from knowing a productôs software creator, non-1505

authoritative tag creators are encouraged to include this information in a tag whenever possible. 1506

GEN-10. [Non-Auth] Non-authoritative tag creators SHOULD provide an <Entity> 1507

element where the @role attribute contains the value ñsoftwareCreator ò. If known, 1508

the @name attribute SHOULD also be provided. 1509

4.5 Implementing <Link> Elements 1510

This section provides guidelines to be observed by tag creators when implementing SWID tag 1511

<Link> elements. As discussed in Section 3.1.4, the <Link> element is used to establish 1512

relationships of various kinds between tags and other documents, including other tags. The 1513

guidelines in this section address two issues: 1514

1. Linking a source tag to a known target tag 1515

2. Linking a tag to a collection of tags 1516

4.5.1 Linking a Source Tag to a Known Target Tag 1517

In many tag creation situations, there will be a need to embed in a source tag (i.e., a tag being 1518

created) a <Link> element that points to a preexisting target tag. For example, when a patch tag 1519

(see §2.1.3) is being created, it is important to link that patch tag (the source tag) to the tag which 1520

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

 38

describes the product being patched (the target tag). As another example, a supplemental tag (see 1521

§2.1.4) will typically be linked to another preexisting tag whose information is being 1522

supplemented. To establish these relationships, tag creators use the <Link> @href attribute in 1523

the source tag to provide a pointer to the target tag. 1524

In these situations, the tag creator will know the contents of the target tag, including its @tagId . 1525

In this sense, the target tag is known to the tag creator at the time that the source tag is being 1526

created. To link a source tag to a known target tag, tag creators are required to use the óswid: ô 1527

scheme followed by the @tagId of the target tag. 1528

GEN-11. In order to link a source tag to a specific target tag whose @tagId is known at the 1529

time the source tag is created, tag creators MUST set the value of the <Link> @href 1530

attribute in the source tag to a URI with ñswid: ò as its scheme, followed by the @tagId of 1531

the target tag. 1532

This idea is illustrated below with two tag fragments. 1533

Tag 1: 1534
 <SoftwareIdentity 1535
 name="Application 1" 1536
 tagId="com.largecomputerco.app1" 1537
 é 1538

</SoftwareIdentity> 1539

 1540

Tag 2: 1541
 <SoftwareIdentity 1542
 name="Application 2" 1543

 tagId ="com.largecomputerco.app2" 1544
 é 1545
 <Link rel="relation" href="swid:com.largecomputerco.app1"/> 1546
</SoftwareIdentity> 1547

In the above example, Tag 2 (describing ñApplication 2ò) is the source tag, and is linked to the 1548

target Tag 1 (describing ñApplication 1ò). 1549

4.5.2 Linking a Tag to a Collection of Tags 1550

In contrast to situations where the @tagId of the target tag is known, there are also many tag 1551

creation situations where there is a need to embed in a source tag a <Link> element that points 1552

either to a single target tag or to a collection of target tags whose @tagId value(s) cannot be 1553

known with certainty at the time the source tag is created. Consider the following scenarios: 1554

¶ A primary tag (the source) is being created for a product that requires a commonly used 1555

shared library. This shared library is maintained by a third party, has its own primary tag, 1556

and is periodically upgraded in ways that maintain backwards compatibility. It is 1557

important that the source tag includes a link to the shared libraryôs tag (the target), but it 1558

is not possible to specify a fixed @tagId for the target tag. 1559

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

 39

¶ A patch tag (the source) is being created for a patch that applies to a collection of 1560

products based on version. For example, imagine that a software provider has released a 1561

series of versions of a product, all in the ñ4.1.xò version series. A flaw is discovered in 1562

version 4.1.5 of the product, and it is determined that the flaw was introduced in version 1563

4.1.0. A single patch is developed to correct this flaw, so its patch tag needs to link to all 1564

affected versions. 1565

The SWID specification provides a mechanism that tag creators may use when linking a source 1566

tag to a collection of target tags. That mechanism is to set the <Link> @href attribute value to 1567

a URI with a scheme of óswidpath: ô, followed by an XPath 2.0 [XPath20] conformant query. 1568

Any such XPath query is expected to be used by a system to iterate over a set of SWID tags and 1569

identify matching tags by applying the XPath query to each tag and checking for a non-empty 1570

result. Because the SWID specification is not clear and specific about this usage, this document 1571

provides the following guidelines: 1572

GEN-12. When linking a source tag to one or more target tags whose @tagId value(s) 1573

cannot be determined at the time the source tag is created, tag creators MUST set the value of 1574

the <Link> @href attribute in the source tag to a URI with swidpath: as its scheme, 1575

followed by an XPath 2.0 [XPath20] conformant query. All characters contained in the 1576

XPath query which the URI specification [RFC3986] designates as reserved MUST be 1577

percent encoded per the URI specification. All embedded SWID tag elements in the query 1578

MUST be prefixed with the ñswid: ò namespace. 1579

The above guideline clarifies two points: (1) that URI reserved characters in the embedded 1580

XPath query must be percent encoded, and (2) that the ñswid: ò namespace must be used for all 1581

SWID elements. Thus, in order to process such a query, the ñswidpath: ò scheme must be 1582

stripped off, any embedded percent encodings must be replaced with the encoded characters, and 1583

the XPath query processor must be supplied with the definition of the ñswid: ò namespace. 1584

The following guideline advises query developers on how to prepare queries in a consistent and 1585

interoperable manner. 1586

GEN-13. Any XPath query used within a <Link> @href element MUST be designed in 1587

such a way that it can used by a system to iterate over a set of SWID tags and identify 1588

matching tags by applying the XPath query to each tag and checking for a non-empty result. 1589

Next, a series of examples are presented to help the reader to understand the guidelines presented 1590

in this subsection. 1591

4.5.2.1 An Example Tag 1592

To illustrate the guidelines for linking tags, a series of examples are presented relative to this 1593

example tag: 1594

<SoftwareIdentity 1595

 xmlns:xsi ="http://www.w3.org/2001/XMLSchema - instance" 1596

 xmlns="http://standards.iso.org/iso/19770/ - 2/2015/schema.xsd" 1597

 xmlns:SHA256="http://www.w3.org/2001/04/xmlenc#sha256" 1598

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

 40

 xmlns:ext="http://example.org/ns/swid - example" 1599

 name="ACME Roadrunner Detector 2013 Coy ote Edition SP1" 1600

 tagId="com.acme.rrd2013 - ce - sp1 - v4 - 1- 5- 0" 1601

 version="4.1.5"> 1602

 <Entity 1603

 name="The ACME Corporation" 1604

 regid="acme.com" 1605

 role="tagCreator softwareCreator"/> 1606

 <Entity 1607

 name="Coyote Services, Inc." 1608

 regid="mycoyote.com" 1609

 ro le="distributor"/> 1610

 <Meta 1611

 activationStatus="trial" 1612

 product="Roadrunner Detector" 1613

 colloquialVersion="2013" 1614

 edition="coyote" 1615

 revision="sp1" 1616

 ext:newattr="newvalue"/> 1617

 <Payload> 1618

 <Directory root="%programdata%" name="rrdetector"> 1619

 <File name="rrdetector.exe" size="532712" 1620

SHA256:hash="a314fc2dc663ae7a6b6bc6787594057396e6b3f569cd50fd5dd1621

b4d1bbafd2b6a"/> 1622

 <File name="sensors.dll" size="13295" 1623

SHA256:hash="54e6c3f569cd50fd5ddb4d1bbafd2b6ac4128c2dc663ae7a6b61624

bc67875940573"/> 1625

 </Directory> 1626

 </Payload> 1627

</SoftwareIdentity> 1628

4.5.2.2 Example 1: Using an XPath Query to Refer to a Tag by its @tagId 1629

Although the óswid: ô scheme is intended to be used in cases where the target tagôs @tagId 1630

value is known, the óswidpath: ô scheme followed by an XPath query could also be used to 1631

achieve the same effect. The following XPath query will match the tag illustrated above in 1632

Section GEN-12: 1633

/swid :SoftwareIdentity[@tagId='com.acme.rrd2013 - ce - sp1 - v4 - 1- 5-1634

0'] 1635

When incorporated into a <Link> element, the above query must be prefixed with the 1636

óswidpath: ô scheme, and reserved characters must be percent encoded, as follows: 1637

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

 41

<Link rel="relation" 1638
href="swid path:%2Fswid%3ASoftwareIdentity%5BtagId%3D%27com.acme.1639

rrd2013 - ce - sp1 - v4 - 1- 5- 0%27%5D"/> 1640

4.5.2.3 Example 2: Using an XPath Query to Refer to a Tag by Name and Tag Creator 1641
@regid 1642

In the next example, an XPath 2.0 query is shown which matches any tag such that (1) the 1643

product name includes the string ñRoadrunner Detector ò, and (2) the <Entity> element 1644

containing the ñtagCreator ò @role also contains the @regid value ñacme.comò: 1645

/swid:SoftwareIdentity[contains(@name,'Roadrunner Detector') 1646

 and swid:Entity[@regid='acme.c om' 1647
 and count(index - of(@role,'tagCreator')) gt 0]] 1648

Note: The query above is designed with the assumption that the SWID tag has been validated 1649

against the SWID schema before the XPath query engine is run. The final draft of this report will 1650

address this topic, and present guidance on whether or not queries should assume tag schema 1651

validation. 1652

When incorporated into a <Link> element, the above query must be prefixed with the 1653

óswidpath: ô scheme, and reserved characters must be percent encoded, as follows: 1654

<Link rel="relation" 1655
href="swidpath%2Fswid%3ASoftwareIdentity%5Bdescendant%3A%3Aswid%1656

3AFile%5B%40name%20%3D%20%27rrdetector.exe%27%20and%20%40*%5Bloc1657
al - name()%20%3D%20%27hash%27%20and%20namespace-1658
uri()%20%3D%20%27http%3A%2F%2Fwww.w3.org%2F2001%2F04%2Fxmle nc%231659
sha256%27%20and%20.%3D%27a314fc2dc663ae7a6b6bc6787594057396e6b3f1660

569cd50fd5ddb4d1bbafd2b6a%27%5D%5D%5D"/> 1661

4.5.2.4 Example 3: Using an XPath Query to Refer to a Tag Containing a Known File 1662

In the next example, an XPath 2.0 query is shown which matches any tag that includes a 1663

<File> element describing the ñrrdetector.exe ò file with a specific hash value: 1664

/swid:SoftwareIdentity[descendant::swid:File[@name = 1665
'rrdetector.exe' 1666
 and @*[local - name() = 'hash' 1667

 and namespace - uri() = 1668
'http://www.w3.org/2001/04/xmlenc#sh a256' 1669
 and 1670
.='a314fc2dc663ae7a6b6bc6787594057396e6b3f569cd50fd5ddb4d1bbafd21671

b6a']]] 1672

Such a query could be used in a patch tag that affects a specific file that is used by any number of 1673

other products, which may or may not be installed on a device at any given time. When 1674

incorporated into a <Link> element, the above query must be prefixed with the ñswidpath: ò 1675

scheme, and reserved characters must be percent encoded, resulting in this <Link> element: 1676

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

 42

<Link rel= " relation " 1677
href= " %2Fswid%3ASoftwareIdentity%5Bdescendant%3A%3Aswid%3AFile%51678

B%40name%20%3D%20%27rrdetector.exe%27%20and%20%40*%5Blocal -1679
name()%20%3D%20%27hash%27%20and%20namespace-1680
uri()%20%3D%20%27http%3A%2F%2Fwww.w3.org%2F2001%2F04%2Fxmlenc%231681
sha256%27%20and%20.%3D%27a314fc 2dc663ae7a6b6bc6787594057396e6b3f1682

569cd50fd5ddb4d1bbafd2b6a%27%5D%5D%5D " /> 1683

4.5.2.5 Example 4: Using an XPath Query to Refer to Tags with a Range of Versions 1684

In the next example, an XPath 2.0 query is shown which matches any tag that describes a 1685

product whose name is ñRoadrunner Detectorò and whose version is 4.1.0 or greater within the 1686

4.x release branch. 1687

/swid:SoftwareIdentity[swid:Meta[@product = 'Roadrunner 1688

Detector'] 1689
 and tokenize(@version,' \ .')[1] cast as xs:unsignedInt = 4 1690
 and tokenize(@version,' \ .')[2] cas t as xs:unsignedInt ge 1] 1691

When incorporated into a <Link> element, the above query must be prefixed with the 1692

ñswidpath: ò scheme, and reserved characters must be percent encoded, resulting in this 1693

<Link> element: 1694

<Link rel="relation" 1695
href=" %2Fswid%3ASoftwar eIdentity%5Bswid%3AMeta%5B%40product%20%31696
D%20%27Roadrunner%20Detector%27%5D%20and%20tokenize(%40version%21697
C%27%5C.%27)%5B1%5D%20cast%20as%20xs%3AunsignedInt%20%3D%204%20a1698

nd%20tokenize(%40version%2C%27%5C.%27)%5B2%5D%20cast%20as%20xs%31699
AunsignedInt%20ge%201%5 D%0A" /> 1700

4.6 Implementing <Payload> and <Evidence> Elements 1701

This section provides guidelines to be observed by tag creators when implementing SWID tag 1702

<Payload> and <Evidence> elements. The guidelines in this section address three issues: 1703

1. Providing sufficient file information (see §4.6.1) 1704

2. Hash function selection (see §4.6.2) 1705

3. Handling of path separators and environment variables (see §4.6.3) 1706

4.6.1 Providing Sufficient File Information 1707

The first issue to be addressed here concerns the amount of payload/evidence information that 1708

needs to be provided. 1709

Authoritative tag creators use the <Payload> element to enumerate the files and folders 1710

comprising a product or patch, whereas non-authoritative tag creators use the <Evidence> 1711

element for this purpose. Files are described using the <File> element, and folders are 1712

described using the <Directory> element. 1713

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

 43

The SWID specification requires only that the <File> element specify the name of the file 1714

using the @name attribute. This information is insufficient for most cybersecurity usage 1715

scenarios. Additional information is needed to check whether files have been improperly 1716

modified since they were originally deployed. By including file size information within 1717

<Payload> and <Evidence> elements using the @size attribute, cybersecurity processes 1718

may efficiently test for changes that alter a fileôs size. 1719

GEN-14. Every <File> element provided within a <Payload> or <Evidence > element 1720

MUST include a value for the @size attribute that specifies the size of the file in bytes. 1721

Knowing a fileôs expected size is useful and enables a quick check to determine whether a file 1722

may have changed. 1723

Similarly, knowing a fileôs version as recorded in the file or filesystem can be useful when 1724

searching for installed products containing a file with a known version. This motivates the 1725

following guideline: 1726

GEN-15. Every <File> element provided within a <Payload> or <Evidence> element 1727

MUST include a value for the @version attribute, if one exists for the file. 1728

Because improper changes may also occur in ways that do not alter file sizes or versions, file 1729

hash values are also necessary. If there is a difference in the filesô sizes, a change has occurred. If 1730

the size is the same, re-computing a hash will be necessary to determine if a change has 1731

occurred. Authoritative tag creators are expected to have sufficient knowledge of product details 1732

to be able to routinely provide hash values. Non-authoritative tag creators may not have the 1733

necessary knowledge of or access to files to provide hash information, but are encouraged to do 1734

so whenever possible. 1735

GEN-16. [Auth] Every <File> element within a <Payload> element MUST include a 1736

hash value. 1737

GEN-17. [Non-Auth] Every <File> element within an <Evidence> element SHOULD 1738

include a hash value. 1739

4.6.2 Hash Function Selection 1740

The second issue to be addressed here concerns selection of the hash function to be used when 1741

providing hash values. 1742

Software products tend to be used long beyond the formal product support period. When 1743

selecting a hash function, it is important to consider the deployment lifecycle of the associated 1744

product. The hash value will likely be computed at the time of product release and will be used 1745

by tag consumers over the support lifecycle of the product and in some cases even longer. 1746

Stability in the hash functions used within SWID tags is desirable to maximize the 1747

interoperability of SWID-based tools while minimizing development and maintenance costs. 1748

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

 44

Taking these considerations into account, it is desirable to choose a hash function that provides a 1749

minimum security strength of 128 bits to maximize the usage period5. 1750

GEN-18. Whenever <Payload> or <Evidence> elements are included in a tag, every 1751

<File> element SHOULD avoid the inclusion of hash values based on hash functions with 1752

insufficient security strength (< 128 bits). 1753

According to [SP800-107] the selected hash function needs to provide the following security 1754

properties: 1755

¶ Collision Resistance: ñIt is computationally infeasible to find two different inputs to the 1756

hash function that have the same hash value.ò This provides assurance that two different 1757

files will have different hash values. 1758

¶ Second Preimage Resistance: ñIt is computationally infeasible to find a second input 1759

that has the same hash value as any other specified input.ò This provides assurance that a 1760

file cannot be engineered that will have the same hash value as the original file. This 1761

makes it extremely difficult for a malicious actor to add malware into stored executable 1762

code while maintaining the same hash value. 1763

The SHA-256, SHA-384, SHA-512, and SHA-512/256 hash functions meet the 128-bit strength 1764

requirements for collision resistance and second preimage resistance6. This leads to the following 1765

guidelines: 1766

GEN-19. [Auth] Whenever a <Payload> element is included in a tag, every <File> 1767

element contained therein MUST provide a hash value based on the SHA-256 hash function. 1768

GEN-20. [Non-Auth] Whenever an <Evidence> element is included in a tag, every 1769

<File> element contained therein SHOULD provide a hash value based on the SHA-256 1770

hash function. 1771

GEN-21. Whenever a <Payload> or <Evidence> element is included in a tag, every 1772

<File> element contained therein MAY additionally provide hash values based on the 1773

SHA-384, SHA-512, and/or SHA-512/256 hash functions. 1774

Due to the use of 64-bit word values in the algorithm, SHA-512 hash function implementations 1775

may perform better on 64-bit systems. For this reason, tag creators are encouraged to consider 1776

including a SHA-512 hash value, since this might be a better-performing integrity assurance 1777

measure. 1778

5 According to NIST SP 800-57 Part 1 [SP800-57-part-1], when applying a hash function over a time period that extends beyond

the year 2031, a minimum security strength of 128 bits is needed. Weak hash values are of little use and should be avoided.

6 See FIPS 180-4 [FIPS180-4].

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

 45

4.6.3 Handling of Path Separators and Environment Variables 1779

The third issue to be addressed here concerns interoperable handling of path separators and 1780

environment variables in <Fil e> and <Directory> elements. 1781

The SWID specification defines three attributes which may be used on <File> and 1782

<Directory> elements to fully specify a file or a folder: 1783

¶ location : A string specifying the directory or location where a file was found or can 1784

be expected to be located 1785

¶ name: A string specifying the name of the filename or directory without any embedded 1786

path separators 1787

¶ root : A string specifying a system-specific root folder that the ólocation ô attribute is 1788

an offset from; if this is not specified, it is assumed that the óroot ô is the same folder as 1789

the location of the SWID tag, or is the directory specified by an enclosing 1790

<Directory> element 1791

While the ónameô attribute is defined to explicitly exclude path separators, both ólocation ô 1792

and óroot ô are permitted to include such separators. The problem is that path separators vary 1793

across operating environments. The most widely known difference is between Windows and 1794

UNIX/Linux systems; Windows uses the backslash ó\ô as the path separator, while UNIX/Linux 1795

systems use the forward slash ó/ô. 1796

It is important that tag consumers be able to reliably parse strings containing embedded path 1797

separators without having to guess the path separator. This document recommends that the path 1798

separator character be made explicit in <Payload> and <Evidence> elements. The 1799

following guideline achieves this by introducing a new @n8060 : pathSeparator extension 1800

attribute: 1801

GEN-22. The @n8060 : pathSeparator extension attribute SHOULD be used within 1802

<Payload> and <Evidence> elements to specify the path separator character used in 1803

embedded <File> and <Directory> elements. 1804

In a related vein, the SWID specification also allows platform-specific environment variables to 1805

be used within any or all of the óroot ô, ólocation ô, and ónameô attributes. Once again, the 1806

format of such variables differs across platforms. On Windows machines, environment variables 1807

are enclosed in percent ó%ô characters, while UNIX/Linux simply prefix variables with a dollar 1808

ó$ô character. This document recommends that environment variable prefix and suffix characters 1809

be made explicit in <Payload> and <Evidence> elements. The following guidelines achieve 1810

this by introducing new @n8060 : envVarPrefix and @n8060 : envVarSuffix extension 1811

attributes: 1812

GEN-23. The @n8060 : envVarPrefix extension attribute SHOULD be used within 1813

<Payload> and <Evidence> elements to specify the character(s) used to prefix 1814

environment variables that may be embedded <File> and <Directory> elements. 1815

GEN-24. The @n8060 : envVarSuf fix extension attribute SHOULD be used within 1816

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

 46

<Payload> and <Evidence> elements to specify the character(s) used to suffix 1817

environment variables that may be embedded <File> and <Directory> elements. 1818

When guidelines GEN-22 through GEN-24 are observed, a <Payload> could be represented 1819

as follows: 1820

<Payload n8060 : pathSeparator="/" n8060 : envVarPrefix="$" 1821
 n8060 : envVarSuffix=""> 1822

 <Directory root="$ETC/drivers" name="printers"> 1823
 <Directory name="printermodel"> 1824
 <File name="colordriver.shlib" size="234824"/> 1825

 <File name="bwdriver.shlib" size="143854"/> 1826
 </Directory> 1827
 </Directory> 1828
</Payload> 1829

Given this information, a tag consumer should be able to straightforwardly construct these two 1830

fully-qualified filenames: 1831

¶ $ETC/drivers/printers/printermodel/colordriver.shlib 1832

¶ $ETC/drivers/printers/ printermodel/bwdriver.shlib 1833

To access these files on the device, device-specific information will still be required to determine 1834

the value of the ó$ETCô environment variable. 1835

4.7 Providing Attribute Values in Multiple Languages 1836

Section 4.3 introduced a guideline to require that the <SoftwareIdentity> @xml:lang 1837

attribute be used to specify the preferred human language used within the tag to provide 1838

language-dependent attribute values. This is the most common scenario, i.e., that all language-1839

dependent attribute values within a tag will be provided in the same language. Such tags will be 1840

termed monolingual tags. For example, a Japanese software provider wishing to create a 1841

monolingual tag in Japanese will set the preferred language of their tag to be Japanese (e.g., 1842

using the language tag ñja - jp ò as the value for the <SoftwareIdentity> @xml:lang 1843

attribute), then specify all language-dependent attributes in Japanese. 1844

Because the SWID specification permits the @xml:lang attribute be used on any tag element, 1845

this enables tag creators to implement multilingual tags, tags which provide language-dependent 1846

attributes in more than one language. Suppose, for example, that a Japanese software provider 1847

wants to provide their organizationôs name in both Japanese and English. Technically, this is 1848

straightforward to do, as illustrated here: 1849

<SoftwareIdentity 1850

 xmlns="http://standards.iso.org/iso/19770/ - 2/2015/schema.xsd" 1851
 xml:lang="ja - jp" 1852

 name="◖fiⱧꜙכ♃ ◦☻♥ⱶ 2015 " 1853

 tagId="jp.largecomputerco. ♃◓ 1" 1854

 version="1.0"> 1855

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

 47

 <Entity 1856

 name=" ◖fiⱧꜙכ♃ " 1857

 regid="largecomputerco.jp" 1858
 role="tagCreator softwareCreator"/> 1859

 <Entity xml:lang="en - us" 1860
 name=" Large Computer Company" 1861
 regid="largecomputerco.jp" 1862
 role="tagCreator softwareCreator"/> 1863

 é 1864
</SoftwareIdentity> 1865

The first <Entity> element in the example inherits the value of @xml:lang specified by the 1866

<SoftwareIdentity> element. The second <Entity> element explicitly overrides the 1867

preferred language, signaling that information is being furnished in (in this example) English. 1868

Although the SWID specification provides the technical means to implement multilingual tags, 1869

in practice, implementing and processing such tags present a number of challenges and potential 1870

interoperability issues, so care must be taken. 1871

This report does not offer guidelines to address these issues, since the marketplace requirements 1872

for multilingual tags are insufficiently clear to support development of robust guidelines to fully 1873

and effectively address all associated interoperability concerns. Instead, this report will discuss 1874

some of the most significant issues and suggest future directions for interoperability guidance. 1875

4.7.1 Specifying Product Names in Multiple Languages 1876

The <SoftwareIdentity> @name attribute specifies the preferred name of the software 1877

product, and is provided in the language indicated by the value of the @xml:lang attribute 1878

(which is now required per guideline GEN-2). The SWID specification makes no provisions for 1879

the specification of multiple product names, much less for the specification of multiple such 1880

names in different languages. 1881

If the marketplace determined that there is a demand for recording a multilingual representation 1882

of a product name in a single SWID tag, two options (short of revising the SWID specification 1883

itself) would seem to exist: 1884

1. Use the <Meta> element. Note, however, that because the <Meta> element described in 1885

the SWID specification does not offer a predefined attribute for alternate product names, 1886

the user community would need to agree on a new extension attribute to be used for this 1887

purpose. 1888

2. Use supplemental tags. Here, the idea would be to create one or more supplemental tags, 1889

each of which specifies a different preferred language via the <SoftwareIdentity> 1890

@xml:lang attribute, that then provides the <SoftwareIdentity> @name 1891

attribute value in that preferred language. In other words, a U.S.-based software provider 1892

might issue a single primary tag providing the product name in English, along with four 1893

supplemental tags providing the product name in each of French, German, Japanese, and 1894

Spanish. 1895

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

 48

The first option is relatively compact but depends on effective procedures for defining and 1896

managing extension attributes. The second option avoids the introduction of an extension 1897

attribute, but forces tag creators to generate arbitrary quantities of supplemental tags to address 1898

all human languages of interest. 1899

4.7.2 Specifying <Entity> Elements in Multiple Languages 1900

The example at the top of this section shows how a Japanese organizationôs name could be 1901

provided in both Japanese and English, in two separate <Entity > elements distinguished by 1902

different @xml:lang attributes, one value inherited from <SoftwareIdentity> and the 1903

other an explicit value overriding the inherited value. 1904

This multilingual capability also creates opportunities for entity information specified in one 1905

language to differ in unexpected and confusing ways from entity information specified in a 1906

second language. For example, there is nothing in either the SWID specification or the associated 1907

XML schema that would prevent the following scenario: 1908

<Soft wareIdentity 1909
 xmlns="http://standards.iso.org/iso/19770/ - 2/2015/schema.xsd" 1910
 xml:lang="ja" 1911

 name="◖fiⱧꜙכ♃ ◦☻♥ⱶ 2015 " 1912

 tagId="jp.largecomputerco. ♃◓ 1" 1913

 version="1.0"> 1914

 <Entity xml:lang=" en" 1915
 name="The Large Computer Company" 1916
 regid ="largecomputerco.jp" 1917
 role="tagCreator softwareCreator"/> 1918

 <Entity xml:lang="fr" 1919
 name="Le Grand Enterprise dôInformatique" 1920
 regid="largecomputerco.jp" 1921

 role="tagCreator"/> 1922
 é 1923
</SoftwareIdentity> 1924

This example contains two problems. First, the tagôs preferred language is specified as Japanese, 1925

but entity information is only provided in English and French. Given such a tag, it is not obvious 1926

how a tag consumer should decide which <Entity> element provides the preferred name of 1927

the tag creator. Second, the two <Entity> elements agree on the @regid , but disagree on the 1928

@role . Again, it is not obvious how to interpret such data. A number of equally odd scenarios 1929

can easily be envisaged. 1930

Future guidelines may be needed to address issues like these. Such guidelines might include: 1931

¶ A requirement that at least one <Entity> element be provided in the preferred 1932

language 1933

¶ A requirement that all <Entity> elements which agree on the @regid value also 1934

agree on the @role value, irrespective of the @xml:lang value 1935

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

 49

4.7.3 Specifying <Payload> Elements in Multiple Languages 1936

When software products are localized to a particular language region, files and folder names 1937

often change to match the localized language. To account for this, authoritative tag creators may 1938

want to create multilingual tags that provide <Payload> elements which enumerate alternate 1939

language-specific versions of files and folders. If this is done, it must be done in a way that 1940

enables tag consumers to simply and accurately determine the effective language-specific 1941

payload. Note that non-authoritative tag creators are assumed to be unable to produce tag data in 1942

multiple languages, so this issue is not a concern for <Evidence> elements. 1943

This information could be represented in multiple ways; for example, a tag creator could 1944

implement multiple alternative <Payload> elements as illustrated here: 1945

<SoftwareIdentity 1946

 xmlns="http://standards.iso.org/iso/19770/ - 2/2015/schema.xsd" 1947
 xml:lang="en" 1948
 name=" Joyful App 2015 " 1949
 tagId="com.largecomputerco. joyfulapp1 " 1950

 version="1.0"> 1951
 é 1952
 <Payload 1953

 <File name="joyfulapp.exe"/> 1954
 </Payload> 1955
 <Payload xml:lang="fr" 1956
 <File name=" appdejoie.exe "/> 1957

 </Payload> 1958
 é 1959
</SoftwareIdentity> 1960

In this example, the first <Payload> element is expressed in the tagôs preferred language 1961

(English), inherited from <SoftwareIdentity> . The second <Payload> element is 1962

expressed in French. This is a simple and straightforward way to represent equivalent payloads 1963

in alternate languages. But because @xml:lang may be used on any element, there is nothing 1964

to prevent a tag creator from representing the payload in the following way: 1965

 <Payload 1966
 <File name="joyfulapp.exe"/> 1967
 <File xml:lang="fr" name=" appdejoie.exe "/> 1968

 </Payload> 1969
 1970

Arguably, this is a more compact representation, but raises questions of how one might 1971

determine the effective language-specific payload for a given device. The above payload could 1972

potentially represent two files that are co-present on a device, or two different files, only one of 1973

which is present as determined by the local language. Future guidelines may be necessary to 1974

resolve potential interoperability issues like these. 1975

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

 50

4.8 Updating Tags 1976

Although the SWID specification does not prohibit modification of SWID tags, it does restrict 1977

modifications so that they can only be performed by the original tag creator. The primary reason 1978

for altering a tag after it has been installed on a device is to correct errors in the tag. In rare 1979

circumstances, it may be useful to update a tag to add data elements that logically belong in the 1980

tag and not in a separate supplemental tag. However, under normal conditions, tags should rarely 1981

be modified, and supplemental tags should be used to add identifying and descriptive product 1982

information. 1983

When changes are made to a productôs codebase that cause the productôs version to change, 1984

those changes should be reflected by removing all original tags (primary, supplemental, and 1985

patch tags) and installing new tags as appropriate to identify and describe the new product 1986

version. Patches should be indicated by adding a patch tag to the installed collection of tags. 1987

When an existing tag must be updated, it will rarely make sense to edit the tag in place, that is, to 1988

selectively modify portions of the tag as if using a text editor. Such editing actions would likely 1989

invalidate XML digital signatures stored in the tag. Thus it is expected that when a tag is 1990

updated, it is always fully replaced along with any embedded digital signatures. 1991

When a tag must be updated to correct errors or add data elements, its <SoftwareIdentity> 1992

@tagId should not be changed. This is because tag identifiers may be used as proxy identifiers 1993

for pre-installation software packages, installed software products, or software patches. It is 1994

important that tag identifiers be usable as reliable persistent identifiers. This leads to the 1995

following guideline. 1996

GEN-25. When it is necessary to update a tag to correct errors in or add data elements to that 1997

tag, the tagôs <SoftwareIdentity> @tagId SHOULD NOT be changed. 1998

When tags are updated, however, it is important that the updates be implemented in a manner 1999

that supports easy change detection. Tag consumers should not be required or expected to fully 2000

compare all contents of discoverable tags to determine if any of the products have changed since 2001

the last time the tags were examined. To facilitate change detection by tag consumers, tag 2002

creators are expected to update the <SoftwareIdentity> @tagVersion attribute to 2003

indicate that a change has been made to the tag. 2004

GEN-26. When it is necessary to update a tag to correct errors in or add data elements to that 2005

tag, the tagôs <SoftwareIdent ity> @tagVersion attribute MUST be changed. 2006

If this guideline is observed, tag consumers need only to maintain records of tag identifiers and 2007

tag versions discovered on endpoints. If a tag with a previously unseen tag identifier is found on 2008

an endpoint, a tag consumer may conclude that a new product has been installed since the last 2009

time the endpoint was inventoried. If a tag with a previously discovered tag identifier can no 2010

longer be discovered on an endpoint, a tag consumer may conclude that a software product has 2011

been removed since the last time the endpoint was inventoried. If, however, a tag is discovered 2012

on an endpoint with a previously seen tag identifier but a new tag version, a tag consumer may 2013

conclude that identifying or descriptive metadata in that tag has been changed, and so the tag 2014

should be fully processed. 2015

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

 51

4.9 Summary 2016

The primary purpose of all the guidelines in this report is to help tag creators understand how to 2017

implement SWID tags in a manner that will satisfy the tag handling requirements of IT 2018

organizations. The guidelines are intended to be broadly applicable to common IT usage 2019

scenarios that are relevant to all software providers and consumers. 2020

This section provided implementation guidelines addressing issues common to all situations in 2021

which tags are deployed and processed. These are the key points from this section: 2022

¶ Tags may be created by authoritative or non-authoritative entities. An authoritative tag 2023

creator is a first- or second-party that creates a tag as part of the process of releasing 2024

software. Authoritative tag creators typically possess accurate, complete, and detailed 2025

technical knowledge that is needed for creation of authoritative tags containing reliable 2026

information. A non-authoritative tag creator is an entity that is in a third-party relation to 2027

the creation, maintenance, and distribution of the software. Non-authoritative tag creators 2028

typically create tags using product information that is gathered using forensic methods 2029

while discovering installed software. 2030

¶ The SWID specification supports an international audience, allowing tag creators to 2031

provide language-dependent attribute values in region-specific human languages. 2032

Guidelines in this section specified how tag creators should designate the default human 2033

language of language-dependent attribute values provided within a tag, and how such 2034

values may be provided in multiple languages. 2035

¶ SWID tags provide detailed information about various entities associated with the 2036

software product described the tag, as well as with the tag itself. Guidelines in this 2037

section addressed how complex entity specifications are to be avoided, how authoritative 2038

and non-authoritative tags are to be distinguished, and how information about the 2039

software creator is to be furnished. 2040

¶ SWID tags may be explicitly linked to other tags and/or other resources in a variety of 2041

ways. Guidelines in this section addressed how source tags are to be linked to individual 2042

target tags as well and/or to sets of target tags. 2043

¶ Tag creators may provide detailed information about the files and folders comprising a 2044

software product. Guidelines in this section addressed how sufficient information may be 2045

provided, how cryptographic hashes may be provided, and how platform-specific path 2046

separators and environment variables may incorporated in file or folder descriptions. 2047

 2048

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

 52

5 Implementation Guidance Specific to Tag Type 2049

This section provides implementation guidelines that are specific for each of the four tag types 2050

defined in Section 2.1: corpus tags (see §5.1), primary tags (see §5.2), patch tags (see §5.3), and 2051

supplemental tags (see §5.4). 2052

5.1 Implementing Corpus Tags 2053

As noted in Section 2.1.1, corpus tags are used to identify and describe products in a pre-2054

installation state. This section provides guidance addressing the following topics related to 2055

implementation of corpus tags: setting the <SoftwareIdentity> @corpus attribute (see 2056

§5.1.1), specifying @version and @versionScheme (see §5.1.2), and specifying 2057

<Payload> element information (see §5.1.3). 2058

5.1.1 Setting the <SoftwareIdentity> @corpus Attribute 2059

To indicate that a tag is a corpus tag, tag implementers set the value of the 2060

<SoftwareIdentity> @corpus attribute to ñtrue ò. The SWID specification does not 2061

specifically prohibit tag implementers from also setting other tag type indicator attributes to 2062

ñtrue ò (e.g., <SoftwareIdentity> @patch and <SoftwareIdentity> 2063

@supplemental), but doing so would create confusion regarding how the information 2064

contained within the tag should be interpreted. This report provides guidelines to ensure that at 2065

most one tag type indicator attribute is set to ñtrue ò. 2066

COR-1. If the value of the <SoftwareIdentity> @corpus attribute is set to ñtrue ò, 2067

then the values of <SoftwareIdentity> @patch and @supplemental MUST be set 2068

to ñfalse ò. 2069

5.1.2 Specifying the Version and Version Scheme in Corpus Tags 2070

Corpus tags identify and describe software products in a pre-installation state. As part of the 2071

process of determining whether a given product is suitable for or allowed to be installed on an 2072

endpoint, tag consumers often need to know the productôs specific version. The SWID 2073

specification provides the <SoftwareIdentity> @version attribute for recording version 2074

information, but defines this attribute as optional and defaulting to a value of ñ0.0 ò. 2075

This report seeks to encourage software providers both to assign and maintain product versions 2076

for their products, and to explicitly record those versions in appropriate tags released along with 2077

those products. In short, if a software product has an assigned version, that version must be 2078

specified in the tag. 2079

COR-2. If a software product has been assigned a version by the software provider, that 2080

version MUST be specified in the <SoftwareIdentity> @version attribute of the 2081

productôs corpus tag, if any. 2082

For many cybersecurity purposes, it is important to know not only a productôs version, but also 2083

to know whether a given product version represents an ñearlierò or ñlaterò release of a product, 2084

compared to a known version. For example, security bulletins often warn that a newly discovered 2085

vulnerability was found in a particular version V of a product, but may also be present in ñearlier 2086

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

 53

versions.ò Thus, given two product versions V1 and V2, it is important to be able to tell whether 2087

V1 is ñearlierò or ñlaterò than V2. 2088

In order to make such an ordering decision reliably, it is necessary to understand the structure of 2089

versions and how order is encoded in versions. This is no single agreed-upon practice within the 2090

software industry for versioning products in a manner that makes clear how one version of a 2091

product relates to another. The ñSemantic Versioning Specificationò [SEMVER] is one example 2092

of a grass-roots effort to recommend a common interpretation of multi-part numeric versions, but 2093

it is by no means universal. 2094

The SWID specification defines the <SoftwareIdentity> @versionSchem e attribute to 2095

record a token that designates the ñschemeò according to which the value of 2096

<SoftwareIdentity> @version can be parsed and interpreted. Like @version , the 2097

SWID specification defines @versionScheme as ñoptionalò with a default value of 2098

multipa rtnumeric . Table 3 lists the allowed values of @versionScheme that are defined 2099

in the SWID specification. 2100

Table 3: Allowed Values of @versionScheme 2101

Value Meaning
multipartnumeric Numbers separated by dots, where the numbers are interpreted as

integers (e.g. 1.2.3, 1.4.5, 1.2.3.4.5.6.7)

multipartnumeric+suffix Numbers separated by dots, where the numbers are

interpreted as integers with an additional string suffix

(i.e. 1.2.3a)

alphanumeric Strictly a string, sorting is done alphanumerically

decimal A floating point number (e.g. 1.25 is less than 1.3)

semver Follows the [SEMVER] specification.

unknown Other unknown version scheme, no attempt should be

made to order versions of this type

<any> Other version schemes that may be generally known in

the market

The following guideline is provided in consideration of the fact that tag consumers have a critical 2102

interest in knowing not only a productôs version, but also its versioning scheme and the 2103

semantics of that scheme. 2104

COR-3. If a corpus tag contains a value for the <SoftwareIdentity> @version 2105

attribute, it MUST also contain a value for the <SoftwareIdentity> 2106

@versionScheme attribute. 2107

If a particular productôs version does not conform to one of the pre-defined schemes listed in 2108

Table 3, whatever value a tag creator provides for the <SoftwareIdentity> 2109

@versionScheme attribute ought to be selected from a well-known public list of version 2110

scheme identifiers. Mechanisms for establishing, advertising, and curating such public lists are 2111

beyond the scope of this document. Ideally, such well-known public lists of version schemes will 2112

provide enough semantic definition of each scheme to enable tag consumers to determine 2113

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

 54

whether a version V1 conforming to a particular scheme should be ordered óbeforeô or óafterô 2114

another version V2 conforming to that same scheme. 2115

5.1.3 Specifying the Corpus Tag Payload 2116

Corpus tags are used to document the installation media associated with a software product. This 2117

documentation enables the media to be checked for authenticity and integrity. At a minimum, 2118

corpus tags are required to provide <Payload> details that enumerate all the files on the 2119

installation media, including file sizes and hash values. 2120

COR-4. A corpus tag MUST contain a <Payload> element that MUST enumerate every 2121

file that is included in the tagged installation media. 2122

5.2 Implementing Primary Tags 2123

The primary tag for a software product contains descriptive metadata needed to support a variety 2124

of business processes. To ensure that tags contain the metadata needed to help automate IT and 2125

cybersecurity processes on information systems, additional requirements must be satisfied. This 2126

section provides guidance addressing the following topics: setting tag type indicator attributes to 2127

designate a tag as a primary tag (see §5.2.1), specifying version and version scheme information 2128

(see §5.2.2), specifying <Payload> or <Evidence > information (see §5.2.3), and specifying 2129

attributes needed to form Common Platform Enumeration (CPE) names (see §5.2.4). 2130

5.2.1 Setting the <SoftwareIdentity> Tag Type Indicator Attributes 2131

To indicate that a tag is a primary tag, tag implementers ensure that the values of all three tag 2132

type indicators (the <SoftwareIdentity> @corpus , @patch , and @supplemental 2133

attributes) are set to ñfalse ò. This is enforced by the following guideline. 2134

PRI-1. To indicate that a tag is a primary tag, the <SoftwareIdentity> @corpus , 2135

@patch , and @supplemental attributes MUST be set to ñfalse ò. 2136

5.2.2 Specifying the Version and Version Scheme in Primary Tags 2137

Primary tags identify and describe software products in a post-installation state. Like corpus tags, 2138

primary tag information about product versions and associated version schemes is important to 2139

enable tag consumers to conduct various cybersecurity operations. Unlike the case for corpus 2140

tags, however, guidelines for primary tags must distinguish between authoritative and non-2141

authoritative primary tag creators. 2142

PRI-2. [Auth] If a software product has been assigned a version by the software provider, 2143

that version MUST be specified in the <SoftwareIdentity> @version attribute of 2144

the productôs primary tag. 2145

PRI-3. [Auth] If a primary tag contains a value for the <SoftwareIdentity> 2146

@version attribute, it MUST also contain a value for the <SoftwareIdentity> 2147

@versionScheme attribute. 2148

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

 55

PRI-4. [Non-Auth] If a software product has been assigned a version by the software 2149

provider, and that version can be determined, the <SoftwareIdentity> @version 2150

attribute of the primary tag MUST contain that value. 2151

PRI-5. [Non-Auth] If a primary tag contains a value for the <SoftwareIdentity> 2152

@version attribute, and the version scheme of that @version attribute value can be 2153

determined, the <SoftwareIdentity> @versionScheme attribute of the primary tag 2154

MUST contain that version scheme value. 2155

As was true for corpus tags (see §5.1.2), it is important that the version schemes used in primary 2156

tags enable distinct versions of a product to be placed in a defined order, minimally so that 2157

consumers can determine whether one version of a product is óbeforeô (earlier) or óafterô (later) 2158

than another version. Section 8.6.13 of the SWID specification provides a table of predefined 2159

values for the @versionScheme attribute with defined semantics (reproduced above in Table 2160

3). If a value for the @versionScheme attribute is provided that is not listed among the 2161

predefined values, ideally that value ought to come from a well-known public list of version 2162

scheme identifiers. The public list would specify the meaning for each version scheme 2163

sufficiently to allow for comparing two versions and determining their relative order in a 2164

sequence of versions. 2165

5.2.3 Specifying Primary Tag Payload and Evidence 2166

Detailed information about the files comprising an installed software product is a critical need 2167

for cybersecurity operations. For example, such information enables endpoint software inventory 2168

and integrity tools to confirm that the product described by a discovered tag is, in fact, installed 2169

on a device. Authoritative tag creators are encouraged to provide a <Payload> element in the 2170

primary tag, and non-authoritative tag creators are encouraged to provide an <Evidence> 2171

element in the primary tag. 2172

PRI-6. [Auth] A <Payload> element SHOULD be provided in a software productôs 2173

primary tag. 2174

Note:Payload information from authoritative tag creators is a key enabler for a number of 2175

cybersecurity usage scenarios, and promises to dramatically increase the value of SWID tags to 2176

tag consumers. At this time, however, a weaker guideline is presented until the potential costs 2177

and burdens on tag creators and consumers can be better understood, along with a better sense of 2178

the methods needed for providing this information in a way that supports the appropriate level of 2179

assurance. 2180

PRI-7. [Non-Auth] An <Evidence> element SHOULD be provided in a software 2181

productôs primary tag. 2182

Note : Guidelines PRI-6 and PRI-7 currently specify that payload and evidence be supplied 2183

within the primary tag, and not within a supplemental tag. This is due to concerns about 2184

additional processing complexity and difficulties with assuring the reliability of such payload 2185

and evidence information when it is stored separately from the primary tag. As the degree of 2186

understanding of payload and evidence usage patterns improves, providing a clearer sense of the 2187

costs and benefits, strengthening or refinement of these requirements may be needed. 2188

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

 56

Ideally, <Payload> and <Evidence> elements should list every file that is found to be part 2189

of the product described by the tag. Such information aids in the detection of malicious software 2190

attempting to hide among legitimate product files. It also aids in reconciling authoritative and 2191

non-authoritative tags in cases where both kinds of tags exist on a device for the same product. 2192

PRI-8. <Payload> and <Evidence > elements SHOULD list every file comprising the 2193

product described by the tag. 2194

Although a full enumeration of product files is the ideal, at a minimum, only those files subject 2195

to execution, referred to here as machine instruction files, need to be listed. A machine 2196

instruction file is any file that contains machine instruction code subject to runtime execution, 2197

whether in the form of machine instructions, which can be directly executed by computing 2198

hardware or hardware emulators; bytecode, which can be executed by a bytecode interpreter; or 2199

scripts, which can be executed by scripting language interpreters. Library files that are 2200

dynamically loaded at runtime are also considered machine instruction files. 2201

PRI-9. [Auth] The <Payload> element MUST list every machine instruction file 2202

comprising the product described by the tag. 2203

PRI-10. [Non-Auth] The <Evidence> element MUST list every machine instruction file 2204

comprising the product described by the tag. 2205

If a tag creator enumerates every file according to PRI-8, this can cause problems later for tag 2206

consumers. Recall that Section 4.6 of this document provides guidelines that require tag creators 2207

to supply file size, version, and hash information (see guidelines GEN-11 through GEN-18). 2208

These guidelines are there to ensure that tag consumers can later use the provided information to 2209

confirm the integrity of files discovered on devices. The problem, however, is that particular files 2210

listed in a <Payload> or <Evidence> element might be changed for non-malicious reasons 2211

at arbitrary times after the product is installed. Data and configuration files are two obvious 2212

examples. 2213

If a tag consumer were to inspect a particular file listed in a tagôs <Payload> or <Evidence> 2214

element, compare the fileôs hash value as listed in a tag to a new value computed from the actual 2215

file on a device, and discover a mismatch, that would be a ñfalse positiveò if that file were not 2216

expected to be static. If tag consumers were to generally find that performing such comparisons 2217

led to an unwieldy number of false positives, they might be inclined to stop using SWID tag 2218

payload and evidence information altogether, an undesirable outcome. 2219

In the interest of minimizing the possibility of such false positives, this document provides 2220

guidelines for tag creators to explicitly mark all mutable files listed in a tagôs <Payload> 2221

element with a special value. Specifically, this document introduces a @n8060 : mutable 2222

extension attribute on <File > elements. The @n8060 : mutable extension attribute takes a 2223

Boolean value whose default value is ñfalse ò. Authoritative tag creators are required to set the 2224

@n8060 : mutable attribute value to ñtrue ò for any <File> element that describes a non-2225

static file. Non-authoritative tag creators are encouraged to do so whenever possible. 2226

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

 57

PRI-11. [Auth] If a <File> element included in a <Payload> element of a primary tag 2227

describes a file that can undergo authorized changes over time in ways that could alter its 2228

size, version, and/or hash value, the tag creator MUST set that fileôs <File> 2229

@n8060 : mutable extension attribute to ñtrue ò. 2230

PRI-12. [Non-Auth] If it can be determined that a <File> element included in an 2231

<Evidence > element of a primary tag describes a file that can undergo authorized changes 2232

over time in ways that could alter its size, version, and/or hash value, the tag creator 2233

SHOULD set that fileôs <File> @n8060 : mutable extension attribute to ñtrue ò. 2234

Observance of these guidelines by tag creators will help ensure that the resulting <Payload> 2235

and <Evidence> elements are useful to tag consumers attempting to verify the integrity of 2236

installed software products, while minimizing the potential number of false positives that such 2237

consumers may have to cope with. 2238

Note: Late in the process of readying Draft #4 of this report for public comment, it was noted 2239

that the guidelines in this section also apply to corpus and patch tags. In the final draft of this 2240

report, these guidelines will be incorporated into Section 4.6. They are left here for now in order 2241

to minimize impact to the extensive guideline cross-references throughout this report in the 2242

current draft revision. 2243

5.2.4 Specifying Product Metadata Needed for Targeted Search 2244

The SWID specification furnishes the <SoftwareIdentity> @name attribute to capture 2245

ñthe software component name as it would typically be referenced.ò This is also called the 2246

productôs market name, i.e., the product name as used on websites and in advertising materials to 2247

support marketing, sales, and distribution. Market names for commercial software products often 2248

combine a variety of market-relevant descriptive elements, including: 2249

¶ The productôs ñbase nameò distinguished from the providerôs ñbrand name.ò When, 2250

for example, the software provider whose legal name is ñAcme Systems Incorporatedò 2251

markets its ñRoadrunnerò product, it might use ñAcmeò as a company brand name 2252

prefixed to the base name of its products, as in ñAcme Roadrunnerò. 2253

¶ The productôs ñmarket version.ò On occasion, software providers distinguish between 2254

the version they assign to a productôs underlying codebase (e.g., 5.6.2) and the version 2255

they assign to it for marketing purposes (e.g., 2015). For example, Acme Systems 2256

Incorporated might release codebase version 6.0 of their Roadrunner product with the 2257

market version of 2015. The market name for this product might then appear as ñAcme 2258

Roadrunner 2015ò. 2259

¶ The productôs ñedition.ò Some software providers market the same core product to 2260

different user audiences, selectively adding and/or removing features depending on their 2261

appeal to each audience. When this is done, providers may add an ñeditionò descriptor to 2262

the productôs market name. For example, Acme might market a full-featured 2263

ñRoadrunnerò product to large companies, and refer to that product as the ñEnterprise 2264

Edition.ò A stripped-down and less-costly instantiation of that product might be tailored 2265

to individual use on home computers, and designated the ñHome Edition.ò As a result, 2266

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

 58

two different market names might be used: ñAcme Roadrunner 2015 for Enterprisesò and 2267

ñAcme Roadrunner 2015 for Home Officesò. 2268

¶ The productôs ñrevision.ò In some specialized cases, for example, when a particular 2269

product receives unwanted attention due to defects, a software provider may be motivated 2270

to revise a productôs market name in conjunction with the issuance of a major patch or 2271

product upgrade. When this happens, the revised market name might incorporate phrases 2272

such as ñService Release xò or ñRevision yò; e.g., ñAcme Roadrunner 2015 for 2273

Enterprises Service Release 2ò. 2274

While any or all of these elements may be present in a productôs market name and thus should 2275

appear in the <SoftwareIdentity> @name attribute of the productôs primary tag, there is 2276

no consistency in whether or how those elements are included, making it difficult for a machine 2277

to reliably parse them out of the market name. 2278

The problem is that these metadata elements are often needed by local administrators, 2279

cybersecurity personnel, and supporting automated tools when performing targeted searches. For 2280

example, a security advisory might announce that a major vulnerability has been discovered in 2281

the ñEnterpriseò edition of a product, while the ñHomeò edition is unaffected. As another 2282

example, an organization might want to declare and enforce a policy that only the ñEnterpriseò 2283

edition of Acmeôs ñRoadrunnerò project may be installed on network devices, and that allowed 2284

installations are further restricted to the ñService Pack 2ò revision of the product. To make this 2285

possible, there needs to be a way to individually refer to each descriptive element embedded 2286

within a productôs market name. 2287

To accommodate this need, the SWID specification defines the following <Meta> element 2288

attributes: 2289

¶ @product : This attribute provides the base name of the product. The base name is 2290

expected to exclude substrings containing the software providerôs name, as well as any 2291

indicators of the productôs version, edition, or revision level. 2292

¶ @colloquialVersion : This attribute provides the market version of the product. 2293

This version may remain the same through multiple releases of a software product, 2294

whereas the version specified in the <SoftwareIdentity> @version is more 2295

specific to the underlying software codebase and will change for each software release. 2296

¶ @edition : This attribute provides the edition of the product. 2297

¶ @revision : This attribute provides an informal designation for the revision of the 2298

product. 2299

If these attributes are specified, not only will targeted searches be easier to define and execute, 2300

but also it will be possible to mechanically generate a valid CPE name from an input SWID tag. 2301

(See [NISTIR 8085] for an algorithm that may be used to generate such CPE names.) 2302

The guideline is as follows: 2303

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

 59

PRI-13. If appropriate values exist and can be determined, a <Meta> element MUST be 2304

provided and MUST furnish values for as many of the following attributes as possible: 2305

@product , @colloquialVersion , @revision , and @edition . 2306

5.3 Implementing Patch Tags 2307

As noted earlier in Section 2.1.3, a patch tag is used to describe localized changes applied to an 2308

installed productôs codebase. This section provides guidance addressing the following topics 2309

related to implementation of patch tags: setting the <SoftwareIdentity> @patch attribute 2310

(see §5.3.1), linking patch tags to related tags (see §5.3.2), and specifying <Payload> or 2311

<Evidence> information (see §5.3.3). 2312

5.3.1 Setting the <SoftwareIdentity> @patch Attribute 2313

To indicate that a tag is a patch tag, tag implementers set the value of the 2314

<SoftwareIdentity> @patch attribute to ñtrue ò. The SWID specification does not 2315

specifically prohibit tag implementers from also setting other tag type indicator attributes to 2316

ñtrue ò (e.g., <SoftwareIdentity> @corpus and <SoftwareIdentity> 2317

@supplemental), but doing so would create confusion regarding how the information 2318

contained within the tag should be interpreted. This report provides guidelines to ensure that at 2319

most one tag type indicator attribute is set to true. 2320

PAT-1. If the value of the <SoftwareIdentity> @patch attribute is set to ñtrue ò, 2321

then the values of <SoftwareIdentity> @corpus and <SoftwareIdentity> 2322

@supplemental MUST be set to ñfalse ò. 2323

5.3.2 Linking Patch Tags to Related Tags 2324

A patch tag must be explicitly linked to the primary tag for the product to which the patch is 2325

applied. The SWID specification defines three relations which may be used when setting the 2326

value of the <Link> @rel attribute. These relations are described in Section 5.3.3 of the SWID 2327

specification and summarized in Section 2.1.3 of this report. They are: 2328

¶ Patches. This value documents a relationship to the primary tag of the patched product. 2329

¶ Requires. This value documents that a patch described by the patch tag requires the prior 2330

installation of another patch. 2331

¶ Supersedes. This value documents that a patch described by a patch tag can entirely 2332

replace another patch. 2333

Because the SWID specification requires that patch tags use these relations as appropriate when 2334

linking to related tags, no additional guidelines are provided in this report. 2335

5.3.3 Specifying Patch Tag Payload and Evidence 2336

Patches change files that comprise a software product, and may thereby eliminate known 2337

vulnerabilities. If patch tags clearly specify the files that are changed as a result of applying the 2338

patch, software inventory and integrity tools become able to confirm that the patch has actually 2339

been applied and that the individual files discovered on the endpoint are the ones that should be 2340

there. 2341

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

 60

Guidelines in this section propose that patch tags document three distinct types of changes: 2342

1. Modify : A file previously installed as part of the product has been modified on the 2343

device. 2344

2. Remove: A file previously installed as part of the product has been removed from the 2345

device. 2346

3. Add: An entirely new file has been added to the device. 2347

For files that are modified or added, patch tags must include file sizes and hash values. As stated 2348

before in requirements GEN-14 and GEN-16, authoritative tag creators are required to provide 2349

this information in the <Payload> element of the patch tag. Non-authoritative tag creators are 2350

encouraged to provide this information whenever possible in the <Evidence> element of the 2351

patch tag (see GEN-14, GEN-17). 2352

PAT-2. [Auth] A patch tag MUST contain a <Payload> element that MUST enumerate 2353

every file that is modified, removed, or added by the patch. 2354

PAT-3. [Auth] Each <File> element contained within the <Payload> element of a patch 2355

tag MUST include an extension attribute named @n8060 : patchEvent , which MUST 2356

have one of the following values: 2357

¶ The string value ñmodify ò to indicates that the patch modifies a pre-existing 2358

installed file 2359

¶ The string value ñremoveò to indicates that the patch removes a pre-existing 2360

installed file 2361

¶ The string value ñaddò to indicates that the patch installs a new file that did not 2362

previously exist 2363

PAT-4. [Non-Auth] A patch tag MUST contain an <Evidence> element that enumerates 2364

every file that was found to have changed as a result of the patch process. 2365

5.4 Implementing Supplemental Tags 2366

As noted in Section 2.1.4, supplemental tags are used for any purpose to furnish identifying and 2367

descriptive information not contained in other tags. This section provides guidance addressing 2368

the following topics related to implementation of supplemental tags: setting the 2369

<SoftwareIdentity> @supplemental attribute (see §5.4.1), linking supplemental tags 2370

to other tags (see §5.4.2), and establishing the precedence of information contained in a 2371

supplemental tag (see §5.4.3). 2372

5.4.1 Setting the <SoftwareIdentity> @supplemental Attribute 2373

To indicate that a tag is a supplemental tag, tag implementers set the value of the 2374

<SoftwareIdentity> @supplemental attribute to ñtrue ò. The SWID specification 2375

does not specifically prohibit tag implementers from also setting other tag type indicator 2376

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

 61

attributes to ñtrue ò (e.g., <SoftwareIdentity> @corpus and <SoftwareIdentity> 2377

@patch), but doing so would create confusion regarding how the information contained within 2378

the tag should be interpreted. This report provides guidelines to ensure that at most one tag type 2379

indicator attribute is set to ñtrue ò. 2380

SUP-1. If the value of the <SoftwareIdentity> @supplemental attribute is set to 2381

ñtrue ò, then the values of <SoftwareIdentity> @corpus and 2382

<SoftwareIdentity> @patch MUST be set to ñfalse ò. 2383

5.4.2 Linking Supplemental Tags to Other Tags 2384

An individual supplemental tag may be used to furnish data elements that complement or extend 2385

data elements furnished in another individual tag. That is, a supplemental tag may not be used to 2386

supplement a collection of tags. A supplemental tag may supplement any type of tag, including 2387

other supplemental tags. Because the SWID specification does not clearly state how a 2388

supplemental tag should indicate its linkage to other tags, a clarifying guideline is provided here. 2389

An individual supplemental tag may be used to furnish data elements that complement or extend 2390

data elements furnished in another individual tag. That is, a supplemental tag may not be used to 2391

supplement a collection of tags. A supplemental tag may supplement any type of tag, including 2392

other supplemental tags. Because the SWID specification does not clearly state how a 2393

supplemental tag should indicate its linkage to other tags, a clarifying guideline is provided here. 2394

SUP-2. A supplemental tag MUST contain a <Link> element to associate itself with the 2395

individual tag that it supplements. The @rel attribute of this <Link> element MUST be set 2396

to ñsupplemental ò. 2397

Note that the SWID specification also requires that every <Link> element provide a value for 2398

the @href attribute. Section 4.5 of this document provides pertinent guidelines for how tag 2399

creators should use the @href attribute to refer to other tags, in situations when the @tagId of 2400

the target is known (see guideline GEN-11), and when it is not known (see guidelines GEN-12 2401

and GEN-13). 2402

5.4.3 Establishing Precedence of Information 2403

As noted earlier, a supplemental tag is intended to furnish data elements that complement or 2404

extend data elements furnished in another tag. This does not preclude situations in which a 2405

supplemental tag contains elements or attributes that potentially conflict with elements or 2406

attributes furnished in the tag being supplemented. For example, suppose an endpoint contains a 2407

primary tag where the value of the <SoftwareIdentity> @name attribute is specified as 2408

ñFooò, and a supplemental tag is also present that is linked to the primary tag but specifies the 2409

value of the <SoftwareIdentity> @name attribute as ñBarò. 2410

One option is to treat any conflicting data items in a supplemental tag as overriding the 2411

corresponding values provided in the tag that is supplemented. Choosing this treatment, 2412

however, would introduce a new complexity, since multiple supplemental tags could all point to 2413

the same supplemented tag, and all data values could conflict. The only way to resolve this 2414

would be to add new requirements to establish precedence orders among supplemental tags. 2415

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

 62

Instead, this report takes the position that supplemental tags strictly extend, and never override. 2416

So in the example above, Foo is considered to be the correct value for @name, and the value of 2417

Bar furnished in the supplemental tag is ignored. 2418

Because certain attribute values pertain to tags themselvesðe.g., @tagId, @tagVersion , 2419

and <Entity> information about the tag creatorðdifferences in those values between a 2420

supplemental tag and a supplemented tag are never construed as conflicts. In other cases, 2421

information in a supplemental tag may be combined with information in the supplemented tag to 2422

obtain a full description of the product. For example, a primary tag may provide an <Entity> 2423

element that specifies the tagCreator role, while a supplemental tag provides <Entity> 2424

elements specifying other roles such as softwareCreator and licensor . In this scenario, 2425

the primary and supplemental tag collectively furnish all Entity roles. If, however, both the 2426

primary and supplemental tags provide <Entity> elements specifying values for the same role 2427

(e.g., both tags specify different softwareCreator values), then the conflicting value in the 2428

supplemental tag is ignored. 2429

This leads to the following guideline. 2430

SUP-3. If a supplemental tag provides a data value that conflicts with corresponding data 2431

values in the tag being supplemented, the data value in the supplemented tag MUST be 2432

considered to be the correct value. 2433

5.5 Summary 2434

This section provided draft implementation guidance related to all four SWID tag types: corpus, 2435

primary, patch, and supplemental. Key points presented include: 2436

¶ Corpus tags must include <Payload> details, and must be digitally signed to facilitate 2437

authentication and integrity checks. 2438

¶ Authoritative creators of primary tags are required to provide <Payload> information, 2439

and to include <Meta> attribute values needed to support metadata-based searching and 2440

automated generation of CPE names. Non-authoritative creators of primary tags are 2441

required to provide <Evidence> information for any data used to detect the presence of 2442

the product. 2443

¶ Patch tags must be explicitly linked to the primary tag of the patched product, as well as 2444

to any tags of required predecessor patches or superseded patches. Patch tags must 2445

document all files modified, removed, or added by the patch. 2446

¶ Supplemental tags may supplement any type of tag, but must be explicitly linked to the 2447

supplemented tag. Any data value supplied in a supplemental tag that conflicts with a 2448

corresponding data value in the supplemented tag is ignored. 2449

 2450

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

 63

6 SWID Tag Usage Scenarios 2451

This section presents a set of usage scenarios (US) that illustrate how, based on the guidelines 2452

provided in Sections 4 and 5 of this document, security professionals can achieve three important 2453

cybersecurity objectives: 2454

1. Minimizing exposure to publicly disclosed software vulnerabilities (see §6.1) 2455

2. Enforcing organizational policies regarding authorized software (see §6.2) 2456

3. Controlling network resource access from potentially vulnerable endpoints (see §6.3) 2457

By using SWID tags in accordance with the guidelines provided in this report, the security 2458

practitioner (e.g., Chief Information Security Officer (CISO), Information System Security 2459

Officer (ISSO)) can achieve these objectives quickly, accurately, and efficiently. Sections 6.1 2460

through 6.3 each describe the cybersecurity objective to be achieved, followed by specific usage 2461

scenarios that contribute to achieving the objective. Section 6.4 describes how the guidelines 2462

presented in this report enable each scenario. 2463

6.1 Minimizing Exposure to Publicly-Disclosed Software Vulnerabilities 2464

This section presents usage scenarios illustrating how SWID tags may be used by security 2465

practitioners to minimize risks from exploitation of endpoints with known vulnerabilities within 2466

enterprise networks. To minimize these risks, security practitioners need to maintain awareness 2467

of vulnerabilities related to installed software, especially those vulnerabilities for which a patch 2468

or other remediation has not been made available. Security practitioners also need to maintain 2469

awareness of changes to the software inventory on each endpoint, since each change could 2470

(intentionally or inadvertently) introduce vulnerabilities to that endpoint. For example, a user 2471

might unintentionally roll back a patch that mitigates a critical vulnerability. 2472

This section presents four usage scenarios related to this cybersecurity objective: 2473

¶ US 1 ï Continuously Monitoring Software Inventory (see §6.1.1) 2474

¶ US 2 ï Ensuring that Products are Properly Patched (see §6.1.2) 2475

¶ US 3 ï Correlating Inventory Data with Vulnerability Data to Identify Vulnerable 2476

Endpoints (see §6.1.3) 2477

¶ US 4 ï Discovering Vulnerabilities Due to Orphaned Software Components 2478

(see §6.1.4) 2479

6.1.1 US 1 ï Continuously Monitoring Software Inventory 2480

In this scenario, SWID tags are used to continuously monitor the inventory of software installed 2481

on endpoints within an enterprise network. Tags are key inputs to the process of gathering and 2482

maintaining an up-to-date and accurate accounting of software inventory on each endpoint. 2483

SWID data may be aggregated, if needed, in regional and/or enterprise-wide repositories. Using 2484

this data, organizations are able to maintain an ongoing understanding of installed software 2485

inventory by continuously monitoring software-change event notifications. Information provided 2486

by SWID tags contributes to an up-to-date and accurate understanding of the software on 2487

endpoints. As software changes are made, the endpointôs software inventory is updated to reflect 2488

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

 64

those changes. Modifications occur throughout the software lifecycle including installing, 2489

upgrading, patching, and removing software. 2490

One or more software discovery or monitoring tools (referred to generically in this section as 2491

ñdiscovery toolsò) can continuously monitor endpoints for software changes, either on an event-2492

driven basis or through periodic assessment of installation locations. These tools discover 2493

changes, including modifications to existing SWID tags on the endpoint. This analysis should 2494

consider various sources for performing this discovery (see §2.3.1 for a discussion of SWID tag 2495

placement on devices), including these: 2496

¶ The endpointôs local, directly attached filesystems, including files installed by traditional 2497

installation utilities and archived distributions (e.g., tar, zip) 2498

¶ Temporary storage connected to the endpoint (e.g., external hard drives, Universal Serial 2499

Bus (USB) devices) 2500

¶ Software contained in native package installers (e.g., RPM Package Manager (RPM)) 2501

¶ Shared filesystems (e.g., a mapped network drive or network-attached storage) that 2502

contain software that is executable from an endpoint. 2503

SWID tags provide identification, metadata, and relationship information about an endpointôs 2504

installed software. Authoritative tags discovered on an endpoint can supply reliable and 2505

comprehensive information about installed software, whereas discovery tools can place non-2506

authoritative SWID tags on the endpoint to leave a record of newly-discovered, untagged 2507

products. This is an important capability, since it is likely that some software will be untagged at 2508

the time of installation. 2509

As the tools collect the data, SWID tags enable many reporting capabilities for enterprise system 2510

software inventories. SWID tags can be aggregated to one or more repositories (e.g., regional or 2511

enterprise) to enable accurate analysis and reporting of the software products installed on a set of 2512

organizational endpoints. This aggregation supports the exchange of normalized data pertaining 2513

to these products, an important component of effectively managing IT across an enterprise. 2514

SWID tags provide a vendor-neutral and platform-independent way to analyze the state of 2515

installed software (e.g., software installed, products missing, or software in need of patching) 2516

within the organization, and to monitor endpoints for the purpose of maintaining continual 2517

awareness of their security posture. 2518

6.1.1.1 Initial Conditions 2519

This usage scenario assumes the following conditions: 2520

¶ A software discovery tool is installed on each enterprise-managed endpoint, and is 2521

configured to run on a defined schedule, on request, and/or in response to events 2522

generated on the endpoint which may indicate there has been a change to the installed 2523

software inventory. 2524

¶ The discovery tool records inventory data in a configuration management database 2525

(CMDB) which may or may not be co-resident on the endpoint. 2526

¶ The CMDB retains information about products (and their associated tags, if any) which 2527

have been discovered in the past on each endpoint. The discovery tool is able to use the 2528

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

 65

CMDB to compare current inventory state to the last known state, in order to detect 2529

changes. 2530

¶ At the time the discovery process is run on each endpoint, the discovery tool has 2531

sufficient access rights to the endpoint to discover each installed software instance and 2532

any associated metadata. This includes access rights to read SWID tags on the endpoint. 2533

¶ Some installed software products might not have an associated SWID tag because an 2534

authoritative source did not furnish one. 2535

6.1.1.2 Process 2536

1. Upon detecting new or changed software in an installation location or in a filesystem 2537

mounted on the endpoint, the discovery tool will collect and process all SWID tags (primary, 2538

supplemental, and/or patch tags) present in that location. Changes to be detected may 2539

include: 2540

¶ New software products (or subcomponents) that were not previously recorded in the 2541

inventory 2542

¶ Changes or updates to installed software products discovered previously 2543

¶ New or modified SWID tags, as indicated by a new @tagId or @tagVersion attribute 2544

value within the <SoftwareIdentity> element 2545

2. The discovery tool will update the CMDB with the data from newly discovered or changed 2546

SWID tags, creating new entries and/or modifying existing entries as needed for installed 2547

products and their components. Because the software version information is critical for 2548

understanding the configuration and potential vulnerabilities of the endpoint, if any primary 2549

tag contains such version information (using the <SoftwareIdentity> elementôs 2550

@version and @versionScheme attributes), then that information will be recorded (see 2551

PRI-2, PRI-3, PRI-4, PRI-5). 2552

If any tags are identified as not being in compliance with the SWID specification (see GEN-2553

1), those tags will not be recorded in the CMDB, since they may not be reliable for the 2554

purpose of software inventory. 2555

3. The tool will determine the type of tag discovered, based upon the 2556

<SoftwareIdentity> @corpus , @patch , and @supplemental attributes (see PRI-2557

1, COR-1, PAT-1, SUP-1). The discovery tool will read the payload information provided 2558

within the tag, including the filesô names, sizes, and cryptographic hashes for each 2559

component of the software product. These values will later be used to perform file integrity 2560

verification (see GEN-14, GEN-15, GEN-16, GEN-17, GEN-18, GEN-19, GEN-20, GEN-2561

21, GEN-22, GEN-23, GEN-24, PRI-6, PRI-7, PRI-8, PRI-9, PRI-10, PRI-11, PRI-12). 2562

4. The discovery tool will attempt to determine if the tag is authoritative by checking that the 2563

@regid of the <Entity> element containing the @role value ñtagCreator ò also 2564

contains the @role value of ñsoftwareCreator ò, ñaggregator ò, ñdistributor ò, 2565

or ñlicensor ò (see §4.4.3, GEN-8, GEN-9, GEN-10). 2566

5. If a tag was not installed with the software, the discovery tool will create and deploy a non-2567

authoritative tag to the endpoint for each instance of a discovered application. As an 2568

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

 66

alternative, the discovery tool may be able to determine that a previously generated non-2569

authoritative tag already exists in the CMDB which describes the newly-discovered product. 2570

This is possible if (1) the CMDB records all tagsðauthoritative and non-authoritativeð2571

discovered or deployed anywhere within the enterprise, and (2) the discovery tool is able to 2572

use information about the newly-discovered product to retrieve a matching tag from the 2573

CMDB. In this case, the discovery tool may simply deploy the matching tag from the CMDB 2574

(or an appropriate related source) to the endpoint, rather than generate and deploy a 2575

completely new non-authoritative tag. 2576

 2577

Information about the files discovered is important to support continuous monitoring for 2578

software vulnerabilities, so the deployed tag will list every machine instruction file 2579

comprising the software product discovered (See §5.2.3), using the <Evidence> element 2580

(see PRI-7, PRI-8). This information will include filenames, sizes, versions, and 2581

cryptographic hashes discovered (see GEN-14, GEN-15, GEN-17, GEN-18, GEN-20, 2582

GEN-21, GEN-22, GEN-23, GEN-24). It will also include any version information 2583

determined for the software product (see PRI-4, PRI-5). 2584

 2585

When SWID tags are discovered that do not conform to the 2015 release of the SWID 2586

specification, these tags are not stored in the CMDB, but their contents might still be useful 2587

to support the evidence collected above. 2588

6. Many cybersecurity decisions will be based upon the authenticity and integrity of the SWID 2589

tags discovered. To validate the integrity of the discovered tag, the discovery tool can 2590

authenticate the certificate in the digital signature using the @thumbprint attribute of the 2591

<Entity> element (see §3.2). 2592

7. The discovery tool will read the tag identifier (i.e., @tagId) and identify the tag location, 2593

along with the type of tag discovered or created: primary tags for installed software (see 2594

§2.1.2), and patch tags for software patches (see §2.1.3). Supplemental tags can provide 2595

additional information and may be useful for inventory. If the tag identifier already exists in 2596

inventory, the discovery tool will determine if the tag version has changed by examining the 2597

value associated with the <SoftwareIdentity> elementôs @tagVersion attribute. If 2598

that tag version has been updated, the tool will register the updated values that were changed 2599

in the SWID tag (see GEN-25, GEN-26). 2600

8. The CMDB will be updated, including sending notifications to applicable reporting systems 2601

in the enterprise. The CMDB will track the changes discovered to support SAM and security 2602

needs. This includes the location of discovered tags to enable subsequent extraction of the 2603

information contained in each tag when needed. 2604

Periodically, the complete set of tags from each endpoint is either sent to the enterprise 2605

repository or collected via a remote management interface by the discovery tool to create a 2606

baseline software inventory. Once this baseline inventory has been established, only software 2607

changes since the last exchange need to be provided and may be supplemented with a 2608

periodic full refresh. This provides for efficiencies in the velocity and volume of information 2609

that needs to be exchanged. 2610

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

 67

9. For a given endpoint, the discovery tool iterates through each tag in the repository, including 2611

non-authoritative SWID tags. 2612

10. The endpoint-collected tags are added to the enterprise repository, recording relevant 2613

endpoint identification information (host name, IP addresses, etc.), the date and time of the 2614

data collection, and data about the discovery tool or remote management interface used. 2615

11. The discovery tool will record relationships between tags, as indicated within the SWID tags 2616

discovered. For example, patch tags include a reference (using the <Link> elementôs 2617

@href and @rel attributes) to the software being modified (see GEN-11, GEN-12, GEN-2618

13). Similarly, for supplemental tags recorded, the discovery tool will indicate the tag 2619

identifier for the primary tag of the software for which additional information is being 2620

provided (see SUP-2). If any data in the supplemental tag conflicts with the data in any tag it 2621

supplements, the data in the supplemented tag is considered the correct value (see SUP-3). 2622

6.1.1.3 Outcomes 2623

The process described above provides an accurate and automated method for collecting 2624

identifying and descriptive metadata about an endpointôs inventory of installed software. When 2625

used in this way, SWID tags enable the collection of a comprehensive inventory of installed 2626

software products by examining the system for SWID tags rather than attempting to infer 2627

inventory information by examining arbitrary indicators on the endpoint (e.g., registry keys, 2628

installed files). 2629

SWID tags contribute to a reliable software inventory by supporting searching for specific 2630

product information or software characteristics (e.g., prohibited or required software, specific 2631

software versions or ranges, software from a specific vendor). The SWID specification provides 2632

a rich set of data that may be used with specific query parameters to search for instances of 2633

installed software. In addition to the common name and version values, many SWID tags store 2634

extended information such as data identified through the <Link> and <Meta> elements. 2635

Details regarding attributes and values that can be useful for queries are described in Sections 2636

3.1.1 and 3.1.5. 2637

As an indirect result of maintaining SWID tag-based inventory, the discovery tools can 2638

dynamically identify vulnerabilities and misconfiguration. For example, upon discovering a 2639

newly installed or changed software application, the discovery tool can check the configuration 2640

of that software using a pre-defined checklist. The discovery tool could also check for any 2641

known vulnerabilities for that new or updated product. If the tool identifies a misconfiguration or 2642

a software vulnerability, that condition may be reported for mitigation. 2643

In many cases, the ability to consistently search for instances of installed software is important to 2644

achieving the organizationôs cybersecurity situational awareness goals. Query results may be 2645

used to trigger alerts based on pre-determined conditions (e.g., prohibited software detected) that 2646

may be useful in a continuous monitoring context. The practitioner is able to know what is 2647

installed and where it is installed, providing a critical foundation for other usage scenarios. 2648

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

 68

6.1.2 US 2 - Ensuring that Products Are Properly Patched 2649

Enterprise security managers often need to quickly and easily generate reports about endpoints 2650

having installed software products that are missing one or more patches, as this may signal 2651

vulnerability to malicious activity. If a discovery tool also has a patch management capability, it 2652

will need to determine that all prerequisite patches are installed before installing any new 2653

patches. While this usage scenario focuses on an enterprise patch management approach, a local 2654

patch management capability that is executed on an individual endpoint can also directly read the 2655

inventory of patch tags from the local repository to enable localized patch verification and 2656

decision making. 2657

6.1.2.1 Initial Conditions 2658

This usage scenario assumes the existence of an enterprise repository, populated with SWID tags 2659

that are created and collected using the process described in US 1 (see §6.1.1). This includes 2660

application of guidelines GEN-1 through GEN-26. 2661

6.1.2.2 Process 2662

1. Through a dashboard or other internal process, the discovery tool determines that a given 2663

software product needs to be patched (e.g., for a functional update, due to a discovered 2664

vulnerability). 2665

2. If the tag identifier of the required patch is known, the discovery tool searches through the 2666

patch tags recorded in the repository for records indicating that a patch tag with the 2667

designated identifier is installed on an endpoint. If the patch tag identifier is unknown, the 2668

discovery tool will search for patch tags with a name that matches the 2669

<SoftwareIdentity> @name of the desired patch. 2670

3. The discovery tool then examines the patch tag to determine whether any other required 2671

predecessor patches are also present. This is done by inspecting embedded <Link> elements 2672

where the @role attribute value is ñrequires ò (Per §5.3.3 of the SWID specification), 2673

then confirming the presence of the target tag. If there is no such requirement, or if the 2674

required patches are also confirmed as installed on the endpoint, the endpoint is recorded as 2675

properly patched for this instance. 2676

4. If desired, the discovery tool can validate each file expected to be added, modified, or 2677

removed by the given patch(es). Patch tags created in accordance with §5.3 (see PAT-2, 2678

PAT-3, PAT-4) clearly specify the files that are modified as a result of applying the patch. 2679

The discovery tool enumerates each of the files shown as added or modified within the 2680

<Payload> element of a patch tag as indicated by the @n8060 : patchEvent attribute. 2681

The tool compares the recorded filename and cryptographic hash with the actual files that 2682

reside on the endpoint. The discovery tool can also confirm deletion of those files that the 2683

patch tag indicates should have been removed. 2684

5. Where a patch is noted as missing, the discovery tool can take advantage of relationships to 2685

other patches, as described in §5.3.3 of the SWID specification, to see if that patch has been 2686

superseded by a newer patch. In this case, the discovery tool can examine known patch tags 2687

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

 69

for any that are known to supersede the desired patch, noting that the former patch may no 2688

longer apply. 2689

6. The search results are provided through the discovery toolôs dashboard and/or reporting 2690

process. 2691

6.1.2.3 Outcomes 2692

The discovery tool user is able to accurately and quickly identify instances where a required 2693

patch or update is not installed on a given endpoint. If patched files are also assessed by taking 2694

advantage of <Payload> or <Evidence> elements contained in patch tags, the user is able to 2695

verify patch installations. The user is able to determine which endpoints meet (or do not meet) 2696

specific patch requirements, supporting security situational awareness and patch/vulnerability 2697

management as part of a continuous monitoring solution. 2698

6.1.3 US 3 - Correlating Inventory Data with Vulnerability Data to Identify Vulnerable 2699

Endpoints 2700

The remediation of known vulnerabilities through timely patching is considered a vulnerability 2701

management best practice. SWID tags improve vulnerability management by providing 2702

comprehensive, compact descriptions of installed software and patches, which may then be 2703

compared and correlated with vulnerability information. 2704

Because SWID tags adhere to a consistent and standardized structure, they aid automated 2705

correlation of information published by vulnerability information sources (e.g., NISTôs National 2706

Vulnerability Database, US-CERT alerts, as well as vulnerability advisories issued by vendors 2707

and independent security analysts) with the inventory information collected by discovery tools. 2708

Many vulnerability bulletins use the CPE specification to identify classes of products that are 2709

affected by a vulnerability [CPE23N]. [NISTIR 8085] describes a method to form CPE names 2710

automatically from input SWID tags. This capability can be used to translate a software 2711

inventory based on SWID tags to one based on CPE names. Given a vulnerability bulletin that 2712

references products using CPE names, this translation can then be used to identify potentially 2713

vulnerable endpoints. 2714

If a tag creator uses the appropriate <Meta> attributes to specify additional detailed naming 2715

information in a productôs primary tag (see §5.2.4), this information becomes readily available to 2716

publishers of vulnerability bulletins. By including appropriate references to those attribute 2717

values, bulletins make it easier for consumers to accurately search SWID-based inventory data 2718

for affected products. For example, if the presence or absence of a product vulnerability depends 2719

on software edition information, it is advantageous both for tag creators to specify the <Meta> 2720

@edition attribute, and for publishers of vulnerability bulletins to reference that value 2721

explicitly. 2722

6.1.3.1 Initial Conditions 2723

This usage scenario assumes the existence of an enterprise repository populated with SWID tags 2724

that are created and collected using the process described in US 1 (see §6.1.1). This includes 2725

application of guidelines GEN-1 through GEN-26. 2726

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

 70

6.1.3.2 Process 2727

1. Using product advisories containing information about publicly disclosed software 2728

vulnerabilities, the discovery tool searches for endpoints on which the referenced software is 2729

installed. The search criteria may include SWID tag information such as the information 2730

provided in the primary tag <SoftwareIdentity> @name and @version (see PRI-2, 2731

PRI-3, PRI-4, PRI-5), and <Meta> @revision and @edition (see PRI-13). 2732

Additionally, by forming CPE names from SWID tags (see [NISTIR 8085]), the discovery 2733

tool can search for endpoints with software referenced by those CPE names included in the 2734

vulnerability bulletins. 2735

2. If the bulletin references the tag identifier for the relevant tag for a software product or patch, 2736

the discovery tool will search for that identifier. SWID tags adhering to guidelines PRI-1 2737

through PRI-5 enable the discovery tool to automatically and accurately correlate inventory 2738

and vulnerability data. 2739

3. If the bulletin only references one or more known filename(s), but does not identify the 2740

software product itself, it will be necessary to search for software products and patches that 2741

include the file(s). Guidelines PRI-6 through PRI-12 ensure that filename information is 2742

captured in the <Payload> and/or <Evidence> elements of SWID tags to support this 2743

type of query. As a result, the discovery tool can search the <Payload> and/or 2744

<Evidence> portions of recorded tag information in the repository to look for software and 2745

patches of interest. 2746

For example, to identify instances of the ñHeartbleed bugò,7 the tool might search for any 2747

tags where the <Payload> and/or <Evidence> portions of recorded tags contain 2748

references to the vulnerable OpenSSL library. Products including this library can be 2749

identified and then those products can be searched for to identify vulnerable software 2750

installations. 2751

4. Where a record exists that matches the query parameters, as described above, the associated 2752

endpoint is flagged as containing vulnerable software. 2753

5. Where patch tag information is provided in the bulletin, the discovery tool queries the 2754

repository to determine whether the appropriate patch tag has been installed (see US 2, 2755

§6.1.2), including checks for predecessor or superseded patches. 2756

6. If the endpoint is found to contain vulnerable software but not the associated patch(es), the 2757

endpoint may be flagged as potentially in need of remediation activities. 2758

7 More information about the Heartbleed bug is available from www.heartbleed.com

