N

(o]

o © 0

12

13

14

15

16

NISTIR 8060(Final Public Draft)

Guidelines for the Creation of
| nteroperable Software Identification
(SWID) Tags

David Waltermire
Brant A. Cheikes
Larry Feldman
Greg Witte

NIST

National Institute of
Standards and Technology
U.S. Department of Commerce



17
18

19

20

21

22

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

NISTIR 8060(Final Public Draft)

Guidelines for the Creation of
| nteroperable Software Identification
(SWID) Tags

David Waltermire
Computer Security Division
Information Technology Laboratory

Brant A. Cheikes
TheMITRE Corporation
Bedford, Massachusetts

Larry Feldman
Greg Witte
G2, Inc.
Annapolis Junction, Maryland

Decembef015

U.S. Department of Commerce
Penny Pritzker, Secretary

National Institute of Standards and Technology
Willie May, Under Secretary of Commerce for Standards Bachnologyand Director



62

63
64
65
66

67

National Institute of Standards and Technology Internal Report 8060
103 pages (December 2015)

Certain commercial entities, equipment, or materials may be identified in this document in order to desdribe an
experimental procedure or concept adequately. Such identification is not intended to imply recommendation or
endorsement by NIST, nor is it imged to imply that the entities, materials, or equipment are necessarily theg best
available for the purpose.

There may be references in this publication to other publications currently under development by NJST in
accordance with its assigned statutorgpansibilities. The information in this publication, including concepts and
methodologies, may be used by Federal agencies even before the completion of such companion publicatigns. Thus,
until each publication is completed, current requirements, guidelamel procedures, where they exist, remdin
operative. For planning and transition purposes, Federal agencies may wish to closely follow the development of
these new publications by NIST.

Organizations are encouraged to review all draft publicationisig public comment periods and provide feedback
to NIST. All NIST Computer Security Division publicatignsther than the ones noted above, are availablg at
http://csrc.nist.gov/publications

Public comment period: December 17, 2015 through January 8, 2016

National Institute of Standards and Technology
Attn: Computer Security Division, Information Technology Laboratory
100 Bureau Drive (Mail Stop 8930) Gaithersburg, MD 20899-8930
Email: nistir8060-comments@nist.gov


http://csrc.nist.gov/publications

68

69
70
71
72
73
74
75
76

77

78
79
80
81
82
83
84

85
86

Reports on Computer Systems Technology

The Information Technology Laboratory (ITL) at the National Institute of Standards and
Technology (NIST) promotes the U.S. economy and public webkaproviding technical

|l eadership for the Nationdéds measurement and
methods, reference data, proof of concept implementations, and technical analyses to advance

the development and productive use of infarmaon t echnol ogy . | TLOS res

development of management, administrative, technical, and physical standards and guidelines for
the costeffective security and privacy of other than national secueigted information in
Federal infomation systems.

Abstract

Thisreportprovides an overview of the capabilities and usagefivareidentification (SWID)
tags as part of a comprehensive software lifecycle. As instantiatedlimehsational
Organization for Standardizatidimternatioral Electrotechnical Commissidi®7702 standard,
SWID tags support numerous applications for software asset management and information
security management. Thigportintroduces SWID tags in an operational context, provides
guidelinedfor the creation ointeroperable SWID tags, and highlights key usage scenarios for
which SWID tags are applicable.

Keywords

software software asset managemesditware identification SWID; sdtware identification tag



87 Acknowledgments

88 The authors would like to thartkarold Booth, Bob Byers, and Aled. Nelsonof the National
89 Institute of Standards and Technold®)iST); Steve Klos of TagVault.org and 1E; Charles
90 Schmidt ofThe MITRE CorporationPiotr Godowskbf IBM, andHopeton Smalling of OQI
91 Cares, Incfor theirreviews of andcontributiors of feedbacko this report.

92 Note to Reviewers

93 This document representdiaal discussion draft of this report. The authbase conducted

94 number of iterations of thigportto further develop the concepts anddglinescontained

95 herein based on public feedbackisTis the finaliterationof public reviewbefore finalizing this
96 initial revision of thereport

97  For thisfinal draft, reviewers shouldfocus their reviews othe overallreport Detailed review of
98 all the guidelinesn Sections 5 and 6 is also requested to ensure that the guidelines appropriately
99 balance the needs of tag providers and consumers.

100 Trademark Information

101  Any mention of commercial products or reference to commercial organizations is for information
102 only; it does not imply recommendation or endorsement by NIST, nor does it imply that the
103 products mentioned are necessarily the best available for the purpose.

104 All names are trademarks or registered trademarks of their respective owners.
105 Document Conventions

106 Thisreportprovides both informative and normative guidance supporting the use of SWID tags.

107 The key words AMUSTO, AMUST NOTO, AREQUI REDO,
108 ASHOULDo, ASHOULD NOTO, ARECOMMENDEDO, AMAYO,
109 reportare to be interpretkas described in Request for Comment (RFC) 2119. When these words

110 appear in regular case, such as fAshoul dodo or A
111 2119 key words.

112 Some of the requirements and conventions used ingp@streference Extesible Markup

113 Language (XML) content. These references come in two forms, inline and indented. An example
114 of aninline reference i patch tag is differentiated by the facathhe value of th@patch

115 attribute within the Softwareldentity > elements fitrue 0.

116 In this examplethe notation Softwareldentity > can be replaced by the more verbose
117 equi valent fAthe XML el &oftwareidentih os@®. qual i fi ed n

118 The general convention used when describing XML attributes withimgpdgtis to referene
119 the attribute as well as its associated element, employing the generé@trmbuteName
120 for the prefix:localName >0. Attribute values are indicated in quotations, such as the
121 e x ampueedo fabove.



122
123

124
125
126
127
128
129

130
131
132
133

134
135
136
137
138
139

140
141

In cases where any valid value may be providedn XML attribute, this report specifies

ficany> 0

as

t he

attri

bute value.

This report defines a number of new XML attributes that are extensions to the SWID
specification. These extension attributes are defined in a new XML namespace
http://csrc.nist.gov/ns/swid/203xtensions/1.0These new attributes will be assigned the prefix

Ain80600

provided in the forni@ 8060 :attributeName

mapped

found in Appendix A.

to

this namespace.

Il n guidelin

0 The schema for these extensions can be

Indented references are intended to represent the form of actual XML content. Indented
references represent literal content by the use of a-feregth bnt, and parametric (freely
replaceable) content by the use of an italic font. Square brdfketse used to designate
optional content.

Both inline and indented forms use qualified names to refer to specific XML elements. A

gualified name associatesiamed element with a namespace. The namespace identifies the

XML model, and the XML schema is a definition and implementation of that model. A qualified
name declares this schema to element association using the fiprefatelemeniname. The
associatn of prefix to namespace is defined in the metadata of an XML document and varies
from document to document.

Many portions of this document include crasferences to other sections. Such references are

of t en

ndi

cat ed

by

t h& or to mdtiple dectidnEE@.

fisecti

on

sy


http://csrc.nist.gov/ns/swid/2015-extensions/1.0

142

143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

Table of Contents

R [ 1 4 o To 18 o} £ Fo ] o RO PP 1
1.1 Problem StatemMent ...........uiiii i 1

1.2 SWID Tag BENETILS ...ccoveeiiiii e 2

1.3 PUrpoSe and AUGIENCE........ccooe e 4

I Y= Tox 1 o IR U . 4= PO 5

1.5 REPOIM SITUCIUIE.....coiiiiiiiiiiie ettt e e 6

N VA B R = To B @01 g Y o] < o ) £ T PPN 7
2.1 SWID Tag Types and the Software LifecycCle...........cccccccovviiiiiiiiiiiiiiiiiiiinnnnnn. 7

2 R O O 0 o 11 LT = T S PP 8

2.1.2 PrIMAIY TAOS «eeeeeeeeiiiiiiiiititieiie ittt ettt ettt ettt ettt e et et e e e e e e e e e e e e eeeeeeeees 9

N G T - (od T 1= Vo 10

2.1.4 Supplemental TAgS........cuuiiiiiiiiiiiiiii ittt 12

2.2 SWID Tag CreatiON.........ceiieeeeieieeiiie e e e e e e e e et e e e e e e e eeanaaaanas 13

2.3 SWID Tag Placement ......ccoooiiiiiiiiiiiieeeeeeee e 13
2.3.1 Placement During Installation .................oiiiiiiiiiiiieiiiice e, 13

2.3.2 SWID Tag Generation from Existing Package Management Data ..... 15

2.3.3 Placement in a Repository of SWID Tags .......cccovvvvvvviiiieeeeeeeeeiiiinnn, 16

2.4 SUIMIMAIY oottt e e e e e e e e et e e e e e et e e e et e e e e e bbb e e e e e e e e eeennnn s 16

3 SWID TAQ OVEIVIEW ...iieiiiiiiiiie e eee et e e et e e e e e e e e e e e e e e e e e e e eeeenaaanas 18
3.1 SWID Tag Data EIEMENtS...........ocoiviiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee 18
3.1.1 <Softwareldentity>: The Root of a SWID Tag .........cceevveeeeeiiiiiiinnnnnnn. 18

3.1.2 <Softwareldentity> Sub-Element: <ENtity>............ccccccvvimiiiiiiiiiininnnnnns 21

3.1.3 <Softwareldentity> Sub-Element: <Evidence> .............ccccccccvuvunrnnnnnnns 23

3.1.4 <Softwareldentity> Sub-Element: <Link> ...........cccccccumimmininnnininnnnnnnnn. 24

3.1.5 <Softwareldentity> Sub-Element: <Meta>...........ccccvvvviviiiiinniiiniinnnnnns 26

3.1.6 <Softwareldentity> Sub-Element: <Payload>..............ccccccceenrnnninnnnn. 27

3.2 Authenticating SWID TagsS .......iieiiiiiiiieeiiiiie e e e e s 28

3.3 A Complete Primary Tag EXample.........cviiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeee 29

G 3R S T U1 0] 0= Y PP 30

4 Implementation Guidance for All Tag Creators .........cccoeeeeiieeeeeeeeeeeeee, 32
4.1 Limits on Scope of GUIENINES .........ooiiiiiiiice e 32

Vi



174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

4.2 Authoritative and Non-Authoritative Tag Creators ...........ccccvveevvviiiineeeeeeeeenns 33
4.3 Implementing <Softwareldentity> Elements............ccccoooviiiiiiiiiiiiiiiiee e, 33
4.4 Implementing <Entity> EI@MENLS ..........ouuiiiiiiiiiiiiiiiiiiiiiiiiiiiie 34
4.4.1 Providing Detailed Information about Entities..............ccccevvvvvviiiineeennn. 35
4.4.2 Preventing Complex Entity Specifications .............ccccccuuiiiiiiiiiiiiinnnnnns 35
4.4.3 Distinguishing Between Authoritative and Non-Authoritative Tags..... 36
4.4.4 Furnishing Information about the Software Creator................ccceeueeee 37

4.5 Implementing <LINK> EI€MENLS.........oooviiiiiiiiieceeecie e 37
4.5.1 Linking a Source Tag to a Known Target Tag ........ccooeeevveeeevvnnninnnnennn. 37
4.5.2 Linking a Tag to a Collection of Tags .......ccccvvvvivviiiiiiieeieeeeicee e 38

4.6 Implementing <Payload> and <Evidence> Elements............ccccccceeevveeerrennnns 42
4.6.1 Providing Sufficient File Information .............cccccciviiiie e, 42
4.6.2 Hash FUunction SelectioN........ccoovviiiiiiiiiiieee et 43
4.6.3 Handling of Path Separators and Environment Variables................... 45

4.7 Providing Attribute Values in Multiple Languages.................evvvviiiiiiiiinnnnnnnnn. 46
4.7.1 Specifying Product Names in Multiple Languages ..........cccccccceeeeennn.. a7
4.7.2 Specifying <Entity> Elements in Multiple Languages ................cc....... 48
4.7.3 Specifying <Payload> Elements in Multiple Languages..................... 49

v T O oo F= 11T R =10 L TN 50
e T YU 0 1 = T Y PP 51
5 Implementation Guidance SpecifiC t0 Tag TYPE.....ccccuummmmmmmmmimiiiiiiiiiiiiiiiiiiiiiaees 52
5.1 Implementing COrPUS TaAGS . .ccuuruuiieieeeeeeeeeiiiiie e e e e e e ee et e e e e e e e e e e ee e 52
5.1.1 Setting the <Softwareldentity> @corpus Attribute...............ccccuvvrnnnnns 52
5.1.2 Specifying the Version and Version Scheme in Corpus Tags ............ 52
5.1.3 Specifying the Corpus Tag Payload ..............ccccuvuivmiiiiiiiiiiiiiiiiiiiiinnns 54

5.2 Implementing Primary TAgS ........cooiiiieiiiiiiecce e 54
5.2.1 Setting the <Softwareldentity> Tag Type Indicator Attributes............. 54
5.2.2 Specifying the Version and Version Scheme in Primary Tags............ 54
5.2.3 Specifying Primary Tag Payload and Evidence...............cccceevvvvvvnnnnnn. 55
5.2.4 Specifying Product Metadata Needed for Targeted Search ............... 57

5.3 Implementing PatCh TagsS ........cuuiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeee e 59
5.3.1 Setting the <Softwareldentity> @patch Attribute.............cccccccvvnnnnnnns 59
5.3.2 Linking Patch Tags to Related TagsS...........uuuuuuurimiimiiiiiiiiiiiiiiiiiiiiiinnens 59

Vii



207
208
209
210
211
212
213
214
215
216

217
218

219
220

221

222
223

224

225
226

227

228

229
230
231
232

233

234
235
236
237

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

5.3.3 Specifying Patch Tag Payload and Evidence..............ccccoeveeivviiineenenns 59
5.4 Implementing Supplemental TagsS.........coouurriiiiiiiieeieeeeeee e 60
5.4.1 Setting the <Softwareldentity> @supplemental Attribute ................... 60
5.4.2 Linking Supplemental Tags to Other Tags ........ccccvvvvvieiiieeeeeeveeiiiinnn, 61
5.4.3 Establishing Precedence of Information ...............cccccuveiviiiiiiiiinnnnnnnns 61
5.5 SUMMAIY .ot e e e e et e e e aa e enas 62
6  SWID Tag USAQE SCENAIOS...uuiiieeeiiiiiiiiiiiiiae e e e e eeeeetiiias e e e e e e e eeeaennnn e e e e e e eeeeesnnnnnnns 63
6.1 Minimizing Exposure to Publicly-Disclosed Software Vulnerabilities............. 63
6.1.1 US 171 Continuously Monitoring Software Inventory ............ccccceeeee... 63
6.1.2 US 2 - Ensuring that Products Are Properly Patched ......................... 68
6.1.3 US 3 - Correlating Inventory Data with Vulnerability Data to Identify
Vulnerable ENAPOINTS .......cooiiiiiie e 69
6.1.4 US 4 - Discovering Vulnerabilities Due to Orphaned Software
(7o) 0] o0 ] a1=] o1 K RPN 71
6.2 Enforcing Organizational Software POIICIES ...........ccccccvvviiiiiiiiiiiiiiiiiiiieeee 72

6.2.1 US 5 - Preventing Installation of Unauthorized or Corrupted Software
o (0T [ T4 PRSPPI 73

6.2.2 US 6 - Discovering Corrupted Software and Preventing Its Execution74

6.3 US 7 - Preventing Potentially Vulnerable Endpoints from Connecting to
NEIWOIK RESOUICES ...ttt 75

6.4 Association of Usage Scenarios with Guidelines .............cevceeiiieeeeieveeiiinnnnnn. 76

List of Appendices

Appendix Ad SWID Extension Schema..........cccccooiiiiiiiiieeee, 80
APPENTIX BO ACTONYIMS L.uiiiiiiiiiiieeieee e e e e ettt e e e e e e e e e e e et s e e e e e e eeeeasaaaeeeeeeeeeeennes 82
Appendix CO REFEIENCES ....oooiiiiiiiiiiiii e 84
AppendiX DO Chang@ LOg .....ccooiiiiiiiiiie e e e e e e e e e e e eeeanes 86

List of Figures

Figure 1: SWID Tags and the Software LifeCyCle ... 8
Figure 2: Primary Tag RelationShips ..........coooviiiiiiiiiiiiiieeeeeeeeeee 10
Figure 3: Patch Tag RelatioNShips ......cooovviiiiiiiee e 11
Figure 4: Supplemental Tag RelationsS ...........coovvviiiiiiiiiiiiiiiiiieeeeeeeeeeeeeee e 12



238

239

240
241
242
243

244

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

List of Tables

Table 1: How Tag Types Are INAICAEA ........cooeieiiiiiiiiiiiie et 20
Table 2: <LINK> ReIAtIONS.......ccoooeiee e 25
Table 3: Allowed Values of @VEersioNSCREME............uuuiiiiiiiiiiiii e 53
Table 4: Relationship of Guidelines to Usage SCenarios..........ccccvvveeiieeeeeeeeviiiiiineeeeenn, 78



245

246
247
248
249
250
251
252

253
254
255
256
257
258
259
260

261

262
263
264
265
266
267
268
269
270

271
272
273
274
275
276
277
278
279
280

281
282
283
284
285

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

1 Introduction

Thelnternational Organization for Standardization ()&@d thelnternational Electrotechnical

Commission EC) has published ISO/IEC977032, an international standard feoftware

identification tagsalso referred to as SWID tags SAVID tagis astructuredset of data elements

thatidentify and describe a software product. The first version of the stan8&HdeEC
197702:2009 [ISO/IEC 1977@:2009],was published ilNovember2009. A significantly
revised version of the standat8O/IEC 1977e2:2015,waspublished inOctober2015 andis
referenced herein as tB&VID specification

Thisreportprovides an overview of the capabilities and usad@fD tags defined by the
ISO/IEC1977062:2015standard. Additionally, this report descriltbe use bSWID tags as pa
of comprehensive software asset management lifecycles and cybersecurity proSsahiices.
1.1discusses theoftware asset magemenand cylersecurity problemghatmotivated the
development of SWID tags. Secti@r® highlights thestakeholdebenefitsthatcan be gaineds
SWID tags become more widely produced and consumed withsoftvearemarketplace.

rt

Sectionl.3describes the purpose and target audiences akhist Secion 1.4 summarizes this

sectionds key lpdescribedsow tharastof tlisepoitis omganized.

1.1 Problem Statement

Software is pd of the critical infrastructure for the modern world. Enterpresegindividuals

routinely acquire software products and deploy them on the physical and/or virtual computing
devices they own or operat&Q/IEC 19776 [ISO/IEC 197765:2013, a companion standard

to the SWID specificationdefinessoftware asset managemé¢nS A M) cordral andl protectio

n

of software and related assets within an organization, and control and protection of information

about related assets which are neledeorder to control and protect software asséts A ¢

or e

SAM process isoftwareinvenbry management the process of building and maintaining an
accurate and complete inventory of all software products deployed on all of the devices under an

organi sat i pod operatdnaleconivos

Accurate software inventories of enterpsinanag@d devices are needed to support higbeel

business, information technology, and cybersecurity functions. For exampgeprises need to

know how many copies of a given product are installed in @aodemsure compliance with
software license agreemsnTo ensure they are not paying for unneeded licenses, enterpr
also need to know where specific copies are installed and whether they are in act# use

ises

another example@perations personnel need accurate and complete software inventories to

ensue that all deployed software assets are authorized, appropriately patched, free of kn
exploitable weaknesses, and configured
Organizations may also use software inventory information to plan softwastments and
resources needed to support upgrades to and replacement of legacy systems.

Effective software inventory management depeasrdghe abilityto discover identify, and
contextualizesoftware products installed @mterprisemanagedlevices Softwarediscovery
processeanalyzeobservablestates of a managed devide detect and enumegadiscrete units
of installed software. Discovery is technically challenging due to the enormous vasiaiiss
the software industrin what it means to be a unit of softwafer example, aingle unit of

own
accord



286
287
288
289
290
291
292

293
294
295
296
297
298
299
300
301
302

303
304
305
306
307
308
309
310
311

312
313
314
315
316
317
318

319

320
321

322
323
324
325
326
327

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

software mayonsist ofacombination oexecutable filg, data files, configuration files, library
files, and so forthA single unit of software magisoinclude supporting softwarunits which
may be independentlystalled and executeds well achanges to the underlying operating
environment, such as the addition of device drivers and entries in opexgdiegn maintained
tables and databases. Discovery processes need ttelte hbndle all th&e sources of variation
while avoiding fifalse positiveso (i .e.,

er
as fAfalse negativeso (i.e., failures to di

.
S
Oncethediscret unis of softwarehavebeenenumeratedn a device, software identification
processes assigtentifying labels to those units. These lab@leused in various contexts to

refer to the products, repdheir presence, and correlate with other sourcasf@fmation. A

key requirement of the labeling process is that when the same unit of software is discovered on
different devices, it must be assigned the same ltesitification is technically challenging
because the identifying labels typically aré¢ ploysicallypart of the software units amaénnot

be discovered in the same manasthe software units. Insteatthe labels are assigned using
inferential techniques based on observébdtures that varwidely by software provider,

operating environmd, and deviceThese inferential techniques may be inaccurate, unreliable,
and/or proprietary.

Assuming software units can be discovered and identified, software contextualization processes
associate the identifying label with other sources of enricimfogmation. For example, the

label of a software unit may be used to collect key descriptive characteristics such as the
software unitds exact version, |icense, keys
and associated configuration sagjgnAs another example, the assigned software identifier may

also be used to searfdr related patches, upgrades, vulnerabiliied remedies, and

configuration checklist€Contextualization is technically challenging to the extent that it depends
on widespread agreement on and dissemination of the identifying labels to be assigned to units of
software.

The SWID tag standard was developed to help overcome the technical challenges associated
with software discovery, identification, and contextualizatioml #hereby enhance the accuracy

and reliability of software asset management proceS$D tags aid discovery by furnishing a
standardized indicatarf a sof t ware productés presence o
including a consistent label farproduct within its tag. Finally, tags aid contextualization by
allowing awide variety ofrelated product detait® be suppliedincludingt he prfdlduct 6 s
name and version.

1.2 SWID Tag Benefits

SWID tagsoffer benefits tacreabrs ofsoftware productas well aghose who acquire and use
those software product$he SWID specification identifies these stakeholders as:

1 Tag producers: Organizations and entities that create SWID tags for use by others in the
market. Ideally, the organizations involved neating, licensing, and/or distributing
software products will also create the tdggtaccompany their products. This is because
these organizations are best able to ensure that the tags contain comettte and
normalizeddata. In other casg®gs may be produced and distributed by other entities,
including third parties anthrough the use afutomated tools.

2

o
c

n

n
(0]



328
329
330
331
332
333

334
335
336
337
338
339

340
341
342

343
344

345
346

347
348

349
350
351

352
353

354
355
356

357
358
359
360

361
362
363
364
365

366
367

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

1 Tagconsumers:Organizations and entities that use information contained in SWID tags
to support highelevel, softwarerelated business drcybersecurity functions. Categories
of tag consumers includefware consumersnventory/discovery tools, inventehyased
cybersecurity tool providers (e.g., providers of software vulnerability management
products, which rely on accurate inventory mf@tion to support accurate vulnerability
assessment), and organizatitimstuse these tools.

The implementation of SWID tags suppdtiesestakeholderghroughout the entirsoftware
lifecycled from software creatiomand releaséhrough softwarénstallaion, managementand
deinstallation As more software creators also become tag produmgreleasing their products
with SWID tags, more consumers of software prodantsenabletb consume the associated
tags. Thiggivesriseta fA v i r t u oaresall stakebdlder® gaiwdnvariety of benefits
includingthe ability ta

1 Consistently anéccuratelydentify software products that need to be managed for any
purpose, such as inventory, licensinghesecurity, othe managemernf software and
softwaredependencies.

T Use stable software identifiers to report
occur when software is installggatched, upgraded, and removed.

1 Exchange software information between software producers andrmersin a
standardized format regardless of software creator, platform, or management tool.

1 Identify and manage software products equally well at any level of abstraction, regardless
of whether a product consists of a single application or one or marpsgoo bundles.

1 Correlate information about installed software with other information including list(s) of
authorized software, related patches, configuration settings, security policies, and
advisories.

1 Automatically track and manage software license damge and usage by combining
information within a SWID tag with independentipllected software entitlement data.

1 Aggregate software asset information for deployed software across an enterprise,
providing the organization with knowledge of what softwiardeployed on specific
devices.

1 Record details about the deployed footprint of installed products on devices, such as the
list of supporting software components, executable and data files, system processes, and
generic resources that may be included aitistallation (e.g., device drivers, registry
settings, accounys

1 Identify all organizational entitiemssociated with the installation, licensing, maintenance,
and management of a software product on an ongoing Basssidentification includes
entities external to the software consumer (s@ftware creators, software licensors,
packagersanddistributord as well as those internal to tbeftware consumérs
organization.

1 Through the optional use of digital signatunesjdatethat information withiratag
comes from a known source and has not been corrupted



368

369
370
371
372
373
374
375
376

377
378
379
380
381
382

383
384
385
386
387
388
389
390
391
392
393
394

395
396
397
398
399
400
401
402
403

404
405
406
407
408

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

1.3 Purpose and Audience

Thisreporthas three purposes. First, it provides a fieytel description of SWID tags in order to
increase familiarity with the standard. Secongydvidestag implementatioguidelinesthat
supplement the SWID tag specificatidrastly, it presents a set of operational usage scenarios
which illustrate how SWID tags conforming to these guidelines can be used to achieve a variety
of cybersecurity gals By following the guidelinesin this reporttagproducersan have

confidence they are providing all the necessary data, with the requisite data qusilippdad

the operational goals of each tag usage scerfadititionally, tag consumers can have

confidence that the tags they are using adequately support each tag usage scenario.

This reportaddressefour distinct audiences. The first audiencesadtware providersthe

individuals and organizations that deyglticense, and/or distribute commercial, open source,

and custom software produgcts includesoftwaredevelopedsolely for inrhouse use. Thiseport

helspr ovi ders understand the problems addressed
is essentito solving those problems, and how providers may produce and distributeatgs

meet the needs of a wide range of usage scenarios.

The second audiencepsoviders of sftware build packagingand installation toolsthe
individuals and organizatiorikat develop tools used lspftware providerso build, package,
release, and support installation of softwditeese tools provide much of the information that is
needed to create SWID tadSthese tools generate SWID tags as part of their normal éunssti
this savesoftware providersrom needing to take any specialized actions to produce SWID
tags This makes SWID tag production automatic for any softwelsmasenanaged by the tool,
increasing the availability of SWID tags for related produEhss is critical forensuing that
SWID tags are provided as part of all commercial and open source software releases.
Furthermoreinstallation toolscan supportonsistentmanagement of installed tags on devices
during software installation, upgrade, patahg removal processes.i$heport offerguidance
ontheinformationthatneeds to be included in a SWID tag to ensurettiyt generated by these
tools support SWID tag usage scenarios requiresbfiyvare consumers

Thethird audience iproviders ofinventorybased products and servigéle individuals and
organizations that develop tools for discoverimgnitoring,and managing software assets for
any reason, including sedung enterprise networks using standaedi inventoryinformation
This audenceneeds consistency in the content and interpretatidatafin SWID tagsollected
from computing devicet® makefull useof this information.This report offerguidance to
software provider®n how toconsistentlymplement tags to suppdWID tagusage scenarios
The degree of consistency supporsahisguidancehelpsinventorybased product providets
use tag datto materially enhance the quality and coveragsaffwareinformation collectdand
utilized by their products

Thefourth audience issoftware consumershe individuals and organizations tlragtall and use
commercial, open source, and/othiouse developesbftware productsandinventorybased
products and service$hisreporthelpssoftware consumersderstand the benefits of software
productsthatare delivered with SWID tags, and why they should encowsafj@are providers
to deliver products with SWID tags that métir anticipated usage scenarid$ie guidance



409
410

411
412
413
414
415
416
417
418
419
420
421
422
423

424
425

426
427

428
429

430

431

432
433
434
435

436
437
438
439
440
441
442

443
444
445

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

provided in this report teoftwae providersalso ensures that provided tags are useful in meeting
the usage scenarios requireddoftware consumers

Through the definition of a set of usage scenariosrémsrtidentifieshow the goal®f these

four audiencesre interrelated. Consiars are trying to cope with software management and
cybersecurity challenges that require accurate software inveifiteey.want tcaddress these
challenges in a way thptomotesa low total cost of ownershipr the software they manage
Consumers need understand how SWID tags can help them, need providers to supply high
guality tags, and need implementers of invertmaged tools to collect and utilize tags. Providers
need to recognize that adding tags to their products will make their productssefuieand

more manageable, and also need this recognition to be reinforced by consumerfdetagnd
support Software build and installation tool providers can assist software providers with
producing tags for software releases and to manage tags as s@tivare installation
processednventorybased tool implementers are uniquely positioned to recognize howaiags
make their products more reliable and effective, tarwdork constructively with both consumers
and providers to promote software taggpractices.

1.4 Section Summary

Thefollowing are the key points of this section:

1 ThelSO/IEC 197762:2015 international standaspecifiesthedata format foSWID
tagsdescribedy this report

1 SWID tags were developed to help enterprises theeteed foraccurate and complete
software inventories to support higHevel business and cybersecurity functions.

1 SWID tags provide benefits to organizatidhatcreateand usdags.
1 Fouraudiences have interrelated ggadstainingto SWID tags and tagging pras:

0 Software providersnay want tancrease the manageability thieir productgor
their customers. Tpstify invesing the resources necessary to become tag
providers, they need consumers to send clear signals that they value product
manageability amuch as features, functions, and usability.

o Providers of sftware build packagingand installation toolgnay want to
support SWID tags in their tool$his support caassist software providers that
use their tools with generating tags during produddband release processes
Additionally, these toolsansupportthe management of installed tags on devices
during software installation, upgrade, patch, and removal processes. They need
clear guidance on what information needs to be included in a SWID &atgure
that they generataseful tags for software consumers.

o Providers of nventorybasedproducts and servicamay want tauseSWID tags
as their primary method for identifying softwafiéheyneed more tags to become
available to make their speciadit tools more reliable and effectibased on tag



446
447

448
449
450
451

452
453
454
455

456
457
458

459
460

461
462
463

464
465
466
467

468
469
470
471
472
473
474
475
476

477
478

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

T

data They act as software providers as well as software consumers, and thus have
the needs and goals of both audiences.

0 Software consumeege trying to cope with the challengesadintainingan
accuratesoftware inventory andddressing softwanelatedmanagement and
cybersecurity issues. They need software providers to supply tags along with their
products as a common practice.

Thisreportseeks to raise awareness of the SWID tag standard, promotstanderg of
the business and cybersecurity benefisg may be obtained through increased adoption
of softwaretagging standards and practices, and provide detailed guidance to both
producers and consumers of SWID tegpromote consistency and interoperability

1.5 Report Structure

The remainder of thigeportis organized into the following sections and appendices:

T

= =2 =4 =4

Section2 reviews key SWID tag concepts that are helpful for understanding the different
types of tags, how tags are created, and how tags are made available for use. This section
will be of interest® all audiences.

Section3 presenta highlevel overview of the SWID tag standard. This section will be
of interest to all audiences, as it explains what a SWgDstand hovatag encodea
variety of identifying and descriptive data elements abaatftware product.

Section4 provides implementationugdelinesthat addrescommonissuegelated taag
deploymentandprocessingn information system3.heseguidelinesare intendedo be
broadly applicable to common IT usage scenarios that are relevasthtpublic and
privatesector organizations

Section5 provides implementationuidelinesfor specifictypes of tags.

Section6 presentaisage scenaridsr software asset management and software integrity
managemenfThese are not intended to represent an exhaustive or conclusive list of
possible SWID applicationgheyprovide informative examples regarding the use of
SWID tags based ahe SWID specificatiomnd guidance in this repdd address
various organizational needs.

Appendix A provides the XML schema for the extensions defined in this report.
AppendixB presents a list of acronyms used in ti@port

AppendixC provides the references for theport

AppendixD providesthe change log for the report.



479

480
481
482
483
484
485
486
487
488
489
490

491
492
493
494
495
496

497

498
499
500
501
502
503
504
505

506
507
508

509
510
511
512
513

NISTIR 8060 (Final Public Draft)

Guidelines for the Creation of Interoperable SWID Tags

2 SWID Tag Concepts

A SWID tag is a standaizkd XML format for a set of data elements that identify arstdee a
software productWhen a software product is installed on a computing dewieeor more
SWID tagsassociated witthat productan beanstalled or otherwise become discoverable on
that device. When a product is uninstalled from a device, all associateddaggpected tbe
removed: When software is upgraded, any SWID tags representing the old software version are
expected to be reptad with one or more SWID tags for the newer verdiothis way, the
presence chtag on a device serves as evidence of the presence of the velsiededsoftware
producton that deviceThe SWID specification defines these behavaordrelated behviors
associated with software licensing, patching, and upgradimgreportusesthe termtagged
software producfor, simply,tagged produgtto refer toa softwargproductthat is installed on a

device along with one or more discoverable tags desgrthat product

This section isntended to provida general understanding basicSWID tagconceps. The
remainder of this section is organized as follows. Se@&ibdescribeshe four types of SWID
tags and the distinct roles they play at key points irsdifigvarelifecycle. Section2.2 discusses
common methods for creating tag®ction2.3discusses expectations regarding where SWID
tagscan be placed after they are created. Finally, Se2tibooncludes with a summary of key

points from this section.

2.1 SWID Tag Types and the Software Lifecycle

The SWID specification defines four types of SWID tagspus primary, patch and
supplementalCorpus, primary, and patch tags have similar functions in that they describe the
existence and/or presence of different types of software patehtially different states of
software productsThese three tag types come into play at different points in the software
lifecycle, and support software management processes that depend on the ability to accurately
determine where each software product is infiégficle Figurel illustrates the steps in the
software lifecycle, the relationshgmongthose lifecycle evenisupported byhe four types of

SWID tags as follows:

1 Software Deployment Before the software product is install@d pre-installation), and
while the product is being deployed, arpus tag provideinformation about the
installation filesanddistribution media (e.g., CD/DVQistribution @ckage).

1 Software Installation. A primary tag willbeinstalled with the software product (or
subsequently created) tmiquelyidentify and describe #software product.
Supplemental tagare created to augmemtimary tag with additional sitespecificor
extendednformation. Patch tags provide information abseitware fixesncluded with

the installation

1 On devices that have filesystems, the SWID tag for an installed software product should be discoverable in a directory
|l abeled fAswidtago that is either at the s ansebdireetaryeof as

the productés installation directory.
platformspecific interfaces and/or maintained in platfespecific storage locations.

Al ternativel vy,

t he

or

on



NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

514 1 Software Patching.When anewpatch isapplied tothe software product, r@ew patch
515 tag is provided, supplying details about the patch andaitydependencie

516 1 Software Upgrade.As a software product is upgraded to a new version,pnemary
517 andsupplemental tags replace previbudeployedtags,enablingtimely and accurate
518 tracking ofupdates to software inventory.

519 1 Software Removal.Upon removal of the softare product, relevant SWID tagse
520 removed.This removal event can trigger timely updates to software invergfiecting
521 the productodos removal

| OLD VERSION

'Nsﬂé‘;ﬂm"’ PRODUCT ,', PRODUCT PRODUCT PRODUCT
DEPLOYED INSTALLED o PATCHED UPGRADED REMOVED

E CORPUS
m PRIMARY
E SUPPLEMENTAL m
B PATCH B
522
523 Figure 1: SWID Tags and the Software Lifecycle

524 The software lifecycle eventiescribed irFigurel and thetag types related to these evests
525 discussed in the following subsections.

526 2.1.1 Corpus Tags

527 Before software is installed, it is typicallglivered or otherwise made available to an endpoint

528 a networked computing devide,the form of a software installation package. The installation

529 package contains the software in a-im&allation condition, often compressed in some manner.

530 Commonformas f or installation packagesepaoklnondeée TA
531 executable files. In all cases, an installation procedure must be run to cause the software

532 contained in an installation package to be unpacked and deployed on a target efkgoint.

533 SWID specification definesorpustagsfor vendors and distributors to use to identify and

534 describe products in such a jinstallation state. The availability of software identification and

535 descriptive information for a software installation packaggbées verification of the software

536 package and authentication of the organization releasing the package.

537 Corpus tags may be used by consumers to verify the integrity of an installable product and to
538 authenticate the issuer of the installation before gagrgut the installation procedufsee83.2).

539 If a manifest of the installation files is included in the corpug4ag83.1.6on the<Payload>

540 element), installation package tampering can be detected prior to installation. When combined
541 with other licensing data, corpus tags may aid consumers in confirming whether they have a
542 valid license for a product before they instalAll. of this information can be used as part of an

8



543
544

545

546
547
548
549
550
551

552
553
554
555

556
557
558
559
560
561
562

563
564
565
566
567

568
569
570
571

572
573
574

575
576
577
578

579
580

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

automated policy decision to allow or prevent the software installgge®86.2.1) on an
endpoint

2.1.2 Primary Tags

As illustratedealier in Figurel, primary tags are involved in different software lifecycle events.
The SWID specification definggimary tagsto identify and describe software prods once
they have been successfully installed on an endpoint. The primary tag for each tagged product

needs tdurnishv al ues for all data el ements that are
specification. A minimal primary tag supplies the name optieeluct (as a string), a globally

uni que identifier for the tag, and basic info
|l deally, the software provider is also the cr

SWID specification allows other parties¢inding automated tools) to create tags for products in
cases where software providers have declined to do so or have delegated this responsibility to
another party.

A globally unique tag identifier is essential information in many usage scenarios bi:caage

be used as a globally unigpeoxy identifierfor the software installatiorThe tag identifier of a
primary tag can be considered a proxy identifier for the tagged product because theretts a one
one relationship between the primary tag andris&lledsoftware it identifies. In some contexts

it will be more efficient in terms of data transmission and processing costs for inventory and
discovery tools to identify and report tagged products using only their primary tag identifiers,
rather than tair fully populated primary tags.

When a product is upgraded, the primary tag(s) associated with the old version are removed and
replaced with a primary tag(s) for the new version. When a product is removed from a device, its
primary tag(s) are removed agll. By strictly maintaining the or®-one association between
installed software and associated tags, it is possible to continuously monitor installed software
inventory and track software updates using SWID tag (@et86.1.1).

Because software products may be furnished as suites or bundles ooascadapoonents for

other products, the SWID specification defined. k> elementsee83.1.4, which may be

used within a SWID tag to document relationships between the product described by the tag and
other producter itemsthat may be available.hfee types of relationships are worth notiege

1 Parent. To document situations where the product described by the primary tag is part of
a larger group of installed software, the primary tag points to the primary tag of the larger
software group using<Link> element where th@rel attribute is set téiparent 0.

1 Component.To document situations where the product described by the primamgdag
a separately installable software prodagtone of its componenthep r o d prienary s
tag points to the pnary tag of thecomponenproduct using &Link> element where
the @rel attribute is set ticomponent o.

1 Requires.To document situations where the product described by the primary tag
depends on a separately installable software product, the primary tag points to the

C



581
582

583

584
585

586
587
588
589
590
591

592

593
594
595
596
597
598
599
600
601

602
603
604
605
606

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

primary tag of the required product usinglank> element where th@rel attribute is
set tofirequir eso.

The relationshipghatmay be expressed in primary tags are illustratdegare2, below.

PR-
PR-ZTTUSERE PRODUCTIVITY G |
m=> PARENT SUITE —

=== COMPONENT

|7 4 A

| ]

] PR PR:, [af
WORD PRESENTATION
PROCESSOR SOFTWARE

Vo
COMMON
COMPONENTS

Figure 2: Primary Tag Relationships

This illustration shows how primary SWID tags indicatedbsociationeamong several software
components. An overarching Productivity Swit#l havea componentrelationshipwith each of
its supporting applications, such as a Word Processor and Presentation Software. These
subsidiary software productdgll eachhave gparent relationship to the Productivity Suite.
These subsidiary products may atequire other @mponent software (e.g., language pack,
spell checking software)

2.1.3 Patch Tags

A software provider may release patches to correct errors in or add new features to a product.
When a patch is installed on a device, change
Since a patch augments an existing installation, these change® xetracked separately. The

SWID specification definegatch tagdor software providers to identify and describe each patch.

When a patch is installed, a patch tag is placed on the device in the same location where the

patched product residéspatchtag can also be created by discovery tools, when a patch tag was

not provided by a software provider, to indicate the previous application of a patch. In contrast

with a patch, ampgradei s def i ned as a complete repl acemen
fooo print. An upgrade typically changes the pro

The data elements contained in a patch tag identifgleadribethe patch rather than the product

to which the patcls applied For example, the product name andsien recorded in a patch tag

need not match the product name and version recordedpatitteedo r oduct 6 s. pri mary
Insteadthese attributes can lbsed to record the name and version of the patch as assigned by

the softwareprovider.

1C



607
608
609

610
611
612
613
614

615
616
617

618
619
620
621

622
623
624

838

627
628
629

630
631

632
633

NISTIR 8060 (Final Public Draft)

Guidelines for the Creation of Interoperable SWID Tags

A patch tagcandocument relationships between the patch described by the patch tag and other
products or patches that may be availalsimg the<Link> element(see83.1.4. Three types of

relationships are worth noting here:

1 Patches.Patch tags are required to document a relationship to the primary tag of the

patched product that indicatdetthe patch applies tthe patched producin this way

patch tags may assist in deté@mmg whether an installed product has all required patches
applied. Expressed usingcéink> element where th@rel attribute is set to
fipatche sowi t h a pointer to the

1 Requires To documenthat apatch described by the patch tag requires the prior

patched

installation of another patcExpressed using<Link> element where th@rel

attribute is set térequires owith a pointerto the patch tag of the required patch.

1 SupersedesTo documenthat apatch @scribed bya patch tagcanentirely replace
another patchif the other patch is installed, it will be remowsHen the new patch is

installed Expressed using<Link> element where th@rel attribute is set to
supersedes with a pointer to the patch tag the superseded patch using

product

When used in this way, patch tags may assist in determining whether an installed product has all

required patches appliedee86.1.2. Figure3 illustratesthetag relationships fdiour product

patcheghat can bepplied over time.

LEGEND

s> PATCHES

PRODUCT

.
~

PATCH 1 %

PATCH 2
(REQUIRES %
PATCH 1)

PATCH 3
(SUPERSEDES
PATCH 2)

PATCH 4 %

Figure 3: Patch Tag Relationships

All patches have@rel=patches Productsince they all patch the same product.

Patch 2 hag@drel=requires  Patchl, since Patch 1 must be installed before Patch 2.

Patch 3 hag@drel=supersedes Patch 2since Patch 3 entirely replaces Patch 2.

Patch 4 is completely independent of the other threshpst so its patch tag does not include
any<Link> elements pointing to any of the other patch tags.

A patch will likely also include a manifest of the new and/or changed(§ie=$3.1.6for
discussion othe<Payload> element), which can be used to verify that the actual patched

11



634
635
636

637

638
639
640
641
642

643
644
645

646
647
648
649
650

651

654
655
656
657
658

659
660
661
662
663

NISTIR 8060 (Final Public Draft)

Guidelines for the Creation of Interoperable SWID Tags

files are present on the device. This allows for confirmation that the patch has been correctly
installed, preventing a malicious actor from deployitesg that misrepresent the installation

status of a patch.

2.1.4 Supplemental Tags

The SWID specification requires théagsmay not bemodified by any entity other than the tag
creator. In order to provide a mechanism whereby consuandrsoftware management tools
may add arbitrary poshstallationinformation of local utility, the SWID specification allows for
any number ofupplementalagsto be installed, either at the same time the primary tag is

installed or at any time thereafter.

Any entity may create a supplemental tag for any purgasesxample, supplemental tags may
be created by automated tools in order to augment an existing primary tag with additienal site
specific information, such as license keyglcontact information for local responsible parties.

Each supplemental tag contains®@ i nt er

combiningtheda el ement s i n t
supplemental tags.

The relationshipghatmay be expressed in supplemental tags are illustratéidumne4.

@ PRIMARY TAG
B SUPPLEMENTAL TAG

w=sl> SUPPLEMENTS /

to t

h e

PR

A

h e

productos

PRODUCT

t agged<Lipkpkoduct Os
element where th@rel attribute is set tsupplementalWWhen supplemental tags are present, a
tag consumer may create a complete record of the information describing a product by

#1

#2

s

#3

Figure 4: Supplemental Tag Relations

pri mary

Supplemental tags may also be employed to augmenpnorary tags. For example, a
supplemental tag could add local information about a patch tag (e.qg., to réicoedtamp
indicating when the patch was applied), or even about another suppleme(aalitlgtrated in
#3 above) In such situations, the supplemental tag also contathén&> element pointing to

the tag that is having its information augmented.

A supplemental tag is intended to furnish data values that augment and do not conflict with data

values provided by the

12

p rothemsapplgmentad tggs. df nodflicts n y
are detected, data in the primary tag, if provided by the sdtpraducer, is considered the most
reliable, and tools can be expectedgtwore conflicting data or teeport all conflicting data as
exceptions. For example, the mandatory product name recorded in a supplemental tag should

t a

of



664
665

666
667
668
669
670

671

672
673

674

675
676

677
678

679

680
681
682
683
684
685

686

687
688
689
690
691
692

693
694
695

696
697
698
699
700

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

match the product namerecodde i n t he productds primary tag,
recorded in the primary taghould be usedsahe most reliable name.

As Figurel earlierillustrates aftera software product is upgraded, all primangdpatch tags
associated with there-upgradeversion of the product should be removed. If needed, new
supplemental tags associated with the upgraded version may be depluyédge no longer
relevantsupplemental tags should be remawathen a software product is removed, all primary,
patch, and supplemental tags associated with the product should be removed.

2.2 SWID Tag Creation

A SWID tagfor a softwargpackageproduct or patchcouldbe createan ary of these
occasions

f During a productoés build/release process b

1 During an endpoinscanning process by a nanthoritative source (e,dy an
automated software discovery tool)

1 As the result of technicabhnalyticprocesgperformed byan entity thatobtains a copy of
a product after its release to market

2.3 SWID Tag Placement

This section describes various factors regarding the placement of SWID tags relative to the
software products they describe. SecBd® 1describes how and where SWID tags should be
placed as the result of installing new software, applying a patch or performing an update to
existing software. Sectioh3.2describes the placement of SWID tags that are gendratad
existing packagananagementlata Section2.3.3provides information about storing SWID tags
within a repositoryseparate from a software installation

2.3.1 Placement During Installation

The first and most common method of tag deployment is for a tag to be incorporated into the
productdés installation package, which then ca
the software installation procedufauch a procedure may be run as the result of installing new
software, or by applying a patch or update to existingvswé. This methodf tag deploymenis

available when the tag creator is in a position to ensure that the tag is included in the installation
package.

During software installatioa SWID tag is placed relative to the product it identifies and
describes. fie SWID specification makes the following statements about SWID tag placement
this situation

On devices with a file system, but no API defined to retrieve SWID tags, the SWID tag
data shal/l be stored in an XMdsysteminasdsand sh
directory named Aswidtago (all | ower case)
subdirectory of the install location of the software component with which they are

installed. It is recommended, but not required, that the swititagtory is located at the

13



701
702
703
704
705
706
707
708

709
710
711
712

713
714

715
716
717
718
719
720
721
7122
723
724
725

726
727
728

729
730
731
732
733
734
735

736
737

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

top of the application installation directory tree. Any payload information provided must
reference files using a relative path of the location where the SWID tag is stored. On
devices that do not have a file system, the SVdlipdata shall be stored in a data storage

|l ocation defined and managed by the pl a
that utilize both a file system for software installation as well as API access to the SWID
tag files, it is recommended thaetBWID tag data be stored in the APl managed
repository as well as stored as a file
al so be accessible via a UR22015pp67pt her

These statements suggest that the SWfor a product is placed on the same device where the
product is installed. While this is correct as a general rule, as tinarket has evolved, the
concept of an Ainstalled software product o
complicatedhe issue of where SWID tags may be placed

The SWID specification provides the following rules and recommendations that shall be used
when creating names for SWID tag files:

Filenames should be restricted to use only the characters listed in the Héltsialme
Character Set defined in IEEE 1003.1:2013, 3.278 to maximize interoperability between
platforms. If this limitation is too restrictive, the tag creator shall ensure that the
characters used in the filename are valid characters for all platforers tieir SWID

tags may be stored on a file system. SWID tag base filenames (i.e. the filename without
the .swidtag extension) shall be structured to be globally unique for the tag creator and
product. SWID tag creators may use different approaches tardethe base portion of

the SWID tag filename; however, if the filename aligns with the following structure, the
filename will be unique for the product and recognizable by a system administrator
<name of the tag creator> + <product name>.swidthg .swdtag file extension shall

be used for all software identification tags. [ISO/IEC 19272D15, p. 8]

Following this guidancefor example, the SWID tag referencipgpduct nam@&ACME
R o a d r uronmtbeersaftware creatéa ¢ me . como wo ul flendame, st or ed
fiacme.com.acmeroadrunner.swidtag 0.

The simplest concept of an Ainstalled soft
memory and executed on a computing device by virtue of Ipgipsically sbredon that device.
Software igphysically storesn a computing device if it is recorded in a persistent storage
component that is itself part of the hardware comprising the computing dé&icereport is
primarily concerned with the use of SWID tags to identify software productdiscaverwhere

they are storedbecause it is generally assumed that where a product is stored also determines
where (and often by whom) that product may be executed.

The assumption that software products are physically stored on the same computirggudedce
to execute them is not always true. For example, through the use gferfighmance

2 Software present on removabmedia (e.g., a USB thumb drive or SD memory card) that is plugged into a computing device
is considered physically stored on the computing device according to this definition.

14

tfo

on
me a

i n

war



NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

738 networking technologies, a software product can be physically stored on a nattacHed

739 storage (NAS) device, then executed seamlessly on any computing dégite atress that

740 NAS device. In situations like these, products and their tageside on the NAS device, and

741 inventory tools will likely consider the products to be part of the inventory of the NAS device. In
742  other words, storage location matters ntben the location where a product can be executed

743 when determining tag placement. The locations where a product can be executed may need to be
744  considered, however, when determining the effective software inventory of an endpoint.

745  As another example, considremovable media devices such as USB thumb drives and SD

746  memory cards. Once a software product is installed on such removable media, it can become
747 executable on an endpoint immediately upon insertion of the media. In this scenario, the product
748 tag reside with the product on the removable media. The product is considered part of the

749 inventory of the removable media, but may also be considered part of the effective software

750 inventory of the endpoint during the time the removable device is attached.

751 The rige of virtualization technology further clouds the issue, as it changes the definition of what
752 it means to be a computing device, and introduces the prospect of virtual devices that are created,
753 inventoried, and destroyed all in the space of mere momargenkeral, SWID tags for software

754  products that are installed on virtual machines reside within the virtual machine images, and are
755 accountable to the virtual machines rather than to the physical host machines. When software
756 products are installed on atual machine that is powered down, inactive, and stored somewhere
757 as a machine image, those products are considered to exist in the inventory of the virtual

758 machine, not the inventory of the device that stores the machine image. In this sense, a powered
759 down virtual machine is treatdle same aa powereedown physical machineffectively

760 rendering thenstalled products unavailable, but not removing them from the software inventory.
761 In contrast, dstroying a virtual machine is treati® same as thdecmmissioningof a

762 physical machineln the latter case, all installeditware productsre removed fronthe

763 softwareinventory

764 Finally, computing I nnovations such as fAsoftw
765 challenging the basic notionofwheat Aisof t ware producto fundament :
766 on shortlived software, often executed in a browser, which breaks the linkage between where

767 products are installed and where they are executed. When a software application is operated

768 remotely as service, it is considered to be installed on the remote server rather than on the

769 client device. But when a product is containerized and delivered to a client device for execution,

770 that product becomes part of tehtmnsierdty.ent devi c

771 In summary, the general rule for SWID tag plhderring installation processisthat tags reside

772 on the same physical or virtual storage device as where the tagged product resides. Although tag
773 consumers may infer that a product is exable on the same device where it is stored, they will

774  benefit from distinguishing cases where products may be executable on devices elsewhere within
775 the enterprise.

776 2.3.2 SWID Tag Generation from Existing Package Management Data

777 A second method of tag deployméntmplicit. Some operating environments furnish native
778 package management systems that, when properly used to install products within those
779 environments, automatically record all the information needed to populate required data elements

15



NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

780 in atag. In thessituations, software installation systems are able to avoid explicit preparation

781 and deployment of a tag on a device, as long as the native package manager provides a published
782 interface allowing valid tags to be obtained. When a tag is prodlyceanicdly on the

783 installation hostn this way, it will not be possiblir this tag to be digitally signed. Asesult,

784 it will not be possibleo verify the integrity of the talyased on a digital signatunaless an

785 equivalent tag is also produced usingfire method described above. Without being able to

786 verify thet a @gignature, processes on the device and downstream consumers that use the

787 information within a SWID tag will have less assurance of the tags authenticity and integrity.

788  This will limit the usefulness of the SWID tag information to address some usage scenarios that
789 require a high degree of assurance.

790 2.3.3 Placementin a Repository of SWID Tags

791 A third method of tag deployment is to st@®/ID tagsin accessible repositorieBy retrieving
792 specifc tags from an appropriate reposit@gftware consumersando the following

793 1 Confirm that a tagvhich has been discovered on an endpoint has not been mothiigd
794 can dondéby comparinghe tag found on the endpoint with the same tag found in the
795 repostory

796 1 Restore a tathathas been inadvertently deleted

797 1 Correct a taghathas been improperly modified

798 1 Utilize the information in the tag to support various softwatated management and
799 analysis processes

800 2.4 Summary

801 This section covered basic SWID tag cepts. The SWID specification defines fouffetent
802 types of SWID tag#o support various portions of the software lifecycle, including pre
803 installation, product installation, patching, software updates, and software decommissioning.

804 1 Corpus SWID tags pxide information aboua software distribution, to include

805 information abouthe files that are includeas part of thelistribution. This information

806 may be used to verify the integrity and/or authenticity of the softdiatebution

807 1 PrimarySWID tags provide specific information (e.g., product naming information, the
808 software creator, lists of files expected to be included) regarding a software product that
809 has been installed.

810 1 PatchSWID tagsprovide specific information aboatsoftware pahthat has been

811 provided tocorrect errors in or add new features to a produgatchtag supplies

812 information about the changes that a patch makes foaticeedsoftwarep r oduct 6 s
813 installation footprinincluding files added, removed, or changed

814 1 SuplementalSWID tagsprovide a mechanism to descriadditional information

815 related to tags afther types.

16



NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

816 Any entity may create a supplemental tag for any purgaseexample, supplemental tags

817 may be created by automated tools in order to augmentistmgxprimary tag with

818 additional sitespecific information, such as license keys and contact information for local
819 responsible parties.

820 By placing SWID tags in consistent locations relative to the software products they identify,
821 inventory processes amditomated tools are able to consistently and accurately maintain
822 software inventory.

823 SWID tags may also be placed in accessible repositories to make tag information available
824 to be used by other management and cybersecurity processes.

17



825

826
827
828
829
830
831
832

833

834
835

836
837
838
839

840

841
842

843
844
845
846
847

848

849
850
851

852
853
854

855
856
857

858
859
860

NISTIR 8060 (Final Public Draft)

Guidelines for the Creation of Interoperable SWID Tags

3 SWID Tag Overview

This section presents a higvel description of SWID tag data elements as specified in the

SWID specification. The material presented here is intended to provide a general understanding
of how SWID tags may be used to identify and describe software prodoatsrrectly

implement tags, interested readers may want to obtain the ISO specification and the
correspondingKML schemadefinition (XSD). When used with a validating XML parser, the

XSD can be used to check that a SWID isagonformant with the SWIDpecification. The

XSD may be downloaded from:

http://standards.iso.org/iso/197702015/schema.xsd

This section is intended to provide an overview of the data model used to express and
authenticate SWID tags.

The remainder of this section is organized as foll&estion3.1 presents an overview of the
basic data elements that comprise a SWID$&gtion3.2 discusses how SWID tags may be
authenticatedSection3.3 presents an example of the primary tag type, and Se&#on
concludes with a summary of key points from this section.

3.1 SWID Tag Data Elements

This section discusséise basic data elements of a SWID tag. This discussion will also explain
how the four tag types describ@dSection2.1 are distinguished from each other.

A SWID tag (whethecorpus primary, patch, osupplementalis represented as an XML root
element with several stddlements<Softwareldentity> is the rootelement, andis
described in Sectio®.1.1 The following sukelements are used to express distinct categories of
product information<Entity>  (see83.1.2, <Evid
83.1.4, <Meta> (see83.1.5, and<Payload> (see83.1.6.

ence> (see83.1.3, <Link> (see

3.1.1 <Softwareldentity>: The Root of a SWID Tag

Besides serving as the container for all theel@iments described in later subsections, the
element provides attributes to record the following descriptive
properties of a software product:

<Softwareldentity>

1 @namethe string name of the software product or component as it would normally be

referenced, e.g., AACME Roadr@namasr Managem
required.
T @version: the detail ed ver si ththe 83WID gpédriéicatipm, oduct |,

avalue for@version isoptionala n d
guidelines arg@rovided thatequire a valuefor @version in corpts and primary tags.)

d e f a u(Notesthat later i tBisepdrd

1 @versionScheme : a label describing how version information is encoded, e.g.,
fimultipartnumeric 0 In the SWID spe

optionala n d

d e f naulliparttnametico

18

cification, @alue for@versionScheme is
i Sectionss.1.1and5.2.10f thisreport


http://standards.iso.org/iso/19770/-2/2015/schema.xsd

861
862

863
864

865
866
867
868
869
870

871
872
873
874
875
876
877
878
879
880
881
882

883
884
885

886
887

888
889

890
891
892
893
894
895

896

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

provideguidelinesthatrequire a valuefor @version Scheme in corpus and primary
tags respectively

1 @agld : a globallyunique identifier that may be used as a priobentifierin other
contexts to refer to the tagged prodécizalue for@agld is required.

1 @tagVersion : an integethatallows one tag for a software product to supersede
another withousuggestingny change to the underlying software product being
describedTypical reasons for an increment@tagVersion include: 1) fixes of
erroneous information in an older version aég or, 2) the addition of new information
that was not included in a previously deployed fagalue for@tagVersion is
optional and defaults t600 .

Under normal conditions, it would be unexpected to discongtiple tagspresenin the
same locatioon a device thadll identify the same installed produdly having the same
@tagld attribute valugbut different@tagVersion attributevalues.Such a situation
probably reflects a failure to propemyaintaint he devi ceds i nventory
Nevertheless, should such a situation be encountiéethg with the highest

@tagVersion is considered to be thmost upto-datetag, and the others may be

ignored When considering tags in this situation, it is intpat to verify tag signatures, if
available, to ensure that the mosttoflate tag being considered contains a valid XML
signaturg(see83.2). Furthermore, it ismportant that this signatumntain a valid
certificateto avoid using a tag that might have been produced by an unauthorized party.
For example,fithe mostup-to-date tag is found to contain an invalid signattinena

valid tag with the next lowes@agVersion valueis likely to be safer to use.

1 @supplemental : a boolean valuthat, if set tofitrue 0, indicateghat the tag type is
supplementalsee82.1.4. A value for@supplemental is optional and defaults to
fifalse o.

1 @patch: a boolean valuthat if set tofitrue 0 indicates that the tag typepatch(see
§2.1.3. A value forpatch is optional and default$ ofalsg@ o .

1 @corpus: a boolean valuthat, if set tofitrue 0 indicates that the tag typederpus
(see82.1.1). A value for@corpus is optional and default$ ofalsé o .

Tablel illustrates how the tag type may be determined by inspecting the val@sogbus ,
@patch, and@supplemental . If all these values are false, the tag typgrimary. This
report provides gdielines requiring thadt most one o@corpus, @patch, or
@supplemental beset totrue(see885.1.1,5.2.1 5.3.1 and5.4.]). In Sections.3.1and
5.4.10f thisreport guidelinesareprovidedthatrequirepach and supplemental tagsinclude a
<Link> element associating them with the tags to which they are related.

19



897

898

899

900
901
902
903
904

905
906
907
908
909
910
911
912
913
914
915
916
917

918

919
920
921
922
923
924
925
926

927
928
929
930
931

NISTIR 8060 (Final Public Draft)

Tag Type @supplemental

Corpus f alse
Primary f alse
Patch f alse
Supplemental t rue

Table 1: How Tag Types Are Indicated

Guidelines for the Creation of Interoperable SWID Tags

@patch

f alse

f alse

t rue

f alse

3.1.1.1 Example 18 Primary Product Tag

This exampl e

Management Suit€oyote Edition 0

@corpus

t rue

f alse

f alse

f alse

il lustrates a

ficom.acme.rmsev4-1-5-00. The <Entity>

<Softwareldentity

The

xmins="http://standards.iso.org/iso/19770/
name="ACME Roadrunner Management Suite Coyote Edition "

tagld=" com.acme.rms -ce-v4-1-5-0"

tagVersion="0
version="4.1.5" >
<Entity

name="The ACME Corporation

regid= "acme.com"

role= " tagCreator softwareCreator

é
</Softwareldentity>

3.1.1.2 Example 26 Supplemental Tag

n />

<Link> required @rel

N/A
N/A
patches
supplemental

pr i mECME Rdadiugnef or v e
gl obally @agldqg,ise
element(see83.1.2 is included so the example
illustrates all data values required in a minimal tag that conforms ®@MHP specificationAny
additional identifying data (not shown) would appear in pladbetllipsis.

- 2/201 5/schema.xsd"

tag

i deni

This example illustrates a supplemental tag for an already installed product. The globally unique
JEhtiey> element(see
83.1.2 is included so the example illustrates all data values required in a minimal tag that
conforms to the standar@ihe<Link> elementsee83.1.9 is included to illustrate how a
supplemental tag may be associated with the primary tag shown above in SdcfidhThis
supplemental tag may be supplying additional installation detatare not included in the
product 6s pr i-spacifiyinfarnaatipn gueh aggcontact mforinaion for the
informationsteward) These details would appear in place &f ¢fiipsis.

identifier of the supplemeal tagis icom.acme.rmsensorlo .

<Softwareldentity

xmins =" http://standards.iso.org/iso/19770/
name="ACME Roadrunner Management Suite Coyote Edition

tagld="com.acme.rms
supplemental="true">

- sensor -1"

20

- 2/2015/schema.xsd



932
933
934
935
936
937
938
939
940

941

942
943
944
945

946
947
948
949
950
951
952
953
954
955
956
957
958
959
960

961

962
963
964
965
966

967
968

969
970
971
972

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

<Entity
name="The ACME Corporation"
regid="acme.com"
role="tagCreator softwareCreator"/>

<Link
rel="related"
href="swid:com.acme.rms -ce-v4-1-5-0">
é

</Softwareldentity>
3.1.1.3 Example 30 Patch Tag

This example illustrates a patch tag for a previously installed product. The nhameatctinés
AACME Roadrunner Service Packl and i ts gl obal komawmermsa e
splv1-0-00 <Entity> and<Link> elements are illustrated as before. Any additional
identifying data (not shown) would appear in place of the ellipsis.

<Softwareldentity
xmins="http://sta ndards.iso.org/iso/19770/ - 2/2015 /schema.xsd"
name="ACME Roadrunner Service Pack 1 "
tagld=" com.acme.rms -ce-spl-vl-0-0"
patch="true"
version="1.0.0" >
<Entity
name="The ACME Corporation "
regid= "acme.com™
role= "tagCreator softwareCreator ">
<Link
rel= " patches
href= " swid:com.acme.rms -ce-v4-1-5-0">

é
</Softwareldentity>

3.1.2 <Softwareldentity> Sub-Element: <Entity>

Every SWID tagdentifies at minimum, therganizational or individuartity thatcreated the
tag.Entities having other roles associated with the identified software product, such as its
creator, licensor(spr distributor(s), may optionally be identified. These entities are identified
using<Entity> elements contained withithe<Softwareldentity> element. Each
<Entity> element provides the following attributes:

1T @ame t he string name of the entity, e.

@uameis required.

T @egid : the firegistration distessedbelbywAevalug foro f
@eqgid isrequired when the<Entity> element is used to identify the tag creator
(e.g., @role =ftagCreator 0 ,)otherwise@egid is optional and defaults to
finvalid.unavailable 0.

21

t

t

ag

he



NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

973 1 @role : the role of the entity with respect teettag and/or the product identified by the
974 tag. Every<Entity> element contama value for@role , and additionally, every tag
975 contairsan<Entity> element identifying the tag creatdihe @role attribute can list
976 multiple roles with a space separating each Ndues for@role can beselected from
977 an extensible set of allowed tokens, including these:

978 0 aggregator:  An organization or system that encapsulates softwaretfiein
979 own and/or otherrganizations into a different distributigamocess (as in the case
980 of virtualization), or as a completédindleto accomplish a specific task (as in the
981 case of a valuadded reseller)

982 o distributor: An entity that furthers the marketing, selling and/orribstion
983 of software from the original place of manufacture toutienate user without

984 modifying the software, its packagingits labelling

985 o licensor: A person or organizatiamatowns or holds the rights to issue a

986 software licenséor a specificsoftware package

987 o softwareCreator: A person or organization that creates a software product
988 o tagCreator: Theentity tha creats a givenSWID tag

989 1 @thumbprint :for SWID tags which are digitally signégdee84.6), this value provides
990 a hexadecimal string containing a hash of
991 digital signature to be directly related to the entity specified.

992 Values for@egid areURIsas described in RFC 398RFC 3986] Values for@regid are
993 not required to be dereferenceable on the Intefleeénsure interoperability ard allow for
994  open source project suppdBection 6.1.5.2 ahe SWID specification recommendba tag
995 creators do the following when creating a value@asgid

996 1 Unless otherwise required, the URI should utilizehtip scheme.
997 1 Ifthehttp s c heme i shttpd/s edd, mayh eb e | estring (eostrifig t he r e
998 without a URI scheme shte/ti i sdhemedefi ned
999 1 Unless otherwise required, the URI should use an abddRit¢hat includes an authority

1000 part, such as a domain name.

1001 1 To ensure consistency, the absoluil should e the minimum string required (for

1002 examplegxample.com should be used insteadwivw.example.com ).

1003 Fortag creatorshat do not have a domain name, th&lto  schemeamaybe usedn place of
1004 thehttp scheme to identify the tag creatyremail address, g., mailto:foo@bar.com

1005 The example below illustrates a SWID tag containing¢&atity> elements. The first
1006 <Entity> element identifies the single organizatibatis both the software creator and the
1007 tag creator, and a second element identifies thenrat@onthati s t he soft warebs d

22



1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019

1020

1021
1022
1023
1024
1025
1026
1027

1028
1029

1030
1031
1032

1033
1034
1035
1036

1037
1038

1039
1040
1041
1042
1043
1044
1045
1046

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

<Softwareldentity e >
e
<Entity
name="The ACME Corporation "
regid= "acme.com™
role= "tagCreator softwareCreator ">
<Entity
name="Coyote Services, Inc.
regid= " mycoyote.com "
role= " distributor ">
e
</Softwareldentity>

3.1.3 <Softwareldentity> Sub-Element: <Evidence>

Not every software product installed on a device will be supplied with &\tagn a tag is not
found for an installed produdhird-party software inventorgnddiscovery bols will continue to

be used to discover untagged products residing on devices. In these situations, the iaventory
discovery tool may generate a primary tagthe flyto record the newlgiscovered product. The
optional<Evidence> element may then hesed to store results from the s¢haatexplain why

the product is believed to be installed. To that endsBhedence> element provides two
attributes and four sublements, all of which are optional:

1 @date: the date the evidence was collected.
@devicel d: the identifier of the device from which the evidence was collected.

<Directory> : filesystem root and directory information for discovered fileso
absolute directory is provided, the directory is considered telagve tothe directory
location d the SWID tag.

1 <File> : files discovered and believed to be part of the prodiuct absolute directory
pathis provided, the fildocationis assumed to beelative to the location of the SWID
tag.If a parenkDirectory> includes a nestedFile> | theindicatedfile is relative
to the parenkocation

1 <Process>: related processes discovered on the device.
1 <Resource> : other general informatiothatmay be included as part of the product.

Note that<Evidence> is represented in a SWID tag in the same mannePagload> (see

83.1.9. There is a key difference, however, betwe&vidence> and<Payload> data. The
<Evidence> element is used by discovery tools that identify untagged software. Here the
discovery tool creates a SWID tag based on data discovered on a device. In this case, the
<Evidence> element indicates only what was discovered on the device, but this datalmanno
used to determine whether discovered files match what a software provider originally released or
what was originally installed. In contrasRayload> data supplies information from an
authoritative source (typically the software provider or a ded@ganhd thus may be used, for

23



1047
1048

1049
1050
1051

1052
1053
1054
1055
1056
1057
1058
1059
1060
1061

1062
1063
1064
1065

1066

1067
1068
1069
1070
1071
1072

1073
1074
1075
1076

1077
1078

1079

1080
1081

1082

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

example, to determine if files in a directory match the files that were designated as being
installed with a software component or software product.

The example below illustrates a SWID tag containingawidence> element. Tl evidence
consists of two files discovered in a folder
program data area:

<Softwareldentity é >
e
<Evidence date= " 11-28-2014" deviceld= "mml23 pc.acme.com ">
<Directory location =".. " name="rrdetector ">
<File name= " rrdetector.exe " size= "532712" />
<File name= " sensors.dll " size= "13295" />

</Directory>
</Evidence>
é
</Softwareldentity>

In cases where the evidence is collected from a shared location (e.g.,deNeéd the
provided@eviceld could reference that shared location rather than the endpoint where the
discovery occurs. Using this approach helps to prevent a situation where software installed in a
shared location is tagged multiple times with conflict@deviceld values.

3.1.4 <Softwareldentity> Sub-Element: <Link>

Modeled on the HTML [LINK] elemen§SWID tag<Link> elements are used to record a
variety of relationships between tand other itemsA typical use of thecLink> element is to
document relationthat existdetweera product or patch described bygaurce tagthe tag
containing the<Link> elemen}fand a product or patch describeddigrget tag(the tag to

which the<Link> element points)Link> elements may also be used to associate a source
tag withotherarbitrary information elements.

A <Link> element ioften usedo associate a patch tagsupplemental tafp a primary tag
(see82.1.3and82.1.4. Other uses include pointing imcuments containing applicallieenses,
vendor support pages, and installation media.hek> element hag number of attributes,
two of which are required, as follows

1 @ref :the value is a URI pointing to the item to be referentld. href can point to
several different values including:

0 arelative URI

o a physical file location with any systeatceptable URI scheme (e.fije://, http://,
https://, ftp://)

o a URI with"swid:é " as the scheme, which refers to another SWID tag by tagld

24



1083
1084
1085

1086
1087

1088
1089

1090
1091
1092

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

0 a URI with "swidpath:..." as the schemeéhich contains aXPATH query[XPATH
2.0]. ThisXPATH would need to be resolved in the contexthaf $ystem by software
that can lookup other SWiiags and select the appropritag basedn thequery.

1 @el :the value specifies the type of relationship between the SWID tag and the item
referenced by@href .

Table2 lists the predefined values of th@rel attribute defined in the SWID specification
Note that this list may be extended to support future needs.

Table 2: <Link> Relations

Relation Meaning

ancestor Defines a link to an ancestor oktproduct. This relation may be
used to indicate a pigpgrade version dhe product.
component Defines a link to a component ofethroduct.A component could

be an independently functioning application that is part of a pro
suite or bundle, as well as a shared library, language pack, etc.

feature Defines a link to a part ahe product that can be enabled or
disabled separately withouécessarily modifying any physical
files.

installationmedia Defines a link to the installation media used to install the softwe
product.

packageinstaller Defines a link to a tool or entity required to install the product.

parent Defines a link to th@arent of the product.

patches Defines a link to the product to which the patch was applied.

requires Defines a link to a required patch, or to any other software proc

that is required in order for the product described by the source
to functionproperly.

see - also Defines a link to other software produtitetmay relate in some
manner to the software identified in the source tag. Such other
products might be addns or extensions that may be of interest t
the user/administrator of the device.

supersedes Defines a link taa superseded patch.

supplemental Defines a link to aupplemental tag.

<any> Additional relationships can be specified by referencingriteznet
Assigned Numbers Authority (IANALink Relations registration
library.3

3 Seehttp://www.iana.org/assignments/limklations/linkrelations.xhtmfor the current list of defined link relations.

25


http://www.iana.org/assignments/link-relations/link-relations.xhtml

1093
1094

1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106

1107

1108

1109
1110

1111
1112
1113
1114
1115

1116
1117
1118
1119

1120
1121

1122
1123

1124
1125
1126
1127
1128
1129

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

The example below illustrates how<hink> element may be used to associate a patch tag with
the tag for the patched product:

<Softwareldentity
é
name="ACME Roadrunner Service Pack 1
tagld=" com.acme.rms -ce-spl-v1-0-0"
patch="true"
version ="1.0.0" >
e
<Link
rel= " patches
href= " swid:com.acme.rms -ce-v4-1-5-0">
<]
</Softwareldentity>

The patchn this example is linketb the patched produtts a g usi ng @®thgidt. pr oduc

3.1.5 <Softwareldentity> Sub-Element: <Meta>

<Meta> elements are used to record an array of optional metadata attributes related to the tag or
the productSeveral<Meta> attributes of interesdre highlighted below

1 @ctivationStatus : identifies the activation status of the produdie SWID
specificationprovides several example valuesg.,fiTrial ¢, iSerialized 0,
fiLicensed 0, andfiUnlicensed 0), but any string value may be supplied. Valid values
for @ctivationStatus are expected to be worked out over time by tag
implementers.

1 @colloquialVersion : the informalversionof the producté.g., 2013. The
colloquial version may be the same through multiple releases of a software product where
the @version specified in<Softwareldentity> iIs much more specific and will
change for each software release.

1 @dition :the variation of the produce.g.,Home Enterprise ProfessionalStandard
Student

1 @roduct :the base name of the product, exclusive of vendor, colloquial version,
edition, etc.

1 @revision :theinformal or colloquial representation of teelbversion of the product
(e.g, SP1 R2, RC1, Beta)2Whereas the Softwareldentity> el ement 0s
@version attribute will provide exact version details, tgevision attribute is
intended for use in environments where reporting on the informal or caloqui
representation of the software is importdfar example, iffor a certain business
processan organization decides thatéquiresService Pack 1 or later of a specific

26



1130
1131

1132
1133

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147

1148

1149
1150
1151
1152
1153

1154
1155
1156
1157
1158
1159

1160
1161

1162
1163
1164
1165
1166
1167
1168

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

product installed on all devices, tbeganiationcan use the revision data valto
quickly identify any devices that do not meet this requirement.

In the example below, €Meta> element is used to record the fact that the product is installed
on a trial basis, and to break out the full product name into its component parts:

<Softwa reldentity é >
e
name="ACME Roadrunner Detector 2013 Coyote Edition SP1 "
tagld=" com.acme.rd2013 -ce-spl-v4-1-5-0"
version="4.1.5" >
e
<Meta
activationStatus="trial"
product="Roadrunner Detector"
colloquialVersion="2013"
edition ="coyote"
revision="spl1"/>
e
</Softwareldentity>

3.1.6 <Softwareldentity> Sub-Element: <Payload>

The optionakPayload> element is used to enumerate the items (files, folders, license keys,
etc.)thatmay be installed on a device when a software produastalled. In general,

<Payload> liststhe files that may be installed with a software progaict! will often be a

superset of those files (i.e., if a particular optional component is not installed, the files associated
with that component may be incledl in the<Payload> , butarenot installed on the device.)

The<Payload> element is a container feDirectory> , <File> |, <Process> , and/or
<Resource> elements, similar to theEvidence> element(see83.1.3. When the

<Payload> element is used, information contairiedhe element is considered to be
authoritative information about the software. This differs from the use efEtielence>

elemen, which is used to store results frascan thaindicatewhy the product is believed to be
installed.

The followingexample illustrates a primary tag witkkRayload> elementdescribing two files
in a single directory:

<Softwareldentity e >
e
<Payload>
<Directory root="%programdata%" name="rrdetector">

<File name= "EPV12.cab" size="1024000"
SHA256:hash="a314fc2dc663ae7a6b6bc6 787594057396e
6b3f569cd50fd5ddb4d1bbafd2b6a" />

27



1169
1170
1171

1172
1173
1174
1175

1176

1177
1178
1179
1180
1181
1182
1183

1184
1185

1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210

NISTIR 8060 (Final Public Draft)

Guidelines for the Creation of Interoperable SWID Tags

<File name="installer.exe" size="524012"
SHA256:hash="54e6c3f569cd50fd5ddb4d1bbafd2b6ac41

28c2dc663a e7abbbbc67875940573" />

</Directory>
</Payload>

e

</Softwareldentity>

3.2 Authenticating SWID Tags

Because SWID tags akML documents discoverable on a deisee§2.3.1, 82.3.2 or by
retrieving a tag from a repositofyee82.3.3, they are vulnerable to unauthorized or inadvertent
modification like any other documenito recognize suckag modifications, it is necessary to
validate that a SWIDagwas produced by a known, trusted entity had notbeenalteredafter
creation XML digital signatures embedded within a SWID tag can be tsptbve the
authenticity of the tag signer atwmlvalidate that changes have not been ntadbe originakag

that was signed

Applying an XML digital signature to a tag directly after it is created addréssdsllowing

risks:

l

Creation of a tag by an unauthorized creator Any entity can create a tag for a
software productBy including a certificat@cquired from a trusted certificate authority

in the tagés digital signature, it nts poss

been revoked, and determine that the signature was produced while the certificate is
valid. By linking the sigature to the<Entity> element having @role value of
ftagCreator 0 and u@hunbgrintt lateibute(see83.1.2 to recordthe

thumbprintof the certificateit is possible to identify that the tag creator is also the tag
signer This provides a method for source authenticatiomtagd sreator.

Detecting wthauthorized changes ta tag. Changes made to a tag after it is created can

be detected by validatingtheg 6 s si gnature. Such changes
modification, incomplete copying, network errors, filesystem corruption, or by an
attackemwishing to misrepresemiieinstallation state of insta#ld software othe

information contained within ag. The use of an XML digital signature in this way

provides a means to measure the integrity of a tag. When coupled with authenticating the
creator of a tag, this greatly increases the assurance of the tag data.

Detecting uinauthorized changes to softwarénstallation media and packageslf the

creator of a corpus tag can be authenticated and the integrity of the tag can be verified, it
i s then possible to «Ragload>h&ement if pavided,toi o n
measure the integrity of software installation media or packages. This can be useful for
detecting unauthorized changes to software installation media and packajean

inform policy decisions pertaining to authorizing softevarstallationgseeS6.2.1).

Detecting wihauthorized changes to installed softwardf the creatos of primaryand
patchtags related to an installed software puotican be authenticated and the integrity

of the tag can be verified, it is then possible to use the informati@aoht a g 6 s
<Payload> elementif provided,to measure the integrity of tmelatedinstalled

28

m

n



1211
1212
1213

1214
1215
1216

1217

1218
1219
1220
1221
1222
1223

1224
1225
1226
1227
1228

1229
1230

1231
1232
1233
1234
1235
1236
1237
1238

1239
1240
1241
1242

1243

1244
1245
1246

NISTIR 8060 (Final Public Draft)

When considering the tality of these risks, SWID tags can enhance the assurance of software

Guidelines for the Creation of Interoperable SWID Tags

software productThis can be useful for deting unauthorized changes to installed
software and can inform policy decisigmesrtaining to authorizing software execution

(see86.2.2.

before and after it is installeoh a standardized way, regardlesshef targeplatform or software
productinstalled

Section 6.1.10 of th8WID specification states that:

Digital signaturesisethe<Signature > elements described in the W3XML Signature
Syntax and Processing (Second Editispgcification [xmldsiegcore] and the associated

Signaturesare not a mandatory part of theftware identification tagtandard, and can be

used as required by any tag producer to ensure that sections of a tag are not modified

and/or to provide authentication of the signer. If signatures are includeel software

identification tag, theghallfollow the W3C recommendation defining the XML

signature syntax which provides message integrity authentication as well as signer
authentication services for data of any type.

schemd Users mayalsoi ncl ude a

relationship betweaethe tag entity and the signatuosingthe <Entity > @thumbprint

attribute.

hexadeci

ma |

hash

stri

Section 6.1.10 ofhte SWID specificatiomlsorequires that a digitallgigned SWID tag enable
tag consumers to

Utilize the data encapsulated by the SWID tag to ensure thdigited signature was
validated by a trusted certificate authority (CA), that the SWID tag was signed during the
validity period for that signature, and that no signed data in the SWID tag has been
modified. All of these validationshallbe able to be @omplished without requiring

access to an external network. If a SWID tag consumer needs to validate that the digital
certificate has not been revoked, then it is expected that there be access to an external
network or a data source that can proyaeces to the necessdrgevocation

information.

ng

Additional information on digital signatures, how they work, and the minimum requirements for

digital signatures used for.8l Federal Government processing can be found ifr¢aeral

Information Processing Stdards(FIPS)Publication 1864, Digital Signature Standard (DSS)
[FIPS-186-4].

3.3 A Complete Primary Tag Example

A complete tags illustrated belowcombining examples from the preceding subsections. This
example illustrates a primary tag that contains alhdatory data elements as well as a number
of optional data elements. This example does not illustrate the use of digital signatures.

4

Seehttp://www.w3.0org/TR/xmldsiecore/#seeSchema

29

(


http://www.w3.org/TR/xmldsig-core/#sec-Schema

1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279

1280

1281
1282
1283
1284
1285

1286
1287
1288
1289
1290
1291

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

<Softwareldentity

xmins="http://sta ndards.iso.org/iso/19770/ - 2/2015 /schema.xsd"
name="ACME Roadrunner Detector 2013 Coyote Edition SP1 "
tagld=" com.acme.rrd2013 -ce-spl-v4-1-5-0"

version="4.1.5" >

<Entity

name="The ACME Corporation "

regid= "acme.com™

role= "tagCreator softwareCreator ">
<Entity

name="Coyote Services, Inc.

regid= " mycoyote.com "

role= " distributor ">
<Link

rel= "license "

href= " www.gnu.org/licenses/gpl.txt /">
<Meta

activationStatus="trial"
product="Roadrunner Detector"
colloquialVersion="2013"
edition="coyote"
revision="spl1"/>
<Payload>
<Direc tory root= " %programdata% " name="rrdetector ">
<File name="rrdetector.exe" size="532712"
SHA256:hash="a314fc2dc663ae7a6b6bc6787594057396e6b3f569c
d50fd5ddb4dlbbafd2b6a" />
<File name="sensors.dll" size="13295"
SHA256:hash ="54e6¢3f569cd50fd5ddb4d1lbbafd2b6ac4128c2dc66
3ae7a6bbbc67875940573" />
</Directory>
</Payload>
</Softwareldentity>

3.4 Summary

SWID tags are rich sources of information useful for identifying and describing software
products whether in a prnstallationstate omwheninstalled on devices. A relatively small

number of elements and attributesequired in order for a tag to be considered valid and
conforming to the specification. Many other optional data elements and attributes are provided
by theSWID specification to support a wide range of usage scenarios.

A minimal valid and conforming tag uses&oftwareldentity> element to record a
product 6s name amqle idehtiBer, and gobtans gaintdyb a Elément to
record the name and regyetion identifier of the tag creator. While such a minimal tag is better
than no tag at all in terms of enhancing the ability of SAM tools to discover and account for
installed products, it falls short of satisfying many higlesel business and cyberseity needs.
To meet those needs, the SWApecificationoffers several additional elements, such as

3C



1292
1293
1294
1295
1296
1297

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

<Evidence> for use by scanning tools to record results of the discovery predask> to

associate tags with other items, including other,telyeta> to record a variety of metadata

values and<Payload> to enumerate files, etc., that comprise the installed proBunztlly,

digital signatures may optionally be used by any tag producer to ensure that the contents of a tag
are not accidentally or delibeedy modified after installation, and to provide authentication of

the signer.

31



1298

1299
1300
1301
1302
1303

1304
1305
1306
1307
1308
1309
1310
1311
1312

1313
1314
1315

1316
1317
1318
1319
1320
1321
1322

1323
1324

1325
1326

1327
1328

1329
1330

NISTIR 8060 (Final Public Draft)

Guidelines for the Creation of Interoperable SWID Tags

4 Implementation Guidance for All Tag Creators

Sections4 and5 provide implementation guidance for creators of SWID tags. primary

purpose of this guidae is to help tag creators understand how to implement SWID tags in a
consistentmanner that wiladdress common cybersecurity and operational IT usage scenarios,
such as those defined $ection6. In doing so this wilkatisfy the tadnandling requirements of
both public and private sector organizations.

Eachguidelinein the nextwo sections is prefixed with a coded identifier for ease of reference.
Such identifers have the following forma€CAT-NUM,

following categories:

wher e 0 CAefted symbol a
indicating the guidance category, and NUM is a numBardelinesare grouped into the

1 GEN: Generalguidelinesapplicable to all types of SWID tags

1 COR: Guidelinesspecific to corpus tagseess.1)

1 PRI: Guidelinesspecific to primary tagéseess.2)

1 PAT: Guidelinesspecific to patch tagsee85.3)

1 SUP: Guidelinesspecific to supplemental ta¢see85.4)

This secton provides implementaticguidelinesthataddressssues common to all situations in
which tags are deployed and procesSasttion5 providesguidelinesthatvary according to the

type of tag being implemented.

4.1 Limits on Scope of Guidelines

Thisreportassumes that tageatorsare familiar with theSWID specification an@nsure that
implemented tags satisfy all requirements contained therein.

GEN-1. When producing SWID tags, tag creators MUST produce SWIDtagsonform

to all requirements defined in tH&O/IEC197702:2015 specification.

GuidelineGEN-1 establishes a baseline of interoperability that is needed by all adopters of

SWID tags.

All guidelinesin thisreportareintended solely to extend and not to conflict with gaidelines
provided by thesWID specification Guidelinesin thisreporteither:

1 Strengtherexistingguidelinescontained in th&WID specification by elevating

ASHOULDO cl auseSWIbome @ii fniecdati inon hteo

t hr e

AMUSTO

1 Add guidelinesto address implementation issues where the SWID specification is silent

orambiguouby adding new

ASHOULDO

or

AMUSTO

In no cases should thise p quidelinesbe construed as either weakenimgeliminating

existingguidelinesn the SWID specification.

32

cl

(

a l



NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

1331 4.2 Authoritative and Non-Authoritative Tag Creators

1332 SWID tags may be created by individuals, organizations, or automated tools under different
1333 conditions.The entity thatreates a tag, as well deetconditions under which a tag is created,
1334 profoundly affecthow it can be used based thie quality, accuracy, completeness, and

1335 trustworthiness of the data containedhattag.

1336 Tags may be created hythoritativeor nonauthoritativeentities.For the purposes of thiseport
1337 anauthoritative tag creatois afirst- or seconeparty thatcreates a tags part of the process of
1338 releasing softwareA first-partyauthoritative tag creatas the software creator. #econd party
1339 authoritative tag creat@ggregats distributes, or licenss software on behalf of the software
1340 creator.Such partiesypically possesaccurate, complete, and detailed technical knowl!dutfe
1341 is needed for creation afthoritative tag containingeliableinformation

1342 A nonauthoritative tag creators defined as an entithatis in athird-partyrelation to the
1343 creation, maintenance, and distribution of the software-ahoritative tag creators typically
1344 create tags using product information that is gathesatjforensicmethodswhile discovering
1345 installed software

1346 As ashorthand, thieportu s es t he term Aauthoritative tago |
1347 aut horitati veawtnhdrtiitest, i vaen dt a@ign® ntaathoritativee r t o t ¢
1348 entities.Unless othewise specifiedguidelinesin thisreportaredirectedequallyat both

1349 authoritative and neauthoritative tag creator&uidelinespr e f i x e d wvarediractedi [ Aut h]
1350 specifically at authoritative tag creators, ajuidelinesp r e f i x e d -Awit t big do@cie®l o n

1351 specifically at norauthoritative tag creators.

1352 4.3 Implementing <Softwareldentity> Elements

1353 This section provides guidelings be observed by tag creators when implemer8WiD tag
1354 <Softwareldentity> elements.

1355 The SWID specification defines amtérnational standard intended to be adopted and used

1356 worldwide.To support an international audience it is neceseapgrmit tagcreatos to provide

1357 languagedependent attribute values in regigmecific human languages. For example, a

1358 Japanese software provider may want to speci f
1359 <Softwareldentity> @namaeattribute as a string of Japanese characters.

1360 The SWID tag XML schema provides muléinguage support in two ways. First, the schema
1361 specifies UTFB as the allowed character encoding scheme for SWID tag files. Second, the
1362 schema allows the option@xml:lang attribute to be included on all tag elemeig.taking
1363 advantage of these features, a Japanese software provideissaeld SWID tag like this:

1364 <Softwareldentity

1365 xmlns="http://standards.iso.org/iso/19770/ - 2/2015/schema.xsd"
1366 xml:lang="ja - jp"

1367 name="« fi H* 2> = o @v I+ 2015"

1368 tagld="jp.largecomputer CO. 2 = 1"

1369 version="1.0">

33



1370
1371
1372
1373
1374
1375

1376
1377
1378
1379
1380
1381
1382
1383
1384

1385
1386
1387

1388
1389
1390

1391
1392
1393
1394
1395

1396
1397
1398

1399
1400
1401

1402

1403
1404

1405
1406
1407
1408

NISTIR 8060 (Final Public Draft)

Guidelines for the Creation of Interoperable SWID Tags

<Entity

é

name=" «fiH® D o "
regid="largecomputerco.jp"
role="tagCreator softwareCreator"/>

</Softwareldentity>

According to W3C documentatiolanguagetagéiar e used to i ndicate
ot her items i n HTMMW3@langtags]Bysupgdlying therianguage tag
fla-jp0 as t he <So#waneldenty t h@eml:lang attribute, the tag creator
signals to tag consumers that variougglaagedependent attributes, such as the
<Softwareldentity> @namattribute are provided in Japanese. Additionally, the SWID
schema is designed such that any valu@gil:lang specified on any tag element is inherited

by

al | of t hat ntg Unéessexplicibyoveriddéen! Ad a redule theevalue

specified for thecSoftwareldentity> @xml:lang attribute will, in effect, establish the
preferred languagé¢hat is used for all languagkependent attributes within the tag.

Knowing the preferrethnguage of SWID tag attribute values can be very useful to tag
consumers, and can relieve them of the need to attempt to perform languagetection. The
following guideline requires that tag creators always specify the preferred language of a tag:

GEN-2. Every <Softwareldentity> elementMUST specify a@xml:lang attribute
with a nonblankvalue to indicate the default human language used for expressing all
languagedependent attribute values.

GuidelineGEN-2 is directed towards both authoritative and+aamhoritative tag creators. While

authoritative tag creators can always be expected to know the default language of the tag, non
authoritative creatonmay need to use local knowledge to ascertain the most appropriate default

language. This document recommends thatanghoritative tag creators supply the default
language of the device where the tagged product resides.

GEN-3. [Non-Auth] When specifying a valuer the<Softwareldentity>
@xml:lang attribute, norauthoritative tag creators SHOULD use the language tag
corresponding to the default language of the device where the tagged product resides.

In some cases, tag creators may want to specify various S\ @ttdoute values in more than

one human language. This presents a number of challenges and potential interoperability issues;

these are discussed furtherSectiord.7.

4.4

This section provides guidelines to be observed by tag creators when implementing SWID tag

Implementing <Entity> Elements

<Entity> elements. The guidelines in this section address four issues:

1. Providing detailed information about entitisee84.4.1)

2. Preventing unnecessarily complex entity specificatises84.4.2
3.

4. Furnishing information about the software credsaes4.4.4

Distinguishing between authoritative and rearthoritative tag¢seeg84.4.3

34

t

h e



NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

1409 4.4.1 Providing Detailed Information about Entities

1410 The first issue to be addressed concerns the need for detailed information about the various
1411 entities associated with tags and/or taggextiucts.

1412 Section 8.2 of the SWID specification requires that every SWID tag contaiBraity>

1413 elementwhereth@role at t r i but e tdg@reatot hoe, vaadddareeatifibute is

1414 also provided. AlthougkEntity> elements may furnis@regid attribute values, the

1415 specification does not require this information to be provided. Instead, the specification defaults
1416 the@regid at t r i b u thap:/inalidumavaitalde 0 0 when a value
1417 explicitly provided in the element. Because @eegid attribute serves as a unique reference to
1418 an organization, this report provides guidelines to ensure that explicit values are provided

1419 whenever possible.

1420 The ability to provide@regid attribute values varies depending on whether a tag creator is
1421 authoritdive or norauthoritative. For authoritative tag creators, it is reasonable to require the
1422 @regid value on alkEntity> elements:

1423 GEN-4. [Auth] Every<Entity> elementMUST provide an explicit (i.e., nedefault)
1424 @regid attribute value.

1425 Nonauthoritative tag crears may be less able to provide reliaf@eegid information. While
1426 they can be expected to provid@aegid value for the<Entity> element with the

1427 fitagCreator 0 @role that identifies their organizatipthey can only be encouraged to
1428 provide@regid information for entities in other roles. This leads to the following two
1429 guidelines:

1430 GEN-5. [Non-Auth] Every<Entity> elementSHOULD provide an explicit (i.e., nen
1431 default)@regid attribute value when such a value can be determined.

1432 GEN-6. [Non-Auth] The<Entity> elementcontining the@role ftagCreator 0
1433 MUST provide an explicit (i.e., nedefault)@regid attribute value.

1434 4.4.2 Preventing Complex Entity Specifications

1435 The second issue to be addressed concerns the potential for unnecessarily complex specifications
1436 of entities and roles associated with the tag and/or the tagged product. The SWID specification
1437 allows a tag to furnish multipleEntity> elements in order teupport situations in which

1438 different organizations play different roles with respect to the tag and/or the tagged product. So if
1439 one organization were the tag creator and a second organization were the software creator, this
1440 information could be specifieas follows:

1441 <Entity

1442 name="0rganization 1 Corp"

1443 role="tagCreator"/>

1444  <Entity

1445 name="Organization 2 Corp "
1446 role="softwareCreator"/>

35



1447
1448
1449

1450
1451
1452
1453
1454
1455

1456
1457
1458

1459
1460

1461
1462

1463
1464
1465
1466
1467
1468
1469
1470

1471
1472
1473

1474

1475
1476
1477
1478
1479
1480
1481
1482
1483

NISTIR 8060 (Final Public Draft)

This ability to furnish multiple<Entity>

across multiple<Entity>

<Entity

Guidelines for the Creation of Interoperable SWID Tags

name="0Organization 1 Corp"
role="tagCreator"/>

<Entity

name="0rganization
role="softwareCreator"/>

1 Corp"

Such spreading of role information acregntity>
information in this way increases the size of the tag unnecessarilylaswetates additional
processing complexity for tag consumers. To preclude this, the following guideline is provided:

GEN-7. All <Entity>

provide the sam@role attribute values.
GuidelineGEN-7 works in concert with guidelingSEN-4 throughGEN-6 to achieve the

desired effect. It should be clear that the follon&xg@mple satisfies these guidelines:

<Entity

name="0Organization 1 Corp"
regid= "orgl.com "

role="tagCreator

<Entity

name="0Organization

regid= "org2.com

role=" licensor "/>

softwareCreator

2 Corp"

ll/>

elements is discouraged. Furnishing entity

elements has an undesirable side effect, however. It
now becomes possible for role information associated with a single organization to be spread
elements, as illustrated by this example:

elements that provide the sa@gegid attribute value MUST

As will be seen later in Sectigh?, guidelinesGEN-4 throughGEN-7 also play an important
role in addressing potential interoperabilggues that could arise when tag creators specify
attribute values in multiple human languages.

4.4.3 Distinguishing Between Authoritative and Non-Authoritative Tags

The third issue to be addressed here concerns the process by which a tag consumer may rapidly
determine whether the tag creator is authoritative orauathoritative.

When a tag contains akntity>

ftagCreator

authoritative tag creators are required to provideE&mtity>

entity
fiaggregator

o, tag

hteg@reatory Ot hreo | fie

0 ,distibutor

0 ,liceffisor

36

a l
0

elementhat specifies only a singl@role of
consumer s

can s af e-authorimtsres Tiome
enable tag consumers to accurately determine that a tag is created by an authoritative source,

so has one
softwardCreator

0.

or

element that indiates that the

mor e

t hat

of t



1484
1485
1486

1487
1488

1489
1490
1491

1492

1493
1494

1495
1496
1497
1498
1499
1500

1501
1502

1503
1504
1505
1506

1507
1508
1509

1510

1511
1512
1513
1514

1515
1516
1517
1518

1519
1520

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

GEN-8. [Auth] Authoritative tag creators MUST provide gkntity> element where the
@role attri but e c otagtCeeator soardat kastvoael olthese iadditional role
v a | uagggepatoni 0 ,distfibutor 0 ,licefisor 0, softwardCreator 0.

If this guideline is observed, tag consumers may reliably distinguish between authoritative and
nonrauthoritative tags according to this rule:

If a tag contains adEntity> elementwith a@role v al ue t h aapCreatorc lbudes 0
as wel | aggsegaton yo ,disffibufor 0 ,licefisor 0, ofr
fisoftwareCreator 0, then the tag i d9snenauthbritative.t at i v e,

4.4.4 Furnishing Information about the Software Creator

The fourth issue to be addressed here concerns the furnishing of information about the software
creator, when that information is known.

Explicit knowledge of the software creatornsgortant for many software inventory scenarios,
but the SWID specification does not require that this information be provided. To support
software inventory scenarios, authoritative tag creators are expected to furnish information on
t he sof t widantdy. Itthetagcteator 8 sot the same as the software creator,
authoritative tag creators are expected to know the appro@iaéeneand @regid attribute

values for the software creator.

GEN-9. [Auth] Authoritative tag creators MUST provide gk&ntity> element where the

@role at tri but e c ospftwaraCresatort hoe. val ue 0

Non-authoritative tag creators may be unable to accurately determine and identify the various
entities associated with a software product, including the software creator. Nevertlezlagseb

tag consumers may obtain substanti al benefits
authoritative tag creators are encouraged to include this information in a tag whenever possible.

GEN-10. [Non-Auth] Non-authoritative tag creators SHOULD provide<Entity>
element where th@role at t r i but e c osoftwareCreatort hoe. vlafl uken ofiwn ,
the @namaeattribute SHOULD also be provided.

4.5 Implementing <Link> Elements

This section provides guidelines to be observed by tag creators when implementing §WID ta
<Link> elements. As discussed in Sect®h.4 the<Link> element is used to establish
relationships of various kinds between tags and other documents, including other tags. The
guidelines in this section address two issues:

1. Linking a sarce tag to a known target tag
2. Linking a tag to a collection of tags
4.5.1 Linking a Source Tag to a Known Target Tag

In many tag creation situations, there will be a need to embed in a source tag (i.e., a tag being
created) &Link> element that points to a @rasting target tag. For example, when a patch tag
(see82.1.3 is being created, it is important to link that patch tag (the source tag) to the tag which

37



1521
1522
1523
1524

1525
1526
1527
1528

1529
1530
1531
1532

1533

1534
1535
1536
1537
1538
1539
1540

1541
1542
1543
1544
1545
1546
1547

1548
1549

1550

1551
1552
1553
1554

1555
1556
1557
1558
1559

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

describeghe product being patched (the target tag). As another example, a supplemén&a tag
§2.1.4 will typically be linked to another preexisting tag whose inforamais being
supplemented. To establish these relationships, tag creators gsentkre @href attribute in

the source tag to provide a pointer to the target tag.

In these situations, the tag creator will know the contdritseatarget tag, including i@®tagld .

In this sense, the target tag is known to the tag creator at the time that the source tag is being
created. To |link a source tag to a éwmdod&n targ
scheme followed by th@tagld of the target tag.

GEN-11. In order to link a source tag to a specific target tag wi@tgld is known at the

time the source tag is created, tag creators MUST set the value<dfinke @href
attribute in the ssiduoagits schemeg foltowed by ti@t&yld ofvi t h i
the target tag.

This idea is illustrated below with two tag fragments.

Tag 1:

<Softwareldentity
name="Application 1"
tagld="com.largecomputerco.appl”
é

</Softwareldentity>

Tag 2:
<Softwareldentity

name="Application 2"

tagld ="com.largecomputerco.app2"”

e

<Link rel="relation" href="swid:com.largecomputerco.appl"/>
</Softwareldentity>

I n the above example, Tag 2 (describing AAppl
target Tag 1 (describing AApplication 10).

45.2 Linking a Tag to a Collection of Tags

In contrast to situations where t@tagld of the target tag is known, there are also many tag
creation situations where there is a need to embed in a sourceliedga element that points
either to a single targedq or to ecollectionof target tags whos@tagld value(s) cannot be
known with certainty at the time the source tag is created. Consider the following scenarios:

1 A primary tag (the source) is being created for a product that requires a commonly used
sharel library. This shared library is maintained by a third party, has its own primary tag,
and is periodically upgraded in ways that maintain backwards compatibility. It is
important that the sourcetageludesa | i nk t o the shar/budit | i brar
is not possible to specify a fixe@tagld for the target tag.

38



1560
1561
1562
1563
1564
1565

1566
1567
1568
1569
1570
1571
1572

1573
1574
1575
1576
1577
1578
1579

1580
1581
1582
1583
1584

1585
1586

1587
1588
1589

1590
1591

1592

1593
1594

1595
1596
1597
1598

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

1 A patch tag (the source) is being created for a patch that applies to a collection of
products based on version. For example, imagine that a software provider has released a
seriesofer si ons of a product, all in the fA4. 1.
version 4.1.5 of the product, and it is determined that the flaw was introduced in version
4.1.0. A single patch is developed to correct this flaw, so its patch tag needtstoodll
affected versions.

The SWID specification provides a mechanism that tag creators may use when linking a source
tag to a collection of target tags. That mechanism is to seLihk> @bhref attribute value to

a URI wi t h swadpashc hbeathosfleddoy an &Path 2.0 [XPath20] conformant query.

Any such XPath query is expected to be used by a system to iterate over a set of SWID tags and
identify matching tags by applying the XPath query to each tag and checking foeapon

result. Becauséne SWID specification is not clear and specific about this usage, this document
provides the following guidelines:

GEN-12. When linking a source tag to one or more target tags w@xagld value(s)
cannot be determined at the time the source tag is createdeadgsMUST set the value of
the<Link> @href attribute in the source tag to a URI wiWidpath:  as its scheme,
followed by an XPath 2.0 [XPath20] conformant query. All characters contained in the
XPath query which the URI specification [RFC3986] desigaaiseservedMUST be

percent encoded per the URI specificatidthembedded SWID tag elements in the query
MUST be prefswikea mwamédspgdaee.h

The above guideline clarifies two points: (1) that URI reserved characters in the embedded
XPathquery must be per cendwidedh croalmals pana Ryt thet
SWID elements. Thus, i n oswidpath: d osphemesmsusuch:
stripped off, any embedded percent encodings must be replaced with the encoaletdrshand

the XPath query processor mu sswid:bdoe nsaunpepslpiaecde .wi

The following guidelineadvises query developers on how to prepare queries in a consistent and
interoperable manner.

GEN-13. Any XPath query used within<Link> @ref element MUST be designed in
such a way that it can used by a system to iterate over a set of SWID tags and identify
matching tags by applying the XPath query to each tag and checking foreanpbnresult.

Next, a series of examples are presentdtelp the reader to understand the guidelines presented
in this subsection.

4.5.2.1 An Example Tag

To illustrate the guidelines for linking tags, a series of examples are presented relative to this
example tag:

<Softwareldentity
xmins:xsi  ="http://www.w3.0rg/2001/XMLSchema - instance”
xmlns="http://standards.iso.org/iso/19770/ - 2/2015/schema.xsd"
xmlns:SHA256="http://www.w3.0rg/2001/04/xmlenc#sha256"

39



1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628

1629

1630
1631
1632
1633

1634
1635

1636
1637

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

xmins:ext="http://example.org/ns/swid - example"
name="ACME Roadrunner Detector 2013 Coy ote Edition SP1"
tagld="com.acme.rrd2013 -ce-spl-v4-1-5-0"
version="4.1.5">

<Entity

name="The ACME Corporation"
regid="acme.com"
role="tagCreator softwareCreator"/>
<Entity
name="Coyote Services, Inc."
regid="mycoyote.com"
ro le="distributor"/>
<Meta
activationStatus="trial"
product="Roadrunner Detector"
colloquialVersion="2013"
edition="coyote"
revision="sp1"
ext:newattr="newvalue"/>
<Payload>
<Directory root="%programdata%" name="rrdetector">
<File name="rrdetector.exe" size="532712"
SHA256:hash="a314fc2dc663ae7a6b6bc6787594057396e6b3f569cd50fd5dd
b4dlbbafd2b6a'"/>
<File name="sensors.dll" size="13295"
SHA256:hash="54e6¢3f569cd50fd5ddb4dlbbafd2b6ac4128c2dc663ae7a6b6
bc67875940573"/>
</Directory>
</Payload>
</Softwareldentity>

4.5.2.2 Example 1: Using an XPath Query to Refer to a Tag by its @tagld

Al t hougvid: d hecldheme is intended to b@tagldsed
val ue i s skidpatwng ¢ dhilee e fn&XPathguery douldayso ke used to
achieve the same effect. The following XPath query will match the tag illustrated above in
SectionGEN-12:

/swid :Softwareldentity[@tagld='com.acme.rrd2013 -ce-spl-v4-1-5-
07]

When incorporated into<Link> element, the above query must be prefixed with the
swidpath: 6 scheme, and reserved characters

40

mu st

K



1638
1639
1640

1641
1642

1643
1644
1645

1646
1647
1648

1649
1650
1651
1652

1653
1654

1655
1656
1657
1658
1659
1660
1661

1662

1663
1664

1665
1666
1667
1668
1669
1670
1671
1672

1673
1674
1675
1676

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

<Link rel="relation"
href="swid  path:%2Fswid%3ASoftwareldentity%5Btagld%3D%27com.acme.
rrd2013 -ce-spl-v4- 1-5-0%27%5D"/>

4.5.2.3 Example 2: Using an XPath Query to Refer to a Tag by Name and Tag Creator
@regid

In the next example, an XPath 2.0 query is shown which matches any tag such that (1) the
product name i RoadrunngreDstectorh e 0s t @in m<Erftiy> element
cont ai nag@reatot ho@rofe also contains th@regid v a | aceme.cOmo :

/swid:Softwareldentity[contains(@name,'Roadrunner Detector’)
and swid:Entity[@regid='acme.c om'
and count(index - of(@role,'tagCreator’)) gt 0 11

Note: The query above is designed with the assumption that the SWID tag has been validated

against the SWID schema before the XPath query engine is run. The final draft of this report will

address ths topic, and present guidance on whether or not queries should assume tag schema
validation.

When incorporated into€Link> element, the above query must be prefixed with the
Gwidpath: 6 scheme, and reserved characters mu

<Link rel="relation"
href="swidpath%2Fswid%3ASoftwareldentity%5Bdescendant%3A%3Aswid%
3AFile%5B%40name%20%3D%20%27rrdetector.exe%27%20and%20%40*%5Bloc

al - name()%20%3D%20%27hash%27%20and%20namespace
uri()%20%3D%20%27http%3A%2F%2Fwww.w3.0rg%2F2001%2F04%2Fxmle nc%23
sha256%27%20and%20.%3D%27a314fc2dc663ae7abb6bc6787594057396e6b3f
569cd50fd5ddb4d1bbafd2b6a%27%5D%5D%5D" />

4.5.2.4 Example 3: Using an XPath Query to Refer to a Tag Containing a Known File
In the next example, an XPath 2.0 query is shown which matches amatagctudes a

<File> el ement d ersdetectortexeng ot ie | @ with a specific

/swid:Softwareldentity[descendant::swid:File[@name =
'rrdetector.exe’

and @*[local - name() = ‘hash’

and namespace - uri() =
‘http://www.w3.0rg/2001/04/xmlenc#sh a256'

and

='a314fc2dc663ae7abb6bc6787594057396e60b3f569cd50fd5ddb4d1bbafd2
béa]]

Such a query could be used in a patch tag that affects a specific file that is used by any number of

other products, which may or may not be installed on a device gfivatytime.When
incorporated into &Link> el ement , the above queaswidpatmuds t
scheme, and reserved characters must be percent encoded, resultinglimkiis element:

41

st

be

k

f



1677
1678
1679
1680
1681
1682
1683

1684

1685
1686
1687

1688
1689
1690
1691

1692
1693
1694

1695
1696
1697
1698
1699
1700

1701

1702
1703

1704
1705
1706

1707

1708
1709

1710
1711
1712
1713

NISTIR 8060 (Final Public Draft)

<Link rel= "relation

Guidelines for the Creation of Interoperable SWID Tags

href= " %2Fswid%3ASoftwareldentity%5Bdescendant%3A%3Aswid%3AFile%5
B%40name%20%3D%20%27rrdetector.exe%27%20and%20%40*%5Blocal -
name()%20%3D%20%27hash%27%20and%20namespace
uri()%20%3D%20%27http%3A%2F%2Fwww.w3.0rg%2F2001%2F04%2Fxmlenc%23
sha256%27%20and%20.%3D%27a314fc 2dc663ae7a6b6bc6787594057396e6b3f
569cd50fd5ddb4d1bbafd2b6a%27%5D%5D%5D " />

4.5.2.5 Example 4: Using an XPath Query to Refer to Tags with a Range of Versions

In the next example, an XPath 2.0 query is shown which matches any tag that describes a
product whose namei A Roadrunner

4 x release branch

/swid:Softwareldentity[swid:Meta[@product = 'Roadrunner

Detector']
and tokenize(@version,’

and tokenize(@version,’ \ .N[2] cas

Det ector o

\ .N[1] cast as xs:unsignedint = 4
t as xs:unsignedint ge 1 ]

When incorporated into€Link> element, the above query must be prefixed with the

fiswidpath. 06 scheme, and
<Link> element:

<Link rel="relation"

reserved

characters

href="%2Fswid%3ASoftwar eldentity%5Bswid%3AMeta%5B%40product%20%3
D%20%27Roadrunner%20Detector%27%5D%20and%20tokenize(%40version%?2

C%27%5C.%27)%5B1%5D%20cast%20as%20xs%3Aunsignedint%20%3D%204%20a

nd%20tokenize(%40version%2C%27%5C.%27)%5B2%5D%20cast%20as%20xs%3

Aunsignedint%209e%201%5 D%0A />

4.6 Implementing <Payload> and <Evidence> Elements

a nwithinthdh o s e v

mu st

This section provides guidelines to be observed by tag creators when implementing SWID tag
<Payload> and<Evidence> elements. The guidelines in this section address three issues:

1. Providing sufficient ite information(see84.6.1)

2. Hash function selectiofsee84.6.2

3. Handling of path separators and environmeamtables(see84.6.3

4.6.1 Providing Sufficient File Information

The first issue to be addressed here concerns the amount of payload/evidence information that

needs tde provided.

Authoritative tag creators use tkPayload> element to enumerate the files and folders
comprising a product or patch, whereas-aathoritative tag creators use gievidence>
element for this purpose. Files are described usingRile> element, and folders are

described using the <Directory> element.

42

e



1714
1715
1716
1717
1718
1719

1720
1721

1722
1723

1724
1725
1726

1727
1728

1729
1730
1731
1732
1733
1734
1735

1736
1737

1738
1739

1740

1741
1742

1743
1744
1745
1746
1747
1748

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

The SWID specification requires only that ti€ile> element specify the name of the file

using the@namattribute. This information is insufficient for most cybersecurity usage

scenarios. Aditional information is needed to check whether files have been improperly

modified since they were originally deployed. By including file size information within

<Payload> and<Evidence> elements using th@size attribute, cybersecurity processes

mayefici ently test for changes that alter a file

GEN-14. Every<File> element provided within @Payload> or<Evidence > element
MUST include a value for th@size attribute that specifies the size of the file in bytes.

Knowing a filebs expected size is wuseful and
may have changed.

Similarly, knowing a ffilelbrdilésgstem ean lseiusemlwlees r ecor d
searching for installed products containing a ¥ilith a known version. This motivates the
following guideline:

GEN-15. Every<File> element provided within @Payload> or<Evidence> element
MUST include a value for th@ersion attribute, if one exists for the file.

Because improper changes may also occuraiysvithat do not alter file sizes or versions, file

hash values are al so necessary. | f there is a
the size is the same -cemputing a hash will be necessary to determine if a change has

occurred. Athoritative tag creators are expected to have sufficient knowledge of product details

to be able to routinely provide hash values. fdothoritative tag creators may not have the

necessary knowledge of or access to files to provide hash informatione lumcauraged to do

so whenever possible.

GEN-16. [Auth] Every<File> element within a&&Payload> element MUST include a
hash value.

GEN-17. [Non-Auth] Every<File> element within arcEvidence> element SHOULD
include a hash value.

4.6.2 Hash Function Selection

The second issue e addressed here concerns selection of the hash function to be used when
providing hash values.

Software products tend to be used long beyond the formal product support period. When
selecting a hash function, it is important to consider the deploynierydle of the associated
product. The hash value will likely be computed at the time of product release and will be used
by tag consumers over the support lifecycle of the product and in some cases even longer.
Stability in the hash functions used witl8hVID tags is desirable to maximize the

interoperability of SWIDbased tools while minimizing development and maintenance costs.

43



NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

1749 Taking these considerations into account, it is desirable to choose a hash function that provides a
1750 minimum security strength df28 bits to maximize the usage pefiod

1751 GEN-18. WhenevekPayload> or<Evidence> elements arecluded in a tag, every
1752 <File> element SHOULD avoid the inclusion of hash values based on hash functions with
1753 insufficient security strength (< 128 bits).

1754  According to[SP800107] the selected hash function needs to provide the following security
1755 properties:

1756 1 CollisionResistanceil t i s computationally infeasible
1757 hash function that have the same hash valu
1758 files will have different hash values.

1759 1 Second Preimage Resistanc@é: 1 t 1 s ¢ o mp ubledotfind@ seadnd inputi nf eas
1760 that has the same hash value as any ot her
1761 file cannot be engineered that will have the same hash value as the original file. This

1762 makes it extremely difficult for a malicious acto add malware into stored executable

1763 code while maintaining the same hash value.

1764 The SHA256, SHA384, SHA512, and SHA512/256 hash functions meet the d#i8strength
1765 requirements for collision resistance and second preimage resistHnisdeads tdhe following
1766 guidelines:

1767 GEN-19. [Auth] Whenever acPayload> element is included in a tag, evetlyile>

1768 element contained therein MUST provide a hash value based on th&&H#ash function.
1769 GEN-20. [Non-Auth] Whenever arkEvidence> element is included in a tag, every
1770 <File> element contained therein SHOULD provide a hash value based on th2Z8HA
1771 hash function.

1772 GEN-21. Whenever &Payload> or<Evidence> elementis included in a tag, every
1773 <File> element contained therein MAY additionally provide hash values based on the
1774 SHA-384, SHAS512, and/or SHA12/256 hash functions.

1775 Due to the use of 6Mit word values in the algorithm, SH&12 hash function implementations
1776 may perform better on édit systems. For this reason, tag creators are encouraged to consider
1777 including a SHA512hash value, since this might be a begterforming integrity assurance

1778 measure.

5 According to NISTSP 80657 Part 1 [SP8087-part1], when applying a hash function over a time period that exteeytsnd
the year 208, a minimum security strength of 128 bits is neefédak hash values are of little use and should be avoided.

6 See FIPS 80-4 [FIPS1804].

44



1779

1780
1781

1782
1783

1784
1785
1786
1787
1788
1789
1790
1791

1792
1793
1794
1795
1796

1797
1798
1799
1800
1801

1802
1803
1804

1805
1806
1807
1808
1809
1810
1811
1812

1813
1814
1815

1816

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

4.6.3 Handling of Path Separators and Environment Variables

The third issue to be addressed here concerns interoperable handling of path separators and
environment variables iWFil e> and<Directory>  elements.

The SWID specification defines three attributes which may be use#i@m» and
<Directory>  elements to fully specify a file or a folder:

1 location : A string specifying the directory or location where a file was found or can
beexpected to be located

1 name: A string specifying the name of the filename or directory without any embedded
path separators

1 root : Astring specifyingasystemmpeci fi ¢ r oddcatidno [6d et ttrh dtuttef

an offset from; if this is not specified,i i s assurpoéed® i kat heheadde
the location of the SWID tag, or is the directory specified by an enclosing
<Directory>  element

Whi | enamebheatHt ri bute i s defined t o lecatpnl iéci t |l vy
an otdd aermattedoto include such separators. The problem is that path separators vary
across operating environments. The most widely known difference is between Windows and

f

e |

UNI X/ Linux systems; W\ndosws huwes egsatthh es elpaac kast loa s,

systems use the forward slash 6/ 6.

It is important that tag consumers be able to reliably parse strings containing embedded path
separators without having to guess the path separator. This document recommends that the path
separator character be made esipln <Payload> and<Evidence> elements. The

following guideline achieves this by introducing a n@8060 : pathSeparator  extension
attribute:

GEN-22. The @8060 : pathSeparator  extension attribute SHOULD be used within
<Payload> and<Evidence> elements to specify the path separator character used in
embeddecFile> and<Directory> elements.

In a related vein, the SWID specification also allows platfspacific environment variables to

be used wit hi rootanlgcatonr 06a | l@anmif & thter iGbut es. Once

format of such variables differs across platforms. On Windows machines, environment variables
are enclosed in percent 6%6 characters, whi
6086 charact er . mérds tksat edviranmentesariable prefig anchsuffix characters
be made explicit irkPayload> and<Evidence> elements. The following guidelines achieve
this by introducing nev@n8060 : envVarPrefix ~ and@8060 : envVarSuffix  extension
attributes:

GEN-23. The @8060 : envVarPrefix extension attribute SHOULD be used within
<Payload> and<Evidence> elements to specify the character(s) used to prefix
environment variables that may be embeddeéite> and<Directory> elements.

GEN-24. The @8060 : envVarSuf fix extension attribute SHOULD be used within

45

e



1817
1818

1819
1820

1821
1822
1823
1824
1825
1826
1827
1828
1829

1830
1831

1832
1833

1834
1835

1836

1837
1838
1839
1840
1841
1842
1843
1844

1845
1846
1847
1848
1849

1850
1851
1852
1853
1854
1855

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

<Payload> and<Evidence> elements to specify the character(s) used to suffix
environment variables that may be embeddeite> and<Directory>  elements.

When guideline$sEN-22 throughGEN-24 are observed, @Payload> could be represented
as follows:

<Payload n8060 : pathSeparator="/" n8060 : envVarPrefix="$"
n8060 : envVarSuffix="">
<Directory root="$ETC/drivers" name="printers">
<Directory name="printermodel">
<File name="colordriver.shlib" size="234824"/>
<File name="bwdriver.shlib" Size="143854"/>
</Directory>
</Directory>
</Payload>

Given this information, a tag consumer should be able to straightforwardly construct these two
fully-qualified filenames:

1 $ETC/drivers/printers/printermodel/colordriver.shlib
1 S$ETC/drivers/printers/ printermodel/bwdriver.shlib

To access these files on the device, desjecific information will still be required to determine
the val $E€Cbofentvihe omment variabl e.

4.7 Providing Attribute Values in Multiple Languages

Sectiond.3introduced a guideline to requitteat the<Softwareldentity> @xml:lang

attribute be used to specify the preferred human language used within the tag to provide
langugye-dependent attribute values. This is the most common scenario, i.e., that all language
dependent attribute values within a tag will be provided in the same language. Such tags will be
termedmonolingual tagsFor example, a Japanese software providdniagsto create a

monolingual tag in Japanese will set the preferred language of their tag to be Japanese (e.g.,
using the jhamaguag et h ea gBaftaretdentityy>r t @xenl:lang

attribute), then specify all languagependent attributes imgdanese.

Because the SWID specification permits @&ml:lang attribute be used aanytag element,

this enables tag creators to implememitilingual tags tags which provide languagkependent
attributes in more than one language. Suppose, for exatmgie Japanese software provider
wants to provide their organizationds name
straightforward to do, as illustrated here:

<Softwareldentity
xmlns="http://standards.iso.org/iso/19770/ - 2/2015/schema.xsd"
xml:lang="ja - jp"
name="« fi H* 2 = o @¥ I 2015"
tagld="jp.largecomputerco. a - 1"
version="1.0">

46



1856
1857
1858
1859
1860
1861
1862
1863
1864
1865

1866
1867
1868

1869
1870
1871

1872
1873
1874
1875

1876

1877
1878
1879
1880
1881

1882
1883
1884

1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

<Entity
name=" «fiH® D o "
regid="largecomputerco.jp"
role="tagCreator softwareCreator"/>

<Entity xml:lang="en - us"
name="Large Computer = Company"
regid="largecomputerco.jp"
role="tagCreator softwareCreator"/>

e

</Softwareldentity>

The first<Entity> element in the example inherits the valugdfml:lang specified by the
<Softwareldentity> element. The secorxEntity> element exptitly overrides the
preferred language, signaling that information is being furnished in (in this example) English.

Although the SWID specification provides the technical means to implement multilingual tags,
in practice, implementing and processing stags present a number of challenges and potential
interoperability issues, so care must be taken.

Thisreportdoesnot offer guidelines to address these isssiesethe marketplace requirements

for multilingual tags are insufficiently clear to supporvelepment of robugguidelinesto fully

and effectively address all associated interoperability concerns. Insteadpthisvill discuss

some of the most significant issues and suggest future directions for interoperability guidance.

4.7.1 Specifying Product Names in Multiple Languages

The<Softwareldentity> @namaattribute specifies the preferred name of the software
product, and is provided in the language indicated by the value @xhd:lang attribute
(which is now required per guidelit@EN-2). The SWID specification makes no provisions for
the specification of multiple product names, much less for the specification of multiple such
names in diffeent languages.

If the marketplace determined that there is a demand for recording a multilingual representation
of a product name in a single SWID tag, two options (short of revising the SWID specification
itself) would seem to exist:

1. Use the<Meta> element. Note, however, that because tideta> element described in
the SWID specification does not offer a predefined attribute for alternate product names,
the user community would need to agree on a new extension attribute to be used for this
purpose.

2. Use sipplemental tags. Here, the idea would be to create one or more supplemental tags,
each of which specifies a different preferred language via$lo&wareldentity>
@xml:lang attribute,thatthen provides theSoftwareldentity> @name
attribute value in thgpreferred language. In other words, &.tbhased software provider
might issue a single primary tag providing the product name in English, along with four
supplemental tags providing the product name in each of French, German, Japanese, and
Spanish.

47



1896
1897
1898
1899

1900

1901
1902
1903
1904

1905
1906
1907
1908

1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924

1925
1926
1927
1928
1929
1930

1931

1932
1933
1934
1935

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

Thefirst option is relatively compact but depends on effective procedures for defining and
managing extension attributes. The second option avoids the introduction of an extension
attribute, but forces tag creators to generate arbitrary quantities of supfaetags to address
all human languages of interest.

4.7.2 Specifying <Entity> Elements in Multiple Languages

The example at the top of this section shows
provided in both Japanese and English, in two sepaEaigty > elements distinguished by
different@xml:lang attributes, one value inherited fron$oftwareldentity> and the

other an explicit value overriding the inherited value.

This multilingual capability also creates opportunities for entity information spedaifiede
language to differ in unexpected and confusing ways from entity information specified in a
second language. For example, there is notiniither the SWID specification or tlassociated
XML schema that would prevent the following scenario:

<Soft wareldentity

xmins="http://standards.iso.org/iso/19770/ - 2/2015/schema.xsd"
xml:lang="ja"

name="« fi H® D 2 o @Y+ 2015"

tagld="jp.largecomputerco. o - 1"

version="1.0">

<Entity xml:lang=" en"

name="The Large Computer Company"
regid ="largecomputerco.jp"
role="tagCreator softwareCreator"/>

<Entity xml:lang="fr"
name="Le Gr and Enterprise doélnformatique
regid="largecomputerco.jp”
role="tagCreator"/>

e

</Softwareldentity>

This example contains two problems. Firsetht agés preferred | anguage
but entity information is only provided in English and French. Given such a tag, it is not obvious
how a tag consumer should decide whigintity> element provides the preferred name of

the tag creatoiSecond, the tweEntity> elements agree on ti@regid , but disagree on the

@role . Again, it is not obvious how to interpret such data. A number of equally odd scenarios

can easily be envisaged.

Future guidelines may be needed to address issues like Sluebeguidelines might include:

1 Arequirement that at least or&ntity> element be provided in the preferred
language

1 A-requirement that akEntity> elements which agree on tl@regid value also
agree on th@role value, irrespective of th@xml:lang value

48



1936

1937
1938
1939
1940
1941
1942
1943

1944
1945

1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960

1961
1962
1963
1964
1965

1966
1967
1968
1969
1970
1971
1972
1973
1974
1975

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

4.7.3 Specifying <Payload> Elements in Multiple Languages

When software products are localized to a particular language region, files and folder names
often change to match the lozadlanguage. To account for this, authoritative tag creators may
want to ceate multilingual tags that providéayload> elements which enumerate alternate
languagespecific versions of files and folders. If this is done, it must be done in a way that
enables tag consumers to simply and accurately determine the effective lasgeecifie

payload. Note that neauthoritative tag creators are assumed to be unable to produce tag data in
multiple languages, so this issue is not a concerdBordence> elements.

This information could be represented in multiple ways; for exampésy eréator could
implement multiple alternativePayload> elements as illustrated here:

<Softwareldentity
xmins="http://standards.iso.org/iso/19770/ - 2/2015/schema.xsd"
xml:lang="en"
name="Joyful App 2015

tagld="com.largecomputerco. joyfulappl "
version="1.0">
e
<Payload
<File name="joyfulapp.exe"/>
</Payload>
<Payload xml:lang="fr"
<File name=" appdejoie.exe "/>
</Payload>
e

</Softwareldentity>

In this example, the firstPayload> el ement i s expressed in the
(English), inherited fromxSoftwareldentity> . The secondPayload> elementis

expressed in French. This is a simple and straightforward way to represent equivalent payloads
in alternate languages. But beca@eml:lang may be used on any element, there is nothing

to prevent a tag creator from representing the paylodeeifollowing way:

<Payload

<File name="joyfulapp.exe"/>

<File xml:lang="fr" name=" appdejoie.exe  "/>
</Payload>

Arguably, this is a more compact representation, but raises questions of how one might
determine the effective languagpecific pgload for a given device. The above payload could
potentially represent two files that are@esent on a device, or two different files, only one of
which is present as determined by the local language. Future guidelines may be necessary to
resolve potetnal interoperability issues like these.

49

(e} ]



1976

1977
1978
1979
1980
1981
1982
1983

1984
1985
1986
1987

1988
1989
1990
1991

1992
1993
1994
1995
1996

1997
1998

1999
2000
2001
2002
2003
2004

2005
2006

2007
2008
2009
2010
2011
2012
2013
2014
2015

NISTIR 8060 (Final Public Draft)

4.8 Updating Tags

Guidelines for the Creation of Interoperable SWID Tags

Although the SWID specification does not prohibit modification of SWID tags, it does restrict
modifications so that they can only be performed by the original tag creator. The primary reason
for alterng a tag after it has been installed on a device is to correct errors in the tag. In rare
circumstancest may be useful to update a tag to add data elements that logically belong in the
tag and not in a separate supplementallagvever,under normal caditions, tags should rarely

be modified, and supplemental tags should be used to add identifying and descriptive product

information.

When changes are made to a productodés codebase
those changes should be refstby removing all original tags (primary, supplemental, and

patch tags) and installing new tags as appropriate to identify and describe the new product

version. Patches should be indicated by adding a patch tag to the installed collection of tags.

When arexisting tag must be updated, it will rarely make sense to edit the tag in place, that is, to
selectively modify portions of the tag as if using a text editor. Such editing actions would likely
invalidate XML digital signatures stored in the tag. Thus é@xpected that when a tag is

updated, it is always fully replacedbng withanyembeddedligital signatures.

When a tag must be updated to correct errors or add data elemergfitgareldentity>

@tagld should not be changed. This is because tagifd@a may be used as proxy identifiers
for preiinstallation software packages, installed software products, or software patches. It is
important that tag identifiers be usable as reliable persistent identifiers. This leads to the

following guideline.

GEN-25. When it is necessary to update a tag to correct errors in or add data elements to that

t ag, t<Botwareklantitys
When tags are updated, however,

that supports ey change detection.

@tagld SHOULD NOT be changed.

it is important that the updates be implemented in a manner
Tag consumers should not be required or expected to fully

compare all contents of discoverable tags to determine if any of the products have changed since
the last time the tags were examined. To facilitate change detection by tameosigag

creators are expected to updatetBeftwareldentity> @tagVersion attribute to

indicate that a change has been made to the tag.

GEN-26. When it is necessary to update a tag to correct errors in or add data elements to that

tagt h e <Saftgareddent

ity> @tagVersion attribute MUST be changed.

If this guideline is observed, tag consumers need only to maintain records of tag identifiers and
tag versions discovered on endpoints. If a tag with a previously unseen tag identifier is found on
an endpoint, g&ag consumer may conclude that a new product has been installed since the last

time the endpoint was inventoried.

If a tag with a previously discovered tag identifier can no

longer be discovered on an endpoint, a tag consumer may conclude that a sottduzctehas

been removed since the last time the endpoint was inventoried. If, however, a tag is discovered
on an endpoint with a previously seen tag identifier but a new tag version, a tag consumer may
conclude that identifying or descriptive metadatehet tag has been changed, and so the tag

should be fully processed.

5C



NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

2016 4.9 Summary

2017 The primary purpose d@il the guidelinesn this report is to help tag creators understand how to
2018 implement SWID tags in a manner that will satisfy the tag handling requirenidiits o

2019 organizationsTheguidelines are intenddd be broadly applicable to common IT usage

2020 scenarios that are relevant to all software providers and consumers.

2021 This section provided implementation guidelines addressing issues common to all situations in
2022 which tags are deployed and proces3éxbse are the key points from this section:

2023 1 Tags may be created hythoritativeor non-authoritativeentities.An authoritative tag

2024 creatoris a first or seconeparty that creates a tag as part of the process of releasing
2025 software. Authoritative tag creators typically possess accurate, complete, and detailed
2026 technical knowledge that is needed for creation of authoritative tags contaimabgerel

2027 information. Anonauthoritative tag creators an entity that is in a thirgarty relation to

2028 the creation, maintenance, and distribution of the software-aNthoritative tag creators
2029 typically create tags using product information that is gatheseng forensic methods

2030 while discovering installed software.

2031 1 The SWID specification supports an international audience, allowing tag creators to
2032 provide languagelependent attribute values in reggmecific human languages.

2033 Guidelines in this section spified how tag creators should designate the default human
2034 language of languaggependent attribute values provided within a tag, and how such
2035 values may be provided in multiple languages.

2036 1 SWID tags provide detailed information about various entitgs®ciated with the

2037 software product described the tag, as well as with the tag itself. Guidelines in this

2038 section addressed how complex entity specifications are to be avoided, how authoritative
2039 and norauthoritative tags are to be distinguished, and imdevmation about the

2040 software creator is to be furnished.

2041 1 SWID tags may be explicitly linked to other tags and/or other resources in a variety of
2042 ways. Guidelines in this section addressed how source tags are to be linked to individual
2043 target tags as wedind/or to sets of target tags.

2044 i Tag creators may provide detailed information about the files and folders comprising a
2045 software product. Guidelines in this section addressed how sufficient information may be
2046 provided, how cryptographic hashes may be pejénd how platforsspecific path

2047 separators and environment variables may incorporated in file or folder descriptions.
2048

51



NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

p{)Cl 5 Implementation Guidance Specific to Tag Type

2050 This section provides implementatignidelinesthatare specifidor each of the four tatypes
2051 defined inSection2.1: corpustags(see8b.1), primarytags(see85.2), patchtags(sees5.3), and
2052 supplementafags(see85.4).

2053 5.1 Implementing Corpus Tags

2054 As noted in Sectiof.1.1 corpus tags are usanlitientify and describe products in a{pre
2055 installation stateThis section provides guidance addressing the following topics related to
2056 implementation of corpus tags: setting #&oftwareldentity> @corpus attribute(see
2057 85.1.)), specifying@version and@versionScheme (see85.1.2), andspeifying

2058 <Payload> elementinformation (see85.1.3.

2059 5.1.1 Setting the <Softwareldentity> @corpus Attribute

2060 To indicate that a tag is a corpus tag, tag implemesé&tthe value of the

2061 <Softwareldentity> @corpus attribute tofitrue 0. The SWID specification does not
2062 specifically prohibit tag implementers from also setting othetyipg indicator attributes to
2063 fitrue 0(e.g.,<Softwareldentity> @atch and<Softwareldentity>

2064 @upplemental ), but doing so wouldreate confusion regarding how the information
2065 contained within the tag should be interpreted. This report provides guidelines to ensure that at
2066 most one tagype indicator attribute is set fitrue o.

2067 COR-1. If the value of the<Softwareldentity> @corpus attributei s steué 0t o i
2068 then the values oefSoftwareldentity> @atch and@upplemental MUST be set
2069 t ofalsB o .

2070 5.1.2 Specifying the Version and Version Scheme in Corpus Tags

2071 Corpus tags identify and describe software products in-mgtalation state. As part of the
2072 process of determining whether a given product is suitable for or allowed to be installed on an

2073 endpoint, tag consumers of cemsiomTeldIWID o know th
2074 specification provides theSoftwareldentity> @version attribute for recording version
2075 i nformation, but defines this atOtOi. bute as op

2076 Thisreportseeks to encourage software providers both igrassid maintain product versions

2077 for their products, and to explicitly record those versions in appropriate tags released along with
2078 those productdn short, if a software product has an assigned version, that version must be
2079 specified in the tag.

2080 COR-2. If a software product has been assigned a version by the software provider, that

2081 version MUST be specified in theSoftwareldentity> @version attribute of the

2082 productdés corpus tag, i f any.

2083 For many cybersecurity purposes, it is important to know notonlyaeroddis v er si on, b

2084 to know whether a given product version repre
2085 compared to a known version. For example, security bulletins often warn that adreselered
2086 vulnerability was found in a particulare r si on V of a product, but ms

52



NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

2087 versions. o0 Thus, gi
2088 V1 is fAearliero or

two product versions V

en
| atero than V2.

v
i
2089 In order to make such an ordering decision reliablg, ne@ssaryto understand the structure of

2090 versions and how order is encoded in versions. This is no single agreegractice within the

2091 software industry for versioning products in a manner that makes clear how one version of a

2092 productrelatesto anothethTe A Semanti ¢ Ver sioni ngne&anplei f i cat

2093 of a grasgoots effort to recommend a common interpretation of rpaltt numeric versiondut
2094 itis by no means universal.

2095 The SWID specification defines tk&oftwareldentity> @versionSchem e attribute to
2096 record a token that designates the fAschemeo a
2097 <Softwareldentity> @version can be parsed and interpreted. Ligeersion , the

2098 SWID specification define@versionScheme as fopti onal 0 with a def a
2099 multipa rtnumeric . Table3 lists the allowed values @versionScheme thatare defined
2100 in the SWID specification.

2101 Table 3: Allowed Values of @versionScheme

Value Meaning

multipartnumeric Numbers separated by dots, where the numbers are interpre
integers (e.g. 1.2.3, 1.4.5, 1.2.3.4.5.6.7)

multipartnumeric+suffix Numbers separated by dots, where the numbers are
interpreted agtegers with an additional string suffix
(i.e. 1.2.3a)

alphanumeric Strictly a string, sorting is done alphanumerically

decimal A floating point number (e.g. 1.25 is less than 1.3)

semver Follows the [SEMVER] specification.

unknown Other unknowrversion scheme, no attempt should be
made to order versions of this type

<any> Other version schemes that may be generally known in
the market

2102 The following guideline is provided in consideration of the fact that tag consumers have a critical
2103 interestilk nowi ng not only a productds version, but
2104 semantics of that scheme.

2105 COR-3. If a corpus tag contains a value for ttfeoftwareldentity> @version
2106 attribute, it MUST also contain a value for #@oftwareldentity>
2107 @versionScheme attribute.

2108 I'f a particular product 6s v-defiredschemed listecsin not c o
2109 Table3, whatever value a tag creator provides fordBeftwareldentity>

2110 @versionScheme attribute ought to be selected from a welbwn public list of version

2111 scheme identifiersMlechanisms for eablishing, advertising, and curating such public lists are

2112 beyond the scope of this document. Ideally, such-kvelwvn public lists of version schemes will

2113 provide enough semantic definition of each scheme to enable tag consumers to determine

53



2114
2115

2116

2117
2118
2119
2120

2121
2122

2123

2124
2125
2126
2127
2128
2129
2130

2131

2132
2133
2134

2135
2136

2137

2138
2139
2140
2141
2142

2143
2144
2145

2146
2147
2148

NISTIR 8060 (Final Public Draft)

Guidelines for the Creation of Interoperable SWID Tags

whetheravesi on V1 confor mi ng

another version V2 conforming to that same scheme.

5.1.3 Specifying the Corpus Tag Payload

to

a

particul ar

schen

Corpus tags are used to document the installation media associated with a softwareTgrzduct.
documentation enables the media to be chefikeauthenticity and integrityAt a minimum,
corpus tags are required to providReayload> details that enumerate all the files on the
installation media, including file sizand hash values.

COR-4. A corpus &g MUST contain a&Payload> elementhatMUST enumerate every
file that is included in the tagged installation media.

5.2 Implementing Primary Tags

The primary tag for a software product contains descriptive metadata needed to support a variety

of business presses. To ensure that tags contain the metadata needed to help diitanhte

cybersecurityprocesses on information systems, additional requirements must be satisfied. This

section provides guidance addresdimg followingtopics:setting tag type indator attributes to
designate a tag as a primary {age85.2.1), specifying version and version scheme information
(see85.2.2), specifying<Payload> or <Evidence > information(see85.2.3, andspecifying

attributes needetd form Common Platform Enumeratio€PE) nameqsee85.2.4.

5.2.1 Setting the <Softwareldentity> Tag Type Indicator Attributes

To indicate that a tag is@imarytag, tag implementeensure thathe valus of all three tag

type indicators (theSoftwareldentity>

@corpus, @patch, and@supplemental

attributes) aresetto fifalse 0 This is enforced by the following guideline

PRI-1. To indicate that a tag is a primary tag, ##oftwareldentity> @corpus,
attributesMUST be set tdifalse 0 .

5.2.2 Specifying the Version and Version Scheme in Primary Tags

@patch, and@supplemental

Primary tags identify and describe software products in aipsistilation state. Like corpus tags,
primary taginformation about product versions amssociatedersion schemes is important to

enable tag assumers to conduct various cybersecurity operations. Unlike the case for corpus
tags, howeverguidelinesfor primary tagsnust distinguish between authoritative and-non

authoritative primary tag creators.

PRI-2. [Auth] If a software product has been assigneéraion by the software provider,
that version MUST be specified in tk&oftwareldentity>

t he product 6s

pri mary

tag.

@version attribute of

PRI-3. [Auth] If a primarytag contains a value for tk&Softwareldentity>
@version attribute, it MUST also contain a value for #g®oftwareldentity>

@versionScheme attribute.

54



NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

2149 PRI-4. [Non-Auth] If a software product has been assigned a version by the software
2150 provider,and that version can be determint, <Softwareldentity> @version

2151 attribute of the primary taflUST contain that value

2152 PRI-5. [Non-Auth] If a primary tag contains a value for th8oftwareldentity>

2153 @version attribute,and the version scheme of ti@tersion attribute valuean be
2154 determined, theSoftwareldentity> @versionScheme attibute of the primary tag
2155 MUST containthatversion schemealue.

2156 As was true for corpus ta@see85.1.2), it is important that the version schemes used in primary
2157 tags enable distinct versions of a product to be placed in a defined order, minimally so that

2158 consumers can determine whether one version
2159 thananother version. Section 8.6.13 of the SWID specification provides a table of predefined
2160 values for the@versionScheme attribute with defined semantics (reprodueddve inTable

2161 3). If a value forthe @versionScheme attribute is provided that is not listed among the

2162 predefined values, ideally that value ought to come from akmelvn public list of version

2163 scheme identifietsThe public list wouldpeeify the meaning for each version scheme

2164 sufficienty to allow for comparing two versions and determining their relative order in a

2165 sequencef versions

2166 5.2.3 Specifying Primary Tag Payload and Evidence

2167 Detailed information about the files comprising an insthBoftware product is a critical need

2168 for cybersecurity operationsor example, sch information enables endpoint software inventory
2169 and integrity tools to confirm that the product described by a discovered tag is, in fact, installed
2170 on a deviceAuthoritative tag creators aencouragedo provide a<Payload> elemenin the

2171 primary tag andnon-authoritative tag creatoese encouraged to provide <Evidence>

2172 elemenin the primary tag

2173 PRI-6. [Auth] A <Payload> elementSHOULD be providedn a softwarggr oduct 6 s
2174 primary tag.

2175 Note:Payload information from authoritative tag creators is a key enabler for a number of

2176 cybersecurity usage scenarios, and promises to dramatically increase the value of SWID tags to
2177 tag consumers. At this time, however, a weakedgjine is presented until the potential costs

2178 and burdens on tag creatarsd consumersan be better understgaalong with a better sense of
2179 the methods needed for providing this informaitima way that supports the appropriate level of
2180 assurance

2181 PRI-7. [Non-Auth] An <Evidence> elementSHOULD be providedn a software
2182 productds primary tag.

2183 Note : QuidelinesPRI-6 andPRI-7 currently specify that payload and evidence be supplied

2184 within the primary tag, and not within a supplemental tag. This is due to concerns about

2185 additional processing compléxiand difficulties with assuring the reliability of such payload

2186 and evidence information when it is stored separately from the primaddlge degree of

2187 understanding of payload and evidence usage patterns improves, providing a clearer sense of the
2188 costs and benefits, strengthening or refinement of these requirements may be needed.

55



2189
2190
2191
2192

2193
2194

2195
2196
2197
2198
2199
2200
2201

2202
2203

2204
2205

2206
2207
2208
2209
2210
2211
2212
2213

2214
2215
2216
2217
2218
2219

2220
2221
2222
2223
2224
2225
2226

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

Ideally,<Payload> and<Evidence> elements should list every file that is found to be part

of the product described by the tag. Such information aids in the detection of malicious software
attempting to hide among legitimate product fikkglso aids irreconcilingauthoritative and
nontauthoritative tagé cases where both kinds of tags exist on a device for the same product.

PRI-8. <Payload> and<Evidence > elemens SHOULD list every file comprising the
product described by the tag.

Although a full enumeration of product files is the ideah aninimum, only those files subject
to execution, referred to heremsichine instruction filesieed tdbe listed. A machine
instruction file isany file that containmachine instruction code subject to runtime execution
whether in the form afachinenstructions which can belirectly executed by computing
hardware or hardware emulatploytecodewhich can be executed by a bytecode interpreter
scripts which can be executed by scripting language interpretgnsary files thatare
dynamically badedat runtimearealso conglered machine instruction files.

PRI-9. [Auth] The<Payload> element MUST list every machine instruction file
comprising the product described by the tag.

PRI-10.[Non-Auth] The<Evidence> elementMUST list every machine instruction file
comprising the product described by the tag.

If a tag creator enumerates every &ording tdPRI-8, this can causproblems later for tag
consuners. Recall thabection4.6 of this document provides guidelines that require tag creators

to supply file sizeyersion, and hash informatioseeguidelinesGEN-11 throughGEN-18).

These guidelines are there to ensure that tag consumers can later use the provided information to
confirm the integrity of files discovered on devices. The problem, however, is that particular files
listed in a<Payload> or<Evidence> elementmight be changefbr norntmalicious reasons

at arbitrary times after the product is installed. Data and configuration files are two obvious
examples.

I f a tag consumer were t o i<Paglgaéd>c or<Bvidepca> t i cul a
el ement , c o ngshavalee ag likted infa tad te @ new Jalue computed from the actual
file on a device, and discover a mismatch, th
expected to be static. If tag consumers were to generally find that performing suchisaomspa

led to an unwieldy number of false positives, they might be inclined to stop using SWID tag

payload and evidence information altogether, an undesirable outcome.

In the interest of minimizing the possibility of such false positives, this documeviti@so
guidelines for tag creators to e€Bagdad>ci tl y mar
element with a special value. Specifically, this document introdu@8@60 : mutable

extension attribute ondFile > elementsThe @8060 : mutable extension dtibute takes a

Boolean value whose default valudiialse 0. Authoritative tag creators arequiredto set the

@8060: mutable at t r i bu ttree ofar bny<d-iler oelerfent that describes a ron

static file. Norauthoritative tag creators are encouraigedo so whenever possible.

56



2227
2228
2229
2230

2231
2232
2233
2234

2235
2236
2237
2238

2239
2240
2241
2242
2243

2244

2245
2246
2247
2248
2249

2250
2251
2252
2253

2254
2255
2256
2257
2258
2259

2260
2261
2262
2263
2264
2265
2266

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

PRI-11.[Auth] If a <File> element included in @Payload> element of a primary tag
describes a file that can undergo authorized changes over time in ways that could alter its
size, version, and/or hash value, the tag creator MUST ked t <Hile>l e 0 s

@8060 : mutable extensiormt t r i buetoe. t o 0

PRI-12.[Non-Auth] If it can be determined thatdile> element included in an

<Evidence > element of a primary tag describes a file that can undergo authorized changes
over time in ways that could alter its size, version, and/or hash value, the tag creator
SHOULD s et <Fileh a@8060i: mutables extension attribute titrue o.

Observancefahese guidelines by tag creators will help ensure that the resaRegoad>
and<Evidence> elements are useful to tag consumers attempting to verify the integrity of
installed software products, while minimizing the potential number of false poshiatesuch
consumers may have to cope with.

Note: Late in the process of readying Draft #4 of this report for public comment, it was noted
that the guidelines in this section also apply to corpus and patch tags. In the final draft of this
report, these gdelines will beincorporatednto Sectiord.6. They are left here for now in order
to minimize impact to the extensive guideline croferences throughout thigportin the

current draft revision

5.2.4 Specifying Product Metadata Needed for Targeted Search

The SWID specification furnishes tk&oftwareldentity> @namaattribute to capture

At he software component name as it would typi
p r o d marketthamei.e., the product name as used on websites and in advertising materials to
support marketing, sales, and distributiorarkit names for commercial software products often
combine a variety of markeelevant descriptive elements, including:

T The product 6s fibase nameo distingWhenhed fr

for example, the software provider whose legal nanfieAsc me Sy st ems |l ncorp
mar kets its fARoadrunnero product, it might
prefixed to the base name of its product s,

T The product 6 s fOmaccakiantsoftwarerpsoviders distinguish betwee
the version they assign to a productds und
they assign to it for marketing purposes (e.g., 2015). For example, Acme Systems
Incorporated might release codebase version 6.0 of their Roadrunner product with the
mar ket version of 2015. The mar ket name fo
Roadrunner 20150.

T The pr oduct Some sofevdreé groviders market the same core product to
different user audiences, selectively adding and/or removing featyresdieg on their
appeal to each audience. When this is done
t he productbés mar ket name. Heaturede x a mp|l e, Ac
ARoadrunner o0 product to | arge crdemppgsani es, a
Edi t i on. edowh aral tessosfpypnstahtiation of that product might be tailored
to individual use on home computers, and d

57



2267
2268

2269
2270
2271
2272
2273
2274

2275
2276
2277
2278

2279
2280
2281
2282
2283
2284
2285
2286
2287

2288
2289

2290
2291
2292

2293
2294
2295
2296

2297

2298
2299

2300
2301
2302

2303

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

two different mar ket names mi ghetr pbrei suessedd :a n
fAcme Roadrunner 2015 for Home Of ficeso

T The pr oduct dnsome specializedicases, fay example, when a particular
product receives unwanted attention due to defects, a software provider may be motivated
to revise a npmedncanjarctirswitrheriskuartce of a major patch or
product upgrade. When this happens, the revised market name might incorporate phrases
such as fAService Release x0 or fARevision y
Enterprises Service Release 20.

Whi | e any or all of these el ements may be pres
appear in theSoftwareldentity> @nameat t ri bute of the product 0:¢
no consistency in whether or how those elements are included, makingitltftir a machine

to reliably parse them out of the market name.

The problem is that these metadata elemam®ften needed by local administrators

cybersecurity personnednd supporting automated towleen performing targeted searchiesr
examplea security advisory might announce that a major vulnerability has been discovered in
the AEnterpriseo edition of a prAsahathet , whil e
example, an organization might want to declare and enforce a policy that ofilfetinet er pr i s e
edition of Acmebés ARoadrunner o project may b
installations are further restricted to the
possible, there needs to be a way to individuafgr to each descriptive element embedded
within a productds mar ket name.

0
e
fi

To accommodate this neetletSWID specification defingle following<Meta> element
attributes:

1 @product : This attribute provides the base name of the prodihet base namis
expected to excludsubstrings containing the softwarer o v indmee asdagll as any
i ndi cators of the previsidileeek 6s version, edit.i

1 @colloquialVersion : This attribute provides thmarket version of the product
This version mayemainthe same through multiple releases of a software product
whereas the version specified in #goftwareldentity> @version is more
specificto the underlying software codebas®l will change for each software release.

1 @edition : This attribute providethe editionof the product.

1 @revision : This attribute provides an informal designation forreagsion of the
product

If these attributes are specifietht only will targeted searches be easier to define and execute,
but also it will be possible to meahically generata valid CPE nam&om an input SWID tag
(Se€g[NISTIR 8085]for an algorithm that may be used to generate such CPE names.

The guideline is as follows:

58



2304
2305
2306

2307

2308
2309
2310
2311
2312

2313

2314
2315
2316
2317
2318
2319
2320

2321
2322
2323

2324

2325
2326
2327
2328

2329

2330
2331

2332
2333

2334
2335

2336

2337
2338
2339
2340
2341

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

PRI-13. If appropriate values exist and can be determiaedjeta> element MUSTbe
providedand MUSTfurnish values foas many othe following attributess possible
@product , @colloquialVersion , @revision , and@edition

5.3 Implementing Patch Tags

As noted earliem Section2.1.3 a patch tag is used to describe localized changes applied to an
i nstall ed pr ®hiagectioropsovideogdigahca addressimggfollowingtopics

related to implementation of patch tagstting the<Softwareldentity> @patch attribute
(see85.3.1), linking patch tags to related ta(sees5.3.2), and specifying<Payload> or
<Evidence> information(see85.3.3.

5.3.1 Setting the <Softwareldentity> @patch Attribute

To indicate that a tag is a patch teg implementers set the value of the

<Softwareldentity> @patch attribute tofitrue 0. The SWID specification does not
specifically prohibit tag implementers from also setting othetyiag indicator attributes to

fitrue ©O(e.g.,<Softwareldentity> @orpus and<Softwareldentity>

@upplemental ), but doing so would create confusion regarding how the information
contained within the tag should be interpreted. This report provides guidelines to ensure that at
most one tagype indicator attribute is set to true

PAT-1. If the value of the<Softwareldentity> @atch attri buttree d,s set
then the values ofSoftwareldentity> @orpus and<Softwareldentity>

@upplemental MUST befaseed.t o i
5.3.2 Linking Patch Tags to Related Tags

A patch tag must be explicitly linkeid the primary tador the product to which the patch is
applied. The SWID specification defines three relations which may be used when setting the
value of the<Link> @rel attribute. These relations are described in Section 5.3.3 of the SWID
specification and summarized in Secti.3of this report. They are:

Patches.This value dcuments a relationship to the primary tag of the patched product.

Requires This value documents that a patch described by the patch tag requires the prior
installation of another patch.

1 SupersedesThis value documents that a patch described by a pegatan entirely
replace another patch.

Because the SWID specification requires that patch tags use these relations as appropriate when
linking to related tags, no additional guidelines are provided in this report.

5.3.3 Specifying Patch Tag Payload and Evidence

Patches change files that comprise a software product, and may thereby eliminate known
vulnerabilities. If patch tags clearly specify the files that are changed as a result of applying the
patch, software inventory and integrity tools become able to ootffiat the patch has actually

been applied and that the individual files discovered on the endpoint are the ones that should be
there.

58



2342

2343
2344

2345
2346

2347

2348
2349
2350
2351
2352

2353
2354

2355
2356
2357

2358
2359

2360
2361

2362
2363

2364
2365

2366

2367
2368
2369
2370
2371
2372

2373

2374
2375
2376

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

Guidelines in this section propose that patch tags document three distinct types of changes:

1. Modify: A file previously irstalled as part of the product has been modified on the
device.

2. Remove:A file previously installed as part of the product has been removed from the
device.

3. Add: An entirely new file has been added to the device.

For files that are modified or added, patch tags must include file sizes and hash values. As stated
before in requirementSEN-14 andGEN-16, authoritative tag creators are required to provide

this information in thecPayload> element of the patch tag. N@uthoritative tag creators are
encouraged to provide this information whesrepossible in theEvidence> element of the

patch tag$eeGEN-14, GEN-17).

PAT-2. [Auth] A patch tag MUST contain€Payload> element that MUST enumerate
every file that is modified, removed, or added by the patch.

PAT-3. [Auth] Each<File> element contained within thdPayload> element of a patch
tag MUST include an extension attribute nan@®060 : patchEvent , which MUST
have one of the following values:

T The st r imodfy & atl @ es thiadthegpatdh enodifiespre-existing
installedfile

T The st r iremgved atl @ es tlatthepadreeovesa preexisting
installedfile

T The striaddg Vv al sithadtiieqatch mstalisnew filethat did not
previously exist

PAT-4. [Non-Auth] A patch tag MUST contain arEvidence> element that enumerates
every file that was found to have changeda result of the patch process.

5.4 Implementing Supplemental Tags

As noted inSection2.1.4 supplementaiags are used for any purpose to furnish identifying and
descriptive information not contained in other taghkis section provides guidance addressing
the followingtopics related to implementation of supplemental tagiing the
<Softwareldentity> @supplemental attribute(see85.4.7), linking supplemental tags

to other taggsee8b.4.2), andestablishinghe precedence of informah contained in a
supplementalag (see85.4.3.

5.4.1 Setting the <Softwareldentity> @supplemental Attribute

To indicate that a tag is a supplemental tag, tag implareset the value of the
<Softwareldentity> @upplemental  attribute tofitrue 6. The SWID specification
does not specifically prohibit tag implementers from also setting othé&ygagndicator

6C



2377
2378
2379
2380

2381
2382
2383

2384

2385
2386
2387
2388
2389

2390
2391
2392
2393
2394

2395
2396
2397

2398
2399
2400
2401
2402

2403

2404
2405
2406
2407
2408
2409
2410

2411
2412
2413
2414
2415

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

attributes tditrue 0 (e.g.,<Softwareldentity> @orpus and<Softwareldentity>

@patch ), but doing so would create confusion regarding how the information contained within
the tag should be interpreted. This report provides guidelines to ensure that at mostygee tag
indicator attribute is set fiirue o.

SUP-1. If the vdue of the<Softwareldentity> @upplemental  attribute is set to
fitrue 6, t hen t<8oftwakelddntitye s adorpus and
<Softwareldentity> @atch MUST befaseed.t o 0

5.4.2 Linking Supplemental Tags to Other Tags

An individualsupplemental tag may be usedurnish data elementsatcomplement or extend
data elements furnished in anothedividual tag. That is, a supplemental tag may not be used to
supplement a collection of tags.supplemental tag may supplement any type of tag, including
othersupplemental tags. Because the SWID specification does not clearly state how a
supplemental tag should indicate its linkage to other tagjayifying guidelineis provided here.

An individual supplemental tag may be used to furnish data elements thaeownt or extend

data elements furnished in another individual tag. That is, a supplemental tag may not be used to
supplement a collection of tags. A supplemental tag may supplement any type of tag, including
other supplemental tags. Because the SWIDisgaion does not clearly state how a

supplemental tag should indicate its linkage to other tags, a clarifying guideline is provided here.

SUPR-2. A supplemental tag MUST contairnc&ink> element to associate itself with the
individual tag that it supplements. &@rel attribute of this<Link> elementMUST be set
to Aisupplemental 0.

Note that the SWID specification also requires that exemgk> element provide a value for
the @href attribute. Sectiod.5 of this document provides pertinent guidelines for how tag
creators should use ti@href attribute to refer to other tags, in situations whendhagld of
the target is knownsgeguidelineGEN-11), and when it is not knowrséeguidelinesGEN-12
andGEN-13).

5.4.3 Establishing Precedence of Information

As noted earlier, a supplemahtag is intended to furnish data elements that complement or
extend data elements furnished in another tag. This does not preclude situations in which a
supplemental tag contains elements or attributes that potentially conflict with elements or
attributes furnished in the tag being supplemented. For example, suppose an endpoint contains a

primary tag where the value of tk&oftwareldentity> @namattribute is specified as
fiFoo 0, and a supplemental tag is also present that is linked to the primary tsggebifies the
value of the<Softwareldentity> @nameat t ri Barb.e as 0

One option is to treat any conflicting data items in a supplemental tag as overriding the
corresponding values provided in the tag that is supplemented. Choosing this treatment,
however, would introduce a new complexity, since multiple supplemental tags could all point to
the same supplemented tag, and all data values could conflict. The only way to resolve this
would be to add new requirements to establish precedence orders supplegnental tags.

61



NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

2416 Instead, thiseporttakes the position that supplemental tags strictly extend, and never override.
2417 So in the example aboviepo is considered to be the correct value@nameand the value of
2418 Bar furnished in the supplemental tag is ignored.

2419 Because certain attribute values pertain to tags theméebigs @tagld, @tagVersion |,

2420 and<Entity> information about the tag creafodifferences in those values between a
2421 supplemental tag and a supplemengggare never construed as conflicts. In other cases,
2422 information in a supplemental tag maydmnbinedwith information in the supplemented tag to
2423 obtain a full description of the product. For example, a primary tag may provicendity>

2424 element that spéfies thetagCreator  role, while a supplemental tag providesntity>

2425 elements specifying other roles suctsaftwareCreator andlicensor . In this scenario,
2426 the primary and supplemental tag collectively furnish all Entity roles. If, however, both the
2427 primary and supplemental tags providentity> elements specifying values for the same role
2428 (e.g., both tags speyitlifferentsoftwareCreator values), then the conflicting value in the
2429 supplemental tag is ignored.

2430 This leads to the followinguideline

2431 SUPR-3. If a supplemental tagrovides a data value that conflicts with corresponding data
2432 values in the tageing supplementethe datavaluein thesupplementethgMUST be
2433 considered to be the correalue

2434 55 Summary

2435 This section provided draft implementation guidance related to all four SWID tag typpess,
2436 primary, patch, andupplementalKey pointspresented include

2437 1 Corpus tags must includdPayload>details, and must be digitally signed to facilitate
2438 authentiation and integrity checks.

2439 1 Authoritative creators of primary tags are required to pro¥Rayload>information,

2440 and to include<Meta>attribute values needed to suppodtadatebased searching and
2441 automated generation oPRE namesNon-authoritative crators of primary tags are

2442 requiredto provide<Evidence>informationfor any dataused to detect the presence of
2443 the product

2444 1 Patch tags must be explicitly linked to the primary tag of the patched product, as well as
2445 to any tags of required predecessocpes or superseded patches. Patch tags must
2446 document all filesnodified, removed, or added by the patch.

2447 1 Supplemental tags may supplement any type of tag, but must be explicitly linked to the
2448 supplemented tag\ny datavalue supplied in a supplemental tagt conflicts with a

2449 corresponding data value in the supplemented tag is ignored

2450

62



2451

2452
2453
2454

2455
2456
2457

2458
2459
2460
2461
2462
2463

2464

2465
2466
2467
2468
2469
2470
2471
2472

2473
2474
2475

2476
2477

2478
2479

2480

2481
2482
2483
2484
2485
2486
2487
2488

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

6 SWID Tag Usage Scenarios

This sectiorpresentsa set of usage scenari@s$S) that illustrate howbased orntheguidelines
provided in Sectiond and5 of this documentsecurity professionals cathieve threemportant
cybersecurity objectes:

1. Minimizing exposure to publicldisclosed software vulnerabiliti¢see &.1)
2. Enfordng organizationapoliciesregardingauthorized softwarésee $.2)
3. Controling network resource accegem potentially vulnerable endpoinfsee $.3)

By using SWIDtags in accordance with tigaiidelinesprovided inthis report the security
practitioner(e.g., Chief Information Security Officer (CISO), Information System Security
Officer (ISSO))canachieve these objectives quickly, accuratahd efficiently.Sectionss.1
through6.3 eachdescribe the cybersecurity objective to be achieved, followed by specific usage
scenarios that contribute to achigythe objectiveSection6.4 describes how the guidelines
presented in this report enable each scenario.

6.1 Minimizing Exposure to Publicly-Disclosed Software Vulnerabilities

This section presents usage scenarios illustrating how SWID tags may be ssedrity
practiionersto minimize risks from exploitationf endpoints wittknown vulnerabilitiesvithin
enterprise networks. Tminimize these risksecuritypractitionerseed to maintain awareness
of vulnerabilitiesrelated tanstalledsoftware especiallythosevulnerabilitiesfor which a patch
or otherremediatiorhas not been madwailable. Security practitioners also need to maintain
awareness of changes to the softwaventoryon each endpoint, since each change could
(intentionally or inadvertent)yintroduce vulnerabiliesto that endpoint. For example, a user
mightunintentionally rollback a patclthatmitigates a critical vulnerability.

This sectiorpresents founsage scenarigelated to this cybersecurity objective
1 US 17 Continuously Monitoring Software Invento(yee8§6.1.1)
1 US 21 Ensuring that Products are Properly Patd{se€S86.1.2

1 US 3i Correlating Inventory Data with Vulnerability Data Identify Vulnerable
Endpoints(see86.1.3

9 US 47 Discovering Vulnerabilitie®ue to Orphaned Software Components
(see86.1.9

6.1.1 US 17 Continuously Monitoring Software Inventory

In this scenaripSWID tagsare used to continuously monitor the inventory of software installed
on endpoints within an enterprise network. Tags are key inpths farocess ajathemg and
maintainng an upto-date and accuratecountingdf software inventory on each endpoint

SWID datamay beaggregatedif neededin regional and/or enterprisgide repositoriesusing

this data, oganizations are able to mainta@n ongoing understanding ioftalled software
inventory bycontinuouslymonitoringsoftwarechange eventotifications. Information provided

by SWID tagscontribues to an upto-dateand accurate understanding of the software on

endpointsAs s oft war e ¢ hange ssofaareinverdody és updatdd & refectd p oi n

63



2489
2490

2491
2492
2493
2494
2495
2496

2497
2498

2499
2500

2501

2502
2503

2504
2505
2506
2507
2508
2509

2510
2511
2512
2513
2514
2515
2516
2517
2518

2519

2520

2521
2522
2523
2524

2525
2526

2527
2528

NISTIR 8060 (Final Public Draft)

Guidelines for the Creation of Interoperable SWID Tags

those change&/odificationsoccur throughout the software lifecycle includingtalling
upgrading patching and emoving software

One or moresoftwarediscovery or monitoringools (referred togenericallyin this section as

A di s c o woerangontineoaslymonitorendpoints fosoftware changes, either on an event
driven basis or through periodic assessment of installation locations. tbbhesstiscover
changesincludingmodifications to existing SWID ¢ on the endpoint. This analysis should
consider various sources for performing this discoyerg 8.3.1for a discussion of SWID tag
placement on deviceshcludingthese

T

The endpointds | ocal, directly attached
installation utilities and archived distributio(eg., tar, zip)

Temporary storage connected to the endpoint (e.g., external harg] driagersal Serial
Bus (USB) devices)

Software contained in native package installers (e.g., RPM Package Manager (RPM))

Shared filesystems (e.g., a mapped network drive or netattakhed storage) that
containsoftware thats executable from an endpaint

SWID tags providedentification, metadata, and relationshim f or mat i on about
installed softwareAuthoritativetags discovered on an endpoint can supply reliable and
comprehensive information abaduostalled softwarewhereasliscoverytoolscanplace non
authoritative SWID tags on the endpdiotieave a record of nhewliscovered, untagged

products This is an important capability, since it is likely that some software will be untagged at

thetime of installation.

Asthe toolscollectthedata,SWID tags enable many reporting capabilities for enterprise system
software inventaes SWID tagscan beaggregatedo one or more repositories (e.g., regional or
enterprise) tenableaccurateanalysis andeporting of the softare products installed anset of
organizatioal endpoints This aggregatiosuppors the exchange of normalized data pertaining

to these productsin important component effectively managing IT across an enterprise.

SWID tags provide aendorneutral and platforamdependent way tanalyzethe state of

installed softwarée.g., software installeghroductsmissing, orsoftwarein need of patching

within the organization, ani monitorendpointdor the purpose amnaintainng continual
awareness dheir security posture

6.1.1.1 Initial Conditions
This usage scenario assumes the following conditions:

T

T

T

A software discoveryool is installed on eacknterprisemanagedndpoint, and is
configured to run on a defined schedule, on request, andfsponse to events

generated on the endpoint which may indicate there has been a change to the installed
software inventory.

The discovery tool recordsventorydata in a configuration management database
(CMDB) which may or may not be esident on thendpoint.

The CMDB retains information about products (and their associated tags, if any) which
have been discovered in the pastachendpoint. The discovery tod able to use the

64

fi

an



NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

2529 CMDB to compare current inventory state to the last known stategdan to detect
2530 changes.

2531 1 Atthe time the discovery process is run on each endpbetiscoveryool has

2532 sufficient access rights to the endpoint to discover gwethlledsoftware instance and
2533 anyassociatednetadata. This includes access rights to 8AdD tag on the endpoint.
2534 1 Some installed softwag@oductsmight not have an associated SWID tagrause an
2535 authoritative source did not furnisime

2536 6.1.1.2 Process
2537 1. Upon detecting new or changed software in an installation locatioredilesystem

2538 mountedon the endpoint, théiscoverytool will collect and processll SWID tags(primary,
2539 supplemental, and/or patch tags) preseititat location. Changes to be detected may
2540 include:

2541 1 New softwareproducts(or subcomponents) that were not previouslsordedn the
2542 inventory

2543 1 Changes or updatesittstalledsoftware productdiscovered previously

2544 1 New or modified SWID tagsas indicated bpnew @tagld or @tagVersion attribute
2545 valuewithin the <Softwareldentity> element

2546 2. Thediscoverytool will update theCMDB with the data froomewly discovered or changed
2547 SWID tags creatingnew entriesand/or modifying existing entries as needi@dnstalled
2548 products and their componenBecause the software versimfiormationis critical for

2549 understanding the configurationdpotential vulnerabiligs of the endpoint, iiny primary
2550 tag contains such version information (usingts®ftwareldentity> elemend s
2551 @version and@versionScheme attributes), then that information will be recordedd
2552 PRI-2, PRI-3, PRI-4, PRI-5).

2553 If any tags are identified am®tbeing in compliance with th8WID specification $eeGEN-
2554 1), those tags wilhotbe recorded in thEMDB, since heymay not be reliable for the
2555 purposeof software inventory

2556 3. The toolwill determine the type of tag discovdiéased upon the

2557 <Softwareldentity> @corpus, @patch, and@supplemental attributes(seePRI-
2558 1, COR-1, PAT-1, SUP-1). Thediscoverytool will readthe payload information provided
2559 within the tag, including the fike Bames, sizes, and cryptographic hashes for each
2560 component of the software product. These values will later be used to perform file integrity
2561 verification(seeGEN-14, GEN-15, GEN-16, GEN-17, GEN-18, GEN-19, GEN-20, GEN-

2562 21, GEN-22, GEN-23, GEN-24, PRI-6, PRI-7, PRI-8, PRI-9, PRI-10, PRI-11, PRI-12).
2563 4. Thediscoverytool will attempt to determing the tag is authoritative bghecking thathe

2564 @regid of the<Entity> element containing th@role v a | tagCreditor 0 al s o
2565 contains the@ole v a | u softwarfeCréator 0, flaggregator 0, idistributor 0,
2566 orflicensor 0(see84.4.3 GEN-8, GEN-9, GEN-10).

2567 5. If atagwas notinstalled with the software, thidiscovery toolwill createand deployanon
2568 authoritative tago the endpoint for each instance aliacoveredpplication As an

65



NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

2569 alternative, the discovery tool may be able to determine that a previously generated non
2570 authoritative tag already exists in the CMDB which describes the raisdyvered product.

2571 This is possible if (1) the CMDB records all tAgauthoritative and neauthoritativé

2572 discovered or deployed anywhere within the enterprise, and (2) the discovery tool is able to
2573 use information about the newtljscovered product to retrieva matching tag from the

2574 CMDB. In this case, the discovery tool may simply deploy the matching tag from the CMDB
2575 (or an appropriate related sourte}the endpoint, rather than generate and deploy a

2576 completely new nomuthoritative tag.

2577

2578 Information abouthe files discoverets important to support continuous monitoring for

2579 software vulnerabilities, so tlteployedag will list everymachine instructiofile

2580 comprising the software product discove(8de $.2.3, using the<Evidence> element

2581 (seePRI-7, PRI-8). This information will include filenames, sizagersionsand

2582 cryptographic hashes disared §eeGEN-14, GEN-15 GEN-17, GEN-18, GEN-20,

2583 GEN-21, GEN-22, GEN-23, GEN-24). It will also include any version information

2584 detemined for the software produ(teePRI-4, PRI-5).

2585

2586 WhenSWID tags are discoverddat do not conform to the 2015 release of the SWID

2587 specification these tags are not stored in @dDB, but their contents miglstill be useful

2588 to support the evidence collected above.

2589 6. Many cybersecurity decisions will be based upon the authentiaitynéegrity of the SWID

2590 tags discoveredio validate the integrity of the discovered tag, the discovery tool can

2591 authenticate the certificate the digital signature using ti@thumbprint  attribute of the
2592 <Entity> element(see§3.2).

2593 7. Thediscoverytool will readthe tag identifier (i.e.@agld ) andidentify the tag location,

2594 along with the type of tag discovered or creapgtnarytags forinstalledsoftware §ee

2595 §2.1.2, and patch tags for software patcheseg2.1.3. Supplemental tagsanprovide

2596 additional information anchay beuseful for inventory. If the tag identifier already exists in
2597 inventory, thediscoverytool will determine if the tag version has changed by examining the
2598 value assciated with the<Softwareldentity> e | e m@agMersion attribute. If
2599 that tag version has been updated, the tool will register the updated values that were changed
2600 in the SWID tag $eeGEN-25, GEN-26).

2601 8. TheCMDB will be updated, includingendingnotificationsto applicable reporting systems
2602 in the enterprise. ThHEMDB will track the changes discovered to support SAM and security
2603 needs. Tts includes the location of discovered tags to enable subsequent extraction of the
2604 information contained in each tag when needed.

2605 Periodically,the complete set of tags from eaaidpointis either sent to the enterprise

2606 repository or collectedia a remo¢ management interfabg thediscoverytool to create a

2607 baseline software inventar@nce this baseline inventory has been established, only software
2608 changes since the last exchange need to be proartkmhay be supplemented with a

2609 periodic full refreshThis provides for efficiencies in the velocity and volume of information
2610 that needs to be exchanged.

66



NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags
2611 9. For a given endpoint, tréiscoverytool iterates through each tag in the repositorgluding
2612 nontauthoritativeSWID tags.

2613 10.The endpointollected tagsire added to the enterprise repository, recording relevant
2614 endpointidentificationinformation (host name, IP addresses, gthhig dateandtime of the
2615 data collection, and data about the discovery tool or remote management interface used.

2616 11.Thediscoverytool will recordrelationshipdbetweertags, as indicated within the SWID tags

2617 discovered. For example, patch tags include a reference (usikgitikes elemend s

2618 @href and@rel attributes) to the software being modifies@¢GEN-11, GEN-12, GEN-

2619 13). Similarly, for supplemental tags recorded, diezoverytool will indicate the tag

2620 identifier for the primary tag of the software for which additional information is being

2621 provided §eeSUP-2). If any data in the supplemental tag conflicts with the data in any tag it
2622 supplements, the data in the supplemented tag is considered the correteeSuH{3).

2623 6.1.1.3 Outcomes

2624 The process described above provideaaurate and automated mettiodcollecting

2625 identifying and descriptive metadata abaut e n dipventory ofiassalled software. When
2626 used in this way, SWID tags enable the collection of a comprehensive inventory of installed
2627 software products by era@ning the system for SWID tagather than attempting infer

2628 inventory information by examining arbitrary indicatorstba endpoin{e.g., registry keys,

2629 installed files)

2630 SWID tags contribute tareliablesoftwareinventoryby supporing searchingdr specific

2631 product information or software characteristics (ggphibited or required software, specific

2632 software versions or ranges, software from a specific vendor). The SWID specification provides
2633 arich set of data that may be used with specifergparameters to search for instances of

2634 installed software. In addition to the common name and version values, many SWID tags store
2635 extended information such dataidentified through thelLink> and<Meta> elements.

2636 Details regarding attributes and vasuthat can be useful for queries are described in Sgection
2637 3.1.1and3.1.5

2638 Asanindirect result of maintaining SWID tdgased inventory, the discovery tools can

2639 dynamically identify vulnerabilitieand misconfiguration-or example, upodiscoveringa

2640 newly instaled or changed software applicatidhe discovery tootan check the configuration
2641 of that software using a paefined checklist. The discovery tool could also check for any
2642 known vulnerabilities for that new or updated product. If the tool identifraseonfiguration or
2643 a software vulnerability, that condition may be reported for mitigation.

2644 In many cases, the ability to consistently search for instances of installed software is important to
2645 achieving the organi zat i oess@eals.Qudiygasudtentaylrei t y s
2646 used to trigger alerts based on-pgetermined conditions (e,grohibited software detected) that

2647 may be useful in a continuous monitoring cont@&kte practitioner is able to know what is

2648 installed and wheri is installed providing a critical foundation for other usage scenarios.

67



NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

2649 6.1.2 US 2 - Ensuring that Products Are Properly Patched

2650 Enterprise security manageyien needo quickly and easily generateportsabout endpoints
2651 having installed software produdtgat are misingone or morgatcles as this may signal

2652 vulnerability to malicious activityif a discovery tool also has a patch management capability, it
2653 will needto determinehat allprerequisitgpatchesare installedefore installing any new

2654 patchesWhilethis usage scenario focuses on an enterprise patch management appozath,
2655 patchmanagement capabilithat is executedn an individual endpoint caralsodirectly read the
2656 inventory of patch tags from the local reposittryenabldocalized patch erification and

2657 decisionmaking

2658 6.1.2.1 Initial Conditions

2659 This usage scenario assumes the existence of an enterprise repository, populated with SWID tags
2660 that are created and collected using the process describ&llifsee86.1.1). This includes
2661 application ofguidelinesGEN-1 throughGEN-26.

2662 6.1.2.2 Process
2663 1. Through a dashboard or other internal process, the discoveeteomines that a given

2664 software product needs to be patched (e.g., for a functional yddatto a discovered
2665 vulnerability).

2666 2. If the tag identifer of the required patch is known, tthiecoverytool searches through the
2667 patch tags recorded in the repositoryriezords indicating that patch tagwith the

2668 designated identifigs installed on an endpoirif.the patch tag identifier is unknown, the
2669 discoverytool will search for patch tags with a name that matthes

2670 <Softwareldentity> @nameof the desired patch.

2671 3. Thediscoverytool then examinethe patch tag to determinghether anyther required
2672 predecessor patchage also present. This is damginspecting embedded.ink> elements
2673 where the@role at t r i b u treguirgsa 0 Pef $H.3.30f thie SWID specification)
2674 then confirming the presence of the target katipere is no such requirement, or if the
2675 required patches astsoconfirmed asnstalled on the endpoint, the endpoint is recorded as
2676 properly patched for this instance.

2677 4. If desired, thaliscoverytool can validate each file expected to be addsatjified,or

2678 removed by the given patch(es). Patch tags created in accordan&8.®@{$eePAT-2,

2679 PAT-3, PAT-4) clearlyspecify the files that armodifiedas a result of applying the patch.
2680 Thediscoverytool enumeratesaeh of the files shown as addedhoodifiedwithin the

2681 <Payload> element of a patch tags indicated byhe @8060 : patchEvent attribute.
2682 The tool comparetherecordedilename and cryptographic hash with the actual files that
2683 reside on the endpoint. Tléscoverytool canalsoconfirm deletion of thoséiles thatthe
2684 patch tag indicates should have been removed.

2685 5. Where a patch is noted as missing,diszoverytool can take advantage of relationships to
2686 other patches, as describedih3.3 of the SWID sgxification to see if that patch has been
2687 superseded by a newer patbhthis case, thdiscoverytool can examine known patch tags

68



2688
2689

2690
2691

2692

2693
2694
2695
2696
2697
2698

2699
2700

2701
2702
2703
2704

2705
2706
2707
2708
2709
2710
2711
2712
2713
2714

2715
2716
2717
2718
2719
2720
2721
2722

2723

2724
2725
2726

NISTIR 8060 (Final Public Draft) Guidelines for the Creation of Interoperable SWID Tags

for any that aré&known to supersede the desired patch, noting that the former patch may no
longer apply.

6. Thesearch restd are provided through thigscoverytoolé dashboard and/or reporting
process.

6.1.2.3 Outcomes

Thediscoverytool user is able to accurately and quicklgntify instancesvhere a required

patch orupdates not installed on a given endpoititpatched files ge also assesséy taking
advantage ofPayload> or<Evidence> elements contained in patch tatiee user is able to
verify patch installationsThe user is able to determine which endpoints meet (or do not meet)
specificpatchrequirements, supporting security situational awareness and patch/vulnerability
management as part of a continuous monitoring solution.

6.1.3 US 3 - Correlating Inventory Data with Vulnerability Data to Identify Vulnerable
Endpoints

The remediation of known viaérabilities through timely patching is considered a vulnerability
management best practi@NID tags improve vulnerabilitnanagemeny providing
comprehensive, compact descripsar installed softwar@and patchesvhich may then be
comparecdand corréatedwith vulnerability information.

Becaus&SWID tags adhere ta consistent and standardized structimey aid automated

correlation of information published by vulnerability information sources 8..ST6s Nat i on;
Vulnerability DatabasdJS-CERT derts as well as vulnerability advisories issued by vendors

and independent security analysisth the inventory information collected by discovery tools.

Many vulnerability bulletins use the CPE specificatioidentify classes of productbat are

affected byavulnerability[CPE23N] [NISTIR 8085]describesa method to form CPE names
automatically from input SWID tags. This capability can be used to translate a software

inventory based on SWID tags to one based on CPE names. Given a vulneralstiiy that

references products using CPE nantigs, translation can then be used to identdyeptially

vulnerable endpoints.

If atag creatouses the appropriattMeta> attributes to specifgdditionaldetailednaming
informationi N a pr o d tag(ceé85.2.4) this infamation becomes readily available to
publishers of vulnerability bulletins. By including appropriate references to those attribute
values, bulletins make it easier for consumers to accurately search-88¢kl inventory data

for affected productg-or example, if the presence or absence of a product vulnerability depends
on software edition information, it is advantageous both for tagoreeto specify theMeta>
@edition attribute, and for publishers of vulnerability bulletins to reference that value
explicitly.

6.1.3.1 Initial Conditions

This usage scenario assumes the existence of an enterprise repository populated with SWID tags
that are created and collected using the process describ&lli(see86.1.1). This includes
application ofguidelinesGEN-1 throughGEN-26.

69



2727

2728
2729
2730
2731
2732
2733
2734
2735

2736
2737
2738
2739

2740
2741
2742
2743
2744
2745
2746

2747
2748
2749
2750
2751

2752
2753

2754
2755
2756

2757
2758

NISTIR 8060 (Final Public Draft)

Guidelines for the Creation of Interoperable SWID Tags

6.1.3.2 Process

1.

Usingproduct advisoriesontaininginformation aboupublicly disclosedoftware

vulnerabilities thediscoverytool searches for endpoints on which the referenced software is
installed.The search criterianay include SWID tag informatiosuch as the informanth

provided in theprimary tag<Softwareldentity> @nameand@version (seePRI-2,

PRI-3, PRI-4, PRI-5), and<Meta> @revision and@edition (seePRI-13).

Additionally, by forming CPE names from SWID tagse€[NISTIR 8083), the discovery

tool can search for endpoints with software referenced by those CPE names included in the
vulnerability bulletins.

If the bulletin references the tag identifier for the relevant tag feoftware product or patch,
the discovery tool will search for that identifi&WID tags adhering to guidelin®fI-1
throughPRI-5 enable thealiscoverytool to automatically and accuratelgreelae inventory
andvulnerabilitydata

If the bulletin onlyreference®ne or mor&knownfilename(s), butdoesnotidentify the

software product itselft will be necessary to search for software products and patches that
include the file(s)GuidelinesPRI-6 throughPRI-12 ensure that filenamia@formationis
captured in thePayload> and/or<Evidence> elementof SWID tagsto support this

type of queryAs a resultthediscoverytool can searcthe<Payload> and/or

<Evidence> portions of recorded tagformation in the repository to look for software and
patchesf interest

For example, to identi f g’thetodmighhsearch forafy t he
tags where thePayload> and/or<Evidence> portions of recorded tags contain

references to theulnerable OpenSSL librarProducts including this library can be

identified and then those products can be searched for to identify vulnerable software
installations.

Where a record exists that matchas ¢uery parameteras described abovine associated
endpoint is flagged as containing vulnerable software.

Where p&h tag information is provided in the bulletin, giscoverytool queries the
repositoryto determine whether the appropriate patch tag has been ingsaktts 2,
86.1.2, including checks for predecessor or superseded patches.

If the endpoint is found to contain vulnerable softwarenot the associated patch(es), the
endpoirt may be flaggeéspotentially in need ofemediatioractivities.

7 More information about the Heartbleed bug isilade from www.heartbleed.com

7C



















































