
ISI/SR-78-13
May 1978

ARPA ORDER NO. 2223

PROTECTION ANALYSIS=

Final Report

Richard Bisbey

Dennis Hollingworth

INFORMATION SCIENCES INSTITUTE

4676 Admiralty Way/ Marina del Rey/California 90291

UNIVERSITY OF SOUTHERN CALIFORNIA (213)822-1511

UNI..LA::>::>II"II:U

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

READ INSTRUCTIONSREPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
3. RECIPIENT'S CATALOG NUMBER1. REPORT NUMBER 	 2. GOVT ACCESSION NO.

ISI/SR-78-13

4. TITLE (and Subtitle) 	 5. TYPE OF REPORT & PERIOD COVERED

Protection Analysis: Final Report Research

6. PERFORMING ORG. REPORT NUMBER

7. AU THOR(s) 	 8. CONTRACT OR GRANT NUMBER(•)

Richard Bisbey II
Dennis Hall ingworth DAHC 15 72 c 0308

10. 	 PROGRAM ELEMENT. PROJECT, TASK
AREA & WORK UNIT NUMBERS

9. PERFORMING ORGANIZATION NAME AND ADDRESS

USC/Information Sciences Institute

4676 Admiralty Way
 ARPA Order #2223

Marina del Rey, CA 90291

11. 	 CONTROLLING OFFICE NAME AND ADDRESS 12. 	 REPORT DATE

May 1978Defense Advanced Research Projects Agency

1400 W i 1 son B 1 vd.
 13. 	 NUMBER OF PAGES

30Arlington. VA 222og
14. 	 MON JTORIN G AGENCY NAME & ADDRESS(If different from Contro/llnll Office) 15. 	 SECURITY CLASS. (olthl• report)

Unclassified
15a. 	 DECL ASSJ FICATION/ DOWNGRADING

SCHEDULE

16. 	 DiSTRIBUTION STATEMENT (of this Report)

This document is approved for pub 1ic release and sale; distribution is
unlimited.

17. 	 DISTRIBUTION STATEMENT (of the abstract entered In Block 20, II different from Report)

18. 	 SUPPLEMENTARY NOTES

19. 	 KEY WORDS (Continue on reverse elde If nece•aary and Identity by block number)

access control, computer security, error analysis, error-driven eva 1 ua t ion,
error types, operating system security, protection evaluation, protection
pol icy, software security

20. 	 ABSTRACT (Continue on reveue •Ide II necee•ary and Identify by block number)

(OVER)

FORM
EDITION OF 1 NOV 65 IS OBSOLETE

S/N 0102·014•6601
DO 	 1 JAN 73 1473 UNCLASSIFIED

UNCLASSIFIED

SECUI'IIITY CLASSII"ICATION 01" THIS PAGI!(lftlen Data •nrered)

20. ABSTRACT

The Protection Analysis project was initiated at ISI by
ARPA IPTO to further understand operating system security
vulnerabilities and, where possible, identify automatable
techniques for detecting such vulnerabilities in existing
system software. The primary goal of the project was to
make protection evaluation both more effective and more
economical by decomposing it into more manageable and
methodical subtasks so as to drastically reduce the
requirement for protection expertise and make it as
independent as possible of the skills and motivation of the
actual individuals involved. The project focused on
near-term solutions to the problem of improving the security
of existing and future operating systems in an attempt to
have some impact on the security of the systems which would
be in use over the next ten years.

A general strategy was identified, referred to as
"pattern-directed protection evaluation" and tailored to the
problem of evaluating existing systems. The approach
provided a basis for categorizing protection errors
according to their security-relevant properties; it was
successfully applied for one such category to the MULTICS
operating system, resulting in the detection of previously
unknown security vulnerabilities.

UNCLASSIFIED

/
I

ISI/SR-78-13
Mayl978

ARPA ORDER NO. 2223

PROTECTION ANALYSIS=

Final Report

Richard Bisbey

Dennis Hollingworth

INFORMATION SCIENCES INSTITUTE

4676 Admiral!y Way/ Marina del Rey/California 90291

(213}822-1511UNIVERSITY OF SOUTHERN CALIFORNIA

THIS RESEARCH IS SUPPORTED BY THE ADVANCED RESEARCH PROJECTS AGENCY UNDER CONTRACT NO. DAHC15 72 C 0308, ARPA ORDER

NO. 2223.

VIEWS AND CONCLUSIONS CONTAINED IN THIS STUDY ARE THE AUTHOR'S AND SHOULD NOT BE INTERPRETED AS REPRESENTING THE

OFFICIAL OPINION OR POLICY OF THE UNIVERSITY OF SOUTHERN CALIFORNIA OR ANY OTHER PERSON OR AGENCY CONNECTED WITH IT.

THIS DOCUMENT APPROVED FOR PUBLIC RELEASE AND SALE: DISTRIBUTION IS U.NLIMITEO.

iii

CONTRNTS

Abstract tJ

1. Project Background and Context 1

2. 	Project Description .'-f

Collection of Raw Error Data 6

Development of Raw Error Patterns 6

Development of Generalized Patterns 7

Feature Extraction 8

Comparison Process lO

3. 	Redirection of Research 12

Error Categorization 1.'1

1\nalysis of Individual Categories J.l

4. Conclusions and Future Resource Directions 16

References 18

Appendix A 19

Appendix 8 21

IJBSTRIJCT

The Protection Analysis project was initiated at lSI by ARPA IPTO to further
understand operating system security vulnerabilities and, where possible, identify
automatable techniques for detecting such vulnerabilities in existing system software. The
primary goal of the project was to make protection evaluation both more effective and
more economical by decomposing it into more manageable and methodical subtasks so as to
drastically reduce the requirement for protection expertise and make it as independent as
possible of the skills and motivation of the actual individuals involved. The project focused
on ncar-term solutions to the problem of improving the security of existing and future
operating systems in an attempt to have some impact on the security of the systems which
would be in use over the next ten years.

A general strategy was identified, referred to as "pattern-directed protection
evaluation" and tailored to the problem of evaluating existing systems. The approach
provided a basis for categorizing protection errors according to their security-relevant
properties; it was successfully applied for one such category to the MULTICS operating
syste·m, resulting in the detection of previously unknown security vulnerabilities.

I. PROJECT JJIJCKGROUND IJND CONTEXT

WhNl general purpose resource-sharing operating systems became available,
system customers (both governmental agencies and private firms) naturally wished to
exploit fully the economics such systems offered in processing sensitive together with
nonsensitive information. Responding to customers' pressure, the systems'
manufacturers at first claimed that the hardware and software mechanisms supporting
resource sharinr, would also (with perhaps minor alterations) provide sufficient
protection and isolation to permit multiprogramming of sensitive and nonsensitive
programs and data. A skeptical technical community challenged this claim and proved it
false. Relatively cursory inspection of selected operating systems by "tiger teams"
(individuals brought together specifically to attempt to penetrate a target operating
system) established that the protection offered fell far short of that required if
multiprogramming of sensitive and nonsensitive programs and information were to be
permitted (And+71, Bran73]. The protection mechanisms functioned adequately when
users exercised prescribed system functions in approximately the prescribed way, but
could not resist the system penetrator who looked for unusual or extraordinary means
to avoid access checking.

Lr~rkine some of today's insight and knowledge, various manufacturers attempted
to retrofit their existing operating systems for security by simply correcting the
individual implementation errors and obvious design oversights that contributed to their
system's security deficiencies. Critical analysis of these systems, however, established
that piecemeal efforts to secure an existing general-purpose operating system were
unlikely to succeed [Abb+76, Att+76, BeiW74, HoiG74, Mcph74].

Out of this early floundering came an appreciation that the security problem was
much more difficult to deal with than expected. Furthermore, a number of disturbing
issues surfaced:

1. 	 The question of what constituted an appropriate degree of security and how
this is dr>lermined for a computer system had not been adequately addressed.
Indeed, the notion of security was itself difficult to formalize in the context of
computer systems, i.e., it was a research issue in its own right. Intuitive
statements such as "the system should not allow an unauthorized user to
access information he had no right to access" somehow had to be translated
into specific as~,ertions about specific operating system objects.

2. 	 No mdhodology existed for insuring that a given system's design was
complete with respect to a particular security policy which might be chosen,
i.e., that there were not substantial or significant areas where the desired
protection policy could simply be circumvented or ignored.

3. 	 Existing operating systems were poorly structured when it came to security
and integrity, usually having grown from early releases to patched,
error-ridden monoliths of interconnected code and tables.

PROJECT BACKGROUND 	 2

4. 	 Efforts to correct known errors were as likely as not to introduce an equal
number of new errors, merely manifested in other ways. This became
painfully evident during the system penetration activities conducted In
conjunction with security retrofit efforts.

5. 	 Program verification techniques would ultimately have to be applied to insure
that operating system code functioned correctly and according to
specification. However, existing techniques could handle only relatively small
pieces of code, limited data types, and relatively simple data structures and
data accessing schemes--nothing within an order of magnitude of the size and
complexity of an operating system as then structured and implemented.

While these and other issues were troublesome enough with regard to future
systems, they were particularly troublesome in light of the large inventory of systems
in the DoD and private sector. It had been suggested that an existing operating system
would have to be restructured if any substantial improvement in the security afforded
was to be effected or if program verification techniques were to be successfully
applied. However, restructuring of an existing system (in many cases tantamount to
redesign of the system) meant committing substantial resources and rewriting a
considerable amount of code. It was also apparent that this could be considered only
for a few special systems such as MULTICS and VM/370, which were already
well-structured with the access control mechanisms at the innermost level of control.

It became obvious that additional insight into the design and implementation
deficiencies responsible for operating system security vulnerabilities was necessary. A
much more comprehensive view was required of the number and form taken by such
vulnerabilities. The system penetration work performed in the past did little to provide
any such collective insight, however; the expertise resulting from such studies consisted
of the individual insights of a few individuals rather than communicable ideas and
knowledge.

3

2. PROH:C1' DI~SCRTPTION liND JJSPTRIJTIONS

In September of 1973, the Protection Analysis project was initiated at lSI by
ARPA IPTO to enhance our understanding of operating system vulnerabilities, expand the
rather sparse knowledge base on this subject, and, if possible, identify automatable
techniques for dc•tcxtinc vulnerabilities in existing system software. Near-term
solutions to the problem of improving the security of existing and future systems were
important if operating systems security research was to have much impact on the
systems which would be in use over the next ten years. It was hoped that the effort
would yield a more formalized knowledge base on operating system security, making it
possible to decouple security and operating system expertise to some degree, i.e., to
allow individuals h<winp, limited expertise in operating system security to effectively
detect system vulnerabilities.

l he approach adopted was a significant departure from the protection evaluation
projects going on elsewhere at that time, such as those at Project RISOS and at System
Development Corporation. These efforts to systematize penetration activities dealt
primarily with the oq:,anization of the project staff itself rather than the discipline
applied (Weis 73]. They addressed the organizational and training aspects of teams of
individuals tasked to analyze operating systems for security vulnerabilities--individuals
who themselves would make good "penetrators" of a given target system,. who had not
only an intimate knowledge of that system but also a good understanding of and feel for
protection error possibilities.

It was evident that the success of such groups would depend heavily on individual
motivation as well a~. skill in finding protection errors--an apparent shortcoming when it
came to makinr, definitive statements about the validity of the evaluation effort in which
such an approach was adopted. The primary goal of the lSI project was to make
protection evaluation both more effective and more economical by decomposing it into
more manaeeable and methodical subtasks so as to drastically reduce the requirement
for protection expertise and make it as independent as possible of the skills and
motivation of the actual individuals involved.

A general strategy was identified which promised to meet these objectives. It
included the followinr, five steps:

1. 	 Collection of "raw" error descriptions.

2. 	 Rerepresentation of raw error descriptions in a more formalized notation
(producing "raw error patterns").

3. 	 rlimination of superfluous features and abstraction of specific system
elements into system-independent elements to develop generalized error
patterns.

4. 	 "Normalization" of the target system by extracting the information relevant to
the evaluation. and representing it in the form required by a "comparison"
procedure.

PROJECT DESCRIPTION 	 4

5. 	 Execution of the comparison procedure.

The specific approach adopted--subsequently referred to as "pattern-directed
protection evaluation" [Car+75]--was tailored to the problem of evaluating existing
systems. It differed from the more general approach principally in that specific
features of interest were "extracted" from the operating system source code rather
than the entire operating system being rerepresented in a "normalized" format
(Figure 1). Thus, steps 4 and 5 changed as follows:

4. "Feature extraction": instantiation of generalized features and searches for
instances of these features in the target operating system, and the
description of their relevant contexts.

5. 	 Comparison of combinations of feature instances and their contexts with the
features and relations expressed in the appropriate error patterns.

A major expectation was that adopting this approach would make it easier to
identify previously undiagnosed errors in given operating systems. As superfluous

Development 	 Production

Error
Analysis

Feature
Extraction

Pattern
Matching

Figure 1. Error-driven evaluation process

PROJECT DESCRIPTION 5

features and qualifying details were e-liminated and specific system features replaced by
more generic or abstract features, a more generalized error representation would
evolve. The process could conceivably result in a hierarchy of error patterns, with the
most general and abstractly defined patterns at the upper levels and the most
specialized and concrete ones at the lower levels. Subsequent instantiation of the
generalized patterns by replacing the more general features with their more specific
counterparts in particular classes of operating systems or particular functional areas
might be expected to reveal previously undiscovered operating system errors
(Figure 2).

Major

.,~~·
0

Build categories
from error analysis

generalized patterns

1\ Lattice of error patterns

Error search procedures
New errors identified

• • • raw error patterns •••

1\ I\
• • • errors • • • errors • • • errors •••

Figure 2

A second expectation was that this approach might result in an empirically sound
taxonomy of operating system vulnerabilities and their causes, which would be
particularly useful for system designers and implementers. The derivation of raw
patterns, their generalization, and the instantiation of generalized patterns toward other
systems and functional areas would all add new elements to the lattice of patterns
formed by the relation "generalization of" and its converse, "instance of," with the more
abstract patterns at the top and the more concrete ones at the bottom. As this
structure was enriched with additional patterns, major substructures might emerge, at
least below some level of abstractness. If, as was also expected, the search techniques
determined to be appropriate for the patterns of each such substructure were also
similar, then a reasonable basis would be provided to define major "error types."

The approach was tested with regard to a particular error type frequently found
in operating systems, and it proved successful at uncovering previously undiagnosed
errors in the MULTICS operating system [Bis+75, Bis+76]. The specific details of the
approach and the results and problems which ensued are discussed in the sections
which follow.

PROJECT DESCRIPTION 6

COU,I:C1'/0N OF RIJW ERROR DIJTIJ

Prior to this project, little data on known protection error vulnerabilities had
actually been assembled as such in one place. Thus, the first phase of the project
involved developing a sufficiently rich collection of data on operating system errors
from as many operating systems as possible to provide a good sampling of the types of
errors which existed.

Ultimately more than 100 errors that could be employed directly to penetrate
existing operating systems were recorded in an error data base; numerous minor
variations on these errors were also possible. These errors came from six systems:
TENfX, MULTICS, EXEC-8, GCOS, UNIX, and OS/360.

The project staff itself was familiar in varying degrees with five of the six
operating systems. They had been directly involved in penetration work on only three
of these operating systems, however, and then in projects which examined the systems
at widely differing levels of detail. Consequently, the project had to rely to some
extent upon information it could gather from outside sources, namely other individuals
involved in operating system penetration studies.

Unfortunately, it was difficult to acquire useful data on er.rors tor systems which
had not been directly reviewed by the staff. Perhaps the major difficulty was the
unavailability of any overall information about operating system vulnerabilities,
principally because most installations were reluctant to air weaknesses that might
subsequently be exploited by individuals inside as well as outside their organizations.
Another significant difficulty also arose whose principal impact was felt In the
development of raw error patterns; it is discussed in the following section.

IJI:VIU.OPM I: NT 01<' RIJW I.:RROR PIJTTERNS

Given a raw error description, the next step was to formulate an appropriate raw
error pattern, a redescription of the error in terms specific to its source operating
system but in the form of predicates that express "conditions," properties of or
relations among distinct objects or features of that system. During this process those
aspects of the initial description superfluous to the actual error itself were eliminated.
The "condition set" of a raw pattern was a minimal set of conditions in the sense that if
any were removed the raw pattern would no longer represent a potential error.

However, from a particular raw error description, it was often extremely difficult
to write down a pattern that satisfactorily captured the essence of the error. First, of
course, the error description had to be thoroughly comprehended, e.g., in terms of how
the error could be exploited by a knowledgeable penetrator. This required substantial
familiarity with and sufficient information on the operating system context in which it
occurred. Unfortunately, even where such information was available, the errors were
sometimes described in a rather incomplete fashion or in a fashion which presumed
substantial knowledge about specific low-level details of the system implementation.
This was further complicated by the lack of a common vocabulary for describing both
functional elements of the system as well as the particulars of a given security
deficiency, requiring some conjecture on the part of the staff as to the exact
circumstances of the problem.

PROJECT DESCRIPTION 	 7

Despite these complications, the staff generally was fairly successful in
ascertaining what appeared to be the significant characteristics of the error from the
available documentation. Even with that, however, it was not always clear precisely
what policy was being violated and thus what conditions should constitute the pattern.
In some cases, in which equally valid policies could be postulated, the same raw error
appeared to lead to more than one pattern.

This process did not appear to be inordinately difficult in the case of the first
pattern processed, "Inconsistency of o. Single Do.to. Value over Time." The relevant
characteristics of such errors were readily apparent, as manifested in the various
examples in the error data base. Thus, the textual description of a given instance of
the error type was successfully rerepresented in a raw pattern for which superfluous
details had been eliminated. This is illustrated by the following raw error description
and derived raw error pattern taken from an early version of MULTICS [Bis+75].

Raw 	Error Description: STOP-PROCESS-ERROR

STOP-PROCESS is a supervisor procedure for halting processes. The user can call the
procedure with the process-id of the process to be stopped. The ·user entry to this
procedure checks that the 10 is that of the caller, then calls the traffic controller
termination routine. The user can modify the value of the process-id between the time
it is checked and the time it is passed to the traffic controller.

Raw 	Error Pattern:

1. 	 Procedure "STOP-PROCESS" is invoked by a user process to halt a specified
process as indicated by a user-supplied parameter.

2. 	 The "STOP-PROCESS" interface checks that the user-supplied process-id
parameter is valid.

3. 	 The traffic-controller termination routine uses the process-id to identify the
appropriate process.

4. 	 The user process may modify the checked parameter between the times of (2)
ancl (3).

As an error search criterion, a raw pattern is directly applicable only to operating
systems that share the policy violated by that error and in which the features of that
pattern are known by the same names. Even then, it may apply only to a particular
functional area such as input/output control, and miss similar errors in other areas such
as interprocess communication. To broaden the applicability of a pattern, its expression
must be generalized by substituting more generic names or more abstract features for
more specific ones or by deleting qualifying details without affecting the essence of the
conditions themselves. The same concept, such as the call on a privileged system
procedure by an unprivileged user procedure, may be known by different names (such
as "MME," "JSYS," and "SVC") in different systems. Classes of similar objects, such as
bytes or blocks of physical storage, pages, segments, variables, structured variables,

PROJECT DESCRIPTION 8

and files (to give an extreme example), can be regarded as instances of a more abstrtct
object, in this case the "abstract cell," something that has a name and holds information
(its value). The benefit of generalizing is that the generalized pattern applies to •
correspondingly wider class of errors in a wider class of systems.

Generalization of the raw pattern for the inconsistency error examples yielded
the following error p<1ttern and corresponding security policy statement:

Generalized Error Pattern:

8:M(X) and for some operation L occurring before M,
[for operation L which docs not modify Value(X),
V<1lue(X) before L NOT "' Value(X) before M], and
Valuf'(X) after L NOT = Value(X) before M.

Informally stated, process 8 performs operation M on variable X and the value of X at
the time operation M is performed is not equal to the value of X either before or tfter
some operation L which occurs before M. ·

Corresponding Operating System Security Policy Statement:

(8,M,X) "'> for some operation L occurring before M, either
[for operation L which does not modify Value(X),
V<1lue(X) before L "'Value(X) before M], or
Value(X) after L = Value(X) before M.

Intuitively stated, process 8 (which presumably performs some critical function) can
perform operation M on variable X only if the value of X at the time operation M is
performed is equal to the value of X either before or after some operation L which
occurs before M.

Ddccting errors in a set of target information implies some kind of comparison
process between the target and the correctness or error criteria. The comparison
need not be direct; various transformations may be applied, as practical, to either the
criteria or the target to bring them into a suitable form, as long as essential properties
are preserved. In the case of pattern-directed protection evaluation, the target is a set
of operating system source programs and specifications; the criteria are the error
patterns; and the comparison process is essentially one of "pattern recognition," In the
sense of an ability to detect instances of errors embedded or camouflaged in a system.

Conceptually, the ideal tool is a general-purpose "protection evaluator," a
computer program that not only could be applied to a wide class of operating systems
but could also reliably detect a wide class of errors. The inputs to such a program
would be representations of the patterns for the error types covered, together with a
representation of the target operating system. The program would compare the target
representation with the given patterns by searching it for all combinations of features
related in one of the ways specified in some pattern, and would report every such
combination found. In this concept, protection evaluation would seem to consist of two
subtasks:

PROJECT DESCRIPTION 	 9

1. 	 "Normalizing" the target system by extracting the information· relevant to the
evaluation and representing it in the form required by a comparison
procedure.

2. 	 Executing the comparison procedure.

Such an ideal is clearly out of reach, however. There exists no model into which
the protection-relevant features of an existing system can be mapped and in which they
can be related for comparison with given patterns, general enough to apply to wide
classes of erron:; and systems. It is even difficult to determine with precision which
elements of existing systems are relevant to protection and which are not.

Nevertheless, the goal of developing pattern-directed techniques and tools to
systematize and automate protection evaluation might be achieved with a somewhat
altered approach. This becomes evident when one investigates what the two major
requirements for protection evaluation techniques imply about their form, application,
and development.

Tho first requirement, that of general-purposeness with respect to operating
systems, carries an obvious implication: there must exist some generalized set of
terminology--a "comparison language"--in which the techniques are specified and in
which the error patterns are expressed. To apply these techniques to a given system,
it is necessary the1t a correspondence be established between the objects and
terminology of the comparison language, i.e., between the features of the given patterns
and their instantie1lions in the target system. Either the features of the patterns must
be instantiated to the concepts, objects, and terminology of the target system or the
target system must be represented in terms of the comparison language, or an
intermediate comparison framework must be established and transformations performed
in both directions. If no error possibilities are to be overlooked, then all the instances
of a given pattern feature in the target system must be identified.

If one uses the term "features" to refer to objects that have concrete and
typically localized representations in the target system description (e.g., variables,
procedure calls, critical parameters), then identifying the relevant features in the target
system is only part of the problem. The other part is to determine whether any of the
relations among these features are those indicated by the conditions of an error
pattern. The requirement that evaluators need not have a talent for recognizing
protection errors and that difficult pattern-recognition processes must not be involved,
makes it essential that the search for an error be decomposed. The search through the
target system code (or some representation of it) for a single dispersed collection of
instances of features in some given relation must be replaced. Instead we must require
only independent searches for individual instances of features in the target system.
This implies, of course, that the output of these searches must include simple
specifications of the contexts in which the feature instances were found. The needed
feature context is determined from the relations expressed in the patterns and is used
to determine whether the features found actually satisfy these relations, Thus, the
single integrated search step is replaced by a two--step procedure, the first of which is
more amenable to automation, while the second is probably best performed manually.
While the analysis of the relations among features is not avoided, it is deferred to a
more convenient point in the process where the feature-set to be considered is greatly
reduced in size.

I
..

PROJECT DESCRIPTION 	 10

In the case of the inconsistency error, the feature extraction process was applied
to a particular instantiation of the error type involving the consistency of user-supplied
parameters in the MLJLTICS operating system. To find instances of the error in code, 1

pattern was formed using the Error Statement above, which was then instantiated for
identifying inconsistent parameter usage. The Error Statement requires the existence
of two operations, both of which refer to a common variable X. The first operation, l,
either fetches the value of the variable or generates a new value. The second
operation, M, fetches the value of the variable. Other information contained In the
Error Statement includes the fact that L occurs before M and that M performs some
critical function. These statements give rise to the following pattern elements:

1. 	 An operation L which either fetches or stores into a cell X.

2. 	 An operation M which fetches cell X.

3. 	 Operation M is critical.

4. 	 Operation L occurs before operation M.

For this particular error, X is instantiated to a parameter, and thus the following
additional pattern element is derived:

5. 	 A procedure B which is interdomain-callable by user procedures and which
accepts a parameter X.

This pattern ultimately resulted in the following search procedure intended to
recognize, for each parameter, executable sequences of store or fetch operations
followed by a fetch operation:

1. 	 Filter out everything except procedures which are interdomain-callable by
users.

2. 	 Of these, identify those with parameters.

3. 	 For each parameter, identify and output all instructions or statements which
involve store or fetch operations on the parameter.

4. 	 Identify and output all instructions or statements which contain flow of control
operators.

This procedure was subsequently automated and applied to MULTICS with
significant success, resulting in th~ detection of a number of candidate errors [Bis+76).

The search output constitutes the input to a separate, methodical comparison
process in which the properties of the feature instances found are examined to
determine whether actual error conditions exist. Obviously, the comparison is still not
direct, since a translation must be made between the generalized relations expressed In
the patterns and the descriptions of feature instances provided as input. Again, In

PROJECT DESCRIPTION 11

general the choice must be made between expressing the search results in the
comparison language and instantiating the reference properties. The former is required
for a system- independent comparison algorithm.

In the case of the inconsistency error, that comparison was handled manually.
The feature matches were examined manually to determine if the second operation was
in fad critical. Forty-seven procedures were examined in the MULTICS system. Of
these, seven were observed to have one or more errors; five other procedures had
matches for which "criticality" of the second fetch could not be determined due to lack
of system documentation.

12

.1. RIWIRECTION OF RESEIJRCI/

In September 1975 the research direction was significantly modified to conform to
revised schedule and resource considerations. The major problem with the
pattern-directed approach (detailed analysis and relating of error characteristic from
the bottom-up) was that the process was both time-consuming and extremely tedious; it
consumed a substantial amount of the project's resources while yielding few
demonstrable results. The sponsor questioned whether or not the protection analysis
process was bounded--i.e., whether the number of error categories was both finite 1nd
small enough to warrant the expenditure of the resources required. The project was
asked to postulate the highest level error categories directly from the existing error
data base--to categorize the entries in the error data base in some appropriate fashion
based upon the analysis performed to date. We were to subsequently work from the
postulated error categories to develop automatable search strategies rather than
pursue the pattern-directed approach of gradually building up a set of empirically based
categories. It was thought that we might short-circuit some of the more time-consuming
elements of the p<~ttern-directed approach, directly identifying an appropriate set of
error types without having to devote much effort to analyzing individual errors. The
process was expected to be iterative, possibly leading to a set of nonoverlapping error
categories which could be precisely defined and which covered the known protection
vulnerabilities in existing operating systems and ultimately to viable search techniques
for identifying instances of the error categories in target operating systems. Thus, the
earlier approach as characterized by Figure 2 was supplanted by that represented In
Figure 3 below.

Postulate categories
[/ Error search patterns to cover all errors

Refined error categories

______>_______ -- ...

, ' ' , ~

~ , ' \ I \
1 errors •••lerrors\ ••• errors 1•• , errors .J.
' ..._ ' ~~ ~ ~ ~ \ ~ I---.,---- '­

Figure 3

Various difficulties were encountered along the way--unexpected problems which
further altered our approach and perspective as to the· most appropriate strategy for
achieving the original goals. They are mentioned below in the discussion of the specific
steps in the revised process.

REDIRECTION OF RESEARCH 13

J<:RROR CIJTJ<:COR/7./JTION

As a consequence of the error-pattern activities the errors collected in the error
data-base had already been redescribed in a self-consistent fashion. Thus an attempt
was made to directly identify a set of categories which covered the recorded set of
protection errors. These categories were to serve the purpose of grouping like error
types for in-depth study and analysis. The expectation was that the categories would
be refined as the analysis process proceeded until a final set of highly representative,
nonintersecting categories was identified.

Ten categories were identified which seemed to cover all the errors which were
documented and which did not exclude any known error types. Unfortunately, the ten
categories seemed to manifest themselves at differing levels of abstraction; thus, it was
assumed that this would not be the final set of categories, that some would be absorbed
by more abstract categories or possibly be a basis for new categories when additionESI
analysis had been completed. The categories are briefly described in Appendix A.

IJNIJI.YSIS OF INIJIVIDUIJI. CIJTECORIRS

After an initial set of categories had been identified, attention was directed
toward analyzing individual categories to gain additional understanding into the
associated operating system security vulnerabilities, allow refinement of the categories,
and accommodate the identification of search techniques for given error types. The
categories which first received attention were those which appeared to be the most
tractable and manifested themselves at the less abstract levels of system object
representation. The error type "Inconsistency of a Single Data Value over Time,"
pursued under the pattern-directed work, had been particularly tractable and facilitated
identification and implementation of specific tools for identifying errors of this type in
existing operating systems~ The results of our efforts on that error type suggested
that a quite comprehensive semi-automated search could be conducted for such errors
in a given operating system. It was hoped that the same would hold true for other
error types.

Analysis of the second error category led to a somewhat different result, however. In
studying the error category "Validation of Operands" it became apparent that the
objects under consideration were much less tangible than those dealt with in the
"Inconsistency..." document. The definition of an operator or operand depended
primarily on the level of abstraction on which the operating system was being
represented, and the necessary validation was generally at a comparable level [Carl76].

A general strategy was devised for reviewing an operating system for errors of
this type, and the requisite tools were identified. However, the analysis of this error
type brought into sharp focus the requirement for research in the area of program
verification, since the objectives of program verification and the requisite effort in
diagnosing errors of this type were quite similar. With this error type it became
apparent that the formalization and abstractions that were part and parcel of verifying
an operating system were also important in identifying points where validation of
critical conditions had not taken place or had been implemented improperly.
Determination and cmalysis of the cumulative effect of conditions and results along
relevant control paths as is addressed in the area of program verification is also
required in identifying points where incomplete validation has occurred.

REDIRECTION OF RESEARCH 14

Th(' third error type analyzed was that of residuals, i.e.,- information left over In
an object when the object is deallocated from one process and allocated to another.
Residuals represented the first error type which had a particularly concrete
manifestation in terms of operating system objects (data left undestroyed In 1

deallocated cell) as well as being a highly intuitive error type. However, it was evident
from the outset that the causes of residual errors might well result from other types of
errors and that this catecory might eventually be absorbed by one or more categories
handled later on [Ho1B76). A strategy for identifying sources of residual errors
amenable to partial automation was identified but once again it became apparent that
successful identification of the causes of residual errors in operating systems would
require sophisticated tools involving symbolic program execution and control flow
analysis as well as possibly application of program verification techniques in order to
determine the paths and condition sets that might result in bypassing of code intended
to clear data cells on deallocation.

The fourth and final error type undertaken was that of serialization. Treatment
of this error type launched the project into consideration of the fundamental notions of
program structure, operator synchronization, principles of programming practice, etc.,
and it became quite difficult to identify a viable search strategy. As a side effect, it
became immediately evident that the error type "Interrupted Atomic Operations" was 1

special manifestation of this error category and should be treated in the same context.

A major consequence of work on the aforementioned error types was that It
became apparent that the original ten error categories might be reformulated in a more
meaningful way in terms of the following four global error categories:

1. Domain Errors

2. Validation Errors

3. Naming Errors

4. Seriali7ation Errors

The remainder of the ten error types (with the exception of the operator
selection errors) presented earlier seem either to fall into or split across the four types
shown in Table 1.

Of these four categories, two (serialization and validation) were addressed
explicitly as a result of the work on the ten originally hypothesized error types; the
other two (naminr. and domain errors) were portially covered through the analysis of
one of the remaining error types (allocation/deallocation residual errors). However, the
bulk of the examples associated with the latter two categories have not been addressed
at any greater detail than was required to group them into their respective categories.
Thus, while we believe that the four general categories and their respective
subcategories identified represent a useful and representative grouping of example
errors and a basis for more directed analysis, it is possible that further study and

. analysis would result in an even more insightful error classification set.

Appendix 8 summarizes the four documents produced by the project which
address the aforementioned error types.

REDIRECTION OF RESEARCH 15

TABLE 1

Naming Rrror~ Validation Errors

Access
Residual
Errors

Queue
Management/Boundary
Errors

Originally
Catalogued
Naming
Errors

Originally
Catalogued
Validation
Errors

Srrialization /<:rrors Domain Errors

Multiple
Reference
Errors

Exposed
Representation
Errors

Interrupted
Atomic
Operator
Errors

Originally
Catalogued
Serialization
Errors

Attribute
Residual
Errors

Composition
Residual
Errors

Originally
Catalogued
Domain
Errors

16

4. C:ONCUJSIONS liND FU1'UR/I; R/I:S/1:/JRCII DIRECTIONS

In general, the technical community has continually underestimated the difficulty
of th~ security problem; we feel that the PA effort was no exception. It has proved
surprisingly difficult to diagnose protection error vulnerabilities, much less design
techniques for detecting them. However, while the PA project is terminating at lSI we
feel that work might be profitably continued in the original area of pattern-directed
protection evaluation despite the inherent difficulties. This approach proved quite
successful for the c<1se in which it was taken to completion and we feel that it should
prove equally successful in others. Progress occurs at its own rate, however; research
of this type is p<linfully slow. Much thrashing about and some false starts must be
allowed for if re<1l progress is to be made in this difficult research area; the desire to
produce useful results quickly can be counterproductive to the total effort.

The PA project has had its principal impact in extending the knowledge base and
general understanding of operating system protection vulnerabilities, relating apparently
unrelated example errors in terms of those common characteristics which resul.t In 1

security vulnerability. In addition, it has identified some general procedures which will
be valuable in detecting future security system vulnerabilities. Finally, the PA project
has, along with other efforts, made the user community increasingly aware of the
amount of effort and the extensive cost involved in producing a system which has even
a remote chance of providing a reasonable degree of security in an open environment.
Unfortunately, it h<~s also become apparent that the commercial sector is unwilling to
bear this cost at the present time - that there is no apparent commercial market for
systems with the development costs, reduced performance and usage and environmental
constraints that must. be accepted if secure processing is to take place. Consequently,
the procedure-s developed by this project will probably be of little benefit to the
commercial sector and of only marginal benefit to the military sector at this time. They
will find application only when we decide that the value of data security and personal
privacy are greater than the price we must pay for secure data processing.

The analysis of identified error types was particularly useful in identifying some
appropriate research and development activities in the area of data security,
particularly with respect to the types of tools required if protection evaluation Is to
become automatable. Tools of the sort described in the "Data Dependency AnaLy1&1"
document will be needed in much of the evaluation activity, but might be constructed so
as to be generalizable across systems and programming languages.

During the research effort one thing that became evident was the role of program
verification techniques in detecting operating system security vulnerabilities. It Is hard
to see how truly definitive statements about the security afforded by an operetlna
system can ever be made until PV techniques have been applied. However, certain
unsettled issues about the appropriate application of PV techniques to O.S. security
analysis sue;gest that research in protection evaluation might be profitably continued In
parallel with research in PV, principally to insure that PV is applied at appropriate
levels of operating system representation, that mapping between levels is handled
properly, and that the operating system is represented in sufficient detail to Insure that
security vulnerabilities do not go undetected.

CONCLUSIONS 17

As a final footnote to this research effort we offer the following comment for
those who are optimistic about near-term improvement of the data security problem.
Our insight into and awareness of security vulnerabilities has tended to vastly exceed
our progress in detecting and correcting them. There are still difficult research
problems to be attacked in the area of PE in particular and data security research in
general. In the course of addressing these research problems there will undoubtedly
be much floundering and some abortive starts. Progress can be expected to be painful
and slow in final disposition of the security problem, particularly since such work seems
to involve delving into the basic premises of programming theory and practice.

18

REFRRENCJ<;s

Abb+76 	Abbott, R. P. et al., Security Analysis and Enhancements of Computer
Operating Systems, National Bureau of Standards Institute for Computer
Sciences and Technology, NBSIR 76-1041, April 1976.

And+71 	 Anderson, J. P., R. L. Bisbey, D. Hollingworth, and K. W. Uncapher, Computer
Security Experiment (U)., The Rand Corporation, WN-7275-ARPA, March 1971
(Secret).

Att+76 	 Attanasio, C. R., P. W. Markstein, and R. J Phillips,"Penetrating an Operating
System: A Study of VM/370 Integrity," IBM Systems JournaL. 15, January
1976, pp. 102-116

Be1W74 	 Belady, L. A., and C. Weissman, "Experiments with Secure Resource Sharing
for Virtual Machines," Proceedings of the International Workshop on Protection
in Operating Systems, August 1974, pp. 27-33.

Bis+75 	 Bisbey, Richard, II, G. Popek, and J. Carlstedt, Protection Errors in Opero.ting
Systems: Inconsistency of a Single Data Value Over Time, Information Sciences
Institute, ISI/SR-75-4, December 1975.

Bis+76 	 Bisbey, Richard, II et al., Data Dependency Analysis, Information Sciences
Institute, ISI/RR-76-45, February 1976.

Bran73 	 Branstad, D., "Privacy and Protection in Operating Systems," Computer,
January 1973.

Car+75 	 Carlstedt, J. et al., Pattern Directed Protection Evaluation, Information
Sciences Institute, ISI/RR-75-31, June 1975.

Carl76 	 Carlstedt, J., Protection Errors in Operating Systems: VaUdo.tion of Critico.L
Conditions, Information Sciences Institute, ISI/SR-76-5 , May 1976.

Car178a 	Carlstedt, J., Protection Errors in Operating Systems: A Selected Annoto.tecl
Bibliography and Index to Terminology, Information Sciences Institute,
ISI/SR-78·-1 0, January 1978.

Car178b Carlstedt, J., Protection Errors in Operating Systems: SeriaUzation, Information
Sciences Institute, ISI/SR-78-9, April 1978.

Hol876 	 Hollingworth, D. and R. Bisbey II, Protection Errors in Operating Systems:
Allocation/Deallocation Residuals, Information Sciences Institute, ISI/SR-76-7,
June 1976.

HoiG74 	 Hollinr,worth, D. and S. Glasman, WWMCCS/GCOS III: Security Analysis of
Master Mode Entry Processing, The Rand Corporation, WN(L)-8749-DCA, July
1974.

Mcph74 McPhee, W. S., "Operating System Integrity in OS/VS2," IBM Systems Journo.L.
13, 1974, pp. 230-252.

Wcis73 	 Weissman, C., System Security Analysis/Certification Methodology o.nd Results,
System Development Corporation, SP-3728, October 1973.

19

APPENDIX A

I. Corui.•ttmcy of data otJt!r time

Operating systems continuously make protection-related decisions based on data
values contained within the system data base as well as on values which have been '
submitted to and validated by the system.

In order for a correct protection decision to be made (in the absence of other
types of protection errors), the data must be in a consistent state, and remain in a
specific relationship with other data items during the interval in which the protection
decision is made and the corresponding action taken.

2. Validation of opf'randR

Within an operating system, numerous operators are responsible for maintaining
the system's data base and for changing the protection state of processes or objects
known to the system. Many of these operators are critical in the sense that if invalid
or unconstrained data are presented to them, a protection error results.

A gcner ally accepted error type is that of the "residual," i.e., information which is
"left over" in an object when the object is deallocated from one process and allocated
to another. Several types of residual errors exist, including the following:

1. 	 Access residuals: Incomplete revocation or deallocation of the access
capabilities to the object or cell.

?. 	 Compo!".il ion residuals: Incomplete destruction of the cell's context with other
cell~, or objects.

3. 	 Oat a residuals: Incomplete destruction of old values within the cell.

-f.. Namintr

Name~ are used within operating systems to distinguish objects from one another.
There are many ways in which name binding errors can lead to protection errors. For
example, often tho naming scheme does not have enough resolution (or does not use
that resolution) to distinguish properly between named objects. This results in those
errors typified by a user creating an ambiguity by naming objects with the same name
as a previously named (or about to be named) object with the system, as a result,
referencing the wrong object.

.'i. IJomain

A domain is an authority specification over an object or set of objects (usually
thought of in terms of an address space). Enforcement of domains is typically limited to
the resolution of the hardware protection mechanism provided by the computer. Many

http:Compo!".il

APPENDIX A 20

of the errors in operating systems are the direct result of one of two types of
domain-related errors:

1. Information associated with the wrong domain.

2. Incorrect enforcement at domain crossing.

6. Sr,rinlizatiorr

Within any operating system, there are resources to which the operating system
mu5t not only control access, but also prevent concurrent use or otherwise enforce
orderly use. This problem, known as "serialization," is of particular importance In
multiprogramming systems where serialization errors often result in protection errors.

7. /nrr,rruptr,d /Jtomir. Opflratiorrs

Several protection errors have appeared in which the enforcement of a
protection policy wa·; based on the assumed uninterruptability of an operation. In each
of the cases, the operation was in fact interruptable, resulting in a protection error.

To each user, an operating system presents an abstract machine consisting of the
hardware user indruction set plus the pseudo-instructions provided through the
supervisor call/invocation mechanism. The pseudo-instructions, in general, allow the
user to manipulate abstract objects for which representations and operations are not
provided in the basic hardware instruction set. Inadvertent exposure by the system of
the representation of the abstract object, the primitive instructions which implement the
pseudo-instructions or the data structures involved in the manipulation of the abstract
object can sometimes result in protected information being made accessible to the user,
thereby resulting in a protection error.

This error type broadly includes those errors characterized by improper or
incomplete handling of boundary conditions in manipulating data structures such as
system queues or tables. The consequence is generally a system crash or lockup
resulting in gross denial of service. We distinguish this from legitimate denial of service
conditions when the system is merely overloaded, but still functioning according to the
scheduling algorithm design specifications.

10. Critical Opflratnr Sfllflctiorr Rrrors

This error type includes those errors in which the implementer invoked the wrong
function, statement, or instruction resulting in the program performing the wrong
function. In a sense, this is a catch-all category, since every programming error un
ultimately be so classified.

21

IJPPRNDIX R

The purpose of this appendix is to provide a context for reading the respective
error detection papers.

lncoruistmacy of a sinalll data valul!

A common error in contemporary operating systems is the assumed consistency
of operands between multiple uses. If an operand can be modified between two uses
by a program and the second use relies on an attribute referenced in or set by the first
usage, an error results. Multiple usage of a single operand often occurs during
validation/use sequences where an operand is first validated and subsequently used in a
computation. Numerous variations exist that make locating instances of the error
difficult. For example, the operand can be referred to by different names, or the uses
may be contained in textually disjoint routines.

Two patterns for finding inconsistency errors are as follows:

1a. Find any sequence of REFERENCE... REFERENCE to a common operand,
or
1b. Find any sequence of STORE... REFERENCE to a common operand,

whenever

2. 	 the operand can be modified between the pair of operators.

/Jl!tl!ction of lncoruhtmacy Rrrors. Outlined below is a set of search strategies for
finding consistency errors based on detecting possible instances of condition la or lb.
Large portions can be automated.

Consider the possible storage classes that operand A can take with respect to the
routine containing the two references. They are limited to one of the following three:

1. A local
2. A pRr a meter
3. A global

If the opcr and is local (in the sense that no other routine can access it), then the
error cannot occur and, thus, no search technique is needed.

Case 2: Parameter Operand

If the operand is a value parameter, then, since it is copied at invocation time into
a local variable within the routine in question, it can be treated as a local operand as in
Case 1. If the operand is a name or reference parameter, the following search strategy
applies:

1. 	 For each parameter within a routine, find all reference and store instructions
to the parameter.

APPENDIX B 	 22

(

2. 	 For the routine, find all control flow operators.

3. 	 For any REFERENCE... REFERENCE or STORE... REFERENCE on a control path
(determined by the control flow operators found in 2), examine the pair to
determine if the second reference operation relies on an attribute referenced
or stored by the first operator.

4. 	 For any control path that allows a single REFERENCE to be executed
iteratively, determine if the second execution of the REFERENCE relies on an
attribute referenced by the first execution.

The above procedure finds all possible occurrences of the error for parameter
operands. Steps 1 and 2 can easily be implemented by computer program.

gas9._ 3: Global Operand

If the operand is a global, then it can be accessed by multiple routines. The
following search strate~y applies:

1. 	 For each global, find all reference and store instructions to the global.

2. 	 Find all the control flow operators.

3. 	 For any RFFERENCE ... REFERENCE or STORE ... REFERENCE on a control path
examine the pair to determine if the second reference operation relies on an
attribute referenced or stored by the first.

4. 	 For any control path that allows a single REFERENCE to be executed
iteratively or recursively, determine if the second execution of the
REFFRfNCE relies on an attribute referenced by the first execution.

Note that, with one exception, this is the same search strategy used for
parameters. The difference is that, for globals, multiple execution of a single instruction
can also result from recursion. Otherwise, the procedure is identical, and in fact the
same code used to detect potential inconsistency errors for parameters can also be
used to detect potential inconsistency errors for globals.

The above search strategies find all possible consistency errors. A more detailed
description of Inconsistency Errors can be found in Bis+75.

Validatinn

Validation of operands is one of the more basic functions performed in operating
systems; it constitutes one of the more basic error types. Validation can take a variety
of forms, from checking that an integer subscript is within the bounds before allowing
an array access operator to proceed, to checking that a set of properties such as the
time-of-day and the caller's access rights hold for an operation to be performed. No
single evaluation approach seems adequate to deal with the wide variety of validation
found in contemporary systems and information a protection evaluator may have
available for performing the evaluation task. · As such, two approaches for finding
validation errors have been identified. The protection evaluator may choose either or a
combination of both.

APPENDIX B 	 23

The first requires the protection evaluator to be able to recognize an invalid
condition for an operand. It begins with the sources of data needing validation, finds
the operators which use such data (i.e., those which are potential candidates for
validation errors), and computes the validation condition holding for a given
operator /operand. A protection evaluator must then judge the adequacy of the validity
condition for the given operator. The second approach begins with operators and
validation conditions which must hold and determines if the conditions are actually
enforced by the code. It requires the evaluator to be able to identify all critical
operators and specify their associated validation conditions before proceeding with the
evaluation.

Oru.~idf!-to-lruidf! /Jflf>roach. A purpose of validation is to prevent privileged system
operators from operating on incorrect/unvalidated operands. Externally-supplied user
data constitutes such a source. They enter the system in a variety of ways. Direct or
indirect parameters to supervisor subroutines constitute one large source. Others
include mutually agreed upon mail boxes, communications areas, or files. The operating
system is responsible for insuring that this data is properly checked before a system .
operator uses it.

One approach for determining the adequacy of validation is to begin at the
user /system interface and calculate the validity conditions for all user-supplied data at
various operators within the system. This can be done as follows:

1. 	 Identify all data entry points into the system. (At all such points, data can
enter the system that needs to be validated.)

2. 	 For each data entry point, calculate data flow paths through the system. All
operating system variables to which the entering data is directly or indirectly
assigned must be recorded.

3. 	 Examine all operators referencing a variable identified in (2) above. Verify
that the validity condition enforced on each data path leading to that
operator /operand is sufficient.

Step 2 can be automated using data dependency analysis or a modified form of
symbolic execution. Steps 1 and 3 must be done manually. It is important to note that
without detailed semantic information describing operations being performed, any
procedure, such as the above, can only tell an evaluator where to look for errors, but
not what to look for.

lruidf!-to-Out.,ide !Jpproach. Suppose a protection evaluator can identify all critical
operators in the system and can specify for each operator the validity condition that
must hold for the successful completion of that operator. The problem of finding
validation errors then amounts to determining the sufficiency of validation code on all
paths leading to that operator. A procedure for checking sufficiency would be as
follows:

1. 	 klcntify the critical operations within the operating system and the necessary
conditions associated with those operations. Record the condition with the
associated operand.

2. 	 If an operand is a local or a parameter, follow all possible control paths
leading from the operation to determine the data paths leading to the critical
operation. In passing in a reverse direction through code that enforces

APPENDIX B 	 24

portions of the validation condition, discard the enforced condition.
Eventually, one of the following will occur:

a. 	 All conditions are enforced for that control path.

b. 	 All conditions are not enforced upon reaching a user /system interface,
i.e., a validation error can be caused by supplying a value outside the
ranBe of the remaining unenforced condition.

c. 	 The control path terminates at a global variable/parameter interface
within the system. Go to 3.

3. 	 If the operand is a global or formal parameter from 2c, all operators modifying
the r.lobal/pMameter must contain as an output condition the validity
condition associated with the respective variables. They become critical
operators to be evaluated by this same algorithm.

A more detailed description of validation errors can be found in Carf76.

A common security problem is the residual--data or access capability left after
the completion of a process and not intended for use outside the context of that
process. If a residual becomes accessible to another process, a security error may
re5ult. A me1jor source of such residuals is improper or incomplete
allocation/de allocation processing.

Probably the most widely recognized type of residual is the data residual in
which some property of the data associated with a cell is not disposed of upon
reallocation. One typically thinks of content residuals, i.e., residuals where the cell
content is retained after reallocation. Data residuals can, however, involve other cell
attributes. Such at tributes can include cell size, cell location, and the physical
relationship of tho cell to other cells. While not representing as high a communications
bandwidth as the content residuals, these fatter forms of data residual can also
represent significant security errors.

The followinp, procedure for finding data residuals is based on identifying the cell
aflocat ionfdeaflocation routine in which residual prevention code should be contained. It
consists of four basic steps:

1. 	 Identify all cell types found in the system. This can be done by manually
listing V<lrious storage media and cells on that media and by examining system
data declarations.

2. 	 For each cell, identify its particular freepool, i.e., the buffers for cell
resources between deallocation and allocation.

3. 	 For each frccpool, identify allocation/deaflocation code by finding all symbolic
references to the freepool.

4. For O<lch aflocation/deallocation routine, determine if a data residual can
occur.

APPENDIX B 	 25

A second mttjor typo of residual is the access management residual, sometimes
known as a "dangling reference." Unlike data residuals that deal with the various
attributes of a cell, access management residuals deal with the access paths used to
reference a cell, their creation and destruction.

Access paths arc, at some level of representation, simply data stored in special
cells (c.r,., bounds registers, PSW's, segment/page tables, capability cells, etc.). Thus,
techniques similar to those described above for finding content residuals will also find
certain types of access residuals, i.e., those caused by incomplete deallocation of an
access path created by an allocation routine. Access management residuals differ from
content residuals in an important aspect. There may be multiple access paths to 1

given cell, all of which must be deallocated. Furthermore, access paths can be created
by other th<m the formal allocation routines. For example, code that copies an existing
access path produces an access path which must also be accounted for at deallocation.
Similarly, special instructions may exist (e.g., the IBM 370 "LOAD-REAL-ADDRESS") that
produce access paths as a result of invocation, or that can be interrupted causing an
access path to be stored for use when the instruction is reinvoked. Thus, in addition to
the above procedure, one must examine the system for these latter three sources of
access paths and account for the paths at cell deallocation.

A more detailed description of Residual errors can be found in Hol876.

St?rinlization

SNialization errors represent one of the broader categories investigated. As
such, the error has numerous manifestations and can be described in a variety of ways
including ordering specifications; interoperation communication and insuring the proper
use of communication channels; mutual exclusion for preserving object integrity; and
mutual exclusion for tho noninterference of non-atomic operations.

Three distinct approaches for detecting serialization errors are:

1. 	 Annlyze tho target system macroscopically and informally for the adequacy of
each of a list of serialization provisions. The problem with this approach Is
th<~t no actual algorithm is suggested by the serialization provisions for
decidine, when serialization errors do or do not exist.

2. 	 Determine potential concurrencies, and, given these, determine whether any of
them (taken pairwise) represent access conflicts.

3. 	 A!:,sumc all access sequences to sharable objects are critical and represent
potentially conflicting concurrencies unless these are made impossible either
by explicit invocations of serialization mechanisms or by other serializing
prop,r arn lop,ic. The problem with this approach is that it detects a great
many at cess intervals that are not serialized in an obvious manner, and one
must then resort to deeper analysis such as that in (2).

Each approach is discussed in greater detail along with suggested ways for
alleviating deficiencies in Carl 78.

