
WDL-TR
M..trch

SECURE MINICOMPUTER OPERATING SYSTEM (KSOS)

EXECUTIVE SUMMARY

PHASE 1: Design of the
Department of Defense Kernelized Secure Operating System

Contract MDA 903-77-C-0333

Prepared for:

Defense Supply Service-Washington
Room 1 0245, The Pentagon
Washington, D.C. 20310

...)

Ford Aerospace &
Communications Corporation
Western Development
Laboratories Division

3939 Fabian Way
Palo Alto. California 94303

NOTICE

The Department of Defense Kernelized Secure Operating System (KSOS) is being pro­
duced under contract for the lJ.S. Government. KSOS is intended to be compatible with the
Western Electric Company's UNIX™ Operating System (a proprietary product). KSOS is
not part of the UNIX license software and use of KSOS is independent of any UNIX license
agreer1ent. Use of KSOS does not authorize use of UNIX in the absence of an appropriate
licensing ageement.

This document, furnished in accordance with Contract \-fDA 903-77-C-0333, shall not be
disclosed outside the Government and shall not be duplicated, used, or disclosed in whole or
in part for any purpose other than to evaluate the contractor's performance of Phase I of the
contract; upon completion of Phase I of the contract, the Government shall have the right to
duplicate, use, or disclose the data to the extent provided in the contract.

The contents of this document shall be handled as proprietary information until 5 April
1978. After that time, the Government may distribute the document as it sees fit.

UNIX and PWBjUNIX are trade/service marks of the Bell System.

DEC and PDP are registered trademarks of the Digital Equipment Corporation, Maynard,
MA.

~)'-~ 	Ford Aerospace &
Communications Corporation

.,-.

KSOS Executive Summary

Ford Aerospace & Communications Corporation

Western Development Laboratories

Software Technology Department

3939 Fabian Way

Palo Alto, California 94303

ABSTRACT

KSOS is the Kernelized Secure Operating System designed for
DARPA. KSOS is required to be externally compatible with Bell
Telephone Laboratories' UNIX*tm, to be efficient, to satisfy cer­
tain multilevel security requirements, and to be demonstrably
secure. This document provides a summary of the progress ob­
tained in Phase I of the KSOS development by Ford Aerospace and
its subcontractor SRI International under contract MDA903-77-c­
0333. It gives an overview of the Phase I work, including a sum­
mary of the documentation delivered under the contract. It also
outlines plans for the Phase II work.

ORGANIZATION OF THIS SUMMARY

This document is organized as follows.

Introduction

The Basic Design

The Hierarchical Development Methodology, HDM

Security

The Role of Specifications

The Role of the Programming Language

The Role of Verification

The Role of On-line Tools

The Kernel

The Trusted Non-Kernel Security-Related Software

The Emulator

The Nontrusted Non-Kernel Security-Related Software

The Work Proposed for Phase II

Preliminary Evaluation

Guide to Documentation

- l - FACC/WDL

- KSOS Executive Summary ­

INTRODUCTION

The long-term goal of the KSOS effort is to develop a commercially viable
computer operating system for the DEC PDP~ll/70 that

* is compatible with the Bell Telephone Laboratories' UNIX*tm,
* is capable of efficiency comparable to standard UNIX*tm,
* ~nforces multilevel security and integrity, and
* is demonstrably secure.

In order to achieve this goal, the Phase I effort described here has
desig~1ed a trusted Sec,~rity Kernel and associated trusted Non-Kernel
Security-Relate-d Software, such that the trusted software:

* ~Jrovides a suitable basis for KSOS;
* intrinsically supports multilevel security/integrity,
* can be used by itself to support non-UNIX*tm-based applications,and
* :Ls able to run efficiently on a DEC PDP-11/70.

The security of the overall KSOS system must be convincingly demon­
strated. This will be accomp1ished by formal verification of the security pro­
perties of the design (i.e., the formal specifications) and selected proofs of
correspondence between the delivered code and the design. In addition, KSOS
will be rigorously tested to lend added confidence in the in the system.

Although the Security Kernel is intended initially to support an Emulator
providing a UNIX*tm-like user environment, the Kernel has been designed to be
used by itself, or with an Emulator providing a different user environment.
Typical uses of the the Kernel by itself would be dedicated secure systems
such as military message processing systems, or secure network front ends.

THE BASIC DESIGN

The design of KSOS consists of a Kernel (KSOS .K) that supports multilevel
security, the trusted Non-Kernel Security-Related Software (KSOS.NKSR.T) which
though outside of the Kernel, is trusted to deviate internally from the mul­
tilevel security policy to provide critical system functions, an Emulator
(KSOS.E) that provides compatibility with the existing UNIX*tm user interface,
and the untrusted Non-Kernel Security-Related Software (KSOS.NKSR.U) providing
user-level services such as secure mail and line printer spooling. As a
consequence of the requirement for a convincing demonstration of KSOS secu­
rity, the trusted software should be reasonably small --in order to simplify
the verification effort. However, it is neither necessary nor desirable that
all security-related software be a part of the Kernel, particularly because
some of the security policy may vary from one application to another. The
design supports various security-related functions outside of the Kernel. Any
meaningful verification of security must also consider any of the Non-Kernel
Security-Related Software which is trusted to violate the strict sense of mul­
tilevel security and integrity. The FACC KSOS design encourages the minimiza­
tion of such trusted software, although it makes explicit the efficiency tra­
deoffs that arise. Note that in the design discussed here the UNIX*tm Emula­
tor software has essentially no effect on security, and therefore does not
require verification.

- 2 - FACC/WDL

- KSOS Executive Summary ­

A slightly simplified block diagram of the design approach is given in
Figure 1, showing which levels of the design depend on which others and which
design levels must be trusted. A given d~sign level in this figure is permit­
ted to depend only on lower design levels. In principle, a particular design
level may call any lower design level directly; however, in the actual imp1e­

. mentation there will be some restrictions imposed, as noted below.

As seen in the figure, the Non-Kernel Security-Related software for KSOS
is divided into two design levels, one (KSOS.NKSR.T) trusted to violate
selected parts of the multilevel security model in a controllable way, the
other (KSOS.NKSR.U) not requiring any trust at all. The Emulator is seen to
be nontrusted. The figure shows that the trusted KSOS.NKSR.T can call upon
the KerneL It also implies that the Emulator can call upon KSOS. K and
KSOS.NKSR.T. Similarly, the nontrusted KSOS.NKSR can call upon the Kernel,
the trusted KSOS.NKSR.T and KSOS.E. User applications (i.e., programs or
dedicated environments) may in principle use the Kernel, the Emulator, and the
Non-Kernel Security-Related Software, although in the actual implementation
they can be constrained, e.g., not to use KSOS.K directly. By this means,
certain Kernel primitives may be restricted to use by the trusted software,
and certain Non-Kernel Security-Related functions may be restricted to use by
administrative officers or system daemons. On the PDP 11/70, KSOS.K will run
in Kernel mode, while the trusted KSOS.NKSR and KSOS.E will run in supervisor
mode. Other systems than KSOS could be built using KSOS.K, which might or
might not use portions of KSOS.NKSR and KSOS.E. Implementations of KSOS or
just KSOS.K on other hardware are also anticipated. In a generalized domain
architecture, Figure 1 is illustrative of how the system might be partitioned
into more than just three states.

It is an engineering judgment as to what should be in the Kernel, as well
as to what the specific Kernel interface should be, in order best to satisfy
the system requirements. The approach taken in the FACC Phase I design is
expected to provide significant advantages. In this design, the Kernel pro­
vides generality suitable for the implementation of UNIX*tm and other applica­
tions, while also being modest in size and conducive to efficient implementa­
tions for these applications. This arises from the use within the Kernel of
compile-time definable types (similar to the extended type mechanism in SRI's
Provably Secure Operating System, PSOS). In KSOS, this mechanism is used to
support multilevel secure directories, without requiring the entire directory
manager to be inside the Kernel. In the case of directories, a file "subtype"
is supported by the Kernel, while the directory manager is a part of
KSOS.NKSR.T. This allows the integrity of the directories to be improved
while continuing to allow the Emulator to be untrusted.

The methodology employed throughout facilitates verification that the
entire system satisfies the desired multilevel security properties. This
verification is composed of two parts. First, that the design is consistent
with the formal requirements, and second that the implementation is completely
consistent with the design. As a result of the latter verification, the secu­
rity of the implementation can be effectively demonstrated. Moreover, note
that much more is thereby verified since the consistency proofs of the imple­
mentation guarantee not just secure operation but also correct operation,
assuming the specifications are correct. That is, the demonstration that pro­
grams are consistent with their formal specifications guarantees that the
implementation does what is specified, no more, and no less. It should be

- 3 - FACC/WDL

- KSOS Executive Summary ­

V K+T+E+U+A

1------------------------------------1
I UNIX*tm Applications I

I Untrusted A/

1------------------------------------1
User I
mode V K+T+E+U

1------------~-----------------------1
/Non-Kernel Security-Related Software/
I Untrusted portion I
I KSOS.NKSR.U U/

1------------------------------------1 I

V K+T+E

1------------------------------------1I UNIX*tm Emulator I
I Untrusted I Not
I KSOS.E El Trusted

1------------------------------------1
Supervisor I

mode V K+T

Trusted1------------------------------------1
/Non-Kernel Security-Related Software/ I
I Trusted portion I v
I KSOS •NKSR. T T I
1------------------------------------1-- I

V K

1------------------------------------1I Security Kernel I
Kernel I trusted I
mode I KSOS.K Kl

1------------------------------------1
Figure 1

Block Diagram of KSOS Components

Note: K,T,E,U,A denote the functions provided by the five
levels in upward order, respectively. The interfaces
potentially visible at each level are cumulative upwards,
e.g., as indicated by K+T+E+U+A. In actual implementation
there may be restrictions on function visibility.

remarked that this two step verification, first of the design and then of the
implementation, may reduce the overall verification effort. It also allows
strong statements to be made about the system design whether or not full code
proofs are undertaken.

The work of this contract has taken a strong systems viewpoint toward the
overall development of the Security Kernel, the Non-Kernel Security-Related
software, and the UNIX*tm Emulator. This viewpoint is focused around the use
of a formal methodology for system design, implementation, and verification
that has been developed at SRI International, and used previously on various

- 4 - FACC/WDL

-

- KSOS Executive Summary ­

system designs. The methodology is called the Hierarchical Development Metho'­
dology (HDM). Its use permits a wide collection of needs arising thrcughout
the development and subsequent use of the Security Kernel and its surrounding
KSOS software to be carefully addressed or anticipated. As a consequence, the
resulting KSOS design provides:

* 	 multilevel security;
* 	 provable security;
* 	 high r el iability and avail ab i1 i ty ;
* 	 high performance (operational efficiency) of both the Kernel and the

UNIX*tm Emulator;
* 	 flexibility of the Kernel design to be readily applicable to other

hardware bases besides the PDP-11/70 (e.g., to the Honeywell SCOMP);
* 	 generality of the Kernel design to be applicable to other security­

relevant applications instead of or in addition to KSOS, e.g., a dedi­
cated message processing system;

* 	 controllability of the maintenance and evolution of the Kernel and Non­
Kernel Security-Related software;

* 	 ease of maintenance, evolution, and particularization to installation
needs of the Emulator software, without adverse impact on the overall
system security.

* 	 ease of reverification following changes to the trusted portions of the
system (KSQS.K and KSOS.NKSR.T).

It should be noted that the goal of provable security has significant
implications that would affect any development process, with respect to the
design, the choice of specification language, the choice of the programming
language, and the choice of the verification methodology. However, these are
all addressed by HDM and by the approach taken here.

THE HIERARCHICAL DEVELOPMENT METHODOLOGY, HDM

The formal methodology used in Phase I and proposed for use in the Phase
II development of the KSOS system is summarized below.

* 	 An overall systems viewpoint is maintained throughout.
* 	 A unified methodology is used for design, implementation, and verifica­

tion. This greatly increases the understandability of the design, the
ease of implementation, and the verifiability of the resulting system.
It includes the use of a formal specification language called SPECIAL (A
SPECification and Assertion Language).

* 	 The methodology encourages a hierarchically decomposed design, which
itself has strong implications on initialization, shutdown, recovery from
hardware and software errors, maintenance, and verification.

* 	 A programming language is to be used that is well suited to both system
programming and to eventual program verification.

* 	 Verification is separated into two distinct stages, the first showing the
correspondence between the formal specifications of the design and the
formal requirements for multilevel security, the second showing the con­
sistency of the programs with their specifications. The combination of
these stages assures that the implementation completely satisfies the
multilevel security requirements. This approach increases the understan­
dability of the proofs, and also simplifies them.

* 	 Advanced but well-debugged development tools supporting HDM have been
used and will be used wherever appropriate. Existing tools used in Phase
I include checkers for the hierarchical. structure, the specifications,
and the mappings between the state representations at different levels.

- 5 -	 FACC/WDL

··~-

- KSOS Executive Summary ­

An existing theorem prover and 3implifier are expected to be used in
Phase II to ?rovide verification tools supporting proofs of correspon­
dence betv;een specifications and the_multi1evel security model. Related
tools -- some existing and some under development -- may be used to pro­
vide illustrative proofs of program correctness, as appropriate.

The methodology attempts to unify the entire development process. It
decouples design and implementation into distinguishable stages, providing a
formal definition of the design and a formal basis for implementation and
proof. This approach considers the entire development process in a formal way
and permits formal proofs at each stage in the process. Even in the absence
of proofs, this approach seems to greatly increase the understandability and
precision with which a design can be expressed, and the ability to evaluate
the reasonableness of such a design with respect to stated desired properties
of the system. The methodology has considerable utility throughout the
development of KSOS, in Phase I, in Phase II, and in any additional efforts to
provide proofs of implementation correctness. It also makes a positive con­
tribution to 'rarious further related tasks, such as verification of the con­
sistency of any subsequent changes affecting security, as well as inipleniention
of the design on other hardware and verification of the resulting system. !n
the latter case, specifications for most of the Kernel (except for the machine
and device-dependent levels) could remain largely intact, and the specifica­
tions for KSOS.E and KSOS.NKSR.T could remain unchanged. Thus the demonstra­
tion of the security of the design can carry over directly to the new imple­
mentation. The verification of consistency between code and specifications
might also carry over in part, depending on the programming language used.

SECURITY

The desired multilevel security requirements demand that information at a
particular security level may not move downward to a lower security level.
Because of the syntax of SPECIAL, the proofs that these requirements (formally
stated) are actually satisfied by the specifications follow largely from sim­
ple (i.e., mostly syntactic) checks on the specifications. Fol~owing such
proofs, any implementation consistent with the specifications would itself
satisfy the security requirements. That a design proved to be secure is
itself correctly implemented then follows completely from proofs of the con­
sistency of the specifications with their implementing programs and hardware.
(The dependence on correct hardware is made quite explicit by this approach.)
It is of course also desirable to demonstrate that the specifications --even
if proved to be secure-- actually describe the desired effects. This task is
aided by the understandability of the specifications, and by testing of the
resulting implementation. For example, the specifications for the top-level
(user-interface) can be compared with the behavior of existing UNIX*tm in the
case of the Emulator. The resulting system can be compared with exisiting
UNIX*tm by running programs and applications environments on both systems.

The design for the Kernel permits all of the Kernel primitives to satisfy
the desired security properties completely under normal usage by users. A few
relaxations of this strict behavior are necessary to support the trusted Non­
Kernel Security-Related software, and are confined to the KSOS.NKSR.T by the
controlled distribution of minimal privilege. These isolated relaxations can
be shown to satisfy a specific subset of the security properties, in a com­
pletely controllable way, and to be masked completely by the trusted Non­
Kernel Security-Related software.

- 6 .,. FACC/WDL

- KSOS Executive Summary ­

THE ROLE OF SPECIFICATIONS

Formal specifications by the~selves provide a significant advance in the
state of the art of software system development. They provide a concise and
precise functional statement of exactly what any external or internal inter­
face is expected to do. They enforce abstraction on the design that conse­
quently simplifies implementation, debugging, system integration, and mainte­
nance. Th~y greatly enhance the understandability of a design. They provide
a forum for discussion of design issues. Their understandability encourages
the manual discovery of design errors. They also make possible the intuitive
verification of certain desired properties that the design should satisfy.

THE ROLE OF THE PROGRAMMING LANGUAGE

It is desired that the programming language used for the Kernel and the
Non-Kernel Security-Relateq software have certain strong properties. (The
Emulator may also take advantage of this language.) The desired properties
include such things as

* adequate compiler support for generating efficient code,
* suitable constructs for control and data abstraction,
* type safety,
* ability to support multiprogramming, and
* ability to handle machine-dependency when necessary.

Some of these desired properties (notably type safety and support of
abstraction) contribute significantly to the verifiability of the resulting
code. They also contribute to the avoidance of many characteristic security
flaws. At the moment, Euclid appears to be highly appropriate, with an
extended Modula as an alternate choice. (It appears that some of the competi­
tive DoD/1 languages would be appropriate, if adequate support were avail ­
able.)

THE ROLE OF VERIFICATION

As noted above, specifications support proofs of specification proper­
ties, and also facilitate proofs of program consistency with the specifica­
tions. The ability to state and prove properties about a design (as
represented by a set of specifications) -- before that design is ever imple­
mented --will have a significant impact on the system development. Neverthe­
less, no system can justifiably be thought to be secure unless appropriate
properties of its implementation can also be proved. On the basis of the work
to date, proving that the specifications for the KSOS design satisfy the
required multilevel security properties can be straightforward and .accom­
plished largely by automated tools many of which have already been
developed at SRI. In addition, although more complex than such design proofs,
proving the consistency of implementation with respect to the specifications
is now becoming a realistic task, especially with the emergence of recent
theoretical advances and the prospect of suitable on-line tools. Furthermore,
the expected use of a language 1ike Euclid or extended Modula would very he1 p­
ful. In addition, the proposed use of review and testing is expected to
increase the confidence in the implementation.,.-..

- 7 - FACC/WDL

- KSOS Executive Summary ­

THE ROLE OF ON-LINE TOOLS

The role of computer tools is indicated above, with respect to the syn­
tactic checking of specifications, the verification of the security of the
design, and the eventual verification of the consistency of programs with the
specifications. Experience in attempting to develop secure systems in the
past indicates that an enormous amount of mind-numbing effort would be
required under conventional approaches, and even then there is considerable
doubt as to whether security flaws still remain. The approach outlined here,
with its judicious use of on-line tools that support the Hierarchical Develop­
ment Methodology, is expected to result in considerably more confidence in the
security of the resulting system than is possible with conventional, largely
manual approaches. Further, the automated approach promises to be far more
cost-effective. For example, during the exercise of writing of formal specifi ­
cations for UNIX*tm, various previously unknown flaws in that system were
detected. In the writing of formal specifications for the KSOS Kernel, vari ­
ous minor flaws were detected by the hierarchical interface checker and the
specification analyzer. These flaws, many of which might give rise to insecu­
rity in the implementation, have been detected and removed during this early
stage of design. This is particularly valuable for various minor typographi­
cal errors in the specifications which otherwise might result much later in
significant flaws in the resulting system. In addition, because of the struc­
ture and constraints of the methodology, flaws in the implementation of even a
correct design may also often be detected by the implementation tools, e.g.,
the compiler and simple consistency checks. ·

THE KERNEL

The Security Kernel (KSOS.K) is structured into a hierarchically ordered
set of modules, each of which depends (for its implementation and for its
correctness) solely on lower-level modules. The set of accessible Kernel
calls has been chosen to be powerful and efficient for the implementation of
KSOS, but general enough for the implementation of other applications (e.g.,
dedicated). These Kernel calls support (among other things) the creation and
deletion of files and processes, the reading and writing of files, inter­
process communication, and the protected invocation of trusted software.

The Kernel has a "UNIX-flavor" to it. It was designed with the actual
implementation of the lower levels of UNIX*tm in mind. This, of course, does
not mean that the Kernel is suitable only for creation of UNIX*tm user
environments. Significant efforts have been made to make the Kernel both
machine independent and UNIX*tm independent. The Kernel design incorporates
many of the concepts from the existing prototype "Secure UNIX*tm" implementa­
tions. Its main departure from the prototypes is that the FACC design does not
employ virtual memory. This decision was reached because existing UNIX*tm
software has very large "working sets" that minimize the value of a virtual
memory architecture•.Uso motivating against a virtual memory architecture are
the long delays associated with process environment switches on a PDP-11/70.
Satisfying page faults, even if the page is in core could significantly
degrade system performance.

The Kernel internally supports objects of program-definable types and
capability addressing. These are intended for use within the Kernel for
creating Kernel-supported objects such as multilevel secure directories
without requiring any of the directory mechanism to reside within the Kernel

- 8 - FACC/WDL

- KSOS Executive Summary ­

-- the directory manager is in KSOS.NKSR.T. An overview of a proposed design
decomposition of the Kernel follows, from highest level of abstraction to the
lowest.

* 	 Kernel calls

process operators
*

* 	 interproces.s communication

* 	file capabilities

* 	 file subtypes

process segments
*
process states*

* 	mountable file systems

file contents
*
file states*

* 	multilevel security

* 	 privilege control

* 	 device-independent functions

* 	 type-independent information

* 	 secure entity names

THE TRUSTED NON-KERNEL SECURITY-RELATED SOFTWARE

Only part of the Non-Kernel Security-Related Software must be trusted
(and hence ultimately verified). Although most of the Non-Kernel Security­
Related functions must contain a small amount of trusted code, most of the
code supporting these functions need not be trusted. A spectrum of design
decisions can be made either distributing or centralizing the trusted portion
of each function. The FACC design permits the portion which must be trusted
to be kept small. The Non-Kernel Security-Related Software as a whole sup­
ports the following functions.

* 	 system startup and shutdown
* 	 login and logout
* 	 password changer
* 	 user .security-level changer
* 	 file security-level changer
* 	 virtual terminal handler
* 	 mount and unmount
* 	 line-printer daemon
* 	 file system maintenance, dump/restore
* 	 system administration

As noted below, the spooler and the mailer are examples of security­
related programs that do not need to be trusted, because of the constraints
imposed by the Kernel and the trusted Non-Kernel Security-Related software.
The nontrusted functions need not be verified. Further simplifying the verifi ­
cation effort of the trusted portions is the fact that they are composed of
autonomous modules which can be verified independently.

THE EMULATOR

The KSOS Emulator interface supports the UNIX*tm calls, and implements
them in terms of the KSOS Kernel. It is protected from the user, and the Ker­
nel is protected from it. In general, it calls the Kernel directly rather
than going through the trusted Non-Kernel Security-Related software, except
for certain directory operations. In essence, the Emulator does whatever it
has to in order to provide compatibility with the desired UNIX*tm calls.

- 9 -	 FACC/WDL

- KSOS Executive Summary ­

However, certain features of UNIX*tm have been removed from the user interface
to KSOS, in the interests of providing a secure system. Most notable among
these is the "superuser" facility. Also, -the checks on certain user functions
have been strengthened.

The Emulator contains the bulk of the support for the interface to the
computer network. Only the multiplexing and demultiplexing of the data streams
to and from the network are trusted. The flow control and data stream
integrity functions of the network are untrusted and are supported on a per­
process basis by the Emulator. This architecture is extremely attractive for a
number of reasons. First the size of the trusted software is reduced to a
minimum. Second, the flow control is truly end-to-end. Third, overall struc­
ture requires minimal Kernel support. Finally, the basic architecture can be
easily adapted to support other networks protocols.

THE NONTRUSTED NON-KERNEL SECURITY-RELATED SOFTWARE

As noted above, many of the Non-Kernel Security-Related functions require
some trusted code, although most of the code for the implementation of these
functions need not be trusted. In addition, the spooler and the mail facility
--although in principle security related --can operate entirely as untrusted
programs. The design thus allows great flexibility in its implementation. It
is also possible to easily extend the functions provided by the Non-Kernel
Security-Related software because they are not hard coded into the Kernel.

THE WORK PROPOSED FOR PHASE II

The aim of the proposed Phase II work is to develop an effective imple­
mention of the design Phase I KSOS design, to demonstrate that this design
completely satisfies the desired properties of multilevel security, and to
demonstrate the essential correctness of the implementation by illustrative
rather than exhaustive means. On the basis of the design that has emerged
from Phase I, and the structured methodological approach being used throughout
the development, there is reasonable evidence that this aim can be accom­
plished in a timely and cost-effective way. The proposed wqrk for Phase II
will also provide detailed illustrations of how the implementation can be
demonstrated to be correct, that is, proven consistent with its specifica­
tions.

PRELIMINARY EVALUATION

The approach used here affords various significant advantages over previ­
ous competing approaches, but avoids incurring many of the risks typically
associated with high-technology attempts to advance the state-of-the-art.
Considerable success has already resulted from the use of this approach, and
such success is justifiably expected to continue.

From a systems viewpoint, the work described here is novel in many
respects. These include the following.

* 	 KSOS will be the first full use of the formal methodology (HDM) for a
complete system development. However, HDM has been well tested in the
design stage of several previous projects.

* 	 The HDM methodology can accommodate the verification of a larger amount
of Kernel and other trusted software than can other approaches. This is
due to two orthogonal decompositions: the decomposition of the

- 10 -	 FACC/WDL

- KSOS Executive Summary ­

verification process into stages (e.g., specification-to-model proofs·,
>

followed by code consistency proofs) and the decomposition of the design
into hierarchical levels of abstraction. These both simplify the verifi­
cation effort significantly. The automated tools offer a manyfold
further reduction in effort. In addition, the approach is directly
applicable to the verification of the security of the Non~Kernel

Security-Related software.

* 	KSOS is likely to involve the first use in the development of a
production-quality computer system of a modern programming language
(Euclid, or possibly Modula) highly appropriate for such an effort. Note
that each of these languages is a conservatively designed variant of an
existing well-established programming language (Pascal).
This will be the first implementation of a production system that*
includes a Security Kernel designed to be provably secure, and imple­
mented using a programming language suitable for such verification.

* 	 The design takes advantage of several innovative operating system con­
cepts, e.g., using objects of extended type (here called file subtypes)
within the Kernel. The use of Kernel-supported types is expected to pro­
duce significant advantages in flexibility and generality.

* 	 Because of these innovations, it should be stressed that the risks are
minimal.. The experience to date is very promising. For example, the
time required for FACC to master the methodology was shorter than
expected. The approach is significantly aided by well-used supporting
tools. The task of formally verifying that the specifications for the
KSOS design satisfy the multilevel security requirements seems. reason­
able. The task of producing an efficient and secure implementation from
the existing Phase I design appears to be straightforward. The task of
demonstrating that the implementation is correct ultimately requires for­
mal proofs that the programs are consistent with the specifications.
While complete proofs are not proposed, it is expected that a combination
of illustrative proofs will demonstrate the feasibility of carrying out
complete proofs in the future.

The design takes advantage of the strengths of both of its prototype pre­
cursors, namely the UCLA Data Secure UNIX*tm and the MITRE Secure UNIX*tm,
although the present approach has numerous advantages over those prototypes,
as follows •

.-.

- 11 -	 FACC/WDL

- KSOS Executive Summary ­

Re UCLA: The FACC design carefully considers efficiency and flexibility
in advance. (Note that the use of capabilities within the Kernel is also
found in the UCLA Kernel.) The use o~ formal specifications with a proof
methodology tied to those specifications permits proofs of the intrinsic
security of the design, based on the specifications, independent of sub­
sequent implementation and verification of implementation correctness.
The FACC choice of programming language seems to be better suited for
implementation and for eventual program verification than UCLA Pascal.

Re MITRE: The SRI formal methodology for specification and proofs of
specification properties is similar to that used by MITRE; however, the
concept of hierarchy, the specification language, the program proof
methodology and the tools for automatic specification checking and pro­
gram verification are more advanced than MITRE's.

The FACC KSOS design does differ from the protoypes in that it does not
use virtual memory. As discussed above this choice was motivated by perfor­
mance considerations, and analysis and experimentation with virtual memory
UNIX*tm systems.

GUIDE TO DOC~~ATION

The following documents are included in the documentation of the KSOS
Phase I effort.

KSOS System Specification (Type A)

KSOS Computer Program Development Specifications (Type BS)

KSOS Verification Plan

KSOS Implementation Plan

KSOS Maintenance and Support Plan

KSOS SYSTEM SPECIFICATIONS (TYPE A)

The System Specification (Type A) establishes the requirements for the
KSOS system with respect to performance, design, development, and test. Devi­
ations from the behavior of the existing UNIX*tm user inerface are explicitly
cited.

KSOS COMPUTER PROGRAM DEVELOPMENT SPECIFICATIONS (TYPE B5)

The Program Development Specifications (Type BS) provide the detailed
design of the Kernel, the Non-Kernel Security-Related software, and the
UNIX*tm Emulator, with one document for each. The interface presented by the
Kernel is given in detail. A draft version of formal specifications (written
in SPECIAL) for the externally visible functions and many of the internal
functions of the Kernel is included as an appendix to the Kernel B5 specs.
These are not required in final form until Phase II, but are included at this
time as illustrative of the approach, and demonstrative of the depth of con­
sideration given to the design. Preliminary formal specifications for the
existing UNIX*tm system exist and have been distributed previously, although
they are not required at this time. The process of generating these latter
specifications was very helpful in defining what KSOS should actually appear
to do, and was also valuable in ferreting out several hitherto unknown bugs in
UNIX*tm.

- 12 - FACC/WDL

- KSOS Executive Summary ­

VERIFICATION PLAN

The Verification Plan provi<ies the precise model for multilevel security
that the Security Kernel is expected to satisfy. It also shows how the fo~.
specifications for KSOS can be formally proven to be consistent with the for­
mal model for multilevel security. In addition, it discusses the choice of
programming language to be used in the Phase II implementation, the process of
verifiying that programs are consistent with the formal specifications (in
Phase II and beyond), and the tools that would be use<! to support the verifi ­
cation effort associated with the Phase II development effort.

IMPLEMENTATION PLAN

The Implementation Plan discusses programming techniques, implementation
tools, testing, external configuration management, and the assurance of
integrity and performance of the implementation. FACC plans to utilize its
on-going work in development-support systems based on UNIX*tm to aid in the
creation of KSOS. The plan emphasizes tools that are well matched to the scope
an<i nature of the KSOS effort.

MAINTENANCE AND SUPPORT PLAN

The Maintenance and Support Plan discusses what will be required in order
to test, maintain, and modify the KSOS software. The long term maintenance of
KSOS is viewed as an extention to the procedures for configuation management
and trouble reporting that will be routinely used during the devel.opment
phase. Thus, the mechanisms will be well established and thoroughly "debugged"
prior to the maintenance phase. Also discussed in this document is the
mechanism for system generation of KSOS at the individual user sites. The pro­
cedures are intended to allow a security officer (or other similarly
computer-naive users) to generate a KSOS system, and to be assured of its
security and integrity proper~ies.

- 13 - FACC/WDL

