=

- i

.

i
7
.

\ _
H\W\
5%

Welcome!

The National Computer Security Center (NCSC) and the National Computer
Systems Laboratory (NCSL) are pleased to welcome you to the Thirteenth Annual
National Computer Security Conference. We believe that the Conference will
stimulate a vital and dynamic exchange of information and foster an understanding
of emérging technologies.

The theme for this year’s conference, “Information Systems Security: Standards --
The Key to the Future,” reflects the continuing importance of the broader
information systems security issues facing us. At the heart of these issues are two
items which will receive special emphasis this week -- Information Systems Security
Criteria (and how it affects us) and Education, Training, and Awareness. We are
working together, in the Government, Industry, and Academe, in cooperative efforts
to improve and expand the state-of-the-art technology to information systems
security. This year we are pleased to present a new track by the information security
educators. These presentations will provide you with some cost-effective as well as
innovative ideas in developing your own on-site information-systems-security
education programs. Additionally, we will be presenting an educational program
which addresses the automated information security responsibilities. This
educational program will refresh us with the perspectives of the past, and will
project directions of the future.

We firmly believe that security awareness and responsibility are the cornerstone
of any information security program. For our collective success, we ask that you
reflect on the ideas and information presented this week, then share this
information with your peers, your management, your administration, and your
customers. By sharing this information, we will develop a stronger knowledge base
for tomorrow'’s foundations.

o e

JAMES H. BURROWS PATRICK R. AGHER,

Director Director
National Computer Systems Laboratory National Computer Security Center .

Conference Referees

Dr. Marshall Abrams
James P. Anderson
Jon Arneson
Devolyn Arnold
James Arnold

Al Arsenault
Victoria Ashby
Elaine Barker

Dr. D. Elliott Bell
Greg Bergren

James Birch

Earl Boebert

Dr. Dennis Branstad
Dr. John Campbell
Dr. Steve Crocker
Dr. Dorothy Denning
Donna Dodson
Greg Elkmann

Ellen Flahaven

Dan Gambel

Dain Gary

Bill Geer

Virgil Gibson
Dennis Gilbert

Irene Gilbert

Dr. Virgil Gligor
Capt James Goldston, USAF
Dr. Joshua Guttman
Dr. Grace Hammonds
Douglas Hardie
Ronda Henning
Jack Holleran

Jim Houser -
Russ Housley

Dr. Dale Johnson
Carole Jordan
Sharon Keller
Leslee LaFountain
‘Steve LaFountain
Paul Lambert

Carl Landwehr
Robert Lau

The MITRE Corporation

James P. Anderson Company

National Institute of Standards & Technology
National Computer Security Center

National Computer Security Center

National Computer Security Center

The MITRE Corporation . ,
National Institute of Standards & Technology
Trusted Information Systems, Inc.

National Computer Security Center

Secure Systems, Incorporated _

Secure Computing Technology Corporation
National Institute of Standards & Technology
National Computer Security Center

Trusted Information Systems, Inc.

Digital Equipment Corporation

‘National Institute of Standards & Technology

National Security Agency

National Institute of Standards & Technology
Grumann Data Systems

Mellon National Bank

National Computer Security Center

Grumann Data Systems

National Institute of Standards and Technology
National Institute of Standards and Technology
University of Maryland

National Computer Security Center

The MITRE Corporation

AGCS, Inc.

Unisys Corporation

Harris Corporation :
National Computer Security Center

National Computer Security Center

XEROX

The MITRE Corporation

Defense Investigative Service

National Institute of Standards & Technology
National Computer Security Center

National Computer Security Center

Motorola GEG

Naval Research Laboratory

National Computer Security Center

ii

Dr. Theodore Lee
Nina Lewis

Steve Lipner
Terry Losonsky
Dr. Vic Maconachy
Barbara Mayer
Frank Mayer

Vin McLellan

Catherine A. Meadows

Dr. Jonathan Millen
William H Murray
Eugene Myers

Ruth Nelson

Dr. Peter Neumann
Steven Padilla

Nick Pantiuk

Donn Parker

Rich Petthia

Dr. Charles Pfleeger
Jerrold Powell
Maria Pozzo
Michael Rinick

Ken Rowe

Prof Ravi Sandhu
Marv Schaefer

Dr. Roger Schell
Dan Schnackenberg
Miles Smid
Suzanne Smith
Brian Snow

Prof. Gene Spafford
Dr. Dennis Steinauer
Freddie Stewart

Dr. Cliff Stoll
Marianne Swanson
Mario Tinto

Ann Todd

Eugene Troy

LTC Ray Vaughn, USA

Grant Wagner

Jill Walsh

Wayne Weingaertner
Roger Westman

Roy Wood

Trusted Information Systems, Inc.

University of California, Santa Barbara
Digital Equipment Corporation

National Security Agency

National Security Agency

Trusted Information Systems, Inc.

Sparta

Boston University

Naval Research Laboratory

The MITRE Corporation

Independent Consultant

National Computer Security Center

GTE

SRl International

Trusted Information Systems, Inc.

Grumann Data Systems

SRl International

Software Engineering Institute

Trusted Information Systems, Inc.
Department of the Treasury

University of California, Los Angeles

Central Intelligence Agency

National Computer Security Center

George Mason University

Trusted Information Systems, Inc.

GEMINI

Boeing Aerospace

National Institute of Standards & Technology
Los Alamos National Laboratory

National Security Agency

Purdue University

National Institute of Standards & Technology
ANSER

Harvard - Smithsonian Center for Astrophysics
National Institute of Standards & Technology
National Computer Security Center

National Institute of Standards & Technology
National Institute of Standards & Technology
National Computer Security Center

National Computer Security Center

INCO, Inc.

National Computer Security Center

INCO, Inc.

National Computer Security Center

iii

Thirteenth National Computer Security Conference
October 1-4, 1990
Washington, DC

Table of Contents

VOLUME |
ii Conference Referees

TRACK A - Research & Development

7 UNIX System V with B2 Securit%
Craig Rubin, AT&T Bell Laboratories

10 Covert Storage Channel Analysis: A Worked Example
Timothy Levin, Albert Tao, Gemini Computers
Steven Padilla, Trusted Information Systems

20 Verification of the C/30 Microcode Using the
State Delta Verification System (SDVS)
Jeffrey Cook, The Aerospace Corporation

32 Data Categorization and Labeling (Executive Summary)
Dennis Branstad, National Institute of Standards and Technology

34 Information Categorization and Protection (Executive Summary)
Warren Schmidt, Sears Technology Services, Inc.

37 Security Labels in Open Systems Interconnection (Executive Summary)
Russell Housley, XEROX Special Information Systems

44 Security Labeling in Unclassified Networks (Executive Summary)
Noel Nazario, National Institute of Standards and Technology

49 Key Management Systems Combining X9.17 and Public Key Techniques
Jon Graff, Cylink o ;

62 Electronic Document Authorization .
Addison Fischer, Fischer International Systems Corporation

72 The Place of Biometrics in a User Authentication Taxonomy _
Alex Conn, John Parodi, Michael Taylor, Digital Equipment Corporation

80 Non-Forgeable Personal Identification System Using Cryptography
- and Biometrics
Glenn Rinkenberger, Ron Chandos,
Motorola Government Electronics Group

90 An Audit Trail Reduction Paradigm Based on Trusted Processes
Zavdi Lichtman, John Kimmins, Bell Communications Research

99 The Computerwatch Data Reduction Tool ‘
Cheri Dowell, Paul Ramstedt, AT&T Bell Laboratories

iv

109

115

125

135

144

154

165

Thirteenth National Computer Security Conference
October 1-4, 1990

Analysis of Audit and Protocol Data Using Methods from Artificial Intelligence
Winfried R. E. Weiss, Adalbert Baur, Siemens AG

A UNIX Prototﬂae for Intrusion and Anomaly Detection in Secure Networks
J. R. Winkler, Planning Research Corporation

A Neural Network Approach Towards Intrusion Detection
Richard Simonian, Ronda Henning, Jonathan Reed, Kevin Fox,
Harris Corporation ,

A Generalized Framework for Access Control: An Informal Description
Marshall Abrams, Kenneth Eggers, Leonard LaPadula, Ingrid Olson,
The MITRE Corporation

Automated Extensibility in THETA
Joseph McEnerney, Randall Brown, D. G. Weber,
Odyssey Research Associates
Rammohan Varadarajan, Informix Software, Inc.

Controlling Security Overrides
Lee Badger, Trusted Information Systems, Inc.

Lattices, Policies, and Implementations
D. Elliott Bell, Trusted Information Systems, Inc.

TRACK B - Systems

172

182

189

201

211

218

228

The Role of “System Build” in Trusted Embedded Systems
T. Vickers Benzel, M. M. Bernstein, R. J. Feiertag,
Trusted Information Systems,
J.P. Alstad, C. M. Brophy, Hughes Aircraft Company

Combininr? Ss_'c_grity, Embedded Systems and Ada Puts the Emphasis
on the ’ ' :
F. Maymir-Ducharme, M. Armstrong, lIT Research Institute,
D. Preston, Catholic University

Disclosure Protection of Sensitive Information
Gene Troy, National Institute of Standards and Technology
In_cirid Olson, MITRE
Milan Kuchta, Department of National Defence System Security Centre

Considerations for VSLANTM Integrators and DAAs
Greg King, Verdix Corporation

Introduction to the Gemini Trusted Network Processor .
Michael Thompson, Roger Schell, Albert Tao, Timothy Levin,
Gemini Computers .

An Overview of the USAFE Guard System
Lorraine Gagnon, Logicon Inc.

Mutual Suspicion for Network Security _
Ruth Nelson, David Becker, Jennifer Brunell, John Heimann,
GTE Government Systems

Thirteenth National Computer Security Conference
October 1-4, 1990

237 A Security Policy for Trusted Client-Server Distributed Networks
Russell Housley, Sammy Migues, Xerox Special Information Systems

243 Network Security and the Graphical Representation Model
Jared Dreicer, Laura Stolz, W. Anthony Smith,
Los Alamos National Laboratory

253 Testin'\a_a Secure Operating System ~
ichael Johnston, Vasiliki Sotiriou, TRW Systems Integration Group

266 An Assertion-Mapping Approach to Software Test Desi?n
Greg Bullough, James Loomis, Peter Weiss, Amdahl Corporation

277 Security Testing: The Albatross of Secure System Integration?
Susan Walter, Grumman Data Systems

286 Low Cost Qutboard Cryptographic Supgort for SILS and SP4
B. J. Herbison, Digital Equipment Corporation

296 Layer 2 Security Services for Local Area Networks
Richard Parker ll, The MITRE Corporation

307 Trusted MINIX: A Worked Example
Albert Donaldson, ESCOM Corporation
John Taylor Jr., General Electric M&DSO .
David Chizmadia, National Computer Security Center

318 Security for Real-Time Systems
Teresa Lunt, SRl International
Franklin Reynolds, Keith Loepere, E. Douglas Jensen,
Concurrent Computer Corporation :

333 Trusted XENIXTM Interpretation: Phase |
D. Elliott Bell, Trusted Information System Inc.

340 PACL’'s: An Access Control List Approach to Anti-Viral Security
D. Cook, R. Olsson, J. Crossley, P. Kerchen, K. Levitt, R. Lo,
University of California, Davis
D. Wichers, Arca Systems, Inc.

350 Sstatic Analysis Virus Detection Tools for UNIX Systems
K. Levitt, P. Kerchen, R. Lo, J. Crossley, G. Elkinbard, R. Olsson,
University of California, Davis

366 The VirusIntervention and Control Experiment .
James Molini, Chris Ruhl, Computer Sciences Corporation

374 Classification of Computer Anomalies : _
Klaus Brunnstein, Simone Fischer-Hibner, Morton Swimmer,
Virus Test Center (VTC), University of Hamburg

VOLUME 2 |
TRACK C-1- Management & Administration

385 Disaster Recovery / Contingency Planning (Executive Summary) .
Eileen S. Wesselingh, National Computer Systems Contingency Services

vi

392

393

394

404

414

423

433

434

439

450

460

470

480

503

515

526

541

552

Thirteenth National Computer Security Conference
October 1-4, 1990

Disaster Recovery from $138 Million Fire (Executive Summary)
Lloyd R. Smith, Jr., Information Systems Integrity

Plans and Assistance (Executive Summary) o
Jon H. Arneson, National Institute of Standards and Technology

Harmonised Criteria for the Security Evaluation of IT Systems and Products
P. Casey, A. Brouwer, D. Herson, J. Pacault, F. Taal, U. Van Essen

The VME High Security Option
Tom Parker, ICL Defence Systems

Rainbows and Arrows: How the Security Criteria Address Computer Misuse
Peter Neumann, SRl International y :

Civil and Military Application of Trusted Systems Criteria
William Barker, Charles Pfleeger, Trusted Information Systems, Inc.

Implementation of the Computer Security Act of 1987 (Executive Summary)
Dennis Gilbert, National Institute of Standards and Technology

The CSO’s Role in Computer Security
Cindy Hash, National Computer Security Center

Implementation and Usage of Mandatory Access Controls
in an Operational Environment ,
Leslie Gotch, Honeywell Federal Systems, Inc.

Shawn Rovansek, National Computer Security Center

Building Trust into a Multilevel File System ‘
Cynthia E. Irvine, Todd B. Ackeson, Michael F. Thompson,
Gemini Computers, Inc.

LAVA/CIS Version 2.0: A Software System‘for Vulnerability
and Risk Assessment ‘
S.T. Smith, M. L. Jalbert, Los Alamos National Laboratory

WORKFLOW: A Methodo|ogy for Performing a Qualitative Risk Assessment
Paul Garnett, SYSCON Corporation .

Critical Risk Certification Methodology
Nander Brown, U.S. Small Business Administration

Factors Effecting the Availability of Security Measures
in Data Processing Components
Robert H. Courtney, Jr., Robert Courtney, Incorporated

Integrating Computer Security and Software Safety in the Life Cycle
of Air Force Systems ‘
Albert C. Hoheb, The Aerospace Corporation

Integrity Mechanisms in Database Management Systems
Ravi Sandhu, Sushil Jajodia, George Mason University

A Taxonomy of lntegri% Models, Implementations and Mechanisms
Stephen Welke, J. Eric Roskos, John Boone, Terry Mayfield,
Institute for Defense Analyses -

National Comﬁuter Security Policy (Executive Summary) -
Lynn McNulty, National Institute of Standards and Technology

vii

Thirteenth National Computer Security Conference
October 1-4, 1990

TRACK C-ll - Management & Administration

553
562
564
565
567
570
572
574

577

581

585

589
594
597
600
602

605

607

A Brief Tutorial on Trusted Database Management Systems (Executive Summary)
John Campbell, National Computer Security Center

1990: A Year of ProPress_in Trusted Database Systems (Executive Summary)
John Campbell, National Computer Security Center

Secure Database Products (Executive Summary)
James Pierce, Teradata Corporation

Trusted Database Software: Review and Future Directions (Executive Summary)
Peter J. Sell, National Computer Security Center

Trusted Systemis Interoperability (Executive Summary)
Helena Winkler-Parenty, Sybase Corporation

Oracle Secure Systems: 1989-1990 A Year in Review (Executive Summary)
Linda Vetter, Oracle Corporation

Trusted Database Machine Program: An Overview (Executive Summary)
William O. Wesley, Jr., National Computer Security Center

Trusted Database SI){stem_s: The Tough Issues (Executive Summary)
John Campbell, National Computer Security Center

Tough Issues: Integrity and Auditing in Multilevel Secure Databases
(Executive Summary) . '
Sushil Jajodia, George Mason University

Issues of Concurrency Control and Labeling in Multilevel Database Systems
(Executive Summary) :
Teresa Lunt, Stanford Research Institute

Issues in Trusted Distributed Database Management Systems -
A Position Paper (Executive Summary) , _
Bhavani Thuraisingham, The MITRE Corporation

SYBASE: The Trusted Subject DBMS (Executive Summary)
Helena Winkler-Parenty, Sybase Corporation

Constrained Trusted Computing Base Subsets (Executive Summary)
Linda Vetter, Oracle Corporation

Multilevel Object Oriented Database Systems (Executive Summary)
Ravi Sandhu, George Mason University

Multilevel Secure Object-Oriented Database Model (Executive Summary)
Sushil Jajodia, George Mason University

Object-Oriented System Security (Executive Summary)
Teresa Lunt, Stanford Research Institute

Questions in Trusted Object-Oriented Database Management Designs
(Executive Summary)
Catherine Meadows, Nava! Research Laboratory

Single-level Ob]'kt/el_cts for Security Kernal Implementation (Executive Summary)
Jonathan Millen, The MITRE Corporation

viii

609

613
621

622

629
630

631

632
633

634

641

647

653

Thirteenth National Computer Security Conference
October 1-4, 1990

Issues in Multilevel Secure Object-Oriented Database Management Systems
(Executive Summary)

Bhavani Thuraisingham, The MITRE Corporation

C2 Security and Microcomputers (Executive Summary)
Angel Rivera, Sector Technology

Electronic Certification: Has Its Time Come? (Executive Summary)
Miles Smid, National Institute of Standards and Technology

Functional Implementation of C2 by 92 for Microcomputers
Second Lieutenant Alan Berry,
USAF/ Air Force Cryptologic Support Center

Limiting Access to Knowledge and Information
Robert Melford, R} Melford Associates

Considering the Implications of Future Technologies
Ramon Barquin, Washington Consulting Group

Patent, Trade Secret, and Copyright Laws: One Facet of the Golden Rule
Applied to Limits on Access to Knowledge and information '
J. Timothy Headley, Esq., Baker & Botts :

SocieR/ Runs on Trust ' _)
alph J. Preiss, International Business Machines

Open Access Systems: Risks & Responsibilities in the Academic Environment
Jane Robinett, Polytechnic University

Computer Emergency Response Team: Lessons Learned
E Eugene Schultz, Lawrence Livermore National Laboratory
Richard Pethia, Software Engineering Institute,
Carnegie Mellon University '
Jerome Dalton, AT&T

Discerning an Ethos for the INFOSEC Community: What Ought We Do?
Eric Leighninger, Dynamics Research Corporation

Virus Ethics: Concerns and Responsibilities of Individuals and Institutions
John Cordani, Adelphi University
Douglas Brown, OHC, Holy Cross Monastery

Concerning Hackers Who Break into Computer Systems
Dorothy Denning, Digital Equipment Corporation

ix

Thirteenth National Computer Security Conference
October 1-4, 1990

Educator Sessions

665 A Reassessment of Computer Security Training Needs _
Dennis Poindexter, Department of Defense Security Institute

668 Information Security: The Development of Training Modules
Corey Schou, John Kilpatrick, Idaho State University

678 Determinin YourTrainin? Needs -
Adele Suchunsky, U.S. General Accounting Office

682 Computer Based Training: The Right Choice?
Althea Whieldon, Department of Defense

Alternate Papers

687 ANSSR: A Tool for Risk Analysis of Networked Systems
Deborah Bodeau, Frederick Chase, Sharon Kass, The MITRE Corporation

697 Approaches to Building Trusted Applications
Helena B. Winkler-Parenty, Sybase, Inc.

707 Automated Risk Evaluation System (ARES)/Communications - Computer
Systems Security Management System (CMS)
Lt Glyn M Runnels, AFCSC/SRE

717 A Trusted Software Development Methodology
John Watson, GE Aerospace,
Edward Amoroso, AT&T Bell Laboratories

728 A Categorization of Processor Protection Mechanisms
Eugene Myers, National Computer Security Center

738 Conducting an Object Reuse Study
David Wichers, Arca Systems, Inc.

748 The Deterrent Value of Natural Change in a Statistical Database
Elizabeth Unger, Sallie Keller-McNulty, Kansas State University

758 Experiencesin Acquiring and Developing Secure
Communications-Computer Systems
Captain Charles Pierce, Air Force Cryptologic Support Center

768 Secure Systems Inte rator: An Honorable Profession?
Virgil Gibson, Grumman Data Systems

776 A Taxonomy of Security-Relevant Knowledge
Gary Smith, National Defense University

788 Usefulness of a Network Reference Monitor
Timothy Williams, Verdix Corporation

Thirteenth National Computer Security Conference
October 1-4, 1990

Student Papers

797 Safeguarding Personal Privacy against Computer Threats:
A Structured Perspective ‘ :
Greg Young, University of Maryland

807 LegalIssuesin Security & Control of Information Systems
Noah Stern, University of Maryland

817 Applications of Knowledge-Based Systems Techniques |
to Detect Computer System Intrusions
John McCarron, University of Maryland

Special Reprint 12th National Computer Security Conference

827 The Design of the Trusted Workstation: A True “INFOSEC Product”
Frank L. Mayer, J. Noelle McAuliffe, Trusted Information Systems, Inc.

xi

UNIX SYSTEM V.WITH B2 SECURITY

Craig Rubin

AT&T Bell Laboratories
190 River Road, Summit NJ 07901

Abstract

This paper describes the feature changes needed for UNIX® System V to meet the
Trusted Computer Systems Evaluation Criteria (TCSEC) [1] B2-level requirements
while still maintaining original UNIX System design objectives and flexibility.
Implications for users and administrators are discussed.

1. Overview

Traditional UNIX System users contend that the introduction of B2-level security
features will negate many positive aspects of the UNIX System; security purists doubt
that the UNIX System can meet the B2 criteria [2]. This paper addresses these issues,
discusses the B2 features that have been added to UNIX System V, and explains the
effects of these features on users and administrators.

2. Background

The UNIX System was originally developed in an open R&D environment in which a
paramount concern was the free and easy exchange of information. Unpassworded
guest logins, unprotected source and system files, and unrestricted dial in lines are
typical in such an environment. Although security features were available, they were
usually viewed as unfriendly and consequently were rarely used.

Lax security administration was only made worse by operator errors, an inadequate
amount of security and administrative documentation, software holes through which
hackers could gain unauthorized privileges, and the ability of unprivileged users to
read the password file (which contained encrypted versions of the passwords).

UNIX is a registered trademark of AT&T.

3. Motivation

Customer demand for improved operating system security motivated the development
of improved security in UNIX System V. Security requirements specified by foreign
and domestic governments, the business sector,” and other security-conscious data
processing environments provided the impetus for standards and policy groups (such as
IEEE P1003.6, ISO, X/OPEN, and the NCSC TRUSIX working group) to address
secun'ty needs as they apply to the UNIX System.

4. Goals

AT&T has committed to produce a UNIX System that meets the needs of both
government and commercial data processing operations. The goal of this system is to
provide all (TCSEC) B2-level features, close any known security holes, and include
improved operational procedures and monitoring tools. These features will be
incorporated into the standard UNIX System V product, preferably as options,
allowing sites to determine the best mix for size and performance constraints. Another
critical factor is compatibility with existing releases of UNIX System V.

In addition to full B2 functionality, the discretionary access control (DAC) and trusted
facility management (TFM) B3-level features will be available in the standard System
V product.

S. Approach

AT&T’s approach in addressing the security requirements has been to work closely
with UNIX International to identify needs and evaluate functionality. A parallel effort
has proceeded with government and industry leaders to establish standards through
bodies such as IEEE POSIX and X/OPEN.

6. Operating System Engineering Improvements

Operating system engineering improvements go beyond individual feature development
and involve changes in the structure and architecture of UNIX System V that result in
improved maintainability, performance, flexibility, and portability. Typically, though
not always, these improvements will be visible only to system porters and not to end
users or application developers. Thus, while such improvements may benefit end users
and developers, they are of direct interest to UNIX System V source code customers
who plan to port or change the operating system.

The UNIX System has been renowned as a modular, highly portable operating system.
To meet the exacting requirements on operating system modularity at the B2-level,

2

however, the UNIX System V operating system will be further partitioned into
modules.

Improved modularity impacts more than the security feature. It improves the entire
operating system and benefits all source code customers. Modular code is easier to
interpret, maintain, and port.

A modular system is one that is internally structured into well-defined, independent
modules, where each module [3]:

— has a well defined function,

— has a well defined interface,

— has well defined parameters, and

— 1is called whenever its function is required.

Other related modularity improvements include restricting the use of global variables
and allowing the use of nested header files. A tool was created to assist in the
detection and examination of all global variables in the kernel. The information
generated by this tool allowed many global variables to be changed to a local scope
and provided justification for those global variables that remained.

7. Feature Specific Requirements

The following work is required for the development of a B2-level system and will
require procedural changes on the part of users and/or administrators.

7.1 System Architecture

The system architecture criteria places several requirements on the internal design and
structure of the Trusted Computing Base (TCB). A key feature that will be introduced
in this area is a least privilege mechanism that breaks up the single super-user
privilege into many smaller, well-defined privileges. A second new architectural
feature is the aforementioned improved system modularity. These changes will have
little procedural impact on users and administrators, however they will improve system
assurance.

7.2 Discretionary Access Control (DAC)

The existing UNIX System provides the ability to distinguish permissions for the
object owner, object owning group, and all others. This mechanism may be viewed as
a fixed length, three entry, Access Control List (ACL). In order to meet the B3-level
requirements, the B2 system provides full access control lists. This new mechanism

3

interacts compatibly with the existing mechanism, preserves the meaning of the
existing file permission bits, and allows the existing mechanism to work as before [4].

7.3 Security Labels

All processes, files, and IPC objects must have a security label. Device types must be
designated as single-level (such as a tty) or multilevel (such as a special device file for
a disk partition). When exporting data to a multilevel device, the data’s sensitivity
label will be exported with the data. This is not necessary with a single-level device.

7.4 Mandatory Access Control (MAC)

In addition to the Discretionary Access Control (DAC) facility, a Mandatory Access
Control (MAC) facility is required. While the DAC mechanism allows permissions to
be set at the discretion of the owner of an object and enforced by the system, the
MAC mechanism is set by the system administrator and enforced by the system. The
existing UNIX System did not provide any mechanism for MAC. The mandatory
access control policy follows a modified Bell-LaPadula model [5] that can be |
summarized as "read equal or down" and "write equal." For instance, a process at
level "top-secret” can read a file at level "secret," and a process at level "secret” would
only be able to write to a file at level "secret."

Administrators are responsible for determining and setting up the discrete set of labels
at which a user can log in. An administrator also sets a login level range on a
terminal line, such that when a user attempts to login, the label specified by the user
must dominate the login-low label on the terminal line and in turn be dominated by
the login-high label on the terminal line.

Since the addition of mandatory access control labels will limit creation of files in a
directory to processes at the same level as the directory, a new type of directory
referred to as a multilevel directory (MLD) has been added to the system. A
multilevel directory involves the addition of an extra, normally hidden layer in the
directory hierarchy for directories.

When a process attempts to reference an MLD (e.g., /tmp) the kernel automatically
translates this reference to a level-specific, hidden subdirectory known as the effective
directory. For ease of use the effective directory is created automatically by the kernel
if it does not already exist. An effective directory will exist for each process level
which has accessed the multilevel directory. Since the effective directory is hidden,
the process can not directly access it. However, some processes will have to perform
maintenance on multilevel directories so they must be able to determine which
effective directories are present and be able to directly access these directories. This is

4

known as the real view of the multilevel directory and is accomplished by the process
placing itself in real multilevel directory mode. The only difference from the existing
method is that the process can not see all files in the MLD directory, but only files at
the same label as the process. The standard MAC and DAC checks apply to
multilevel directories and the files that they contain. This implementation conforms to
the MAC policy, in that a process should only be able to see files (such as in /tmp)
that are dominated by the label of the process. Public directories (writable and
readable by all processes), such as /tmp must be MLDs. The use of MLDs eliminates
many covert channels associated with public directories.

The mandatory access control facility is used along with the discretionary access
control facility to ‘mediate access to objects. When an access is attempted, both
mandatory access and discretionary access checks are performed. If both checks pass,
access is then granted.

7.5 Identification and Authentication

The existing Identification and Authentication mechanism (login and password) meets
most of the B2-level requirements. However, the method had to be modified to
support the new features being introduced. These include the specification of a MAC
label at login time and recording login attempts in the audit trail. Furthermore, to
support a trusted path, users are able to change their password only at login time, as
this is the only time that the user will have a trusted path.

7.6 Audit

The existing UNIX System’s accounting mechanism does not produce the finely-
grained information that is required by the B2 criteria. Therefore, a new auditing
mechanism was added. -

The audit mechanism will have no impact on users. Administrators will select and set
the events that are to be audited for all users and optionally set an audit mask for
specific users. The events audited for any specific user can be changed by the
logged-in administrator in real time. The system provides facilities for both pre-
selection and post-selection of audit event data.

7.7 Object Reuse

When a storage object is assigned to a subject, the object must contain no data. This
requirement is met by the existing UNIX System V.

7.8 Trusted Path

A trusted communication path between the TCB and a subject is required. This
affects both the user and administrator. The administrator is responsible for defining a
secure attention key (sak) for each terminal line. When a user or administrator wants
to log in to the machine, they must first enter the sak. When the system detects the
sak, it will initiate the login sequence on the terminal. If login is not completed
within the login timeout period, the login program will terminate and the user is once
again required to enter the sak in order to reinitiate the login process.

7.9 System Integrity

Proper operation of the hardware and firmware parts of a system must be verifiable.
This will be achieved with the existing diagnostics available with the evaluated
machine.

7.10 Trusted Facility Management

Separate operator and administrator functions are required at B2; to meet B3
requirements, a security administrator function must also be added. The current
capabilities of the super-user login were separated into the aforementioned functions
through a database maintained by the trusted system programmer. This Trusted
Facility Management (TFM) database contains information specifying the commands
that may be executed with privilege by various administrators. This database must be
properly configured by the trusted system programmer before the system is used in the
B2 configuration. A command that mediates the access given to a particular program
must be used by the administrator to perform privileged operations.

8. Non-Feature Specific Requirements

The following work is required for the development of the B2-level system; this will
not require any direct action on the part of users or administrators.

8.1 Covert Channel Analysis

A thorough search must be performed to identify all covert storage channels and
determine their bandwidths. Covert channels must be closed, reduced, auditéd, or
documented depending on the bandwidth. For those being audited, the auditor must be
aware of the potential disclosure that may occur through the use of these covert
channels and watch for their use in the audit trail.

8.2 Design Specification and Verification

A formal model of the security policy enforced by the TCB is required. This model
was developed by AT&T with the NCSC TRUSIX working group. Also, a complete
specification that describes the TCB "in terms of exceptions, error messages, and
effects” is required for a B2 system. The model and the specification will be shown to
be consistent.

8.3 Configuration Management

A configuration management system for use during the development and maintenance
of the TCB is required. All documentation, code, and hardware must be controlled by
this system. Tools to generate a new version of a system and to compare versions
must be available. These requirements will be achieved by several complementary
methods described in a product development methodology handbook. These methods
(which are used for code, documents, and hardware) include the use of a source code
control system, a change tracking system, and a change control committee.

8.4 Testing

Extensive testing of the security features at each level is required. In general, the
testing must:

1. show that security features work as documented,
2. show that there are not obvious ways to bypass security mechanisms, and

3. show that identified flaws have been removed and that no new ones have been
introduced.

The system should also be compatible with the existing UNIX System and with
current standards such as POSIX. The development organization runs multiple test
suites on the system to test for conformance to all of the required objectives. To test
the new features that are being introduced, new test suites were added or existing test
suites modified.

8.5 Documentation

The documentation required to describe the security mechanism is incorpofated into -
the existing UNIX System documentation. The following list roughly summarizes the
end user documentation required at the B2-level and identifies the existing UNIX
System documents that it appears in.

» The UNIX System V User’s Guide, along with manual pages in the UNIX System
V User’s Reference Manual, contains the information required of a security

7

features user’s guide. This information explains how a user is affected by the
security mechanisms and their proper use (e.g., MAC and DAC). In addition,
changes required for the existing system to meet the B2-level and their nnpact on
the user are described (e.g., changes to the line printer subsystem).

» The UNIX System V System Administrator’s Guide, Programmer’s Guide,
Programmer’s Reference Manual, System Administrator’s Reference Manual, and
the newly introduced Audit Trail Administrator’s Guide contain the information
required in a trusted facility manual.

8.6 New File System Type

A new file system type, the Secure File System (SFS) has been added as the means of
supporting the MAC and DAC security capabilities described previously. The new file
system type is based on the UNIX File System (UFS) that was introduced with UNIX
System V Release 4. The features of the new file system type that were added
specifically to support security are:

« increasing the size of the inode so that labels and ACL’s can reside in the inode,
and '

» adding support for multilevel directories (e.g., /tmp).

This addition will be invisible to users, and will require minor changes for
administrators. Since the existing UNIX System already supports various file system
types, administrators are familiar with different file system types.

On a non-B2 system, the new file system type can be mounted read-only as an
ordinary UFS file system. Similarly, an ordinary file system can be mounted on a
secure system as a single-level file system, and will not support ACLs. This is
primarily needed to support the transition to a B2 secure system.

9. Conversion to a B2 System

Conversion of an ordinary system to a B2 secure system will require administrative
set-up, especially in the areas of MAC, TFM, and privilege.

10. Summary

Although numerous changes have been made to incorporate the B2-level security
features into UNIX System V, the system will still maintain the original UNIX System
design objectives and provide the flexibility expected by users and administrators. '

11. REFERENCES

(1]

[2]

3]

[4]

[5]

Department of Defense. Trusted Computer System Evaluation Criteria, DOD
5200.28-STD, December, 1985. '

Sibert, W. O., Traxler, H. M., Wagner, G. M., Downs, D. D., Elliot, K. B., and
Glass, J. J.: UNIX And B2: Are They Compatible?, in Proceedings Of The 10th
National Computer Security Conference, September 21-24 1987, pp. 142-149.

Stevens, W., Meyers, G., and Constantine, L.: Structured Design, IBM Systems
Journal, Vol 13, No. 2, May 1974, pp. 115-139.

National Computer Security Center Trusted UNIX Working Group (TRUSIX),
Rationale For Selecting Access Control List Features For The UNIX System,
NCSC-TG-020-A, VERSION-1, August 18, 1989.

Bell, D. E. and LaPadula, L. J. Secure Computer System: Unified Exposition
and Multics Interpretation, MITRE Corporation, MTR-2997, March 1976.

COVERT STORAGE CHANNEL ANALYSIS: A WORKED EXAMPLE

Timothy E. Levin and Albert Tao
Gemini Computers, Inc.
Carmel, California

Steven J. Padilla [*]
Trusted Information Systems, Inc.
Glenwood, Maryland

Abstract This paper presents an overview of the methodology used in a formal
covert storage channel analysis of the GEMSOS Security Kernel. A synthesis of
several well known covert channel approaches has been applied: the resulting
methodology provides a significant reduction in effort relative to the techniques
from which it was derived.

The method involves reducing the analysis to the information flows that can produce
covert channels. The analysis is shown to be effective for systems whose direct
illegal flows (as opposed to transitive flows) are both limitable and auditable.

A similar informal analysis technique is briefly described. This informal analysis can
be used independently from the formal analysis or in conjunction with the formal
analysis for confirmation of results.

Background

The Gemini GEMSOS TCB is in evaluation, targeted at the Trusted Computer System Evaluation Criteria
class Al rating. As part of this evaluation, a class A1 Trusted Network Interpretation [TNI87] “M-
Component” evaluation of a product based on the kernel portion of the TCB is taking place as an
incremental step in the overall TCB evaluation. This product is the GEMSOS Trusted Network Processor
(GTNP).

The GEMSOS Trusted Network Processor (GTNP) consists of the GEMSOS Security Kernel and
hardware base [SCHELSS], along with a non-kernel interface to define and support trusted and single-
level processes [THOMO90]. The GEMSOS Kernel provides a mandatory access control reference monitor.
For the class Al evaluation, a covert storage channel analysis has been performed on the GEMSOS
Kernel. This report summarizes the approach used in that effort and is offered as a worked example of an
efficient means of doing covert storage channel analysis.

Covert Channel Analysis Within the Reference Monitor Paradigm

Analysis of information flow is examined in this paper relative to the concept of the reference monitor
(“RM”)[TCSEC]. Within this context we can identify a taxonomy of information flows. Flows can be
classified as legal or illegal relative to the security policy. Some illegal flows are not exploitable at the RM
interface; these are not of concern to this discussion. Exploitable illegal flows can be classified as either
covert channels or RM flaws (discussed below).

The RM creates the subjects and data storage objects of the system, and mediates access between them.
The RM maintains “attributes” of subjects, objects and system resources. These attributes are defined to

* This paper reflects work performed while Mr. Padilla was an employee of Gemini Computers, Inc.

10

be outside of the domain of subjects and objects protected by the RM. Operations that the reference
monitor supports can be classified as legal (i.e., correct mediation of subjects’ access to storage objects) or
flawed (i.e. a subject bypasses the reference monitor, or there is improper mediation in a subject’s access
to a storage object, as shown for operation “b” in the following diagram). Illegal flows resulting from
flawed operations are RM flaws. The next diagram illustrates these differences.

S. <= 3T O--- 5T §2 Domain of subjects and
: A - objects mediated by RM

RM interface

k«—— Reference Monitor

S = subject Level of S = syshi

O = object Level of O = syshi

S2 = subject Level of S2 = syslo

RM flaw Level of ATTRIBUTE = syshi
covert channel

a, b, c and d are RM operations with disjoint effects (the effects are flows represented by arrows going to
or from the calling subject). a, ¢ and d are legal operations (RM functions correctly). b is an operation
with an RM flaw (access is mediated incorrectly). b and d are operations which produce illegal flows.

An example of a or b is a file-open operation which returns data from the object. An example of ¢ is an
operation to change a file’s size. An example of d is an operation to return a file’s size.

In this paradigm, covert channels result from information passing through a system attribute which is not
mediated as a storage object. Examples of system attributes might be: file size, volume space availability,
or CPU availability. A covert channel is induced and interpreted by a series of legal operations which
reference such attributes. '

Covert storage channels are distinct from covert timing channels. The manner in which the information
from the covert channel leaves the reference monitor determines whether the channel is a storage or
timing channel. For storage channels, information is passed out of the reference monitor through a change
to a storage location (e.g., return value or error message); for timing channels, the information is returned
outside of the reference monitor through a delay (i.e., a measurable change in response time).:

Typically, timing channels and some storage channels are created through contention for finite system
resources (the availability of the resource is a system attribute). In this type of channel, a high-level
subject signals to a low-level subject by modulating its use of the resource, thus controlling the low-level
subject’s ability to use the resource. If contention is resolved through a delay to the low-level calling
subject (e.g., the CPU is busy and the subject is made to wait), a timing channel is created. On the other
hand, if the low-level subject receives a return value or error message when the resource is not
available(e.g., “disk_full” error message), then we consider it a storage channel. One approach to closing
resource exhaustion channels is to partition the resources by process or by security level (see ‘“Channel
Bandwidth Estimation” and “Informal Identification of Covert Storage Channels,” below). This approach
can have a significant negative effect on system performance when applied to timing channels.

11

Other storage channels are not based on resource contention. In these cases, system attributes other than
“resource-busy” (for some given resource) are read and written. Information can thus be channeled
through a change to file size, or object security classification. These are storage channels since the
information passes out of the system through a change to a storage location (i.e., the change in file size is
returned to the caller in a output parameter, or is signalled through the return of an error message). These
channels can be (and in a secure system should be) avoided through rigorous system security engineering.

In a complete FTLS (as required by [TCSEC]), all storage-based information flows at the interface (e.g.,
inputs, return values and error messages) are represented, typically as changes to state variables. Since all
of the interface flows are represented and covert storage channels are signalled through a change to a
storage location at the interface, the formal covert channel analysis of a complete and accurate FTLS is
assured of revealing the covert storage channels of the system represented.

On the other hand, the type of delays that drive a timing channel are not specified in a DTLS or FTLS
using current specification and verification methods [HAIGHS6, - p. 17]. Thus, unlike covert storage
channels, covert timing channels cannot be identified from an FTLS but must be identified informally by a
careful examination of system internals.. .

Description of Approach

The covert channel analysis of the GEMSOS Kernel utilizéd the FDM tool set. Included in this set are the
Ina Jo specification language and processor [SCHEIS88], the Ina Flow tool [ECKM87] (including the MLS
flow theorem generator and the SRM 'matrix generator) and ‘the Interactive Theorem Prover
(ITP)[SCHORSS]. '

Theoretical Approach
The FDM tools are designed to be used in the following general method to analyze information flow in a

system [ECKM87]:

1. Describe the system interface in the Ina Jo Specification Language in terms of exceptions, error
messages and effects. Use the Ina Jo processor to check the syntax of the specification.

Define security labels for all variables within the specification.

2

3. Produce flow theorems from the labeled specification using the MLS tool.

4. Prove flow theorems using the ITP (unproven theorems are theoretical, “formal,” flow violations).
5

The exploitability of theoretical flow violations is determined manually.

Alternatively, the SRM tool produces a ““Shared Resource Matrix” (as defined by Kemmerer [KEMMS83])
from an input specification. The matrix lists all transforms (representing system functions that can
produce state changes) and variables, and shows whether a variable is read or modified in each transform.
The tool output includes a transitive closure of the references [']. Finally, the legality of flows and the
exploitability of flow violations are determined.

1. Reference transitivity is illustrated with two transforms and three variables (V1, V2 and V3). One transform reads
V1 and writes V2. The second transform reads V2 and writes V3. Information flows transitively from V1 to V3, via
V2. The output from the SRM tool would show that the second transform reads V1. A transitive closure of
references provides all of the references derivable through the transitivity of information flow.

12

Actual Approach

In the covert storage channel analysis of the GEMSOS Kernel, the first two steps of the MLS theoretical
approach were completed and the labeled specification was processed with the MLS flow tool. For various
reasons owing to the immaturity of the tools at the time, they were unable to correctly process the
specification. For example, MLS had difficulty with non-determinism and the Ina Jo language did not
allow structure fields to be included in the label (“‘clearance”) statements (see example below).

An alternative approach of working from a Shared Resource Matrix derived from the specification was
investigated. It was found that the SRM tool at that time could not generate a single matrix for all of the
transforms due to the size of the specification. After some experimentation it was determined that the tool
was able to generate the matrix one column (i.e., transform) at a time. This discovery lead to a closer look
at utilizing the Shared Resource Matrix methodology.

A problem with the SRM approach was our lack of access to a tool that could generate the required
transitive closure of references (i.e., the SRM tool could only deal with one transform at a time).
Performing the transitive closure by hand was considered beyond the scope of effort for the project. After
this problem was resolved (see “Transitive Closure,” below), we defined an approach which combined the
methods of SRM and flow analysis [DENN76, MILL76]. First, we used the SRM tool to detect all of the
variable references (read, write) generated within a' transform. Next, we labeled the variables, and
performed a semantic analysis of the context of the references within the specification to detect illegal
flows. This analysis included the criteria identified by Kemmerer to determine the suitability of the flows
as covert channels. Finally, to help determine the fastest way to drive the channels, a reduced SRM was
produced (see ‘“Matrix Reduction,” below).

Transitive Closure

Transitive closure of the flows in the shared resource matrix is normally provided by the Ina Jo tool used to
create the matrix. Since our matrix was created by hand, the issue of transitive closure was considered
independently. We determined, much as did Tsai [TSAI87], that transitive closure was not necessary. It
was clear that transitive closure would only provide illegal flows based upon other already known direct
illegal flows (See Appendix for a formal proof of this property).

The point of covert channel analysis is to identify information leakage such that it may be limited (in the
best case, closed) and/or audited. In the case of audit, since each transitive flow utilizes one or more direct
illegal flows, the usage of each transitive channel will trigger the audit mechanism for its direct flow(s).
For the limitation of transitive-flow based channels, we concluded that since the transitive flows result
from a serial concatenation of direct flows [2], the overall transitive channel could not operate any faster
than the direct flows upon which they were based. Thus, limitation and audit strategies for a direct
channel will similarly limit and provide audit for its associated transitive-flow based channels.

If the direct illegal flows of a system are both auditable and limitable, the only obvious benefit to
performing transitive closure is if a direct illegal flow is dismissed as unusable (i.e., not considered a covert
channel) because a variable involved could not be seen directly or manipulated at the interface. If this
rationale were used for elimination of a possible channel then it seems that one would be forced to analyze
the transitive closure on the matrix before reaching the conclusion that the illegal flow is unusable. Since
we did not eliminate any illegal flows this way, the requirement for transitive closure was obviated.

2. Note that the transitive flows discussed herein utilize the serial concatenation of flows to produce a channel,
whereas channel aggregation [TSATI88, p. 113] refers to the parallel and symbiotic exploitation of different covert
channels.

13

For the GEMSOS Kemel, we found that the direct illegal flows were both auditable and limitable. The
measurement of direct flows also provides input, in conjunction with knowledge of system configuration
information, to perform various sorts of channel aggregation measurements should such measurements be
desired.

Generation of Variable References
Each transform of the specification was run through the SRM tool. This generated a list of references for

each transform, somewhat like the following partial output for a transform (swapin_segment) for moving
data from secondary storage into main memory.

T6 KEY
V11 RM V1 : proc_table(pid).mem_avail
V2 1 RM V2 . a_table(pid, sn).swapped_in
V31 RM V3 : global_mem_avail
V4 | V4 : success(pid)

T6 : swapin_segment

Shown is an SRM with one transform and four variables, along with a key to the transform and variables.
In the SRM, “R” indicates read and “M” indicates modify; “pid” is an identifier of type process ID, “sn”
is an identifier of type process_local_segment_number.

Labeling of Variables and Semantic Analysis

After the lists of references within each transform was generated, the variables were labeled. We
developed the following conventions for this process:

1. All constants (i.e., variables that were only read but never written) were labeled “‘sys-low”
2. All variables that were read by all processes were labeled “sys—lbw”

3. All variables that were written to by all processes were labeled “sys-hi”

4

All variables that were indexed by process were labeled “at the process level” which we assumed to
be in the range sys-hi to sys-lo .

5. All variables that were both written and read by all processes were labeled ‘“‘syshi.” Note that it
doesn’t matter whether the bidirectional illegal flows are considered bad reads or bad writes since
either way they are flagged as potential contributors to covert channels.

The variable’s labels were compiled in a global list, such that each variable was treated consistently across
all of the transforms. Examples of the variable labels are shown below in the syntax of Ina Jo. A variable
to the left of an ‘“‘at” sign is assigned the label to the right of the “‘at” sign. The function “sec_label”
returns a label for the process ID argument (pid).

a_table(pid, sn) @ sec_label(pid),

global_mem_avail @ syshi, -
proc_table(pid) @ sec_label(pid),

success(pid) @ sec_label(pid)

A semantic analysis of each flow identified by the SRM tool was performed. This analysis was done by
hand due to the immaturity of the flow tool. The semantic analysis of the references was documented in a
list which gave a brief rationale for the outcome. Usually, the analysis involved comparing the process and
variable labels directly. In some cases a more detailed rationale was required, such as relying on system
invariants or explicit security checks in the specification to infer the relationship of the process and.
variable labels; these rationales were formulated as closed deductive arguments. The following rationales-

14

http:formulated.as

reflect a security policy for single-level processes which requires a process to be at or above the level of an
observed object, and at or below the level of a modified object.

V1 | RM | legal because proc_table(pid) is at level of pid

V2 | RM | legal because a_table(pid,sn) is at level of pid

V3 | RM | ILLEGAL because global_mem_avail is at system high
V4 | M | legal because success(pid) is at level of pid

The semantic analysis included meeting the following requirements to be the source of covert channels
[KEMM&3]:

1. Sending and receiving processes must be able to access the same attribute of a shared resource.
2. The sending process must be able to write to the shared attribute.

3. The receiving process must be able to read the shared attribute.
4

There must be some mechanism for initiating the sending and receiving processes and for sequencing
the events correctly.

5. The sending and receiving processes must be in distinct protection domains and must not be allowed
to communicate with each other directly.

Matrix Reduction

A matrix was created consisting of all variables involving direct illegal references, and all transforms with
‘references to those variables. '

T1 T2 T3 T4 TS5 T6 T7 T8 T9 T10
gast_total ; R Rm m | rm {Rm
global_mem_avail ™m Rm|{m | m | rm |Rm
last_total R Rm m | rm |Rm
local_mem_avail m |Rm m | m [rm |Rm
total_active_processes rm [Rm
total_mounted_volumes rm Rm
vol_space_avail | R [mm Rm
r = read
R = illegal read
m = modify

The reduced matrix had 10 transforms and 7 variables. This is in contrast to the output of the SRM tool,
which would have shown 30 transforms and 738 variables and constants. A similar reduction in the
number of references (e.g., r, m) recorded is also apparent.

As explained above and in the Appendix, the excluded variables and transforms do not need to be
included in the covert channel analysis: any operations that indirectly reference a variable are not of
interest because the auditing and reduction of the covert channels is accomplished relative to the direct
illegal reference.

15

We have found that the reduced matrix provides significant information necessary for covert analysis of
the system. A covert channel involves complementary actions: reading a variable in question and writing
the variable. The reduced matrix includes all direct illegal references and shows all of the transforms that
can be utilized in the complementary action to each illegal reference. For example, in the case of the
above matrix where all of the illegal references are illegal reads, one can determine which operations can
be used to directly write to the variable. This information can be used in bandwidth estimation (see
“Channel Bandwidth Estimation,” below) as well as limiting and auditing of the channel.

The reduced matrix is a subset of the full transitive closure matrix. This will be true in general since a
transitive closure matrix is an expansion of a matrix of direct flows, and a reduced matrix takes as input a
direct flow matrix, and reduces it (by eliminating variables without illegal references).

The entries in the matrix were then analyzed to determine the best scenario for exploitation of the illegal
flows in the form of covert channels.

Channel Bandwidth Estimation

The analysis of illegal direct flows revealed that they were primarily resource exhaustion channels. The
one exception was considered a design flaw. Security checks were added to the kernel interface to
eliminate this channel, and the analysis was adjusted accordingly. The resource exhaustion channels were
found to be closeable through proper system configuration choices and were all auditable. However, in
order to provide customers with a basis for deciding if the restrictions imposed by configuration options
were necessary, analysis was performed to estimate the maximum theoretical bandwidth of each of the
channels.

In some cases, a single covert channel (relative to a system variable) could be exercised through multiple
pairs (reader and writer) of kernel calls (see the matrix, above). In order to determine which of these pairs
would provide the highest estimated bandwidth, the speed of each kernel call was tested. The fastest pair
that exercised a given channel, based on those listed in the matrix, was then used in the estimation of the
channel’s bandwidth. '

The actual bandwidth estimates and exploitation scenarios resulting from this analysis are proprietary and
are not included in this report. ' '

Informal Identification of. r r hannel

In a separate effort from the formal covert storage channel analysis based on the FTLS, an informal
engineering analysis of the DTLS was performed. This separate analysis involved the evaluation of the
order of outputs described in the DTLS to determine whether the outputs represent illegal flows and could
be used for covert channel exploitation. The relevance of the *“‘output ordering” analysis to the covert
channel analysis is based on the assumption that all illegal flows are detected at the interface through
outputs returned by the kernel. The illegal flows thus discovered corresponded to the illegal reads
identified in the SRM matrix, above. :

The analysis method is particularly applicable for systems below the class A1l level where an FTLS and the
associated formal analysis are not available. At the A1 level, the informal analysis can provide a useful
counterpoint to, and a further validation of, the formal analysis. Although the informal analysis is
necessarily less reliable than formal analysis, it was far less time consuming. .

Description of Approach

For this analysis, the DTLS has the following characteristics:

16

1. All state variables are identified as “process-local” or “‘global.”

2. The security level of each state variable is identified (the conventions used are as described for the
formal analysis).

3. For each output, the state variables that are observed in order to return the output are identified.

Outputs are either error messages (indicating exception conditions) or return values. The return of an
output by the kernel typically indicates observation of one or more state variables (i.e., attributes) within
the kernel. ““Process-local” state variables are observed and modified by a single process only. Outputs
returned to a process as a result of observation of “process-local” state are legal since the information is at
the same level as the process. :

“Global” state variables are observed and modified by more than one process. An output returned to a
process as a result of observation of a ‘“‘global” state variable may be part of an illegal flow. For each
kernel output so identified, an ordering analysis is performed to confirm that the design prevents the illegal
flow.

In the GEMSOS Kernel, outputs are ordered: in the event of an exception, only an error message is
returned as an output; the order in which exception conditions are checked determines the order of the
their corresponding outputs; in the event of two or more exceptions, only the condition that is checked first
will be reflected as output. '

Each output associated with the observation of a global state variable must be ordered to occur AFTER a
corresponding output representing a system security check (the specific checks are described below). If a
‘“‘global-observing” output is out of order with respect its corresponding system security check, or the
check is absent, then a covert channel is identified.

The ‘outputs were divided into two classes for this analysis: those indicating global resource exhaustion,
and ““other.” For global resource exhaustion, the corresponding system security check determines whether
the process-local allocation of the resource is exhausted. This ordering reflects the kernel mechanism for
partitioning global resources on a per-process basis, such that with proper system configuration (i.e., initial
allocation), a process will always exhaust its local resource allocation before exhausting the global
resource.

For outputs other than global resource exhaustion exceptions, (for example, the return of file size), the
corresponding system security check must confirm that the calling process is at a security level sufficient to
observe the global state.

lusion

Although the tools exist today for performing analysis of specifications with respect to flows and covert
channels, these tools are not of sufficient maturity to be used effectively in the automated analysis of an
commercially-sized operating system kernel. We have shown that it is feasible to work with the currently
evolving tools and complete a formal covert channel analysis on a relatively large specification. Informal
“output ordering” analysis yielded results that were consistent with the formal covert channel analysis
results.

We chose to base our analysis on the direct illegal flows rather than on the transitive closure of flows
because: 1) direct illegal flows are the fundamental leakages of the system (all illegal flows evolve from
direct illegal flows); 2) we were able to address (audit and limit) those flows directly; and, 3) we wanted to
limit the level of effort of the analysis.

By adapting the analysis methodology to the capabilities of the tools and methods available today, one can
arrive at a significant reduction in effort relative to theoretical covert channel analysis approaches. The

17

methodology outlined here presents a viable alternative for use while analysis tools mature.. The authors
recommend continued research and development in automated analysis systems. It is hoped that the
techniques introduced here to reduce the necessary amount of analysis can be incorporated into future
tools.

Acknowledgements

The authors wish to express thanks to Tim Redmond of TIS for his contributions to the appendix on

transitive closure and to Mark Heckman and the National Computer Security Conference referees for their
insightful review comments. .

References

[DENN76] D. Denning,- “A Lattice Model of Secure Information Flow,” in Communications of the ACM, pages
236-243, AéM May 1976

[ECKMS87] Steven T. Eckmann, “Ina Flo: The FDM Flow Tool,” in Proceedings of the Tenth National Computer
Security Conference, pages 175-182, National Bureau ‘of Standards/National Computer Security Center,
1987 Gaithersberg, MD

[HAIGH86] J. Haigh, R. Kemmerer, J. McHugh, W. Young, “An Experience Using Two Covert Channel Analysis
Techniques On a Real System Design,” in Proceedings of the IEEE Symposium on Security and Privacy,
Oakland California, 1986y

[KEMMBS83] R. Kemmerer, “The Shared Resource Methodology: An Approach to Identifying Storage and Timing
Channels,” ACM Transactions on Computer Systems, pages 256-277, August 1983, University of
Callforma Santa Barbara

[MILL76] J. Millen, “Security Kernel Validation in Practice,” in Communications of the ACM, pages 243-250,
ACM, May 1976

[SCHEI88]J. Scheid and S. Holtsberg, The Ina Jo Specification Language Reference Manual, Unisys Corporation,
2400 Colorado Ave, Santa Monica CA 90406-9988, 1988

[SCHELS85] R. Schell, T.F. Tao, and M. Heckman, “Designing the GEMSOS Security Kernel for Security and
Performance”, in Proceedings of the Elghth National Computer Security Conference, Gaithersberg, MD,
October 1985, pp. 108-119

[SCHORSS8] V. Schorre, et. al., The Interactive Theorem Prover Reference Manual, TM 6889/000/08, 10 November
1988

[TCSEC] Trusted Computer System Evaluation Criteria, DoD 5200.28-STD, December 1985

[THOMS0]M. Thompson, R. Schell, A. Tao, T. Levin, “Introduction to the Gemini Trusted Network Processor,” in
Proceedings of the 13th National Computer Security Conference, Gaithersberg, MD, 1990

[TNI87] Trusted Network Interpretation of Trusted Computer System Evaluation Criteria, NCSC-TG-005 Version-1,
31 July 1987

[TSAI87] C.R. Tsai, “Covert-Channel Analysis in Secure Computer Systems,” Phd. Dissertation, University of
Maryland, College Park, Maryland, August 1987

[TSAI88] C.R. Tsai, V. Gligor, “A Bandwidth Computation Model for Covert Storage Channels and Its
Applications,” in Proceedings of the IEEE Symposium on Security and Privacy, Oakland California, 1988

Appendix: Proof of Transitive Closure

This appendix provides a proof that no illegal flows will be created by taking the transitive closure on a shared
resource matrix that has no 1lle§al direct flows. This shows that if one eliminates the direct illegal flows from an SRM,
the transitive closure will introduce no new illegal flows. Therefore, if there exist illegal flows in the transitive closure
"~ of an SRM, they are derived from the illegal direct flows in the base SRM. The proof is trivial but is included for
completeness

We begin by defining:

T = finite set of all transforms (fixed for appendix)
V = finite set of all variables (fixed for appendix)

Fix atoms, R and M, mtumvely denoting the notions of read and modify. Fix a set of labels and a partial ordering
relation on this set, “<.” Fixa function, “label,” which maps elements o V to elements of the set of labels.

DEFINITION 1. A shared resource matrix, F is a matrix indexed by T x V such that for all t in T, v in V: F(t, v) isa
subset of {R,M}. We willuse F, F’ etc., to denote shared resource matrices.

18

DEFINITION 2, A flow for a shared resource matrix, F, is a triple, (t,v1,v2) where R is an element of F(t,v1) and M
is an element of F(t,v2). We will also denote the flow (t,v1,v2) as (v1 t-> v2).

DEFINITION 3. A flow (v1t-> v2) is said to be a legal flow iff label(vl) < label(v2).

DEFINITION 4. A “contains” relation which provides a partial ordering on shared resource matrices is defined such
that F’ contains F iff for all t in T, vin V: F(t,v) is a subset of F’(t,v).

DEFINITION 5. A shared resource matrix, F, is transitively closed iff for all t1 and t2 which are elements of T, v1
and v2 which are elements of V: [R is an element of F(t1,v1) and M is an element of F(t1,v2) and R is an element of
F(t2,v2)] implies [R is an element of F(t2,v1)].

DEFINITION 6. If F is a shared resource matrix, then F” is the least shared resource matrix that contains F and is
transitively closed.

The construction of F” is typically performed in steps. These steps will be called transitive closure steps. A transitive
closure step takes F to F’ if there exists a t1, t2, v1, v2, such that:

R is an element of F(t1,v1) and M is an element of F(t1,v2) and R is an element of F’(t2,v2) and R is not an
element of F(t2,v1)

and for all t which are elements of T, v which are elements of V: [t not equal t2 or v not equal v1] implies
[F(t,v) = F(t,V)].

and F’(t2,v1) = (F(t2,v1) Union (1))

If one begins with a resource matrix and repeatedly applies the transitive closure step until no more transitive closure
steps can be applied to the matrix then the resulting matrix is transitively closed.

THEOREM
If all the flows for F are legal then all the flows for F” are legal.
PROOF

Suppose a sequence FO, F1, ..., Fn where each F is a transitive closure step of the previous F, and Fn = F”, and FO =
F. We will show by induction on k that all flows in Fk are legal. For k=0 this is obvious.

Suppose there exists a t1, t2, v1, v2, v3 which are appropriate for some F(k-1) to Fk and all flows in K-1 are legal (see
next ﬁgurei%. All flows for Fk that are not flows for F(k-1) are of the form: (v1 t2-> v3). It is easy to see that (v2 t2-

> v3) 1s a flow for F(k-1), so label(v2) < label(v3).
Fk-1) vl vz v3
Tl T m ‘ (vl tl1->v2)
T2 T m (v2 t2->v3)
Fk) vl v2 V3
TL r m (vl t1->v2)
T2 1T T m (v2 t2->v3)

(vl t2->v3)

Example Matrices

Also, (v1 t1-> v2) is a flow of F(k-1), so label(v1) < label(v2). :

By transitivity on <: [label(v2) < label(v3) and label(v1) < label(v2)] implies [label(v1) < label(v3)].
Which means that the flow is legal and all flows in Fk are legal. » :

Q.E.D.

19

Verification of the C/30 Microcode Using the State Delta
Verification System (SDVS)!

Jeffrey V. Cook

The Aerospace Corporation
P. O. Box 92957
Los Angeles, CA 90009

Abstract

We present the formal verification, using the State Delta Verification System (SDVS), of
the microcode for the Bolt Beranek and Newman, Inc. (BBN) C/30 computer. The C/30 has a
high-level instruction set architecture that is emulated by microcode resident on BBN’s Micro-
programmable Building Block (MBB) computer. A large majority of the C/30’s instructions
were proven to be correctly emulated, but some microcode errors were discovered during the
verification process. This verification effort, which demonstrated SDVS’ ability to check the
correctness of microcoded computer implementations, is a significant milestone on the path to
correctness proofs that span the hardware/firmware/software hierarchy.

1 Introduction

This paper describes the C/30 Microcode Verification Project, which wasinitiated at The Aerospace
Corporation in October 1984 and was completed there in November 1986. The project involved
formally proving the correctness of microcode that emulates the instruction set architecture of the
C/30 computer. The C/30 computer [1], designed by Bolt Beranek and Newman, Inc. (BBN),
was implemented by microcode for BBN’s Microprogrammable Building Block (MBB) [2, 3]. The
proof of microcode correctness was specified and verified using the State Delta Verification System
(SDVS) [4], a system developed at The Aerospace Corporation. SDVS is a system for writing, and
checking the correctness of, proofs of statements written in its internal temporal logic, the state
delta logic [5).

The C/30 Microcode Verification Project was of major significance for at least two reasons.
First, the MBB is a production computer, not a toy computer, for which the emulation of the
C/30 architecture is only one of its many uses. The C/30 has been in operation for many years
as a packet switching node? on the Arpanet. The second significant aspect was the amount
of microcode involved. Approximately 1000 MBB microinstructions implemented the portion
of the C/30 instruction set that was verified during the project. A large majority of the C/30’s
instructions were proven to be correctly implemented by the microcode, but a number of microcode
errors were discovered during the verification process.

Two other significant hardware and microcode verification efforts have been undertaken in
recent years. One consisted of the use of the HOL system to verify the correctness of the Viper
microprocessor in 1987 [6, 7, 8]. Another consisted of the use of the Boyer-Moore system to verify
the correctness of the FM8501 in 1986 {9, 10].

1This research was supported by the National Computer Security Center under contracts FO4701-83-C-0084 and
F0O4701-85-C-0086.

2The terminology “IMP,” or “interface message processor,” may be more familiar to some readers, as it predates
“packet switching node.”

20

SDVS is briefly discussed in Section 2, followed by a discussion of SDVS’s microcode verification
paradigm in Section 3. The MBB and C/30 computers are described in Section 4. The formal
specifications of the architectures of these two computers are described in Section 5. The formal
statement that the microcoded MBB correctly implements the C/30 is given in Section 6. The
proof of this statement of implementation correctness is discussed in Section 7. Finally, Section 8
concludes this paper with observations concerning the verification process.

2 SDVS and State Deltas

A good general introduction to SDVS is given in [11], even though some information specific to
an older version of SDVS is found there. Reference [12] is the SDVS Users’ Manual in effect at
the time the C/30 Microcode Verification Project was completed. A recent paper that describes
SDVS, state deltas, and the translator for a subset of Ada3 is given in [13]; most of the material
in this section is taken from this paper.

SDVS is a system for checking proofs about the course of a computation. SDVS is based on a
specialized form of temporal logic whose temporal formulas are called state deltas. A state delta
is a description of a transition from one computation state to another. Its precondition describes
a state from which the transition can be made, and its postcondition describes the state resulting
from the transition. Technically, SDVS checks proofs of state deltas, which provide an operational
semantic representation of computation. SDVS can handle proofs of claims of the form, “if P is
true now, then @ will become true in the future.” If P is a program (perhaps with some initial
assertions) and @ is an output assertion, then the above claim is an input-output assertion about
P. SDVS can also handle claims of the form “if P is true now, then Q is true now.”* In this case,
if P is a program and @ is a specification, then the claim asserts the total correctness of P with
respect to . SDVS is also capable of handling proofs that one computer program (or description)
correctly implements another, i.e., multilevel correctness proofs.

A state delta is a formula consisting of a precondition P, a comodification list C', a modification
list M, and a postcondition). P and @ are non-empty lists of formulas taken from the language
of the state delta logic. C' and M are (possibly empty) lists of places. A place contains (abstract)
values, the place’s “contents.” Places can be viewed as, for example, abstract memory locations
or program variables. SDVS displays state deltas using the following notation:

[SD pre: P
comod: (C
mod: M
post: @]

Let the times ?; and {2 denote a state delta’s precondition and postcondition times, respectively.
A state delta’s modification list M specifies those places whose contents are allowed to change
between precondition and postcondition time as a result of the transition. The truth value of any
assertion about these places cannot be assumed to be preserved during the transition. The contents
of places not listed in the modification list must remain unchanged during the state transition.
State deltas assert the total correctness (in the Floyd-Hoare sense) of programs whose transitional
behavior they characterize with respect to the state delta pre- and postconditions (together with

®Ada is a registered trademark of the U. S. Government — Ada Joint Program Office.
*In addition, SDVS can handle claims of the form “for every time in the future @ is true” for arbitrary predicates

Q.

21

the implicit assertions that the places not in state delta modification lists preserve their contents
across the associated state transitions). The role of a state delta’s comodification list C is more
subtle and is explained in detail in [13].

Note that SDVS is not only a system for checking the correctness of proofs, but it is also a
system for interactively developing proofs. A user may interactively guide SDVS’s proof-checker
with high-level proof commands (e.g. symbolically execute, induct, prove by cases), while many
low-level deductions are made automatically. In particular, SDVS contains decision procedures
for the theories of propositional logic and equality between uninterpreted function symbols, and
partial decision procedures for the theory of Presburger arithmetic, a theory of arrays, and a theory
of bitstrings, among others.

3 Microcode Verification

In this section we discuss the microcode verification paradigm of SDVS, and then relate it to
the C/30 Microcode Verification Project. This paradigm entails proving that the instruction set
architecture (ISA) of a virtual computer is correctly emulated by a microcoded computer. We
shall use the terms emulated and microcoded to refer to these two computers, respectively. Proofs
in this category are referred to as proofs of implementation correctness [14].

In order to prove properties of a computer, SDVS requires a formal description of that com-
puter. When the C/30 Microcode Verification Project was initiated in 1985, the only hardware
description language recognized by SDVS was ISPS (Instruction Set Processor Specification), de-
scribed in [15]; ISPS had been in use for over a decade as a language for describing hardware at
the register transfer level. A translator was developed and implemented for a nontrivial subset of
ISPS. This translator converts ISPS statements into state deltas and other logical formulas. Thus,

SDVS has the capability to prove correctness properties of computers described in the accepted
subset of ISPS.

In addition to the ISPS descriptions, two other items are necessary to construct the statement
of implementation correctness: the constants of the microcoded computer (such as its microcode),
and a formal mapping from the emulated computer to the microcoded computer. This mapping
shows the relationships between states and storage locations in the two machines.

The microcode verification paradigm for the C/30 is shown in Figure 1.. The Micropro-
grammable Building Block (MBB) emulates the instruction set architecture (ISA) of the C/30
via a microprogram tailored for that purpose. We refer to this microprogram as the C/30 Mi-
crocode; the proof of implementation correctness for this microcode is referred to as the C/30 Proof.
As shown in the figure, the user provides the ISPS descriptions of the C/30 and of the MBB, a
formal mapping between the two machines, and the actual binary microcode for the C/30. From
these are constructed the statement of implementation correctness, designated the C/30 State
Delta. The two inputs to SDVS are the C/30 State Delta and the C/30 Proof.

Although Figure 1 has been greatly simplified for the purposes of this discussion, we emphasize
that the verification process was a task of considerable magnitude. For the C/30 State Delta to be
constructed, the ISPS descriptions of the C/30 and the MBB had to be written and the mapping
between the states and registers of both machines had to be determined. Only then could we begin

to develop and verify the C/30 Proof using SDVS, which required a high degree of interaction
between the author and the proof system.

For complicated computers, the development and verification of such a proof is an arduous

22

ISPS description
of C/30

ISPS description

C/30 Microcode

|
|
|
|
|
|
| = State
|
|
|
!
|
|

of MBB C/30
mapping between l Delta S .

machines ! D valid

| v — yes/no
proof?

I S
I
|

C/30 Proof

Figure 1: C/30 Microcode Verification using SDVS

process, requiring an in-depth understanding of the microcoded computer, its microcode, and the

emulated computer. If an emulated computer instruction is improperly microcoded, no correctness
proof can be achieved.

One utility of microcode verification is demonstrated when the verification process uncovers
microcode errors. Of course, the gross errors are the more easily recognized, and are usually uncov-
ered by machine-language programmers when certain microcoded machine-language instructions
are discovered to operate incorrectly. If an erroneous instruction is not crucial, that is, if its oper-
ation can be implemented by some other combination of instructions, then the machine-language
programmer must bypass the erroneous instruction until the microcode is fixed. Thus subtle mi-
crocode errors may or may not be discovered by machine-language programmers, and may lie in
wait for years before causing a serious program malfunction.

4 The MBB and the C/30

As noted above, the Microprogrammable Building Block (MBB) emulates the instruction set archi-
tecture (ISA) of the C/30 via the C/30 Microcode. The C/30 was chosen for verification because
of interest in the verification of certain aspects of the Defense Data Network (DDN), and because
of the existence of a formal ISPS description of a version of the MBB.

The MBB is a general-purpose microprogrammable computer that can be used for a variety
of applications. The MBB’s main purpose, as envisioned by the designers, is to emulate other
computers. In particular, it is capable of emulating the ISA of the C/30. For each computer
emulated, the MBB requires the insertion of two custom-designed “daughter” boards, the MIRDB

23

(Macroinstruction Registers Daughter Board) and the MARDB (Memory Address Register Daugh-
ter Board).

The C/30, specifically designed to serve as a packet switching node on the DDN, is one of
a family of computers developed by BBN. The C/30 is a 16-bit/word machine with 64K words
of addressable memory and three addressing modes. It has a number of special-purpose and
general-purpose registers, and a set of 128 instructions, including sophisticated instructions for
manipulating queue data structures and controlling multiprocessing. It operates a polled interrupt
system with clock, I/0O, and scheduling interrupts.

5 Formally Specifying the MBB and the C/30

In this section we discuss the ISPS descriptions of the MBB and the C/30. A discussion of the
problems that arose from the use of ISPS as a hardware description language are presented in [16]
and [17].

5.1 ISPS Description of the MBB

The C/30 Microcode Verification Project took advantage of an existing description of another
machine, the C/70 MBB [18]. Converting the ISPS description of the C/70 MBB into an ISPS
description of the C/30 MBB required changing two components of the C/70 MBB description,
the ISPS descriptions of the MIRDB and the MARDB. In addition, the size of the main memory
of the MBB was reduced from 1M to 64K. The ISPS description of the C/30 MBB is given in [19],
with commentary on the computer’s operation. This ISPS description occupies 30 pages of text,
or 15 pages in the absence of text formatting.

A portion of the C/70 MBB description that was excised before the C/30 Proof began was that
of the error detection and correction (EDAC) algorithm that checks for data errors during main
memory reads. Thus, the C/30 Proof assumes that no data errors (e.g. parity errors) occur during
main memory reads. Henceforth, the term “MBB?” shall refer solely to the C/30 configuration of
the MBB computer.

5.2 ISPS Description of the C/30

The ISPS description of the C/30 computer [20] was written from documentation supplied by the
C/380 Programmer’s Reference Manual [1], and from interactions with BBN employees involved in
the C/30 Microcode Verification effort. Ten of the 128 instructions in the C/30 instruction set were
not included in this description. These ten included instructions that manipulate the I/O system
of the C/30, whose actions were difficult to specify formally,.and the maintenance and diagnostic
instructions, which had the capability of altering the C/30 Microcode (the C/30 Microcode was
assumed to remain unchanged during the C/30 Proof). This ISPS descrlptlon occupies 41 pages
of text, or 17 pages in the absence of text formatting.

6 The Statement of Implementation Correctness

Once the ISPS descriptions of the MBB and the C/30 were available, the formal statement of
implementation correctness for the C/30 could be constructed. Let c30micro.isp denote the
name of the file containing the ISPS description of the MBB, and let c30macro.isp denote the
name of the file containing the ISPS description of the C/30. The notations isps(c30micro.isp)

24

and mpisps(c30macro.isp) represent state delta translations of these descriptions; these nota-
tions are discussed in more detail below. The statement of implementation correctness for the
C/30 is then represented in SDVS by the state delta shown below. (This is a stylized, abbreviated
representation of the actual C/30 State Delta; italics have been used to represent missing formulas.)

[SD pre: (isps(c30micro.isp) A
MBB constants, e.g., the C/30 Microcode A
mapping from C/30 to the MBB)
comod: ()
mod: ()
post: (mpisps(c30macro.isp))]

Informally, this state delta says that the MBB computer, with the C/30 Microcode and cer-
tain other constants, implements the C/30 computer, via a mapping that relates the states and

architectures of the two computers. The exact statement of implementation correctness for the
C/30 is given in [21]. ’

The two unary SDVS predicates isps and mpisps are used to capture the semantic output of the
ISPS translator as follows. The formula isps(c30micro.isp) denotes the incremental translation
of the ISPS description of the MBB. This predicate is useful only for the symbolic execution of
ISPS descriptions, because it incrementally translates ISPS descriptions one statement at a time.
The notation mpisps(c30macro.isp) denotes the mark-point to mark-point® translation of the
ISPS description of the C/30. This predicate is useful when one wishes to prove properties (such
as correct implementation) of an ISPS description of a computer. The mpisps translation yields
a set of logical formulas that describe the static architecture of the emulated computer, as well as
a set of state deltas, one state delta for each possible execution path between successive labels in
the ISPS description. ‘

7 C/30 Proof

The primary purpose of the C/30 Microcode Verification Project was to produce a verified proof
of correctness of the C/30 Microcode. This section discusses the portions of the C/30 ISA not
verified by the C/30 Proof, some of the strategy for the C/30 Proof, a summary of the proof, and
the C/30 Microcode errors discovered during the verification process.

7.1 C/30 Proof Omissions

For reasons discussed briefly below, the complete verification of certain C/30 instructions was not
attempted. Full details are supplied in [22].

Certain long-running C/30 instructions, in particular the shift instructions and the CCRO
(Convert and Clear Rightmost One) instruction, are interruptible by the clock and I/O interrupts.
These instructions were verified under the assumption that no interrupts occurred during their
execution, because the exact method and timing of their interruptibility were not documented,
and because in 1985 SDVS lacked capabilities for modeling their interruptibility in a way that was
independent of a specific implementation.

ISPS labels are mark-points. SDVS introduces implicit mark-points to label the beginning and end of ISPS
descriptions.

25

However, the interruptibility of four block-transfer and block-checksum instructions (BLT,
TRB, CHK, and ECK), whose interruptibility was explicitly mentioned in the documentation,
was modeled in the ISPS description of the C/30. Their interruptibility was modeled in a manner
dependent on the C/30 Microcode implementation; this permitted the development of correctness
proofs for these four instructions. ’

Time constraints and difficulties in accurately modeling certain aspects of the C/30 architecture
prevented the verification of four multiprocessing instructions (NMFS, DPR, SPR, and GPR),
and resulted in only a partial verification for one multiprocessing instruction (ENB). In addi-
tion, because of time constraints alone, the actions of the clock interrupt and the programmable
(multiprocess scheduling) interrupt were not verified. The difficulties in modeling were due to the
complexity of the instructions involved and incomplete documentation of their operation.

7.2 C/30 Proof Strategy

The strategy for developing the C/30 Proof is the topic of another report [23]. The actual text of
the proof and the theorems proved during the verification of this proof appear in [21].

To prove the truth of the C/30 State Delta, one must prove the truth of the formulas denoted
by mpisps(c30macro.isp). In the ISPS description of the C/30, the label c30macrocycle marks
the beginning of the C/30 instruction-interpretation loop. In this particular description, it also
marks the end of the loop, because execution returns to the label after each iteration. Thus,
the contents of some of the state deltas denoted by the predicate mpisps{(c30macro.isp) are
determined by the execution paths within the C/30 instruction-interpretation loop, with the label
c30macrocycle delimiting the beginning and endpoints of each of these state deltas.

The proof process is best illustrated by an example. Consider the C/30 instruction IAB (Inter-
change A and B registers). The 16-bit binary operation code for this instruction is 0000000010000001,
or 1291¢9. An abbreviated representation of the state delta describing the actions of IAB, derived
directly from the set of state deltas denoted by the predicate mpisps(c30macro.isp), is shown
below. (Note that while italics are used to represent missing formulas, ellipses are used to represent
missing or irrelevant portions of the state delta.)

[SD pre: (at label c80macrocycle in ISPS desc. of C/30 A
.MEM[| .PC|]=129(16) A :
22D
comod: (...)
mod: (4,B,PC,...)
post: (at label c30macrocycle in ISPS desc. of C/30 A
#A = .B A #B = A A
#PC = (.PC ++ 1(2))<15:0>) A
o)]

Let TABSD denote the above state delta. IABSD’s precondition states that the C/30 is at the
beginning of its instruction-interpretation cycle and the operation code of the current instruction
has the value 129; its modification list permits changes to the A and B registers, and to the pro-
gram counter (PC); and its postcondition states that the C/30 is once again at the beginning of
the instruction-interpretation cycle, the contents of the A and B registers have been swapped, and
the content of the PC register has been incremented by 1, modulo 21,

26

The primary objective of the C/30 Proof is to prove the C/30 State Delta, which contains a
representation of IABSD in its postcondition. To prove IABSD, under the assumption that the
C/30 State Delta’s precondition holds (the ISPS description of the MBB is available for symbolic
execution, the C/30 Microcode has a certain value, and a mapping holds between the C/30 and
the MBB), one must perform the following steps:

1. Assert the truth of the IABSD precondition.
2. Symbolically execute the ISPS description of the MBB.

3. Determine if the IABSD postcondition holds.

The mapping is used to map C/30 states onto MBB states, and to map C/30 registers (such as
A and B) onto MBB registers. Mapping the IABSD precondition results in the positioning of
the MBB’s state at the top of its microinstruction-interpretation loop, at the point where the
next C/30 instruction is to be emulated; it also ensures that the proper operation-code value is
in the memory location of the instruction to be emulated. One then symbolically executes state
deltas from the translation of the MBB description; this process interprets the binary microcode
that comprises the microroutine for the IAB instruction. When the entire IAB microroutine
has been interpreted, the mapping is again used to determine whether the IABSD postcondition
indeed holds. During symbolic execution, certain static deductions may need to be performed. To
perform a static deduction, one must prove that a state S5 at time ¢ was a consequence of another
state S at time ¢, with no intervening state transition. We determined that the IAB instruction
was correctly implemented by the C/30 Microcode.

For C/30 instructions that are more complicated than the above example, the corresponding
state deltas are also more complicated, and their proofs are more difficult. For instance, the
C/30 shift instructions, which were implemented by iterative microcode, required inductive proofs.
Certain C/30 instructions whose operation was contingent upon the current state of the machine
required proof by cases. In addition, most proofs and their subproofs required static deductions.

7.3 C/30 Proof Summary

In all, 89 of the 128 C/30 instructions were proved to be correctly implemented by the C/30 Mi-
crocode. For the reasons stated in Section 5, the ten I/O, maintenance, and diagnostic instructions
were not even considered. For lack of time, the verification of five multiprocessing instructions
(NMFS, DPR, SPR, GPR, and ENB) was never completed. Minor microcode errors appeared
in the microcode for 17 instructions; however, these errors did not affect the normal operation of
the C/30. The microcode for five instructions was incorrect, and could result in fatal errors; an
additional two instructions had microcode of dubious correctness. The erroneously microcoded
C/30 instructions are the topic of the next section.

7.4 C/30 Microcode Errors

Two classes of microcode errors were discovered during the course of developing the C/30 Proof.
These two classes consist of the microcode errors associated with crashsituations and the microcode
errors that lead to fatal errors.

In the MBB, the system crashes when an unrecoverable error is detected during microcode
execution; a numeric crash code is computed before the crash occurs. Such crashes cause the

27

MBB to revert to a crash state under which an MBB system programmer may perform debugging
operations. Most of the errors in the C/30 Microcode were associated with these crash situations.
In some cases, the microcode would crash after detecting such an error, but would incorrectly
set the crash code. In other cases, the microcode would not crash where a crash situation was
documented; these cases may have occurred because the documentation was overly restrictive in
defining errors, since in many of these situations crashing was not intuitively necessary. The C/30
instructions emulated by microcode containing crash-related errors are described as follows:

RETN, SRETN, IRETN, PUSHA, POPA, JMP, JST, PUSH, CALL, and POP all set
the error code to the wrong value in the event of error. The error code values for “illegal
stack pointer” and “jump to location zero” were swapped.

APR, PCB, TPR, ENB, MME, INH, and MMD did not cause a microcode crash if the
MBB was not in multiprocessing mode when the instruction was executed. In addition,
APR did not cause a crash if the process being activated was not in the idle state.

The C/30 instructions emulated by microcode containing fatal errors are described as follows:

SRC, SZC, SSC, and ACA were incorrect because of a timing error in the microcode. The
parity computation for these instructions took one more microinstruction execution cycle
than had originally been anticipated by the MBB microprogrammer(s).

SZO was assigned the wrong dispatch (microroutine) location by the microcode, off by one. Ex-
ecuting this instruction caused an “illegal instruction” trap.

LRS dispatched to one of four microprogram locations, each of which should have contained the
address of the LRS microroutine, but instead contained the value zero. No dispatch memory
location contained the real address of the LRS microroutine.

There were two problematic C/30 instructions, MEMHI and CALL, whose microcode could
not be verified correct, but whose execution would not result in errors that could be considered
fatal.

First, the MEMHLI instruction should have assigned the highest allowable main-memory ad-
dress to a C/30 register. However, the C/30 Microcode assigned the value 32K, even though the
size of the C/30 main memory is 64K. Note that this anomaly is not to be considered a fatal error,
as BBN advised us that the MBB microcode boot sequence patched the C/30 Microcode to correct
this problem in the machine we verified.

Second, the CALL instruction, after pushing a return address onto the C/30’s built-in stack,
causes the program to branch to some memory location. Consequently, the next instruction
executed would not necessarily be the instruction invoked by the call, because pushing a return
address onto the stack could overwrite this memory location (i.e. the stack top location could
overlap the memory location addressed by the CALL instruction). Note that this anomaly is also
not to be considered a fatal error, as the proper management of the stack is the responsibility of
the C/30 programmer.

All the fatal microcode errors were discussed with BBN, and were identified as being actual
errors in the version of the microcode being verified. Because of the three-year time lag between
the use of this microcode in the field and its verification, we were not surprised to learn that all

28

of the fatal microcode errors had been reported to BBN and had been corrected in newer versions
of the microcode. ’

8 Conclusions

The major successes of the C/30 Microcode Verification Project were the formal verification of
the correctness of approximately 1000 lines of C/30 Microcode (proving the correctness of the
microcode that implements a majority of the C/30’s instructions, and identifying numerous mi-
crocode errors), as well as a demonstration of SDVS’s ability to tackle large-scale verification
efforts.

With respect to the design of the computers and microprograms at issue in this study, the
correctness of hardware and software could never be certified solely by testing. However, if tests
of such descriptions or programs are coupled with formal verification in CAD/CAM or CASE
environments, then the physical implementation of computers and their software will have a much
higher probability of being correct. In particular, coupling the testing and debugging process with
microcode verification should result in microcode whose reliability is significantly increased, with
greatly reduced maintenance costs and a need for fewer microcode updates.

Other issues of concern involve aspects of SDVS and ISPS. The ISPS specifications of the MBB
and the C/30 took more than two years to write and required additional time to debug. More than
one year was required to develop the C/30 Proof and theorems, which consists of approximately
600 pages of text. The actual computer time required to check the correctness of the C/30 Proof
on a Symbolics 3640 was approximately 85 hours. Of course, the computer that verified the
C/30 Proof is now at least four years old, and we have observed current computers capable of an
eight-fold increase in the execution speed of SDVS. Further reductions in the time required for

verification can be achieved by simply having in hand the hardware and software specifications of
a given design.

All of these times could be reduced, however, because ideally hardware and software specifica-
tions would provide the basis for computer and software design, and the verification process could
be folded into the design and implementation process.

The C/30 Microcode Verification Project was completed in 1986. Since then, many improve-
ments have been made to SDVS. Given the proper data, SDVS is now capable of automatically
constructing the statement of implementation correctness. In addition, SDVS has a new translator
for a larger subset of ISPS. A formal denotational semantics [24] for the new translator has been
specified in the internal language of DENOTE [25], which automatically generates a Common Lisp
[26] implementation of the translator. Because of the inadequacies of ISPS as an HDL, VHDL
(VHSIC hardware description language) is now being considered by the developers of SDVS for
the verification of hardware designs [27, 28]. In addition, as described in [13], we have added Ada
verification capabilities to SDVS, and are continuing to incorporate larger subsets of the language.

Acknowledgments

The author thanks his colleagues Steve Crocker, Leo Marcus, Sue Landauer, Tim Redmond, and
Eve Cohen for contributing to this project in 1985-86; Mel Cutler for the ISPS description of the
C/70 MBB; the BBN employees who provided project support; and Dave Martin, Beth Levy, and
Mel Cutler for providing some of the material included in this report.

29

References

[1] Bolt, Beranek, and Newman, Inc., “C/30 Native Mode Firmware System, Programmer’s
Reference Manual,” Tech. Rep. 5000, Bolt, Beranek, and Newman, Inc., Nov. 1983. This
document contains BBN proprietary information and is not available to the public.

[2] A. Lake et al., “Flexible processor extends design options,” Computer Design, pp. 181-186,
Nov. 1981.

[3] P. Herman, M. Kraley, and R. Weissler, “MBB Microprogrammer’s Handbook,” Tech. Rep.
4268, Bolt, Beranek, and Newman, Inc., Aug. 1980. This document contains BBN proprietary
information and is not available to the public.

[4] L. Marcus, “SDVS 8 Users’ Manual,” Tech. Rep. ATR-89(4778)-4, The Aerospace Corpora—
tion, Sept. 1989.

[5] L. Marcus, T. Redmond, and S. Shelah, “Completeness of State Deltas,” Tech. Rep. ATR-
86(8454)-2, The Aerospace Corporation, 1986.

[6] M. J. C. Gordon, “HOL—a proof generating system for higher order logic,” in VLSI Spec-

ification, Verification, and Synthesis (G. Birtwistle and P. Subrahmanyam, eds.), Kluwer,
1987.

[7] W.J. Cullyer, “Implementing safety-critical systems: The VIPER microprocessor,” in VLSI

Specification, Verification, and Synthesis (G. Birtwistle and P. Subrahmanyam, eds.), Kluwer,
1987.

[8] A. Cohn, “A proof of correctness of the VIPER microprocessor: The first level,” in VLSI

Specification, Verification, and Synthesis (G. Birtwistle and P. Subrahmanyam, eds.), Kluwer,
1987. '

[9] R. S. Boyer and J. S. Moore, “A theorem-prover for recursive functions; a user;s manual,”
Tech. Rep. CSL-91, SRI International, 1979.

[10] J. Warren A. Hunt, “Fm8501: A verified microprocessor,” Tech. Rep. Technical Report 47,
Institute for Computing Science, The University of Texas at Austin, Feb. 1986.

[11] L. Marcus, S. D. Crocker, and J. R. Landauer, “SDVS: A system for verifying microcode
correctness,” in 17th Microprogramming Workshop, pp. 246-255, IEEE, Oct. 1984.

[12] L. Marcus, “SDVS 5 Users’ Manual,” Tech. Rep. TR-0086(6778)-2, The Aerospace Corpora-
tion, 1986. ‘

[13] D. F. Martin and J. V. Cook, “Adding Ada program verification capability to the State
Delta Verification System (SDVS),” in Proceedings of the 11th National Computer Security -

Conference, (Baltimore, Md.), National Bureau of Standards/National Computer Security
Center, Oct. 1988.

[14] M. M. Cutler, “Verifying implementation correctness using the State Delta Verification Sys-
tem (SDVS),” in Proceedings of the 11th National Computer Security Conference, (Baltimore,
Md.), National Bureau of Standards/National Computer Security Center, Oct.17-20 1988.

30

[15] M. R. Barbacci, G. E. Barnés R. G. Cattell, and D. P. Siewiorek, “The ISPS Computer
Description Language,” Tech. Rep. CMU-CS- 79 137 Carnegie-Mellon Un1vers1ty, Computer
Science Department, Aug. 1979.

[16] E. Cohen and J. Landauer, “Specification Problems Encountered during the Proof of the C/30
Microcode,” Tech. Rep. ATR-86(6778)-2, The Aerospace Corporation, 1986. This document
may contain BBN proprietary information.

[17] B. H. Levy, “Inadequacies of ISPS as a Specification Language for Microcode Verlﬁcatlon
Tech. Rep. ATR 86A(2778)-1, The Aerospace Corporation, 1987.

[18] S. D. Crocker and M. M. Cutler, “A Formal Description of the Microarchitecture of the C /70
Computer,” Tech. Rep. ATM 82(2920-03)-1, The Aerospace Corporation, Mar. 1982. This
document contains BBN proprietary information and is not available to the public.

[19] J. V. Cook, S. D. Crocker, and M. M. Cutler, “A Formal Description of the Micropro-
grammable Building Block Configured for the C/30 Computer,” Aerospace Technical Report
ATR-86(6771)-1, The Aerospace Corporation, 1986. This document contains BBN proprietary
information and is not available to the public.

[20] J. V. Cook, “A Formal Description of the >C/30 Virtual Computer,” Aerospace Technical
Report ATR-86(6771)-2, The Aerospace Corporation, 1986. This document may contain
BBN proprietary information.

[21] J. V. Cook, “C/30 Proof,” Tech. Rep. ATR-86(6771)-4, The Aerospace Corporation, Sept.
1986. This document contains BBN proprietary information and is not available to the public.

[22] J. V. Cook, “Final Report for the C / 30 Microcode Verification Pro ject,” Aerospace Technical
Report ATR-86(6771)-3, The Aerospace Corporation, Sept. 1986. This document may contain
BBN proprietary information.

[23] J. V. Cook, “Proof Strategy for the Verification of the C/30 Microcode,” Aerospace Technical
Report ATR-86(6778)-1, The Aerospace Corporation, Sept. 1986. This document may contain
BBN proprietary 1nf0rmat10n

[24] T. Aiken, “A Revised Formal Description of the Incremental Translation of ISPS into State
Deltas in the State Delta Verification System (SDVS),” Tech. Rep. ATR-90(5778)-1, The
Aerospace Corporation, 1990.

[25] J. V. Cook, “The Language for DENOTE (Denotational Semantics Translator Environment),”
Technical Report TR-0090(5920-07)-2, The Aerospace Corporation, 1989.

[26] Guy L. Steele Jr., Common LISP: The Language. Digital Press, 1984.

[27] B. H. Levy and 1. V. Filippenko, “A Preliminary SDVS Semantics of a VHDL Subset,” '
Technical Report ATR-88(3778)-7, The Aerospace Corporation, Aug. 1988.

[28] T. Aiken, 1. Filippenko, B. Levy, and D. Martin, “A Formal Description of the Incremental
Translation of Core VHDL into State Deltas in the State Delta Verification System (SDVS),”
Tech. Rep. ATR-89(4778)-9, The Aerospace Corporation, 1989.

31

Executive Summary

Data Categorization and Labeling
PANEL SESSION OVERVIEW

Dr. Dennis K. Branstad, Chairman
Senior Computer Science Fellow
National Institute of Standards and Technology

The purpose of a security label is to
provide information for an intended
recipient of a document or data
regarding the desired protection to be
provided. A label can explicitly state
what protection to provide, e.g., DO
NOT FOLD, MUTILATE OR DESTROY. A
label implicitly state what
protection to provide, e.g., SECRET. The

can

explicit protection requirements for
implicitly labeled data are contained in
separate legislation, policy, directives
and instructions. This session outlines
several categories of information
requiring protection and discusses
security labels for the categories that
would implicitly include the protection
required. Security labels that could be
used for routing purposes in an Internet
is presented.

I. Security Labels: Scope and Purpose

A security label is a short-hand notation
denoting either a category of
information to be protected or the
protection to be provided. IBM
PROPRIETARY and U.S. SECRET are

32

examples of the former and DO NOT
COPY is an example of the latter. The
Internet Protocol Security Optioh (iPSO)
Label is an example of an electronic
label that can be attached to every
Network Layer packet of data that
denotes its classification and certain
other relevant Security information.
This label can be used by network
intermediate systems (e.g., routers,
gateways) to determine which route a
packet will take to its destination. |

A security label should contain enough
information, either explicitly or
implicitly, for any potential, intended
receiver to know how to protect the
received data. Standards are required
for security labels so that this protection
can be universal, or nearly so. The
standards either need to specify the
fabel
completely or provide an extensible

format and contents of a

format so that the contents can vary
The
