
NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY/

NATIONAL COMPUTER SECURITY CENTER

17th NATIONAL COMPUTER SECURITY CONFERENCE

October 11-14, 1994

Baltimore Convention Center

Baltimore, Maryland

Welcome!

The National Computer Security Center (NCSC) and the Computer Systems

Laboratory (CSL) are pleased to welcome you to the Seventeenth Annual National

Computer Security Conference. There is a newsense of urgency in the U.S. and

abroad to achieve protection for the rapidly evolving information infrastructures.

This year's program is designed to provide you information on the exciting new

opportunities and the latest security technology. We believe the conference will

stimulate a copious exchange of information and promote a solid understanding of

today's information security issues andsolutions.

The program tracks have been established to serve a wide range of interests from

highly technical R&D projects to user oriented management and administration

topics. Clearly, network security is a high priority topic. The opening and closing

plenary sessions will highlight various dimensions of the security challenges in

emerging information infrastructures. Papers and panel sessions will address a broad

spectrum ofnetwork security subjects including: security architecture, internet

security, firewalls, multilevel security (MLS) products, MLS system certification and

accreditation, and security management. There will be a report on the progress and

status of the Common Criteria and efforts for international harmonization. Risk

management is a topic of increasing interest in today's difficult economic

environment. As in the past, a number of tutorials will be given to introduce

attendees to various information security topics andproduct areas.

We hope the networking conducted at the conference, the presentations and

these proceedings will provide you with insights and ideas you can apply to your

own information security endeavors. We encourage you to share the ideas and

information acquired this week with your peers, your management, andyour

customers. Through this process we will enhance the security of our information

systems and networks and build a strong foundation to meet tommorow's

challenges .

.~)~~
,~~ES H. BURROWS
{/ JAI\ Director Director

Computer Systems Laboratory National Computer Security Center

Referees

Professor Sushi I Jajodia George Mason University
Dr. Steven Kent Bolt, Barenek & Newmann
Leslee Lafountain National Security Agency
Steven Lafountain National Security Agency
Paul A. Lambert Motorola Incorporated
Dr. Carl Landwehr Naval Research Laboratory
Dr. Theodore M.P. Lee Independent Consultant
Steven B. Lipner Trusted Information Systems
Teresa Lunt SRI International
Frank Mayer The AEROSPACE Corporation
Dr. Catherine Meadows Naval Research Laboratory
William H. Murray Deloitte &Touche
Dr. Peter Neumann SRI International
Steven Padilla SPARTA, Inc.
Marybeth Panock The MITRE Corporation
Nick Pantiuk Grumman Data Systems
Donn Parker SRI International
Dr. Gopal Ramanathan The MITRE Corporation
Philip M. Roney Computer Sciences Corporation
Dr. Ravi Sandhu George Mason University
Marvin Schaefer ARCA Systems
Daniel Schnackenberg Boeing Defense and Space Group
Steven Skolochenko U.S. Department ofJustice
Bill Smith, CISSP Defense Information Systems Agency
Dr. Stuart G. Stubblebine USC Information Sciences Institute
Patricia Toth National Institute ofStandards and Technology
Captain Charles Tracey, USAF Joint Staff, Pentagon
Dr. Chii-Ren Tsai Citicorp Global Information
Kenneth R. VanWyk Defense Information Systems Agency
John Wack National Institute ofStandards and Technology
Grant Wagner National Security Agency
Major Glenn Watt, USAF U.S. STRATCOM
Howard Weiss SPARTA, Inc.
Roy Wood National Security Agency
Thomas E. Zmudzinski Defense Information Systems Agency

ii

Awards Ceremony

6:00p.m. Thursday, October 13
Convention Center, Room 317

A joint awards ceremony will be held at which the National Institute of
Standards and Technology (NIST) and the National Computer Security Center (NCSC) will
honor the vendors who have successfully developed products meeting the standards of the
respective organizations.

The NCSC recognizes vendors who contribute to the availability of trusted
products and thus expand the range of solutions from which customers may select to secure
their data. The products are placed on the Evaluated Products List (EPL) following a
successful evaluation against the Trusted Computer Systems Evaluation Criteria including
its interpretations: Trusted Database Interpretation, Trusted Network Interpretation, and
Trusted Subsystem Interpretation. Vendors who have completed the evaluation process will
receive a formal certificate of completion from the Director, NCSC marking the addition to
the EPL. In addition, vendors will receive honorable mention for being in the final stages of
an evaluation as evidenced by transition into the Formal Evaluation phase or for placing a
new release of a trusted product on the EPL by participation in the Ratings Maintenance
Program. The success of the Trusted Product Evaluation Program is made possible by the
commitment of the vendor community.

The Computer Security Division at NIST provides validation services to test
vendor implementations for conformance to security standards. NIST currently maintains
validation services for three Federal Information Processing Standards (FIPS): FIPS 46-2,
Data Encryption Standard (DES); FIPS 113, Computer Data Authentication; and FIPS 171,
Key Management Using ANSI X9.17. During this award ceremony, NIST presents
"Certificate of Appreciation" awards to those vendors who have successfully validated their
implementation of these standards.

With the reaffirmation of the Data Encryption Standard as FIPS 46-2 in 1993,
DES can now be implemented in software, as well as hardware and firmware. To successfully
validate an implementation for conformance to FIPS 46-2, a vendor must run the Monte
Carlo test as described in NBS (NIST) Special Publication 500-20. The Monte Carlo test
consists of performing eight million encryptions and four million decryptions, with two
encryptions and one decryption making a single test.

Vendors test their implementations for conformance to FIPS 113 and its
American National Standards Institute (ANSI) counterpart, ANSI X9.9, Financial
Institution Message Authentication (Wholesale). This is done using an electronic bulletin
board system. Interactive validation requirements are specified in NBS (NIST) Special
Publication 500-156, Message Authentication Code (MAC) Validation System:
Requirements and Procedures. The test suite is composed of a series of challenges and
responses in which the vendor is requested to either compute or verify a MAC on given data
using a specified key which was randomly generated.

Conformance to FIPS 171 is also tested using an interactive electronic bulletin
board testing suite. FIPS 171 adopts ANSI X9.17, Financial Institution Key Management
(Wholesale). ANSI X9.17 is a key management standard for DES-based applications. The
tests are defined in a document entitled NIST Key Management Validation System Point-to
Point (PTP) Requirements. The test suite consists of a sequence of scenarios in which
protocol messages are exchanged under specified conditions.

We congratulate all who have earned these awards.

iii

17th National Computer Security Conference
Table ofContents

Refereed Papers

RESEARCH AND DEVELOPMENT, TRACK A

Testing Intrusion Detection Systems: Design Methodologies and
Results from an Early Prototype . 1

Nicholas Puketza, Biswanath Mukherjee, Ronald A. Olsson, Kui Zhang,
University of California, Davis

A Pattern Matching Model for Misuse Intrusion Detection . 11
Sandeep Kumar, Eugene H. Spafford, Purdue University

Artificial Intelligence and Intrusion Detection: Current and Future
Directions . 22

Jeremy Frank, University of California, Davis

A Three Tier Architecture for Role-Based Access Control . 34
Ravi S. Sandhu, Hal Feinstein, SETA Corporation

Using THETA to Implement Access Controls for Separation of Duties 4 7
Rita Pascale, Joseph R. McEnerney, Odyssey Research Associates

Implementing Role Based, Clark-Wilson Enforcement Rules in a
B1 On-Line Transaction Processing System . 56

Barbara Smith-Thomas, AT&T Bell Laboratories; Wang Chao-Y euh,
Wu Yung-Sheng, Institute for Information Industry, Taiwan

Virtual View Model to Design a Secure Object-Oriented Database 66
N. Boulahia-Cuppens, F. Cuppens, A. Gabillon, K. Yazdanian,

ONERA/CERT, France

Achieving Database Security Through Data Replication: The SINTRA
Prototype . 77

Myong H. Kang, Judith N. Froscher, John McDermott, Oliver Costich,
Rodney Peyton, Naval Research Laboratory

The SeaView Prototype: Project Summary . 88
Teresa F Lunt, Peter K. Boucher, SRI International

Towards a Formal Verification of a Secure and Distributed
System and its Applications . 103

Cui Zhang, Rob Shaw, Mark R. Heckman, Gregory D. Benson,
Myla Archer, Karl Levitt, Ronald A. Olsson,
University of California, Davis

Making Secure Dependencies over a LAN Architecture for Security Needs 114
Bruno d' Ausbourg, CERT/ONERA, France

iv

Refereed Papers (Cont'd)

Automatic Generation of High Assurance Security Guard Filters 123

Vipin Swarup, The MITRE Corporation

Belief in Correctness . 132

Marshall D. Abrams, The MITRE Corporation;

Marvin V. Zelkowitz, University of Maryland, College Park

Towards a Privacy-Friendly Design and Use of IT-Security Mechanisms 142

Simone Fischer-Hubner, University of Hamburg

Using a Semiformal Security Policy Model2C a C2 Better 153

Marvin Schaefer, ARCA Systems, Inc.;

Gary R. Grossman, Jeremy J. Epstein, Cordant, Inc.

ARCHITECTURE AND STANDARDS, TRACK B

A Taxonomy for Security Standards . 165

Wayne A. Jansen, NIST

The Graphical Display of a Domain Model oflnformation Systems Security

(INFOSEC) Through Semantic Networks: A Description of the INFOSEC

Semantic Network for Information Systems Security Engineers 175

Teresa T. Smith, Kathleen V. Dolan, National Security Agency

A New Attack on Random Pronounceable Password Generators 184

Ravi Ganesan, Chris Davies, Bell Atlantic

Development History for Procurement Guidance Using the Trusted

Computer System Evaluation Criteria . 198

Major Melvin L. DeVilbiss, USA, National Security Agency

Exporting Evaluation: an analysis of US and Canadian criteria for trust 206

Paul A. Olson

What Color is Your Assurance? . 215

David R. Wichers, Joel E. Sachs, Douglas J. Landoll, ARCA Systems, Inc.

BFE Applicability to LAN Environments . 227

Tom Benkart, ACC Network Systems; Dave Bitzer, National Security

Agency

The Architecture of Triad: A Distributed, Real-Time, Trusted System 237

E John Sebes, Nancy Kelem, Terry C. Vickers Benzel, Mary Bernstein,

Eve Cohen, Jeff Jones, Jon King, Trusted Information Systems, Inc.; Michael

Barnett, David M. Gallon, Roman Zacjew, Locus Computing Corporation

Constructing a High Assurance Mail Guard . 247

Richard E. Smith, Secure Computing Corporation

v

Refereed Papers (Cont'd)

APPLICATIONS AND INTEGRATION, TRACK C

Controlled Execution UNIX . 254

Lee Badger, Homayoon Tajalli, David Dalva, Daniel Sterne,

Trusted Information Systems, Inc.

Architectures for C2 DOS/Windows-Based Personal Computers, Securing an
"Unsecurable" Operating System . 264

Jeremy Epstein, Gary Grossman, Frederick Maxwell, Noble V eirs III,

Albert Donaldson, Cornelius Haley, Cordant, Inc.

A Practical Hardware Device for System and Data Integrity as well as

Malicious Code Protection . 274

T.E. Elliott, Department ofNational Defence, Canada

Partitioning the Security Analysis of Complex Systems 283

Howard Holm, National Security Agency

The Composition Problem: An Analysis . 292

Guy King, Computer Sciences Corporation

Making Do With What You've Got . 299

Janis W. Berryman, The Boeing Company;

Bruce F. Kennedy, Cubic Applications, Inc.

Modern Multilevel Security (MLS): Practical Approaches for Integration,
Certification, and Accreditation . 309

Bill Neugent, Mike Burgoon, Jeanne Firey, Mindy Rudell, The MITRE

Corporation

Applying COMPUSEC to the Battlefield . 318

Diane M. Bishop, Stephen R. Arkley, Computer Sciences Corporation

Security Requirements for Customer Network Management in

Telecommunications . 327

Vijay V aradharajan, Hewlett-Packard Labs, UK

Support for Security in Distributed Systems Using MESSIAHS 339

Steve J. Chapin, Kent State University

Eugene H. Spafford, Purdue University

A Technical Approach for Determining the Importance oflnformation in
Computerized Alarm Systems . 348

DavidS. Fortney, Lawrence Livermore National Laboratory,

Judy J. Lim, Lim and Orzechowski Associates

vi

Refereed Papers (Cont'd)

ASAM: A Security Certification and Accreditation Support Tool for DoD
Automated Information Systems . 358

Loreto Remorca, Jr., William Barr, Secure Solutions, Inc.;
Robert Zomback, U.S. Army CECOM, Space and Terrestrial Communications
Directorate; V. Michael Caputo, MICON Services Company

A Financial Management Approach for Selecting Optimal, Cost-Effective
Safeguards Upgrades for Computer- and Information-Security Risk
Management . 370

· Suzanne T. Smith, Barranca Inc.; Stephen Gale, William J. Malampy,
University ofPennsylvania

MANAGEMENT AND ADMINISTRATION, TRACK D

The Electronic Intrusion Threat toNational Security & Emergency
Preparedness Telecommunications: An Awareness Document 378

Dr. Joseph Frizzel, National Communications System;
Ted Phillips, Traigh Groover, BoozAllen & Hamilton, Inc.

Using Application Profiles to Detect Computer Misuse . 400
Nancy L Kelem, Daniel F. Sterne, David I. Dalva, Kenneth M. Walker, Trusted
Information Systems, Inc., Debra Anderson, Harold J avitz, Alfonso Valdes, SRI
International, Linda L. Lankewicz, Glenn Bell, Spring Hill College

Can Computer Crime be Deterred? . 412
Sanford Sherizen, Ph.D., Data Security Systems, Inc.

Demonstrating the Elements of Information Security with Threats 421
Donn B. Parker, SRI International

The Aerospace Risk Evaluation System (ARiES): Implementation of a
Quantitative Risk Analysis Methodology for Critical Systems 431

Charles H. Lavine, Anne M. Lindell, Sergio B. Guarro,
The Aerospace Corporation

The Security-Specific Eight Stage Risk Assessment Methodology 441
David L. Drake, Katherine L. Morse, Science Applications International
Corporation

Security Awareness and the Persuasion of Managers . 451
Dennis F. Poindexter, Center for Information Systems Security

The Network Memorandum of Agreement (MOA) Process: Lessons Learned 459
William C. Barker, Lisa M. Jaworski, Geroge R. Mundy, Trusted
Information Systems, Inc.

Independent Validation and Verification of Automated Information
Systems in the Department of Energy . 468

William J. Hunteman, Los Alamos National Laboratory;
Robert Caldwell, Department of Energy

vii

Panel Summaries

RESEARCH AND DEVELOPMENT, TRACK A

Fuzzy Security: Formalizing Security as Risk Management 478

Security is Risk Management . 480

Ruth Nelson, Chair, Information System Security

Fuzzy Policies . 482

Hilary H. Hosmer, Data Security, Inc.

John McLean, Naval Research Laboratory

Sergei Ovchinnikov, San Francisco State University

Assurance, Risk Assessment, and Fuzzy Logic . 483

Using Fuzzy Logic in Formal Security Models . 486

Role Based Access Control, Its Structure, Mechanisms and Environment 488

Hal Feinstein, Chair, SETA Corporation

Role-Based Access Control Position Paper . 491

Marshall D. Abrams, The MITRE Corporation

Ravi S. Sandhu, George Mason University

David Ferraiolo, NIST

Role-Based Access Control, A Position Statement . 492

Role-Based Access Control, Position Statement . 493

Inference Problem in Secure Database Systems . 494

Bhavani Thuraisingham, Chair, The MITRE Corporation

An Inference Paradigm1 • • • • . • . . • • • • • • • • • • • . • • . • • . • . • • • . • • . • . • • . . • . . 497

Donald G. Marks, Department of Defense

Teresa F. Lunt, SRI International

Thomas H. Rinke, Harry S. Delugach, University of Alabama

The Inference Problem: A Practical Solution . 507

Security-Oriented Database Inference Detection . 510

Key Escrowing: Today and Tomorrow 514

Miles E. Smid, Chair, NIST

The Target System . 514

Jan Manning, National Security Agency

Mike Glimore, Federal Bureau oflnvestigation

Procedures for Lawful Interception of Telecommunications 514

Future Considerations for Key Escrowing . 514

Dr. Dorothy Denning, Georgetown University

The Security Association Management Protocol Panel . 515

Major Terry Hewitt, USAF, Chair, National Security Agency

Position Paper . 517

James Leppek, Harris Corporation

Dave Wheeler, Motorola

Position Paper . 518

1. Refereed paper

viii

Panel Summaries

Highlights of the New Security Paradigms '94 Workshop . 519

Eric Leighninger, chair

Formal Semantics of Confidentiality in Multilevel Logic Databases 520

Adrian Spalka, University of Bonn, Germany

Daniel J. Essin, University of Southern California; Thomas L.

Lincoln, The RAND Corporation

John Dobson, University of Newcastle, UK

Healthcare Information Architecture: Elements of aNew Paradigm 532

Communication, Information Security and Value . 554

Fuzzy Patterns in Data--Anomaly Detection . 566

T. Y. Lin, San Jose State University

ARCHITECTURE AND STANDARDS, TRACK B

The Development of Generally Accepted System Security Principles (GSSP),

NIST's Approach . 581

Marianne Swanson, Chair, NIST

Viewpoint . 581

Will Ozier, ISSA GSSP Committee Chair

Marianne Swanson, NIST

Ed Roback, NIST

Barbara Guttman, NIST

Viewpoint . 581

Viewpoint . 581

Viewpoint . 581

Product and System Certification in Europe . 582

Klaus J. Keus, Chair, BSI, Germany

Status of European Certification Schemes and Mutual Recognition 582

Angelika C. Jennen, BSI, Germany

Jeremy Wilde, Logica, UK

Security Evaluations in the Netherlands--An evaluators view on

Netherlands

Laurent Borowski, CR2A, France

The relation between Correctness and Effectiveness in System

Mats Ohlin, Electronic Systems Directionate, Sweden

Peter Cambell-Burns, Admiral Management Services Limited, UK

Certification Maintenance under ITSEC . 583

globalization of evaluations . 583

Dr. PaulL. Overbeek, TNO Physics and Electronics Laboratory, The

Effectiveness in French Evaluations . 583

Composition . 584

Evaluation of Platform Independence . 584

Vendor Assurance vs. 3rd Party Evaluation: A Constructive Approach 585

Dr. Heinrich Kersten, BSI, Germany

ix

Panel Summaries (Cont'd)

New Concepts in Assurance Panel 586

Pat Toth, Chair, NIST

Viewpoint . 586

. L~nne Ambuel, National Security Agency

Deitra Kimpton, CSE, Canada

. K~n Rochon, National Security Agency

Karen Ferraiolo, ARCA Systems

V1ewpo1nt , . 586

Viewpoint . 586

V 1ewpo1nt . 586

New Challenges for C&A: The Price oflnterconnectivity and
Interoperability . 587

Ellen Flahavin, Co-chair, NIST

Joel Sachs, Co-chair, ARCA

The Department of Defense Goal Security Architecture (DGSA) 588

W. Timothy Polk, Chair, NIST

The Department of Defense Goal Security Architecture 588

Richard McAllister, National Security Agency

Carl Deutsch, National Security Agency

Janice Schafer, Defense Information Systems Agency

Jim Coyle, Booz-Allen & Hamilton

The DGSA Overall Transition Strategy . 588

Security Standards for DGSA-based Architectures . 588

DGSA's Applicability to non-DoD Envirnoments . 588

Multilevel Security--Current Applications and Future Directions 589

Colonel J. Sheldon, USA, Chair, DISA/CISS

Viewpoint . 589

John Wiand, USSOCOM

Russ Myers, USACOM

Emily Klutz, USACOM

Lieutenant Colonel Tom Surface, USPACOM

Major Kevin Newland, USSPACECOM

Viewpoint . 589

Viewpoint . 589

Viewpoint . 589

Viewpoint . 589

Viewpoint . 590

Mr. Paul Woodie, National Security Agency

Viewpoint . 590

Mr. Charles West, DISA

X

Panel Summaries (Cont'd)

Prominent Industry-Sponsored Security Architectures Currently Under
Development . 592

Michael McChesney, Chair, Secure Ware, EGSA

Viewpoint . 596

Roger Schell, Novell

Bill Dwyer, Hewlett-Packard

Viewpoint . 598

APPLICATIONS AND INTEGRATION, TRACK C

Can Your Net Work Securely? . 599

Peter G. Neumann, Chair, SRI International

How to Trust a Distributed System . 600

B. Clifford Neuman, USC, Information Sciences Institute

Internet Firewalls . 602

John Wack, Chair, NIST

Proven Detection Tools for Intrusion Prevention . 603

Michael Higgins, chair, Defense Information Systems Agency

MLS System Solutions -A Continuing Debate Among The Critical Players 604

Joel E. Sachs, ARCA Systems, Inc.

Trusted Systems Interoperability Group

Stan Wisseman, Chair, ARCA Systems, Inc. 607

Historical Perspective 610

Paul Cummings, Digital Equipment Corporation

Ron Sharp, AT&T Bell Laboratories

Charlie Watt, SecureWare

JeffEdelheit, The MITRE Corporation

Stan Wisseman, ARCA Systems, Inc.

George Mitchell, NCSC

Common Internet Protocol Security Option 613

Trusted Security Information Exchange for Restricted Environments 614

Trusted Administration Working Group 616

Trusted Applications Working Group 618

Government Perspective 619

xi

Panel Summaries (Cont'd)

NSA Concurrent Systems Security Engineering Support to the MLS
TECHNET Program . 620

Bradley Hildreth, Chair, National Security Agency

Viewpoint . 624

Mary Mayonado, Eagan, McAllister Associates, Inc

Teresa Acevedo, Pulse Engineering, Inc.

Jenny Himes, National Security Agency

Gregory Wessel, National Security Agency

Randy Blair, National Security Agency

Richard White, Air Force Information Warfare Center

George Hurlburt, Naval Air Warfare Center

Viewpoint . 626

Viewpoint . 628

Viewpoint . 629

Viewpoint ; . 630

Viewpoint . 631

Viewpoint . 633

Provisions to Improve Security on the Internet . 635

Dr. Harold Highland, Chair, Computers & Security

Viewpoint . 636

Dr. Harold Highland, Computers & Security

Frederick Avolio, Trusted Information Systems, Inc.

Matt Bishop, University of California, Davis

William R. Cheswick, AT&T Bell Laboratories

Colonel Frederick A. Kolbrener, U.S. Army

Viewpoint • . 639

Viewpoint . 641

Dr. Stephen Bellovin, AT&T Bell Laboratories

Viewpoint . 643

Viewpoint . 645

Viewpoint . 647

Dr. Jon David, The Fortress

Viewpoint . 650

Viewpoint . 652

A. Padgett Peterson, Martin-Marietta Information Group

xii

Panel Summaries (Cont'd)

MANAGEMENT AND ADMINISTRATION, TRACK D

Model Information Security Programs . 654

Richard W. Owen, Jr., Chair, Office of the Attorney General, Texas

Viewpoint Academia . 654

Stephen J. Green, University of Houston

Genevieve M. Burns, Monsanto Company

Philip L. Sibert, U.S. Department of Energy

Jan W. Wright, Information Resources Commission, Florida

Viewpoint Commercial . 655

Viewpoint Federal . 655

Viewpoint State . 656

Interdisciplinary Perspectives on InfoSec: Bringing the Humanities into
Cyberspace . 657

Michel E. Kabay, Chair, National Computer Security Association and

JINBU Corporation, Canada

An Anthropological View: Totem and Taboo in Cyberspace2 658

Michel E. Kabay, National Computer Security Association and

JINBU Corporation, Canada

Philosophy of Law and InfoSec: Justifying Morality in Cyberspace 669

Virginia Black, Pace University

Percy Black, Pace University

James P. Craft, Systems Research and Applications Corporation

Psychology and InfoSec: Improving Compliance with InfoSec Policies . . . 675

Military Science and Information Security . 681

Ethical Issues in the National Information Infrastructure 685

Jim Williams, Chair, The MITRE Corporation

Medical Information Privacy, Current Legislative and Standards Activities 688

Marc Schwartz, Support Medical Systems, Inc.,Chair

Viewpoint . 690

Robert Gellman, United States House ofRepresentatives

Molla Donaldson, National Academy of Sciences

Dale Miller, Irongate, Inc.

Viewpoint . 692

Viewpoint . 694

Viewpoint ·... 695

C. Peter Waegemann, Medical Records Institute

Viewpoint . 696

Gerald S. Lang, The Harrison Avenue Corporation

Privacy and the Handling ofPatient Related Information in thePublic

Swedish Health Care System3 . 699

TorleifOlhede, Stockholm University, Sweden

2. Refereed paper

3. Refereed paper

xiii

Panel Summaries (Cont'd)

Computer Crime on the Internet . 713

Christine Axsmith, Esq., Chair, Man Tech Strategies Associates

Viewpoint . 714

Donn Parker, SRI International

Mark Pollitt, Federal Bureau oflnvestigation

Ted Chambers, Scientific Computer Support Team

Barbara Fraser, Carnegie Mellon

Martin Schoffstall, Performance Systems International

Mark Fedor, Performance Systems International

Viewpoint . 714

Viewpoint . 714

Viewpoint . 715

Viewpoint . 715

Viewpoint . 716

Do You Have the Skills to be a Future INFOSEC Profession 717

Dr. William (Vic) Maconachy, Chair, Center for Information

Systems Security

Computers at Risk Recommendations: Are They Still Valid? 723

Hal Tipton, Chair, HFT Associates

Viewpoint . 724

Will Ozier, Ozier Peterse & Associates

Earl Boebert, Secure Computing Corporation

Steve Walker, Trusted Information Systems

Viewpoint . 724

Viewpoint . 725

Objectives and Progress of the GSSP Committee . 727

TUTORIALS & PRESENTATIONS, TRACK E

Tutorial Series on Trusted Systems and Operational Security 731

R. Kenneth Bauer, Joel Sachs, Dr. Eugene Schultz, Dr. Gary Smith,

Jeff Williams, ARCA Systems, Inc.; Chris Bressinger, DoD Security Institute;

Dr. Charles Abzug, LtCdr Alan Liddle, National Defense University

Security Information for the Asking: The Untapped InformationPotential

Awaiting the Security Practitioner . 733

Kathie Everhart, NIST

Marianne Swanson, NIST

Bob Lau, National Security Agency

Nickilyn Lynch, NIST

Viewpoint . 733

Viewpoint . 733

Viewpoint . 734

Viewpoint . 734

xiv

Panel Summaries (Cont'd)

SPECIAL SESSIONS AND DEMONSTRATIONS

International Harmonization: The Common Criteria--Progress and Status 735

Eugene Troy, Chair, NIST

Security Requirements for Distributed Systems . 738

Robert Dobry, Chair, National Security Agency

Th~ Application of Electronic Groupware Tools to Address IT Security

Challenges . 739

Dennis Gilbert, Demonstration Coordinator, NIST

The Learning Track . 740

Joan Pohly, FISSEA Chair

Dorothea deZafra, Public Health Service

Barbara Cuffle, Social Security Administration

Joan Hash, Social Security Administration

Janet Jelen, Public Health Service

Anthony Stramella, National Cryptologic School

Sadie Pitcher, Department of Commerce

Information Systems Professionalism--Professional Development and

Richard Koenig, Harold Tipton, International Information Systems

Security Certification Consortium

Richard Koenig, International Information Systems Security Certification

Consortium

Training Challenges of the 90's . 740

Proposed New NIST Training Standards . 741

Computer Security Resources that Work . 741

Effective Marketing of the Computer Security Program to Management . 741

Tools and Methodologies for Delivering Training . 741

Demonstrations on Computer Security Training Tools 741

Training Events on a Shoestring Budget . 741

Adult Learning and Information Systems Security Training 742

Dr. Eugene V. Martin, Organization and Education Consultant

Certification . 742

Computer Ethics for Future Generations . 742

XV

Authors and Panelists Cross Index

Abrams, Marshall D. 132, 491

Abzug, Dr. Charles 731

Acevedo, Teresa 626

Ambuel, Lynne 586

Anderson, Debra 400

Archer,Myla 103

Arkley, Stephen R. 318

Axsmith, Christine, Esq. 713

Avolio, Frederick 639

Badger, Lee 254

Barker, William C. 459

Barnett, Michael 237

Barr, William 358

Bauer, R. Kenneth 731

Bell, Glenn 400

Bellovin, Stephen 641

Benkart, Tom 227

Benson, Gregory D. 103

Vickers Benzel, Terry C. 237

Bernstein, Mary 237

Berryman, Janis W. 299

Bishop, Diane M. 318

Bishop, Matt 643

Bitzer, Dave 227

Black, Percy 675

Black, Virginia 669

Blair, Randy 630

Boebert, Earl 725

Borowski, Laurent 583

Boucher, Peter K. 88

Burns, Genevieve M. 655

Boulahia-Cuppens, N. 66

Bressinger, Chris 731

Burgoon, Mike 309

Caldwell, Robert 468

Cambell-Burns, Peter 584

Caputo, V. Michael 358

Chambers, Ted 715

Chao-Y euh, Wang 56

Chapin, Steve J. 339

Cheswick, William R. 645

Cohen, Eve 237

Costich, Oliver 77

Coyle, Jim 588

Craft, James P. 681

Cuffle, Barbara 741

Cummings, Paul 610

Cuppens, F. 66

Dalva, David I. 254, 400

d'Ausbourg, Bruno 114

David, Jon 64 7

Davies, Chris 184

Delugach, Harry S. 510

Denning, Dr. Dorothy 514

Deutsch, Carl 588

DeVilbiss, M. L., Major USA . . 198

deZafra, Dorothea 741

Dobry, Robert 738

Dobson, John 554

Dolan, Kathleen V. 175

Donaldson, Albert 264

Donaldson, Molla 692

Drake, David L. 441

Dwyer, Bill 598

Edelheit,Jeff 616

Elliott, T. E. 27 4

Epstein, Jeremy 153,264

Essin, Daniel J. 532

Everhart, Kathie 733

Fedor, Mark 716

Feinstein, Hal 34, 488

Ferraiolo, David 493

Ferraiolo, Karen 586

Firey, Jeanne 309

Fischer-Hubner, Simone 142

Flahavin, Ellen 587

Fortney, DavidS. 348

Frank,Jeremy 22

Fraser, Barbara 715

Frizzel, Dr. Joseph 378

Froscher, Judith N. 77

Gabillon, A. 66

Gale, Stephen 370

Gallon, David M. 237

Ganesan, Ravi 184

Gellman, Robert 690

xvi

Authors and Panelists Cross Index

Gilbert, Dennis 739
Glimore, Mike 514
Green, Stephen J. 654
Groover, Traigh 378
Grossman, Gary 153,264
Guarro, Sergio B. 431
Guttman, Barbara 581
Haley, Cornelius 264
Hash, Joan 741
Heckman, Mark R. 103
Hewitt, Terry, Major USAF . . . 515
Higgins, Michael 603
Highland, Harold , FICS . . 635, 636
Hildreth, Bradley 620
Himes, Jenny 628
Rinke, Thomas H. 510
Holm, Howard 283
Hosmer, Hilary H. 482
Hunteman, WilliamJ. 468
Hurlburt, George 633
Jansen, WayneA. 165
Javitz, Harold 400
Jaworski, Lisa M. 459
Jelen, Janet 7 41
J ennen, Angelika C. 582
Jones, Jeff 237
Kabay, MichelE 657,658
Kang, Myong H. 77
Kelem, Nancy 237,400
Kennedy, Bruce F. 299
Kersten, Dr. Heinrich 585
Keus, Klaus J. 582
Kimpton, Deitra 586
King, Guy 292
King, Jon 237
Klutz, Emily 589
Koenig, Richard 7 42
Kolbrener, F. A., COL USA . . . 650
Kumar, Sandeep 11
Landoll, Douglas J. 215
Lang, GeraldS. 696
Lankewicz, Linda L. 400
Lau, Bob . 734

xvii

Lavine, Charles H. 431
Leighninger, Eric 519
Leppek, James 517
Levitt, Karl 103
Liddle, Alan, LtCdr 731
Lim, Judy J. 348
Lin, T. Y. 566
Lincoln, Thomas L. 532
Lindell, Anne M. 431
Lunt, Teresa F. 88, 507
Lynch, Nickilyn 734
Maconachy, Dr. William (Vic) . 717
Malampy, William J. 370
Manning, Jan 514
Marks, Donald G. 497
Martin, Dr. Eugene V. 742
Mayonado, Mary 624
Maxwell, Frederick 264
McAllister, Richard 588
McChesney, Michael 592
McDermott, John 77
McEnerney, Joseph R. 4 7
McLean, John 483
Miller, Dale 694
Mitchell, George 619
Morse, Katherine L. 441
Mukherjee, Biswanath 1
Mundy, Geroge R. 459
Myers, Russ 589
Nelson, Ruth 4 78, 480
Neugent, Bill 309
Neuman, B. Clifford 600
Neumann, Peter G. 599
Newland, Major Kevin 589
Ohlin, Mats 584
Olhede, Torleif 699
Olson, Paul A. 206
Olsson, Ronald A. 1, 103
Ovchinnikov, Sergei 486
Overbeek, Dr. PaulL. 583
Owen, Jr., Richard W. 654
Ozier, Will 581, 724
Parker, Donn 421, 714

Authors and Panelists Cross Index

Pascale, Rita 47
Peterson, A. Padgett 652
Peyton, Rodney 77
Phillips, Ted 378
Pitcher, Sadie 741
Pohly, Joan 740
Poindexter, Dennis F. 451
Polk, W. Timothy 588
Pollitt, Mark 714
Puketza, Nicholas 1
Remorca, Jr., Loreto 358
Roback, Ed 581
Rochon, Ken 586
Rudell, Mindy 309
Sachs, Joel E. . . . 215, 587, 604, 731
Sandhu, Ravi S. 34, 492
Schaefer, Marvin 153
Schafer, Janice 588
Schell, Roger 596
Schoffstall, Martin 716
Schultz, Dr. Eugene 731
Schwartz, Marc 688
Sebes, E. John 237
Sharp, Ron 613
Shaw, Rob 103
Sheldon, J ., COL USA, 589
Sherizen, Sanford Ph.D., 412
Sibert, Philip L. 655
Smid, Miles E. 514
Smith, Dr. Gary 731
Smith, Richard E. 247
Smith, Suzanne T. 370
Smith, Teresa T. 175
Smith-Thomas, Barbara 56
Spalka, Adrian 520
Spafford, Eugene H. 11,339
Sterne, Daniel 254, 400
Stramella, Anthony 741
Surface, Tom, LTCOL, USA . . . 589
Swanson, Marianne 581, 734
Swarup, Vipin 123
Tajalli, Homayoon 254
Tipton, Harold 723,742

Thuraisingham, Bhavani 494
Toth, Pat . 586
Troy, Eugene 735
V aides, Alfonso 400
Varadharajan, Vijay 327
Veirs III, Noble 264
Wack,John 602
Waegemann, C. Peter 695
Walker, Kenneth M. 400
Walker, Steve 727
Watt, Charlie 614
W esse I, Gregory 629
West, Charles 590
Wheeler, Dave 518
White, Richard 631
Wiand, John 589
Wichers, David R. 215
Wilde, Jeremy 583
Williams, Jeff 731
Williams, Jim 685
Wisseman, Stan 607, 618
Woodie, Paul 590
Wright, Jan W. 656
Yazdanian, K. 66
Yung-Sheng, Wu 56
Zacjew, Roman 237
Zelkowitz, Marvin V. 132
Zhang, Cui 103
Zhang, Kui . 1
Zomback, Robert 358

xviii

Testing Intrusion Detection Systems:

Design Methodologies and Results from an Early Prototype

Nicholas Puketza Biswanath Mukherjee Ronald A. Olsson

Kui Zhang

Department of Computer Science

University of California, Davis

Davis, CA 95616

June 23, 1994

Abstract

An Intrusion Detection System (IDS) is a. program or set of programs that detects unauthorized uses
of computers. As the use of IDSs increases, the need for sound methodologies and tools for testing IDSs
is also growing. This paper discusses our development of a. software platform that can be used to simulate
intrusions in the course of testing IDSs. The platform, which is built on top of the Unix expect"a.nd Tel
packages, a.llows a. user to create their own intrusion scripts. The platform supports the parallel execution
of several scripts, so that coordinated intrusions with multiple targets can be simulated. Synchronization
mechanisms in the platform are provided so that pa.ra.llel script tests are reproducible. We are using
the platform to create a.n initial set of test scripts, and we intend to extend this initial script set into a.
benchmark suite for IDSs. Research in testing methodology for IDSs is guiding the development of our
script set. The paper includes results from tests on actual IDSs using our current script set.

Point of Contact: Biswanath Mukherjee

e-mail: mukherje@cs.ucdavis.edu

tel: (916) 752-4826

fax: (916) 752-4767

1

mailto:mukherje@cs.ucdavis.edu
http:expect"a.nd

Testing Intrusion Detection Systems:

Design Methodologies and Results from an Early

Prototype

Abstract

An· Intrusion Detection System (IDS) is a program or set of programs that detects unauthorized uses
of computers. As the use of IDSs increases, the need for sound methodologies and tools for testing IDSs
is also growing. This paper discusses our development of a software platform that can be used to simulate
intrusions in the course of testing IDSs. The platform, which is built on top of the Unix expect and Tel
packages, allows a user to create their own intrusion scripts. The platform supports the parallel execution
of several scripts, so that coordinated intrusions with multiple targets can be simulated. Synchronization
mechanisms in the platform are provided so that parallel script tests are reproducible. We are using
the platform to create an initial set of test scripts, and we intend to extend this initial script set into a
benchmark suite for IDSs. Research in testing methodology for IDSs is guiding the development of our
script set. The paper includes results from tests on actual IDSs using our current script set.

Keywords: Intrusion Detection, Testing, Synchronization

1 INTRODUCTION

An intrusion detection system (IDS) is a program or set of programs that attempts to identify individuals
who are using a computer system without authorization and those who have legitimate access to the system
but are misusing their privileges [Ande90, Mukh94]. Some IDSs monitor a single host, while others monitor
several hosts connected by a network. IDSs are now being developed and used at several institutions.

As IDSs are used more and more, the need to develop tools and methods for testing IDSs is growing.
This paper discusses our efforts to address that need. Specifically, we are creating a software platform for
simulating intrusions. Users of the platform can create their own intrusion scripts and then run them to
test the ability of their IDS to detect those intrusions. We are also using this platform to develop an initial
set of intrusion scripts that simulate intrusions on Unix systems. The development of the script set is being
guided by research into testing methods and concepts. We intend to extend the script set into a benchmark
suite that can measure several aspects of the behavior of an IDS while it is running. Finally, we are testing
actual IDSs to verify the usefulness of our approaches. For example, we have obtained some quantitative
results from "stress-testing" two different IDSs.

To provide some background, Section 2 of this paper discusses the characteristics of IDSs in general. Section
3 describes the software platform development. Section 4 discusses the initial set of test scripts. Section
5 covers testing methods and concepts. Section 6 describes the development of the IDS benchmark suite.
Section 7 presents some initial results from testing actual IDSs. Section 8 concludes the paper.

2 INTRUSION DETECTION

The prevalence and ease of use of networking to provide remote access to computers has brought with it a set
of previously unanticipated problems. Computer system managers worldwide are extremely concerned with
the problem of intrusions, which are unwanted and unauthorized uses of their systems to gain access to (and
sometimes to modify) the behavior of their computing resources. These intrusions have often appeared in
even the popular news media and have discouraged many organizations from obtaining network connections.

2

3

Computer intrusions can range from the subtle (e.g., a user accessing his/her boss' employee reviews) to
the extreme as in the actions of the "Wily Hacker" (in Cliff Stoll's book, The Cuckoo's Egg [Stol89]),' where
the purpose of the intrusion was to gain unauthorized access to information on a number of computers in a
network.

Examples of intrusions that concern system administrators include:

• 	 unauthorized modifications of system files so as to permit unauthorized access to either system or user
information;

• 	 unauthorized access or modification of user files or information;

• 	 unauthorized modifications of tables or other system information in network components (e.g., modi
fications of router tables in a network to deny use of the network); and

• 	 unauthorized use of computing resources (perhaps through the creation of unauthorized accounts or
perhaps through the unauthorized use of existing accounts).

A common element in many of the intrusions of interest is that a single user will often attempt to intrude
upon multiple resources in a network. For example, the "Wily Hacker" attempted to use the network to gain
access to many sensitive computers on the Internet. Often, detecting the intrusion can be made significantly
easier by compiling and integrating evidence of such intrusion attempts across the network rather than
attempting to assess the situation from the vantage point of only a single host. For example, an attacker
may make only a single attempt at guessing a password for each host computer. Thus, from the vantage
point of each of the hosts, each break-in attempt may appear to be a very normal mistake. However, by
integrating these observations over the multiple target hosts, it becomes clear that a single attacker is making
a concerted attempt to break in somewhere, by looking for an obvious hole.

IDSs attempt to detect the presence of such attacks. Two methods are most often used in IDSs to recognize
intrusive behavior. The first method uses expert-system analysis techniques to recognize specific attack
command sequences. The second method identifies anomalous behavior by constantly comparing all activity
to statistical profiles of normal activity. This method is based on the premise that the behavior of an attacker
will be noticeably different from that of a normal user [Denn87].

One approach to computer security is to attempt to create completely secure systems. However, this goal is
not feasible in many computing environments. Moreover, it would be impossible to replace the existing huge
infra-structure of computer systems that are not completely secure. Intrusion detection provides a practical
alternative approach to computer security.

A SOFTWARE PLATFORM FOR

SIMULATING INTRUSIONS

A basic premise of our work is that an effective way to test an IDS is to simulate intrusions and check if
the IDS detects them. We are developing a software platform that facilitates intrusion simulation. Users
of the platform can create scripts (similar to Unix shell scripts) that include intrusive commands. The
platform provides a script interpreter for running the scripts, which would issue the intrusive commands to
the computer system just as if an intruder had typed in the commands.

The software platform consists of extensions to the expect [Libes90] package created by Don Libes of NIST.
The expect package itself is based on the Tel [Oust90] package created by John Ousterhout at U .C. Berkeley.

The Tel (Tool command language) package provides an interpreter for a simple programming language
that provides variables, procedures, control constructs such as "if" and "for", arithmetic expressions, lists,

3

strings and other features. The syntax of Tel is reminiscent of Unix shells, Lisp and C. It is implemented as
a C library package. It allows an application to extend the built-in command set with application-specific
commands. Recent versions of Tel also support regular expression string specifications. This provides a
powerful tool for string pattern matching, which is critical for intrusion detection.

expect is particularly useful for simulating intruders. The expect package also provides a programming
language interpreter. The core of the expect interpreter is the Tel interpreter, but expect extends the Tel
command set to include several commands for controlling interactive programs. The command "spawn"
creates an interactive process (such as telnet). The command "expect" waits to receive a specified string
pattern (such as "login: ") from the process. The command "send" sends a string to the process. Thus, a
script with a sequence of "expect/send" sequences can simulate a human computer user.

A simple script that controls an rlogin session would look like the following:

#Spawn an rlogin process
spawn rlogin ComputerName -I zhangk
#Expect the password prompt, then send the password.
expect {"Password:" send "ActualPassword \r" }
#Expect the shell prompt, then send commands.
#The shell prompt is specified in a regular expression.
expect {-re 11 .*%1.*>1.*#11 send "whoami \r" }
expect { -re 11

• *%I .*>I .*#11 send "ls \r" }
expect { -re 11

• *%I . *>I . *#11 send "logout \r" }

Expect and Tel provide much of the functionality that we need to simulate intrusions. However, we have
augmented the expect/Tel core with some additional commands which allow for several scripts running in
parallel, including commands for synchronization and communication among the processes that are executing
the scripts. The additional commands enable users to simulate more sophisticated intrusions on computer
systems. These include intrusions launched by (1) an intruder from multiple terminals (or more likely from
multiple windows since window interfaces are ubiquitous) and (2) multiple intruders from multiple terminals.

Synchronization plays a critical role in repeatable testing for scripts that execute in parallel. Often, it may
be necessary or desirable to repeat the execution of a test on an IDS, e.g., to learn why (or why not) the
IDS failed the test. Repeating the execution of a sequential test (of the single-terminal variety, where the
intrusion consists of a single thread of commands) is accomplished simply by re-running the test script on
the IDS. Advanced tests (of the multiple-terminal variety, where the intruder may spawn multiple threads
of commands), however, may be difficult to repeat because of non-determinism (random latencies) present
in the execution of parallel threads. In particular, some of the events in parallel threads may have random
execution times; accordingly, the events may not happen in the same order each time the test is run (unless
supplemented by some synchronization techniques).

To accommodate "reproducible testing" or "replay" [Hans78, LeB187], the nondeterministic execution be
havior of a test has to be converted to a deterministic form. One solution to this problem is to define a
set of a minimum collection of "synchronization sequences" so that the test can provide reproducible results
[Tai91]. The synchronization sequences are used to synchronize important events in the parallel threads at
strategic locations so that these important events always happen in the same order independent of random
ness associated with some events. Our software platform's synchronization mechanisms can be used to create
such sequences.

An additional feature of the software platform is a "record and playback" capability. A user can type in
a sequence of commands manually, and use the record feature to record that sequence. The "recording"
can then be replayed at will, just like other scripts. This feature allows for the quick and easy creation of
intrusion scripts. Moreover, it makes the overall platform more useful for those organizations that do not
intend to write their own scripts, which requires knowledge of Tel and expect.

4

4 INITIAL SET OF TEST SCRIPTS

Our second major task is to create an initial set of test scripts for Unix-based IDSs. The script set will
simulate a variety of known attacks including, for example, those reported by organizations such as CERT
and CIAC. We will attempt to classify known attacks, and then represent each class of attacks in the script
set. An organization can run the script set and analyze the output of their IDS, checking to make sure that
it detects each type of simulated attack. In addition, an organization can supplement our script set with
their own private scripts. The script set can be customized to fit a particular computer environment.

Our current scripts simulate the following behaviors:

• browsing through a directory, using the Is command to list files, and an editor to view files;

• password-cracking;

• password-guessing using a dictionary file;

• door knob rattling (password-guessing using common passwords);

• attempting to modify system files (e.g., jetcjpasswrl);

• "hopping" from computer to computer via telnet connections;

• exploiting the loadmodule vulnerability.

The script set will be designed to facilitate repetitive, sustained testing. In general, there will be one script
for each specific intrusion. Some of these scripts will establish one intrusive connection to a computer, while
others will spawn several processes, each of which will then make an intrusive connection. In some cases,
concurrently executing processes will coordinate and communicate with each other. Each script will include
parameters with variable values, so that the system can be tested over a range of parameter values. A driver
script will run the other scripts several times, each time with different values for the various parameters.
Thus, the IDS will be exposed to several variations of the same attacks.

5 TESTING METHODOLOGY

The study of testing methodology is guiding the structure of the script set. For example, one testing technique
that will be incorporated into our script set is testing in stages. The script set will subject the IDS to three
phases of testing: basic functional testing, variance testing, and stress testing. In the basic functional testing
phase, each attack can be simulated one at a time. The attack will appear in its most straightforward form.
The purpose of this phase is to check if the IDS, in ideal conditions, can detect each attack.

During the variance testing phase, each attack can be simulated several times, and each time some aspect of
the attack will be changed. This phase will determine, for example, if there is a variation of an attack that
the IDS will not detect, even though it does detect the most straightforward form of the attack.

The stress testing phase will test the IDSs response to the same attacks under extreme conditions. The
IDS may not be able cope with a high level of system activity, or perhaps the IDS will be. prone to some
errors under those conditions. For example, several attacks can be simulated at once, to see if the IDS is
still capable of detecting all of them.

Noise (i.e., computer activity that is not part of an intrusive command sequence) will be included in the
scripts. The noise level will be varied during the variance-testing and stress-testing phases. Two types
of noise that can affect the performance of an IDS will be included in the scripts. Normal background

5

noise, caused by legitimate user activity, can add stress on the IDS. For example, during periods of heavy
LAN traffic, an IDS based on monitoring network traffic must filter more network activity to find possibly
suspicious network events. Smokescreen noise, which is activity that is intended to disguise an intrusion, may
prevent the IDS from detecting an intrusion. For example, an intruder may pose as a normal programmer
and hide the exploratory behavior within the normal programming behavior. A programmer's behavior can
be modeled as shown below:

1. with some probability, do an Is to check a file;

2. edit a file;

3. compile;

4. with some probability, do an Is to check a file;

5. with some probability, go back to step 1;

6. execute the program;

7. with some probability, go back to step 1;

The programming behavior can be used to disguise the Is and edit commands which the intruder may be
using to examine some target files. Depending on the algorithm that the IDS is using, the IDS may be
tricked by this seemingly normal behavior.

5.1 Anomaly Detection Testing

IDSs that use anomaly detection (AD) schemes require some additional considerations with respect to testing.
In order to detect anomalous behavior, the AD system usually compares new behavior to statistical profiles
of normal behavior. "Training" refers to the development of these profiles of normal behavior. For any AD
system, the following considerations can affect system testing:

• What is the training mechanism? (i.e., how are the "normal" profiles created?)

• How much time does training take?

• Is there a way to initialize the AD system with some profiles?

• Does training continue after the system is put into operation?

• Are the profiles per user or per group?

If the system continues to train itself while it is in operation, then the test scripts should include very gradual
behavior changes. This will test if the system can be fooled by an intruder who gradually changes their be
havior from "normal" to "intrusive." The test scripts should simulate behavior that produces measurements
above and below threshold values in the AD system, to test if the system actually uses the threshold values
correctly.

6 Benchmarks

After the initial set of scripts has been created, our next task will be to develop a benchmark suite. The
benchmark suite would monitor an IDS while it is running, and measure aspects of the IDS's performance such

6

as the fraction of known intrusions it can identify, the false alarm rate , and host system resource (memory,
CPU load, I/0) consumption. Aspects of this benchmark suite might be modeled after existing benchmark
suites such as SPECmarks, Livermore Loops, and Dhrystone, which are used to test the performances
of various computer architectures. The information provided by the benchmark suite would help an an
organization to select an IDS that is suitable for their computer system.

7 INITIAL TEST RESULTS

We have been studying and testing two IDSs: the NSM [Hebe90) (Network Security Monitor) and Haystack
[Smah88). The test results described below are not intended to imply a positive or negative overall assessment
of either system. Instead, they are provided to show how the methods and software tools discussed earlier
can be used to test real systems.

7.1 NSM Tests

The NSM monitors all the packets that travel in the LAN to which the NSM host computer is connected. The
NSM can associate each such packet with the corresponding computer-to-computer connection. It assigns
warning values to connections based on the contents of the packets, and on the likelihood of the connection
occurring, given a record of recent connections. We ran the NSM on a Sun Spare Station 2 workstation
connected to the Computer Science (CS) LAN segment at UC Davis (UCD). We completed two testing
phases: basic functional testing and stress-testing.

7.1.1 NSM Basic Functional Testing

For this phase, we used several different scripts, each designed to simulate a specific intrusive command
sequence. The scripts are described in Section 4. Each script would establish a telnet connection to another
computer, send a sequence of commands to the remote computer, and then close the connection. The NSM
monitored the execution of each of these scripts, and assigned a warning value to each connection. For
comparison, we also set up the NSM to monitor traffic to and from a busy host in the UCD CS LAN
segment for several hours. Although some of this traffic could have been caused by intrusive behavior, we
expect that most of it was caused by the legitimate activities of legitimate u~ers.

Ideally, of course, the warning values for connections associated with known intrusive behavior would be
high, and warning values for connections associated with normal, benign behavior would be low. Assuming
that most of the connections to and from the busy host were normal, the NSM succeeded in this case in
assigning a relatively low warning value on average to these connections.

However, the NSM also assigned low warning values to some of the connections associated with the intrusive
scripts. We determined, though, that this was caused by our configuration of the NSM. Like many IDSs, the
NSM can be "tuned" so that it is sensitive to particular intrusive sequences of commands. We are certain
that we can now change the configuration of the NSM so that it reports high warning values for all of the
intrusive scripts.

Our experience illustrates how basic functional testing can be used to uncover weaknesses in both the IDS
itself and the IDS configuration.

7

7.1.2 NSM Stress Tests

The purpose of the stress tests was to check if the NSM connection reports could be affected by stressful
conditions. Stressful conditions for the NSM include all conditions that might cause it to miss packets while
monitoring a connection. For example, when the load on the NSM host computer is high, the NSM may
be allocated less CPU time, and therefore the probability that it will miss a packet while it waits to run is
increased.

We configured the NSM so that it would monitor all connections to and from a specific computer ("computer
A'') in the LAN. Each test consisted of establishing a certain load on the NSM host, and then running an
"intrusion script" on computer A. The script would establish a telnet connection from computer A to another
computer in the LAN, issue a sequence of several commands to the remote computer, and then close the
connection. The intrusion script is a combination of several of the intrusion simulation scripts described
previously. To increase the load on the NSM host, a "load script" was run, which simply created a telnet
connection to the NSM host computer, and then issued an endless sequence of ps and Is commands. To
create higher loads, several processes were created to run the same script simultaneously. The load was
measured using the UNIX uptime command.

For each test, the NSM produced a report describing the connection established by the intrusion script.
Ideally, the report would be identical for each test, because the same script was run for each test. However,
we expected the reports to be affected by changes in the load on the NSM host. This was not the case in
our first series of stress tests. The connection reports were not affected by increased loads on the host. The
NSM is also capable of producing complete transcripts of the connections that it monitors. Inspection of
these transcripts confirmed that the NSM had a complete record of the connections and apparently did not
miss any packets.

In the next group of tests, we added a second form of stress to the NSM. We used the UNIX nice command
to lower the "run priority" of the NSM program. Otherwise the tests were the same as the first set of stress
tests. However, for this series of tests, the connection reports were affected by the increased loads on the
host. Apparently, the lowered priority together with a high load on the NSM host caused the NSM to miss
some packets. The NSM connection reports include the number of bytes missed for each connection. The
NSM calculates this number by monitoring packet sequence numbers. As indicated in Figure 1, the number
of bytes missed by the NSM tended to increase as the load on the NSM host increased.

Overall the tests show that the NSM is resilient to stress in the form of host CPU load. In practice, the
NSM is probably more likely to be confronted with conditions like those in the first series of stress tests than
it is to be confronted with conditions like those in the second series. An attacker may be able to establish
several connections to the NSM host, but it is unlikely that the attacker can arrange things so that the NSM
process has a low priority compared to the attacker's processes.

7.2 Haystack Tests

Experiments similar to those for the NSM were conducted to perform stress-testing on Haystack. Haystack
monitors activities on its host computer by analyzing the system audit trails. The Haystack host for our tests
was a Sun Spare Station 1 workstation with BSM (Basic Security Module) auditing. For each user session,
Haystack maintains counts of events such as the number of processes created, the number of files opened,
and so forth. These counts are stored in a session record in a database file. Haystack frequently compares
these counts against profiles of "normal activity" to detect anomalous sessions. Haystack also includes a
misuse detection component which looks for "attack signatures." However, we have been focusing on testing
the anomaly detection component.

To put stress on the Haystack system, we adopted the same strategy that we used to test the NSM. Each
test consisted of first establishing a certain load on the Haystack host, and then running an intrusion script.

8

6000~------~------~------~----~r-----~r-----~-------,

5000

4000
::l!
1/J
z
>.
.0

al en 3000
en
~

Sl"'
~

2000 ~

1000

0~.---~~----~~----~----~------~----~~----~
2

Figure 1: Bytes Missed by NSM vs. NSM Host CPU Load

The script would establish a telnet connection to the Haystack host, issue a sequence of several commands,
and then close the connection. The intrusion script was nearly the same as the intrusion script used to test
the NSM, and the method of increasing the load on the Haystack host was the same as used for the NSM
host.

For each test, Haystack would produce a session record describing the connection established by the script.
Ideally, the counts in the session record would be identical for each test. Also, Haystack produces six different
"suspicion quotients" for each session, which are also stored in the session record. The suspicion quotients
indicate to what extent the session exhibits six particular types of behavior associated with intrusions, such
as "browsing" and "paranoia." In the ideal case, these scores would also remain the same from test to test,
despite the increase in load on the Haystack host.

The test results actually closely matched the ideal case. The session records were all identical, except for two
of the counts associated with the number of files opened during the session. These two differences warrant
further investigation, but they do not appear to be caused by a system malfunction.

Thus, like the NSM, Haystack proved to be resilient to stress caused by a high load on the host CPU.

7.3 Future Stress Tests

Future stress tests should include requiring the systems to monitor large amounts of activity. Specifically,
the NSM should be tested under conditions in which it must monitor several different connections at once,
each with a high rate of traffic in terms of packets per second. Similarly, Haystack should be tested in a
situation in which several intrusion scripts are running at the same time.

9

8 CONCLUSION

This work takes several steps toward the systematic testing of IDSs, which we expect will continue to gain
importance as IDSs are used more and more. The software tools and testing methods that we are developing
can assist not only in the testing of existing IDSs, but also in the development of future IDSs. In addition,
we expect to report more rigorous test results in the near future.

References

[Ande90] 	 J. P. Anderson, "Computer security threat monitoring and surveillance," Technical Report, James
P. Anderson Co., April 1990.

[Denn87] D. E. Denning, "An intrusion-detection model," IEEE Transactions on Software Eng., vol. SE-13,
pp. 222-232, Feb. 1987.

[Hans78] 	 P. B. Hansen, "Reproducible testing of monitors," Software-Practice and Experience, vol. 8, pp.
721-729, 1978.

[Hebe90] 	 L. T. Heberlein, G. Dias, K. Levitt, B. Mukherjee, J. Wood, and D. Wolber, "A Network Security
Monitor," Proc., 1990 Symposium on Research in Security and Privacy, pp. 296-304, Oakland,
CA, May 1990.

[LeBl87] 	 T. J. LeBlanc and J. M. Mellor-Crummey, "Debugging parallel programs with instant replay,"
IEEE Transactions on Computers, vol. C-36, no. 4. pp. 471-482, April 1987.

[Libes90] Don Libes, "expect: Curing Those Uncontrollable Fits of Interaction," Proceedings of the Summer
1990 USENIX Conference, June 1990.

[Mukh94] B. Mukherjee, L.T. Heberlein, and K.N. Levitt, "Network Intrusion Detection," IEEE Network,
May 1994 (to appear).

[Oust90] 	 John Ousterhout, "tcl(3) - overview of tool command language facilities", unpublished manual
page, University of California at Berkeley, January 1990.

[Smah88] S. E. Smaha, "Haystack: An Intrusion Detection System," Proc., IEEE Fourth Aerospace Com
puter Security Applications Conference, Orlando, FL, Dec. 1988.

[Stol89] C. Stoll, The Cuckoo's Egg, Doubleday, 1989.

[Tai91] K.-C. Tai, R. H. Carver, and E. E. Obaid, "Debugging concurrent Ada programs by deterministic
execution," IEEE Trans. on Software Eng., vol. 17, no. 1, pp. 45-63, Jan. 1991.

10

A PATTERN MATCHING MODEL FOR MISUSE

INTRUSION DETECTION*

Sandeep Kumar Eugene H. Spafford

The COAST Project

Department of Computer Sciences

Purdue University

West Lafayette, IN 47907-1398

{ku mar ,spaf}«ks. pu rd ue.ed u

Keywords: intrusion detection, misuse, anomaly.

Abstract

This paper describes a generic model of matching that can be usefully applied to misuse
intrusion detection. The model is based on Colored Petri Nets. Guards define the context in
which signatures are matched. The notion of start and final states, and paths between them
define the set of event sequences matched by the net. Partial order matching can also be specified
in this model. The main benefits of the model are its generality, portability and flexibility.

1 Introduction

Computer break-ins are becoming increasingly frequent and their detection is increasingly impor
tant. Break-ins make the data residing on computer systems vulnerable to theft and corruption.
Compromised sites can also be used to launch further attacks, thus achieving another level of indi
rection for further break-ins. A majority of break-ins, however, are the result of a small number of
known attacks, as evidenced by reports from response teams (e.g. CERT). Automating detection of
these attacks should therefore result in the detection of a significant number of break-in attempts.

Intrusion Detection is primarily concerned with the detection of illegal activities and acquisitions
of privileges that cannot be detected with information flow and access control models. Examples of
these include software engineering flaws in programs that allow cross privilege domain executions,
insider abuse and failure of authentication procedures. Intrusion Detection models therefore do not
directly overlap with traditional security models [11] which are primarily concerned with modeling
information flow in a computer system to ensure that subjects are never able to access unauthorized
information, or with modeling access control mechansims to prevent unauthorized access to objects.

Current approaches to detecting intrusions can be broadly classified into two categories: Anomaly
Detection and Misuse Detection [20]. Anomaly Detection is based on the premise that intrusive
activity often manifests itself as an abnormality. The usual approach here is to devise metrics
indicative of intrusive activity, and detect statistically large variances on these metrics. Examples
might be an unusually high number of network connections within an interval of time, unusually

*This work was funded by the Division of INFOSEC Computer Science, Department of Defense.

11

A PATTERN MATCHING MODEL FOR MISUSE INTRUSION DETECTION

high CPU activity, or use of peripheral devices not normally used. This approach has been studied
extensively and implemented in a large number of systems [19, 18, 12, 14, 5, 8]. It attempts to
quantify the acceptable behavior and thus identify abnormal behavior as intrusive.

The other technique of detecting intrusions, misuse detection, attempts to encode knowledge about
attacks as well defined patterns and monitors for the occurrence of these patterns. For example,
exploitation of the fingerd and sendmail bugs used in the Internet Worm attack [21] would be in
this category. This technique specifically represents knowledge about unacceptable behavior and
attempts to detect its occurrence.

This paper proposes a variation of one approach to misuse detection, state transition analysis,
by using pattern matching to detect system attacks. Knowledge about attacks is represented
as specialized graphs. These graphs are an adaptation of Colored Petri Nets [9] with guards
representing signature context and vertices representing system states. The graph represents the
transition of system states along paths that lead to intruded states. Patterns may have user
specifiable actions associated with them that are executed when patterns are matched. The model
provides the ability to specify partial orders and subsumes matching of sequences and regular
expressions. Patterns also have pre- and post-conditions associated with them that must be satisfied
before and after the match. Patterns also may include invariants to specify that a condition is or
is not satisfied while the pattern is being matched.

There are several benefits to our approach of using a generic model of matching. A significant benefit
is the clean separation of the various components comprising a generic misuse detector. With our
approach to designing a generic misuse detector, it can be viewed as three basic abstractions. This
enables generic solutions to be substituted for each abstraction without changing the interfaces
between the abstractions of the model. These abstractions are:

• 	The Information Layer. This encapsulates the audit trail and provides a low-level data inter
face to the monitored computer system.

• 	The Signature Layer. This provides for a system-independent internal representation of sig
natures and a system-independent virtual machine to represent the signature context.

• 	The Matching Engine. This encapsulates the method used to match the patterns. It makes
the system independent of any particular choice of matching algorithms. It also allows simple
substitution of newer or more powerful mechanisms as they become available.

Furthermore, a standardization of the model of matching signatures permits several external rep
resentations of signatures to exist, each facilitating the representation of certain type of signature
constructs. Other benefits of the model include its extensibility and portability to different event
models; its ability to assign priority to signatures and the ability to dynamically add signatures in
the midst of matching [sec. 4].

Our model is generic and does not assume any characteristics of the underlying events against which
matching is done or the domain of solution. It provides a mechanism on which matching solutions
can be built. For example, the same model applies for the case of monitoring network packet flow,
or for monitoring specific patterns in logs generated by general purpose logging utilities. The input
events in any of these problem domains can be canonicalized and used as input to our model of
matching. Specific instantiations can be made of the model as appropriate to the problem. For
example, a specialized version could be created for matching intrusion signatures in the context of
UNIX audit trails.

12

A PATTERN MATCHING MoDEL FOR MISUSE INTRUSION DETECTION

2 Primary Approaches To Misuse Detection

Misuse detection might be implemented by one the following techniques:

1. 	Expert Systems, which code knowledge about attacks as if-then implication rules.

2. 	Model Based Reasoning Systems, which combine models of misuse with evidential reason
ing to support conclusions about the occurrence of a misuse.

3. 	State· Transition Analysis, which represents attacks as a sequence of state transitions of
the monitored system [16, 6].

4. 	Key Stroke Monitoring, which uses user key strokes to determine the occurrence of an
attack.

These methods are summarized in the following sections.

2.1 Expert Systems

An expert system is defined in [7] as a computing system capable of representing and reasoning
about some knowledge-rich domain with a view to solving problems and giving advice. Expert
system detectors code knowledge about attacks as if-then implication rules. Rules specify the
conditions requisite for an attack in their if part. When all the conditions on the left side of a
rule are satisfied, the actions on the right side of the rule are performed which may trigger the
firing of more rules or conclude the occurrence of an intrusion. The main advantage in formulating
if-then implication rules is the separation of control reasoning from the formulation of the problem
solution. Its chief use in misuse detection is to symbolically deduce the occurrence of an intrusion
based on the available data.

The primary disadvantage of using expert systems is that working memory elements (the fact
base) that match the left sides of productions to determine eligible rules for firing are essentially
sequence-less. It is difficult to efficiently specify an order in which to match facts within the natural
framework of expert system shells.1 Other problems include software engineering concerns with
the maintenance of the knowledge base [13] and the quality of the rules, which can be only as good
as the human devising them [13].

2.2 Model Based Systems

This approach was proposed in [4] and is a variation on misuse intrusion detection. It combines
models of misuse with evidential reasoning to support conclusions about its occurrence. There is
a database of attack scenarios, where each scenario comprises a sequence of behaviors making up
the attack. At any moment the system is considering a subset of these attack scenarios as likely
ones being experienced by the system. It seeks to verify them by seeking information in the audit
trail to substantiate or refute the attack scenario (the anticipator). The anticipator generates the
next behavior to be verified in the audit trail, based on the current active models, and passes these
behaviors to the planner. The planner determines how the hypothesized behavior will show up in
the audit data and translates it into a system dependent audit trail match. This mapping from
behavior to activity must be easily recognized in the audit trail, and must have a high likelihood
of appearing in the behavior.

As evidence for some scenarios accumulates, and decreases for others, the active models list is up

1Even though facts are numbered consecutively in current expert system shells, introducing fact numbering con
straints within rules to enforce an order makes the Rete match [3] procedure very inefficient.

13

A PATTERN MATCHING MODEL FOR MISUSE INTRUSION DETECTION

dated. The evidential reasoning calculus built into the system permits the update of the likelihood
of occurrence of the attack scenarios in the active models list.

The advantage of model based intrusion detection is its basis in a mathematically sound theory of
reasoning in the presence of uncertainty. The structuring of the planner provides independence of
representation of the underlying audit trail syntax. Furthermore, this approach has the potential
of reducing substantial amounts of processing per audit record. It would do this by monitoring for
coarser-grained events in the passive mode and then actively monitoring finer-grained events when
those events are detected.

The disadvantage of model based intrusion detection is that it places additional burden on the
person creating the intrusion detection models to assign meaningful and accurate evidence numbers
to various parts of the graph representing the intrusion model. It is also not clear from the model
how behaviors can be compiled efficiently in the planner and the effect this will have on the run time
efficiency of the detector. This, however, is not a weakness of the model per se, but a consideration
for successful implementation.

2.3 State Transition Analysis

In this approach [16, 6) attacks are represented as a sequence of state transitions of the monitored
system. States in the attack pattern correspond to system states and have Boolean assertions
associated with them that must be satisfied to transit to that state. Successive states are connected
by arcs that represent the events/conditions required for changing state. These conditions, or
signature actions, are not limited to a single audit trail event, but may be a complex specification
of conditions.

2.4 Keystroke Monitoring

This technique uses user keystrokes to determine the occurrence of an attack. The primary means
is to pattern match for specific keystroke sequences indicative of an attack. The disadvantages
of this approach are the general unavailability of user typed keystrokes and the myriad ways of
expressing the same attack at the keystroke level. Furthermore, without a semantic analysis of the
contents, aliases can easily defeat this technique.

2.5 Summary Characterizing These Four Approaches

All four approaches to misuse detection encode and look for specific attacks and use matching in
some form to detect them. If an attack is regarded as a set of steps, expert system rules permit
the encoding of sequentiality (and other dependencies) between the steps. However, because of the
generality of the match procedure of ascertaining firable rules, such dependencies are inefficient
to match directly. Model based systems consider 'models' of intrusion and seek to verify them
by looking for evidence to corroborate the model. This is done by using matching techniques
on the underlying event trail. State transition approaches can be construed as trying to match
the sequence of steps that lead a system to a compromised state. Each step in this sequence may,
however, require complex computation for determining its occurrence (typically using expert system
rules). Key stroke monitoring is the direct application of pattern matching to key stroke logs to
match for suspicious or undesirable patterns.

14

A PATTERN MATCHING MODEL FOR MISUSE INTRUSION DETECTION

2.6 Benefits And Limitations Of Misuse Detection

A primary disadvantage of anomaly detection, the other major technique for intrusion detection,
is that statistical measures of user behavior can be gradually trained. Miscreants who know that
they are being monitored can train such systems over a length of time to the point where intrusive
behavior is considered normal. Misuse detection is immune to such training: if the signature for
an attack is carefully written, even major variations of the same basic attack scenario can be .
detected. Moreover, the technique is simpler than anomaly detection. Within the framework of
misuse signatures, monitoring of system activity can be automated as well.

The primary disadvantage of this approach is that it looks only for known vulnerabilities, and is
of little use in detecting unknown future intrusions. However, we can look for known patterns of
abuse that might occur after a vulnerability is exploited; although the intrusion itself may not be
noted, the subsequent actions could be flagged.

3 Intrusion Detection Using Pattern Matching

Our pattern matching is based on the notion of an event. Events are auditable changes in the state
of the system, or changes in the state of some part of the system. An event can represent a single
action by a user or system, or it can represent a series of actions resulting in a single, observable
record.

We further specify events as having tags. Generally, monitored events are tagged with data. In
particular, the time at which the event occurred is of special importance because of the monotonicity
properties of time. The events can have an arbitrary number (though usually a small number) of
tag fields. The exact number and nature of the fields is dependent on the type of the event.
Mathematically one can think of the events as being tuples with a special field indicating the type
of event. For example, one can think of the event a occurring at timet to be the tuple (a, t), where
a denotes the type of the event.

A fundamental requirement of applying pattern matching to intrusion detection is that matching be
done with follows semantics rather than immediately follows semantics. For example, with follows
semantics the pattern ab specifies the occurrence of the event a followed by the occurrence of event
b. It does not represent a immediately followed by b with no intervening event. This means that
any two adjacent sub patterns within a pattern are implicitly separated by an arbitrary number
(possibly zero) of events of any type. This assumption is appropriate in current systems: audit trail
generation and modern user interfaces allow users to login simultaneously through several windows
thereby generating overlapped entries in the audit trail.

Using follows semantics makes the field of discrete approximate pattern matching relevant to intru
sion detection. Three characteristics determine the kinds of theoretical bounds that can be placed
on the matching solution: 1) whether matching is off-line or online 2) whether signatures can be
dynamically added or deleted as matching proceeds and 3) whether all matches of the pattern in
the event stream are desired or whether finding a single match is sufficient.

Results in approximately matching various classes of patterns are summarized in fig. 1. These time
bounds hold for arbitrary values of deletion, insertion and mismatch costs, and are not optimized
for the requirements of misuse intrusion detection. The results are restricted to online matching
because we are primarily concerned with real time intrusion detection. RE stands for regular
expressions and sequence refers to a chain of events. The column match denotes the type of match
determined by the corresponding algorithm. An entry of "all endpts" denotes that the algorithm

15

A PATTERN MATCHING MODEL FOR MISUSE INTRUSION DETECTION

Pattern Time Space Preproc Match Reference Comment

Sequence O(mn) O(m) 0(1) all endpts [22] Using dynamic programming.
Sequence O(mn) O(mn) 0(1) all [22] Using dynamic programminga .
Sequence O(n) O(m) 0(1) all endpts [1, 23] Pattern fits within a word of the

computer. Small integer values of
costs.

RE
RE

O(mn)
O(mn)

O(m)
O(mn)

O(m)
O(m)

all endpts
all

[15]
[15]

Using dynamic programming.
Using dynamic programminga.

"Does not include the time for enumerating all matches, which may be exponential.

Figure 1: Some Results from Pattern Matching Applicable to Misuse Detection

detects all positions in the input where a match with the pattern ends, but cannot reconstruct
the match sequence, "all" denotes that the algorithm can also construct the match. Finding all
matches of a pattern in the input is an all-paths source-to-sink problem and is computationally
hard.

While approximate pattern matching is useful in misuse detection, the general problem cannot be
reasonably solved by current pattern matching techniques. For example, it requires matching of
partial orders, context-free and context-sensitive structures, and matching in the presence of time,
a notion inherent in audit trail generation and very important in specifying intrusions.

After studying common numerous UNIX vulnerability descriptions from such sources as the CERT
security advisories, and those detected by the COPS [2] and TIGER [17] tools, we noted a temporally
related partitioning. We were able to classify intrusion attacks on UNIX as follows:

1. 	Existence. The fact that something(s) ever existed is sufficient to detect the intrusion attempt.
Simple existence can often be found by static scanning of the file system. Examples include
searching for altered permissions or certain special files.

2. 	Sequence. The fact that several things happened in strict sequence is sufficient to specify the
intrusion.

3. Partial order. Several events are defined in a partial order, for example as in fig. 2.

4. 	Duration. This requires that something(s) existed or happened for not more than nor less than
a certain interval of time.

5. 	Interval. Things happened an exact (plus or minus clock accuracy) interval apart. This is
specified by the conditions that an event occur no earlier and no later than x units of time
after another event.

We believe that the vast majority of known intrusion patterns fall into categories 1 and 2. This
classification is not strictly a hierarchy as characteristics simple to match at lower levels of the
classification become intractable at upper levels. These classes can also be further subdivided into
finer categories; details can be found in [10].

3.1 	 An Overview of Our Model of Matching

We examined various regular methods of representing and matching our attack signatures. Regular
expressions can represent only the simplest types of attacks. Context-free and attribute grammars
are not easy to extend to approximate matching and do not lend themselves well to a graphical

16

i

A PATTERN MATCHING MODEL FOR MISUSE INTRUSION DETECTION

8 15'~
~~ x~

17 b "~·
Invariant: same_uid "\.../ ~& ;--1

~/b ;cp lbinlsh lusrlspool/mail/root
;chmod 4755 lusrlspool/mail/root ;

~6' ~ ;touch x
sl t1 s2 t2 s3 '\(7 s7 :mail root < x

:IusrI spool/mail/root
I8-f-o-J-o-1-o '1---------------------------------------

write

this[PID] I= 0 &&
true_name(this[OBJ]) =

true_name("/usr!spool/mail/root'~

&&

FILE= this[OBJ]

chmod exec
~----------------~

(this[OBJ] =FILE) true_name(this[PROG}) =
true_namet/usr/ucb/mail'? &&
this[ARGS] =-"\\<root\\>"

Figure 2: Representing a Partial Order of Events

representation. Regular expressions and context-free grammars do not permit matching to be
conditional on the value of specified expressions. Attribute grammars allow conditional matching
only in an indirect way. We settled on basing our model of matching on an extension of Colored
Petri Nets [9) as they suffer none of these problems.

We refer to each signature represented as an instantiation of a Colored Petri Automaton (CPA).
The notion of one or more start states and a unique final state defines the set of strings matched by
the CPA. Matching begins with one token in each initial state. The pattern is considered matched
for each token that reaches the final state. Along the path to the final state tokens can merge or be
duplicated. Partial orders ~an be written with each trunk of the partial order starting at a different
start state. Tokens that are merged carry the merge information with them so the entire merge
path is stored.

Patterns are internally stored for matching as CPAs. Externally, a language can be designed
to represent signatures in a more programmer-natural framework, and programs in the language
compiled to this internal representation. The main differences between our model and CP-Nets are
the lack of concurrency in our model, absence of local transition variables, the notion of start and
final states, and the notion of pre- and post-conditions and invariants associated with patterns.
Moreover, nets in our model are not bipartite, unlike CP-Nets.

Our model is generic and applicable to any well-defined format of input events such as audit trail
records, network packets, or other abstractions. Our examples here, however, are taken from the
domain of misuse detection in the UNIX environment using audit trails as input.

Consider, as an example, the attack scenario in figure 2 [6). Its CPA is translated verbatim from
the attack scenario for purposes of illustration only. sl and s4 are the initial states of the CPA,
and s7 is its final state. A CPA requires the specification of ~ 1 initial states (each initial state
represents a trunk of the partial order) and exactly one final state. The circles represent states and
the thick bars the transitions. At the start of the match, a token is placed in each initial state.

17

A PATTERN MATCHING MODEL FOR MISUSE INTRUSION DETECTION

Each state may contain an arbitrary number of tokens.

A CPA also has associated with it a set of variables. Assignment to these variables is equivalent
to unification. Each token maintains its own local copy of these variables because each token can
make its own variable "bindings" as it flows to the final state. In CP-Net terminology, each token is
colored, and its color can be thought of as an n-tuple of strings, where the pattern has n variables.

The CPA also contains a set of directed arcs that connect states to other states and transitions.
The arcs which connect places to other places are f transitions along which tokens flow nonde
terministically without being triggered by an event. Each transition is associated with an event
type, called its label, which must occur in the input event stream before the transition will fire.
In fig. 2 transition t1 is labeled with the event write, t4 is labeled with the event stat and so on.
Nondeterminism can be specified by labeling more than one outgoing transition of a state with the
same label. There is, however, no concurrency in a CPA: an event can fire at most one transition.
A transition is said to be enabled if all its input states contain at least one token.

Optional expressions, or guards, can be placed at transitions. These expressions permit assignment
to the CPA variables. Example of these assignments include assignment of values to matched event
fields; evaluation of conditions involving equality, <, or >; and calling built-in and user defined
functions. Guards are Boolean expressions which evaluate to true or false. this is a special operator
which is instantiated to the most recent event. It may be empty in the case off transitions. It
provides a hook into the event matched at a particular transition. Guards are evaluated in the
context of the event which matches the transition label and the set of consistent tokens which
enable the transition. Tokens are consistent when their variable bindings unify. The set of tokens
are unified before being passed to the guards for evaluation.

For example, in order for transition t7 to fire, there must be at least 1 token in each of states s3
and s6; the enabling pair of tokens (one from s3, the other from s6) must have consistently bound
(unifiable) pattern variables; and the unified token and the event of type exec together must satisfy
the guard at t7. A transition fires if it is enabled and an event of the same type as its label occurs
that satisfies the guard at the transition. When a transition fires, all the input tokens that have
caused the transition to fire are merged to one token, and copies of this merged token are placed
in each output place of the transition.

The process of merging resolves conflicts in bindings (i.e. makes sure that token bindings unify)
between tokens to be merged and stores a complete description of the path that each token traversed
in getting to the transition. Thus a token not only represents binding, but also the composite path
that it encountered on its path to the current state. The sequence of events matched by a CPA
is the sequence of events (or partial order) encountered at each transition by the token that has
reached the final state.

A CPA is also associated with a pre-condition, a post-condition, and an invariant expression. These
are similar to guards that must evaluate true to be successful. Patterns that have no transitions
(e.g., verifying that root's .rhosts file is not world writable) can be specified using pre-conditions to
an empty pattern. Post-conditions are provided for symmetry and to allow the recursive invocation
of the same pattern.

The reason for having invariants associated with CPAs is more subtle. It seems syntactically
inconsistent to us to specify as part of patterns that they must not occur while another pattern
is being matched. That is, negative pattern specification in a CPA unnecessarily clutters the
description of the pattern. The other reason is that the semantics of some invariants cannot be
easily absorbed in the framework of transitions and guard expressions. It is more efficient to provide

18

A PATTERN MATCHING MODEL FOR MISUSE INTRUSION DETECTION

them as primitives in the matching model than to attempt to subsume them within the framework
of matching.

As mentioned earlier, our model of matching is generic. It can easily be instantiated for misuse
detection for a system running the UNIX environment, for example. This would involve defining
the primitives supported in guard expressions. It might also include coding file test operations,
set manipulation functions, system interaction hooks, and other operations. The set of invariant
primitives supported in the instantiated model must also be defined. The overall structure of
matching remains unchanged.

4 Analysis Of Our Matching Model

There are several difficulties in intrusion detection using pattern matching. The dominant one is
the sheer rate at which the data generated by modern processors must be matched. We have some
confidence that a system as described in this paper can operate at a speed sufficient to operate in
near real time. Furthermore, because state is saved in the tokens and their tag fields, there is no
need to save (or re-process) extensive logs of the system.

The other major problem is the nature of the matching itself. An attacker may perform several
actions under different user identities, and at different times, ultimately leading to a system com
promise. Because an intrusion signature specification, by its nature, requires the possibility of an
arbitrary number of intervening events between successive events of the signature, and because we
are generally interested in the first (or all) occurrence(s) of the signature, there can be several par
tial matches of each signature at any given moment. This can require substantial overhead in time
and space to track each partial match. In some scenarios, there may be weeks between events. In
others, different portions of an attack scenario can be executed over several login sessions and the
system is then required to keep track of the partial matches over login sessions. In other cases the
signature may specify arbitrary permutations of sub-patterns comprising the pattern thus making
the recognition problem much more difficult.

The complexity of matching in our model increases rapidly with increasing complexity of signatures.
At the simplest end are patterns without guards, for which algorithms from discrete approximate
matching are applicable [fig. 1]. The introduction of guards and variables makes the complexity of
the matching problem exponential in the size of the CPA if the description of guards is included
in its size. Partial order matching takes super-exponential time. Matching can be improved in
some cases by exploiting the monotonic nature of event fields, like the time stamp of the event.
Evaluating guards can be optimized by defining a virtual machine for their evaluation. By breaking
the guard expressions into sequences of simpler instructions, common subexpression elimination
can be performed to reduce the size of the sequence. Such elimination can be done across all the
patterns. All these results and optimizations are described in [10].

Our model has several important advantages. It is very portable, in the sense that intrusion signa
tures can be moved across sites without rewriting to accommodate fine differences in each vendor's
implementation. Signatures can also be transparently moved to systems with somewhat different
policies and ratings. An abstract audit record definition and a standard definition of a virtual
machine to represent guards ensures that patterns pre-compiled to an intermediate representation
can be moved across systems with minimal overhead.

Signatures can be dynamically added in the matching engine while maintaining the partial matches
of signatures already present in it. The only disadvantage of doing this is that some optimizations,
like common subexpression elimination of guards, may not be done for subsequently added patterns

19

A PATTERN MATCHING MODEL FOR MISUSE INTRUSION DETECTION

with respect to patterns already compiled in the engine. Actions can also be associated with
patterns by incorporating them as expressions in the post conditions.

Signatures can be prioritized by considering each token as a thread of control. Each thread then
fetches events from an event manager and acts on them. By prioritizing certain threads, patterns
can be prioritized for matching.

5 Conclusions

The paper outlined a pattern matching approach to misuse intrusion detection. It proposed a
generic model of matching based on CP-Nets that can be adapted to different problem domains.
We used misuse detection using audit trails under UNIX as an example to illustrate the usefulness
and applicability of this approach.

The model is interesting and appealing from a theoretical standpoint. However, its true test is an
evaluation of its implementation running under "live" conditions. We will implement this model
and derive experimental results in the near future. Comparative performance results with other
approaches will be difficult because of the lack of standardized benchmarking vulnerabilities and
the unavailabilty of such data for other approaches. We hope that our prototype implementation
and benchmarking results will provide the necessary first step in this direction.

References

[1] 	 R. A. Baeza-Yates and G. H. Gannet. A New Approach to Text Searching. In Proceedings of the
12th Annual ACM-SIGIR Conference on Information Retrieval, pages 168-175, Cambridge,
MA, June 1989.

[2] 	 Daniel Farmer and Eugene H. Spafford. The COPS Security Checker System. In Proceedings
of the Summer Usenix Conference, pages 165-170, June 1990.

[3] 	 Charles L. Forgy. RETE: A Fast Algorithm for the Many Pattern/Many Object Pattern Match
Problem. In Artificial Intelligence, volume 19. 1982.

[4] 	 T. D. Garvey and T. F. Lunt. Model based Intrusion Detection. In Proceedings of the 14th
National Computer Security Conference, pages 372-385, October 1991.

[5] 	 L. T. Heberlein, K. N. Levitt, and B. Mukherjee. A Method To Detect Intrusive Activity in a
Networked Environment. In Proceedings of the 14th National Computer Security Conference,
pages 362-371, October 1991.

[6] 	 Koral llgun. USTAT: A Real-Time Intrusion Detection System for UNIX. Master's thesis,
Computer Science Department, University of California, Santa Barbara, July 1992.

[7] 	 Peter Jackson. Introduction to Expert Systems. International Computer Science Series. Addison
Wesley, 1986.

[8] 	 R. Jagannathan, Teresa Lunt, Debra Anderson, Chris Dodd, Fred Gilham, Caveh Jalali,
Hal Javitz, Peter Neumann, Ann Tamaru, and Alfonso Valdes. System Design Docu
ment: Next-Generation Intrusion Detection Expert System (NIDES). Technical Report
A007 / A008/ A009/ AOll/A012/ A014, SRI International, March 1993.

[9] 	 Kurt Jensen. Coloured Petri Nets - Basic Concepts I. Springer Verlag, 1992.

20

A PATTERN MATCHING MODEL FOR MISUSE INTRUSION DETECTION

[10] 	 Sandeep Kumar and Eugene Spafford. An Application of Pattern Matching in Intrusion Detec
tion. Technical Report 94-013, Purdue University, Department of Computer Sciences, March
1994.

[11] 	 Carl E. Landwehr. Formal Models for Computer Security. ACM Computing Surveys,
13(3):247-278, September 1981.

[12] 	 G. E. Liepins and H. S. Vaccaro. Anomaly Detection: Purpose and Framework. In Proceedings
of the 12th National Computer Security Conference, pages 495-504, October 1989.

[13] 	 Teresa F Lunt. A Survey oflntrusion Detection Techniques. Computers & Security, 12(4):405
418, June 1993.

[14] 	 Teresa F. Lunt, R. Jagannathan, Rosanna Lee, Alan Whitehurst, and Sherry Listgarten.
Knowledge based Intrusion Detection. In Proceedings of the Annual AI Systems in Government
Conference, Washington, DC, March 1989.

[15] 	 Eugene W. Myers and Webb Miller. Approximate Matching of Regular Expressions. In Bull.
Math. Biol., volume 51, pages 5-37, 1989.

[16] 	 Phillip A. Porras and Richard A. Kemmerer. Penetration State Transition Analysis - A
Rule-Based Intrusion Detection Approach. In Eighth Annual Computer Security Applications
Conference, pages 220-229. IEEE Computer Society press, IEEE Computer Society press,
November 30 - December 4 1992.

[17] 	 David R. Safford, Douglas L. Schales, and David K. Hess. The TAMU security package: An
outgoing response to internet intruders in an academic environment. In Proceedings of the
Fourth USENIX Security Symposium. USENIX Association, 1993.

[18] 	 M. Sebring, E. Shellhouse, M. Hanna, and R. Whitehurst. Expert Systems in Intrusion De
tection: A Case Study. In Proceedings of the 11th National Computer Security Conference,
October 1988.

[19] 	 Stephen E. Smaha. Haystack: An Intrusion Detection System. In Fourth Aerospace Computer
Security Applications Conference, pages 37-44, Tracor Applied Science Inc., Austin, TX, Dec
1988.

[20] 	 Stephen E. Smaha. Tools For Misuse Detection. In Proceedings of ISSA '93, Crystal City, VA,
April 1993.

[21] 	 Eugene Spafford. The Internet Worm Report. Technical Report 823, Purdue University,
February 1990.

[22] 	 Robert A. Wagner and Michael J. Fischer. The String-to-String Correction Problem. In
Journal of the ACM, volume 21, pages 168-178,january 1974.

[23] 	 Sun Wu and Udi Manber. Fast Text Searching With Errors. Technical Report TR 91-11,
University of Arizona, Department of Computer Science, 1991.

21

1

Artificial Intelligence and Intrusion Detection: Current and Future
Directions

Jeremy Frank

frank@cs.ucdavis.edu

Division of Computer Science

University of California at Davis

Davis, CA. 95616

(916) 752-2149

NSA URP MDA904-93-C-4085

ARPA DOD/DABT63-93-C-0045

June 9, 1994

Abstract

Intrusion Detection systems (IDSs) have previously been built by hand. These systems
have difficulty successfully classifying intruders, and require a significant amount of computa
tional overhead making it difficult to create robust real-time IDS systems. Artificial Intelligence
techniques can reduce the· human effort required to build these systems and can improve their
performance. Learning and induction are used to improve the performance of search problems,
while clustering has been used for data analysis and reduction. AI has recently been used in
Intrusion Detection (ID) for anomaly detection, data reduction and induction, or discovery, of
rules explaining audit data. We survey uses of artificial intelligence methods in ID, and present
an example using feature selection to improve the classification of network connections. The
network connection classification problem is related to ID since intruders can create "private"
communications services undetectable by normal means. We also explore some areas where AI
techniques may further improve IDSs.
Keywords: Artificial Intelligence, Intrusion Detection, Feature Selection.

Problems in Intrusion Detection

Intrusion Detection (ID) is the identification of attempted or ongoing attacks on a computer system
or network. Issues in ID research include data collection, data reduction, behavior classification,
reporting and response. Although there are many significant open problems in ID research, we
focus on data reduction and classification. Data reduction consists of analyzing a collection of data
in order to identify the most important components of the data, thereby reducing processing time,
communications overhead and storage requirements. Classification is the process of identifying
attackers and intruders. Artificial intelligence (AI) techniques have been used in many IDSs to
perform these important tasks.

Section 2 of this paper will briefly discuss artificial intelligence methods and describe some of
the methods which will appear in this paper. Section 3 will discuss the problem of data reduction
and discuss how AI methods have been used in a variety of IDSs to solve this problem. Section 4

22

mailto:frank@cs.ucdavis.edu

2

will discuss the application of AI to the classification problem. Section 5 will present an example
of the use of feature selection to improve the classification of network connections, and section 6
will discuss some future applications of AI in IDSs.

Artificial Intelligence Methods

Artificial Intelligence is concerned with improving algorithms by employing problem solving tech
niques used by human beings. Humans excel at tasks such as learning, or gaining the ability
to perform tasks from examples and training. An expert system handles problems using a com
puter model of expert human reasoning. However, most expert systems must undergo continuous
maintenance to perform well [WeKu].

(ALL EXAMPLES I
(EXPERTWARNING<3.2S? I

y /"""" N
~ (rREM---'A"-IN-IN_G_EXAMP--LES--.,J

Figure 1: Growing a Decision Tree.

Other systems can acquire knowledge from a set of training instances. These training instances
can be questions and correct answer pairs, or problems and the steps of a solution. Rule Based
Induction derives rules which explain the training instances more clearly than a mathematical or
statistical analysis of data [WeKu]. Classifier systems attempt to learn how to classify future
examples from a set of training data. An example of a system that can be used as a classifier
is a Neural Network, which uses a model of biological systems to perform classification. Neural
networks are characterized by highly connected networks which are trained on a set of data in
the hopes that the network will correctly classify future examples [WeKu]. Another example of
a classifier is a Decision Tree [BuCa] [WeKu]. Decision trees are constructed by finding ways to
separate the data into two or more groups. We then· separate each of these groups in turn, until we
have small groups of examples left. Decision tree algorithms are designed to find the best questions
to ask so that most or all of the examples in each group belong to one class. Figure 1 shows how a
tree used to classify network connections is constructed. The goal of Feature Selection is to reduce
the amount of information required to make good predictions, and to improve the error rate of
classifiers [WeKu]. This is accomplished by searching subsets of features, or information sources,
and testing the ability of those features to classify the training instances. The search process itself

23

http:EXPERTWARNING<3.2S

is the subject of continuing research in the,AI community. Humans are also able to generalize
or abstract from large amounts of information by a process called discovery or clustering. Data
clustering techniques are used to group data together according to some criteria [ShDi]. Clustering
is used to discover hidden patterns in data that humans might miss.

3 Data Reduction for Intrusion Detection

Due to the massive amount of audit data available, classification by hand is impossible. For
.example, a user typically generates between 3-35Mbytes of data in an eight hour period and it
can take hours to analyze a single hour's worth of data. Analysis is difficult even with computer
assistance because extraneous features can make it harder to detect suspicious behavior patterns.
Complex relationships exist between the features which are difficult for humans to discover. IDSs
must therefore reduce the amount of data to be processed. This is especially important if real-time
detection is desired. Therefore, some form of data reduction is required for IDSs. Reduction can
occur in one of several ways. Data that is not considered useful can be filtered, leaving only the
potentially interesting data. Data can be grouped or clustered to reveal hidden patterns; by storing
the characteristics of the clusters instead of the data, overhead can be reduced. Finally, some data
sources can be eliminated using feature selection.

3.1 Data Filtering

The purpose behind data filtering is to reduce the amount of data directly handled by the IDS.
Some data may not be useful to the IDS and thus can be eliminated before processing. This has
the advantage of decreasing storage requirements and reducing processing time. However, filtering
may throw out useful data, and so must be done carefully.

In systems such as DIDS [SnBr], MIDAS [SeSh], TIM [TeCh] and NSM [HeDi], data filtering
is done using heuristic or ad hoc methods, which can be viewed as expert rules for filtering. Other
systems filter data in a more adaptive or dynamic way. [DeBe] present a filtering system ba.Sed
on a neural network which acts to filter data which does not fit an observed trend. They assume
that user activity contains notable trends that can be detected, and that there are correlations
among the collected audit data. Regularity ensures that the network will pick up the regular
trends exhibited, and automatically account for correlations in the input data. Using a type of
neural network called a recurrent network ensures that behavior trends can be accurately recalled.
The network "forgets" behavior over time, and can thus adjust to new trends. Thus the network
acts as a filter to determine whether or not an audit record fits the regular trends.

3.2 Feature Selection

In complex classification domains, some data may hinder the classification process. Features may
contain false correlations which hinder the process of detecting intrusions. Further, some features
may be redundant since the information they add is contained in other features. Extra features
can increase computation time, and can impact the accuracy of an IDS. Feature selection improves
classification by searching for the subset of features which best classifies the training data [SiSk]
. In the ID domain, features are derived from information sources used to detect intrusions,
and training instances are derived from detected intrusion attempts as well as normal behavior.
Thus, feature selection can be used to find features most indicative of misuse, or can be used to
distinguish between types of misuse. [Do] and [SiSk] have performed comparisons of a variety of

24

feature selection techniques, and [Do] tested several techniques on simulated computer attack data
to explore the possibility of using feature selection to improve intrusion detection techniques. In
section 5 we give an example of feature selection applied to classifying network connections.

3.3 Data Clustering

Clustering can be performed to find hidden patterns in data and significant features for use in
detection. Clustering can also be used as a reduction technique by storing the characteristics of
the clusters instead of the actual data. Artificial Intelligence researchers have noted the close rela
tionship between learning and data compression. Discovering the generalization of a concept is in
essence finding a more compact representation of the set of objects, and a hierarchical clustering
algorithm can be used for inductive generalization [Th]. Statistical clustering measures the prob
ability that each example is in a given cluster. Exemplar methods build a representative of each
cluster throughout the clustering process. Distance clustering uses a distance measure to estab
lish membership in a cluster. Conceptual clustering requires that an object meet necessary and
sufficient conditions for cluster membership.

PRAD [LaBe] uses k-nearest neighbor (knn) clustering to reduce data. To perform knn clus
tering, x percentiles of the distribution are determined. The data is reduced to one of the values
1 to x. Thus each of n data elements is clustered with k = x~l neighboring data points. Along
with the choice of number of percentile points, the positions of the percentiles can also be located.
For instance, [La] uses 2 percentiles and splits the categories at the 50th percentile. The Bernoulli
vector used in Haystack uses x = 2 and splits at the 90th percentile. [He]

Wisdom&Sense [LiVa] also performs clustering of numerical data. The history of audit data is
separated into clusters which correspond to high density regions followed by low density regions;
the historical data is then represented by clusters which represent each density region.

4 Behavior Classification in Intrusion Detection

Classifying user or system behavior is a very hard problem. One problem is that only a small
fraction of behavior is misuse; another is that often misuse looks like normal use, so it can be
difficult to distinguish between intruders and normal users. As a result, classification can result in
"false negatives", wherein an attacker is misclassified as a normal user. "False positives" can also
degrade productivity in the systems being protected by invoking countermeasures unnecessarily.
Finally, all types of intrusive behavior can't be identified in advance. Several AI techniques have
been used to improve IDS classification performance. Statistical anomaly detection works on the
assumption that many attackers behave differently from normal users, or that a system or process
behaves differently during an attack. If a user is behaving abnormally it may indicate an attacker
using that user's account. Expert systems encode policy statements and known attacks as a fixed set
of rules. User behavior is matched to these rules to determine if an attack is under way. Rule-based
systems create (discover) and manage rules corresponding to anomalous behavior.

4.1 Expert Systems

In an expert system, a set of rules encoding knowledge of an "expert" are used to make conclusions
about information gathered by the IDS. The rule set must be modified by hand, and may incorpo
rate a statistical or probabilistic component. However, in specialized domains expert systems can
outperform humans.

25

IDES contains a rule-based component which encodes knowledge about past intrusions, known
system vulnerabilities, and security policy. IDES rules are encoded in an expert system shell. As
information is gathered, the expert determines whether or not any rules have been satisfied, then
chooses the most appropriate rule to select [LuJa). [DeBe) propose an expert system in connection
with a neural network. The neural network component reports anomalies to the expert system,
which also employs data not used by the net. The expert contains a rule base similar to that used
in IDES, with known attacks and system policy information. It also provides the network with
contextual inputs that audit data does not provide, and ensures that the network does not train on
intrusive behavior. Other IDSs employing expert systems are Haystack [He), AudES [Ts), MIDAS
[SeSh) and NADIR [JaDu).

4.2 Anomaly Detection

Anomaly detection is based on the assumption that misuse or intrusive behavior deviates from
norrrial system use [LuTa] [De) [DeBe) [LiVa). In many cases this is a valid assumption, as in the
attacker who breaks into a legitimate user's account. The attacker may behave differently than
the regular user, so if the IDS has established what the user normally does during a session, it can
determine that the user is not behaving normally and detect the attack. IDSs constructed with
this philosophy learn profiles of behavior and report anomalies to either a human or another part
of the IDS for more detailed analysis. An anomaly detection system contains three distinct phases:

1. Abstract local information

2. Evolve background informati'on from local abstractions

3. Establish anomaly background boundaries.

[Ma) discusses smoothing raw data to eliminate reliance on outlying data points, blending data
using an exponential method to weight historical data higher than current data, and finding and
blending the variation in behavior to establish a tolerance level for network anomaly detection.
Anomaly detection can be difficult since the concept of normal can change over time. Furthermore,
normalcy can be established with respect to different time frames. For example, a system can
establish session, daily and weekly trends.

PRAD [La) learns profiles of resource usage, time information, and directory access patterns.
Profiles are analyzed with respect to login sessions and time windows, and performance in windows
is weighted over time. Windows extend across logins so that information across login sessions
can be maintained in the profiles. PRAD provides a means for including changing legitimate user
behavior in profiles after legitimacy is ascertained. Other systems employing statistical anomaly
detection are MIDAS[SeSh) , IDES [JaVa), NADIR [JaDu) and Haystack [He).

4.3 Rule-Based Induction

In contrast to expert systems, rule-based systems automatically develop rules to explain the his
torical data they collect. Rules are modified over the lifetime of a system in order to keep the rule
set accurate and manageable.

In Wisdom& Sense, rules are generated which specify legal values of features conditioned on the
values of other features. Legality is determined from the history of data for each feature. Rules can
overlap in specificity due to incomplete information in the history. Rule pruning occurs if there are
too many legal values for a feature, too few historical values, the rule is too deep, if rules overlap, or

26

a rule is conditioned on a previously (in the forest of rules) determined anomalous value. All rules
can either be used to signal anomalies, or the most appropriate rules to use may be determined
[LiVa]. TIM's rules remain in the rule base only if they are highly predictive or confirmed by
many observations. Prediction is calculated using an entropy model. The user must specify the
behavior TIM is trying to predict. Rules are stored in a lattice, and predict an outcome with a
specific accuracy based on the observed audit history. Both short term and long term patterns are
checked against for anomalies. Rules also support instantiation. TIM allows the user to enter rules
describing either patterns or abstractions of the audit data. [TeCh]

5 An Experiment Using Feature Selection

A growing problem in intrusion detection is network-based intrusion detection. Since computer
systems are increasingly network dependent it is imperative to protect both local and regional
networks. An example of the kinds of problems that must be faced can be seen in the problem of
classifying a network connection. On UNIX systems a connection is characterized by the source
port and destination port numbers. Certain ports are reserved for different services; e.g. telnet uses
port 23. However, an intruder can hide network connections by strategically placing the servers
that receive the connections on different ports[He2]. The mapping of ports to services is internal
to a single machine; an intruder could also change the port map. Thus we would like to be able to
identify the type of connection made without referring to port numbers.

We examined how feature selection can improve classification of network connections by min
imizing the classification error rate and by reducing the number of features required to classify
connections. To do so, we analyzed three feature selection algorithms to test methods for selecting
the best subset of features to classify connections using decision trees. We conducted two types of
experiments: one selecting features which distinguish one type of connection from all others, and
one which classified all conn~ction types. Our data consisted of 15,947 connections from one local
area network during one week of normal use.

5.1 NSM Features

We collected information about network connections using NSM [HeDi]. NSM returns data about
each connection. We coli t d the ~ 11 · ~ t" or each connecf10n:ec e o owmg m orma 1on ~

Feature Feature type
Index int
Expert system warning float
Time in seconds int
of packets from source int
of packets from destination int
of data bytes from source int
of data bytes from destination int

Most of the fields are self-explanatory; the expert system warnmg value IS NSM's expert analysis
of how likely the connection is to be an attack. Each piece of information collected was used as a
feature for our experiments. In addition to these fields we also collected the actual connection type
for use in training.

27

5.2 Search Algorithms

To reiterate, feature selection is used to reduce the amount of information required to make good
predictions, and to improve the error rate of classifiers. Since our task is to correctly classify
future examples based on the training examples, we used the classification error rate of a decision
tree to evaluate each set of features [BuCa] [WeKu]. This error rate is computed by counting the
misclassifications on a test data set which is independent from the training set [BuCa]. We tested
representative algorithms from each of 3 broad classes of search algorithms.

Backward sequential search begins with the full set of features. At each stage of the search, each
feature in the remaining set is removed. The best feature to eliminate from the set is determined
by comparing the error rates of the classifiers created using the resulting feature sets. Backward
Sequential Search runs in polynomial time [Do].

Beam search is a type of best-first search which uses a bounded queue to limit the scope of the
search. The queue is ordered from best-state to worst-state, with the best state placed in the front
of the queue. The algorithm operates by taking the first state in the queue, the most promising
state, and extending the search from that state as in Backward Sequential Search. Each new state
visited is placed in the queue in order of the goodness of it's state. If there is no limit on the length
of the queue, then Beam Search takes exponential time to complete but if the queue length is 1
then Beam Search takes polynomial time. Thus accuracy can be increased if the queue length is
increased [Do].

In Random Generation Plus Sequential Selection, we perform several sequential selections from
different places in the search space. As mentioned, the goal is to avoid picking the first good feature
set seen on the assumption that other good feature sets are also available. To do so, we generate a
random feature set, then perform backward and forward sequential selection on the state. Random
Generation runs in polynomial time but is more expensive than Backwards Sequential Selection
[Do].

Number of Features

Figure 2: Feature Set Size vs Error Rate For Classifying Connections.

5.3 Algorithm Performance

The table below shows the size, classification error rates, and number of states searched for each
problem. Note that with 7 features the total number of subsets of these features is 128. We can
see here that in most cases using a computationally expensive algorithm did not gain much in
terms of numbers of features or error rate with the exception of the shell classification problem.

0.12

0.1 ..
0.... 0.08..
" 0...
u 0.06..
~....... 0.04..
~
u

0.02

0
0 1

Beam Search +
Random Search -+-

Backward Sequential Search -e ··

2 3 . 4 5 6 7

28

Further, the RGSS algorithm always repeated states in it's search. This implies that differentiating
connections can be done reasonably well with a less-than-exhaustive search. However, the fact that
the random search did find a better classifier indicates that sophisticated algorithms can be worth
the cost. Notice that the classification error is smaller than the percentage of the smallest class of
connections observed

Problem
All
All
All
SMTP
SMTP
SMTP
Login
Login
Login
Shell
Shell
Shell

Algorithm
Beam
BSS
RGSS
Beam
BSS
RGSS
Beam
BSS
RGSS
Beam
BSS
RGSS

Number of States
53
29
206
53
29
190
38
29
188
38
29
178

Size of Best Feature Set
6
6
6
5
5
5
4
4
4
4
4
4

Error Rate
0.011266%
0.011266%
0.011266%
0.007231%
0.007231%
0.007231%
0.001177%
0.001177%
0.001177%
0.002018%
0.002018%
0.001009%

0.12

0.1

" 0

" " 0.08.,
" -j

0.06" ~
0.04....

u

0.02

0

Beam Search -+-
Random Search -+-

Backward Sequential Search -a-

0 2 3 4 5 7
Number of Features

Figure 3: Feature Set Size vs Error Rate For Identifying SMTP Connections.

5.4 Error Rate Performance

The following graphs show how error rate varied with size of feature sets found for each of the
problems. We note that in all cases the algorithms performed similarly. We also note that in
all cases except the shell connections problem each algorithm found not only the same sized best
feature set but that the sets were composed of the same best features.

Figure 2 shows the error rate vs feature set size for classifying all network connections. The
error rates are for the best feature set of the indicated size found by each algorithm. We see that
with as few as 3 features the error rate is< 0.02%. However, the best feature set only excluded the
number of destination data bytes. The 3 features found by all of the search algorithms were time
in seconds, packets from the destination and source data bytes, and had an error of 0.017488%.
Thus for this particular case a sophisticated algorithm wasn't necessary to find a good classifier.

Figure 3 shows the error rate vs feature set size for classifying SMTP connections. We do not
see a jump in the error rate until 3 features, although the best feature set contained 5 features, with
the Index and Destination Data bytes excluded. All algorithms found that using time in seconds,

29

packets from the destination and source data bytes gave an error of 0.009248%, so again the less
computationally expensive algorithm is the best choice.

0.05

0.045

.. 0.04
0.... 0.035

"' c 0.03
0
"j

" 0.025
.!!.........
"

0.02

0.015
u

0.01

0.005

0
0 2 3 4 76

Figure 4: Feature Set Size vs Error Rate For Identifying Login Connections.

Figure 4 shows the error rate vs feature set size for classifying login connections. Again we do
not see a jump in the error rate until 3 features, although the best feature set contained 4 features.
This time the index, destination data bytes and source data bytes were excluded from the best
feature set. Again BSS and RGSS performed the best, with RGSS finding that time in seconds,
packets from the destination and source data bytes gave an error of 0.001850%. Again BSS found
the same feature set and expanded fewer states.

The results from classifying shell connections were more interesting. While all 3 algorithms
found the best feature set size was 4, RGSS found a better feature set with a better error rate, as
shown below.

Beam Search_
Random Search -+-

Backward Sequential Search -a··

Number of Features

Algorithm Index Expert Time Src Pkts Dest Pkts Src Data Dest Data
Beam N y N y y y N
BSS N y N y y y N
RGSS N y y y N y N

Here, all algonthms found sets of 3 features With 5 times the error rate of the best feature set.

0.035

0.03

0.025
g
w
c 0.02
0

]
"in 0.015
_;j
c..>

0.01

0.005

0
0 2 3 4 75 6

Figure 5: Feature Set Size vs Error Rate For Identifying Shell Connections.

Figure 5 shoes shows the error rate vs feature set size for classifying shell connections.

30

Beam Search +
Random Search -+-

Backward Sequential Search ·a··

Number of Features

6 Future uses of AI in Intrusion Detection

Currently, many IDSs employ AI methods in their systems. We expect AI techniques will impro\"e
understanding of how non-intrusive and intrusive behavior differ, as well as enable hierarchical
classification of different types of attacks.

6.1 Feature Selection in Intrusion Detection Systems

We have demonstrated that feature selection can be effective in a small example. We can extend
feature selection to intrusion detection. NSM returns more data than we used in our experiment,
and can also be executed containing a list of strings to look for in connections. This information can
be invaluable in determining whether critical files or commands pass across the network. However,
the number of interesting strings to check for can number easily in the hundreds. Another method
of deriving new features is by analyzing multiple transcripts and combining information for a single
source-destination pair. Since an attack might span multiple "attempts" over time, a single source
destination pair might appear ma:Ry times with different data each time. Aggregating statistics
and adding others can result in more features. For instance, the number of times a particular
connection was made is such an aggregated feature.

6.2 Reconfiguration and Customization of IDSs

IDSs can be site specific. Using data reduction techniques we can customize an IDS to a particular
site by finding the information sources most useful to that site's IDS needs. We can also re-configure
an IDS using feature selection after finding new data sources. For instance, NSM can be configured
to search for different strings on a network. Feature selection can be used to determine which
strings are the best to search for.

IDSs such as DIDS, COPS, Haystack and IDES all make assumptions about the type of data
they collect. Feature selection techniques can be modified to analyze the value of the features used
in other IDSs and perhaps to enhance their performance by eliminating noisy features. Systems
like DIDS and IDES may be difficult to analyze, since they incorporate classifier systems already.
In some cases the classifiers may rely on all audit features being present before making decisions; if
those features are not present it may cause them to incorrectly classify (or fail to classify) behavior.

6.3 Clustering in Intrusion Detection

We envision that clustering will be very useful in intrusion detection. We plan to use clustering
techniques such as Autoclass [ChKe] to explore patterns in audit and network data. One way
clustering can be used in ID is by giving .an overview of complex data. Another is by considering
each cluster in turn and analyzing interesting characteristics of each cluster. For instance, if one
cluster has characteristics of two other extremely dis-similar clusters, it may indicate usage patterns
midway between two "normal" groups, leading to suspicions of misuse.

7 Conclusions

We have provided a brief survey of AI methods used in a variety of IDSs. We have also demonstrated
how one technique, feature selection, can be used to reduce overhead and improve classification of

31

8

network connections. Other IDSs already make extensive use of AI techniques to improve their
ability to detect attacks on computer systems.

Acknowledgements

Todd Heberlein provided valuable assistance with NSM for this paper. Justin Doak's work provided
theoretical basis for this work, and we used his code to provide the data available. He also provided
valuable technical assistance. Becky Bace of the NSA also provided valuable comments on the draft
of this paper. This work was supported by NSA under University Research Program under Contract
Number MDA904-93-C-4085 and by ARPA under Contract Number DOD/DABT63-93-C-0045.

References

[Ba] ·R. Baldwin. "Kuang: Rule-Based Security Checking." COPS documentation, MIT,Lab For
Computer Science Programming Systems Research Group, 1989.

[BuCa] W. Buntine, R. Caruna. "Introduction to IND and Recursive Partitioning." IND Docu
mentation, NASA Ames Research Center, 1991.

[ChKe] P. Cheeseman, J. Kelley, M. Self, J. Stutz, W. Taylor, D. Freeman. "Autoclass: A Bayesian
Classification System. Proceedings of the 5th International Conference on Machine Learning,
1988.

[De] D. Denning. "An Intrusion Detection Model." IEEE Transactions on Software Engineering,
vol SE-13, no.2, 1987.

[DeBe] H. Debar, M Becker, D. Siboni. "A Neural Network Component for an Intrusion Detection
System." Proceedings, IEEE Symposium on Research in Computer Security and Privacy, 1992.

[Do] J. Doak. "Intrusion Detection: The Application of Feature Selection, A Comparison of Algo
rithms, and the Application of a Wide Area Network Analyzer." PhD. Thesis, Department of
Computer Science, University of California, Davis, 1992

[He] 	 T. Heberlein. "Haystack's Analysis: A Brief Description." Internal Document, University of
California, Davis, 1991.

[He2] T. Heberlein, Private Communication, March 1994.

[HeDi] L. Heberlein, G. Dias, K. Levitt, B. Mukherjee, J Wood, D. Wolber. "A Network Security
Monitor." Proceedings, IEEE Symposium on Research in Computer Security and Privacy, 1990.

[JaDu] K. Jackson, D. DuBois, C. Stallings. "An Expert System Application for Network Intrusion
Detection." 1991

[JaVa] H. Javitz, A. Valdes. "The SRI IDES Statistical Anomaly Detector." Proceedings, IEEE
Symposium on Research in Computer Security and Privacy, 1991.

[LaBe] L. Lankewicz, M. Benard. "Real-time Anomaly Detection Using a Non-Parametric Pattern
Recognition Approach." Proceedings 7th Annual Computer Security Applications Conference,
1991.

32

[La] 	 L. Lankewicz. "A Non-Parametric Pattern Recognition to Anomaly Detection." PhD. Thesis,
Dept. of Computer Science, Tulane University, 1992.

[LiVa] G. Liepens, H. Vacaro. "Anomaly Detection: Purpose and Framework." Proceedings, 12th
National Computer Security Conference, 1989.

[LuJaf T. Lunt, R. Jaganathan, R. Lee, A. Whitehurst, S. Listgarten. "Knowledge-Based Intrusion
Detection." Proceedings of the AI Systems in Government Conference, 1989.

[LuTa] T. Lunt, A. Tamaru, F. Gilham, R. Jaganathan, P. Neuman, C. Jalali. "IDES: A Progress
Report." Proceedings of the Sixth Annual Computer Security Applications Conference, 1990.

[Ma] R. Ma.xion, "Anomaly Detection for Diagnosis." FCTS, 1990

[RiSe] C. Riesbeck, R. Schank. Inside Case-Based Reasoning. Lawrence Erlbaum Associates, New
Jersey, 1989.

[SeSh] M. Sebring, E. Shellhouse, M. Hanna, R. Whitehurst. "Expert Systems in Intrusion Detec
tion: A Case Study." Proceedings of the 11th National Computer Security Conference, 1988.

[ShDi] J. Shavlik, T. Dietterich. Readings in Machine Learning. Morgan Kauffman, California,
1990.

(SiSk] W. Siedlecki, J. Sklansky. "On Automatic Feature Selection." International Journal of Ar
tificial Intelligence, vol.2, no.2, 1988.

(SnBr] S .. Snapp, J. Bretano, G. Dias, T. Goan, L. Heberlein, C. Ho, K. Levitt, B. Mukherjee,
S. Smaha, T. Grance, D. Teal, D. Mansur. "DIDS: Motivation, Architecture and an Early
Prototype." Proceedings of the 14th National Computer Security Conference, 1991.

[TeCh] H. Teng, K. Chen, S. Lu. "Adaptive Real-Time Anomaly Detection Using Inductively Gen
erated Sequential Patterns." Proceedings, IEEE Symposium on Research in Computer Security
and Privacy, 1990.

[Th] C. Thornton, "A Computational Model for the Data Compression Metaphor." Proceedings of
the 3d International Conference on Artificial Intelligence, 1990.

[Ts] G. Tsudik. "AudES- An Expert System for Security Auditing." 'Proceedings of AAAI Con
ference on Innovative Applications in AI, 1988

[WeKu] S. Weiss, C Kulikowski. Computer Systems That Learn. Morgan Kauffman, California,
1991.

33

1

A THREE TIER ARCHITECTURE FOR

ROLE-BASED ACCESS CONTROL

Ravi S. Sandhu* and H a[Feinstein

SETA Corporation
6858 Old Dominion Road, Suite 200

McLean, VA 22101

This paper presents a reference architecture (or conceptual framework) for the specification and
enforcement of role-based access control (RBAC). The architecture has three tiers in loose analogy
to the well-known ANSI/SPARC architecture for database systems. (Although we take our inspira
tion from the database domain, we emphasize that our proposed RBAC architecture is germane to
applications and systems in general and is not limited to databases per se.) The three tiers of the
reference architecture consist of (i) multiple external or user views concerned with the utilization of
RBAC in a specific context within the organization, (ii) a single conceptual or community view which
amalgamates diverse external views into a consistent and unified composite suitable for overall secu
rity administration, and (iii) multiple internal or implementation views concerned with enforcement
of RBAC in various subsystems of the enterprise information system. This paper discusses these
three tiers and their interrelationships. We demonstrate the usefulness of this conceptual approach,
and identify issues which need further research to make this framework a reality.

INTRODUCTION

Role-based access control (RBAC) is an idea whose time has come. A consensus has developed
in recent years that the traditional discretionary and mandatory access controls (DAC and MAC,
respectively) embodied in DoD's landmark Orange Book [Dep85] are inadequate for the information
security needs of many commercial and civilian Government organizations (as well as single-level
military systems, for that matter). Orange Book DAC is too weak for effective control of infor
mation assets, whereas Orange Book MAC is focused on US policy for confidentiality of classified
information. RBAC has therefore emerged as a third form of access control to fill this urgent need.

Although RBAC is perceived to be a good match for the information security needs of a wide
spectrum of organizations (which are not being currently served by Orange Book DAC and MAC)
there remains a lack of consensus about exactly what RBAC means. For example, participants at
the recent Federal Criteria Workshop felt that while "RBACs were needed in the commercial/civilian
sector," at the same time "roles are a new concept and not yet well understood" [Nat93b].

It is beyond the scope of this paper to give a complete definition of RBAC, let alone one on which
wide consensus has been achieved. Such an attempt would be premature. Our purpose here is to
present a conceptual framework, or reference architecture, for specifying and enforcing RBAC. Our
framework has three tiers in loose analogy to the well-known ANSI/SPARC architecture for database
systems [Te78]. Although we take our inspiration from the database domain, we emphasize that our
proposed RBAC architecture is germane to applications and systems in general and is not limited to
databases per se. Much as the ANSI/SPARC framework is useful independent of the particular data
model employed, our proposed RBAC framework is useful whatever the final consensus definition of
RBAC turns out to be.

*Ravi Sandhu is also affiliated with the Department of Information and Software Systems Engineering at George
Mason University in Fairfax, VA.

@ 1994 Ravi S. Sandhu and Hal Feinstein

34

Our reference architecture is motivated by two main considerations. Firstly, a number of propos
als incorporating one form or another of RBAC have been published in recent years. Some of these
have been incorporated in commercial products, and more such products can be expected to appear
in the near future. Vendors tend to integrate RBAC facilities in products in different ways, because
of the economics of integrating such features into existing product lines. Over time the emergence
of standards will impose some order in this arena, but the near term is likely to display a divergence
of approaches. Even as standards emerge, we can expect a diversity of support for RBAC due to
the longevity of legacy systems.

Secondly, in large organizations there will be a large number of roles and complex relationships
between the roles and permissions authorized by them. In most contexts it would be appropriate
to take a simplified view appropriate for the task at hand. For example, in some situations all
members of a particular department can be treated as belonging to a single role; whereas in other
situations more refined roles such as managers, technical staff and administrative staff need to be
distinguished.

The central tier of our architecture resides in a single community view of RBAC as it applies
to the entire organization in question. This community view will typically be large and complex
reflecting the reality of modern organizations. The specialized context-specific views of RBAC
tailored to particular applications and situations are accommodated in multiple user views that
reside above the central tier. The views of RBAC embodied in different products are embodied in
multiple implementation views residing below the implementation tier. Figure 2 illustrates these
three tiers. The central tier serves as the focal point for mapping the external user views to the
internal implementation views.

The rest of this paper is organized as follows. Section 2 briefly reviews prior work on RBAC.
Section 3 presents our three-tiered reference architecture for RBAC. Section 4 discusses issues per
taining to the all important central tier. Sections 5 and 6 respectively discuss relationships between
the top two tiers and the bottom two tiers of our architecture. Section 7 gives our conclusions.

2 BACKGROUND

The roots of RBAC can be traced back to the earliest access control systems. RBAC has a su
perficial resemblance to the long-standing use of user groups in access control systems. There are,
however, two very important differences between groups and roles; as articulated by Ferraiolo and
Kuhn [FK92].

Firstly, groups are essentially a discretionary mechanism whereas roles are non-discretionary.
The ability to assign permissions to a group is usually discretionary (although the authority to
assign members to a group is usually non-discretionary, and reserved for the security administrator).
Thus, the owner of a file can decide what access a particular group has to that file. On the other
hand, the allocation of permissions to a role, as well as determination of membership in a role, are
both intended to be non-discretionary.* In the simplest case, these decisions are made solely by
the security administrator. More generally, the security administrator can selectively delegate this
authority to other users or roles in the system (as recognized in the CS-3 profile of the Draft Federal
Criteria [Nat92]).

Secondly, the nature of permissions allocated to a role is significantly different than the usual
read, write, execute, etc., supported by typical Operating Systems (OSs). Ferraiolo and Kuhn define

*Not all proposals for RBAC agree with this position. For example, relations in Oracle [Ora92] can be owned by
individuals who the have discretionary authority regarding how to assign permissions for these relations to users and
roles. In our opinion the non-discretionary aspect of roles is very important. In systems such as Oracle, it is possible
to achieve a de facto non-discretionary behavior by strict control of ownership of relations which contain corporate
data.

35

3

the notion of a transaction as a program (or transformation procedure) plus a set of associated data
items. The operation authorized is therefore to execute the specified program on this set of data
items. This very important notion allows authorization in terms of abstract operations embodied in
transformation procedures. For example, the bank teller role can be allocated the authorization to
execute credit and debit operations on accounts rather than to general read and write operations.
This enables RBAC to address security for applications in terms of the application's operations, as
opposed to generic read and write operations in a general-purpose OS.

Roles have been employed in several mainstream access control products of the 1970s and 80s,
such as IBM's RACF and Computer Associates' CA-ACF2 and CA-TOP SECRET. These products
typically include roles for administrative purposes. For example, RACF provides an Operator role
with access to all resources but no ability to change access permissions, a Special role with ability to
change permissions but no access to resources, and an Auditor role with access to audit trails (includ
ing events generated by Operator and Special, who have no access to the audit trail) [Mur93]. The
use of roles for administrative purposes also appears in context of cryptographic modules [Nat93a].
Here User, Crypto-Officer and Maintenance roles are distinguished.

Recent proposals for RBAC, such as Ferraiolo and Kuhn [FK92], go beyond this traditional use
of roles by providing them at the application level to control access to application data. This is
an important innovation which makes RBAC a service to be used by applications. RBAC offers
the opportunity to realize benefits in securing an organization's information assets, similar to the
benefits of employing databases instead of files as the data repository. Instead of scattering security
in application code, RBAC will consolidate security in a unified service which can be better managed
while providing the flexibility and customization required by individual applications. It should be
noted that access control similar to RBAC has often been embedded in application code. The point
is to move this functionality out of application code into a common set of services.

Over the past five years or so, several proposals for RBAC have been published. Some of these,
such as [Bal90, Ste92, Tho91], have proposed extensions to existing access control systems to incor
porate roles. Commercial products, such as ORACLE [Ora92], have incorporated roles. Roles are
also being considered as part of the emerging SQL3 standard [PB93]. Proposals for incorporating
roles in object-oriented systems have been published [LW88, Tin88]. More recently Ferraiolo and
Kuhn [FK92] of NIST have given an abstract and unifying description of the essential characteristics
of RBAC. Their ideas have been incorporated in the CS-3 protection profile of the Draft Federal
Criteria [Nat92]. The application of roles for enforcing static and dynamic separation of duties has
also been recognized [CW87, San88b, San91].

The formulations of RBAC mentioned above have been motivated by different considerations.
Not surprisingly they differ in important aspects. At present there is no unified model with respect
to which these different formulations can be viewed as special cases. Development of such a model,
and a taxonomy of its special cases, would be a significant contribution to this area. This task is
beyond the scope of this paper. Our concerns here are independent of the unified RBAC model that
may eventually emerge.

THE THREE TIER FRAMEWORK

In the late 1970s, an ANSI/SPARC study group published a report [Te78] which has had an endur
ing impact on database systems. This report described a three-tier "architecture" for a database,
consisting of:

1. 	 the external or user view which is concerned with the way data is viewed by end users,

2. 	 the conceptual or community view which amalgamates diverse external views into a consistent
and unified composite, and

36

External or User Views

Conceptual or Community View

Internal or Implementation View

Figure 1: ANSI/SPARC Database Architecture

3. 	the internal or implementation view which is concerned with the way that data is actually
stored.

This database architecture is shown in figure 1.

Note that there are multiple external views, but only a ~ingle conceptual and a single internal
view. This three-tier approach to database systems has stood the test of time, and is remarkably
independent of the particular data model being used.

We believe a similar approach is suitable for developing a common framework or reference ar
chitecture for RBAC. RBAC is concerned with the meaning and control of access control data (i.e.,
data used to control access to the actual data of the organization). In other words we are concerned
with a special purpose database system. It is therefore sensible to adapt the approach used for
general-purpose database systems. However, there is one significant difference. In database systems,
it is intended that the implementation will eventually be on a particular database management plat
form. Consequently, the internal or implementation view is closely tied to the particular platform
that is selected. With RBAC we do not have the luxury of assuming a homogeneous implementation
environment. Instead we must confront the reality of heterogeneous implementations up front. This
leads us to modify the three-tier ANSI/SPARC architecture by introducing multiple internal views,
corresponding to different platforms on which the implementation is done. This RBAC reference
architecture is shown in figure 2.

Our three-tiered approach to RBAC therefore consists of

1. multiple external views,

2. 	 a single conceptual view, and

37

External or User Views

Conceptual or Community View

Internal or Implementation Views

Figure 2: A Three Tier Architecture for RBAC

3. multiple implementation views

Next, let us consider the appropriate model for each of these tiers. We again turn to the
ANSI/SPARC architecture for inspiration. There is a conspicuous difference between the mod
els used at the implementation and conceptual tiers. We expect a similar difference in our RBAC
reference architecture. Why is this so? We expect the model used at the conceptual level to have
richer constructs and primitives, because it is intended to express a composite system-wide view of
RBAC. Practical considerations will inevitably dictate that not all these features can be directly
supported in an implementation. Hence the implementation models will be simpler and less user
friendly. Moreover, we expect a range of sophistication from rather primitive mechanisms (say on
a vanilla UNIX platform) at one end to very elaborate ones (say on an object-oriented database
management system) at the other. Note that this viewpoint lets us accommodate legacy systems
co-existing with newer ones. It should also be clear that the effort required to translate a conceptual
view will be less or greater depending upon the sophistication of the implementation platform being
targeted. In some cases, a translation may not even be feasible (or practical) without enhancement
of the target platform.

The difference between the conceptual and external tiers is less marked. Whether or not there
should be any difference is open to debate. For relational databases, both tiers are often identical and
directly based on the relational data model. However, sometimes a richer model such as the entity
relationship model is used for the external view while a relational model is used at the conceptual
view. We anticipate a similar situation in the RBAC reference architecture. Based on the historical
experience with the ANSI/SPARC architecture, it might well happen that initially the same RBAC
model is used at both tiers, but over time richer models are developed for the external view.

38

4

In subsequent section we first discuss the all important central tier of our RBAC reference
architecture. This is followed by discussion regarding the top two tiers and their relationship.
Finally we discuss the relationship between the bottom two tiers.

THE CENTRAL TIER

The central tier of our reference architecture consists of a single community view of RBAC applicable
to the entire information system and its myriad applications. This community view is the essential
conceptual vehicle for effective deployment of enterprise-wide RBAC. Development of a suitable
model of RBAC for this tier is an all important task, but beyond the scope of this paper. Here
we discuss some issues in constructing such a model, and describe some desirable characteristics
that this model should have. We should say at the outset that an RBAC model suitable for this
tier must be rigorous, have a formal foundation and yet be intuitively comprehensible and useful to
practitioners. This is a daunting task, but one which we feel can be accomplished in future work.

RBAC is intended to be a flexible and customizable vehicle for application security. A recent
NIST study [FGL93] of "current and future information technology security needs of the commercial,
civil, and military sectors" concluded that, "Each organization viewed its access control needs as
unique. Access control mechanisms need to be applied on a case-by-case basis in meeting individual
computer security threats." Ferraiolo and Kuhn [FK92] similarly state that, "A wide gamut of secu
rity policies and needs exist within civilian government and private organizations. An organizational
meaning of security cannot be presupposed."

In order to achieve flexibility, it is important to resist imposing a particular form of RBAC in all
situations. A general RBAC model must instead accommodate a variety of alternatives that can be
selected on a case by case basis. At the same time it is not very useful to enumerate a long menu of
alternatives as a general RBAC model. The goal of flexibility and customization must be reconciled
with the need for simplicity and minimality of concepts in the model.

To illustrate this conflict, consider the question of whether or not a user can simultaneously take
on more than one role. In many situations it can be argued that limiting the user to one role at any
time is beneficial for purpose of least privilege. For example, the role of being an employee and the
role of being a stockholder of an enterprise are two independent attributes of a user yielding different
access rights which should be separately exercised by an individual. Similarly, the role of being a
physician and being a patient should be regarded as mutually exclusive. At the same time, there
are many situations when it is beneficial to let a user exercise multiple roles simultaneously. This is
particularly so when the roles are based on competence or skill. Thus an attorney can take on the
role of a specialist in, say, tax and criminal law. A single individual, cleared to both specialist roles,
can then be assigned to a case requiring both kinds of attorneys. A system which insists on users
taking on only one role at a time would require two individuals to process the case, or perhaps a
single individual who is required to switch back and forth between roles. Requiring two individuals,
where one would do, is clearly inefficient. Requiring frequent switching back and forth of roles, in
this situation, is the sort of thing that gets users frustrated with security.

This example demonstrates that any system which enforces one alternative to the exclusion of
the other, is going to be awkward to use when the situation at hand does not match the alternative
hardwired in the system. One approach to resolving the particular conflict of this example is to
recognize two kinds of roles: those that can be simultaneously held and those that cannot. More
generally, one could imagine disjoint sets of roles which can be mixed under permissible combinations
specified in some formal language. If one is not careful, this kind of thinking can lead to models
which are extremely general and open-ended, and thereby lose their value. Rather than customizing
such a general model, it may be more useful for the practitioner to construct a model more directly
applicable to the need at hand.

39

The issue of how many and which roles can be simultaneously exercised by a user, is but one of
many such issues which need to be addressed in constructing a RBAC model. Perhaps, the most
fundamental issue that needs to be addressed is what exactly is meant by a role. Ferraiolo and
Kuhn [FK92] define a role as follows: "A role can be thought of as a set of transactions that a user
or set of users can perform within the context of an organization. Transactions are allocated to
roles by a system administrator.... Membership in a role is also granted and revoked by a system
administrator."

The question then arises as to what is a transaction. Ferraiolo and Kuhn provide two definitions.
In the first definition, a transaction is defined as "a transformation procedure, plus a set of data
items accessed by the transformation procedure." In this case Ferraiolo and Kuhn observe that
access control is very simple, because it "does not require any checks on the user's rights to access
a data object, or on the transformation procedure's right to access a data item, since the data
accesses are built into the transaction." All that needs to be checked is whether or not the user is
authorized to run the transaction in question (via some role). Ferraiolo and Kuhn also offer a more
sophisticated definition of transaction by redefining it to "refer only to the transformation procedure,
without including a binding to objects." Access control enforcement must then check 5-tuples of the
form (u,r,t,o,x) to ascertain whether or not a user u in role r can access object o in mode x using
transaction t (x is one of read, write, append, etc.). The need for such fine-grained access control
has been supported by comments from an IRS representative at the NIST-NSA Federal Criteria
Workshop [Nat93b, page 47].

So even the definition of a transaction has several important variations. The foregoing aspect
concerns the nature of privileges that are associated with roles. There is also significant variation
concerning the manner by which privileges and users are assigned to roles. On one hand this
assignment should be non-discretionary, and perhaps done only by the system administrator. On
the other hand, in large systems this will be an onerous responsibility to impose on a single individual
or office. To facilitate security administration it should be possible for the system administrator to
delegate pieces of this authority to other users or roles. The need for such delegation is recognized in
the Commercial Security profiles of the draft Federal Criteria [Nat92], as well as in [FK92]. There is,
however, a great deal of variation in how this delegation can be accomplished, especially if delegation
of such administrative privileges can be further delegated. For example, the manager of a department
may be given some administrative control over roles pertaining to that department. However, we
would like to impose some non-discretionary controls on the manager so that, for example, the
manager can delegate his authority to certain roles but not others. A general RBAC model must
allow variation here without stipulating the universal use of one approach.

Another important aspect ofRBAC in which there is significant variation concerns inheritance of
privileges across roles. In general, roles can be composed of other roles [FK92]. To take an example
from [FK92], the Intern role can- be assigned to the Healer role, so that members of the Intern role
automatically obtain membership in the Healer role. Taking this one step further, a Doctor role
can be assigned to the Intern role. In this manner members of the Doctor role become members of
the Intern role, and transitively members of the Healer role. There are significant policy issues that
arise in this context. In this particular example transitive propagation of membership appears to
be justified. On the other hand, transitive propagation may not always be desirable. It may also be
useful to distinguish the privileges of a role that may be inherited through other roles, from privileges
that are private to a role and cannot be inherited. In a truly general model we may also wish to
consider denials (or negative privileges), in addition to permissions (or positive privileges). This is
a useful facility, particularly when there are multiple administrative authorities in a system. The
exact semantics of inheritance of privileges in such cases can become extremely murky [Lun88]. It is
also important to develop systematic methodologies for designing and maintaining such hierarchies
of roles. The techniques described in [San88a] for construction of such hierarchies in the context of
protection groups could be employed here.

40

The point of the preceding discussion is that there are many variations to be considered in a
model for RBAC. The dimensions that were considered above are summarized below.

• What, and how many, roles can a user exercise simultaneously?

• What is the granularity of privileges that can be assigned to roles?

• How do privileges granted to roles interact with privileges granted to users as individual?

• How is security administration of assignment of users and privileges to roles accomplished?

• How are privileges inherited when roles are composed of other roles?

We need a common approach towards modeling RBAC wherein variations along the dimensions
identified above (and possibly others which emerge).

Let us now consider the nature of an RBAC model suitable for the central tier of the RBAC
reference architecture. In abstract terms any access control model has to address the following issues.

1. What is a protection state?

2. What does it mean?

3. How is it changed?

To illustrate this let us consider some classical access control models, and see how they address these
issues. The most widely used model to date is perhaps the Bell-LaPadula or BLP model [BL75]. In
BLP a protection state consists of a set of subjects SUB, a set of objects OBJ, a discretionary access
matrix D, a current access matrix M, and a function SECURITY-LEVEL which maps each subject
and object to a label from the given security lattice. The meaning of the protection state is that
M specifies which accesses are currently authorized. The D and M components of the protection
state are changed in different ways. D is changed at the discretion of subjects. A subject who owns
an object controls access to that object. M is changed when an access is actually attempted. If
D authorizes the access, and the simple-security and star-properties permit it, the relevant right is
entered in the appropriate cell of M. Only the security officer can change the sets SUB and OBJ.

For another example of how these three issues are addressed consider the typed access matrix
(TAM) model of Sandhu [San92] (which is obtained by adding strong typing of subjects and objects
to the classical HRU model [HRU76]). In TAM a protection state consists of a set of subjects SUB,
a set of objects OBJ, an access matrix AM whose cells contain entries from a set of rights R and
a function TYPE which maps each subject and object to a type in the specified set of types. The
meaning of the protection state is that AM specifies which accesses are currently authorized, as well
how AM can be currently modified. The sets SUB and OBJ, and the access matrix AM are changed
by ·executing one of a given collection of commands. A command will execute only if AM authorizes
its execution.

A conceptual RBAC model will follow this established paradigm. Each of the three issues iden
tified above need to be formally defined in some appropriate notation. Some of the components of
such a model have been identified by Ferraiolo and Kuhn [FK92]. There is, however, much that
remains to be done. As we have argued there are many variations regarding the precise behavior
of RBAC. A vital component of this subtask is the development of a common framework that can
accommodate these variations. In practice many of the "advanced" features of RBAC may not be
needed in all applications, and may not be supported in all products. Nevertheless a complete RBAC
model must address the problem in its full generality. Restricted versions of the model can then be
identified as needed. This approach is consistent with the ordered ranking of protection profiles in

41

External or User Views

Aggregation

Conceptual or Community View Refin~t

Figure 3: Harmonizing the Top Two Tiers

the draft Federal Criteria [Nat92]. It is important to analyze which aspects of RBAC add significant
expressive power, and which are just dispensable conveniences.

In conclusion the RBAC model for the central tier must be a flexible and general model. It
should be rigorously defined, have a solid formal foundation and yet be intuitively comprehensible
and useful to practitioners. Although this is a challenging task, we feel it can be accomplished
relatively soon.

5 HARMONIZING THE TOP TWO TIERS

Let us now consider the relationship between the top two tiers of the reference architecture, re
produced in figure 3. Each external view gives one perspective on the common community view,
relevant to the particular context at hand. The relationship between the the top two tiers is one of
aggregation and refinement as indicated in the figure.

Aggregation is a process by which several distinct roles are combined into a single role, because the
distinction is not relevant in the given context. For example, the community view might have distinct
roles for, say, Undergraduate Students, Master's Students and Doctoral Students. In an application
where are all students are treated alike, these roles could be collapsed (i.e., aggregated) into a single
Student role. In other applications, which confer different privileges to the various student roles,
this distinction is significant. Refinement is simply the opposite operation to aggregation.

Different external views will aggregate different collections of roles from the community view.
Some external views may aggregate the student roles into a single one. Others may keep the
distinction between student roles but aggregate distinct faculty roles into one. Still others may
aggregate both or none of the student and faculty roles. Our expectation is that a relatively small
portion of the overall role set from the community view will be needed more or less intact in a
particular external view. Most of the roles will, however, be aggregated. In other words each
external view will see only a small part of the roles set in all its detail.

So long as entire roles are being aggregated or refined, the mapping between the top two tiers
is relatively simple. There may be situations where the role relevant to the external view does not
come about so cleanly by aggregation. For example, suppose the community view has roles A and
B, whereas the external view requires a role which has some (but not all) members of A and some

42

6

(but not all) members of B. We identify below some techniques for accommodating such an external
view.

• 	 One could modify the community view to create a new role C and explicitly assign those
members of A and B who should belong to this role. This treats A, B and C as unrelated
roles.

• 	 One could modify the community view to partition A into A1 and A2 (with A1 n A2 = ¢),
and B into B1 and B2 (with B1 n B 2 =¢)so that C = A1 U A2 can be defined in the desired
external view. This would require external views which use A to now treat A as an aggregate
of A1 and A 2 , instead of being a role form the community view. Similarly, for external views
which use role B.

• 	 We could allow aggregation which can select the appropriate subsets of A and B, based on
some condition for identifying members who should belong to the aggregated role C. This will
complicate the aggregation operation and might dilute the central role of the conceptual view.

This list is not intended to be exhaustive. The point is that various alternatives are available as the
community and external views adapt to the ever changing demands of the applications. One needs
a systematic methodology for dealing with such changes.

HARMONIZING THE BOTTOM TWO TIERS

Now consider harmonization of the bottom two tiers, shown in figure 4. Each of the implementation
views will aggregate roles from the community view. The aggregation done here will constrain
which external views can be hosted on which implementation views. An implementation view that
aggregates distinct student roles into a single role obviously cannot support an external view that
requires this distinction to be maintained. In an ideal situation the implementation view may do no
aggregation, in which case it could support all the external views. In practice, however, one would
expect considerable aggregation to occur; if only because of legacy systems which have directly
built in the external view without consideration of the common community view. Performance
considerations may also require such aggregation to occur. Note that in both figures 3 and 4
aggregation is in the direction away from the central community view, and refinement is directed
towards this view.

The second mapping shown in figure 4 is between implicit and explicit mechanisms. This mapping
recognizes that the implementation platform may not support all the features of RBAC in the
community view. For example, role hierarchies may not be supported. Suppose there are two roles
Faculty and Staff such that every member of the Faculty role is automatically a member of the Staff
role (but not vice versa). Thus a new faculty member need only be enrolled in the Faculty role, and
will automatically be enrolled in the Staff role. This facility is often called role inheritance in the
literature. Support for role inheritance in the community view is highly desirable, but such support
will not be available on every implementation platform. To continue our example, at the community
view it suffices to enroll a new faculty member into the Faculty role. However, in the implementation
view the new faculty member will need to be enrolled in both Faculty and Staff roles. Similarly, a
departing faculty member needs to be removed from the Faculty role in the community view; but in
the implementation view requires removal from both Faculty and Staff roles.

43

Impl.iait:

Meahanisms
Conceptual or Community View

Aqgregat:ion Expl.iait:

Meahanisms

Internal or Implementation Views

Figure 4: Harmonizing the Bottom Two Tiers

7 CONCLUSION

In this paper we have proposed a three-tiered reference architecture for role-based access control
(RBAC), and have identified some of the issues that need to be addressed in making this framework
a reality. Our reference architecture provides a perspective within which ongoing work on RBAC
can be synthesized into a common framework.

In conclusion, we note that the appeal of RBAC is in the simplification of the management of
authorizations. For example, maintaining cognizance of the permission set of an individual and the
consequence of assigning particular role sets to a user is vital. It is also important for a security
administrator to know exactly what authorization is implied by a role. This is particularly so when
roles can be composed of other roles. Moreover, as new roles and transactions are introduced the
security administrator needs tools to assist in their integration into the existing system. Future work
in RBAC should identify useful tools for security administration and point the way toward designing
these. We feel the central role of the community view in our reference architecture will greatly assist
in this objective.

References

[Bal90] Robert W. Baldwin. Naming and grouping privileges to simplify security management in
large database. In Proceedings IEEE Computer Society Symposium on Research in Security
and Privacy, pages 61-70, Oakland, CA, April1990.

[BL75] D.E. Bell and L.J. LaPadula. Secure computer systems: Unified exposition and Multics
interpretation. Technical Report ESD-TR-75-306, The Mitre Corporation, Bedford, MA,
March 1975.

[CW87] D.D. Clark and D.R. Wilson. A comparison of commercial and military computer security
policies. In Proceedings IEEE Computer Society Symposium on Security and Privacy,
pages 184-194, Oakland, CA, May 1987.

[Dep85] 	 Department of Defense National Computer Security Center. Department of Defense
Trusted Computer Systems Evaluation Criteria, December 1985. DoD 5200.28-STD.

[FGL93] 	 David F. Ferraiolo, Dennis M. Gilbert, and Nickilyn Lynch. An examination of federal
and commercial access control policy needs. In NIST-NCSC National Computer Security
Conference, pages 107-116, Baltimore, MD, September 20-23 1993.

[FK92] 	 David Ferraiolo and Richard Kuhn. Role-based access controls. In 15th NIST-NCSC
National Computer Security Conference, pages 554-563, Baltimore, MD, October 13-16
1992.

[¥RU76] M.H. Harrison, W.L. Ruzzo, and J.D. Ullman. Protection in operating systems. Commu
nications of the ACM, 19(8):461-471, 1976.

[Lun88] 	 Teresa Lunt. Access control policies: Some unanswered question. In IEEE Computer
Security Foundations Workshop II, pages 227-245, Franconia, NH, June 1988.

[LW88] 	 Frederick H. Lochovsky and Carson C. Woo. Role-based security in data base management
systems. In C.E Landwehr, editor, Databo,se Security: Status and Prospects, pages 209-222.
North-Holland, 1988.

[Mur93] 	 William H. Murray. Introduction to access controls. In Hal F. Tipton and Zelia A. Ruth
berg, editors, Handbook of Information Security Management, pages 515-523. Auerbach
Publishers, 1993.

[Nat92] 	 National Institute of Standards and Technology, and National Security Agency. Federal
Criteria for Information Technology Security, Volumes I and II, December 1992. Version
1.0, Draft.

[Nat93a] 	National Institute of Standards and Technology. General Security Requirements for Cryp
tographic Module, May 24 1993. Draft.

[Nat93b] National Institute of Standards and Technology, and National Security Agency. Federal
Criteria for Information Technology Security Workshop Proceedings, July 1993. Issue 1.0.

[Ora92] 	 Oracle Corporation. ORACLE7 Server SQL Language Reference Manual, December 1992.
778-70-1292.

[PB93] 	 W. Timothy Polk and Lawrence E. Bassham. Security issues in the database language sql.
Technical report, National Institute of Standards and Technology, July 30 1993.

[San88a] 	 R.S. Sandhu. The NTree: A two dimension partial order for protection groups. ACM
Transactions on Computer Systems, 6(2):197-222, May 1988.

[San88b] 	 R.S. Sandhu. Transaction control expressions for separation of duties. In Fourth Annual
Computer Security Application Conference, pages 282-286, Orlando, FL, December 1988.

[San91] 	 R.S. Sandhu. Separation of duties in computerized information systems. In S. Jajodia
and C.E. Landwehr, editors, Database Security IV: Status and Prospects, pages 179-189.
North-Holland, 1991.

[San92] 	 R.S. Sandhu. The typed access matrix model. In Proceedings IEEE Computer Society
Symposium on Research in Security and Privacy, pages 122-136, Oakland, CA, Ma)l 1992.

[Ste92] 	 Daniel F. Sterne. A TCB subset for integrity and role-based access control. In 15th NIST
NCSC National Computer Security Conference, pages 680-696, Baltimore, MD, October
13-16 1992.

45

[Te78] D.C. Tsichritizis and A. Klug (editors). The ANSI/X3/SPARC DBMS framework: Report
of the study group on data base management system. Information Systems, 3, 1978.

[Tho91] D.J. Thomsen. Role-based application design and enforcement. InS. Jajodia and C.E.
Landwehr, editors, Database Security IV: Status and Prospects, pages 151-168. North
Holland, 1991.

[Tin88] T.C. Ting. A user-role based data security approach. In C.E Landwehr, editor, Database
Security: Status and Prospects, pages 187-208. North-Holland, 1988.

46

USING THETA TO IMPLEMENT ACCESS CONTROLS FOR

SEPARATION OF DUTIES

Rita Pascale

Joseph R. Me Enerney

Odyssey Research Associates

301 Dates Drive

Ithaca, NY 14850

Abstract

The Trusted Computer System Evaluation Criteria (TC
SEC) [5] states that access to an object is based on the ac
cess rights of the subject performing the action. In some
implementations, access rights seldom change; users are
granted rights to an object, and they keep those rights
for the lifetime of the object. However, many real-world
situations require separation of duties based on dynamic
access control, where permission to access an object is
dependent on the state of the object. This type of state
dependent access control goes beyond TCSEC specifica
tions. One method for specifying dynamic separation of
d~ties is transaction control expressions (TCEs), which
are further detailed in [8]. The augmented typed ac
cess matrix model (augmented TAM) [1] is one possible
way to mathematically represent TCEs. The augmented
TAM model is easily implemented in the Trusted HET
erogeneous Architecture (THETA), a distributed trusted
object-oriented operating system. This paper discusses
the problem of separation of duties, and how TCEs, aug
mented TAM, and THETA provide a simple distributed
solution.

1 Introduction

The Trusted Computer System Evaluation Criteria (TC
SEC) [5] requires users to be able to specify and control
sharing of objects. In the higher assurance systems (e.g.,
class B3), each object must have a list of authorized in
dividuals who may perform particular actions upon the
object. These access control lists are often defined stat
ically. For example, all members of group R have the
right to read an object, and all members of group W
have the right to write an object. In some real-world ex
amples, this notion of "always having a given right" on a
particular object is impractical. Many operations require
separation of duties. For example, to protect against em

bezzlement, banks require that the person who prepares a
check cannot be the same person who signs a check [3]. In
this example, access is dependent on the previous history
of the object. Who prepared the check? That individual
must not be permitted to sign the check.

Separation of duty scenarios can be represented with
transaction control expressions (TCEs), and in turn,
TCEs can be mathematically modeled and refined by
the augmented typed access matrix model (augmented
TAM). In the following sections, we briefly describe TCEs
and augmented TAM; for greater detail, reference [8] and
[1]. However, before we explain TCEs and augmented
TAM, we will introduce the Trusted HETerogeneous Ar
chitecture (THETA) system, which we use to implement
a particular separation of duty example. The remain
der of the paper details the scenario, which is denoted
in TCE format, modeled in augmented TAM, and then
implemented in THETA.

2 Introduction to THETA

THETA is a multilevel secure distributed operating sys
tem (OS) under development at ORA.1 The design of
THETA is based heavily on the design of Cronus, a
distributed OS developed at BBN [13]. THETA cur
rently runs on various trusted platforms including the Sun
CMW and the HP-UX BLS. ORA developed the security
theory behind THETA's security policy to adhere to the
TCSEC guidelines for the Division B, Class 3 criteria. 2

THETA's approach to security engineering has combined
traditional, conservative methods with more advanced,
experimental practices. The THETA kernel development
emphasized the traditional security approach. It imple
ments the basic communication functions of the Cronus

1Work on THETA has been sponsored by the Air Force's Rome
Laboratory since 1985.

2 To truly be B3, the THETA needs to be hosted on a B3 oper
ating system.

47

3

kernel, but is completely redesigned and reimplemented.
The code that is trusted is minimized. The THETA man
ager development focuses on trusted extensibility [4], an
idea that THETA may be developed and adapted to new
applications by adding new trusted software. The key
THETA advance is the structuring of the manager auto
generation process to simplify the arguments that must
be made for security assurance of new trusted managers.

The basic design of THETA is object-oriented: all re
sources are represented as objects. These objects are
grouped into types, and control of and access to objects
of each type is implemented by a manager for that type.
The manager defines and implements the possible opera
tions for the type. Operations are invoked on objects by
client$3 on behalf of subjects. Invocations of operations
are communicated from clients to managers by a THETA
kernel running on each host.

When a client invokes an operation, THETA security is
enforced by employing access control checks in managers
and the kernel. The security policy for THETA consists
of the following:

• A discretionary access control (DAC) policy designed
to restrict the use of abstract operations according to
the identity of the client.

• A 	mandatory access control (MAC) policy control
ling the flow of information according to the security
levels of client and object.

• 	 Policy rules imposing additional constraints such as
the definition of the security configuration and the
guarantee of trusted paths.

For details see [7], [12], and [11].
The MAC and DAC policies are clearly separated. In

fact, they operate at different granularities in the object
model. The mandatory policy is enforced at the message
passing level. The discretionary policy is enforced at the
object level; this policy is global, stating constraints for
the entire system rather than for individual hosts.

THETA DAC

The access control policy that we describe later in this
paper is largely enforced by THETA DAC. THETA DAC
is based on the idea of requiring a subject to have certain
rights in order to access an object. Every THETA object

• is a certain type that can have rights defined for it,

• 	 contains an access control list (ACL), and

• 	 is accessed only by operations that run as procedures
in server processes called managers.

3 A client is a THETA application.

48

The rights defined for an object are dependent upon the
type of the object. THETA types are specified in type
definition files that contain the data structures, the op
erations that can be performed, the parameters of those
operations, and the rights required for each operation.
When a subject invokes an operation through a client,
THETA demands that the invoking subject possesses the '
rights specified in the type definition file before the oper
ation will be performed. THETA performs this check by
consulting the object's ACL.

The THETA ACL of an object consists of a list of
subjects or groups of subjects ·and a list of access rights
granted to those subjects and groups. The THETA ma
chinery for this kind of access control is very general
and allows subjects to apply protection measures be
yond those described here. The THETA access group
set (AGS) mechanism permits subjects to limit their ac
tive privileges; the AGS mechanism is further described
in [10].

Another point to note is that THETA does not nec
essarily force a notion of ownership for THETA objects.
When a subject creates an object, the subject might not
have any rights on the resulting object. Thus creators
may not be able to perform any operation other than cre
ate. However, the THETA manager of an object has the
power to transform any object in any way, since THETA
objects are fully accessible to managers. For our sepa
ration of duties example, the manager is the only entity
that can enter and delete rights from the ACL.

Now that we have explained THETA and its access
control mechanisms, we can detail the separation of duty
scenario. The following sections detail transaction control
expressions and the access control matrix model that we
then implement using the THETA mechanisms.

4 Transaction Control Expres.
SIOnS

Transaction control expressions (TCEs) are written as se
quential action-entity pairs. For example, from Ammann
and Sandhu's paper [1], the following expression describes
a possible process required to issue a check which involves
creating and approving a voucher.

prepare • clerk
3: approve • supervisor
issue • clerk

What the above notation depicts is that a clerk niust
first prepare a voucher, then three supervisors must ap
prove the voucher, and then a clerk may issue a check.
Any individual who can assume the role of a clerk has the
authorization to prepare a voucher or to issue a check, and

5

any individual who can assume the role of supervisor has
the right to approve a voucher. Each step in the TCE is
sequential. A check cannot be issued before the associated
voucher has been approved three times (this requirement
is depicted by the "3:" notation), and likewise, a voucher
cannot be approved until it has been prepared.

Access Control Model

The above example of issuing a bank voucher does not
necessarily explicitly state all of the access control re
quired; it merely states that any individual who can as
sume a particular role can perform certain actions. What
if the access control policy requires that each approval be
granted by a unique supervisor? To express the access
requirements in finer granularity, we must use an access
control model. These models provide a way of represent
ing subjects, objects, and rights and the constraints upon
their interactions. The access control model that we use
in this paper is the augmented typed access matrix (aug
mented TAM) mechanism.

In augmented TAM, we model access control by defin
ing a set of rights denoted by the set R and a set of types
denoted by T. There is a subset of the types T that are
subjects, that is, entities that can perform actions. The
remaining types are objects that may have actions per
formed on them. We construct the matrix with one row
for each subject and object, and one column for each ob
ject, and some subset of access rights are in each matrix
cell. To illustrate, when a particular subject Bob requests
to perform an operation on a particular object voucher!,
we must first check the matrix cell [Bob, voucher!] to see
if Bob has the necessary rights to complete the operation.
If he does not, the operation is refused.

Augmented TAM has six primitive commands that
are used to manipulate the matrix. They are enter
< right >, delete < right >, create subject, delete
subject, create object, and delete object. Com
plex access control policies are implemented by combining
these commands for manipulating the access control ma
trix.

Augmented TAM commands consistent with the pre
vious TCE example are given below; they are slightly
modified from the examples given in [1]. To specify the
commands, we use C for clerk, S for supervisor and V for
voucher where clerk and supervisor are sets of subjects
and voucher is the set of voucher objects. The matrix
notation of [subject, object] is used to specify a partic
ular subject's access rights on the object. The notation
[object, object] is used to determine the state of the ob
ject (e.g., has the voucher been approved three times so
that it can now be issued?).

(a) command begin-prepare-voucher
(C: clerk, V: voucher)

create object V
enter prepare into [C, V]

end
(a') command complete-prepare-voucher

(C: clerk, V: voucher)
if prepare E [C, V] then

delete prepare from [C, V]
enter prepare' into [C, V]
enter prepare' into [V, V]

end
(bl) command begin-approvel-voucher

(S: supervisor, V : voucher)
if prepare' E [V, V] then

delete prepare' from [V, V]
enter approve! into [S, V]

end
(b1')command complete-approvel-voucher

(S: supervisor, V: voucher)
if approve! E [S, V] then

delete approve! from [S, V]
enter approve!' into [S, V]
enter approve!' into [V, V]

end
(b2) command begin-approve2-voucher

(S: supervisor, V :voucher)
if approve!' E [V, V] /\approve!' ¢ [S,V] then

delete approve!' from [V, V]
enter approve2 into [S, V]

end
(b2') command complete-approve2-voucher

(S: supervisor, V :voucher)
if approve2 E [S, V] then

delete approve2 from [S, V]
enter approve2' into [S, V]
enter approve2' into [V, V]

end
(b3) command begin-approve3-voucher

(S: supervisor, V :voucher)
if approve2' E [V, V] /\approve!' ¢ [S,V]

l\approve2' ¢ [S,V] then
delete approve2' from [V, V]
enter approve3 into [S, V]

end
(b3')command complete-approve3-voucher

(S: supervisor, V :voucher)
if approve3 E [S, V] then

delete approve3 from [S, V]
enter approve3' into [S, V]
enter approve3' into [V, V]

end

49

(c) command begin-issue-check
(C: clerk, V: voucher)
if approve3' E (V, V) /\prepare' fl. (C,V) then

delete approve31 from (V, V)
enter issue into (C, V)

end
(c') command complete-issue-check

(C: clerk, V: voucher)
if issue E [C, V) then

delete issue from (C, V)

enter issue' into (C, V)

enter issue' into (V, V)

end

The above access control matrix commands complete the
specifications for issuing a check. The clerk who pre
pared the voucher cannot be the same clerk who issues
the voucher; each approving supervisor must be unique;
the voucher must be at the appropriate stage for each
operation (meaning, a voucher cannot be issued before it
has been prepared and approved three times).

6 	 Implementation in THETA

Now that the access control policy is clearly stated
by the augmented TAM commands, we can implement
the voucher example in THETA by creating the type
"voucher". Below is an excerpt of the "voucher" type
description, including the three operations and the rights
required for each one.

type 	Voucher= ...
abbrev is voucher
subtype of Object
generic rights are

prepare

rights are

approve,issue;

generic operation PrepareVoucher mac test write

requires prepare;

operation ApproveVoucher mac test write

requires approve;

op~ration IssueVoucher mac test write

requires issue;

end type Voucher;

50

In this file, we are specifying that the voucher type is
a subtype of the base type Object, which means all ap
plicable attributes of the type Object are inherited by all
voucher objects. Some of the inherited attributes include
access rights; for example, the acc~ss rights remove and
modifyACL are defined for every THETA object. In ad
dition to these inherited rights, we extend the access con- '
trol by declaring three new rights- prepare, approve, and
issue. When specifying the operation semantics, we state
what rights are required for each operation. Therefore,
for a subject to successfully invoke the PrepareVoucher
operation, that subject must have the prepare right for
voucher objects as is specified in the file above.

In addition to declaring the DAC rights necessary to
perform an operation, we indicate what MAC security
test must be passed. The mandatory access test for each
operation in this example is a "mac test write", meaning
that the security level of the subject must be dominated by
the security level of the object. Other possible mandatory
access tests are "mac test read" where the security level
of the subject must dominate the level of the object, and
"mac test readwrite" where the level of the subject and
the object must be equal. These MAC tests follow the
standard Bell-LaPadula rules, see (2) for details.

For an invocation to complete successfully, it must pass
three levels of access checks. First, the THETA kernel
performs the MAC security checks to guarantee that the
security level of the invocation is within the level range
of the Voucher Manager. The Voucher Manager ensures
that the invocation level bears the correct relationship
to the object.4 N·ext, the Voucher Manager requests any
needed DAC information from the Authentication Man
ager. Using this information, the Voucher Manager makes
sure that the invoker has the privilege to perform the op
eration on the target object. Finally, having correctly
passed the MAC and DAC checks, the operation code is
executed by the Voucher Manager and any further access
checks and restrictions are performed there. In our ex
ample, these additional conditions include operation or
dering and invoker uniqueness requirements.

To continue our example, we grant users in the clerk
role the prepare and issue rights, and users in the super
visors role the approve right. Normal THETA subjects do
not automatically have any access rights to any objects.
As the privileged THETA administrator, we create the
groups clerk and supervisor and then grant those groups
the rights associated with those roles. To acquire the ac
cess rights associated with a group, a member must bind
the appropriate access group set to an invoking client; the
AGS mechanism is further described in (10).

4 By this, we mean that the Voucher Manager enforces the no
write-down and no read-up rules, and possibly more restrictive ac
cess depending on the semantics of the operation.

7 Separation of Duty Mechanism

Assuming the subject has invoked the operation at an
acceptable security level and the subject possesses the
necessary access rights, the next step is for the manager
to check the object to see if it is in the appropriate state.
For example, the manager should not permit a voucher
to be issued before it has been approved three times. The
manager checks the state by consulting the voucher ob
ject's ACL and the internal status information of the ob
ject. When a voucher is created, the manager sets the
ACL of the new voucher to require the "approve" right for
the next operation; when the voucher has been approved
three times, the manager changes the ACL to require the
"issue" right; and once issued, the manager removes all
access rights. The internal status information is used to
count the number of times a voucher has been approved
and to check what users have acted on this voucher pre
viously.

The THETA C code for the "issue voucher" operation
that corresponds to the TAM commands "begin-issue
check" and "complete-issue-check" is

voucherissueVoucher(r, input, output)
OperationParms •r;
reqvoucherissueVoucher •input;
repvoucherissueVoucher •output;

{

voucher •Voucher;
ACLEntry TheACL;

I*
* Prior to getting to this step, THETA DAC
* mechanisms ensure that the user that
* invoked this operation has the necessary
* "issue" right for the specified object.
•I

I•
* Retrieve the object data from the THETA
* database.
•I

if ((Voucher = (voucher *)

GetVarData(VOUCHER, r->objdes)) -- NULL) {
Nack(r, E_NOOBJ);
return;

}

I•
* To issue a voucher, it had to be prepared,
* and then approved by three distinct
* managers. Successful completion of these
* steps is indicated by the "Status" field
* of the voucher.
•I

if (Voucher->TAMcheck.status != APPROVED3) {
FreeVarData((voucher •) Voucher);
Nack(r, E_BAD_OPER_FOR_OBJ);
return;

}

I•
* To ensure separation of duties, we must
* make sure the clerk who is attempting the
* issue is not the same clerk who prepared
* the voucher.
•I

if (IsSameUID(tr->msgdes.principal,
tVoucher->TAMcheck.preparer) == TRUE) {

FreeVarData((voucher *) Voucher);
Nack(r, E_DUTY_SEPARATION_CONFLICT);
return;

}

I•
* If the voucher is in the proper state
* (i.e., APPROVED3), and the user doing the
* operation is not the same user that did
* the prepare, issue the voucher.
•I

Voucher->TAMcheck.issuer =
r->msgdes.principal;

Voucher->TAMcheck.status = ISSUED;

I•
* Now that the command is complete, remove
* the "issue" rights from the voucher's
* access control matrix to ensure that some
* other clerk does not try to repeat the
* issue command.
•I

TheACL.principal_uid = ClerkGrpUID;

TheACL.rights = R_issue;

RemoveFromACL(tr->objdes->acl, tTheACL);

I•
* Save the modified voucher object in the
* THETA database.
•I

PutVarData(VOUCHER, r->objdes,

(char •)Voucher);

I•
* Notify the calling function that the

* operation completed successfully.

•I

output->valid =TRUE;
}

The other TAM commands are implemented in a simi

51

lar manner. The Voucher Manager performs the MAC
and DAC checks before the operation code is executed,
and within the operation code, the manager checks the
status field of the object in order to enforce the "unique
operator" requirements.5 Using the flexible access control
mechanisms of THETA, we were able to implement the
augmented TAM model for separation of duties scenarios.

8 Model Versus Implementation

In the TAM commands, there is a distinction between
the beginning of an action and its completion, and the
status of an operation is tracked by consulting the rights
in the access control matrix. For the implementation in
THETA, the begin and complete steps collapse into a
single operation; therefore, we do not make a distinction,
for example, between prepare and prepare'.

The access control matrix contains a cell for each
subject-object pair so that when a subject attempts an
operation on a specific object V, the subject's access
rights can be determined easily. This portion of the ma
trix is a direct correlation to the THETA ACL mechanism
for objects. The access control matrix also contains a cell
for each object-object pair in order to track the current
state of the object. For example, in the augmented TAM
commands, the "enter issue' into [V, V)" step indicates
that the object V has been issued and should therefore
not be permitted to be issued again. In the implementa
tion, this historical data is maintained within the object
itself and the Voucher Manager permits accesses based
on that data.6 The THETA DAC mechanism also as
sisted in tracking the status of the object. For example,
once a voucher object is issued, the issue right is removed
from the object's ACL, and therefore the voucher cannot
be issued again. The historical data maintained in the

· object is mainly used to enforce the "unique operator"
requirement between operations. That is, when a super
visor attempts to approve a voucher, the THETA Voucher
Manager consults the historical data of the voucher object
to ensure that this supervisor has not previously approved
this same voucher.

5 By this, we mean the operation code within the manager checks
the identities of all subjects who have performed operations on this
particular object previously and stops a subject from performing
two operations on a single voucher object.

6 In this particular implementation, we ensure that operations are
invoked in the proper sequential order; the amount of time elapsed
between each step is not taken into account. By adding a timestamp
to the historical data, we could easily add time limits to each step
and to the overall "issue check'' process.

52

9 Multilevel Secure Case

The notions expressed by TCEs and implemented in
THETA can be extended to the case of multilevel op
eration by adding an operating level. As an example, we
consider the case of preparing, approving and upgrading
a document from one security level to a higher security
level. In order to satisfy MAC policy, information can
How up by blindly writing information up to a higher
level repository whose very existence is uncertain, or by
reading a low-level repository from a high level.

The first method involves uncertainty about the success
of the write up which can be offset by having a cleared
user check the results at the high level at a later time. The
second approach leaves open the possibility that the low
data may change during the read down; this is called a
"dirty read". A solution to the "dirty read" is to lock the
object at the low-level, read the data, and then release
the low-level lock; however, this solution introduces an
unacceptable information flow. For this example, we have
chosen the first approach.

Since the multilevel case involves a notion of security
level, we encapsulate ordinary TCEs in square brackets
and assert that they occur at a level. The set of infor
mation system security officers is denoted by isso while
clerk and supervisor are as before. We summarize the
document upgrade as follows:

[prepare • clerk] @level
[approve • supervisor] @level
[upgrade •level • isso] @level

The third TCE step contains the final higher level that
the document will reach. We stipulate that the sets isso,
supervisor and clerk are pairwise disjoint. A particular
instantiation of these TCEs could be

[prepare • Phydeaux] @SECRET
[approve • Ropher] @SECRET
[upgrade • TOPSECRET • Phang] @SECRET

where Phydeaux is a clerk, Ropher is a supervisor, and
Phang is an isso.

Before presenting the TAM commands corresponding
to these TCEs, we declare a set of TAM command exten
sions that further elaborate the specification and bound
any implementation.

• 	 An implicit security level, at which a TAM command
is performed, is denoted by cmdlev.

• 	 An access matrix at each security level L, and each
matrix element is denoted [X,Y,L).

• 	 We permit write up operations. These assume that
no information flows back down to indicate success

or failure of such actions. This is an information
upgrade mechanism that is enabled by an upgrade
right.

• 	 No subject can run at more than a single security
level at a time. Therefore, a command cannot change
its level of operation.

• 	 Members of isso are cleared for all levels but can
execute a command only at a single level.

(a) command begin-prepare-document
(C: clerk, D: document, L: level)
if cmdlev ~ L then

create subject D@ L
enter prepare into [C, D, L]

end
(a') command complete-prepare-document

(C: clerk, D: document, L: level)
if cmdlev = L 1\ prepare E [C, D, L] then

delete prepare from [C, D, L]
enter prepare' into [C, D, L]
enter prepare' into [D, D, L]

end
(b) command begin-approve-document

(S: supervisor, D: document, L: level)
if cmdlev = L 1\ prepare' E [D, D, L] then

delete prepare' from [D, D, L]
enter approve into [S, D, L]

end
(b') command complete-approve-document

(S: supervisor, D: document, L: level)
if cmdlev = L 1\ approve E [S, D, L] then

delete approve from [S, D, L]
enter approve' into [S, D, L]
enter approve' into [D, D, L]

end
(c) 	 command begin-upgrade-document

(SO: isso, D: document,
L1ow :level, Lhigh :level)

if cmdlev = L1ow ~ Lhigh

1\ approve' E [D, D, Llow] then
create subject vup @ Lhigh

copy D up into nup
delete approve' from [D, D, Llow]

enter upgrade into [DUP' vup' Lhigh]

enter upgrade into [SO, vup, Lhigh]

end
(c') command complete-upgrade-document

(SO : isso, D :document, Lhigh :level)
if cmdlev = Lhigh 1\ upgrade E [D, D, Lhigh]

1\ upgrade E [SO, D, Lhigh] then
delete upgrade from [D, D, Lhigh]

delete upgrade from [SO, D, Lhigh]

53

enter upgrade' into [SO, D, Lhigh]

end

As shown in the single level case, the THETA system
can also support multilevel TCE/TAM specification with
out difficulty. The THETA automatic code generation
facilities handle a large portion of the multilevel aspects
of the above example; thus, most of the burden of devel
oping multilevel applications is removed.

10 	 Comparisons with Other Sys
tems

It is possible to implement separation of duty scenarios
through type enforcement mechanisms as found in the
LOCK7 system [6] and the ECS sub!;!ystem8 [9]; however,
the implementation is much more complicated.

Type enforcement controls data accesses based on a
"domain-type table." There is a type associated with
each object and a domain associated with each subject,
and a table (much like the subject-object matrix used
in our example) which states the rights that subjects of
particular domains have on objects of particular types.

LOCK's limitation in the implementation of the separa
tion of duties scenario is that it does not handle dynamic
changes in the domain-type table. A single voucher object
cannot be prepared, approved and then issued. At each
step, the object is transformed into a different object type
in order to grant access rights to subjects of different do
mains and deny subjects of other domains. Also, another
complication in our scenario is the "unique operator" re
quirement; it is not obvious how one would implement the
requirement of "each operation must be performed by a
distinct user" with LOCK's type enforcement mechanism.

The ECS system handles dynamic access controls by
associating a finite state automata on the object. The
finite state automata contains information about the cur
rent state, operations that can be performed to put the
object into a different state, and a "separation of duty"
specifier (which holds information about what subjects
can and cannot perform operations on the object). With
some administrative overhead, the ECS system handles
the separation of duties scenario; however, THETA has
the advantage of being a distributed, heterogeneous solu
tion.

7Work on the Logical Coprocessing Kemel (LOCK) is being done
by Secure Computing.

8The Extended Access Control Subsystem (ECS) is an untrusted
TCB subset for use with an extended version of the Trusted Xenix
operating system. Work on ECS was done by Trusted Information
Systems. Xenix is a trademark of the Miscrosoft Corporation.

11 Conclusions

The combination of transaction control expressions and
augmented typed access matrix commands provide a rich
specification language for defining the semantics of ap
plications that require separation of duties and operation
ordering. In both the single level and multilevel cases,
THETA offers a convenient distributed computing envi
ronment that facilitates implementation of solutions to
this kind of problem.

THETA handles the separation of duties problem easily
because of very adaptable access control mechanisms that
go beyond the TCSEC specifications. The object-oriented
nature of the system provides developers the opportunity
to make operations as restrictive or as open as necessary.
In the type specification files, developers can define new
rights for a type and state which rights are required for
each operation. The specification files are then used to
autogenerate the code to enforce the rights requirements.
The developer can then use the operation code to further
restrict access. We demonstrated this extension of access
control in our example by enforcing unique subjects to
perform each step of the "issue check" operation.

The TAM checks required by the TCEs are enforced in
the THETA implementation by

• rights of invoking subjects,

• 	THETA ACLs on objects,

• internal object status information, and

• 	 rights to modify ACLs are restricted to the Voucher
Manager.

By verifying a subject's rights on objects, the Voucher
Manager ensures that only subjects of the appropriate
groups perform particular operations; that is, only clerks
may prepare and issue a voucher, and only supervi
sors may approve a voucher. The manager consults the
THETA ACLs on objects to force the operations to be
in the proper sequential order of prepare, approve, and
then issue. The internal historical data of an object is
used to restrict each step of the "issue check" operation
to unique subjects. Restricting the right to modify ACLs
to the Voucher Manager protects the integrity of the "is
sue check" process. This restriction is necessary because
the ACL of a voucher object helps track the state of the
voucher. This means, when a voucher object has the "is
sue" right in the ACL, the "issue" operation can be per
formed; thus, if a clerk could randomly add the "issue"
right to a voucher's ACL then the approval process is
effectively subverted.

Implementing the augmented TAM model in THETA
was a simple exercise that took less than a day. THETA's

flexible access control mechanism easily handles the sep
aration of duty problem. The cooperation of the THETA
kernel, manager, and access control mechanisms provide a
flexible and secure solution to the separation of duty sce
nario. In addition, THETA provides a trusted distributed
solution to such problems that may be very useful in se
cure environments.

References

[1] 	 Ammann, P. E., Sandhu, R. S., "Implementing
Transaction Control Expressions by Checking for
Absence of Access Rights," Proceedings of the Eighth
Annual Computer Security Applications Conference,
December 1992.

[2] 	 Bell, D., LaPadula, L., "Secure Computer Sys
tems: Unified Exposition and Multics Interpreta
tion," MTR-2997, Mitre, Bedford, Massachusettes,
1975.

[3] 	 Clark, D., Wilson, D., "A Comparison of Commer
cial and Military Computer Security Policies," IEEE
Symposium on Security and Privacy, 1987.

[4] 	 McEnerney, J., Weber, D., Brown, R., and Varadara
jan, R., "Automated extensibility in THETA", Pro
ceedings of the 13th National Computer Security
Conference, October 1990.

[5] 	 National Computer Security Center, Fort Meade,
MD, Trusted Computer Systems Evaluation Criteria,
DoD 5200.2&-STD, December 1985.

[6] 	 O'Brien, R., and Rogers, C., "Developing Applica
tions on LOCK," Proceedings of the 14th National
Computer Security Conference, October 1992.

[7] 	 Proctor, N., Wong, R., "The security policy of the
Secure Distributed Operating System Prototype,"
Proceedings of Fifth Aerospace Computer Security
Applications Conference, December 1989.

[8] 	 Sandhu, Ravi S., "Transaction Control Expressions
For Separation of Duties," Proceedings of the Fourth
Annual Computer Security Applications Conference,
December 1988.

[9] 	 Sterne, Daniel S., "A TCB Subset for Integrity
and Role-Based Access Control," Proceedings of the
15th National Computer Security Conference, Octo
ber 1992.

[10] 	 ORA, "Software Programmer's Manual for the Ex
perimental Secure Distributed Operating System De
velopment," Technical Report, THETA CDRL No.
AOll, July 1991.

54

[11) 	 ORA, "Software Requirements Specification for the
Experimental Secure Distributed Operating System
Development," Technical Report, THETA CDRL
No. A008, July 1991.

[12) 	 ORA, "Formal Model for the Experimental Secure
Distributed Operating System Development," Tech
nical Report, THETA CDRL No. A009, July 1991.

[13) 	Schantz, R., Thomas, R., and Bono, G., ''The archi
tecture of the Cronus distributed operating system,"
Proceedings of the 6th International Conference on
Distributed Computing Systems, May 1986.

55

IMPLEMENTING ROLE BASED, CLARK-WILSON ENFORCEMENT

RULES IN A Bl ON-LINE TRANSACTION PROCESSING SYSTEMl

Barbara Smith-Thomas

AT&T Bell Laboratories, W3-H63, AT&T Guilford Center, P.O.Box 26073,

Greensboro, N.C. 27420

Wang Chao-Yeuh

Wu Yung-Sheng

Institute for Information Industry, 13th Floor, 2I6 Tun Hwa South Rd., Sec I,

Taipei, Taiwan, ROC

ABSTRACT

This paper describes an implementation of role-based discretionary access
controls in an on-line transaction processing system that supports commercial
banking applications. These discretionary controls together with the underlying B I
secure operating system implement the "E" rules of the Clark-Wilson Integrity
model. The system described is currently in beta test.

Keywords: access control, discretionary access control, mandatory access control, role, security,
on-line transaction processing, Clark-Wilson integrity, access control list, capability

1. Introduction

In the past 10 years it has become clear that the TCSEC [13] does not adequately address
computer security requirements for integrity. This is because the initial US customer for secure
computer systems was the Department ofDefense, and the paper-world standards for protection
against disclosure of National Security classified information were well understood and relatively
amenable to translation into the currently accepted label-based Mandatory Access Control
requirements. However, the requirements for integrity protection were less well understood at the
time. Even now, standards for integrity are less well defined.

One influential effort to model requirements for integrity was published by Clark and
Wilson in 1987 [3]. Clark and Wilson separate their requirements into two sets: the C, for
"certification", and theE, for "enforcement" rules. The Clark-Wilson Integrity model provides for
two types of data, the CDI and UDI, or "constrained data item" and "unconstrained data item",
respectively. There are two types of operations, the IVPs, or Integrity Validation Procedures, and
the TPs, or Transaction Procedures. The CDI's are the high integrity data that have been validated
by one or more IVPs and that can only be modified by TPs. The "C1 rules capture the correctness
properties that the applications must be certified to have; the "E" rules capture the access controls

l. The work described in this paper was sponsored by the Ministry ofEconomic Affairs ofthe Republic ofChina

56

that must be enforced by the system. See [7] and [14] for additional information on the Clark
Wilson model.

The Institute for Information Industy of the Republic of China has undertaken a project to
produce a B 1 certifiable Automated Banking System by enhancing an existing commercially
available system. As the risk analysis and design phases of the project progressed, we realized that
the MAC security controls we were designing did not adequately capture the integrity requirements
of a banking environment. We decided to adopt a mixed strategy in which B 1 (Mandatory) label
based access controls would be enforced by the underlying operating system and database system,
and (Discretionary) identity-based controls would be applied within the Automated Banking
System to provide a finer granularity of control for individual transactions and database accesses.
The resulting system is B1 certifiable and implements the Clark-Wilson enforcement rules.

2. The UCP2 On-Line Transaction Processing System

Figure 1 shows the basic layered architecture of the Automated Banking System. It consists
of the "User Control Program" (UCP) on-line transaction processing platform along with a
collection of application programs, the transactions, that provide the banking specific actions such
as making a deposit to a passbook savings account.

Appl Appl • • • Appl

Database
Interface

UCP

~ /_ Network
Interface

Operating System

Banking
Application
Programs

OLTP
Platform

Figure1: Simplified ABS Architecture

UCP provides both a convenient interface for programmers and users of a banking or other
database system, and run-time management of the associated database interactions. The original
UCP runs on UNIX3 SVR4.0 without extra privilege. It includes a menu interface, transaction
dispatchers, and a network interface. Database accesses are made by the transaction dispatchers on
behalf of the transactions, although there is no mechanism by which direct accesses to the database
by an application can be prevented. UCP has the ability to handle both local transactions and
transactions which actually execute at a remote site.

2. UCP is a trade mark of the Institute for Information Industry
3. UNIX is a registered trade mark licensed exclusively by X/Open, Ltd.

57

The underlying operating system for the B 1 certifiable version of the Automated Banking
System is System VfMLS4. The labeling enhancements to UCP are described in the companion
paper "B1 Security in an On-Line Transaction Processing System -- A Project's Experience" [12].
In this paper we describe the discretionary and role based enhancements to UCP that, in conjuction
with the label based enhancements, implement theE rules of the Clark-Wilson integrity model.

3. Basic Strategy

When designing access control mechanisms, the first issues that must be addressed are
the definitions of subjects and objects, and the types of access provided by the system. In UCP we
defme two types of subjects: the users of the system and the transactions that execute on behalf of
those users. Untrusted users can only execute transactions; they have no other access rights within
UCP. The transactions, in tum, access other objects on behalf of the user. The objects that a
transaction can access are the application specific data contained in the database files maintained by
UCP, and other transactions that can be directly invoked by a given transaction. In either case the
access is under the control ofUCP. The access modes at the database file level are Read, Update,
Insert, Delete and at the field granuarity are Read and Update only. The only access mode for a
transaction is Execute.

The most general form of representation of access rights information is an access control
matrix. Access Control Lists (ACLs) and Capability Lists (CLs) can both be viewed as compact
methods for representing the sparse Access Control Matrix. ACLs represent the access control
information by object, that is by column of the matrix, and are generally part of the defmition of the
object. CLs represent the access control information by subject, that is by row, and are generally
associated with the executing process. In the NCSC guilelines for implementing discretionary
access control in trusted systems [15], ACLs are recommended as the most flexible and usable way
to implement DAC. So, the original blueprint for UCP DAC was to put ACLs on all UCP objects,
both transactions and application data (figure 2(a)). But after some discussion, another approach,
the ACL and CL combination associated with the transaction, which is shown in Fig 2(b), was
proposed and adopted. The reasons for this decision are:

- UCP is a transaction based platform, so putting the access control information on the
transactions seems to be a natural approach.

- Since a search for access control information is a necessary step for each access mediation,
simplifying the search algorithm is an important consideration. Storing the database access control
information with the transaction in a CL makes the information immediately available when the
access request is made. It is not necessary to consult the database for the access information.

- In the NCSC guidelines for implementing DAC, Capability Lists are criticized for design
problems with revocation of access from individual users. Since in a general computer system the
passing of capabilities from one user to another is not controlled and capabilities can be stored,
determining all the subjects who have access to a particular object generally is not possible. This

4. System V/MLS is a registered trade mark of AT&T

58

makes the revocation of access difficult, especially for archived data. It is also difficult with
capability lists to implement access for named groups. In UCP, these problems do not occur. The
behavior of the transaction with respect to data access is determined at design time; we do not allow
them to be changed at run-time. In addition, capabilities cannot be passed from one transaction to
another. So which transactions have access rights to a database object is static and easily
determined.

i~Data i~nata

Ill

CL

ACL ACL ACL

(a) (b)

Figure 2. Alternate Mechanisms for UCP Access Controls

4. User Attributes (Roles)

The major disadvantages ofACL's are potentially large storage space requirements, and
difficulties with revocation of access, especially for archived data. Both of these problems can be
addressed by some sort of grouping mechanism. In a commercial context the natural grouping is a
"role". The conceptual ideas of a role are:

- Roles shall be associated with a business. UCP applications are designed by business. A
business consists of several related transactions sharing the same data format, the same data files,
etc. Usually, a transaction is designed to be executed by the people who occupy a particular
position in that business, e.g. the tellers of the PassBook business. UCP roles are an attempt to
represent this existing grouping.

- There are several positions under the same business. Combining the business and the
position, we can identify a role uniquely. In the following description, we refer to it as a UCP role
or a position within a business. The positions in one business are independent of the positions in
other businesses. Initial values are chosen arbitrarily except that the role of business administrator
is recognized by UCP. A user with this position has the authority to set and modify the ACLs of
the transactions in the same business as the administrator. A user may be a member of several UCP
roles, both within the same business and in different businesses. The UCP administrator assigns
roles to users. When separation of duties is desired, it is the responsibility of the UCP administrator
to set up the users' roles appropriately. If a user belongs to more than one position in a business,
the user can switch between those positions by explicit action.

59

··>'

A file containing (user, role) pairs will be defined. We will say a user is 11 authorized11 for a
role if there is a (user, role) pair in this file.

5. Transaction Execution

In UCP, a transaction can be invoked in two ways: (1) by a user from a menu via the menu
interface or (2) by another transaction. Each transaction known to UCP is assigned a unique four
character transaction identifier, also called a TxniD. The first character of the TxniD identifies the
business; the remaining characters, which are usually digits, identify the particular transaction
within the business. A user is identified to UCP by a triple (useriD, Current Role, nodeiD), an
internal user identifier, the current role assigned by UCP, and an identifier for the network node at
which the user is working.

5.1. Transaction Invocation by a User

Each transaction has three ACLs associated with it: the User ACL, the 2nd Authorization
ACL, and the Transaction ACL. The User ACL specifies which users can invoke the transaction
via the menu interface. The User ACL consists of a list of security identifiers (UseriD, Role,
NodeiD), as described above. Each of these security identifiers is also called an 11 Access Control
Element11

, or ACE. Inorder to reduce the length of the ACL we define some wildcards that can be
used in an ACE:

11 *11 :used in UseriD, Role, or NodeiD means all tellers, positions, or nodes.
'W11

: used in NodeiD means the local node.
11 $11 :used inNodeiD means all nodes except the local node.

We restrict execution of a transaction to users who are authorized for the business of the
transaction. In UCP, some transactions execute at a different node from the one at which it is
invoked by the user. Those transactions will have an ACL at both the user and the transaction side
of the connection. When a user executes a remote transaction, he or she must pass both sites'
mediation: once at the menu interface of the local node and again at the server of the remote node.

An example may be useful. The following figures illustrate the sequence of access checks
involved in a user's executing a transaction. Assume that there are two businesses, B 1 and B2.
Assume further that the user UserO 1 is authorized for role 1-050, B 1 clerk, and has logged in at
Node 001.

60

• User 01

Node 001 I Role 1-050

1. Busil
2. Busi2
3. Exit

I

I _I

1. Txn 1002 X
2. Txn 1007
3. Remote Txn 1008
4. Remote Txn 1009

Figure 3: Selecting a business

Once the process of signing on to UCP is complete, the user is presented with a top level
menu from which the desired business is selected. From the information in the user information
file, the menu interface determines that the user is authorized for role 1-050. So selection of
choices 1 or 3 will succeed. If the user selects business 2 a 11 permission denied11 message will be
displayed. Assume that the user selects business 1. The menu interface will set the user's current
security attributes to User01.1-050.# and present the initial menu from business 1. Suppose, now,
that the user ACLs on the four business 1 transactions are shown in figure 4.

Txn 1002 Tin 1007 RmTxn 1008 RmTxn 1009

01. * .# 01.1-100.# * .1-050.# * .1-050.#

04. * .# * .1-200.#
* .1-050.#
* .1-150.#

Figure 4: Business 1 User ACLs at Node 001

The user will be permitted to select transactions 1002, 1008, and 1009 because the user's
security identifier matches one or more ACE entry in the user ACL of the transaction. The user
will not be permitted to select transaction 1007, even though the user's UseriD appears in an ACE
for that transaction, because the user is not operating with the appropriate Role for that transaction.
Note that UCP discretionary access control is done when the user selects a transaction. For a
remote transaction, the server will mediate discretionary access a second time using the ACLs on
the remote host. Both mediations must pass for access to be granted. For example, suppose that in
addition to the ACLs on Node 001 given above, the following ACLs are defined at Node 002.

Txn 1008 	 Txn 1009
.1-050. 	 *.1-0500.003

* * .005

Figure 5: Business 1 User ACLs at Node 002

61

The user will be allowed to select either trar..saction I 008 or I 009 at node 00 I. The user's
identity will be passed to the remote host along with the transaction request. Execution of
transaction I 008 will be permitted, but execution of transaction I 009 will be denied since the user
is at node OOI, not node 003 or 005.

5.2. 2-Person Transaction Control

In the current banking applications supported by UCP, some transactions require 2-person
control. For example, when a teller executes a "withdraw" transaction, if the amount to be
withdrawn is greater than some fixed limit a supervisor must enter his cir her password into the
transaction input panel to approve the transaction. To support 2-person control, a second user ACL
is provided. This ACL has the same format as the primary ACL, but it is referenced only by the
menu interface check routine that is responsible for the second person's identification and
authentication.

5.3. Transaction Invocation by Another Transaction

In UCP a transaction can be invoked by another transaction. Because we also wish to have
UCP controls on execution of a transaction by another transaction, the ACL associated with a
transaction will include a set of transaction entries in addition to the two sets ofuser entries. A
transaction ACE will contain the TxniD of the invoking transaction, the node(s) from which the
execution request can be accepted, along with other information meaningful to UCP called the
"execution mode". A transaction can be invoked by a transaction in another business. This
provides us with the flexibility to have transaction processing cross business boundaries, but only
through a tightly controlled mechanism. ·

6. Application Data Access

Up to now we have concentrated on determining which users can execute what transactions.
The Clark-Wilson E-2 rule requires that the data accessed by a transaction must be specified as
well. In order to access the contents of a database file, a transaction must be explicitly authorized
to do so by having the file listed in the capability list associated with the transaction. Within some
business files, particularly sensitive fields may require additional protection. For example, it may
be the case that only selected Passbook transactions should be able to update the account balance.
This field needs to be further constrained. Constraint files are defmed to store this additional
constraint information. Each entry in one of these files will contain the name of the file containing
the constrained fields, the names of the constrained fields, and other information used by the system
to locate the fields within the database files. In the PassBook example above the constraint file
might contain the following entry declaring that the PBM_BAL field in the PB_ACCT file is
constrained.

PB ACCT PBM BAL <location information>

62

Any fields not listed as constrained are accessible to all transactions that are authorized to access the
file.

A Capability List (CL) consists of one or more Capability Elements (CEs); each Capability
Element consists of a filename and a set of file access modes, followed by 0 or more
fieldname/field access mode pairs. Each business file accessed by a transaction must be listed in
the transaction's CL. If the file contains any constrained fields that must be accessed by the
transaction, those fields must also be listed in the CE that lists the file.

The Clark-Wilson E-2 rule: The system must maintain a list of which users can access what
data via which transactions, explicitly provides for multiple capability lists depending on the
identity of the invoking user. However, there is no loss of generality in requiring all authorized
users of a transaction to access the database in the same way as long as executable code can be
shared between transactions. If two sets of users of some piece of code must access data
differently, two txniD's and hence two ACLs and two Capability lists can be defined for that code.

7. Propagation Modes

When designing an Access Control mechanism, defining who has the authority to grant and
revoke access permissions is as important as defining the access rules. In the NCSC discretionary
access control guidelines [15], four access propagation modes are presented: Hierarchical, Owner,
Laissez-Faire, and Centralized. The "Owner" option is the one most commonly intended when
discretionary access control is discussed; in this option the owner of an object has the
authority/discretion to set the access modes on the object. Discretionary access controls also carry
the assumption that the controls protect the container rather than the information. More recently,
access controls have been classified as mandatory, discretionary, and non-discretionary [1],
implying some kind of centralized administration. It is perhaps more useful to abandon the notions
of "Discretionary" and "Mandatory" entirely and instead classify access controls by attributes such
as label based or identity based, centrally administered or owner administered, protecting the
container or the data, etc.

In UCP we adopt a restricted hierarchical control for the ACLs defining access by users to
transactions and centralized control for the cabability lists defming the accesses by transactions to
data Originally we adopted a completely centralized mode of control for both ACL's and CL's.
We expected that the access rights of a transaction would be determined when the transaction is
installed in UCP and would not change thereafter. That is, who can execute the transaction and
what data the transaction can access is only determined by the system administrator who is the
"owner" of the all UPC transactions and data. However, in a commercial environment more
flexibility is needed in authorizing users to execute transactions. For example, a supervisor may go
on vacation and a senior teller may temporarily need to perform that supervisor's duties. In order to
support additional flexibility, we add a limited hierarchical control on the transaction ACLs.
Selected users who are authorized by the system administrator have the right to grant or revoke
transaction execution rights to other users. The ability to grant access cannot be further delegated.

63

8. Other Clark-Wilson E-rules

So far we have concentrated on the Clark-Wilson E-2 rule. There are three other E rules.

E-1) CDis can only be changed by authorized TPs.
The MAC controls of System V/MLS are used to limit access to the databases to

transactions registered with UCP. Two new categories, UCP and UCP _Private, are Qefined when
Secure UCP is installed on an MLS system. All files associated with UCP: transactions, databases,
utilities, and UCP itself, are marked with the UCP category; the databases under the control of UCP
are also marked with the UCP _Private category. Authorized UCP users are Cleared to the UCP
category, but not to the UCP _Private category. Transactions execute with the identity and, usually,
with the login label of the invoking user. Database accesses are done by UCP itself, which
"promotes" the user's label with the addition of the UCP _Private category before initiating a
database access with the identity of the user. Thus database accesses are limited to users cleared to
UCP, using transactions known to UCP, ar1d with the individual database actions mediated by UCP.

E-3) Users must be authenticated by the system
This rule is enforced by the underlying System V/MLS operating system.

E-4) Only authorized system officers may change the access information.
Only the UCP administrator is authorized to add transactions to the system or to

change the Capability List or transaction ACL associated with a transaction. The UCP
administrator and the business administrators are authorized to change the user ACL and second
authorization ACL associated with a transaction.

It should be noted that Secure UCP respects the MAC and DAC mechanisms provided by
System V /MLS and the databases, and provides an audit mechanism that complements the audit
trail of System V/MLS.

9. Conclusion

Using a combination of label mechanisms, and centrally administered ACL and capability
list mechanisms, the security enhanced version of UCP provides a :MECHANISM for implementing
Clark-Wilson type CDI- TP applications. According to Secure UCP itself, the transactions and
databases are "untrusted" --that is, operate without privilege. The UCP administrator is responsible
for certifying the transactions that he/she installs. The UCP administrator and the various business
administrators are also responsible for maintaining the access control tuples on which UCP bases its
access control decisions.

10. References

[1] Abrams, M., "Renewed Understanding of Access Control Policies," Proceedings of the 16th
National Computer Security Conference, 1993.

64

[2]Abrams, M., Eggers, K., Lapadula, L. and Olsou, I., "A Generalized Framework for Access
Control: An Informal Description," Proceedings of the 13th National Computer Security
Conference, 1990, 135-143.

[3] Clark, D. and Wilson, D., "A Comparison of Commercial and Military Computer Security
Policies," Proceedings ofthe Symposium on Security and Privacy, IEEE, 1987, 554-563.

[4] Downs, D., Rub, J., Kung, K. and Jordan, S., "Issues in Discretionary Access Control,"
Proceedings of the Symposium on Security and Privacy, IEEE, 1985, 208-218.

[5] Ferraiolo, D. and Kuhn, R, "Role-Based Access Controls," 15th National Computer Security
Conference, 1992, 554-563.

[6] Graubert, R., "On the Need for a Third Form of Access Control," Proceedings of the 12th
National Computer Security Conference, 1989, 296-303.

[7] Jueneman, R.R., "Integrity Controls for Military and Commercial Applications," Proceedings
of the Aerospace Security Conference, IEEE, 1988.

[8] Karger, P.A., "Implementing Commercial Data Integrity with Secure Capabilities,"
Proceedings of the Symposium on Security and Privacy, IEEE, 1988.

[9] Lee, T.M.P., "Using Mandatory Integrity to Enforce 'Commercial' Security," Proceedings of
the Symposioum on Security and Privacy, IEEE, 1988.

[10] Lipner, S. B., "Non-Discretionary Controls for Commercial Applications," Proceedings ofthe
Symposium on Security and Privacy, IEEE, 1987.

[11] Shockley, W.R., "Implementing the Clark/Wilson Integrity Policy Using Current Technology,"
Proceedings of the lith National Computer Security Conference, 1988, 29-37.

[12] Smith-Thomas, B., Liu, S., andWu, J., "Bl Security in an On-Line Transaction Processing
System-- A Project's Experience," submitted for publication, 1994.

[13] Department ofDefense Trusted Computer System Evaluation Criteria, U.S. Department of
Defense Standard, DOD 5200.28-STD, December 1985.

[14] Report ofthe Invitational Workshop on Integrity Policy in Computer Information Systems
(WIPCIS), Bentley College, 1987.

[15] A Guide to Understanding Discretionary Access Control in Trusted Systems, NCSC,
September 1987.

65

VIRTUAL VIEW MODEL TO DESIGN A SECURE OBJECT-ORIENTED

DATABASE

N. Boulahia-Cuppens, F. Cuppens, A. Gabillon, K. Yazdanian

ONERA!CERT

2 avenue Edouard Belin

31055 Toulouse cedex

France

Email: rwra@tls-cs.eertfr, cuppens@tls-cs.eertfr, gabillon@tls-cs.eertfr, yazdanian@tls-cs.eertfr

Abstract

This paper proposes a new design approach for a secure multilevel object oriented database system. The
central idea is to provide the user with a single level virtual database derived from an object oriented database
which supports multilevel entities. This is the reason why we call this security model the Virtual View model.
The database operations are performed on this virtual database within a transaction. The transaction ends by a
commit which reflects back the updates on the physical object-oriented database. We argue that this approach
allows us to avoid many difficulties inherent to the previous works which cope with object oriented databases
supporting multilevel entities. The model we undertake in this paper can be implemented on any conventional
Mandatory Security Kernel which offers to the user the possibility to perform a transaction at a level of
classification chosen by the user.

1. Introduction

A problem that has been of particular interest over the last years is the management of complex and
heterogeneous data (texts, maps, pictures and photographs, etc ...). At present, available tools that could be used to
manage these different types of information include t:Pe classical database management systems (for instance,
relational or network data models) and also object oriented databases which start taking root as the new generation
of database systems. Object oriented databases present important advantages on classical database ~ystems, in
particular, through the notions of encapsulation and inheritance, they are fundamentally designed to reduce the
difficulty of managing complex data. They also include the notion of methods which are general programs that are
associated with an object class to perform specific computation. Today, several database management systems
(DBMS) based on the object oriented paradigm are already available.

One major area in DBMS is the security of shared data stored and manipulated via various operations in the
database. Database security aims to maintain the confidentiality and integrity of information in the database by
restricting access to authorized persons and operations only. Already now, several proposals have appeared in the
literature dealing with security models for object-oriented databases. Some of them deal with Discretionary Access
Controls policies (see [Pfe88], [Fer89], [Ber92] for instance). However, in the remainder of this paper, we only
pay attention to Mandatory Access Controls policies, especially the multilevel confidentiality policy. In this
context, most of the security models are based on the traditional object-subject paradigm of Bell and LaPadula
[Bel75]. As was noticed in [Jaj90], a first problem we encounter when we want to apply the model of Bell and
LaPadula to object oriented systems is that the notion of object in the object oriented model does not correspond to
the Bell-LaPadula notion of object. The object oriented model combines the properties of a passive information
container, represented by the attributes and their values, with the behavior of an active agent, represented by the
methods and their invocation. Another problem, perhaps related to the first one, is that it is difficult to assign
classifications to the items introduced in the object oriented model. Some proposals consider that every object is
assigned a unique classification that applies to all its content (attributes and methods) [Mil92] or only to the
passive content (attributes) [Jaj90]. The advantage of this approach is the simplicity with which security policies
can be stated and enforced. However, as objects are used to model real world entities, it may seem somewhat
restrictive that all objects have only a single security level. Hence, other proposals introduce also a finer grain of
classification in assigning a classification to each pair (attribute, value) [Kee89,Var91]. This approach allows us to
easily represent multilevel entities in the object oriented database, but researchers who are in favour of single-level
objects generally consider that multilevel objects are likely to introduce overwhelming difficulties (cf. [Lun90] for
instance) or try to demonstrate that to restrict objects to single-level does not necessarily imply that it would still
not be possible to represent multilevel entities [Jaj90], [Bou93a].

This paper proposes a new design approach for a secure multilevel object oriented database system. It is
based on an object oriented database which supports multilevel entities as in [Kee89,Var91]. However, we agree
with [Lun90] and consider that supporting multilevel entities would be impratical as such. In [Bou93a], we

66

mailto:yazdanian@tls-cs.eertfr
mailto:gabillon@tls-cs.eertfr
mailto:cuppens@tls-cs.eertfr
mailto:rwra@tls-cs.eertfr

- -

proposed a technique to represent multilevel entities in using single level objects. [Bou93a] may be seen as the
actual implementation of the physical database supporting multilevel entities. Due to space limitation, we will not
address this issue in this paper. Our approach 1 in this paper shows how to use the concept of virtual database to
implement a multilevel security policy on top of the physical multilevel database. This approach drastically differs
from the one proposed in [Jaj90]. It also differs from, but is actually complementary to, the security-policy
proposed in [Bou93a]. When a real user decides to perform a given work, he has first to choose a current
classification level which must always be dominated by the user's clearance. This user is then provided with a
single level virtual database which is derived from the multilevel database and depends on the current
classification level chosen by the user. This is the reason why we call this security model the Virtual View model.
The database operations are performed on this virtual database within a transaction at this current classification
level. The transaction ends by a commit which reflects back the updates on the real multilevel database. We argue
that this approach allows us to avoid many difficulties encountered in previous works undertaking the design of
object oriented database supporting multilevel entities.

The remainder of this paper is organized as follows. Section 2 proposes a sketch of formalization of the
main elements of the object-oriented data model without dealing with security. We do not consider this model
complete but it is sufficient for the purpose of this paper. Section 3 shortly reviews the concept of virtual database
emphasizing those aspects which are important in the context of object oriented database .security. In section 4, we
propose a general overview of our approach making the assumptions that will be used in the following of this
paper. Section 5 develops the Virtual View model for a secure multilevel object oriented database system. This
model is mainly based on the concept of virtual database. In section 6, we suggest a possible sketch of
implementation for this model. Finally, section 7 concludes the paper on further work that remains to be done.

2. Classical non secure model

This section presents an overview of object-oriented concepts. It is not our intention to give an exhaustive
description here as a more detailed and a more complete account can be found elsewhere [Ban92]. However, we
give sufficient details to explain how we introduce-multilevel security in an object oriented database. Notice that
the definitions we give, although not fully stated, are based on set-theory and denotational semantics approach.
This will allow us to formalize the different models presented in this paper in an existing formal method (for
instance VDM [Jon86], Z [Spi86], orB-method [Abr91]).

Let 0 _DB be an Object oriented database.

Definition NS 1. Computable entities in_ 0_DB are objects. We can model an object as an injective function.

object: object_ident ~ object_state..

object _ident stands for the identity of the object which is unique, and the object _state is a set of attribute
values.

Definition NS 2. Attribute value is a relation which associates an identifier (name of the attribute) with a value:

Attribute value : attribute ident ~value

To fully define value, notice that we can actually distinguish:

-Primitive value. A primitive value belongs to a predefined usual set (or type), like Natural, Real

- Structured value. A structured value is an identifier of another object; it can be the case when we deal

with sub-objects.

-Set value. A set value is a set of primitive values or Structured values.

Notice that to be compatible with the object-oriented approach, we need means to state the class of which
the object is instance of. In the following we consider that this can be done by adding a particular attribute
(instance-of) whose value is a set of parent classes. Another solution would be to use a mechanism external to the
object to get the set of its parent classes.

Definition NS 3. A method describes a behavior of a set of objects encapsulated in a class. It is defined by its
signature and its body written in a programming language. The signature of the method is defined by its name,
class, domain of each method parameter and domain of the value returned by the method.

Method_name x class x :!'(domain)~ domain

domain may be a class or a predefined type like Natural, Boolean Notice that if d denotes a domain, :1'(d) is
also a domain.

Definition NS 4. A class is an injective function.

class : class _ident ~ class _state x behavior.

The class state is a set of attributes, and the behavior is a set of methods. class ident identifies uniquely the - .

1. We have already outlined a simplified form of this approach in [Bou93b].

67

--

class.

Definition NS 5. Each attribute is a relation which associates an identifier (name of the attribute) with a domain :

Attribute : attribute _ident f-...Y domain

Hence, a class looks like a pattern object. Each attribute value of an object of a given class must be
compatible with the domain of this attribute specified in this class.

The schema of 0 _DB is the overall view of the classes the database supports and their relationships
(inheritance and specialization). For the purpose of our paper, this informal statement of the schema is sufficient.

Definition NS 6. We define 0 _DB as a set of objects:

0 _DB = fP(object) with respect to 0 _DB schema.

3. An overview of the view mechanism

The concept of view was first introduced in the relational model to increase the flexibility of a database
system. In the relational model, a view is simply a virtual relation derived from the real relations defined in the
conceptual schema. From a theoretical point of view, this concept is based on the fact that the result obtained by
computing a relational expression involving relations is always another relation. Hence, instead of evaluating this
relational expression, we can consider that this expression simply defines a new virtual relation called a view.

Commercial DBMS such as Sybase [Syb87] and INGRES [Ing75] all use the view as the object of
discretionary protection. Several applications of the view mechanism have also been proposed for the purpose of
mandatory protection in multilevel databases, for instance the Sea View model [Den88] and the ASD-View model
[Gar88].

In the context of the object-oriented model, the concept of view is rather new even though several
extensions of the basic paradigm of view have already been proposed. Generally, the approaches are quite similar
to what is done in the relational framework. However, object-oriented views are intended not only to define new
data structures, as is the case in the relational model, but also new data behaviors, since the methods are an integral
part of the class definition in the object-oriented model. Hence, defining new virtual classes is more complicated
than defining virtual relations.

The objective of this paper is to show how to use a view mechanism to cope with some problematical
aspects of multilevel object oriented database systems. The view mechanism we describe is partly inspired from
the one proposed in [Abi93] for a context where security problems are not relevant In [Abi93], views are defined
as virtual schemas, from which virtual databases are derived. This means that the activation of view will result in
the creation of a virtual database. Views are evaluated dynamically. This is important for performance and avoids
virtual databases to be evaluated on the whole database. In [Abi93], it is also possible to associate a view with new
data behaviors, i.e. new methods. However, we need not use this possibility in our approach.

4. Assumptions of our approach

Our objective is to propose an approach which allows us to deal with mutltilevel entities in an object
oriented database without some inconveniencie encountered by the previous proposals. It is based on the
derivation of single-level virtual databases from a multilevel database. All the operations are then performed on
the virtual database within a transaction at a current classification level chosen by the user.

For the sake of simplicity of the exposure, we make several hypotheses. Let us first explain how the
multilevel security policy is introduced within the physical database. For instance, let us consider the following
class Person and one object 0 I which have been created in a context where security problems are not relevant. We
also assume that 0 I is an instance of Person.

Class Person
Object 01

Attributes
Name :String ...
Age :Integer
Address :String Instance of

Attributes
Name : Smilh.
Age :35
Address : Tower street

Fig. 1 Non secure database

In our approach, security levels are used to transform this class and its related instance. For instance, we
may get the figure 2.

68 '

Notice that in the Virtual View model the assignment of security levels is only done at the object level
(instances). We assume that the database schema is not protected and each user, whatever his clearance, can have
access to the overall classes of the database. This assumption explains why the class Person is not modified in the
above example. We guess that a complete model for multilevel object oriented databases should also provide the
possibility to hide some part of the database schema, for instance the existence of a class or the existence of a
given attribute in a class definition. This clearly represents further work that remains to be done.

Class Person
Object 01, U

Attributes
Name :String
Age :Integer
Address :String Instance of

Attributes
Name :Smith, U
Age :35,C
Address : Tower street, C

Fig. 2 Multilevel database

Notice also that the instance OJ has a security level associated with its identifier and another for each of its
attributes. The object-identifier classification is used to hide the existence of the object to the subjects which are
not sufficiently cleared. In the above example, this security level is equal to Unclassified. This means that
everybody is permitted to know that 0 J has been created in the database. On the other hand, if this security level
had been assigned to Confidential, then subjects cleared to Unclassified would have ignored the existence of OJ.
Notice that the object-identifier classification represents the security level at which the object has been created.

We also assume that the object-identifier of a newly created object is taken in a predefined set of object
identifiers. This set is partitionned into several pairwise disjoint subsets associated with each security level. This
means that each object-identifier is assigned a predefined level of classification. This level of classification is static
and independent from the fact that an object associated with this object-identifier exists or not. However, when a
user wants to create an object at a given security level, then this new object must be associated with an object
identifier having the appropriate level of classification. This constraint is used to avoid that two objects with
different security levels are identified by the same object identifier.

The attribute classification classifies the information represented by the association of the attribute with the
object identifier. For instance, the value of the attribute Age is associated with the level Confidential. This means
that the information "the age of OJ is equal to 35" is Confidential. Each attribute can be labelled independently.
This principle allows us to represent multilevel entities in the model.

The object-identifier must always be assigned a classification which is dominated by the greatest lower
bound of the attribute classifications of the object. With this integrity constraint, a subject must be first authorized
to observe the existence of the object before being authorized to access one of its attribute values.

It is also important to notice that we assume that the attribute classification itself is classified at the same
level of classification as the object-identifier classification. This means that, if a user is permitted to know the
existence of an object, then he is also permitted to know the security level of any attribute value. It implies that the
existence of a sensitive attribute value is not directly protected. Therefore, we do not need to use polyinstantiation
to introduce a cover story whose purpose is to hide the existence of an otherwise sensitive attribute value 1 . When
an unclassified user queries the database to know the value of a sensitive information, he may be told that this
information exists but is sensitive without generating an unauthorized flow of information through a covert
channel. For this purpose, we introduce special values called "level values". Formally, each security Ieveli is
associated with a level value denoted" f' and, if an unclassified user wants to know the value of a sensitive piece of
information classified at level!, then this user is provided with the special level value"r2 .

5. Security model

In this section, we develop the Virtual View model for a multilevel object-oriented database system using
the assumptions of section 4. We begin, in section 5.1, by modifying the classical non-secure model proposed in
section 2, in order to obtain a model for our real multilevel object oriented database. Then, section 5.2 shows how
to model a single-level virtual database and section 5.3 develops the rules to derive this virtual database from the
real multilevel database of section 5.1. In section 5.4, we describe the commit which is run at the end of a
transaction. Section 5.5 illustrates our approach through an example and sections 5.6 and 5.7 respectively deal
with object creation and method activation. Finally, the difficulty of implementation is considered in section 6.

1. A cover story is a lie introduced by the high users to cause the low users to believe something that is incorrect.
2. This is a generalization of the special symbol restricted used in [San92] to tell users that corresponding values exist but are higher
classified. Our special "level" values provide the user with more precise information.

69

- -

5.1 Multilevel Entities

In the real object-oriented database model, attribute values are assigned classification levels. Hence, an
attribute value may be unclassified, confidential, secret and so on depending on the choice made by the creator of
the correspondant object. Consequently definition NSI and definition NS2 are slightly modified to handle these
security levels.

Definition ML 1. An object is defined as an injective function which associates the identity of the object with an
object_state.

object: object_ident ~ object_state.

Moreover, a sensitivity is assigned to the object :

sensitivity : object_ident ~level

The purpose of the sensitivity function is to classify the object existence.

As in the non-secure model, object_state is a set of attribute values. However, the definition of attribute
value is changed as follows:

Definition ML 2. Attribute value is a relation which associates an identifier (name of the attribute) with a value:

Attribute value : attribute ident ~value

Morever a sensitivity is assigned to the association between an object identifier and the Attribute_ value

sensitivity: object_ident x Attribute_value ~level

value may be a value as defined in the definition NS 2. Moreover the following integrity constraint must be
enforced:

\io: object_ident, \iva: Attribute_value, va E object(o) -Hensitivity(o,va) 2:sensitivity(o)

5.2 Virtual single level database

We could directly define a security policy for the multilevel database. This policy could be closely related to
the one proposed for the SODA model [Kee89] by example, but such a policy would present a few drawbacks (see
[Bou93a] for a more detailed discussion of the SODA model):

• 	 Every time a read or write occurs, a security level control would have to be effected, possibly causing a
performance loss.

• 	 Compared with the case of a non secure database, administration ofmethods would have to be adapted because
we would need to assign a current security level to a running method.

• 	 Multilevel transactions would introduce timing channels.

Our objective is to propose an alternative approach. For this purpose, we can create from a multilevel
database as many virtual databases as security levels. Each virtual database is classified by a unique security level.
Thus, all objects and all atribute values inside the virtual database are implicitly classified with the same security
level.

When a user is to perform a given work, he has first to choose a current classification level. Of course this
working level is dominated by his clearance. Then, a single level transaction, assigned with this current
classification level, is initiated and the user is provided with a virtual single level database which is derived from
the multilevel database. The security level of this virtual database is the same as the current working level.

Once this virtual database is created, the user may access it within the single level transaction. He may read
and update attribute values without any restrictions or access controls 1 . At the end of the transaction, the user may
order a commitment which reflects back the updates performed on attribute values assigned with a security level
which is the same as the current working level. Access controls to propagate updates are effected when the
commitment is complete.

In virtual database, we no longer need to classify attribute values and objects. Instead, we assign a security
level to the whole virtual database. Thus, compared with the classical non secure model, only definitions NS 2 and
NS 6 are modified into defintions VV 2 and VV 6.

Definition VV 2. Attribute value is a relation which associates an identifier (name of the attribute) with a value:

Attribute_ value : attribute _ident ~value

Value may be a value as defined in the definition NS 2 or may be taken into the set of "level" values which
are defined as follows:

1. Notice that [Atk89) says that in object-oriented database, there are cases where encapsulation is not needed. In our model, encapsulation
has no influence on security. The user may directly read or write attribute values without invoking a method. Other works are based on strict
encapsulation and require that a message filter can intercept every message sent by an object in the system [Jaj90].

70

- "Level" value. Each security Ievell is associated with a level value denoted "I"

Providing the user cleared at levell1 with a level value equal to "12 " means that the value exists but is
classified at levell2. This only makes sense when the user clearance 11 is not higher than 12. Indeed, if 11 is higher
than 12, then this user would be provided with the actual value of the information. Notice that we assume these
"level" values belong to every domain.

Definition VV 6. We define 0 _VDB as a set of objects:

0 _VDB = fP(object) with respect to 0 _VDB schema.

Moreover, a sensitivity is assigned to the whole virtual database:

sensitivity : 0 _VDB -+ level

5.3 Rules to derive a virtual database.

We now describe the rules which are needed to obtain a virtual database from a real multilevel database:

• 	 Rule 1. As the schema is unclassified, it is propagated as such in any virtual database.

Once the view, i.e virtual schema, is created, virtual objects are evaluated as follows:

• 	 Rule 2. If an object has a security level which is not dominated by the security level of the virtual database,
then this object is not propagated in the virtual database.

Notice that such a propagation would be prevented by the Mandatory Security Kernel.

• 	 Rule 3. Ifan object has a security level dominated by the security level of the virtual database, the object may
be propagated in the virtual database.

As is noticed in [Abi93], a view may be evaluated dynamically. Virtual instances are created only if a user
or process wants to perform on it.

• 	 Rule 4. Ifan attribute value ofan object has a security level dominated by the security level of the virtual
database, the attribute value may be propagated as such in the corresponding virtual object.

• 	 Rule 5. Ifan attribute value ofan object has a security levelli which is not dominated by the security level of
the virtual database, the attribute value is enforced to "1(1 in the corresponding virtual object. This is to avoid
a read up.

Notice that such a read up would be prevented by the Mandatory Security Kernel. Once a transaction has
been initiated and a virtual database has been created, the user or a method can read or write attribute values in this
virtual database without any controls and any restrictions. It is important to stress that as long as the user or the
process does not perform a commitment, updates are not propagated in the physical database.

5.4 Commitment.

At the end of a transaction, user or process may order a commitment. The main principle of this
commitment is to propagate updates only for attribute values which are at the same level as the virtual database
level. More precisely the rules are expressed as follows. For every attribute value in the virtual database,

• 	 Rule 6. If the level ofthe corresponding attribute value in the multilevel database is not higher than the level
of the virtual database then the update is not propagated. This is to avoid a write down.

Notice that the commitment would not need to be trusted because such a write down would be prevented by
the Mandatory Security Kernel.

• 	 Rule 7. If the level of the corresponding attribute value in the multilevel database is equal to the level of the
virtual database then the update is propagated.

Rule 8. If the level of corresponding attribute value in the multilevel database is higher than the level of the
virtual database then the update is not propagated. This is to avoid a write up. It is not a confidentiality
requirement but an integrity one.

5.5 Animation of the model.

We give a small database which is sufficient to illustrate our purpose. There are two classes (Person and
Employee) and two objects (01 and 02). With the intent to simplify our example, we give only three security
levels {Unclassified, Confidential, Secret}. Figure 3 shows the physical multilevel database. We mention in each
class only specified attributes and specified methods.

Figure 4 shows the unclassified virtual database. Only 01 which is unclassified is propagated in the virtual

1. As we have assumed that the attribute classification is classified at the same level of classification as the object existence classification,
the user is permitted to observe this "level" value. We will show in section 5.6 how this assumption may be made without creating a covert
channel.

71

database. Every confidential or secret attribute values of OJ are enforced to "Confidential" or "Secret" in the
virtual database. At the end of the transaction, commit propagates updates for unclassified attribute values only.
Since it is unclassified, this database is accessible by any user or any method underlying a user.

Class Person

Instance of

Instance of

Object 01, U

Atttibutes
Name
Age
Address

:Smith, U
:35,C
:Tower street, C

Object 02, C
Attributes

Name
Age
Address
Salary

:John, C
:30,C
: Bridge street, C
:$8000, s

Object 01

Instance_ of

Attributes
Name
Age
Address

Smith
"ConftdenJial"
"ConftdenJial"

Fig. 3 Multilevel database

Class Person

Fig. 4 Virtual unclassified database

Figure 5 shows the confidential virtual database. Both 01 and 02 are propagated in the virtual database.
Every secret attribute value is enforced to "Secret" in the virtual database. At the end of the transaction, commit
propagates updates for confidential attribute values only. Since it is confidential, this database is accessible by
users with a clearance equal to the confidential or the secret level.

Secret virtual database is quite similar to the confidential virtual dtabase. The only difference is that no
attribute value is hidden by a "level" value. In particular the salary of 02 is equal to $8000. Of course, this
database is accessible by secret users only. During commitment, updates are propagated for secret values only.

5.6 Object creation

Object creation may be perfonned in any virtual database but the following rule must be enforced:

• 	 Rule 9. The object-identifier of a newly created object must be taken in the predefined subset of object
identifiers assigned with a security level which is the same as the security level of the current virtual database.

72

Object 01
Attributes

Name :Smilh.... Age :35
Instance of Address : Tower street

Class Person

Object 02

Attributes
Name :John ... Age :30
Address : Bridge street

Instance of Salary :"Secret"

Fig. 5 Virtual confidential database

This entails that the classification of the object existence be the same as the security level of the virtual
database in which the object is created. Without this rule, a method trapped by a Trojan horse could use object
creation as a way to disclose some information. The object creator is also in charge of associating the attribute
values of the newly created object with sensitivities. As a user in the virtual database does not directly deal with
security levels, assigning sensitivities to the attribute values is indirectly done as follows. Once the object creator
has got an identifier, he may assign attribute values to the object. These attribute values may be "level" values or
"normal" values 1 . Of course the following rule must be enforced:

• 	 Rule 10. Ifan attribute value is associated with a level value "li ",then the corresponding security Ievell; of
the level value "l; "must dominate the current security level. This is to respect the integrity rule defined in
definition ML 2.

After commitment, the object is created in the physical database. The attribute values assigned to the object
in the virtual database are propagated fn the physical database. There are two different cases of propagation:

1. 	If, in the virtual database, the object creator has associated an attribute with a "level" value"/;", then, in the
physical database, this attribute is associated with a "Null" value whose sensitivity is equal to li

2. If, in the virtual database, the object creator has associated an attribute with a "normal" value, then, in the phy
sical database, this attribute is associated with this "normal" value whose sensitivity is equal to the security
level of the current virtual database.

These two rules imply that the classification of the security levels assigned to the attribute values of the
newly created object will be the same as the classification of the object existence (i.e. the security level of the
current virtual database). This means that in knowing the object existence, a user may also observe the security
levels associated with each attribute value of this object.

To fully instantiate the new object, the user must then successively set himself to each security level which
appears in attribute values of the object. Then he may successively and normally update "Null" values with
"normal" values via virtual databases. Due to rule 7, the user may only update a level value "/i" by a "normal"
value if the current level of the virtual database is actually equal to 1;. Of course, to fully instantiate an object,
user's clearance must dominate the least upper bound of security levels which appear in the attribute values of the
object. Let us see in figure 6 how a confidential instance of the class Person would be created by a secret user. This
figure shows creation of a new confidential object 03 in the class Person (we mention only the newly created
object and the class Person). Classifications assigned to the attribute values of the object 03 will be confidential
for the Name, confidential for the Age and secret for the Address. At first, secret user (or process) requesting the
creation must set his working level to confidential. He may invoke the primitive of object creation and assign
"normal" values to the Name and Age and a "Secret" value to the Address. In the physical database, after
commitment, a confidential multilevel object is created. The "normal" values of the Name and Age are propagated
in the physical database and the attribute value of the Address is enforced to Null. Then, the user may raise his
working level to secret to fully instantiate the new object by updating the Address attribute value.

1. By "normal" value, we mean any value which is not a "level" value.

73

5.7 Method activation

Another advantage of the Virtual View model is that compared to a non secure database, administration of
methods does not need to be modified. Indeed, as methods are executed in~ single level virtual database, they may
read or write attribute values without security controls. In other works, applying information flow controls to
method invocation would require trusted information mechanism embedded in the object layer [Kee89, Jaj90]. In
particular, our approach does not require to implement mechanisms to allow an object to communicate with
another object of a different level. Such mechanisms are tedious to implement without generating timing channels
(see [San91) for a discussion).

Virtual Confidential DB Virtual Secret DB

(Class Person Class Person

Attributes ' /Attributes
Name :String ... Name :String
Age :Integer Age :Integer
Address :String Address :String

Instance of Instance of - -
Object 03 Object 03

Attributes Attributes
Name :Martin Name :Martin
Age :27 Age :27
Address :.,Secret" Address :Flower Street

COMMIT Multilevel DB COMMIT

Object 03, C Object 03, C
Attributes Attributes

Name :Martin, C Name :Martin, C
Age :27,C Age :27,C
Address :Null, S Address :Flower Street, S

Fig. 6 Confidential object creation

6. Sketch of implementation

In this section, we briefly consider the difficulty we may encounter when we implement the Virtual View
model. First, we argue that our proposal for a secure multilevel object oriented database system can be
implemented on any conventional Mandatory Security Kernel which offers to the user the possibility to perform a
transaction at a level of classification chosen by the user. In this case, the architecture of the system may be
described by Figure 7.

Through this figure, we can see how a transaction is performed and the different entities at work. The
starting point is a user who wants to query the database. First, this user, has to choose a current level of
classification he wants to associate to his query. The Mandatory Security Kernel performs several security controls
in particular the authentication of this user. Then, the transaction begins. A virtual database is provided to the user.
It is built from a view of the multilevel database and depends on the level of classification chosen by the user. This
virtual database is built by a specific (non standard) part of the DBMS called the Virtual Database Extractor. When
the virtual database is generated, security controls are performed by the kernel. This kernel must enforce that the
virtual DB extractor only accesses physical databases having an appropriate classification with respect to the
current level of the transaction (Physical Access Control) and that the virtual database is stored in a memory area
having an appropriate classification (Memory Access Control). Notice that the structure of this virtual database is
almost identical to the structure of a non secure database; the only modification is the use of specific "level"
values. Hence, we guess that the query may be handled by a standard DBMS. Finally, a commit is done at the end
of the transaction. This commit is also non standard and requires some modification of the commit existing in a
standard DBMS. The Mandatory Security Kernel checks all the operations performed by this non standard
commit.

74

We can consider that the global multilevel DBMS is actually a modified standard DBMS with two specific
functions: the first one is the Virtual Database Extractor and the second is the Commit. Hence, it seems that this
approach might be implemented with only minor modification of an existing standard object oriented database. In
particular, notice that Virtual Database Extractor and Commit need not be trusted components. Indeed, we may
consider that the Mandatory Security Kernel performs all the security controls. However, if we consider
performance issues, it may be interesting to insert them in the security kernel to avoid unnecessary controls which
would otherwise be performed by a classical security kernel. Notice also that a Standard Security Kernel can
generally enforce mandatory controls with respect to single level information containers. Hence, a Standard
Security Kernel would not allow to manage multilevel objects as such. It is necessary to decompose multilevel
objects into single level objects which are then physically stored in the database. Due to space limitation, we
cannot describe the decomposition mechanism in this paper but we refer to [Bou93a] for a detailed presentation.
This decomposition mechanism called Multi View is fully compatible with the use of Virtual Database described in
this paper.

TRANSACTION

Mandatory Security Kernel
(Authentication)

Mandatory Security Kernel
(Memory Access Controls)

~.:.:::_:::.;
I I

Vil'tual Database
'------..)

Virtual DB Extractor
+Commit

Mandatory Security Kernel
(Physical Access Controls)

c

MULTILEVEL-DATABASE

Fig. 7 Implementation

Finally, notice that as in the SODA model a covert timing channel may exist in our model: It arises when a
user starts a new high level transaction and then returns to the unclassified level after a commit. The transaction
can read high level data and the commit can communicate it by modulating its execution time. Several solutions to
avoid this type of timing channel exist, for instance we may require that the commit operation only be executed
under the control of the user through a trusted path.

We plan to develop a prototype to explore the feasibility of the Virtual View model and to combine it with
the Multi View model described in [Bou93a]. This would allow us to study if additional complexity that was not

75

discovered during the conception phase may arise during the implementationphase.

7. Conclusion

Our objective in this paper was to show how to fruitfully use the concept of virtual database to avoid many
difficulties which arise when we deal with multilevel entities in an object oriented database. The Virtual View
model presents several advantages. First, it can rely on an underlying security kernel for the enforcement of
mandatory security properties. This means that the components providing the virtual object oriented database need
not be trusted, while other works require trusted enforcement mechanisms in the object layer [Kee89,Jaj90]. We
also feel that our approach requires only minor modification of an existing object oriented DBMS. This is another
advantage of the Virtual View model which allows us to deal with single level database. It was not the purpose of
this paper to address performance issues. However, in this field, our approach may also present several advantages
because, after the virtual single level database has been generated, it does not require any security control. Hence,
the analysis of the performance could reveal significant gains.

This preliminary work could be extended in several directions. A first extension consists in classifying some
part of the object oriented database in order to hide some part of this schema, for instance the existence of a secret
attribute. We have also noticed that we do not need to use polyinstantiation in our model, but, as a drawback, it
would not be possible to support cover stories. Hence, another extension would be to propose means to support
cover stories to hide the existence of a secret value of an attribute. It is generally considered that polyinstantiation
is well adapted for this purpose, but we must investigate if other solutions do not exist in the context of object
oriented databases.

Finally, in [Bou93a], we have suggested another approach based on the decomposition of an object oriented
database which supports multilevel entities in a collection of single level databases. We guess that the approaches
described in this paper and in [Bou93a] are fully compatible and conplementary. However, how to exactly
combine them requires further investigation. Notice in particular that the approach described in [Bou93a] already
provides the possibility to support cover stories.

References :

[Abi93] S. Abitebou/, Cassio Souza dos Sanlos and C. Delobe/. Virtual Schemas and Bases for dynamic Data-[nJensive Systems. To
be published at the next EDBT 94 conference. Cambridge. England.

[Abr91] J . .R Abrial. The b method for large software specification, design and coding (abstract). In Prehn Toetenel, editor, VDM' 91,
vo/ 2. Springer Verlag, 1991.

[Atk89] M.Atkinson, F. Bancilhon, D. DeWitt, K. Dittrich, D: Maier and S. Zdonik. The Object-Orienled Database System Manifesto.
Proc. ofthe first international conference on Deductive and Object-Orienled Database.S(DOOD89).

[Ban92] F. Bancilhon, C. Delobel and P. Kanellakis. Building an Object-Oriented Database System. Morgan Kaufmann 1992.
[Bel75] D. Bell and L. Lapadu/a. Secure Computer Systems: Unified Exposition and Multics lnlerpretation. Technical report, MTR

2997, MITRE, Bedford, Mass, 1975.
[Ber92] E. Bertino. Data Hiding and Security in an Object-Oriented Database System" Proc. Eight IEEE lnJernationa/ Conference

on Data Engineering, Phoenix, Arizona, 92.
[Bou93a] N. Boulahia-Cuppens, F. Cuppens, A. Gabillon, K. Yazdanian. Multiview Mode/for MultiLevel Object-Orienled Database.

To be presented at the Ninth Annual Computer Security Applications Conference. December 93. Orlando, Florida.
[Bou93b] 	 N. Boulahia-Cuppens, F. Cuppens, A. Gabillon, K. Yazdanian. Techniques to Handle Multilevel Objects in secure Object

Oriented Databases. Proc of the OOPSLA 93 Conference Workshop on Security in Object-Orienled Systems. Washington
D.C., USA. September 93.

[Den88] D.E Denning, T.F. Lunl, R.R Schell, W.R.Shockley and M. Heckman. The Sea View Security Model. Proc. ofthe 19881EEE
Symposium on Research in Security and Privacy. Oakland.

[Fer89] E. Fernandez, E. Gudes, H. Song. A Security Model for Object-OrienJed Databases. Proc IEEE Symp. on Security and
Privacy, Oakland 89.

[Gar88] C. Garvey and A. Wu. ASD-Views. Proc. ofthe 19881EEE Symposium on Research in Security and Privacy. Oakland.
[Ing75] G. Held, M. Stonebreaker and E. Wong.INGRES- A Relational Database System National Computer Conference 1975.
[Jaj90] S. Jajodia and B. Kogan. [nJegrating an object-orienJed data model with multi-level security. Proc. of the 1990 IEEE

Symposium on Security and Privacy.
[Jon86] C.B. Jones. Systematic Software Developmenl using VDM. PrenJice-Halllnternational, Inc., 1986.
[Kee89] T.F. Keefe, W.T. Tsai and M.B. Thuraisingham. SODA: A Secure Object-Oriented Database System. Computer & Security,

Vol 8, N°6, 1989.
[Lun90] T.F. Lunt. Multilevel Security for Object-Oriented Database Systems. Database Security Ill: Status and Prospects. Elsevier

Science Publisher B.V. (North-Holland).IFIP 1990.
[Mil92] J.K. Millen and T.F. Lunt. Security for Object-OrienJed Database Systems. Proc. ofthe 1992 IEEE Symposium on Research

in Security and Privacy.
[Pfe88] H. Pfefferle, M. Hartig, K. Dittrich. Discretionary Access Control in Structurally Object-Oriented Database Systems. Proc.

IFIP WG 11.3 Workshop on Database Security, Ontario, Canada, 88.
[San91] R. Sandhu, R. Thomas, S. Jajodia. Supporting Timing-Channel Free Computations in Multilevel Secure Object-Oriented

Databases. Database Security V. Status and Prospects. C.E. Landwehr, S. Jajodia Editors. North Holland.
[San92] R. Sandhu and S. Jajodia. Polyinstanciationfor cover stories. Computer security- Esorics 92. Springer Verlag.
[Spi86] J.M. Spivey. The ZLibrary. A reference manual, Programming Research Group, Oxford Universitiy, 1986.
[Syb87] Sybase User's Guide, Sybase Inc, 1987.
[Var91] V. Varadharajan and S. Black. Multilevel Security in a Distributed Object-Oriented System. Computer & Security, 10 (1991).

76

ACHIEVING DATABASE SECURITY THROUGH

DATA REPLICATION: THE SINTRA PROTOTYPE

Myong H. Kang, Judith N. Froscher, John McDermott, Oliver Costich, and Rodney Peyton

Naval Research Laboratory

Information Technology Division

Washington, D.C. 20375

Abstract

There are several proposed approaches for multilevel
secure (MLS) database systems which protect clas
sified information. The SINTRA1 database system,
which is currently being prototyped at the Naval Re
search Laboratory, is a multilevel trusted database sys
tem based on a replicated data approach. This ap
proach uses physical separation of classified data as a
protection measure. Each database contains data at a
given security level and replicas of all data at lower se
curity levels. Project goals include good performance
and full database capability.

For practical reasons (e.g., ease of evaluation, porta
bility) the SINTRA database system uses as many
readily-available commercial components as possible.
In this paper, security constraints and the rationale for
the SINTRA prototype are described. We also present
the structure and function of each component of the
SINTRA prototype: the global scheduler, the query
preprocessor, and the user interface. A brief descrip
tion of the SINTRA recovery mechanism is also pre
sented.

1 Introduction

As government downsizes, there is a growing need
to exploit the sizable commercial investment in infor
mation technology to carry out government responsi
bilities more efficiently and effectively. With greater
reliance on information systems, both government and
commercial organizations are vulnerable to attacks on
the confidentiality, integrity, and availability of infor
mation. For more than a decade the government has

1 Secure INformation Through Replicated Architecture

supported research in computer, communication, and
information security to protect against such threats.
The results of this research can provide the basis for
managing data securely in the new information infras
tructure.

In this paper, we describe the SINTRA prototype
database management system. SINTRA enforces a
strong protection policy and provides both good per
formance and the full data management capability of
conventional industry-standard database management
systems. The Naval Research Laboratory is develop
ing the SINTRA prototype to demonstrate the fea
sibility of using physical separation and replication as
the primary protection mechanisms for a database sys
tem that provides both high assurance and multilevel
security.

First, we provide a brief summary of computer and
database security concerns and a survey of several
possible approaches to database security. Next, we
present an overview of the SINTRA prototype ar
chitecture. A model of the security constraints en
forced by the prototype allows consideration of how
these constraints affect the transaction model and data
model for the prototype. We then describe the process
structure of the prototype SINTRA scheduler and a
recovery strategy for this approach. The preprocessor
manages the security labels as data in the conventional
relational data model and ensures that proper modi
fications are made to user commands. Even though
the SINTRA prototype is really a MultiLevel Secure
(MLS) database server, a user interface has been de
veloped that illustrates how labeled data can be shown
to the user. We conclude with descriptions of the SIN
TRA prototype status, what we have learned, and fu
ture questions that the prototype must address.

77

2 Background

Organizations have long known the importance of
restricting access to sensitive information to prevent
competitors from learning about plans, new products,
or changes in strategies. One approach for control
ling access to this information is to allocate the infor
mation to sensitivity classes and restrict access based
on the consequences of the information's compromise.
This approach also requires that those who must ac
cess sensitive information be assigned to authorization
classes commensurate with the sensitivity level of the
information they are allowed to access and their trust
worthiness, which is assessed through a background
investigation.

When the government first used computers to pro
cess sensitive information, all users had to be cleared
for access to the highest level information processed.
The logical extension of this policy would have resulted
in all workers being cleared for the most sensitive in
formation. Because the government has not cleared
everyone to the highest level, it has been forced to use
some relatively insecure approaches to sharing infor
mation among users with different clearances.

Trusted computer products must be evaluated and
tested in an adversarial manner. For high-assurance
systems that must provide strong separation, the pro
tection mechanisms must be simple and easy to evalu
ate. Protection critical components must contain only
protection mechanisms and must mediate every ac
cess by each user. These systems are more highly
engineered and crafted than most computer systems.
Protection critical components must be scrutinized in
an adversarial way that ensures that neither malicious
code nor covert channels have been introduced into
the system.

When high-assurance application systems are devel
oped, system engineers must take great care to design
systems that take advantage of the strong separation
provided by these products but rely on them for lit
tle else. The commonly accepted theory for developing
MLS systems is to develop untrusted applications that
run at a single level but can access all data at that
level and below. If the application is data intensive or
requires communication across security levels, achiev
ing both high assurance and good performance is un
usually difficult. The thing to be avoided at all cost
is changing the protection critical part of an already
evaluated high-assurance component. Any change in
validates the evaluation. Now we can examine the
various approaches that have been taken to building a

high assurance, MLS database management system.
The most straightforward approach to providing

multilevel security in a database system is to design
the security mechanisms into the database system it
self and trust the database to enforce the security pol
icy. In practice this results in a low assurance system,
that is, the separation is weak. This kind of database
system is useful, but cannot interconnect the diverse
population of users expected for the new information
infrastructure. The reason for the low-assurance is the
complexity and size of modern database systems.

Less straightforward but more effective approaches
use a reference monitor to enforce the security policy.
The reference monitor is evaluated for high assurance
and the database system is designed to function un
der the security constraints enforced by the reference
monitor.

Following this reasoning, the Multilevel Data Man
agement Security Summer Study [Air83] recom
mended three near-term approaches to solving the
multilevel database security problem. The three ap
proaches are: integrity lock, kernelized, and dis
tributed. Within the latter there are two sub
approaches: replicated and non-replicated.

The integrity lock approach [Den85] uses a trusted
frontend, a single untrusted backend DataBase Sys
tem (DBS), and encryption techniques to protect data.
A trusted frontend applies an encrypted checksum to
data stored by an untrusted backend database system.
The integrity lock approach is computationally inten
sive because checksums have to be computed whenever
data are inserted or retrieved. Since the trust is in the
frontend filter and the backend DBS stores data from
multiple security levels, this architecture is susceptible
to Trojan horse attack. Hence this approach cannot
be used for highly-assured MLS DBS (e.g., a B3 orAl
system [DoD85]).

The kernelized approach [Lun90], relies on decom
posing the multilevel database into single-level files
which are stored separately under the control of a
security kernel enforcing a mandatory access control
(MAC) policy. Separate untrusted DBS are run at
each security level. Decomposing multilevel relations
into single-level relations so that the recomposition of
the fragments is the same as the user's view of the
ml\ltilevel relation has, in every case, presented many
challenges. There are also problems in preserving full
database functionality (e.g., transaction management,
data model) while providing the required security. Ma
terializing multilevel relations from single-level base
relations requires fairly complex mechanisms and may

78

degrade performance. In addition, the need to do
this materialization has forced limitations on the data
model (e.g., uniform classification ofkeys [Lun90]) and
results in difficulties in representing many-to-many
relationship [KCF93b]. Since this approach uses a
trusted operating system to enforce separation of data
at different security levels, the security of this archi
tecture is as strong, in theory, as the security of the
trusted OS.

The distributed approach comprised two architec
tural sub-approaches (1) each DBS has data at a sin
gle security level (non-replicated approach), and (2)
each DBS contains data at a given security level and
replicas of all data at lower security levels (replicated
approach).

The non-replicated approach has been investigated
by Jensen et. al. [Jen89, OcG88]. This architecture
has a trusted frontend and many untrusted backends
which may be commercial DBSs. Each backend con
tains data of only a single security level. This ap
proach has inherent security problems because higher
level queries have to be propagated to lower level un
trusted backends to request data. Sending requests
down to lower security levels introduces a covert chan
nel, which can be used to transmit information from
higher level backends to lower level backends. Hence,
we don't expect that this approach can be used for
highly-assured MLS DBS. This approach also can yield
reduced performance because it may require fragments
to be transferred from a low backend DBS to a high
one in order to present a multilevel relation to users.

The replicated approach uses physical separation as
a protection measure. A Trusted Front End (TFE)
mediates access to separate Untrusted Backend DBSs
(UBD) for each security class. Each backend DBS
contains information at a given class and replicated
information from all lower backend databases. Hence,
all the information that a user can legitimately view
is located at the backend corresponding to the user's
authorization'.

Description of The SINTRA
System

Security, performance, and portability concerns led
NRL to the initiation of a project to investigate repli
cation using commercial DBS as a promising alter
native for building a MLS DBS. Goals include good
performance and full database functionality.

3.1 Practical Considerations

Security is an important issue for many organizations.
However, there are other important issues, such as the
reduction ofproduction, operational, and maintenance
costs and minimizing development time, effort, and
evaluation costs. The ability to integrate new technol
ogy into high assurance, MLS systems in a straight
forward, timely fashion makes the replicated approach
very attractive to cost conscious decision makers.

One way to achieve these goals is to make maxi
mum use of existing products which are already tested
and evaluated. Those products are usually maintained
by the vendors' staffs. For example, special purpose
computer systems can be built by connecting general
purpose commercial products together. Many inter
face standardization efforts (e.g., the OSI standard)
make this approach more viable. Developing a new
product from commercial subcomponents has several
advantages:

• 	 Minimal development and maintenance costs.

• Easy to upgrade. Once better and cheaper prod
ucts are on the market, they can be easily incor
porated.

• Easy testing and evaluation. Most of the subcom
ponents, which are commercial products, have
been evaluated.

• Easy 	to connect. Since each subcomponent may
already conform to interface standards, it is likely
that the new product will be easy to interface to
other products.

Based on the practical considerations above, the SIN
TRA prototype uses as many commercial components
as possible, resulting in the need for relatively little
new work to construct the overall MLS system. In the
remainder of this paper, we show how the SINTRA
project achieves the practical goals that we specified.

3.2 Overview

The SINTRA database system consists of one trusted
front end (TFE) and several untrusted backend
database systems (UBD). The role of the TFE includes
authenticating users, directing user queries to the
proper backend, maintaining data consistency among
backends. The UBD at each security level contains
data at its own security level, and replicated data from
lower security levels.

79

3

The SINTRA database system prototype at the
Naval Research Laboratory uses a Honeywell XTS
200 system, which is a high assurance trusted OS
(B3 rated system), as a trusted frontend. Since each
UBD is treated as a "black box" (i.e., inputs and out
puts of the system are known, but its internal behav
ior is not known), each UBD can be any commercial
database system. Currently, untrusted ORACLE 7
database running on SUN4/300 is used as each back
end database. The backend and frontend comput
ers are connected through dedicated Ethernet connec
tions. Since the SINTRA security policy is enforced
by the frontend, the security of this architecture is as
strong as the security of the trusted frontend. Hence,
the SINTRA system will be a B3 MLS DBS. Figure 1
illustrates the SINTRA architecture.

User Trusted Top Secret Backend
Interface Frontend

NI : Network Interrace

Figure 1: The SINTRA Architecture.

When a user attempts to login to the SINTRA proto
type, the trusted connection checks the user's security
level and establishes a connection to the network inter
face at the backend for that security level. Now, the
user is ready to issue commands. A user query which is
received at the backend will be modified by the query
preprocessor, if necessary. A modified query will be
submitted to the ORACLE database system through
the global scheduler. The responsibilities and the de
tailed description of these components will appear in
sections 5, 6, 7, and 8.

The SINTRA prototype is based on the following:

• All UBDs use the same database query language
(e.g., SQL).

• 	The TFE changes the database states of the UBD
only through database queries.

• Each UBD performs transaction management. 	(If
it produces serializable and recoverable histories,
SINTRA will as well.)

Note that the above assumptions enable us to treat
each UBD as a black box that operates autonomously
without the knowledge of other UBD's or global sched
uler. Hence, no modification of the commercial DBS or
the commercial frontend is required. However, we can
not expect to obtain the desired security and function
ality by simply connecting commercial products. Cus
tom processes, such as query preprocessor and global
scheduler, ensure the delivery of desired database se
curity and functionality.

The SINTRA approach has several advantages.

1. 	Data retrieval performance is better because the
SINTRA system does not materialize the user's
view from single-level relations (as do the kernel
ized and non-replicated distributed architectures)
2

2. 	 Mandatory access control is enforced through
physical separation of data. Since SINTRA uses
an evaluated product as a trusted frontend, very
little trusted code needs to be developed to ensure
that this separation is maintained.

3. Development 	and maintenance cost can be re
duced because commercial frontend and backend
database systems are widely available.

4. Performance 	 can be improved by using opti
mization and parallelization techniques that have
been developed for conventional databases, be
cause the replicated architecture uses conven
tional database systems as UBDs. Uniproces
sor or multiprocessor computers can be chosen as
backend computers without affecting the security
policy.

5. 	The system is portable and scalable because com
mercial untrusted systems are, in general, much
more portable than trusted systems.

2 Preliminary performance analysis indicates that SINTRA
may outperform conventional database systems due to the par
allel nature of the processing [McM94].

80

4 The SINTRA Models
In this section, we briefly discuss the security, trans

action, and data models for SINTRA. These models
are necessary in the development of any multilevel se
cure DBS c_tnd affect the decisions concerning the as
signment of functions to each component of the SIN
TRA system.
4.1 Security Model

The security model used here is based on that of Bell
and LaPadula [BeL 76]. The model is stated in terms of
subjects and objects. An object is a nonactive entity,
such as a file, a relation, a tuple, or a field in a tuple.
A subject is an active entity, such as a transaction
or process, that can request access to objects. Every
object is assigned a sensitivity <;lassification, and every
subject a clearance. Classifications and clearance are
collectively referred to as security classes (or levels).

The database system consists of a finite set D of
objects {data items) and a set T of subjects (transac
tions). There is a lattice S of security classes with
ordering relation <. A class S; dominates a class Sj
if S; ~ Sj. There is a labeling function L which maps
objects and subjects to a security class:

L: D U T-+ S
We consider two mandatory access control require

ments:

(Simple Security Property) If
transaction T; reads data item x then L(T;) >
L{x).

(Restricted *-Property) If transaction Tj writes
data item x then L{Tj) = L(x).

The simple security property allows a transaction to
read data items if the security level of a transaction
dominates the security level of data items. The re
stricted *-property allows a transaction to write if the
security level of a transaction is the same as that of
data items (i.e., no write-ups or write-downs are per
mitted). Write-ups (i.e., T; cannot write to data item
x if L{T;) < L(x)) are undesirable in database systems
for integrity reasons (i.e., since a user cannot see what
he has written, he may introduce an error)3 .

4.2 Transaction Model

Traditionally, transactions are modeled as a sequence
of read and write operations on data items. However,

3 This is not to say that the frontend OS cannot write up to
perform some functions of the overall DBS. This OS has its own
compatible security model.

81

the traditional transaction model is not adequate to
model transactions for the SINTRA system. Since the
SINTRA treats each UBD as a black box, the global
scheduler ofthe SINTRA system has very little knowl
edge about the behavior of the local scheduler (i.e.,
the scheduler of commercial DBS) or the physical lay
out of data. For example, the global scheduler has no
knowledge about where a specific tuple is located or
which physical page should be locked. Sometimes the
tuples which will be modified are unknown until the
computation based on existing data is completed.

We adopt a layered model of transactions, where a
transaction is a sequence of queries, and each query
can be considered as a sequence of reads and writes.
For example, replace and delete queries can be
viewed as a read operation followed by a write op
eration which must be executed atomically. insert
can be viewed as a write operation, and retrieve can
be viewed as a read operation. A layered view of two
transactions T1 and T2 is shown in figure 2. Note this
decomposition is similar to work of Weikum [Wei91]
and Moss [Mos85].

1(2)

l(l)

l(O)

Figure 2: Layered model of two transactions.

Definition 1. A transaction T; is a sequence
of queries terminated by either a commit(c;) or an
abort(a;), i.e., T; = <q;l, q;2, ... , q;n, c;>. Each query,
q;j, is an atomic operation and is one of retrieve,
insert, replace, or delete.

To model the propagation of updates produced by a
given transaction to higher security level databases,
we define an update projection.

Definition 2. An update projection U;, corre
sponding to a transaction T i, is a sequence of up date
queries, e.g., U; = <q;2, q;s, ... , q;n, c;> obtained
from transaction T; by simply removing all retrieve
queries.

Note that no aborted transaction need be propagated.
Hence, update projections are always terminated by a
commit.

To describe concurrency control mechanisms, we
adopt the following definition of conflict.

Definition 3. Two operations at the same layer con
flict if they operate on the same data item and at least
one of them is either write, insert, delete, or,
replace. Alternatively, two operations conflict if they
operate on common data and not both are retrieve
or read operations.

4.3 Data Model

Because the SINTRA prototype allows no modifica
tion of the commercial UBDs, it is necessary to treat
the security labels of the data simply as additional
data, conventionally stored. A more abstract data
model might permit a more refined representation of
the semantics, but the SINTRA prototype data model
is limited to representing labels as values of label at
tributes.

Typically, labels can be associated with either val
ues of the individual ordinary attributes or with an
entire tuple. The SINTRA data model is based on an
element-level classification scheme. A multilevel rela
tion scheme is denoted by

R(A1, C1, A2, C2, ..., An, Cn, TL)
where each A; is a data attribute over domain D;,
each C; is a classification attribute for A; and TL is
the tuple-level attribute. The domain of C; and TL
is specified by a range [L;, H;] in the security lattice.
R(A1, A2, ..., An, TL) is the underlying relation as
viewed by the user.

Let t{A;} denote the value corresponding to the at
tribute A; in tuple t, and similarly for t[C;} and t{TL}.
t{TL} in the SINTRA system simply specifies that a
tuple tis generated or modified by a t{TL}-level user.
On the other hand, t[C;} specifies that the correspond
ing t[A;} originated from t[C;}-level. Operations on
the database that allow retrievals and updates are
presented in [KCF93a]. There are, in addition, con
straints among the values of the C; and TL [KCF93a]
which are of little importance for explaining the pro
totype.

5 The SINTRA Scheduler
The replicated architecture provides mandatory ac

cess control by physically separating data. However,

this approach introduces another problem, namely the
maintenance of mutual consistency of the replicas.
Our research suggests that accepting the replica con
sistency problem in return for a virtually free high as
surance, strong protection mechanism is a choice well
made. In this section, we introduce the structure and
functions of the global scheduler. True distribution
of these functions is, in the abstract, of little conse
quence, but has been done in the prototype in a par
ticular way to maximize performance.

5.1 Responsibilities

Since each UBD in a replicated architecture contains
data from lower levels, update queries have to be prop
agated to higher-security-level databases to maintain
the consistency and currency of the replicated data.
If this propagation of update queries is not carefully
controlled, inconsistent database states can be created
among backend databases. Consider that two lower
level update transactions T; and Tj are scheduled with
serialization order <T;, T1>. at the lower level back-.
end database system. Since these two transactions are
update transactions, they have to be propagated to the
next higher level. If these two transactions are sched
uled with serialization order <Tj, Ti> at the next
higher level, an inconsistent database state between
these two backend databases may be created by the ex
ecution of conflicting operations at the higher level. It
can be demonstrated that even the serialization order
of non-conflicting transactions has to be maintained
to preserve one-copy serializability [KFC92]. This is a
parallel result that has been reported in the context of
multidatabase systems [Du93]. Therefore, the serial
ization order introduced by the local scheduler at the
user's session level must be maintained at the higher
level UBDs.

The concurrency control algorithm which the SIN
TRA prototype uses has two types of schedulers,
global and local schedulers. The global scheduler en
forces data consistency among different security lev
els. On the other hand, the local scheduler, which is
the unmodified comm~rcial concurrency controller of
a UBD, manages transactions and update projections
at that UBD. The local scheduler deals with layer 1(0)
in figure 2, and the global scheduler deals with layer
1(1) and upper layers. The global scheduler detects
conflicts at level 1(1). Therefore, no knowledge of the
specific items to be accessed or even the granularity
of the lower-level concurrency controller is needed or
used by the global scheduler.

SINTRA's global scheduler resolves the data

82

inconsistency problem by guaranteeing that the serial
ization order introduced by the local scheduler at the
user's session level is maintained at the higher level
UBDs. In summary, the global scheduler performs the
following tasks:

• Receive queries from 	the query preprocessor and
the global scheduler of lower security levels, and
send them to the backend database.

• Guarantee that the serialization order introduced
by the local scheduler at the user's session level is
maintained at the higher level UBDs.

• 	When a transaction is committed, send an update
projection to higher security level backends.

Since user transactions and update projections are
submitted independently, their serialization orders are
not known to the global scheduler. Hence, the take-a
ticket[Geo91] operation is used to find the serialization
order among update projections and user transactions.
Generalized algorithms and a theory of a global sched
uler for the SINTRA database system have been pre
sented by Kang, Froscher, and Costich in [KFC92].

As previously mentioned, the global scheduler re
sides partially in the TFE and partially in the UBD.
This was done for performance rather than theoretical
reasons.

5.2 Structure

The methodology used for developi:r.g the SINTRA
global scheduler closely resembles the object-oriented
development method [Boo86]. We identify many ob
jects, queries, transactions, processes, etc., and es
tablish the relationships among these objects. Many
layers are also introduced to hide lower-level details.
C++ has been chosen as our main implementation
language because it provides the capabilities of data
hiding and abstraction of interface. Scheduler compo
nents which are executed on the frontend are written
inC because the XTS-200 provides neither a C++ in
terpreter nor the C compiler which can compile C code
that is generated by a C++ interpreter.

The process architecture of the global scheduler is
as follows (see also figure 3):

1. Terminal: User terminals or workstations.
2. 	Frontend Connector: Establish a virtual con

nection between the user and the backend depend
ing on the user's session level.

3. 	Database Server: When user login is requested,
spawn a database server child to service the re
quest.

3a. 	Database Server Child: Ensure connections
among user, preprocessor, and user transaction
scheduler.

4. 	Preprocessor: Query modification (see section
7).

5. 	User Transaction Scheduler: Submit user
transactions to the ORACLE database. Send the
response from ORACLE to the user. Also send an
update projection to the propagation scheduler if
a user transaction is committed.

6. 	Propagation Scheduler: Receive transactions
and send then to the corresponding frontend up
date projection receiver according to the serial
ization order.

7. 	Projection Receiver: Receive update projec
tions from the propagation scheduler and store
them for retrieval by the projection sender.

8. 	Projection Sender: Read-down to get the up
date projections which are in the lower level pro
jection receiver and send the projections to the
update projection scheduler.

9. 	Update Projection Scheduler:
Receive update projections from the lower level
backend, submit them to the ORACLE database,
and send them to the propagation scheduler.

Untrusted Backends

H

M

Figure 3: The Process-level Architecture.

83

L

6

Our process architecture has been implemented using
C++ objects, and complex interprocess communica
tion details have been hidden by an interprocess com
munication (ipc) class. A detailed description of each
object and methods is given by Kang and Peyton in
[KaP93a].

Recovery Mechanisms
Recovery in the SINTRA MLS DBS is largely de

pendent on the recovery mechanisms of the commer
cial DBSs that are used at the backends. Without
the propagation of update projections, SINTRA ap
pears to be a single-level DBS. Hence there is no need
for recovery mechanisms between users and the UBD.
However, the SINTRA database system needs recov
ery mechanisms that guarantee the delivery of update
projections from user transaction scheduler to the next
level DBS (i.e., path 5 --+ 6 --+ 7 --+ 8 --+ 9 --+ DBS in
figure 3).

To ensure that committed transactions will not be
lost (except by media failure), processes responsible for
the propagation of update projections use persistent
queues to log update projections. Update projections
are kept in the log until the next process within the
propagation chain acknowledges that it has received
the update projection. An acknowledgment from a
receiver guarantees the sender that the receiver has
safely processed the update projection.

The above technique works without creating a
covert channel if the sender and receiver are at the
same security level. However, if the same technique is
used when the security level of the receiver is higher
than that of the sender, then there is a covert chan
nel. Alternatively, when a message is delivered to a
receiver, it sends either an ack or control back to the
sender acknowledging that the message is in stable log.
However, if the security level of the sender is lower
than that of the receiver, then the timing of an ack
can be used as a covert timing channel. A detailed
description of the problem and proposed solutions are
presented by Kang and Moskowitz [Kal93].

When the system recovers from a failure, it needs to
know the status of DBS (i.e., the last transaction that
has been committed) so that the system can guaran
tee the consistent states among DBS and persistent
queues in the global scheduler. The SINTRA recovery
mechanism uses the ticket which was introduced in sec
tion 5.1 to examine the status of the DBSs. When the
system recovers, the processes of the global scheduler
examine the status of the DBS and their persistent

queues (i.e., sort out which transactions are commit
ted and which ones are not). Then the update pro
jection scheduler will submit update projections which
have not been committed to the DBS and the prop
agation scheduler will send committed transactions to
the projection receiver. A detailed design description
and high-level pseudo-code are presented in [KaP93c].

7 The Query Preprocessor

In this section, we explain the need to modify user
queries and the internal structure of the query prepro
cessor. The SINTRA query preprocessor is written in
C++. YACC++ and LEX++ are also used to build
the query parser.
7.1 Responsibilities

The SINTRA query preprocessor plays an important
role in maintaining data consistency among differ
ent backend databases, preserving data integrity, and
bridging the semantic gap between conventional and
multilevel-secure databases. The SINTRA query pre
processor has the following responsibilities:

1. 	In the SINTRA database system, if a high-level
user is allowed to modify low data which are lo
cated at the high-level backend database, then in
consistent database states between high and low
backend databases can be created. Therefore, the
query preprocessor must inspect, and either re
ject or modify users' update queries so that the
backend database system only modifies users' lo
gin level data - it is also assumed that no write
up is allowed.

2. 	 There is also some information which can be mod
ified only by the system although it can be dis
closed to the user. For instance, information
about the classification of a tuple (TL attribute
values) cannot be modified by the user. It is the
responsibility of the query preprocessor to guar
antee the integrity of such data.

3. 	 SINTRA uses conventional relational database
systems as backend databases. These conven
tional relational databases use SQL, which is
based on the conventional (single-level) relational
algebra and the semantics of conventional update
operations [Ull82]. On the other hand, a mul
tilevel relational database is based on a multi
level relational algebra and the semantics of mul
tilevel relational update operations. Therefore, a

84

SINTRA user query which is posed to an MLS
database in multilevel SQL must be translated
into other queries (based on the conventional SQL
used by the UBD) that conform to the semantics
of conventional update operations.

To perform the above responsibilities, the SINTRA
query preprocessor intercepts, inspects and modifies
user queries before they are submitted to the ORA
CLE database system.

7.2 Structure

Consider the following user query, delete from R
where A1 = 5 and TL = 'L'. It is a legitimate query
if an L-user (the user whose session level is L) issued
the query. However, if an H-user issues the same query
then the query must be blocked (i.e., otherwise this
query creates an inconsistent copy of L-data at the H
backend). Therefore, when the SINTRA preprocessor
makes decisions on how a user query should be modi
fied and what kind of query has to be blocked, it has
to be based not only on the syntax of the individual
query but also on the session level of the user who
issues the query. Hence, simple syntactic checking is
not sufficient to determine if a query is legitimate or
not. We chose the following process organization:

Restructure

IR
SQL to

to
SQL

IR
(5)

(1)

Figure 4: The Structure of the Query Preprocessor.

First, a user query is parsed and converted into an
internal representation (IR) which is a parse tree. All
syntactically invalid queries and some invalid queries
which can be detected without knowing the security
level of the user will be rejected at this stage. For ex
ample, a user query update R set a = 5, a# = 'H'
• • • 4 will be rejected at this stage, because the query

4 The SINTRA preprocessor needs to distinguish regular at
tributes from classification attributes. Hence, the SINTRA pre
processor reserves one character (e.g., ':1') for preprocessor use
only. For example, a user defines an attributes a in a specific
relation, then its corresponding classification attribute will be
a :I.

preprocessor knows that a# is a classification attribute,
and users are not allowed to modify classification at
tributes.

The second process, validation, of figure 4 inspects
all syntactically valid queries again to check if they
can create any inconsistent replicas. For example,
delete from R where a = 5 and T#L = 'L' by a
H-user will be rejected at this stage because the H
user tries to delete L-data. Hence, responsibilities (1)
and (2) in section 7.1 are accomplished by the first and
second stages.

The third process, restructure IR, performs the main
mission of the SINTRA query preprocessor, i.e., query
modification. It will modify parse trees based on
the SINTRA multilevel relational algebra and the
semantics of update operations for multilevel rela
tions [KCF93a]. Consequently, functions (3), (4),
and (5) in section 7.1 are accomplished at this stage.
For example, a H-user's query, delete from R where
b = 'xxx', will be translated into delete from R
where b = 'xxx' and TL = 'H' . A detailed design
description of the SINTRA query preprocessor ap
pears in [KaP93b].

The fourth process, query optimizer, optimizes parse
trees based on the knowledge of the implementation.
Finally the fifth process, IR to SQL, converts parse
trees into conventional SQL before the query is sub
mitted to ORACLE at the UBD.

8 The User Interface

The SINTRA system uses a client-server architec
ture for its user interface. The user interface resides
on the client side and the DBS resides on the server
side. Network interface units reside in both clients and
servers (see figures 1 and 5).

Figure 5: A Detailed Description of Network

Interface.

The network interface process is responsible for direct
ing queries from the user interface to the proper server,
and directing responses from the server to the proper
client. The single-level process in TFE, which resides

85

between clients and servers, assures that the communi
cation between two network interfaces does not violate
the SINTRA security policy.

Note that each client is dedicated to one security
level, and identification and authentication procedures
are still performed by the TFE with the current con
figuration. However, this restriction (i.e., a client can
login only one security level) can be removed.

9 Status and Conclusions

The prototype has demonstrated the feasibility of
replication as a path to high-assurance security, good
performance, reduced maintenance cost, and porta
bility. This architecture uses physical separation as
a protection measure. Alternatively, the mandatory
access control of the SINTRA approach depends on
the MAC of the TFE and the physical separation of
UBDs, and the discretionary access control {DAC) of
the SINTRA approach depends on the DAC of UBD.

Since a system based on this architecture can be
built from commercial DBSs, it is very portable and
maintenance is relatively simple. High performance
is achieved by storing all information that a user can
legitimately view at one backend.

9.1 Status of Prototype

The current status of the SINTRA implementation is
as follows:

• 	The design and implementation of the global
scheduler are both finished.

• 	The design and implementation of the query pre
processor are both finished (i.e., a subset of SQL
and full operations that are discussed in [KCF93a)
have been implemented).

• 	The design of the user interface is finished. There
are many commercial user interface tools for the
ORACLE database. We hope to use those tools
for the SINTRA. However, almost all user inter
face tools for ORACLE use SQL*Net for commu
nication between the interface tool itself and OR
ACLE. Since the SINTRA preprocessor needs to
intercept, inspect and modify user queries before
these are submitted to ORACLE5 , the SINTRA
preprocessor needs to know the internal format of

5 The query decomposer of the KSRl computer performs the
same task to parallelize the queries.

packets that SQL*Netuses. Until we have that in
formation, we will proceed to implement our own
user interface.

• 	The design of the recovery mechanism is finished
and the implementation of the mechanism is in
progress.

9.2 Lessons Learned

This prototyping exercise has demonstrated the feasi
bility of the replicated architecture approach first de
scribed in [Air83). Prior to the SINTRA project, none
of the high assurance approaches described in [Air83)
had been demonstrated. We have learned several im
portant lessons from our development of the SINTRA
prototype.

• 	The strong separation of concerns inherent in the
replicated architecture allows the use of commer
cial DBSs without modification. This means that
the replicated approach can accommodate new ·
database technology without significant porting
effort or reengineering.

• 	 Several replica and concurrency control algo
rithms have been developed for the project and
have been proven correct. The implementation
of the SINTRA global scheduler moved our re
sults from theory to practice and showed that the
replicas remained consistent when the database
was updated.

• 	The trusted OS for the TFE required no modifi
cation. Little additional software was developed
to run on the TFE. We were successful in mini
mizing our dependence on the TFE.

• 	The replicated architecture approach imposes
fewer data model restrictions than kernelized ap
proaches.

• Preliminary performance analysis and simulation
results indicate that the replicated architecture
provides good performance.

• This approach does require more hardware 	than
the kernelized approach. As hardware costs be
come lower, it will be a trade-off decision for users
to decide whether improved performance and us
ability are worth the additional hardware cost.

We hope that the SINTRA prototype will serve
as the catalyst for future high-assurance multilevel

86

database research. Our plan is to use B1 DBSs run
ning on compartmented mode workstations as backend
databases. This configuration will provide the B1 sep
aration among compartments, and the B3 separation
among security hierarchies.

References

[Air83] Multilevel Data Management Security, Air
Force Studies Board, Commission on Engineering
and Technical Systems, National Research Coun
cil, National Academy Press, Washington, D.C.
(1983).

[BeL76] Bell, D. E., and LaPadula, L. J. Secure com
puter systems: Unified exposition and multics in
terpretation. The Mitre Corp, (1976).

[Boo86] Booch, G. Object-Oriented development.
IEEE Transactions on Software Engineering, 12,
2 (1986).

[DoD85] Department of Defense National Computer
Security Center, Trusted computer system evalu
ation criteria, DoD5200.28-STD (1985).

[Du93] Du, W., Elmagamid, A. K., Kim, W., and
Bukhres, 0. Supporting consistent updates in
replicated multidatabase systems. The VLDB
Journal, 2, 2 (1993).

[Den85] Denning, D. Commutative filters for reducing
inference threats in multilevel database systems.
The IEEE symposium on Security and Privacy
(1985).

[Geo91] Georgakopoulos, D., et al. On serializabil
ity of multidatabase transactions through forced
local conflicts. Conference on Data Engineering
(1991).

[Jen89] Jensen, C., et al. SDDM: A prototype of a dis
tributed architecture for database security. Con
ference on Data Engineering (1989).

[KFC92] Kang, M. H., Froscher, J. N., and Cos
tich, 0. A practical transaction model and un
trusted transaction manager for multilevel-secure
database systems. The Eighth IFIP Workshop on
Database Security (1992).

[KCF93a] Kang, M. H., Costich, 0., and Froscher, J.
N. The replicated architecture data model: struc
ture and operation. Internal Report (1993).

[KCF93b] Kang, M. H., Costich, 0., and Froscher,
J. N. Using object modeling techniques to design
MLS data models. Security in Object-Oriented
Systems, Springer-Verlag, ISBN 3540198776
(1994).

[Kal93] Kang, M. H., and Ira S. Moskowitz. A pump
for rapid, reliable, secure communication. ACM
Conference on Computer and Communications
Security (1993).

[KaP93a] Kang, M. H., and Peyton, R. Design doc
umentation for the SINTRA global scheduler.
Naval Research Laboratory Memo Report 5542
93-7362 (1993).

[KaP93b] Kang, M. H., and Peyton, R. Design docu
mentation for the SINTRA preprocessor. Internal
Report (1993).

[KaP93c] Kang, M. H., and Peyton, R. Design docu
mentation for the SINTRA recovery mechanism.
Internal Report (1993).

[Lun90] Lunt, T., et al. The SeaView security model.
IEEE Transactions on Software Engineering, 16,
6 (1990).

[McM94] McDermott, J. and Mukkamala, R. Perfor
mance analysis of transaction management algo
rithms for the SINTRA replicated-architecture
database system. In Database Security, VII: Sta
tus and Prospects, eds. Thomas Keefe and Carl
Landwehr, North-Holland (1994).

[Mos85] Moss, E. Nested transactions, an approach
to reliable distributed computing. The MIT Press
(1985).

[OcG89] O'Connor, J., and Gray, J. A distributed ar
chitecture for multilevel database security. N a
tional Computer Security Conference (1988).

[Wei91] Weikum, G. Principles and realization strate
gies of multilevel transaction management. ACM
Transactions on Database Systems, 16, 1 (1991)

87

The SeaView Prototype: Project Summary

Teresa F. Lunt and Peter K. Boucher*

Computer Science Laboratory

SRI International, Menlo Park, California 94025

Abstract

The Sea View multilevel-secure database management system prototype was completed
by SRI during a two-year project that followed the original three-year Sea View project
to design a multilevel database system meeting the requirements for Class Al of the U.S.
DoD Trusted Computer System Evaluation Criteria. The prototype described here utilizes
existing database technology as well as a commercially available general-purpose trusted
operating system. On this base we constructed a layer of software to implement multilevel
relations and to support user interaction through the MSQL language, an extension of
the standard Structured Query Language (SQL). The prototype was successfully demon
strated at Rome Laboratory and at NSA.

1 Introduction

The Sea View prototype multilevel-secure relational database system [1] is based on the Sea View
formal model and preliminary design [2, 3, 4, 5, 6]. The prototype is intended to serve as a
feasibility demonstration whose purpose is to validate the Sea View theoretical model and system
requirements and to demonstrate that the prototype is suitable for engineering development.
This work was sponsored by the U.S. Air Force, Rome Laboratory.

The Sea View prototype can handle data with a variety of classifications and serve users with
a variety of clearances. Users at different access classes see different views of the same multilevel
table. The prototype provides element-level labeling; individual data elements in a multilevel
relation can be labeled with an access class. SeaView extends the traditional relational data
model to explicitly include the classifications of individual data elements and the security rules
of access to stored and derived data [4]. Each multilevel relation has a primary key defined
for it, which is an attribute or uniformly classified group of attributes. Sea View's interpreta
tion of database integrity in the context of multilevel security allows database integrity to be
achieved without introducing covert infere~ce channels. We introduced the notion of polyin
stantiation, which prevents low users from inferring the existence of high data objects. The
prototype provides a standard implementation-independent multilevel query language called
MSQL (Multilevel Structured Query Language) for defining and manipulating multilevel rela
tions. VIe have defined the MSQL syntax to be an extension of the standard SQL language [1].

"The work reported here was funded by Rome Laboratory under U.S. Government contract number F30602
89-C-0158.

88

The prototype was designed for Class Al assurance [7]; it has been implemented on a
Class Bl operating system platform, but is capable of evolution to Class Al when hosted
on a Class Al platform. Sea View's design takes the most secure approach possible, in that all
database processing is carried out by single-level subjects. Multilevel relations are implemented
as relational views over single-level base tables that are transparent to users1

. Trusted 0 RA CLE
is used to manage the single-level relations. (Trusted ORACLE was selected because it is the
only available multilevel database management system which includes a mode of operation
for which· no trust is required in the database system itself; see Section 3.2.) An underlying
security kernel enforces the mandatory security rules. We use the Sun Compartmented Mode
Workstation (CMW), and store the decomposed single-level relations in CMW files of the
corresponding access class, managed by the CMW Trusted Computing Base (TCB). The access
class of any particular data element in a multilevel relation is derived from the access class of
the single-level relation in which the data element is stored; this in turn matches the access
class of the file in which it is stored, which is known to the CMW. Thus, individually labeled
data elements need not be stored in individually labeled storage objects, as was assumed prior
to SeaView.

Our approach allows multilevel select, update, insert, and delete operations to be de
composed into corresponding single-level operations on the single-level base relations, and lends
itself to a design that uses a commercially available relational database management system
(RDBMS) for the single-level relations. The decomposition is transparent to the user, who
considers the multilevel relations to be stored relations. Thus, the Sea View model extends
the application-independent integrity rules of the relational model -namely, entity integrity
and referential integrity - to multilevel relations; it allows application-dependent integrity
rules to be defined on multilevel relations; and it ensures that updates of multilevel relations
are well defined. In addition, the Sea View model constrains multilevel relations by a third
application-independent integrity rule, polyinstantiation integrity, which specifies consistency
for polyinstantiated tuples and elements [4]. We believe that our design includes the basic func
tionality required by multilevel applications utilizing an integrated collection of data classified
at different access classes.

The advantages of the Sea View approach over other trusted database system archictures
are:

• 	 Element-level labeling. Element-level labeling allows a more natural modeling of multilevel
data for many applications, where it is desirable to represent multilevel entities in the
database. For example, multilevel aircraft could be represented, where the existence of the
aircraft, and their names, identifiers, and ranges are SECRET, but their on-board weapons
and their cargo are TOP-SECRET. Element-level labeling allows the programmer to think
about such multilevel entities in a more natural way, and it relieves the programmer of
the burden of mapping each multilevel entity type to tuple- or table-labeled objects in the
application code. It also relieves the programmer of implementing in the application code,
for each multilevel entity type, the rematierialization of multilevel entities from tuple- or
table-labeled objects before presenting the multilevel data to the user. It thereby reduces
complexity, and thus cost and chances for errors, in the application code.

• 	 Evolvability to high assurance. Sea View's use of the strict trusted subsets archicture allows
evolution to higher assurance classes when Sea View is ported to a high-assurance platform

1That is, users see only the multilevel relations and are not aware of and cannot directly access the single-level
base tables that implement them.

89

(see Section 3.2). Several high-assurance platforms are now becoming available, and there
is a clear need for high-assurance systems even if only a few hierarchical classifications
must be handled by the system [8].

• 	 Ease of evaluation/accreditation. The Sea View software enforces neither mandatory nor
discretionary access control and is not trusted for either mandatory or discretionary secu
rity. Mandatory security is enforced entirely by the underlying trusted operating system,
and discretionary security is enforced entirely by Trusted ORACLE. Other security
relevant functions, such as authentication and audit, are also performed entirely by those
underlying products. Thus, Sea View can be added to an existing system composed of a
trusted operating system running Trusted ORACLE without affecting its security rating.

We originally targeted our prototype to run on GEMSOS, a Class A1-evaluatable platform.
We produced a design and nearly completed the implementation of the Sea View layer for the
prototype design that included GEMSOS. Under separate contract to NSA, Oracle Corporation
and Gemini Computers were to have ported Trusted ORACLE to GEMSOS. However, that
project has not yet been completed, so that we had to find an alternative platform. After
thorough investigation, we decided to retarget the existing Sea View prototype to the Sun CMW.
Our criteria for selecting a new platform were (1) Trusted ORACLE must be available on it; (2)
it must allow untrusted subjects to query labels, perform label comparisons, and perform other
related label operations; and (3) it should be available at low cost. We selected the Sun CMW
because at the time it was the only platform that satisfied these criteria. This retargeting was
accomplished in about three months. The Sea View design and architecture allow the evolution
to Class A1 if the CMW is replaced with an A1 operating system.

The prototype is written entirely in the C programming language. The only platform- and
product-dependent software are six Trusted ORACLE Pro*C modules and one Sun CMW label
module. This platform- and product-independent implementation approach will allow Sea View
to be readily retargeted and ported to other secure platforms and trusted database engines.

Two other efforts have been made to build Class A1 relational database systems. A group
at Secure Computing Corporation (SCC) is implementing LOCK DBMS, which is a port of
Trusted ORACLE to LOCK/SNS that uses LOCK's type enforcement mechanism [9). ASD is
a prototype developed at TRW. It provides row-level labeling and is designed to run on the
Army Secure Operating System (ASOS). The database system TCB runs as a trusted subject
on the underlying trusted operating system and enforces both mandatory and discretionary
security [10). In addition, several vendors have announced or released products designed to
meet some of the U.S. DoD criteria.

2 -Functionality of the SeaView Prototype

The SeaView prototype provides an interactive MSQL interface that allows the user to en
ter MSQL queries from the keyboard, as well as a forms interface allowing the user to enter
MSQL queries by using the mouse and filling in a form selected from a menu. The prototype
also includes an MSQL data dictionary containing definitions of user-defined multilevel rela
tions as well as non-user-visible information on the mappings of those multilevel relations onto
the underlying single-level Trusted ORACLE tables and views. The MSQL query processing
functions supported are the select, update, insert, and delete statements on multilevel
relations. The prototype allows a user to create multilevel relations using the create table

90

statement. Execution of the create table statement automatically creates the requisite set
of underlying single-level Trusted ORACLE tables and views and makes the necessary entries
in the MSQL data dictionary. The SeaView prototype enforces multilevel entity integrity and
multilevel referential integrity, as defined by the Sea View model [4].

Features supported by the prototype's MSQL include the following:
• Label Display. Users can display element and tuple labels in a query result by using the

keyword show label in the query. The function class () returns the access class of the attribute
specified as its argument. The predefi:o.ed column rowlabel returns the tuple class for each
returned tuple.

• Access class operators. The prototype provides the comparator operators dom (>=) (domi
nates), str_dom (>) (strictly dominates), dom_by (<=) (dominated by), str_dom_by (<) (strictly
dominated by), and uncomp (<>) (noncomparable to).

• Access class functions. The prototype provides the functions least_UB () (least upper
bound) and greatest...LB() (greatest lower bound). These are used analogously to the SQL
max and min functions. A single attribute name is given as the argument to these functions.

• Partial class functions. These functions extract the integrity and secrecy components
of the access class as well as the level and set of categories of an integrity or secrecy compo
nent of an access class. They are sec() (secrecy component), intg() (integrity component),
sec~vl () (secrecy level), intg~vl () (integrity level), sec_cat 0 (set of secrecy categories),
and intg_cat() (set of integrity categories). Functions such as greater than, less than, equal
ity, and set membership are also provided for the values returned by these functions. A single
attribute name is given as the argument to these functions. 2

• Class aggregate functions. The prototype provides the functions highest(), lowest(),
LUB() (least upper bound), and GLB() (greatest lower bound) that can be applied to a list of
supplied values or a set of values returned by an embedded subquery.

3 Project Goals and Achievements

The Sea View prototype has successfully demonstrated a proof-of-concept for element-level la
beling, the TCB subsets architecture, polyinstantiation, multilevel relation decomposition and
materialization, the MSQL language, and high assurance.

3.1 Element-Level Labeling

Element-level labeling allows the independent classification of individual atomic facts, and also
allows real-world multilevel entities to be directly represented in Sea View's multilevel relations.
The Sea View prototype demonstrates:

• Element-level labeling. Individual data elements (the intersection of a row and column in
a multilevel table) are labeled with a security classification. In addition, each column (or group
of columns) of a table can be assigned a range of security classifications within which all labels
for data in that column must fall. Tuple labels display the overall security classification of
each tuple (row) in a table or query result. These security labels include a secrecy component
and an integrity component. Each label component can contain a hierarchical level and a

2These partial class functions are implemented in the Sea View prototype but do not work because of lim
itations of the Trusted ORACLE beta version that we used; upgrading to a production version of Trusted
ORACLE should make these functions available.

91

http:predefi:o.ed

set of categories. Labels can be displayed or suppressed for any query, at the user's option.
Moreover, individual column labels and/or tuple labels can be displayed or suppressed within a
query result, at the user's option. The labels are advisory; element labels indicate the security
level of the underlying storage object (file) in which the associated data element is stored, and
tuple labels indicate the least upper bound of data used to form or compute the tuple, but the
overall classification of the set of data returned from any query is indicated by the sensitivity
label in the CMW window banner. This is appropriate since the query itself, which is typed
in by the user, must be treated as classified at the subject access class, which thus provides a
lower bound for the overall security level of the query result (since the text of the query is used
as input in computing the query result).

• Selection of data based on their labels. Sea View provides the ability to select data for
retrieval based on values of the element and tuple labels associated with the data. The MSQL
query language includes an access class data type and provides operations for that type. For
example, data can be selected based on their access classes, their secrecy components, their
integrity components, their secrecy categories, or their integrity categories. Operations are
provided to select data based on label comparisons (e.g., select the names of all employees for
which the secrecy class of the salary dominates the secrecy class of the employee number) or
other label computations. 3

• Display of data appropriate for the subject class. Sea View displays only data whose
element and tuple labels are dominated by the access class of the subject that issued the
query.4 Moreover, in computing a query result to be returned, SeaView uses only .data whose
classification5 is dominated by the subject class.

• Assignment of the subject class to newly entered data. Sea View assigns the subject class
to element labels for updated and inserted data.

• Prohibition of modification of data labeled low by high subjects. Sea View allows a subject
to update only those data elements whose label equals the subject class6 • A subject can delete
a tuple only if the access class of the primary key elements equals the subject class.7

• Reasonable storage requirements. Prior to the original Sea View project, element-level
labeling was not thought to be feasible, because it was considered necessary to store a security
label with each data element, thereby at least doubling the amount of storage necessary for the
database. Sea View does not store an element label with each data element. Instead, it collects
large groups of data elements with the same security level into larger storage objects (files),
and obtains the label for the element from the operating system's label for the storage object.
This means that a single stored label can be common to a very large number of data elements,
so that very little additional space is required for labels.

3 Because of limitations of the particular software products employed in the Sea View prototype, which are beta
or early developers' versions of the Sun CMW trusted operating system and of the Trusted ORACLE trusted
database management system, the operations involving access class components cannot be used, although they
are implemented in the Sea View code and should work with later production versions of these same products.

4 In the CMW, the access class of the subject that issues a query is the same as the sensitivity label for the
window in which the query was typed.

5The classification of data, for purposes of access control, is indicated by the access class of the storage object
(file) in which it is contained.

6 Updating a low data element results in polyinstantiation of the element - that is, a high version of the
element is created, and the low version remains unchanged.

7 Sea View also requires the access class of the primary key elements to be dominated by the access classes of
all other data elements in the tuple; this guarantees that high subjects cannot delete low data.

92

• Element-level labeling without the need to trust the entire system. Prior to the original
SeaView project, it was thought that to provide element-levellabels, the entire database system
would have to be trusted. Sea View's approach uses strict TCB subsets (see Section 3.2, below)
and provides advisory labels; the approach requires only the operating system TCB to be
trusted for mandatory security.

3.2 High Assurance and the TCB Subsets Architecture

The "trust" in trusted computer systems rests on the ability to provide convincing arguments or
proofs that the security mechanisms work as advertised and cannot be disabled or subverted. In
building multilevel database systems, providing such assurance is especially challenging because
large, complex mechanisms may be involved in policy enforcement. To satisfy mandatory secu
rity requirements, we assign access classes to processes, or subjects, derived from the clearance
of the user on whose behalf the subject is operating. Traditional practice is to segregate the
security-relevant functions into a security kernel or reference monitor. The reference monitor
mediates each reference to an object by any subject, and allows or denies the access according
to a comparison of the access classes associated with the subject and with the object. The refer
ence monitor must be tamperproof, it must be invoked for every reference, and it must be small
enough to be verified to be correct and secure with respect to the policy it enforces. A high
degree of assurance must be provided that the mandatory security mechanisms not only control
access to sensitive information, but also that they enforce confinement, or secure information
flow. The reference monitor forms the core of the TCB, which contains all security-critical
code. The U.S. DoD Trusted Computing System Evaluation Criteria includes requirements
for "minimizing the complexity of the TCB," and "excluding from the TCB modules that are
not protection-critical," so that the reference monitor is "small enough to be verifiable" [7].
Without such a requirement, the high degree of assurance required would not be feasible.

So as to produce a design that allows the prototype to evolve to Class A1 assurance, we
have adopted a design approach that reuses and builds on previously built and verified trusted
systems. Sea View builds a database system on top of a reference monitor for mandatory
security, so that the mechanisms responsible for enforcing multilevel security are segregated
in the reference monitor, which is small enough to be verified. The approach has been called
strict TCB subsetting [11, 12] and has sometimes been called constrained or self-contained TCB
subsetting. The TCB subsetting concept evolved from earlier work on extensible TCBs [13].

The TCB subsetting approach reuses and extends previously built and verified trusted
systems. It is motivated by the need to be able to extend a TCB by building on an existing
one without disturbing its basis for evaluation. This is essential when a vendor wants to build
a trusted database system on another vendor's trusted operating system.

Sea View demonstrates the feasibility of that approach to building trusted systems. The
strict TCB subsetting approach structures the TCB in nonbypassable layers, with each layer
enforcing its own policies and with each layer constrained by the policies enforced by the
layers beneath it. In particular, the lowest layer is a mandatory TCB that enforces mandatory
security for all the layers above it and which contains all code trusted with respect to mandatory
security. With the exception of the lowest TCB layer, all TCB layers are untrusted with respect
to mandatory security. The use of the strict TCB subsets approach allows the reuse of existing
database and OS/TCB technology; it also can lead to a much faster product evaluation, since
the evaluation process can take advantage of the known, evaluated properties of the reused
technology.

93

The difficulty of using the strict TCB subsetting approach is great for those database system
vendors whose processing model consists of a single server process servicing all user requests.
A more natural model for a self-contained TCB subsetting approach is a processing model
consisting of multiple database server instances, each servicing the requests of subjects at
a single access class. Trusted ORACLE uses a multi-instance processing model that allows
different database instances to have different security levels, so that the multilevel database
system can operate as a collection of single-level processes.

Although it is not strictly necessary for Class A1 assurance with our strict TCB subsets
approach, we developed a formal specification for Sea View [14] and performed a partial formal
verification of the formal specification to the Sea View model properties [3, 15] using the EHDM
verification tools [16]. We also produced a Formal Top-Level Specification (FTLS) to code
correspondence report [17].

The Sea View prototype demonstrates the following properties:
• Strict TCB subsets architecture. The Sea View prototype uses the strict TCB subsetting

approach. The lowest TCB layer consists of the Sun CMW operating system's TCB; this
lowest system layer is responsible for enforcing the mandatory access control policy.8 The next
lowest TCB layer is the Trusted ORACLE TCB.9 This TCB layer is responsible for enforcing
the discretionary access control policy and is completely constrained by the underlying CMW
mandatory TCB; that is, it is completely untrusted with respect to mandatory security. The
highest system layer, consisting of the Sea View software, is responsible for enforcing multilevel .
relational integrity properties. This layer is completely constrained by the Trusted ORACLE
discretionary TCB and the CMW mandatory TCB; that is, it is completely untrusted with
respect to both mandatory and discretionary security.

We reemphasize the following consequences of the approach. Mandatory security is enforced
only by the TCB of the underlying operating system. There is no trust for mandatory security
in the database system software; that is, the database system software operates entirely as
single-level untrusted subjects. Separate single-level database processes are required for each
active access class (i.e., for each access class at which a user is currently logged in). Global
integrity constraints that span access classes cannot be enforced, because this would either result
in signaling channels or require trusted subjects [18, 2, 3]. In particular, polyinstantiation (see
Section 3.3) cannot be avoided because to do so would require a signal to be sent to a low user
based on the presence or absence of high data. New data are assigned the subject class (because
the database software is untrusted with respect to mandatory security, and no writing down
is permitted). Element and tuple labels are advisory (since there is no trust for mandatory
security in the database software).

• Architecture evolvable to Class AJ. The strict TCB subsets approach allows Sea View
to straightforwardly evolve to a higher-assurance system. Because all mandatory security en
forcement is performed in the underlying operating system TCB, replacing the CMW with a

8 Sea View's design does not require the use of the CMW; any trusted operating system that can support
Trusted ORACLE in OS MAC mode can be substituted. The use of the strict TCB subsets approach means
that the substitution of a higher-assurance trusted operating system will result in an equally high assurance
Sea View system.

9The Trusted ORACLE trusted database management system product can operate in two modes: OS-MAC
and DBMS-MAC. Trusted ORACLE's OS-MAC mode relies entirely on the mandatory TCB of the underlying
operating system for the enforcement of mandatory access control; in this mode, Trusted ORACLE processes
run as untrusted software, with respect to mandatory security. In DBMS-MAC mode, on the other hand,
Trusted ORACLE assumes some responsibility for the enforcement of mandatory security. In Sea View, Trusted
ORACLE operates in OS-MAC mode.

94

higher-assurance platform will automatically give a concomitant degree of assurance for manda
tory security for the resultant Sea View system. Thus, no research or technology development
is needed for Sea View to evolve to a Class A1 system. Once suitable high-assurance platforms
become available and Trusted ORACLE is ported to those platforms, Sea View will be readily
available on those platforms, providing high assurance for mandatory security.

• Lowest possible security risk. The use of strict TCB subsetting provides the greatest degree
of assurance possible for mandatory security. This approach allows us to use the operating
system's TCB to enforce mandatory security for the entire database system; because all of the
database system software is untrusted with respect to mandatory security, the database system
software need not be examined or evaluated for correct enforcement of mandatory security
properties. Because there is no trusted component in the database system itself, the risk of
disclosure of sensitive data is considerably reduced. This is the most conservative approach
possible for mandatory security.

3.3 Polyinstantiation

Sea View introduced the concept of polyinstantiation, by which different versions of the same
real-world entity can be represented in the database, where the different versions represent what
is known to users at different~ cleararice levels. Polyinstantiation has two fundamental forms.
Entity polyinstantiation arises when a person with a low clearance assigns what is intended to
be a unique identifier (for example, employee ID number) to a real-world entity (for example,
a person) known to people with low clearances, and is unaware that the identifier has already
been assigned to some other real-world entity known only to persons with high clearances. The
result will be that there are two distinct real-world entities having the same "unique" identifier.
For example, suppose a low user enters an employee with employee-ID number 12345, unaware
of the fact that a high employee 12345 already exists. To preclude the possibility of an insecure
information flow, the low person cannot be informed of the conflict. Attribute polyinstantiation
arises when a person with a low clearance assigns a value to some attribute of a real-world
entity known to persons with low clearances, when that real-world entity has in fact a more
highly classified value for that attribute. For example, a low space shuttle flight could have
the low mission "space-exploration" known to people with low clearances, and the high mission
"spying" known to people with high clearances.

In a multilevel database system with element-level classification, polyinstantiation arises in
two varieties: polyinstantiated tuples and polyinstantiated elements [4]. Polyinstantiated tu
ples represent entity polyinstantiation, whereas polyinstantiated elements represent attribute
polyinstantiation. Polyinstantiated elements are represented by a set of tuples, all of which have
the same primary key value and primary key classification. The Sea View prototype demon
strates the following aspects of polyinstantiation:

• Polyinstantiated tuples are identified by a primary key and associated key class, so that
the same multilevel relation may contain several tuple instances for a primary key value cor
responding to different access classes. A polyinstantiated tuple arises when a subject inserts a
tuple that has the same primary key value as an existing but invisible (more highly classified)
tuple. The effect of the operation is to add a second tuple to the relation, whose primary key
is distinguishable from the first by its access class. Although the polyinstantiation is invisible
to this subject, subjects at the higher access class can see both tuples.

• Polyinstantiated elements are identified by a primary key, key class, and element class (in
addition to the attribute name), so that there may be multiple elements for an attribute that

95

have different access classes but are associated with the same (primary key, key class) pair.
A polyinstantiated element arises when a subject updates what appears to be a null element
in a tuple, but which actually hides data with a higher access class. In this case, the update
has the effect of creating a polyinstantiated element for the tuple. A polyinstantiated element
can also arise when a high subject updates a low element - instead of overwriting the low
element value, a polyinstantiated element is created. In Sea View, polyinstantiated elements
are represented as separate tuples.

• High subjects cannot overwrite or replace low data. Polyinstantiation prevents high sub
jects from overwriting or replacing low data; such behavior by high subjects would constitute a
signaling channel. Instead, if a high subject attempts to update a low value, a polyinstantiated
element is created. After the update, low subjects see the original, unchanged low tuple, and
high subjects see two tuples, which are identical except for the value and classification of the
polyinstantiated element; thus, high subjects can see both the high and low versions of the
tuple.

• Low subjects cannot overwrite or replace high data. If a low subject attempts to update a
null value that actually hides high data, Sea View does not allow the low subject to overwrite
the high data but instead creates a polyinstantiated element. After the update, low subjects see
the tuple updated with the new low value, and high subjects see two tuples, which are identical
except for the value and classification of the polyinstantiated element; thus, high subjects can
see both-the high and low versions of the tuple.

• Low subjects do not know of polyinstantiated high data. Polyinstantiation is invisible
to and undetectable by low subjects. High subjects can see multiple versions of tuples with
polyinstantiated elements, and can see multiple polyinstantiated tuples, but low subjects see
only low data. A subject can see only data at the subject class and below.

• High subjects can choose the most appropriate versions with MSQL support. Because high
subjects can see multiple versions of polyinstantiated data, they can choose the version that is
most appropriate for their purposes. The MSQL language provides support for selecting data
based on their access classes and for selecting the highest, lowest, or most recent data from
among polyinstantiated data. These functions can be embedded in applications so that high
users need never even be aware of the polyinstantiation that exists.

• Prevents information leakage. Polyinstantiation is necessary in order to hide the actions
of high subjects from low subjects, thereby preventing signaling channels. Polyinstantiation
also prevents low users from inferring the existence of, or values of, high data. For example,
if a low subject attempts to insert a tuple with an apparent primary key value equal to that
of a preexisting high tuple, preventing the low user from inserting the tuple is tantamount to
telling the low user the value of the high primary key. Continued attempts by low users to
insert tuples could reveal the values of all the high primary keys. Polyinstantiation prevents
this by allowing polyinstantiated tuples.

• Allows implementation of cover stories. Polyinstantiation can occur deliberately in the
form of cover stories. A cover story is needed when some real-world entity is unavoidably visible
to people with low clearances, but some attribute of that entity whose existence is known or
can be assumed at the low level is classified higher than the entity itself. A cover story is
used to give a plausible explanation and to prevent the guessing or inference of the classified
attribute value. For example, if massive troop movements are known at the low level (because
it is impractical to hide the fact) and the reason is not known to people with low clearances,
these people may speculate or infer the true reason unless a plausible explanation is given. In
this example, "military exercise" may be a cover story for "staging for battle." Cover stories

96

may be considered deliberate polyinstantiation. They are necessary from a security point of
view to prevent undesired inferences.

3.4 Decomposition and Materialization

Sea View implements multilevel relations as views over underlying single-level base relations [1].
This approach allows multilevel select, insert, update, and delete operations to be decom
posed into corresponding single-level operations on the single-level base relations, and lends
itself to a design that uses a commercially available RDBMS for the single-level relations. The
decomposition is transparent to the user, who considers the multilevel relations to be the actual
stored relations of the database system. The decomposition allows the underlying operating
system's mandatory TCB to enforce the mandatory security policy on a set of single-level ob
jects and thereby restrict the data visible through a multilevel relation to that dominated by the
subject class; no filtering of high data from multilevel relations is required in the database sys
tem software. This approach lends itself to a high-assurance implementation if a high-assurance
operating system is used.

The Sea View prototyp·e demonstrates the following features and characteristics:
• Decomposition of multilevel relations. Multilevel user relations are transparently decom

posed into single-level Trusted ORACLE relations according to a decomposition algorithm we
developed for the prototype. When a user creates a multilevel relation, Sea View transparently
creates a set of single-level Trusted ORACLE tables to hold the data that will later be inserted
into the multilevel relation. In addition, Sea View transparently creates a set of views, one
at each access class at which the multilevel table is visible, that defines the instances of the
multilevel relation that are visible at the corresponding access classes.

• MSQL queries translated into SQL queries. The prototype includes an MSQL Processor
that accepts user queries expressed in the MSQL multilevel query language and translates them
into a set of SQL queries for Trusted ORACLE. Trusted ORACLE executes the queries and
returns the results to the MSQL Processor.

• SQL query results mapped back into answers to MSQL queries. Trusted ORACLE returns
the query results to the MSQL Processor, which assembles them into a query result appropriate
to the original user query.

• Transparent decomposition/materialization. All user access must be made through the
MSQL Processor; users have no access to an SQL interface. Thus, the system behaves just as if
the user-defined multilevel relations were the actual stored relations in the multilevel database.
The user is unaware of the decomposition.

• Transparent tuple timestamp. The prototype includes a transparent timestamp attribute
for each tuple in a multilevel relation that is treated as part of the primary key and is stored
in each underlying base table. This timestamp attribute is used when the single-level base
tables are joined to materialize a multilevel relation. The use of the timestamp prevents newly
inserted low data from being erroneously associated with "dangling" high data.

• Little effect on query performance. Our experience with the Sea View prototype is that
the decomposition and materialization of multilevel relations does not significantly affect query
performance.

• Effect on performance of table creation. Creating large tables with lots of access classes
is much slower that creating correspondingly large tables in standard database systems. This
is because the system must create a large number of Trusted ORACLE tables and views for
a single MSQL create table statement. However, this is a one-time penalty incurred when

97

a multilevel relation is initially created; subsequent queries on the multilevel relation do not
incur a similar performance penalty. Because users generally do not create tables (tables are
designed and created by the applications builders), we feel this is a suitable tradeoff.

3.5 MSQL Query Language

Sea View presents users with the abstraction of multilevel relations with element-level classifica
tion. So that users can define and manipulate multilevel relations, we provide a multilevel query
language, which we call MSQL. MSQL is an extension of SQL (Structured Query Language)
and includes user commands for operating on multilevel data. MSQL is an implementation
independent language that makes no assumptions about the underlying system architecture.
MSQL is meant to be upwardly compatible with SQL; that is, SQL programs and queries should
also run on systems implementing MSQL. The Sea View prototype demonstrates the following
features of MSQL:

• Interactive MSQL language interface. The prototype provides an interactive interface for
users entering MSQL commands at the keyboard through a CMW window.

• Forms interface. The prototype also provides an interactive forms interface, which is
implemented using SQL *FORMS (a product of Oracle Corporation). The forms interface allows
a user to select data for update by using the mouse and to update data by direct overwriting. It
also allows a user to formulate a query by traversing a set of menus and filling in the appropriate
forms. A user need not know MSQL to be able to use this interface.

• MSQL select, insert, update, and delete statements. The prototype allows users to retrieve
and manipulate multilevel data through the use of the MSQL select, insert, update, and
delete statements. These statements can contain conditional clauses that select data for
retrieval, update, or delete based on their access classes or on the values of operators on or
functions over their access classes.

• MSQL create table statement. MSQL provides a create table statement that allows a
user to define a multilevel relation. The statement requires the designation of a primary key,
allows the designation of a foreign key (FK), and requires a designation for each attribute group
of the range of access classes for data that can appear for attributes in the group.

• MSQL support for managing polyinstantiation. MSQL includes a number of features to
aid the user and the data designer in limiting and managing polyinstantiation. The MSQL
create table statement allows uniformly classified attributes to be grouped and to thereby
share a common label within any tuple. This allows the SeaView decomposition algorithm to
treat each such group as a single attribute, thereby reducing the number of ~nderlying base
tables that must be created. It is perhaps more significant that the grouping of attributes
means that they cannot be independently polyinstantiated, since they must always share a
common label within any single tuple. In addition, the MSQL create table statement requires
that the user designate, for each attribute or uniformly classified attribute group, a range
of allowable access classes. By using single-level ranges for attributes and attribute groups,
the data designer can eliminate the possibility of polyinstantiation within such attributes and
attribute groups. By specifying narrow ranges, the data designer can limit the amount of
polyinstantiation that can occur. MSQL also includes direct language support for selecting
particular instances from among polyinstantiated data. MSQL provides functions and operators
for selecting data based on access class and for selecting the highest, lowest, or most recent
data from among polyinstantiated data. These functions can be embedded in applications so
that users need not be aware of the polyinstantiation that exists.

98

4

• MSQL data dictionary. The prototype includes an MSQL data dictionary that stores the
definitions of multilevel user relations as well as the information needed to map a multilevel
relation to its implementing single-level Trusted ORACLE tables and views. The portion of the
MSQL data dictionary that describes multilevel relations is user-visible; the portion that defines
the mapping to the underlying base tables and views is not accessible by users. MSQL data
dictionary entries are made automatically by the execution of MSQL create table statements.

Characteristics of the SeaView Prototype

We have evaluated the Sea View prototype for performance, software size, and portability.
The performance of a database system can be evaluated in various ways. One of the more

popular techniques uses a set of predefined relational database tables and views loaded with
benchmark data to measure transactions per second (TPS). Typically, this TPS benchmark
serves two purposes. The first purpose is to compare the performance of the database engine
running on different hardware platforms. The second purpose is to compare different database
products using the same data model running on the same hardware platform. Sea View, however,
cannot benefit from either performance measurement category because there are no competitive
prototypes or commercial products which support the same data model as Sea View. In addi
tion, the Sea View prototype is available only on the Sun CMW platform. For these reasons,
it is difficult for us to establish a comparison basis and conduct an objective and impartial
performance measurement.

It is conceivable that a typical Sea View user table with three or four attributes may require
joining some twenty or more base tables and views, depending on the number of labels associated
with each column. Because joining multiple tables or views is expensive, Sea View queries are
potentially expensive. To speed query operations, we have defined indices on the join attributes
in our decomposition algorithm. These indices expedite the join operations with an indexed
search, rather than with a time consuming sequential search. Although the Sea View system
incurs a performance penalty for this decomposition and rematerialization, other database
systems running similar applications will require the application to perform the decomposition
and rematerialization of multilevel data, and hence to incur the performance penalty. Thus,
a fair performance comparison of SeaView with row- or table-labeled database systems should
include the implementation of multilevel applications.

We measured the performance of the Sea View prototype with varying amounts of stored
data and degrees of complexity of multilevel tables so that we can quantify and extrapolate
performance statistics. The outcome of the performance analysis was encouraging. It is our
observation that the Sea View prototype software incurs no perceivable performance cost beyond
that required to join the underlying base tables and views - that is, the cost incurred by the
Sea View software is imperceptible to users.

A typical multilevel table is composed of several base tables and views. The Sea View table
creation statement consumes considerable processing time because Trusted ORACLE needs that
much time to create all the base tables and views. To assist the data designer in controlling this
performance cost, Sea View includes features, such as the ability to specify uniformly classified
groups of attributes, and the ability to specify a range of allowable classifications for each
attribute group, to improve table creation performance.

The Sea View MSQL Processor contains 26,303 lines of C code, an estimated 5% of which
is comments. We have used ORACLE Pro*C to preprocess the embedded SQL statements and

99

the GNU C compiler in our development envirpnment to compile the C code on the Sun CMW.
The Sea View prototype contains only six ORACLE-dependent Pro*C modules and one Sun

CMW label-specific module. Thus, it should be relatively straightforward to port Sea View to
other secure platforms. For example, we spent about three months in porting Sea View from
GEMSOS to the Sun CMW. We estimate that future porting of SeaView to other comparable
secure platforms that support Trusted ORACLE would take a comparable amount of time.

5 SeaView Prototype Enhancements

Several enhancements would facilitate the transition of Sea View into operational use. Sea View
could be ported to high-assurance platforms such as the HFSI XTS-200 or the SCC LOCK.
Under a Rome Laboratory contract, Trusted ORACLE is being ported to LOCK/SNS, a Class
A1-evaluatable TCB. That port is expected to be completed in the second half of 1994. When
that work is completed, Sea View can also be ported to that Class A1 platform. This would
allow a high-assurance implementation of Sea View for little additional cost.

In addition, our preliminary design for Sea View's DAC feature could be implemented. A
set of programatic calling services to allow development of third-party applications on top of
the Sea View system could be implemented (some of this is already being done under a sepa
rate project for which the first application is being built on Sea View [19]). Sea View could be
upgraded to support increased pass-through of Trusted ORACLE functionality. MSQL main
tenance utilities could be implemented that would allow users to perform various database
maintenance operations such as data import/export, load/unload, database backup/restore,
and garbage collection. Additional sample applications could be built on SeaView (A proto
type multilevel X.500 DoD Directory service has already been implemented on Sea View by
SRI [19].) SeaView's decomposition algorithm could be revised to improve performance and
reduce the complexity in retrieving multilevel polyinstantiated data, to incorporate modifica
tions suggested by Jajodia and others [20]. Future work on SeaView may include the design
and implementation of facilities to support classification constraints that would assign classifi
cation labels to data entered into the database. Tools could be included in Sea View to assist
the data designer in anticipating and limiting the amount of polyinstantiation that can occur.
Our current work to build a prototype inference control tool [21, 22] could be integrated into
Sea View to provide a graphical front-end user interface for design of an inference-free Sea View
database schema and automatic generation of the database schema definition.

6 Summary

The Sea View multilevel database prototype is an ambitious project that attempts to meet the
requirements for Class A1 of the U.S. Orange Book for a system that features data classification
at the granularity of individual data elements. We have described key aspects of the Sea View
model and reported on our implementation of a prototype multilevel database system based on
the Sea View model.

The Sea View prototype proves the concept of the original Sea View model based on strict
TCB subsetting. It demonstrates and proves the concept of polyinstantiation. It uses a mod
ular and layered architecture that makes use of the commercial-off-the-shelf Trusted ORACLE
database system; this allowed Sea View developers to focus on designing and implementing

100

critical functionalities such as a multilevel decomposition algorithm and a multilevel data dic
tionary. The prototype includes a functioning MSQL query language and features. Because it
is implemented on Trusted ORACLE, Sea View can be readily ported to other platforms. Port
ing to a high-assurance platform will result in an A1-evaluatable implementation. Based on
this Sea View prototype, we believe that it is possible to develop a high-assurance, production
quality, multilevel secure relational database system based on the Sea View model for real-world
use in the near future.

References

[1] 	 D. Hsieh, T. F. Lunt, and P. K. Boucher. The Sea View Prototype Final Report. Technical
report, Computer Science Laboratory, SRI International, Menlo Park, California, August
1993.

[2] 	 T. F. Lunt, D. E. Denning, P. G. Neumann, R. R. Schell, M. Heckman, and W. R. Shockley.
Final Report Vol. 1: Security Policy and Policy Interpretation for a Class A 1 Multilevel
Secure Relational Database System. Technical report, Computer Science Laboratory, SRI
International, Menlo Park, California, 1988.

[3] 	 T. F. Lunt, D. E. Denning, R. R. Schell, M. Heckman, and W. R. Shockley. Final Report
Col. 2: The Sea View Formal Security Policy Model. Technical report, Computer Science
Laboratory, SRI International, Menlo Park, California, 1989.

[4] 	 T. F. Lunt, D. E. Denning, R. R. Schell, W. R. Shockley, and M. Heckman. The SeaView
security model. IEEE Transactions on Software Engineering, June 1990.

[5] 	 T. F. Lunt. Final Report Vol. 4: Secure Distributed Data Views: Identification of Deficien
cies and Directions for Future Research. Technical report, Computer Science Laboratory,
SRI International, Menlo Park, California, 1989.

[6] 	 W. R. Shockley, R. R. Schell, T. F. Lunt, D. Warren, and M. Heckman. Final Report
Vol. 5: The Sea View Implementation Specifications. Technical report, Computer Science
Laboratory, SRI International, Menlo Park, California, 1989.

[7] 	 Department of Defense. Trusted Computer System Evaluation Criteria, DOD 5200.28
STD, December 1985.

[8] 	 National Computer Security Center. Computer Security Requirements: Guidance for Ap
plying the Department of Defense Trusted Computer System Evaluation Criteria in Specific
Environments, CSC-STD-003-85, June 1985.

[9] 	 Secure Computing Corporation. System Specification for the LOCK DBMS Program. Se
cure Computing Corporation, Rosefille, Minnesota, 1993.

[10] 	 T. H. Rinke, C. Garvey, N. Jensen, J. Wilson, and A. Wu. A1 secure DBMS design. In
Proceedings of the 11th National Computer Security Conference- Appendix, October 1988.

[11] 	 National Computer Security Center. National Computer Security Center Trusted Database
Management System Interpretation of the Trusted Computer System Evaluation Criteria.
Technical Report NCSC-TG-021, Version 1, April1991.

101

[12] 	 W. R. Shockley and R. R. Schell. TCB subsetting for incremental evaluation. In Proceedings
of the Third AIAA Conference on Computer Security, December 1987.

[13] 	 M. Schaefer and R. R. Schell. Toward an understanding of extensible architectures for
evaluated trusted computer system products. In Proceedings of the 1984 IEEE Symposium
on Security and Privacy, April 1984.

[14] 	 T. F. Lunt and R. A. Whitehurst. Final Report Vol. 3a: The Sea View Formal Top Level
Specifications. Technical report, Computer Science Laboratory, SRI International, Menlo
Park, California, 1989.

[15] 	 R. A. Whitehurst and T. F. Lunt. Final Report Vol. 3b: The Sea View Formal Verification:
Proofs. Technical report, Computer Science Laboratory, SRI International, Menlo Park,
California, 1989.

[16] 	 F. von Henke and J. Rushby. Introduction to EHDM. Computer Science Laboratory, SRI
International, Menlo Park, California, September, 1988.

[17] 	 P. K. Boucher and T. F. Lunt. The Sea View Formal Top-Level Specification to Code
Correspondence. Technical report, Computer Science Laboratory, SRI International, Menlo
Park, California, 1993.

[18] 	 R. R. Schell and D. E. Denning. Integrity in trusted database systems. In Proceedings of
the 9th National Computer Security Conference, 1986.

[19] 	 P. K. Boucher and T. F. Lunt. A prototype multilevel-secure DoD Directory. Submitted
to the Tenth Annual Computer Security Applications Conference.

[20] 	 S. Jajodia and R. Sandhu. Polyinstantiation integrity in multilevel relations. In Proceedings
of the 1990 IEEE Symposium on Research in Security and Privacy, May, 1990.

[21] 	 X. Qian, M. E. Stickel, P. D. Karp, T. F. Lunt, and T. D. Garvey. Detection and elimination
of inference channels in multilevel relational databases. In Proceedings of the 1993 IEEE
Symposium on Research in Security and Privacy, May 1993.

[22] 	 M. E. Stickel, X. Qian, T. F. Lunt, and T. D. Garvey. Inference Channel Detection and
Elimination (second interim report). Computer Science Laboratory, SRI International,
Menlo Park, California, September 1993.

102

TOWARDS A FORMAL VERIFICATION OF A SECURE

AND DISTRIBUTED SYSTEM AND ITS APPLICATIONS 1

Cui Zhang, Rob Shaw, Mark R. Heckman, Gregory D. Benson,

Myla Archer, Karl Levitt, and Ronald A. Olsson

Department of Computer Science

University of California, Davis, CA 95616

Email: Last-Name@cs.ucdavis.edu

Abstract

This paper pr~sents research towards the formal specification and verification of a secure dis
tributed system and secure application programs that run on it. We refer to the whole system
- from hardware to application programs written in a concurrent programming language
as the Silo, and to a simplified view of the Silo as the miniSilo. Both miniSilo and Silo consist
of a collection of microprocessors interconnected by a network, a distributed operating system
and a compiler for a distributed programming language. Our goal is to verify the full Silo by
mechanized layered formal proof using the higher order logic theorem proving system HOL.
This paper describes our current results for verifying the miniSilo and our incremental approach
for evolving the verification of the miniSilo into the verification of the full Silo. Scalability is
addressed in part by extending the distributed operating system with additional servers which
in turn provide services that extend the programming language.

Keywords: verification, distributed operating systems, security servers, distributed program
ming languages.

1 Introduction

This paper describes our research on a long term project called the Silo. This project is aimed
at verifying a complete distributed computer system by mechanized layered formal proof. Our
layered system includes a set of microprocessors, a network model, the operating system kernel and
servers (some in support of security) running on each microprocessor (hence, a secure distributed
operating system), the concurrent programming language microSR (a derivative of SR [1]), and a
Hoare-like programming logic. Each layer will be formally modeled as an interpreter that interacts
with the other layers. Our layered approach will allow us to verify that secure and distributed
applications run correctly on the entire system. In its final form, the Silo will be somewhat limited
when compared to "real" computer systems; however, we hope it will be the most comprehensive
distributed computer system that is verified and demonstrates a methodology for "full system
verification" of distributed systems.

The CLI stack [2] has shown the feasibility of full system verification for a sequential system
using a layered proof technique, but their model does not allow for concurrency and distributed
programming, nor have they fully integrated the operating system into their "stack". When we
began specifying the Silo system, we realized that an incremental approach is necessary for revealing
unforeseen difficulties and for making the formal proof more manageable. Rather than attempting
to specify and prove the entire Silo, we have identified a subset of the Silo to specify and prove
correct by limiting the scope of each layer to reduce the complexity. As shown in Figure 1, we
refer to this simplified view of the Silo as the miniSilo. As our preliminary results on miniSilo have

1This work was sponsored by the National Security Agency University Research Program under contract DOD
MDA904-93-C-4088 and by ARPA under contract USN N00014-93-l-1322 with the Office of Naval Research.

103

mailto:Last-Name@cs.ucdavis.edu

miniSilo
I

Silo

rl Interface: microSR & a Hoare J>roaramming Logic I
Application
Layer

'-

Implementation: Soundness>roofs

Static process naming, few
I

Infinite set of variables & trueI

variables, simple sendlreceive I
I

SR IPC mechanisms

rl Interface: Formal Semantics ~microSR including IPCLanguage
lmplementaton

Implementation: Compilation: Functions
Layer

- Generation of simple machine : Full symbol tables, richer target

instructions _________ ..: language with system calls

rl Interface: I IPC System Calls

OS Kernel & ServersImplementation:
I (Including security servers)

: :=-:.::e~::::e:r=~'!~ time
Mpmachine 1 communication through system provided mailboxes
Layer ---------,

Interface: Instruction 'Set

Implementation: CPU ., Memory

I'- Simplified processors with I Richer instruction set with
simple instruction set I true user/system modes

I
I

I- Secure

Distributed

OS Layer
r-

J-
Processor

Layer
-

--{ Interface: Host-host Co!nmunication Network

Network
Implementation: Network !Controllers & Interconnect

ILayer
- Hardwired data lines and : Finite resources, memory mapped

inrmite resources : 1/0 via interrupt mechanism

Figure 1: Overview of UCD Silo and MiniSilo

shown the usefulness of our layered proof methodology, we are now growing the miniSilo system
into the full Silo by developing the system and proof by incrementally adding functionality to all
layers. Our specification, verification, and augmentation process is being carried out using the
Cambridge HOL theorem prover [8], because it allows the definition of embedded theories, such
as we are using for a programming logic of concurrency and a generic model of a layer. We also
hope our work demonstrates the expressiveness, flexibility, and feasibility of higher order logic in
formal specification and verification for more complicated computer systems, including a concurrent
programming language that support security applications and a distributed operating system.

This paper concentrates on our miniSilo effort, as a step in the full Silo effort. Section 2
describes our work on the network layer. Section 3 gives our work on the mpmachine layer. Section
4 describes our effort on the language implementation for microSR. Section 5 presents the Hoare
logic derived from the microSR semantic specification. Section 6 concludes our work.

2 The Network

2.1 The Network for MiniSilo

The lowest layer of mini Silo consists of a network which allows individual processors (vmachines,
see Section 3) to communicate through message passing. The miniSilo network consists of a set of
processors and an interconnect service. Each processor communicates with the network through a

104

• • •

Network Interface Unit (NIU), as shown in Figure 2. In miniSilo we assume that a processor has
dedicated, hardwired data lines that interface directly with an NIU. The network provides reliable
transmission of messages and preserves message ordering between communicating processors.

p
n

Figure 2: The MiniSilo Network

The miniSilo network is specified abstractly. By specifying the network in general terms, we
do not impose any restrictions on the network topology or on the communication protocol. We do
ensure that the network provides the properties that the higher miniSilo layers assume of the net
work. Later, if desired, one could develop an implementation of the abstract network specification.
The next logical layer is the protocol layer. There has been considerable work on the verification of
network protocols [5, 12], which could be used to implement the abstract specification presented.
For "complete" verification the protocol layer must ultimately be specified in terms of the under
lying hardware. Protocol and network hardware verification are beyond the scope of this project.
The network is also specified operationally, where each NIU is modeled as an interpreter that reads
and modifies state. The entire network is modeled as the composition of all the NIUs. The network
interpreter is driven by send requests from the processors. Send requests result in receive requests
from an NIU to a processor, which allows for nonblocking I/0 at the operating system level. Sends
and receives are accomplished through memory mapped I/0.

The set of NIUs are modeled as a fully connected network through send and receive queues,
collectively called in-transit queues. For n processors, each NIU has n- 1 send queues and n- 1
receive queues. Each queue is shared by exactly two NIUs, one NIU views the queue as a send
queue and the other NIU views it as a receive queue. The send and receive queues form the InTran
sit_State. The NIU_State for each NIU combined with the Intransit.State form the Network_State.
The specification of the network interpreter is a relation, Network_State-+Network_State-+Bool.
This interpreter is used to prove properties about the network itself, as well as to serve as an
implementation for the higher layers of miniSilo.

Because the miniSilo network specification is given in terms of abstract operational semantics,
we need to prove certain safety properties to ensure that the network functions correctly. The most
important safety property is the ordering of messages between communicating processors. This
property follows from the representation of the InTransit.State. Other safety properties, such as
no duplication of messages, are also verified.

2.2 The Network for Silo

The proof obligation of the mpmachine requires us to verify that the network specification combined
with the vmachine specification logically imply the mpmachine specification. In miniSilo, the
distinction between the mpmachine communication abstractions and the network abstractions are

105

small, but this will change once the full Silo is developed and each layer is expanded to more realistic
specifications of a distributed system. In particular, the network specification will be modified in
two respects. First, the network will be specified in terms of finite resources rather than infinite
resources. Currently the specification allows infinitely many messages to be present in the in-transit
queues. Therefore, each NIU is always ready to send another message, the processor is not required
to wait or resend messages. Moving from infinite queues to finite queues entails certain specified
error conditions and can result in storage channels. In miniSilo, we also assume that the message
being transferred is a single, but infinite integer. We intend to alter the specification to handle
finite packets. Second, the interface between an NIU and a vmachine will be enhanced to one based
on memory-mapped 1/0 and interrupts rather than memory-mapped 1/0 alone. This will allow the
operating system to implement non-blocking 1/0, and more importantly, allow for more than one
process and operation per processor as described in Section 3. The new processor to NIU interface
will also be enhanced to handle simple error conditions such as a network busy error or packet lost
error, both of which will result in the processor resending the packet. Again, there are security
implications to these decisions, which we will consider.

3 The Mpmachine

3.1 The MiniSilo Mpmachine

The miniSilo abstraction mpmachine represents multiple processors, each running a single process.
Processes communicate by passing messages through a network. From a user process's point of
view, the operating system interface appears as an "extended machine", consisting of the basic
machine instructions plus communication primitives (system calls). The communication primitives
are used to send and receive messages, through message queues. MiniSilo has one message queue
per process, where only one process can read from the queue and all other processes can send
messages to the queue.

The vmachine speci:f\cation describes a single processor in miniSilo. Each vmachine2 consists of
an infinite set of registers, an infinite set of memory locations, and a program counter. Since these
are modeled in HOL using natural numbers, each location may hold a non-negative integer of any
size. A single vmachine operates much as one would expect, interpreting a typical set of simple
machine instructions consisting of load, store, arithmetic, comparison, and branching instructions.
It can not, however, issue any kind of communication action with other vmachines; the mpmachine
provides this ability. This modularization is intended to isolate the processor from changes in
the network hardware - the mpmachine is responsible for the compatibility of these two lower
components and for defining the pool of message queues and system calls. Neither component
depends upon the other's specification in any way.

An mpmachine contains N vmachine processors and N network interface units (NIU s) connected
to a bus. Within the mpmachine specification, however, this bus is abstracted as a pool of queues.
This pool contains one queue for each NIU, representing the ordered list of pending messages
destined for the vmachine corresponding to the particular NIU. The external appearance of an
mpmachine, therefore, is anN-tuple ofvmachines (whose appearance is "passed-up", unaltered),
plus a pool of "in-transit" message queues.

Similarly, the language interpreted by an mpmachine is an N -tuple of lists of instructions.
The set of instructions contains all the operations executable on a vmachine, plus communication
primitives. Similar to earlier efforts [4, 10], the actual operation of the mpmachine is modelled with

2Initially, we chose this term as an abbreviation of "virtual machine". Presently, however, "vanilla machine" is
perhaps more appropriate

106

transition relations. Each kind of transition allows a single component of the N -tuple to advance a
single step. To issue a vmachine instruction, only the state of the corresponding vmachine hardware
is affected. To issue a communication primitive, however, the global pool of queues may be altered
as well.

The HOL specification of this machine model consists of straightforward type definitions for the
objects described, plus the transition relation associated for each kind of mpmachine instruction.
These relations have the type Args ~ MPprocess ~ MPprocess ~ Vid ~ Bool. The type Args
characterizes the numerical operands to the instruction. An MPprocess represents a pair whose
first component is the local state of the vmachine which is executing this instruction, and whose
second component is the pool of queues. Finally, Vid is the index of the executing vmachine; this
information is not available within an MPprocess. If we were to include, say, a read-only "processor
id register" in each vmachine, then the information in Vid above would become redundant.

From this type definition, we see that the following question can be answered of each mpmachine
instruction: Given the indicated operands, and the indicated initial configuration ofthe mpmachine,
is it possible to arrive in a given configuration after the indicated processor executes this instruction?
For example, the relation for a simple vmachine jump instruction would require that the pools in
both MPprocess objects are identical, because a jump does not affect communications. Moreover,
the underlying vmachine specification would ensures that the register and memory contents of the
vmachine object within the first MPprocess must also be identical to the corresponding vmachine
within the second MPprocess. Only the processor's program counter will differ between the two
configurations, and this difference must agree with the target location given in the operand to the
jump (indicated in the Args). The mpmachine specification does not directly contain these facts,
but rather defers to the vmachine specification itself. As an example of message passing, if the
instruction in question were a receive operation, both the processor and the pool contents will
differ accordingly. In particular, after the instruction is complete, the destination register in the
processor will contain the received value, and the appropriate queue in the pool (indicated by the
Vid) will have one less message than it did before the instruction began.

Armed with a semantic relation for each instruction, the mpmachine specification only requires
two more definitions to encompass the complete system behavior. The first of these, is an inductive
definition of how a thread, an instance of a sequential program piece, may legally execute fork ~ 0
steps. To execute for zero steps, both the initial and the final MPprocess must be completely
identical. To execute for k > 0 steps, there must exist an intervening MPprocess value, call it M,
such that the appropriate semantic relation allows a one-step transition from the initial state into
M, and the final (k - 1)-step transition from M into the final state is allowed inductively. The
second definition describes the legal behaviors of complete programs on an mpmachine, and it is
not inductive. Here, a final state of the entire system is reachable from an initial one precisely when
the corresponding initial and final MPprocess's for each component of the program are allowed by
the above inductive definition, for some k ~ 0.

3.2 Growth to Complete Silo

The complete Silo system consists of multiple processors, connected by a network and each run
ning a copy of the Silo operating system. The operating system design is based on the kernel
and server model used, for example, in Mach [14] and in Synergy [15]. The kernel provides a
multi-programmed, message passing environment for the server processes and user processes on a
particular processor. The abstraction of a distributed system is maintained by the servers. As
shown in Figure 3, from a user process's point of view, the operating system interface in Silo will
extend that of miniSilo with richer basic machine instructions and system calls. In this way, the

107

,........L.~~~Ie processor abstraction

User Processesi 0-., l 0-------., Q
· ' ' \ O.S. Interface (Machine

i '•, \ ·~\ Instructions and system calls)
....................) ______ ... \, : '...-Ports

",, '...... r-·-----------------:·-\-~'\ ·---1--iiiiii Jl Global Pool of Mailboxes
\ ; I:___J__'ill]]}/ I

Single o~ratlng system mailbox t::;:.;>"".................J

abstracted as muttiple queues

Figure 3: Operating System Specification: View from User Process

language work can proceed concurrently with the operating system work. Silo includes additional
system calls for processes to create message queues, called mailboxes, and for processes to request
access to specific mailboxes. The mailbox management calls are subject to a system security policy
implemented by a security server, as shown in Figure 4. These calls, while an essential part of the
Silo system specification, are only relevant to user processes when an application is initially loaded
and, therefore, do not require significant changes to our language work.

A mailbox is a queue of messages with at most one process receiving messages through the
mailbox and possibly many senders. The complete operating system specification guarantees that
messages sent by a particular process to the same mailbox will be queued in the mailbox in the same
order that they were sent but, due to the concurrent nature of the system, does not guarantee the
relative ordering of messages sent by different processes. For this reason, Silo specifies a mailbox
as a set of queues - one per sender, rather than one per receiver as in miniSilo.

A major challenge in the Silo project is to specify the entire distributed operating system at
its interface to user processes, to specify each of the servers and the kernel, and to prove that a
composition of the server, kernel and network specifications satisfy the secure distributed operating
system specification. We are accomplishing this in stages: first composing the servers that manage
mailboxes, then adding the servers that implement system security and support the security features
in the programming language.

4 Implementation of MicroSR

4.1 MicroSR Semantics

The interpreted language at this layer is microSR whose constructs include those basic to common
sequential programming languages, in addition to an asynchronous send statement, a synchronous
receive statement, a guarded communication input statement, and a co statement for specifying
concurrent execution. This language has the appearance of a high-level system programming lan
guage that supports distributed applications. For each statement, we have a semantic transition
relation of type Gstate - Gstate - Pid - Bool. These semantic relations are analogous to,
though more complex than, the mpmachine relations. Here, the type Gstate (for "global state")
represents a complete system configuration, and the relation is true if and only if the system may
evolve from the first Gstate into the second Gstate by the execution of the given microSR state
ment within the logical process indicated by Pid. The semantics are also formalized operationally,
using multiple copies of a local state abstraction conjoined with a shared pool of messages. These

108

User process 1. User prooess requests a port to a particular mailbox.

2. Port Server receives request, queries Security Server.

3. Security Server compares user clearance with mailbox

dassification. Returns boolean result to Port Server.

4. Port Server tells kernel to create port or else denies request

based on result from Security Server.

Other
Security Server ••.••· ••••••Port Server
(e.g., DAC) _// \\

·····················\ ;
-···················\·....

.·6·........••

Kernel

Figure 4: Operating System: Security management

local states are now mappings from variable names into values, rather than register and memory
contents. However, the internal structure of this microSR message pool is almost identical to that

of the mpmachine - for each program thread, the pool contains a queue of all messages which

· have been sent to this thread, plus an indication of which ones have been received thus far. To

handle security, processes and objects are assigned security levels, and transitions are allowed if
they satisfy the standard multilevel security policy.

4.2 Compiler Correctness

Like the previous successful efforts to prove compiler correctness for sequential languages [6, 9], to
claim that a compiler is correct is to claim that the target code behavior achieve the source code
semantics. Yet, as we have seen, the mpmachine behaviors and the microSR semantics are distinct
enough that no canonical equivalence exists between them. We, as the verifiers, must provide this
mapping from the abstract microSR global states down into the more concrete mpmachine states.
As shown in Figure 5, once this mapping is available, the compiler correctness proof becomes
an equivalence proof of two relations, given by the dashed line and the dotted line. For any
given starting state, S, of the microSR program, these two relations must agree on which final
mpmachine configurations are reachable. In particular, the compiler correctness condition is the
following logical equivalence: If, the microSR semantics for the source program indicate that a
certain final state, F, is reachable, then it must be true that the mpmachine semantics for the
compiler's output code indicate that F' = Mapdown(F) is reachable from S' = Mapdown(S). The
compiler itself is simply another mapping function over the domain of legal microSR programs that
provides a list of mpmachine instructions for each construct.

A few implementation details are not evident in Figure 5. First of all, since both the Mapdown
function and the compiler assign variables to registers, these two assignments must agree in order for

109

(S) (F)

Semantics ofa microSR program

Mapdown

Compilatioo of lhe
source program into
mpmachine code Mapdown

(S') (F')

Figure 5: Necessary Mappings for Compiler Correctness

the above equivalence to hold. Consequently, the Mapdown function takes a symbol table argument
that indicates the compiler's choices. In miniSilo, there is a fixed symbol table because the microSR
language has a small, fixed set of legal variable identifiers. To allow arbitrary strings as identifiers,
the compiler needs simply to make an initial pass over the source and gather the necessary symbol
table information needed by Mapdown and the second pass. This process involves no concurrency
nor composability issues whatsoever other than requiring the extra argument to Mapdown - an
aspect that has been accommodated.

As described above, the "dashed" relation, whether true or false, must be equal to the "dotted"
relation. This is not entirely possible because a small amount of information is lost across the
Mapdown function. For instance, a microSR global state contains a component that indicates the
current time of the state. Suppose that we have two states, S1 and S2 , which are legal starting and
ending states for some program. Both the dashed and dotted relations indicate truth. However,
suppose that we now alter S2 ever so slightly, by making its time indicator earlier than that of S1 .

Since the global time does not appear in the mpmachine specification, the result of mapping down
S2 is just as it was before, and the dotted relation continues to indicate truth. The dashed relation,
however, does not allow for time to decrease, and indicates falsity. The use of the time counter
is merely an example; the microSR semantics contain other auxiliary data, such as the number of
receives on a particular channel, that are not mapped down to the hardware level. Indeed, when the
full Silo contains a kernel with many internal tables, it would not even be dear how the language
level receive counts should be mapped. We do not want the language layer imposing bookkeeping
requirements on the kernel, and the correct choice is to not map down the information that is only
needed by the language semantics. As a result, the compiler proof is not a complete equivalence,
but it must distinguish different means by which the language semantics may indicate falsity.

Similarly, the mpmachine abstraction also contains some items that are not within the image
of Mapdown. The first few memory locations are considered to be "reserved" for system use, and
the Mapdown function does not dictate the values of the addresses. The fact that the language
layer relation holds does not impart any knowledge about this hidden system state within the
mpmachine. Consequently, the actual proof requires a third machine configuration (not shown)
which is both reachable from S' and equivalent to to F' in all respects except the hidden system
state. Finally, within this proof, the complete program is really viewed as a collection of processes,
and the picture indicates what must be shown for each individual process. Rather than use fully
defined states and configurations, we show that for each process, the relationships of Figure 5 hold
amongst that process' view of the system state.

110

5 MicroSR Applications

5.1 The Hoare Logic for MicroSR

The top application layer is a mechanized Hoare logic for verifying microSR concurrent applica
tions. Our effort to formally derive, using HOL, a sound Hoare logic from microSR semantics is a
generalization of similar work by Gordon for a small sequential language [7, 13]. We use semantic
relations, rather than functions, in our formal specification for microSR constructs; doing so obvi
ates the possible need for powerdomains in the state abstraction for microSR programs due to the
inherent non-determinism. To handle the interference problem arising from concurrent execution,
We introduced atomicity and global invariants [2] into our logic system. This logic has been for
mally proven to be sound within HOL, i.e., axioms and inference rules are all mechanically derived
in HOL as the logical implication of the same microSR semantic specification against which the mi
croSR implementation is verified. This logic allows one to reason and state formal assertions about
concurrently executing processes that do not share any data objects, but communicate through
shared channels that are called operations in SR terminology.

The partial correctness specification in our logic has two levels. The definition of predicate
SPEC shown below gives our interpretation of {P_andfor_GI} S {Q_andfor_GI}, the intra-process
partial correctness specification, where Sis the microSR statement, P and Q are assertions mainly
on program variables, GI is the assertion of global invariant mainly on operations, associated with
executing S and taken with respect to a particular process. The definition of predicate G_SPEC
gives our interpr~tation of the global partial correctness specification { { (PJist) A GI}} S { { (QJ.ist)
A GI} }, where S is the top level statement for specifying concurrent executions, global invariant
GI is the assertion mainly on operations, P Jist and QJ.ist are. assertion lists mainly on program
variables. The ith elements of the two lists are taken with respect to a particular process for
executing the ith sequential program within the top level statement S. Notice that all arguments of
SPEC and G_SPEC in the following definitions are abbreviated forms of their meaning functions.

SPEC (P_andfor_GI, S, Q_and/or_GI) = 1- defY Gstatel Gstate2 Pid .
P _and/or_GI(Gstate,Pid) /1. S(Gstatel, Gstate2, Pid)
:::} Q_andfor_GI(Gstate2, Pid)

G-.SPEC ((P_list) /1. GI, S, (Q_list) /1. GI) = 1- de/'1 Gstatel Gstate2 PidJist .
('1 i . (El i P _list)(Gstatel, (Eli Pid_list)) /1. GI(Gstate, (EL i Pid_list))) /1.
S(Gstatel, Gstate2, PidJist)
=? ('Vi . (El i Q_list)(Gstate2, (El i PidJist))AGI(Gstate2, (EL i Pid_list)))

The following gives our representative axioms and inference rules in the derived logic for mi
croSR. Those axioms and rules for microSR sequential constructs, such as the Skip Axioms, As
signment Axiom, If Rule, Do Rule, Sequencing Rule, Precondition Strengthening Rule, and Post
condition Weakening Rule, are not listed below, because their appearance is similar to that in [2,
7], though the way to formally specify and derive them for microSR is actually more complex.
All axioms and inference rules are theorems of our language semantics. The "sent-set" a and
"received-set" p denote all messages ever sent and received on that channel. Frontier(aop) denotes
the earliest message in the channel op that has not been received. J.L is simply a message constructor
function for converting an entity of type integer into one of type message.

• Co Rule
{GI /1. Pi} SLi {GI /1. Qi}

{{Gl/I.P_list}}co SL1 II ... II SLn oc{{GI/I.Q_list}}

• 	 Send Axiom

{P A GI /1. Gl:::u ll(E)} send op (E) {P /1. GI}

111

• Receive Rule
P A GI A J.t(E) E Frontier(uop) => QE A GI:::u I'(E)

{P 1\ GI} receive op(v) {Q 1\ GI}

• In Rule

{P 1\ GI}receive op1(v){R1A Gl}Sl{Q 1\ GI}, {P 1\ GI}receive op2(v){R2A GJ}S2{Q 1\ GI}
{P 1\ GI} in opl(v) -> Sl [] op2(v) -> S2 ni {Q 1\ GI}

5.2 Extensions for Silo

Following our incremental approach, we expect that our final language for Silo will be close to its
parent language in its expressive power for distributed computing and our logic will be extended
as well. For instance, in our current version of microSR, input statements support only message
passing because operations serviced by an input statement can only be invoked by send statements.
In our later version, we will allow operations to be invoked by call statements, which will provide
rendezvous. We will also extend our input statement with synchronization expressions to allow
selective receipt. We will also add some feature into our language to allow users to specify the
security level of their programs, resources and processes that they create. The current results at
this layer serve as a basis of our research for the complete Silo, since our research so far indicates that
SR concurrency features, such as dynamic process creation and that synchronization via message
passing, remote procedure calls, and rendezvous, are all amenable to a Hoare-like programming
logic, because the components of our semantic model for microSR have already formalized most
of entities and behaviors that SR programmers must consider during their design process. We
are now also evaluating the expressive power of our logic by carrying out proofs of programs.
The preliminary attempts at manual proof of microSR programs have motivated us to establish
a systematic method for creating annotated microSR programs. Another challenging task is to
develop, using HOL as well, an interactive prover of LCF [11] style for microSR.

6 Conclusion

Our research on miniSilo has shown how to structure proofs according to vertical layers, how
to formally modei different layers, how to model the interactions between layers, how to express
the proof obligations between layers, and how to compose all the proved layers together. We
are extending our research on system design and proof to show that how to evolve miniSilo to
Silo in an incremental manner. By our layered proof, we hope to demonstrate that secure and
distributed applications can be verified with respect to the entire system, namely showing that
microSR applications that are proved correct in our Hoare logic will run correctly on our Silo
system.

References

[1] 	 G.R. Andrews, R.A. Olsson, M. Coffin, I.J.P. Elshoff, K. Nilsen, T. Purdin, and G. Townsend, An
Overview of the SR Language and Implementation, ACM Transactions on Programming Languages and
Systems, 10 {1988) 51-86.

[2] 	 G.R. Andrews, Concurrent Programming: Principles and Practice, The Benjamin/Cummings Publishing
Company, Inc. Redwood City, CA, 1991.

[3] 	 W.R. Bevier, W.A. Hunt, J.S. Moore, and W.D. Young, An approach to systems verification, Journal of
Automated Reasoning, 5 (1989) 411-428.

112

[4] 	 W.R. Bevier, and J. Sogaard-Andersen, Mechanically Checked Proofs of Kernel Specifications, in CAY
'91, number 575 in Lecture Notes in Computer Science, pp.70-82, Springer Verlag, July 1991.

[5] 	 R. Cardell-Oliver, Using Higher Order Logic for Modelling Real-time Protocols, in TAPSOFT '91, num
ber 494 in Lecture Notes in Computer Science, pp. 259-282, Springer Verlag, April 1991.

[6] 	 P. Curzon, Of What Use is a Verified Compiler Specification, Technical Report No.274, Computer Lab
oratory, University of Cambridge, November 1992.

[7] 	 M. J. C. Gordon, Mechanizing Programming Logics in Higher Order Logic, in G. Birtwistle and P.A. Sub
rahmanyam, Eds., Current Trends in Hardware Verification and Automated Theorem Proving, Springer
Verlag, New York, 1989.

[8] 	 M. J. C. Gordon and T. F. Melham, Introduction to HOL: A theorem proving environment for higher
order logic, Cambridge University Press, Cambridge, 1993.

[9] 	 J .J. Joyce, Totally Verified Systems: Linking verified software to verified hardware. In M. Leeser and G.
Brown, Eds., Specification, Verification and synthesis: Mathematical Aspects, Springer-Verlag, 1989.

[10] 	 Z. Manna and A. Pnuefi, Verification of Concurrent Programs: A Temporal Proof System, Proc. of the
Fourth School of Advanced Programming, Amsterdam, 1982.

[11] 	 L. C. Paulson, Logic and Computation: Interactive Proof with Cambridge LCF, Cambridge University
Press, Cambridge, New York, 1987.

[12] 	 V. Yodaiken and K. Ramamritham, Verification of a Reliable Net Protocol, Proc. of the Second Inter
national Symposium on Formal Techniques in Real-Time and Fault-Tolerent Systems, number 571 in
Lecture Notes in Computer Science, pp. 193-215, Springer Verlag, January 1992.

[13] 	 C. Zhang, R. Shaw, R. Olsson, K. Levitt, M. Archer, M.Heckman, and G. Benson, Mechanizing a
Programming Logic for the Concurrent Programming Language microSR in HOL, in J .J. Gordon and
C.H. Seger, Eds., Higher Order Logic Theorem Proving and Its Applications, The 6th International
Workshop, HUG'93, number 780 in Lecture Notes in Computer Science, pp31-44, Springer-Verlag, March
1994.

[14] MACH 3 Kernel Principles, Open Software Foundation and Carnegie Mellon University, May 1991.

[15] 	 USA INFOSEC Research and Technology, Synergy: A Distributed, Microkernel-based Security Archi
tecture, November 1993.

113

Making secure dependencies over a LAN architecture for security needs

Bruno d'AUSBOURG

CERT!ONERA

Departement d' Etudes et de Recherches en lnjormatique

2, Avenue E. Belin- B.P. 4025

31055 Toulouse- Cedex- FRANCE

email: ausbourg@tls-cs.cert.fr

Abstract

It was recently argued that the presence of covert channels should no longer be taken for granted· in
multilevel secure systems. To date, multilevel security seems to have been an ideal to approach and not a
requirement to meet The question is: is it possible to design a practical multilevel system offering full security?
Based on what architecture? The approach described in this paper reflects some results of a research project
which suggests some ideas to answer this question. We have chosen the distributed architecture of a secure LAN
as an application framework. In particular we show how controls exerted on dependencies permit to control
exhaustively the elementary flows of information. The enforced rules . govern both the observation and the
handling of data over the whole system. They are achieved by means of some hardware mechanisms which
submit the access of hosts to the medium to a secure medium access control protocol. We evaluate how secure
dependencies used to ensure confidentiality in such an architecture may also be used to answer some other needs
of critical applications with regard to other attributes of security as integrity and availability.

Keywords

Secure dependencies, causality, multilevel security, distributed systems, network protocols

1 lntroductjon

Many systems have been built in order to protect confidentiality of data and processes. This is
generally done by offering multilevel architectures of machines and networks. These architectures
tolerate the existence of covert channels, because standards consider that covert channels are
inevitable. Proctor and Neumann in [7] argued that the presence of covert channels should no longer be
taken for granted in multilevel secure systems. Indeed, applications should not tolerate any
compromise of multilevel security, not even through covert channels of low bandwidths. They argued
also that systems with multilevel processors seem to be either impractical or insecure. They suggest to
redirect research and development efforts towards developing multilevel disk drives and multilevel
network interface units for use with only single level processors in building multilevel distributed
systems. ·

The approach described in this paper reflects some results of a research project 1 which suggests
some ideas in the same direction. This project aims at building a system architecture (machine and
LAN) that offers a high degree of protection both for storage, processing and communication of user
data. By high degree of protection we mean a protection that is based on an exhaustive control of
information flows, including timing flows, and ensuring there is no place for covert channels. We have
chosen the distributed architecture of a secure LAN as an application framework. In particular we show
how controls exerted on dependencies permit to control exhaustively the elementary flows of
information. The enforced rules govern both the observation and the handling of data over the whole
system. They are achieved by means of some hardware mechanisms which submit the access of hosts
to the medium to a secure medium access control protocol. We evaluate how secure dependencies used
to ensure confidentiality in such an architecture may also be used to answer some other needs of critical
applications with regard to other attributes of security as integrity and availability.

1. 	This project was supported by the French DGA/DEI/STEI.

114

mailto:ausbourg@tls-cs.cert.fr

2 Causal Dependepcjes apd Securjty

2.1 Causal dependencies

A system may be described as a set of points (o,t). A point references an object oat a time or
date t. This introduction of time is necessary because time can be observed in the system. Through
durations of operations for example. So, one can act on the value of the object o, at the instant t, or one
can act on the instant tat which the object o is given a particular value. In the first case, the object o can
be used to transmit some information if any semantics can be assigned to its value and a storage
channel is involved here; in the second case, time is used and therefore, a timing channel is involved if
any semantics can be assigned to the observed instant values.

Some of these points are input ·points, others are output points, and the last ones are internal
points. These points evolve with time and this evolving is due to the elementary transitions made by the
system. An elementary transition can modify a point: then, at instant t, it sets a new value v for the
object o of the point. This instant t and the new value v functionally depend on previous points. This
functional dependency on previous points is named causal dependency. The causal dependency ofy =
(o,t) on x =(o' ,t') with t' < tis denoted by x ~ y. Informally, by y causally depends on x we mean that
the point x is used to generate the pointy. We denote ~* the transitive closure of the relation ~.

These causal dependencies make up the structure of information flows inside the system. If a
subject s has some knowledge about the internal functioning of the system, then he is able to know the
internal scheme of causal dependencies. So, by observing any output point x0 , he is able to infer any
information on points x I x ~* x0 • In particular x may be an input points x; which contain some input
data of the system. Conversely, by altering an input point x;, s can alter any point x I x; ~* x and in
particular an output point x = x0 •

2.2 Security

Let As that contains the points on which a user, or more generally a subject s in the system, is
able to make an action: observation or alteration. The set Rs contains the points on which the subjects
may act (has the right to observe or to alter) in the system, in accordance with the security policy. So,
the system is secure if a subject s can act on the only objects he has the right to act:

~~~ m 
When the security policy which is used to define the rights of subjects is the multilevel security 

policy, a classification levell(x) is assigned to points x and a clearance level/(s) is assigned to subjects 
s. A convention on levels may be chosen: a level/ is a pair Oc,l;) where lc is a level of confidentiality 
and I; a level of integrity. When integrity is addressed, value oflevels is generally also increasing with 
the integrity expected on points. The comparison rule on levels may be defined as: 

OJ::;; /2) ¢:::> (lcJ,liJ)::;; Oc2,l;2) ¢:::> Oc1::;; lc2) A (lu ~ l;2) 

So, the setRs may be defined quite naturally by Rs ={xI l(x)::;; l(s)} 

When confidentiality is the addressed property, observation is controlled and Rs contains the 
points that may be observed by the subject s: these are the only points whose classification level is 
dominated by l(s). When integrity is the addressed property, alteration is controlled and Rs contains the 
points that may be altered by the subjects: these are the only points whose integrity level is dominated 
by l(s). 

2.3 Security conditions 

It is shown in [5] that two conditions are sufficient to guarantee the security defined by (1). A 
first interface rule expresses conditions on the classification level of an interface (input or output) point 
x; and the clearance level of the subjects who can observe or alter this point: 

'Vs, x0 e As~ l(s) ~ l(x;) (2) 

115 




The second condition requires a monotonic increasing (in the sense of the comparison rule) of 
levels over causal dependencies. 

'ttx, 'tty, x ~ y => l(x) =::;; l(y) (3) 
With regard to confidentiality, the both rules (2) and (3) ensure that any subject s who has the 

right to observe an output point x0 is allowed to observe any infonnation on previous points xI x ~ x0 • 

So the observation of x0 will give to s only infonnation he has the right to observe. With regard to 
integrity, the both rules (2) and (3) ensure that any subjects who has the right to alter an input point x; 
is allowed to alter any point xI x; ~ x. So the alteration of x; by s will have an impact only on points 
that s has the right to alter. 

These rules define secure dependencies. The condition (3) is interesting because it gives the 
semantics of an internal control which can be exerted on each system transition when a relation of 
causal dependency is involved. It enforces the exhaustive control of infonnation flows. This control of 
infonnation flows (including its temporal aspects) is achieved by making sure each transition and each 
elementary transfer of infonnation from input points until system points which can be observed 
directly by a user. All infonnation channels are involved (storage and timing) and it exists no potential 
covert channel. 

3 lnte[pretatjon 

These rules may be instantiated by making an interpretation of the model in the context of one of 
the various abstract layers of a real system. The choice has been made to perfonn this interpretation in 
the hardware layer. 

3.1 Security conditions in interface units connecting hosts to a LAN 

Network interface units U connecting stations to a communication medium constitute the system 
architecture as described by Figure 1. These units access the medium according to the CSMNCD 
Medium Access Control protocol, as defined by IEEE 802.3. We denote by Medium M the protocol 
data units managed by the Physical Layer. In particular, this layer offers two elementary signals 
(Carrier Sense, Collision Detection) and B which contains the bit value carried by M. 

Figure 1 The system architecture 

delay k~ B -tj-s-en-d..,-.----.ttlJI---n-ec-e-=-iv-e-1..:B~ ~21 delay 

MediumM 

The active entities, which are the subjects inside this hardware layer, are the network interface 
units U. These units have one input delay value, that is chosen externally as a unifonnly distributed 
random value in a finite range. They can be represented by two data cells: the bit value bit has to 
deposit on M or it has sampled from M and d that contains a delay value to spend before transmitting. 

In the same way, the objects are the internal cells b and delay of U and the communication 
medium M (including CS,CD and B). A level is assigned to all objects and subjects. The cells band 
delay in U have a levell(U) and all objects in M share the same levell(M). The elementary transitions 
include the elementary send and receive operations made by U between its own cells and M. 

The receive operation, as expressed in the CSMNCD protocol, consists in pennanently listening 
to signals CS and to the bit value B carried by M. This operation produces a new value for and the 
following dependencies are involved: 

{CS,B} ~b 

Condition-receive. In this case, the rule (3) applied to the receive operation gives: 

l(M).~/{U) 

116 



The send operation is less simple. Firstly, the decision by U to deposit a bit value upon M is 
taken by listening toM and watching at signals CS and CD. The transmission of the b value may be 
delayed according to the delay value stored in d when CD indicates that a collision occurred. When 
transmitting the bit b, a new value is assigned to theM components. So 

{CS,CD} u {delay}~ {d) 

{b,d} ~ {CS,CD,B) 

Condition-send. The rule (3) applied to these dependencies gives 

l(M) S l(U) S l(M) => l(M) =l(U) 

3.2 Management of level objects 

Levels are themselves objects in the system. So they are also submitteg to the control of 
dependencies. A classification level is assigned to them: we have chosen to give the value "Low" to the 
level of a level object.Then, the fact that an infonnation is secret is not itself a secret. It is not a 
doctrine, but only a work assumption that we made in order to simplify. 

Being submitted to the control of dependencies, the rule (3) must be applied to levels and then, 
given a Ievell;: 

x~ I;=> l(x) =:;; 1(1;) => l(x) =Low 

In other words, the value of a level and the instant at which this level gets a given value only 
depend on low level infonnation. This condition is sometimes difficult to enforce, for example, when 
the value of a level decreases from a High to a Low value. This change of the level value must have 
been planned and declared at Low level. 

In our system architecture, the value of the level of M, and time at which this level takes a given 
value must be generated from Low level points. Then, the value of the level of the medium and the time 
spent to this level are stated at Low level. Therefore, the use of M is time sliced between levels. And 
slices are declared or computed at Low level. A High process never acts on the value of a level (by 
maintaining it or by changing it). 

Similarly, the level of U must be declared at low level. And the time spent by U at this given 
level is also declared in advance at Low level. So at the beginning, U is at Low level. If a user wants to 
use the host and U at a level High, this user (and not a process running on the untrusted host) must 
firstly declare at Low level (not High) that he requires to use the unit U at level High during time t, in 
order to achieve communications at level High. 

3.3 Security SubSystem: S3 

Because they are quite simple, the controls can be enforced by a subset of hardware features 
which are driven by a subset of software. These two subsets constitute the Security SubSystem or s3 of 
the whole system. This s3 is also built inside a multilevel machine. 

3.4 Interpretation inside a Machine for Multilevel Security: M2S 

M2S is a machine built upon these principles and was fully described in [4]. M2S combines a 
processor with an address space A. The processor addresses the space A when executing elementary 
transfers to external devices as memory, registers of controllers. 

The elementary objects that can be observed by a user comprise processor registers r and cells a 
of the address space. Levels are assigned to these objects. The level assigned to the processor registers 
detennines the current level cl of the whole system. A value is assigned to cl by SSS in accordance 
with rules of time slicing. Assigning levels to cells of the address space divides it in different partitions. 
Each partition of this address space may be reached by the processor according to the value of its 
current level c/, the requested access mode and rules of flow control. 

The state of the system is reflected by the state of processor registers and the state of buses 
(address, data and control). Inside the system, internal infonnation flows are caused by elementary 

117 




transfers between the processor and the address space: transfers of data or transfers of interrupt signals. 
The s3 is in charge of controlling these infonnation flows. It does it by making use of specific hardware 
components which are under control of a Security Processor (PS). This PS uses its own resources in 
order to store and to manage security data. 

Figure 2 Elementary transfer controls inside M2S 

Processor 

Figure 2 describes how the s3 controls the infonnation flows inside the system. In fact, the s3 
inspects the state of buses in real time. It detennines which states are allowed in accordance with 
security data and with rules of flow controls. If an illicit state is reached during an elementary cycle, 
this cycle is interrupted by PS and a Bus Error signal is sent to the Processor. 

The Access Control Module (ACM) controls the first kind of transfers inside the system. At 
current level cl of the processor, a read cycle to an address a of level/a involves a dependence (a ~ r) 
where r is a register of the processor. The rule (3) implies la s; l(r)= cl. In the case of a write cycle, the 
dependence (r ~a) is involved: so l(r) = cl s; la. This module comprises an additional component 
which is in charge of controlling transfer operations that use a more complex addressing mode. In 
particular, when an access to a disk data block is involved, the processor uses the data bus in order to 
transfer some addressing infonnation to the disk controller: cylinder, track number, sector number ... 

The Interrupt Control Module (ICM) controls the second kind of transfers. It filters interrupt 
signals emitted by peripheral devices which are located somewhere in the address space. If the signal 
sender is an object whose level is /0 , the interrupt signal is also an object whose assigned level is /; =/0 • 

This signal causes a dependence (o ~ p ). ICM transmits this signal to the processor when cl = l(p) ~ 1;. 
In any other case, the signal is suspended until the condition becomes valid. In practice, in order to 
handle them more easily, interrupt signals are received by the processor when cl =/;. 

4 Djstrjbuted s1 oyer a LAN 

4.1 Enforcement of the security conditions in local S3 

The security condition expressed in (3) can be applied also to the operations of sending and 
receiving bits which are done by the network interface units. A local s3 is in charge of enforcing these 
controls and to regulate the access of these interface units to the communication medium. 

Figure 3 Rules to access the Bus in a network interface unit 

send l(U) =l(M) 
receive l(U) ~l(M) 

This local s3 keeps values of levels for the interface unit and for the communication bus. It 
grants or denies to the interface unit the access right to the bus according to those values of levels. In 
fact, it can intervene by hardware on elementary operations exerted in order to deposit or sample 
infonnation on the medium. So, for the interface unit, the ability to send or receive at anj instant t is 
given by its own level and the level of the bus. An interface unit equipped with its local S constitutes 
a Trusted Network Interface Unit orTNIU. 

118 



4.2 Trusted paths to local s3 

There is a need for building a trusted path between users and local s3 of the network interface 
unit The mechanism of a Secure Interface Device (SID) is used and is shown in Figure 4. 

Figure 4 Trusted Path 

Single level host SID 

A quite simple. dialogue between users and local s3 pennits to declare the value of the current 
level of the connected host for the next session and the required duration for this session; this fixes the 
level of the interface unit and the time needed for exchanges at this level and this penn its to initialize 
then the local s3 functioning. 

4.3 Security Subnetwork 

Exchanges between hosts running at various current levels may occur only if the level of the bus 
can change. In fact, this value must be time sliced in accordance with rules defines in paragraph 3.2: 
this slicing is based on level reseiVations which are produced and emitted at low level. Then, two 
conditions must be satisfied. Firstly, the value assigned to the level of the bust must be known by every 
local s3 . Secondly; the time slicing of this value must be enforced in a synchronous way over the LAN. 

Satisfying the first condition requires a communication subnetwork between all the local s3• In 
fact, in this case, this subnetwork uses the same bus of communication as hosts. The local s3 which are 
interconnected by this way constitute the security subnetwork of the system. This security subnetwork 
is used to exchange security data between local s3 . 

A centralized security station (or CSS) manages the data of security for the network. In 
particular, it manages levels which are assigned to interface units and to the communication bus 
according to reseJVations made by hosts and users through the SID and emitted to CSS by local s3 . It 
broadcasts also these data to all the local s3 over the security subnetwork. 

Satisfying the second condition requires the existence of a protocol in charge of regulating the 
exchanges of security data. It is also in charge of ensuring that the time slicing of the bus level is 
known by all the local s3 in a synchronous manner.· So, the rules which are used to access the bus in 
order to exchange security data are not the same as the rules used by hosts in order to exchange user 
data. These rules constitute the Security Medium Access Control (SMAC) protocol. 

5 SMAC protocol and multileyel LAN 

5.1 SMAC Protocol 

It enforces time slicing for the level of the bus according to reseJVations made to the CSS. It 
manages also the exchange of security data under the authority of the CSS. These data include 
particularly reseJVation data emitted from local s3 and level settings for the bus which are emitted from 
the CSS. In few words, the SMAC protocol is reseJVation based. 

It manages two functioning modes for the interface unit: a user mode and a security mode. In the 
security mode, only local S3 can use the bus to exchange security data with CSS. In user mode, 
operations to send and receive user data can be perfonned by the interface units according to values of 
their own level and of the level of the bus. The CSS computes time slices for sessions of exchanges in 
user mode which correspond· to various values assigned to the level of the bus. These values are set in 
accordance with reservations previously received. At the end of a slice, the interface unit always 
returns to the security mode. In security mode, the CSS may ask to local S3 if reseiVations are pending. 

119 



If yes, local s3 may answer by giving the content of their pending reservations. The protocol for this 
dialogue is a synchronous one. The CSS fixes a transmission slot for each local S3 to answer and each 
local s3 may answer during its reserved slot. The CSS broadcasts then a new value for the level of the 
bus and a new session in user mode is started. In user mode, a Medium Access Control (MAC) 
protocol arbitrates the access to the bus between units which are allowed to access it: this protocol is 
CSMNCD is in our case. 

The SMAC protocol is similar to protocols used in the real time world where requirements on 
the amount of delay between the time a packet is ready and the time it is received at destination are 
stringent In these protocols, some sources must reserve transmission slots before they can begin 
transmission [8]. 

5.2 DS3 and multilevel LAN 

The CSS, the local s3 and the Bus which is accessed in accordance with the rules of the SMAC 
protocol constitute the Distributed s3 of the LAN (or DS\ This architecture may be built upon a yet 
existing Ethernet LAN. The os3 and the local s3 cooperate in enforcing the control of infonnation 
flows in the more concrete layer of the system: the hardware layer. The aimed controls tend to master 
the involved causal dependencies by verifying their accordance to the rules of multilevel security. 

A multilevel station, built above the same principles (more details in [ 4]) may be added to ensure 
a secure sharing of data between levels. Because this multilevel station is able to manage multilevel 
data structures and processes, it pennits to single level stations to access data through levels in a quite 
secure manner. 

The global architecture of such a system constitutes a secure LAN which is said to have a 
multilevel functioning mode. Such an architecture and its multilevel functioning mode verify the 
required security property: all the infonnation flows, including timing flows, are controlled 
exhaustively. There is no way to build any covert channel. 

It is obvious that this architecture is insufficient if the communication bus is vulnerable: that is 
not the addressed problem in this paper. Cryptographic techniques may be added to preserve the 
confidentiality and integrity of messages transmitted over the network. These techniques may rely on 
cryptographic devices and functions which can be driven by the Distributed s3 (local S3 and CSS). 
They can be viewed as an external protection layer, by opposite to the internal protection layer 
described here. 

6 Discussion 

Such an architecture enforces the rules of multilevel security. The DS3 aim at controlling 
internal infonnation flows which are involved when communications are achieved over the medium by 
ensuring that the involved causal dependencies are secure. This control of infonnation flows may be 
used in order to enforce confidentiality, integrity and availability properties. 

6.1 With regard to confidentiality 

Letx1ow and Yhigh which are two points which belong to two different domains D1ow and Dhigh in 
the system. These domains may be defined, when multilevel security is the applied security policy, by 
D1 ={x lie(X) =I} if lc(X) is the confidentiality level ofx, with 1"1 D1 =0. 

Figure 5 Graphical illustration of confidentiality properties 

. . . . I 

120 




The security condition (3) and its enforcement in SMAC ensures that the obsetvation of any 
point in D1ow will reveal no information about points in Dhigh· But points of Dhigh may be built from 
points of D~ow The only allowed flows of information are from low to high. It is a classical result in 
confidentiality. In this case, this result is applied in the context of exchanges which are achieved 
between hosts at different levels. 

6.2 With regard to integrity 

Let x1ow and Yhigh which two points that belong to two different domains of integrity D1ow and 
Dhigh in the system. These domains may be defined, when multilevel security is the applied security 
policy, by D1 ={xI l;(x) =I} if l;(x) is the integrity level ofx. So D1ow denotes a domain oflow integrity 
and Dhigh denotes a domain of high integrity. 

Figure 6 Graphical illustration of integrity properties 

The security condition (3) and its enforcement in SMAC ensures that the alteration of any point 
in D1ow will alter no information about points in Dhigh· So the only allowed flows of information are 
from high to low. This is in accordance with classical results as expressed by Biba [2] for example. 

By defining integrity domains and by controlling flows between these domains according to the 
previous rules, we ensure there is no way, at a low integrity domain, to use any input covert channel in 
order to insert corrupted instructions or data in a high integrity domain. 

These results may be applied to isolate and minimize functions which are vital to run a critical 
process inside a global environment (see the discussion in [6]). Criticality levels may be defined; they 
reflect the degree of criticality of functions or data to the system objective. So a High critical domain is 
fully protected from eventually malicious operations exerted from a Low critical domain. This scheme 
is interesting in a security point of view, but also for cost considerations. Indeed, it permits to minimize 
the High critical domain by including in it the only really critical functions and data. Techniques used 
during the development of such a system and during its running in order to ensure dependability 
properties may be reduced by limiting them to the only critical domain. 

6.3 With regard to availability 

A particular case of the integrity property which was previously described offers some kind of 
availability. Indeed, the SMAC protocol which is used to share the communication medium of the 
multilevel LAN tends to separate domains of integrity/criticality and to regulate flows between these 
domains according to multilevel rules. 

In particular, the time slicing exerted on the level of the medium coupled with the ability 
assigned to the interface units of sending or receiving according to time slices make impossible for an 
interface at a Low integrity level to disrupt the use of the communication medium by interfaces at a 
High level of integrity. When communications occur at a given level, there is no way for interface units 
at an other level to get any send access to the medium. 

So the availability of setvices inside the domain of High integrity can not be countered by 
malicious processes at a Low level of integrity or by a crash or a bad functioning occurring on an host 
at a lower level of integrity. 

So, some mechanisms may be employed to ensure high availability inside the high integrity 
domain itself. But their use is limited inside this domain only, and the availability property is not put in 
danger by lower integrity levels, thanks to the separation enforced by the DS3 and the SMAC protocol. 

121 



7 Conclusjon 

Techniques and mechanisms suggested here were firstly designed and developed in order to 
protect the confidentiality of data, processes and communications over a LAN. This high protection is 
based on a control of dependencies inside the system, ensuring that all dependencies are in accordance 
with multilevel security rules. In fact, these controls enforce an exhaustive control of information 
flows. They rely upon a distributed security subsystem composed of a particularly restricted subset of 
hardware mechanisms: they are in cha~e of ensuring that accesses of interface units to the medium are 
done in accordance with multilevel rules. This leads to share the medium in a particular way which 
defines a secure medium access control (or SMAC) protocol. This protocol may be viewed as an 
extension of an existing MAC protocol, as CSMNCD. 

The logical separation achieved by means of this protocol may be used to separate integrity 
levels. In particular, the extremely strong control of information flows which is enforced can isolate 
some domain where a high level of integrity may be needed drastically. This domain is then protected 
from other domains of low integrity that can not corrupt its behaviour: in particular they can not 
enforce any communication channel to send malicious data or pieces of code. Such levels of integrity 
can be used in critical applications to protect some vital functions. As a particular case of the 
application of control of dependencies to integrity, some needs in availability may be answered also. 
The separation between high integrity and low integrity domains ensure that any (malicious or not) 
failure in a low integrity domain will not disrupt the good functioning inside a high integrity domain. 

This whole security protects efficiently all the information that needs to be protected, and only 
this information. We feel that this approach is well adapted to the real world, where in fact, few 
informations and functions necessitate to be protected. So, such a system does not penalize the use and 
processing of most of the data which belong to an unprotected domain. Rather, it makes lighter the 
amount of protected processing by reserving it to the only data which necessitate it. 

8 References 

[1] 	 P. Bieber, F. Cuppens 
A logical view of secure dependencies. In Journal of Computer Security, Vol. 1, Nr. 1, 
lOS Press, 1992 

[2] 	 K. J. Biba 
Integrity Considerations for Secure Computer Systems, Technical Report ESD-TR-76
372, ESD/AFSC, Hanscom AFB, Bedford, Mass., 1977. Also MITRE MTR-3153. 

[3] 	 D. E. Bell and L. J. Padula 
Secure Computer Systems: Unified Exposition and Multics Interpretation, MTR-2997, 
MITRE Corporation, Bedford, Mass. (1975). 

[4] 	 B. d'Ausbou~ and J.H. Llareus 
M2S: A machine for multilevel security, European Symposium on Research in Computer 
Security, ESORICS92, Toulouse, France, 1992 

[5] 	 G.Eizenbe~. 

Mandatory policy: secure system model. In AFCET,editor, European Workshop on 
Computer Security, Paris, 1989. 

[6] 	 H.L Johnson et al. 
Integrity and Assurance of service Protection in a la~e. multipurpose, critical System, In 
Proceedings ofthe 15th National Computer Security Conference, Baltimore, MD, October 
1992 

[7] 	 N. E. Proctor and P. G. Neumann 
Architectural implications of covert channels, In Proceedings of the 15th National 
Computer Security Conference, Baltimore, MD, October 1992 

[8] 	 R. Yavatkar, P. Pai and R. Finkel 
A reservation based CSMA Protocol for Integrated Manufacturing networks, Teen. Rep. 
216-92, Department ofComp. Sc., Univeristy ofKentucky, Lexington, KY 

122 




AUTOMATIC GENERATION OF HIGH ASSURANCE 


SECURITY GUARD FILTERS* 


Vipin Swarup 

The MITRE Corporation 


202 Burlington Road 

Bedford, MA 01730-1420 


( swarup@mitre.org) 


Abstract 

This paper presents a generic architecture for secu
rity filters and a methodology for developing a wide 
variety of high assurance security filters. We define 
a security filter specification language (called Felt) 
which can specify the behavior of a wide range of 
security filters. We describe a Felt compiler which 
automatically translates Felt specifications to secu
rity filter programs. These filter programs are writ
ten in C and can be compiled and run on a wide 
range of computers. An important aspect of this 
work is its emphasis on achieving high assurance 
without sacrificing performance or cost. Towards 
this end, we have provided Felt with a formal se
mantics in the denotational style. We have also 
formally verified non-trivial algorithms used in our 
Felt compiler. 

1 Introduction 

A security guard mediates data transfer across secu
rity boundaries. It may be a separa-.;e device, pro
gram, or manual controls. A guard is typically used 
to control data transfer between systems that are 
at different security levels of protection and have 
different user profiles. Guards are also used in sin
gle systems (e.g., databases) to downgrade infor
mation. 

A security filter provides the essential filtering 
services of a security guard. It decides whether 
to allow data to cross the security boundary me
diated by the security guard. In certain cases, it 
transforms data (e.g., sanitization, reformatting, 
etc.) and permits the transformed data to cross the 
boundary. It maintains logs of the data it filters 
and the actions taken on the data (e.g., the saniti

*Work supported by Rome Laboratory, Electronic Sys
tems Command, United States Air Force under contract 
F19628-93-C-0001. 

zation performed, the reasons for preventing data 
from crossing the boundary, etc.) 

In this paper, we make the following contribu
tions: 

1. 	We present a generic security filter architec
ture that can be used as the basis for compar
ing security filters or developing new security 
filters. The architecture includes message for
mats, filtering constraints, message transfor
mations, and logging actions. 

2. 	 We present a new methodology for developing 
a wide variety of high assurance security filters. 
The methodology is based on a security filter 
specification language (called Felt) which can 
specify the behavior of a wide range of secu
rity filters. Felt specifications can be compiled 
to security filter programs and run on a wide 
range of computers. We have provided Felt 
with a formal denotational semantics which 
precisely specifies the meanings of Felt spec
ifications. We have formally verified the non
trivial algorithms used in our Felt compiler, 
thus providing high assurance that generated 
security filter programs have the same mean
ings as their specifications. 

The advantages of our approach relative to existing 
security filters (such as filters in the WWMCCS 
guard [2], USAFE guard [3], etc.) are as follows. 

Extensive Filtering Capabilities: Felt is a 
very expressive specification language. For ex
ample, constraints involving relations between 
the values of several fields can be specified sim
ply and clearly. A wide variety of security 
filters can be specified in Felt, and Felt can 
evolve to accommodate new requirements on 
security filters. 

In contrast, existing security filters embed 
much of their functionality within custom

123 


mailto:swarup@mitre.org


developed program code. This makes it dif
ficult and expensive to develop and maintain 
security filters with advanced features such 
as message sanitization and inter-field con
straints. Thus, these filters typically sup
port only some of the filtering capabilities sup
ported by Felt. 

Widely Configurable: Any specifiable aspect 
of the behavior of a security filter can be al
tered by modifying the high-level Felt specifi
cation of the filter and recompiling the speci
fication. This includes message formats, con
straints, message transformations, and logging 
actions. In contrast, existing security filters 
only permit some of their filtering capabilities 
to be reconfigured (via predefined context ta
bles). 

Good Performance: A security filter program 
is obtained by compiling a Felt specification 
for the filter. Felt contains a small num
ber of basic primitives, and a Felt compiler 
can be designed to compile these primitives to 
very efficient code. For example, our compiler 
compiles table lookups and dirty-word searches 
into language recognizers based on efficient de
terministic finite state automata (DFA). 

Low Cost: The development cost of Felt and a 
verified compiler for it is a one-time cost ( ap
proximately 6 man months, thus far). There
after, the only cost involved in creating and 
modifying a security filter is the cost of creat
ing and modifying a filter specification. Since 
Felt is a special-purpose language designed for 
the specification of security filters, it is a sim
ple, intuitive, high-level language. Further, 
our examples show that filter specifications are 
approximately a tenth the size of correspond
ing filter programs. This should make it easier, 
less error-prone, and cheaper to develop and 
modify specifications as opposed to developing 
and modifying program code. These potential 
benefits should increase considerably with the 
development of a good user interface. 

High Assurance: The behavior of a filter is 
specified precisely using a specification lan
guage (Felt) that has a formal semantics
there is no ambiguity about what the specifica
tions mean. Further, nontrivial algorithms of 
Felt's compiler have been formally verified. In 
contrast, the behavior of existing security fil
ters is represented within large computer pro
grams (written inC or Ada, for example). This 

is quite error-prone, and little assurance exists 
that the computer programs will filter all mes
sages correctly. 

The remainder of this paper is organized as fol
lows. Section 2 presents a generic architecture of 
security filters. Section 3 describes the syntax and 
semantics of a security filter specification language 
(Felt). Section 4 describes a Felt compiler that 
translates Felt specifications to security filter pro
grams. Section 5 discusses issues related to the as
surance of the resulting security filters. Section 6 
concludes this paper with a discussion of possible 
extensions to Felt. 

2 	 A Security Filter Architec
ture 

Figure 1 depicts a generic architecture of secu
rity filters. In this architecture, security filters have 
four primary aspects: message parsing, constraint 
checking, transformations, and actions. A security 
filter accepts as input a stream of bytes. The mes
sage parser partitions the byte stream into a se
quence of messages. Each message is examined by 
the constraint checker to see if it meets predefined 
criteria. The constraint checker can invoke the mes
sage transformerto transform messages during this 
process. The constraint checker and message trans
former can log their activities using actions. The 
constraint checker can also use actions to write 
(possibly transformed) messages to "accept" and 
"reject" output streams depending on whether or 
not the messages meet the predefined criteria. 

A message consists of a message header followed 
by a sequence of bytes. Messages are grouped into 
message categories. Message formats, constraints, 
transformations, and actions are associated with 
categories so that all messages in a category are 
filtered similarly. Message categories can be either 
fixed-format or variable-format categories. A fixed
format category contains messages of a fixed length. 
Further, the messages are partitioned into fixed
length fields. The contents of certain fields can be 
restricted to certain types of data. For example, 
a field can be restricted to contain numeric data 
only. A variable-format category contains messages 
whose length and format are only partially prede
termined, i.e., messages in the same variable-format 
category can have different lengths and formats. 

The message header of a message uniquely identi
fies its message category. In the case offixed-format 
categories, this automatically identifies the length 

124 




Byte 
Stream 

I 

r----..1 	 Message 
Stream 

Message Transformer 

' Error 

Stream 


Accept Reject Log 

Streams Streams Streams 


Figure 1: A security filter architecture. 

and format of the message. In the case of variable
format categories, the header includes the length of 
the message. Format information can be encoded 
within the message if desired. The message parser 
uses message headers to partition the input byte 
stream into a sequence of messages. 

Constraints can be either integrity constraints 
(that check whether messages contain legal data) 
or confidentiality constraints (that check whether 
messages are free of any restricted data). They can 
constrain data to contain certain values, e.g., a field 
must contain numeric characters. They can con
strain data to be free of certain values, e.g., a field 
must be free of restricted words ("dirty words"). 
They can constrain data to bear a certain relation
ship with each other, e.g., the date in a field must 
be less than or equal to the date in another field. 

Transformations are functions that transform 
messages to new messages. Two important 
classes of transformations are sanitizing transfor
mations and reformatting transformations. Sanitiz
ing transformations sanitize messages by replacing 
the contents of fields with less sensitive data, e.g., 
blanks or the contents of other less sensitive fields. 
Reformatting transformations modify the formats 
of messages, e.g., elimination of fields, rearranging 
of fields, etc. Transformations can be either un
conditional transformations (in which case they are 

applied to all messages of their category) or condi
tional transformations (in which case they are only 
applied to messages of their category that meet a 
constraint). Note that since transformations alter 
the contents of fields, they can invalidate inter-field 
constraints that held prior to the transformation. 

Actions are procedures that cause the filter to 
change its state. Two important classes of actions 
are filtering actions and logging actions. Filtering 
actions write messages to output streams. Such ac
tions are invoked by the constraint checker to par
tition the input message stream into several "ac
cept" and "reject" streams. For example, messages 
that do not meet the predefined constraints can be 
written to multiple "reject" streams depending on 
their importance. This can, for instance, permit a 
human reviewer to scan important messages first. 
Logging actions cause data to be written to log files. 
For example, such actions can be used to log the 
reasons for messages to be sent to "reject" streams. 
They can also be used to log the sanitization op
erations (and other transformations) performed on 
messages. 

This architecture assumes that the input and 
output streams of a filter are established by code ex
ternal to the filter. It also assumes that the external 
code determines the message category and length 
of each data set, attaches the appropriate header to 

125 




the data set, then sends it along the input stream 
as a sequence of bytes. Similarly, the external code 
processes the data on the output streams. This ex
ternal code depends on the operating environment 
of the security filter. This includes both the oper
ating system of the computer as well as the security 
guard within which the filter is embedded. 

3 	 Felt: A Security Filter 
Specification Language 

Felt 1 is a specification language which can express 
the behavior of a wide range of security filters. The 
language is based on the general architecture de
scribed in Section 2. Thus a Felt specification of a 
security filter includes, for each message category, 
the identification characteristics that uniquely iden
tify the message category, the format of messages in 
the category, the constraints that messages should 
satisfy in order to be "accepted", rules for trans
forming messages, and actions to be taken by the 
security filter at various stages of its execution. In 
this section, we describe Felt informally. The syn
tax and formal denotational semantics of Felt is 
presented in [10]. 

A filter specification begins with a sequence of 
constraint definitions, transformation rule defini
tions, and action definitions. These definitions as
sign names to constraint functions, transformation 
rules, and actions respectively. The names can be 
used elsewhere in the specification in place of the 
definitions. Note that definitions can be recursive. 
These definitions are followed by a sequence of mes
sage category definitions. A message category def
inition specifies the parsing and filtering behavior 
for all messages in a category. The following sub
sections describe the components of a message cat
egory definition. 

3.1 Message Header and Length 

Felt assumes that every message begins with a 
header. A header is specified as a fixed-width string 
that satisfies a constraint. Note that the headers 
of each category must be distinct from headers of 
other categories, and no header should be a pre
fix of any other header. This implies that every 
message has a unique valid header, and the header 
uniquely identifies the category of the message. 

Felt also assumes that the length of a message 
can be uniquely determined from t.he message's 

1 Pieces of felt were used as filters in medieval Germany. 
The word "filter" derives froin this. 

header. If all messages in a category have the same 
length, then the length is specified as a constant 
number; since a header uniquely identifies the cat
egory of a message, it uniquely identifies the length 
of the message. If messages in a category have dif
ferent lengths, then it is assumed that the length is 
encoded within the header and hence the length is 
specified as an explicit function of the header. For 
example, 

(define-message tpfdd-non-unit-record 
(header 1 (function (x) 

(or (equal-to-string? x "G") 
(equal-to-string? x "J")))) 

(length 18) 

specifies a message category that is called 
tpfdd-non-unit-record. Every message in the 
category is 18 bytes long and has a header of length 
1 that is either the string "G" or the string "J". As 
another example, 

(define-message tclf-record 
(header 5 (function (x) 

(equal-to-string? 
(substring x 0 1) 
"F"))) 

(length (function (x) 
(string->number 
(substring x 1 5)))) 

specifies a message category that is called 
tlcf-record. Every message in the category has 
a header of length 5 whose first byte is the charac
ter 'F'. The length of the message is encoded (as a 
binary number) within the remaining four bytes of 
the header. 

The message header and length specification is 
adequate to partition an input byte stream into a 
sequence of messages. However, if the input byte 
stream contains erroneous data and does not repre
sent an exact sequence of messages, then it is desir
able for a security filter to recover from the input 
errors gracefully and resume normal filtering. Cur
rently, Felt does not provide constructs for the user 
to specify error handling and recovery, but relies on 
the default error handling capability provided by 
the Felt compiler. 

3.2 Message Format 

Felt permits messages to be partitioned into fields. 
Constraints are then applied to these fields. Fields 
and constraints are associated with message cate
gories; hence every message in a category is par
titioned into fields in the same way. Fields in a 

126 




category have fixed lengths, except that the last 3.3 Constraints 
field of a message may be of variable length to ac
commodate variable length messages in a category. 
Felt does not provide for arbitrary variable format 
messages. However, Felt can specify the message 
formats of numerous guards, including the WWM
CCS and USAFE guards. 

A message category definition includes a se
quence of field specifications. Each field specifi
cation consists of a name that uniquely identifies 
the field, a string that describes the field, and the 
length ofthe field (in number of bytes). The order 
of the field specifications is significant and repre
sents the order of the fields within a message. Thus 
the first field specification in this sequence describes 
the first field of the message, and so on. The length 
of the last field may be specified as * to denote a 
variable length field. This field is assumed to span 
the rest of the message. For example, 

(define-message tpfdd-non-unit-record 

(fields 
(n01 "Record Type" 1) 
(n17 "POD EAD" 4) 
(n18 "POD LAD" 4) 
(n29 "Personnel Requiring Transport" 5) 

(n30to32 "Cargo Category Code" 3) 
(n101 newline 1) 
) 

specifies that every message in the category called 
tpfdd-non-unit-record has six fields. The first 
field is called n01 and spans the first byte of the 
message, the second field is called n17 and spans 
the next four bytes of the message, etc. The strings 
"Record Type", "POD EAD", etc. are textual de
scriptions of the field; they provide documentation 
to the user but play no semantic role. As another 
example, 

(define-message tlcf-record 

(fields 

(t01 "Message Header" 5) 

(t02 "Message Body" •) 

) 

A message category definition includes a constraint 
specification that specifies the requirements for a 
message to be "accepted". Messages in the cate
gory that meet the constraint are "accepted" by 
the filter while other messages are "rejected". The 
specification language for constraints is quite pow
erful and is described below. 

A constraint function is a boolean-valued func
tion that takes one or more strings as argument. If 
a constraint maps strings to true, we say that the 
strings satisfy the constraint. Otherwise, we say 
that the strings do not satisfy the constraint. For 
example, "(function (x) (blank-string? x))" is 
a constraint that accepts a string x as argument 
and returns true if all characters of x are the blank 
character, and false otherwise. The string " " 
satisfies the constraint, while the string "xyd" does 
not. A constraint function can be assigned a name 
by a constraint definition. 

Strings can be either constant strings or sub
strings of messages (e.g., fields and subfields). Con
stant strings are enclosed in double quotes (e.g., 
"Comic"), fields are referenced by their names, and 
subfields are specified as follows: 

(substring S llo ll1): The substring of S from 
index llo through index llt - 1. 

A constraint is a boolean-valued expression. Felt 
provides several primitive constraint expressions 
which can be used to define other constraints. Let 
S, So, s1, ... , Sn, S* be string specifications, ll be a 
number, and CF be a constraint function. The fol
lowing are some of the primitive constraint expres
sions provided at present: 

(numeric-string? S): True if all characters of 
S are digits. 

(is-of-length? S ll): True if the length of S 
is equal to ll. 

(equal-to-string? So St): True if So is 
equal to St. 

(is-a-word-in-list? S (So S1 ... Sn)): 
True if S is equal to one of the strings 

(free-of-words-in-list? S (So St ... Sn)):
specifies that every message in the tlcf-record True if S does not embed any of the strings
category has two fields. The first fieU is called t01 

So, S1 , ... , Sn.
and spans the first five bytes of the message. The 

second field is called t02 and spans the remainder Constraint functions applied to strings are also con

of the message. straint expressions: 


127 




(apply-constraint CF S*): True if strings S* 
satisfy the constraint function CF. 

Complex constraint expressions can be built from 
simpler constraint expressions. Let Co, C1, ..., Cn 

be constraints. The following constructors are pro
vided to construct complex constraint expressions: 

True if each of the con
straints C1, C2, ..., Cn is true. 

(or 	C1 C2 . . . Cn) : True if at least one of the 
constraints C1, C2, ..., Cn is true. 

(not C): True if the constraint C is not true. 

(if 	C1 C2 C3): True if either C1 and C2 are 
both true, or if cl is false and c3 is true. 

Finally, constraint expressions include boolean
valued operations on numbers, characters, and 
booleans. Felt includes coercion operations to co
erce string values to these data types. 

3.4 Transformations 

Felt provides sanitizing and reformatting transfor
mations. Sanitizing transformations are specified 
as rules (functions) that transform strings to new 
strings of the same length. A sanitized message 
must belong to the same category as the original 
message. Thus the partitioning of a message into 
fields is unaffected by such transformations. 

Felt provides several primitive sanitizing trans
formation rules which can be used to define other 
rules. LetS, s0 , S1 be string specifications. The fol
lowing primitive sanitizing transformation rules are 
provided at present: 

(replace-with-string! So Sd: Replaces 
all characters in So with those in S1. 

(map-character-transformation! F S): 
Transform S by applying the function F to each 
character in S. 

The function F above can be any function from 
characters to characters. Felt provides some built
in functions such as lower-case and upper-case 
which return the lower or upper case of the argu
ment character. Others can be created and named 
within a transformation definition, e.g., 

(define-character-transformation 

blank-string! 

(function (x) # )) 


Reformatting transformations are specified as 
rules (functions) that transform messages to new 
messages. A reformatted message is intended to be
long to a specific category that is usually different 
from the category of the original message. Thus a 
reformatting rule includes a category name. After 
such a rule is applied, the (reformatted) message 
will be subject to the format, constraints, transfor
mations, and actions of the specified category. If 
the message does not belong to that category, the 
format check will fail and the message will be re
jected. 

(reformat-message! S I): Replace the cur
rent message with the string S and filter the 
reformatted message S according to the speci
fication of category I. 

Felt includes standard string manipulation primi
tives to permit the string S to be constructed from 
the fields of the original message. 

Transformation rules can be unconditional (in 
which case every message gets transformed) or con
ditional (in which case only messages which meet 
the condition are transformed). A conditional 
transformation rule is specified as follows: 

(conditional-transformation C T): Perform 
transformation T if and only if the message sat
isfies the constraint C. 

Finally, a sequence of transformation rules 1s 
specified as follows: 

(begin To ... Tn): Perform transformations 
To, ... , Tn in sequence. 

3.5 Actions 

Actions are specified as commands that modify the 
global states of security filters. Currently, only in
put and output streams can be modified by actions 
in Felt. 

(write-to-stream! S P): Writes the string S 
to output port P. 

(newline-stream! P): 
Writes the newline character to output port 
P. 

(peak-stream! S P): Transforms the string S 
to contain the first characters from input port 
P. The input stream is left unchanged. 

(drop-stream! ll P): Drops the first N charac
ters from input port P. 

128 




4 A Co·mpiler for Felt 

We have implemented a prototype Felt compiler 
that automatically translates Felt specifications of 
security filters to compilable (then executable) se
curity filter programs. The Felt compiler is written 
in the programming language Scheme [6] and can be 
executed using any Scheme implementation [1, 4]. 
The generated security filter programs are written 
in the programming language PreScheme [7, 8] and 
can be compiled to C code using a modified version 
of the verified PreScheme compiler described in [8]. 
This C code can be compiled to executable code 
using any C compiler. 

A generated security filter program contains a 
top-level PreScheme loop that partitions the input 
stream into a sequence of messages and separates 
the messages into output streams. It first searches 
for a category definition such that the first few char
acters in the input stream form a valid message 
header for the category. If no such category defini
tion is found, a character is removed from the input 
stream and appended to an "error" file, and the 
loop is repeated. Otherwise, the length of the mes
sage and hence the message itself can be identified. 
The transformation rules of the selected category 
are applied to the message. Then, the constraint of 
the selected category is applied to the input buffer 
to compute a boolean value. The message is writ
ten to one of the output buffers based on the action 
rules associated with the constraint. Felt's seman
tics ensures that each message is written to at least 
one output stream; if no explicit actions are pro
vided in the specification, then messages are writ
ten to default "accept" and "reject" streams based 
on the value computed by applying the constraints. 
The loop is then repeated (after removing the mes
sage from the input stream). The loop terminates 
when the input stream is empty. 

The compiler algorithms are straightforward for 
the most part. The compiler includes two opti
mizations that significantly boost the efficiency of 
the generated code. First, in the generated se
curity filter programs, all strings are represented 
as pairs of start and end indices into an input 
buffer. The input buffer is a vector of charac
ters that represents the head of the input stream 
of the filter. This causes the filters to have stor
age requirements that are statically determinable 
and obviates the need for dynam:c data. The 
second involves the translation of the primitive 
constraint functions is-a-word-in-list? and 
:free-o:f-words-in-list?. The compiler imple
ments these constraints using language recognizers 

based on finite automaton. This translation has al
gorithmically significant content and is described in 
the following subsection. 

4.1 Language Recog.nizers 

A recognizer for a language is a program that 
takes as input a string :c and answers "yes" if 
:c is a sentence of the language and "no" other
wise. For example, consider the language consist
ing of all strings that embed one or more of the 
strings "NATIONAL" and "USA". A recognizer for 
this language would answer "yes" for the strings 
"NATIONAL", "FOREIGN NATIONAL", "CRU
SADE" (since this embeds "USA"), etc., and "no" 
for the strings "RATIONAL", "FSA", etc. Lan
guage recognizers can be used in integrity and re
leasibility checks to determine whether a string be
longs to a set of strings. Another direct application 
of language recognizers is in dirty-word searches, 
where the goal is to determine whether a string 
contains one of a fixed set of "dirty" words. 

In Felt, a language is specified as a list of words, 
where a word is a sequence of constant characters. 
No wildcards, character ranges, etc. are permitted. 
The notation can easily be extended to the regu
lar expression notation (which permits wildcards, 
character ranges, etc.). However, note that the use 
of wildcards can result in recognizers with enor
mous tables of data. The size of these tables can 
be reduced at the expense of increased execution 
time-this may or may not be acceptable depend
ing on performance requirements. Algorithms for 
recognizers are well-known and in common use. 

The algorithm for translating a language specifi
cation into a recognizer for the specified language 
has the following steps: 

1. 	Translate the language specification into a 
nondeterministic finite automaton (NFA) that 
recognizes the specified language; 

2. 	Translate the NFA to an equivalent determin
istic finite automaton (DFA); 

3. Translate the DFA to an equivalent minimum
state DFA that is unique up to state names; 

4. Translate the DFA to an equivalent DFA that 
differs from the former only in the names of 
states; 

5. Translate 	the DFA to a PreScheme program 
that is a recognizer for the specified language. 

129 




5 

Following [5] , we have formally verified that the 
algorithm does indeed translate a language specifi
cation into a recognizer for the specified language. 
The algorithm and proof of correctness for each of 
these steps is detailed in [10]. 

Assurance 

We have provided .:Felt with a formal semantics in 
the denotational style [9]. The semantics provides 
a precise mathematical meaning to specifications 
written in .:Felt. The denotational semantics is pre
sented in [10] and is having a significant impact 
on our work. It serves as a language description 
tool and is influencing the design of .:Felt as alan
guage with a simple, intuitive semantics. In fact, 
the language described in this paper bears little re
semblance to the language that predates the for
mal semantics. The semantics also serves as a pre
cise standard for computer implementations of .:Felt 
so that different compilers will have similar behav
iors. It also suggests an implementation strategy 
that can be adopted by compilers. Our .1"elt com
piler adopts this implementation strategy while in
corporating optimizations where beneficial. This 
approach simplified our task of implementing the 
compiler. Finally, the semantics aids in language 
documentation and analysis by assigning a precise 
meaning to every .:Felt specification. We believe 
this will encourage .1"elt users to develop correct 
specifications. 

As mentioned above, .:Felt's semantics serves as a 
formal specification for computer implementations 
of .:Felt. A .:Felt compiler can be verified to be cor
rect with respect to this specification. In particular, 
.:Felt's denotational semantics provides meanings 
to .:Felt specifications. Similarly, the PreScheme 
programming language's denotational semantics [8] 
provides meanings to PreScheme programs. We 
specify our .:Felt compiler to be correct if it maps 
.:Felt specifications to PreScheme programs such 
that the PreScheme programs have the same mean
ings as the .:Felt specifications. 

We have chosen not to perform a detailed ver
ification of the above statement (namely that 
the compiler preserves meanings) since the im
plementation strategy of the compiler is based 
on the denotational semantics. Rather, we 
have focused on the nontrivial algorithms of 
the compiler, namely the implementation of the 
constraints functions is-a-word-in-list? and 
free-of-words-in-list?. These functions are 
implemented as language recogni:t;ers (see Sec

tion 4). We have formally verified the algorithms 
used to implement these functions; the rigorous 
mathematical proofs of correctness are presented 
in [10]. 

Our correctness proofs provide high assurance 
that the compiler does not alter the meaning (be
havior) of the specified security filters. That is, the 
executable security filter programs generated by the 
compiler have the same behavior as that specified 
by the user. The formal semantics of .:Felt encour
ages users to develop correct specifications and pro
vides some assurance that the specified behavior is 
indeed the desired behavior. Additional controls 
may be desirable to provide higher assurance of this 
fact. For example, modification ( customization) of 
specifications can be restricted to certain individ
uals, good user interfaces can be developed, etc. 
Further work is needed to investigate these issues. 

6 Conclusions and Future 
Work 

We have developed a generic architecture for secu
rity filters. We have also developed a methodology 
for constructing security filters by specifying their 
behavior using a special-purpose specification lan
guage and then automatically compiling the specifi
cations to executable code. A formal semantics for 
the specification language and verification proofs of 
non-trivial algorithms of the compiler provide for 
high assurance. We hope that this work will prove 
useful as a framework for developing security filters 
in the future. 

Much work remains to be done. We have largely 
ignored the issue of user interfaces for different 
users of .:Felt (e.g., security filter implementors, se
curity administrators, etc.). However, good user in
terfaces are critical to the usability of .:Felt as well as 
the assurance of the generated filters and they war
rant considerable attention. Also, we have placed 
primary emphasis on developing the constraint sub
language of .1"elt at the expense of transformations 
and actions; these aspects need to be investigated 
further. Our claim of the broad applicability of 
.:Felt needs to be validated by specifying the behav
ior of several existing and planned security filters 
within .:Felt. Additional work is needed to integrate 
the generated filters into security guards. Finally, 
extensive empirical studies are needed to compare 
the performance and lifecycle cost of Felt-generated 
filters with custom-developed filters. 

130 




Acknowledgements 

I thank Joshua Guttman for several suggestions, in
cluding the notion of a "security filter generator". 

References 

[1] 	 Bartlett, J. F., January 1989, Scheme->C: A 
Portable Scheme-to-G Compiler, WRL, 89/1, 
Digital Equipment Corporation Western Re
search Laboratory. 

[2] 	 Fiorino, T., May 1991, WWMGGS to 
GAT Guard, Functional Specification Base
line, Project High Gear. 

[3] 	 Gagnon, L., October 1990, An Overview of the 
USAFE Guard, In 13th National Computer Se
curity Conference, Baltimore, MD. 

[4] 	 Guttman, J. D., V. Swarup, and J. Ramsdell, 
1994, The VLISP Verified Scheme System, To 
appear in Lisp and Symbolic Computation. 

[5] 	 Hopcroft, J. E. and J. D. Ullman, 1979, Intro
duction to Automata Theory, Languages, and 
Computation, Reading, MA: Addison-Wesley. 

[6] 	 IEEE Std 1178-1990, 1991, IEEE Standard 
for the Scheme Programming Language, New 
York, NY: Institute of Electrical and Elec
tronic Engineers, Inc. 

[7] 	 Kelsey, R. A., 1992, PreScheme: A Scheme 
Dialect for Systems Programming, Submitted 
for publication. 

[8] 	 Oliva, D. P., J. D. Ramsdell, and M. Wand, 
1994, The VLISP Verified PreScheme Com
piler, To appear in Lisp and Symbolic Com
putation. 

[9] 	 Schmidt, D. A., 1986, Denotational Seman
tics: A methodology for language development, 
Newton, MA: Allyn and Bacon, Inc. 

[10] 	 Swarup, V., November 1993, Automatic Gen
eration of High Assurance Security Guard Fil
ters, MTR 93B179, The MITRE Corporation. 

131 




BELIEF IN CORRECTNESS 

Marshall D. Abrams, The MITRE Corporation, 7525 Colshire Drive, McLean, VA 22102, 

abrams@mitre.org 


Marvin V. Zelkowitz, Institute for Advanced Computer Studies and Department of Computer Science, 

University of Maryland, College Park, MD 20742, mvz@cs.umd.edu 


ABSTRACT 

In developing information technology, you want 
assurance that systems are secure and reliable, 
but you cannot have assurance or security 
without correctness. We discuss methods used to 
achieve correctness, focusing on weaknesses and 
approaches that management might take to 
increase belief in correctness. Formal methods, 
simulation, testing, and process modeling are 
addressed in detail. Structured programming, 
life-cycle modeling like the spiral model, use of 
CASE tools, use of formal methods applied 
informally, object-oriented design, reuse of 
existing code, and process maturity improvement 
are also mentioned. Reliance on these methods 
involves some element of belief since no 
validated metrics exist. Suggestions for using 
these methods as the basis for managerial 
decisions conclude the paper. 

1. INTRODUCTION 

"Engineers today, like Galileo three and a 
half centuries ago, are not superhuman. They 
make mistakes in their assumptions, in their 
calculations, in their conclusions. That they 
make mistakes is forgivable; that they catch 
them is imperative. Thus it is the essence of 
modern engineering not only to be able to 
check one's own work, but also to have one's 
work checked and to be able to check the 
work of others." [23] 

Assurance is definedl as "the confidence that 
may be held in the security provided by a Target 
of Evaluation." Informally, assurance is a 
"warm fuzzy feeling" that the system can be 

Definitions of assurance, correctness, and 
effectiveness are taken from the Information 
Technology Security Evaluation Criteria 
(ITSEC) [7]. Better definitions may be 
available by the time this paper is published. 

relied upon to reduce residual risk to the prede
termined level. Without delving into psychology, 
we observe that effectiveness and correctness 
both contribute to assurance. Effectiveness is 
determined by analysis of the specifications of 
the functional requirements; the environment in 
which the system will be used, the risks, threats, 
and vulnerabilities; and all the countermeasures, 
including physical, administrative, procedural, 
personnel, and technical. The system is 
considered effective if the result of this analysis 
is an acceptable residual risk. Correctness is 
determined by comparing the implementation of 
the countermeasures with their specification. The 
system is considered correct if the 
implementation is sufficiently close to the 
specification. Note that this definition of 
correctness is compatible with the concept of risk 
management and is closer to the concept of 
trustworthy than to error-free. 

This paper shows how correctness can be es
tablished. All known methods contributing to 
correctness have shortcomings that make it im
possible to establish correctness beyond rea
sonable doubt. That is, establishing correctness is 
a matter of belief, not proof. Under conditions 
of belief, we caution fiscal prudence in resources 
invested in assuring correctness. The major 
methods addressed in this paper are 
mathematical models, simulation, testing, process 
models and procedures. Minor methods, called 
silver bullets, include structured programming, 
the spiral model, Computer Aided Software 
Engineering (CASE) tools, formal methods 
applied informally, object-oriented (00) 
programming, reusing existing code, and process 
maturity. Cost benefit is offered as a measure for 
selecting which belief system to embrace. We 
recommend hedging one's investments by using 
more than one method. 

132 


mailto:mvz@cs.umd.edu
mailto:abrams@mitre.org


Security-critical information technology (IT) 
systems2 are extremely dependent on correct
ness. In systems involving human life and safety, 
correctness is paramount. A security-critical IT 
system must do exactly what is identified in its 
specification and not do anything that is not so 
specified. Correctness of software always has to 
be with respect to a specification. 

Various methods may be used to demonstrate 
correctness, but all are less than perfect and in
volve some element of belief in relying on the 
results of using that method. That is, it cannot be 
proven that a method is "good" or "better." 
The methods are complementary in contributing 
to correctness itself as well as in contributing to 
belief in correctness. There is a growing 
consensus that, to say the least, no one technique 
can provide adequate assurance (see, for 
example, [5]. David Parnas [22], among others, 
has suggested that an "assurance tripod" is 
required: the combination of rigorous testing, 
evaluation of the process and personnel used to 
develop the system, and a thorough review and 
analysis of various products produced during 
development. In the pragmatic end, managerial 
judgment determines resource allocation to 
correctness and assurance. In this paper, we 
focus on practical product correctness and the 
various problems one has in achieving this 
correctness. 

We should learn from branches of natural sci
ence and engineering that have been trying to 
understand complex systems far longer than 
computers have existed. One important objective 
is to recognize when simplifying assumptions are 
valid and when they are dangerous. One of the 
authors learned as a sophomore that "the 
essence of engineering is to make enough 
assumptions so that you can solve the problem, 
without assuming the problem away." 

Let us consider whether formal theories of pro
gramming are good approximations of real pro
grams executing on real computers. Although 
the theories are relatively simple, applying them 

2 The term IT system includes all sizes of 
computer systems, from super mainframes 
to desktop units to embedded components 
and controllers, as well as networks and 
distributed systems. 

to realistic programs vastly complicates the 
model. You cannot even assume simple axioms 
like "For all integers i, i+l>i" on fixed wordsize 
computers since integer i may "overflow" and 
have an unspecified, negative, zero, or the same 
value, depending upon the particular hardware 
executing the program. Mathematical models of 
computer programs generally do not accurately 
represent the subtlety of programs in an 
environment (i.e., execution on real hardware). 
The mathematics of computer modeling belongs 
in the realm of applied rather than pure 
mathematics. 

When we use Ohm's law, Kirkoff's rules, etc., to 
design an electronic circuit or use Newton's laws 
to predict the orbit of a satellite, no one is saying 
that they have "proved" that the circuit works 
or that the satellite will be exactly where they 
said it would be. By the same token, when we 
model a computer program using some method 
such as Hoare's [13] we then have some 
confidence (maybe little) that the program when 
executed will behave much as we predict (but 
perhaps not exactly like we predict-e.g., integer 
overflow). This requires that even simple 
programs have complex proofs in order to show 
that the mathematical properties of the program 
behave as desired. Simple formalisms for pro
grams are too complex to accurately represent 
most programs in execution on physical ma
chines. 

This insight shows that formalisms in pro
gramming are very different from formalisms in 
the natural sciences. In the natural science, you 
have a theory (e.g., Laws of Motion) that is a 
good approximation to the physical interactions 
among objects. In physics, a sufficiently accurate 
approximation gives useful results. In contrast, 
for programming; you must approximate the 
program and the hardware (e.g., assume integers 
are infinite) in order to have any relationship to 
the formal model. A key difference is lack of 
continuity. In programming, disastrous examples 
of integer overflow and other discontinuities 
show that the supposed approximations are not 
necessarily close. Use of discrete logic to model 
these leads to expressions of enormous 
complexity [21]. Alternatively, models could 
incorporate known characteristics and limitations 
of the computer to increase their veracity. We do 
not wish to compare good models of physics 
with bad models of computers. Newton's laws do 

133 




not work well for objects at near the speed of 
light or for objects that are not in inertial frames 
of reference. Likewise, a Hoare model of 
computer system behavior is a poor 
representation if the integer values are at or near 
the overflow. One would need to modify the 
model to accommodate the overflow behavior. 
Once having done so, the model would be better. 

Several methods have been developed and been 
accepted over time to demonstrate the correct
ness of computer programs. None of these 
heuristics are true in the sense that they portray 
absolute infallibility of the method. Each has 
proponents and detractors. In the next section, 
we describe these methods, explore ways in 
which each accomplishes its task, and draw some 
conclusions from this analysis. 

2. CORRECTNESS METHODS 

Several techniques are regularly employed to 
show that a computer program does exactly what 
it is supposed to do and nothing else. The first 
two described below, formal methods and 
simulation, analyze the program and derive 
properties about it. The third, testing, experi
ments with program behavior, perhaps using 
some information derived by application of the 
first two techniques. The fourth technique, pro
cess models and procedures, looks at the devel
opment process itself under the assumption that 
good development practices result in good 
software. 

Each method is described briefly, emphasizing 
its advantages, disadvantages, and contributions 
to our belief system. A common distraction with 
all methods is the complexity of execution. The 
steps, processes, or manipulations that constitute 
the practice of the method can be so over
whelming that perspective is lost. We agree with 
Hamming [ 12] that "the purpose of computing 
is insight" and that it is difficult to retain 
perspective and insight in the face of 
complexity. It is very easy to get caught up with 
all the mechanics of employing a method so that 
in practice the mechanics get emphasized at the 
expense of understanding. 

"When you can measure what you are speaking 
about, and express it in numbers, you know 
something about it; but when you cannot mea
sure it, when you cannot express it in numbers, 
your knowledge is of a meager and unsatisfac

tory kind" [14]. Metrics of correctness need to 
be developed and applied to individual methods 
and combinations of methods. We need to 
replace belief with analysis if at all possible. 
While early work on the Capability Maturity 
Model [19] and the Experience Factory [1] show 
that we may develop such metrics, more needs to 
be done. 

2.1 Formal Methods 

The use of formalisms stems from two related 
observations: natural language tends to be im
precise, and in achieving precision, there is the 
potential for automation. Mathematical notation 
has the advantage of precision and is associated 
with rigorous, logical thinking that assists in re
ducing ambiguity. In principle, formal models 
of IT systems can support all phases of the 
system development process: articulation of 
policy for use, high-level architecture, design, 
and implementation. Today, formal models of 
security policy help perfect understanding and 
development, especially of new policies. While 
formal specifications are used in Europe, they 
have not made much of an impact in the United 
States. No language is likely to be a cure-all in 
achieving higher levels of abstraction, and more 
natural models of problem spaces, for all prob
lem spaces. 

In discussing formal methods, we have to be sure 
to differentiate them from formalized methods, 
such as Computer Assisted Software Engineering 
(CASE) tools, structured analysis, and other 
mechanized methods for developing source 
programs [25]. In using formal methods, one 
traditionally begins with a formal description of 
the specification of a software system according 
to some underlying mathematical model and the 
realization of that specification as a concrete 
design or source code implementation. (Other 
possibilities are to start with a description of how 
the system is to be used, or to let an automated 
deduction system participate directly in the 
construction of later design and implementation 
stages.) Using mathematical principles, one 
shows that the program agrees with the model. 
For example, axiomatic verification, perhaps the 
oldest of the formal techniques, assumes we have 
a program S, a precondition (specification) P 
that is true before the execution of S, and a 
postcondition (output specification) Q. We need 
a proof that demonstrates: (1) the relationship 
among S, P, and Q that determines the effect 

134 




program S has on P to assure that Q will be true 
after execution tenninates, and (2) program S 
does indeed tertninate if Pis true initially [13]. If 
we derive a set of axioms for each statement type 
in our language (e.g., rules for describing the 
behavior of the if statement, the while statement, 
the assignment statement), then we have tied 
program correctness to the problems of generat
ing correct mathematical proofs. But we· still 
have not proved that the program when executed 
on a specific computer is correct because of the 
very problems raised earlier. At best we have 
shown that the fonnal description of the pro
gram satisfies its specification (i.e., produces the 
given post condition when the precondition is 
true) [10]. Our confidence in the correctness of 
the program is dependent on our confidence that 
our fonnal model is an accurate representation 
of the target computer. 

As described previously, when we use fonnal 
models we need to suppress details to make the 
models tractable. Unfortunately, many of the 
details suppressed in the fonnal models are 
implementation dependent and security relevant. 
Fonnal models are losing ground to the com
plexity of networked and distributed systems. It 
is difficult to scale up the traditional use of for
mal methods. to large complex systems. While 
they may appear to work satisfactorily on small 
"toy" problems, there has been little evidence 
that they scale up very well [21]. 

"Larger examples are necessary to demonstrate 
how these concepts scale up" [30]. Fonnal 
models are often applied to complex systems 
combined with other belief systems. For 
example, variants of the Bell-LaPadula security 
policy model [2] are often cited as the basis of 
operating system security, but the actual 
implementations also include security-relevant 
processes, called trusted or privileged, that are 
not fonnally modeled. Belief that security is 
preserved after introduction of these processes is 
often established by non-formal means. 
Practitioners of fonnal modeling sometimes 
appear to forget about the assumptions and 
simplifications that were made to make their 
models tractable and fail to caveat the 
applicability of their results to the real world. 
This is an error on the part of the practitioners. 
A great deal of the simplifying assumptions are 
made because the modelers simply do not know 
how to model some of these features (although 

many are certainly susceptible to being 
modeled), or the resources available do not 
pennit modeling the necessary details. Perhaps 
the practitioners are not experienced enough in 
this kind of mathematics. 

Within the limits imposed by the simplifications 
and assumptions made for the sake of tractabil
ity, fonnalism can be used both to detennine 
correctness of the implementation and adherence 
of the system to certain properties. We can prove 
that a given procedure must return a certain 
value and also show that certain policies are 
never violated. Many observers believe that 
fonnal policy models have their maximum ben
efit in removing inconsistencies, ambiguities, and 
contradictions in the natural language policy 
statement. The process of fonnalizing the policy 
aids in clarifying the policy. This process then 
has the secondary benefit of making a clearer 
statement of policy to the implementors. 

Although fonnal methods are based on mathe
matical proofs, we must realize that even math
ematical proofs may have flaws. "Outsiders see 
mathematics as a cold, fonnal, logical, mechani
cal, monolithic process of sheer intellection ... 
[but] Stanislaw Ulam estimates that mathemati
cians publish 200,000 theorems every year. A 
number of these are subsequently contradicted 
or otherwise disallowed, others are thrown into 
doubt, and most are ignored. Only a tiny frac
tion come to be understood and believed by any 
sizable group of mathematicians" [9]. Although 
mathematicians do not like to admit it, 
correctness can be likened to a social process-it 
is only the test of time where no flaw has been 
discovered that builds our confidence in the 
ultimate truth of a theorem. All scientific 
processes have flaws. Petroski [23] argues that 
failure is an important part of engineering 
design. It is only when things fail that we 
understand how to make them better. How well 
would we be designing bridges if none ever 
collapsed? Either we have overbuilt them to a 
point of economic stupidity, or we have never 
stressed them sufficiently. We hope that by our 
continuing (unsuccessful) attempts to model 
computers, we are learning something. 

2.2 Simulation 

Simulation is the development of a simplified 
version of a system's specification by eliminat
ing non-critical attributes to develop a system 

135 




that exhibits relevant properties. By ignoring 
certain properties, it is often possible to quickly 
and inexpensively build simpler versions of a 
system. Using this simulation, security-related 
principles can be more readily developed and 
examined. This increases our belief in the ulti
mate specification since we have demonstrated 
the existence of an implementation that already 
has the desired properties. 

While we can simulate a system to test the se
curity policies, the interaction of these policies 
with the assumed-away specifications of the 
complete system severely lowers our belief in the 
correctness of the overall system with respect to 
security. By definition, one is "abstracting 
away" non-essential aspects of the system when 
doing simulation and modeling-yet it is very 
hard to develop "non-interference proofs" for 
those missing aspects, so that you have 
confidence that they really won't change the 
behavior of interest in the "real" system. It is 
only by testing (and/or formalism) applied to the 
complete system that adds to our belief in this 
product-although the existence of a simulation 
that implements our security policy does provide 
a sort of existence proof on policy and increases 
our confidence (i.e., belief) in a complete 
implementation. (See spiral model discussion, 
below.) 

2.3 Testing 

Testing demonstrates behavior by executing a 
system using a selected set of data points to show 
that the system executes correctly on those 
points. The assumption is made that if the set of 
data points is chosen appropriately, then the 
behavior of the system for most data points will 
be analogous to the selected data points. If we 
believe that the selected data points are rep
resentative of the domain of data in which we 
interested, we have confidence in the correctness 
of our implementation. Choosing the selected 
data points and the best method of testing our 
program are our major decision steps toward 
determining our belief in the correctness of this 
system. Knowledge gained from formal meth
ods, code analysis, and simulation can help focus 
the selection. As pointed out by Leveson [ 16], 
"testing researchers have defined theoretical 
ways of comparing testing strategies both in 
terms of cost and effectiveness (for example, 
[29]), formal criteria for evaluating testing 
strategies (for example, [11]), and axioms or 

properties that any adequacy criterion (rule to 
determine when testing can stop) should satisfy 
(for example, [28])." Analytic results can also 
indicate when statistically significant 
measurement results have been obtained [ 17]. 

Testing methods can be divided into functional, 
performance, failure-mode, and, for security, 
penetration. Functional testing includes testing 
against a catalog of flaws previously discovered 
in this or other systems. The major thrust of se
curity testing is in penetrating (i.e., violating the 
security policy), thereby measuring the resis
tance to anticipated threats. The presence of an
ticipated threat actions, possibly by a malicious 
adversary, distinguishes the security concerns in 
a system. 

Testing functional specifications is usually 
achieved by black-box testing, in which the tester 
only has access to the specifications of the 
program, while testing specific program behavior 
by understanding the design is achieved by 
glass-box (a.k.a. white-box) testing, in which the 
tester has access to the internal source code of 
the program. Security testing of high-assurance 
systems proceeds with extensive documentation 
of design and implementation. Varying degrees 
of assurance are obtained according to the 
information available to the testers, including 
security kernel code, design documentation, and 
formal models. The value of penetration testing 
depends on the experience of the testers and the 
methodology employed. IV& V (Independent 
verification and validation), where a group 
independent from the developers is charged with 
testing a system, is sometimes effective in finding 
errors that developers who are too familiar with 
the source program may overlook. As with many 
of the methods addressed in this paper, the cost
benefit of this added level of assurance must be 
analyzed [20]. 

The classical example by Dijkstra shows that 
exhaustive testing cannot prove correctness of 
any implementation. To prove the correctness of 
"a+b=c" on 32-bit computers would require 
232x232 = 264 or over 1019 tests. At a rate of 
even 1 o8 tests per second, that would require 
1Qll seconds or over 3,000 years. Perhaps we 
should ask ourselves whether we really have so 
little understanding of the operation of a com
puter that we have to test addition, for example, 
for all possible addends to be convinced that the 

136 




addition function is working correctly? Under 
what conditions can we state a general argument 
that works in the face of overflow? Although it is 
recognized that testing cannot be exhaustive, 
testing has a very strong intuitive appeal and 
constitutes a very strong basis for belief in cor
rectness. 

Testing always involves comparing the actual 
results of execution with anticipated results. One 
way to capture anticipated results is to test an 
executable specification of a prototype. Once 
this is done, it is possible to automatically exe
cute the system being tested and its specification 
in parallel, and to automatically compare the 
results, thereby greatly increasing the number of 
feasible test cases [27]. 

2.4 Process Models and Procedures 

All of the previous techniques depend upon 
subjecting a program to one of the discussed 
methods to increase confidence that the program 
exhibits correct behavior. However, as we have 
often stated, this is extremely difficult to do. As 
an alternative, perhaps it is easier to understand 
the mechanisms used in developing the program 
under the belief that correct methods yield 
correct programs. The idea underlying process 
models is that understanding what you are doing 
is a necessary step to improvement. By using a 
simple, well understood process to develop 
software, we have belief that the ultimate product 
best meets our needs. Two process models 
currently enjoy favor: waterfall and spiral. The 
United States Department of Defense (DOD) 
standards imply (but do not require) use of the 
former in management of software development. 

The waterfall model [24] conceives of software 
development as a linear process based upon a set 
of deliverable artifacts. There are easily 
recognized milestones between steps in the 
process. Although the mechanisms of the 
process are generally obscure-only the results 
of the process are visible. Therefore, the waterfall 
model uses these products-a specifications 
document, a design document, a source file, and 
the results of testing, for example. These mile
stones can support a management strategy of 
schedules and reviews. Recognition that the 
process is not perfect led to the introduction of 
feedback paths in the model. If drawn as a wa
terfall of steps, the feedback paths suggest 
salmon swimming upstream. The feedback paths 

represent knowledge gained in latter steps that 
affect activities and decisions made earlier. It 
may be necessary to adjust, or even abandon, 
earlier work as a consequence of feedback. In 
practice, schedules tend to not allow for such 
corrective action. Non-technical project man
agers are often determined to meet their sched
ules, no matter what the consequences [26]. 

Because of all of these deficiencies, belief in the 
waterfall model as a useful methodology for de
veloping software that satisfies its specification 
has been slowly decreasing, and an alternative 
spiral model has been gaining favor [3]. The 
spiral model emphasizes the process of 
developing software rather than the resulting 
products. It is also called a risk-reducing model, 
since the basic premise is to develop and 
prototype a solution, evaluate the risks of adding 
specifications, and repeat the process. Each cycle 
of the model creates a more complex version of 
the system, with the ultimate prototype being the 
final system itself. At each stage, we use Occam's 
razor to simplify our solution, we make the 
process of development as visible as possible, 
and we try to quantify the risks involved in 
continuing development. Thus, our belief in the 
solution should be higher than with the hidden 
processes inherent in the waterfall model. The 
spiral model emphasizes the repetition of basic 
activities at progressive stages of a project. The 
exact activities change as the project matures, but 
such activities as design, implementation, testing, 
evaluation, and planning are related. Changing 
requirements are more easily accommodated. 
The cost is represented by the radial distance in a 
polar coordinate system and the activities occur 
at a specified polar angle. Progress is assumed 
proportional, or at least related to, cost. While the 
theory of the spiral model accommodates 
redesign and backtracking, the imposition of 
schedules can have exactly the same effect as on 
the waterfall model. 

3. CHOOSING AMONG ALTERNATIVE 
BELIEFS 

Software engineers promote one technique after 
another as the "silver bullet" [ 4] solution to all 
our problems. This section examines the most 
popular silver bullets. 

137 




3.1 Tarnished Silver Bullets 

To address correctness in system development, 
many techniques have been proposed as poten
tial solutions (e.g., see [6, 8]). All techniques 
involved a measure of belief as groups of 
professionals argued among themselves 
regarding the appropriateness of their favorite 
method. None has completely provided the 
warm fuzzy feelings we want : 

a. 	 Structured programming (e.g., "goto-less 
programming" of the 1970s) makes pro
gramming easy and correct. Twenty years of 
experience have shown that quality has im
proved, but not to the level initially proposed. 
There is a relationship between the restrictions 
imposed by using only the appropriate control 
structures and formal verification of the source 
code produced; however, errors still occur in 
such programs [31]. 

b. 	 The spiral model is superior to the waterfall 
model. The spiral model was an improvement 
in that it emphasized the process of software 
development with attendant interest in the 
management, risk evaluation and reduction, 
and prototyping aspects of the process. Note 
that this is an example of Petroski's theses. 
Because the waterfall methodology has proved 
inadequate to produce good software, a new 
methodology (spiral) has been introduced. 
When it is determined that the spiral also is 
inadequate, creative people will develop a new 
system. Since we do not have good measures 
of correctness, it is difficult to know how to 
make the process better. Note also that the 
spiral model and the waterfall model that it 
replaced both represent a similar set of prac
tices as actually implemented by many orga
nizations. 

c. 	 CASE tools will supplement the intelligence 
lacking in today's programmers. 
Unfortunately, the tools have not added much 
intelligence and today's programmers could 
still use additional help. Case tools suffer from 
the same problem as the other software we are 
discussing: they have errors (all software has 
errors), and they are only as smart as their 
developers. 

d. 	 Formal methods applied informally (e.g., 
languages like VDM and Z) can improve the 
process. While this seems to be true, it has yet 

to be demonstrated that this approach results in 
the correctness that we need for security
related systems. It is not clear that our belief in 
these specification techniques will be high 
enough to eliminate the need for alternate 
mechanisms. Nor is it clear that our beliefs are 
the only ones that count. See [18] for a discus
sion of mathematical arguments that qualify as 
proof in a court of law. 

e. 	 Object-oriented (00) programming and de
sign will replace conventional design tech
niques, and languages that implement such 
processes (e.g., C++) will replace other lan
guages (e.g., Pascal, Ada, FORTRAN). This 
concept represents one of the newer trends in 
program design. We do not have enough evi
dence to judge the effects of 00 design on 
security. This technique does encapsulate some 
of the formal data-structuring mechanisms into 
the programming language; however, it must 
still be observed what effects it will have on 
overall system correctness. (Note that this is 
just the current version of the traditional silver 
bullet, "Language X will make programming 
easier." In the 1960s, we had COBOL and 
then PL/1, in the 1970s we had Pascal, in the 
1980s we had Ada, and now we have C++.). 
Each language is perceived to have failed in 
achieving some objective. Hence, someone 
develops a new language to correct the flaws. 
This cycle will probably never end, as it is not 
likely that any one language will be perfect for 
all applications. 

f. 	 Reusing existing code is the solution. Since 
code proven correct once need not be so 
proven again, one only needs to create a li
brary of reusable components. While reusing 
existing code is an admirable goal, we still do 
not have the technology to implement this 
process. While we can create write-only li
braries of reusable components, we have no 
process available that enables us to determine 
the specifications of an existing library com
ponent and whether it fulfills the specifications 
for another application. Current interests in 
domain-specific architectures and faceted 
classification schemes are both attempts at 
understanding the functionality of reusable 
components. We reuse hardware components 
all the time, in the sense that we manufacture 
identical copies of circuit packages and other 
components. Each component conforms to 

138 




some specification of performance and behav
ior that is described in components manuals. 
Why can't we do something similar with 
software? 

g. 	 Process "maturity improvement is today's 
salvation [19]. Current thinking is that 
improving only the process without looking at 
the ultimate product being produced is all that 
is necessary to produce quality software. While 
it should greatly improve the production of 
software from many organizations that 
currently have no such process, as shown often 
in the past, this is a naive approach to 
producing correct software. 

We do not mean to say that the above techniques 
are failures. All, to some extent, improve upon 
the quality and correctness of the resulting 
program that is produced. Programming as 
taught in the universities and practiced in indus
try today is radically different from that of the 
1960s. However, the important point is that none 
of them achieves the level of correctness that 
would support our belief in that technique over 
all others. 

3.2 Which Belief System to Embrace 

Resources must be allocated among the correct
ness methodologies. While management has 
been described as the art of making decisions 
based on inadequate information, the quality of 
decisions is often improved by providing more 
information. Installation and use of security
critical IT systems cannot wait for proofs of ef
ficacy or development of metrics for determin
ing cost-benefit. Managers will need to continue 
to make decisions whether or not to employ IT: 
The managerial authorization and approval 
granted to an IT system to process sensitive data 
in an operational environment is, in theory, made 
on the basis of analysis and certification of the 
extent to which design and implementation of 
the system meet pre-specified requirements for 
achieving adequate security. Security objectives 
can be met by a combination of technical means 
within the system and physical and procedural 
means outside the system. In this theory, when 
management accredits the system, management 
is accepting the residual risk. 

How can we address this residual risk? While we 
have no clearly defined metric for this, we do 
have examples of systems that seem to ade

quately address our security concerns. One av
enue of research is increased study of these 
"artifacts"-the systems, designs, and specifi
cations that have helped produce acceptable so
lutions. This knowledge should enable us to 
produce better models in the future. However, 
today there is no way to measure the residual 
risk, nor is there a metric for cost-benefit. So, 
how is a decision made? Since computer and 
management science cannot help verify a deci
sion, the experienced manager's intuition cannot 
be dismissed. Experience probably includes 
comparison with previous efforts, the correctness 
of which has become better known over time. 
One must be careful to distinguish between 
management saying "I did this before and it 
worked" versus "I feel safe using this since I 
used it before, while this new technique is 
unknown to me." The first statement encap
sulates the experiences of good management, 
while the second statement reinforces unscien
tific prejudices. The real problem is how to dif
ferentiate among good science, common sense, 
and stubborn stupidity. 

In deciding which belief system to embrace, the 
prudent manager pr9bably hedges by using 
more than one system. Various combinations of 
formalism, testing, simulation, and process may 
be employed. Since cost is one of the attributes 
we need to address in evaluating the overall 
quality of the product, it is prudent that man
agement should adequately choose from among 
the techniques those that meet required cost 
constraints yet still meet functional requirements 
for the product. 

4. RECOMMENDATIONS 

Given the absence of metrics for any of the be
lief systems, the inherent difficulty in using any 
of them, and the lack of a repository of correct
ness artifacts to study and evaluate, the authors 
do not propose to solve this problem with a 
pronouncement of correct technique. Our focus 
is to increase the awareness of the technical and 
managerial segments of the IT security com
munity to the limitations of each of these tech
niques. We attempt to increase understanding of 
the need to address more than one solution to 
the multifaceted correctness problem. 

We view the glass as being half full. We do not 
advocate that anyone abjure his belief(s) in cor
rectness. Rather, we suggest that attempts to 

139 




prove beliefs are bottomless pits. Unless some 
breakthrough occurs, we advocate treating this 
aspect of software engineering pragmatically. 
Just as engineers built steam engines (see [ 16] 
for further analogy) before the science of 
thermodynamics was developed, the software 
engineering community can build software 
systems based on intuitive and pragmatic notions 
of how to attain correctness and other aspects of 
quality. At least now, we should acknowledge 
practicing an empirical discipline. 

At the risk of appearing cautiously optimistic, we 
hesitantly endorse four interrelated strategies. 
The exact allocation of resources among the 
strategies remains a technical management 
decision. Looking at the mature methods avail
able today, we tend to agree with the perceived 
consensus that a combination of the following 
should be employed: 

• 	 Evaluation of process, personnel, and abilities 
to identify and reinforce positive attributes 

• 	 Thorough review and analysis of intermediate 
products during development with sufficient 
time and resources allocated to correct 
deficiencies 

• 	 Rigorous testing based on the preceding 
analysis 

• 	 Recognition of critical points in system de
velopment 
- Point of diminishing return for application 

of any method 

-	 When a development should be terminated 
for cause or to stop hemorrhaging 

Looking forward, we see promise in combining 
aspects of program reuse and object orientation. 
The possibility of employing object self-protec
tion in security architecture should be consid
ered. 

Each of the techniques described in this paper 
has an aspect that help increase our belief in the 
correctness of an implementation, yet each is 
fraught with some dangers. Each technique 
comes with some, generally high, cost for its use. 
It is imperative that management addresses each 
as aids in developing security-critical IT systems 
and not arbitrarily dismiss any of them. We 
should: 

• Be cognizant of the limitations of each 

-	 Belief in correctness should be relative 
• Be prudent in establishing realistic assurance 

requirements for a given system that are mea
surable, achievable, and cost-effective 

• Resist the temptation of unachievable elegance 
and perfection 

• Differentiate between research and operations 
- Defme achievable specifications 

- Accept residual risk 

5. ACKNOWLEDGMENTS 

We appreciate the contributions from the follow
ing individuals on previous drafts of this paper: 
Rochelle Abrams, Sharon Fletcher, Lester Fraim, 
John Gannon, David Gomberg, Ronald Gove, 
Chuck Howell, Jay Kahn, Carl Landwehr, John 
McLean, Jonathan Millen, Jonathan Moffett, Jim 
Purtilo, Jim Williams, John P. L. Woodward, and 
the anonymous reviewers. Research support on 
this activity for Marshall Abrams was provided 
by the National Security Agency under contract 
DAAB07-94-C-H601, and for Marvin Zelkowitz 
was partially provided by NASA grant NSG
5123 from NASA/Goddard Space Flight Center 
to the University of Maryland. 

6. REFERENCES 

1. 	 Basili, V. R., G. Caldiera, and G. Cantone, 
1992 "A Reference Architecture for the 
Component Factory;" ACM Transactions on 
Software Engineering and Methodology, Vol. 
1, No. 1, pp. 53-80. 

2. 	 Bell, D. Elliott, and Leonard J. LaPadula, 
April 1974, Secure Computer Systems: Uni
fied Exposition and MULTICS Interpretation, 
MTR 2997, The MITRE Corporation, Bed
ford, MA. A vail able from National Technical 
Information Service, AD/A 020 445. 

3. 	 Boehm, B., May 1988, "A Spiral Model of 
Software Development and Enhancement," 
IEEE Computer, Vol. 21, No.5, pp. 61-72. 

4. 	Brooks, F., 1987, "No Silver Bullet: Essense 
and Accidents of Software Engineering," 
IEEE Computer, Vol. 20, No.4, pp. 10-19. 

5. Butler, 	R. W., and G. B. Finelli, 12 January 
1993, "The Infeasibility of Quantifying the 
Reliability of Life-Critical Real-Time Soft
ware," IEEE Transactions on Software Engi
neering, Vol. 19, No. 1, pp 3-12. 

6. 	 Chang, C., 5 September 1993, "Is Existing 
Software Engineering Obsolete?," IEEE 
Software, Vol. 10, No.5, pp. 4-5. 

140 




7. Commission 	of the European Communities, 
28 June 1991, Information Technology Se
curity Evaluation Criteria (IT SEC): Provi
sional Harmonized Criteria, Luxembourg: 
Office for Official Publications of the Euro
pean Communities, Version 1.2. 

8. 	 Davis, A., 5 September, 1993, "Software 
Lem~ingineering," IEEE Software, Vol. 10, 
pp. 79-84. 

9. DeMilio, R., R. Lipton and 	A. Perlis, May, 
1979, "Social Processes and Proofs of Theo
rems and Programs," Communications of the 
ACM, Vol. 22, No.5, pp. 271-280. 

10. 	 Fetzer, J. H., September 1988, "Program 
Verification: The Very Idea," Communica
tions of the ACM, Vol. 31, No. 9, pp. 1048
1063 

11. 	 Goodenough, J. B., and S.Gerhart, June 
1975, "Toward a Theory of Test Data Selec
tion," IEEE Transactions on Software Engi
neering Vol. SE-1, No. 2. 

12. Hamming, R., 1962, Numerical Methods for 
Scientists and Engineers, McGraw Hill. 

13. Hoare, 	C. A. R., October, 1969, "An Ax
iomatic Basis for Computer Programming," 
Communications of the ACM, Vol. 12, No. 10, 
pp 576-583. 

_____ 	 August 1986, "Mathematics of 
Programming," Byte, pp 115-121. 

14. Kelvin 	W. T., 1881-1884, Popular Lectures 
and Addresses. 

15. Knight 	, J. C. and D. M. Kienzle, 1992, 
"Preliminary Experience Using Z to Specify 
a Safety-Critical System," Proceedings of 
1992 Z Users Workshop, Springer-Verlag. 

16. 	Leveson, N. G., May 1992, "High-Pressure 
Steam Engines and Computer Software," 
Proceedings International Conference on 
Sostware Engineering, Melbourne, Australia. 

17. Mamra.k, S. A. and M.D. Abrams, December 
1979, "A Taxonomy for Valid Test Work
load Generation," Computer, pp. 60-65. 

18. MacKenzie, November 1992, "Computers, 
Formal Proofs, and the Law Courts," Notices 
of the American Mathematical Society, Vol. 
39, p. 9. 

19. Paulk, M. C., B. Curtis, M. B. Chrissis and C. 
V. Weber, July 1993 "Capability Maturity 
Model for Software, Version 1.1," IEEE 
Software, Vol. 10, No.4, pp. 18-27. 

20. Page G., F. E. McGarry and D. N. Card, June, 
1985, Evaluation of an independent verifica
tion and validation methodology for flight 

dynamics, NASNGSFC Technical Report SEL 
81-110. 

21. Pamas, D. L., December 1985, "Software 
Aspects of Strategic Defense Systems," Com
munications of the ACM, Vol. 28, No. 12, De
cember 1985, pp. 1326-1335. 

22. Pamas, D. L., 	A. John van Schouwen, and 
Shu Po Kwan, June 1990, "Evaluation of 
Safety-Critical Software," Communications of 
the ACM. 

23. Petroski, H., 1985, 	To Engineer is Human: 
The Role of Failure in Successful Design, St. 
Martin's Press. 

24. 	W. W. Royce, 1970, "Managing the Devel
opment of Large Software Systems: Concepts 
and Techniques," Proceedings IEEE 
Wescon .. 

25. Rushby, J., December 1993, Formal Methods 
and the Certification of Critical Systems, 
Technical Report C3L-93-7, Stanford Re
search Institute. 

26. Stillman, R., March 22, 1993, "Software De
velopment: Neither Economics nor Engineer
ing," keynote address, Third Annual Software 
Engineerring Economics Conference, The 
MITRE Corporation. 

27. Taylor, T., October 1989, "FTLS-Based Se
curity Testing for LOCK," Proceedings of the 
12th National Computer Security Conference, 
pp 136-145. 

28. 	 Weyuker, E. J., December 1986, 
"Axiomatizing Software Test Data Ade
quacy," IEEE Transactions on Software En
gineering Vol. SE-12, No. 12, pp. 1128
1138. 

29. Weyuker, E. J., S. Weiss, and D. Hamlet, Oc
tober 1991, "Comparison of Program Testing 
Strategies," Proceedings of the Fourth Sym
posium on Software Testing, Analysis and 
Veriofication (TAV4), Victoria, B.C., Canada, 
pp 1-10. 

30. Youngblut C., et al, February 1989, SDS 
Software Testing and Evaluation: Are View of 
the State-of-the-Art in Software Testing and 
Evaluation with Recommended R&D Tasks, 
Institute for Defense Analysis Report p. 2132. 

31. 	 Zelkowitz, M. V., November 1990, "A 
Functional Model of Program Verification," 
IEEE Computer, Vol. 23, No. 11, pp. 30-39. 

141 




TOWARDS A PRIVACY-FRIENDLY DESIGN AND 

USE OF IT-SECURITY MECHANISMS 


Simone Fischer-Hubner 

University ofHamburg 

Faculty for Informatics 


Vogt-Kolln-Str.30 

D-22527 Hamburg, Germany 


e-mail: fischer@rz.informatik.uni-hamburg.d400.de 


Abstract: 
Security mechanisms can be used to protect personal data from misuse. However, the 
additional level of control may also endanger privacy. This is the conflict between security 
and privacy. Besides, there is the problem that today 's security mechanisms are mostly not 
appropriate to enforce basic privacy requirements. This paper presents a formal task-based 
privacy model that can be used to technically enforce legal privacy requirements in an 
operating system and a holistic approach towards a privacy-friendly use of security 
mechanisms to cope with the conflict between security and privacy. 

1. Introduction 

IT-Security Mechanisms are often seen as technical data protection measures, i.e. technical 
measures to protect privacy. Unfortunately, often it is not considered that there is a conflict 
between privacy and security, as security mechanisms on the other hand are control 
mechanisms that often have to collect and process personal control data about the users that 
can be misused e.g. for performance monitoring. Furthermore, today' s security mechanisms 
mainly address the confidentiality of (classified) information, but not basic privacy principles. 
The wellknown Bell LaPaduala model [Bell LaPadula 76] for example, which is the basis for 
the Orange Book [TCSEC 85] and the example functionality classes ofiTSEC [ITSEC 91], is 
not appropriate for enforcing privacy requirements, such as purpose binding or necessity of 
data processing. 
In this article, these problems and misconceptions are discussed. Besides, it is shown how 
security mechanisms can directly address privacy requirements. For this purpose, a task-based 
formal privacy model is introduced that can help to technically enforce legal privacy principles 
in an operating system. Furthermore, to protect personal control data produced by security 
mechanisms and thus to bring security and privacy nearer, a holistic approach towards a 
privacy-friendly use ofiT-Security mechanisms is presented. 

2. Privacy Requirements 

In the information society, privacy is accepted as an important personal right needing 
protection. It can be defined, as it has been done by the German Constitutional Court in its 
Census Decision of 1983, by the term right of informational self-determination, meaning the 

142 

mailto:fischer@rz.informatik.uni-hamburg.d400.de
http:Vogt-Kolln-Str.30


right of an individual to determine about the disclosure and use of her/his personal data on 
principle at her/his discretion. 
In order to protect this right, privacy laws of most western countries, e.g. the German Data 
Protection Act (Bundesdatenschutzgesetz, BDSG) or the U.S. Privacy Act, require basic 
principles to be guaranteed when personal data are collected or processed, such as: 
- purpose binding (personal data obtained for one purpose should not be used for another 
purpose without informed consent, e.g. § 14 BDSG) 
- necessity ofdata collection andprocessing (the collection and processing of personal data 
shall only be allowed, if it is necessary for the tasks falling within the responsibility of the data 
processing agency, e.g. §§ 13, 14 BDSG), 
- requirement of adequate technical and organisational safeguards (e.g. § 9 BDSG) to 
guarantee the confidentiality, integrity and availability ofthe personal data. 

3. Conflict Between Security and Privacy 

Technical security mechanisms are necessary to protect personal data against accidential or 
unauthorized access, modification or other illegal processing. Security mechanisms are 
required by many privacy acts, because they are regarded as technical means to protect 
privacy. Unfortunately, as already mentioned, the contrary can also be the case: 

Security mechanisms often require the collection and use of personal control data about users 
and usees (a usee is a person who is personally affected by the data collected and processed 
about her/him, but who has no control over this process). These personal control data can be 
misused for example for performance monitoring. This results in a conflict where security 
mechanisms can both help to protect the privacy of data subjects and at the same time can be 
used to invade the privacy of users and usees (see [Denning et al. 87], [Fischer
Hubner/Yngstrom/Holvast 92], [Ketelaar/Fischer-Hiibner 93]). 
The following examples demonstrate how security mechanisms endanger the privacy of the 
system's users, about whom personal data are collected and who are therefore at the same time 
usees, and of other usees, who are not actively involved [Fischer-Hiibner/Yngstrom/Holvast 
92]: 

Authentication mechanisms, especially continuous authentication, such as keystroke 
dynamics, can produce information about the user's presence. Furthermore, if devices such as 
smartcards are used as employee authentication for access to certain security relevant areas, 
the employee's movements and her/his contacts with other employees can be monitored. 

Discretionary access control mechanisms (DAC), such as access control lists, require the 
storage and usage of information about the user's access rights. Mandatory secrecy and 
integrity access controls (MAC) use security and integrity levels, that are attached to users 
and to objects. These access control data reveal personal information about the user's status. 
Furthermore, in order to attach a security or an integrity level to a user, her/his trustworthiness 
has to be checked e.g. by surveillance. That means an additional limitation to the user's 
privacy. 

143 



Auditing produces information about the activities and behavior of the users. If activities of 
users with respect to other people (usees) are audited, the audit trails may also contain critical 
information about these usees. 
Monitoring of unusual and security relevant activities on a system through system status 
information also means a continous control ofa user's actions. 
Intrusion Detection Expert Systems that are based on Denning's Intrusion Detection Model 
[Denning 86] produce and use statistical profiles that store statistics about the behavior of 
subjects (e.g. users) with respect to objects. These statistics can be directly misused for 
employee performance control [Denning et al. 87]. 

Besides these security mechanisms that control the actions of users backup-mechanisms can 
also endanger privacy rights. Backup files can contain personal data, that were stored on the 
system at backup-time, but have become outdated and incorrect. According to most privacy 
acts, individuals have the right to have incorrect personal data corrected and illegally stored 
data deleted. Normally such corrections are only done on system's on-line data and not on the 
backup-files. The consequence is that after the correction or deletion of personal data in the 
system, backups may still store the incorrect personal data and may therefore be in conflict 
with the data subject's privacy rights. 

4. Technical Enforcement of Privacy Requirements 

There is also another reason why today' s security mechanisms are mostly not appropriate 
technical means to enforce privacy: They mainly enforce confidentiality, and partly integrity 
and availability policies and controls, but they do not directly address basic privacy 
requirements as listed above. 

Having been funded by the U.S. Government, research and development of secure systems 
have been mainly concentrated on maintaining secrecy of classified information. Systems have 
been preferably developed to enforce Mandatory Access Control (MAC) and Discretionary 
Access Control (DAC) as required by the classes of the Orange Book [TCSEC 85] and by the 
example functionality classes of ITSEC [ITSEC 91]. 

MAC (as defined by the Orange Book) restricts the access to objects based on the sensitivity 
of the information contained in the objects and the clearance of the subjects. But the problem 
is that personal data cannot be classified accurately by its sensitivity per se, because the 
sensitivity of personal data is related to the purpose and context of its use. In its Census 
Decision the German Constitutional Court proclaimed that there are no non-sensitive personal 
data, as dependent on the purpose and context of use all kinds of personal data can become 
sensitive. There are personal data that per se already contain sensitive information (e.g. 
medical data), but dependent on the purpose and context of use, such sensitive data can 
become even more sensitive and data that seem to be non-sensitive (e.g. addresses) can 
become highly sensitive as well. In order to enforce privacy, it should be checked whether the 
purpose of the task, currently performed by the user who wants to access personal data, 
corresponds to the purpose for which that personal data were obtained (requirement of 
purpose binding). 

144 




DAC restricts access to objects based on the identity of subjects and/or subject groups. DAC 
permits the granting and revoking of access privileges to data to be left to the discretion of a 
user with a certain access permission that has control over the data. But under privacy aspects, 
personal data about a data subject should not be "owned" or "controlled" by another person. 
In order to protect privacy, an access control decision should not be determined by the user's 
identity, but by the task that the individual user is currently performing. Personal data should 
only be accessible to a user, if such access is necessary to perform his/her current task and if 
he/she is authorized to perform this task (requirement of necessity of data processing). 

5. A Formal Privacy Model 

In this section, the concept of a formal security model for operating systems that directly 
enforces basic privacy requirements, such as purpose binding or necessity ofdata processing, 
shall be introduced in more detail. 

5.1 Formal Description 

The privacy policy that the model shall enforce can be described informally as follows: 

A user shall only have access to personal data, if this access is necessary to perform his/her 
current task and only, if the user is authorized to perform this task. Besides, the purpose of 
his/her current task must correspond to the purpose for which the object was obtained or 
there has to be consent by the data subject. 

This formal task-based privacy model contains the following state variables, invariants 
(privacy properties) and state transition functions: 

a.) State variables 
First, the security-relevant (or better: privacy-relevant) state variables shall be defined that are 
needed to formally define the privacy policy and the system states. 

Subjects S: Subjects are the active entities of the system. 
S = set of current subjects = {Sh S2, ... } 

Objects 0: Objects are passive entities containing personal data. 
0 =set of current objects containg personal data= {Oh 02,.... } 

Personal data are data about an identified or identifiable person. The question whether a 

person is identifiable also depends on the additional knowledge that a potential attacker has. 

As this additional knowledge cannot be known, all data should be considered as personal data, 

if the possibility ofreidentification cannot be excluded in practice. 


Tasks T: A subject shall be allowed to access an object only by performing a task. The tasks 

have to be defined for each application. 

T =set of tasks= {Th T2,•...}. 


145 



Current Tasks CT: The task that is currently performed by a subject is called her/his current 
task. A function 
CT: S-> T 
is defined, where CT(Si) is the current task of subject Si. 

Authorized Tasks AT: AT is a function that defines a non-empty set of tasks for a subject 
that this subject is authorized to perform. 


AT: S -> 2 T \0 (2 T denotes the set ofall subsets ofT), 

where AT(Si) is the set oftasks that Si is authorized to perform. 


Purposes P: Every task has to serve a certain purpose. Besides, personal data have to be 

collected for a certain purpose. Purposes have also to be defined according to the system's 

applications. Authorized purposes shall be modeled by a set P ofpurposes: 

P =set of purposes= {Pf, P2, ... }. 

Purposes and tasks can be hierachically structured (see [Brautigam/Holler/Scholz 90, p.47]). 

Purposes for example could be divided into different subpurposes or combined into (in the 

hierarchy) higher purposes. The same is true for tasks. Privacy aspects and practical reasons 

have to be considered when choosing an appropriate level in this hierarchy. The purposes of 

this level are used to define the elements ofP. Consequently, only purposes of this level in the 

hierarchy and ofhigher levels can be modeled by elements and non-empty subsets ofP. 

The elements ofT have to be defined according to this hierarchy level. Each task has to serve 

exactly one purpose, but each purpose can be achieved by the performance of different tasks. 

Different purposes are achieved by disjunctive sets of tasks. 


Purpose function for tasks TP: Each task has to serve exactly one purpose. 

A function 

TP: T->P 

is defined, where TP(Ti) is the purpose of task Ti. 


Purpose function for objects OP: Each object has exactly one purpose for which the 

personal data were collected. As objects can consist of different objects of finer granularity 

(e.g. a file consists of different records) that in tum serve different purposes, non-empty 

subsets ofP are taken to define the purposes for each object. 

A function 


OP: 0->2P\0 

is defined, where OP(Oi) is the purpose for which the object Oi was obtained. If, for example, 


the purpose {PI. P2} is defined for an object, this means that this object serves a (higher) 


purpose which consists ofthe subpurposes P1 and P2. 


Rights R: The access rights that a subject can have to an object are defined by access 

attributes R = {r, w, e}, 

where r stands for read, w for write and e for execute. 


146 




Necessary accesses NA: For any task, it has to be defined in advance which accesses to which 
objects are needed to perform this task. This is done by defining the set NA which consists of 
triples ofthe form (Th Oj, x). 

{Ti, Oj, x) e NA means that for the performance of task Ti the x-access to object Oj is 

necessary, x e {r, w, e}. 

Current access set CA: A current x-access, where x e R, by a subject Si to an object Oj in 
the current state is represented by a triple (Sh Oj, x). The current access set CA is a set of 
such triples representing all current accesses. 

Consent C: According to most national privacy laws, the processing and use of personal data 
shall also be admissible, if the data subject has consented. A set C is defined as a set of pairs 
(Pi, Oj). The pair {Pi, Oj) means that the data subject has consented that his/her personal data 
contained in Oj are processed for the purpose Pi. 

b.) Invariants (privacy properties) 
The following invariants define (necessary, but not sufficient) conditions for a system state to 
meet specific privacy principles. They formally define the privacy policy stated above. To 
enforce this privacy policy, it has to be guaranteed that these invariants are fulfilled in each 
system state that is defined by the state variables. 

1. A subject's cu"ent task has to be authorized for the subject (authorization property): 
T;f Si: S : CT(Si) e AT(Si). 

2. A subject shall only have cu"ent access to an object, if this access is needed to perform 
the cu"ent task (necessity ofdata processing): 
T;f Si:S, OfO : (Si,Oj.x) e CA => (CT(Si), Oj. x) e NA. 

3. A subject shall only have cu"ent access to an object, if the purpose of its cu"ent task 
co"esponds to the purpose for that the object was obtained or if there is a consent from the 
data subject (purpose binding): 
T;f Sj:S, OfO : (Si,Oj.x) e CA => {TP ( CT (Si))} c OP {Oj) v 

( TP{ CT (Si)), Oj) e C. 

c.) State transition functions: 

State transition functions that describe changes of state variables that may take place, have to 

be defined for actions such as get access, release access, create object, delete object, change 

cu"ent task. 

Besides, privileged functions are needed to define and change new subjects, tasks, authorized 

tasks for a subject, necessary accesses, purposes of tasks and consents. These privileged 

functions shall be executed by the security administrator. But the definitions of these sets and 

functions should be done in cooperation with another person who cares for the privacy 


147 



interests of the data subjects (e.g. representative of the works council, data protection 
commissioner). 

The security administrator is thus responsible for enforcing the privacy policy. The privacy 
policy is non-discretionary, as users cannot pass access rights on to others users at their 
discretion. The privacy model shall enforce a form of mandatory control that is not based on 
multilevel security requirements and is therefore different from MAC as defined in the 
TCSEC. 

5.2 Enforcement 
The implementation of such a privacy model on the operating system level has the advantage 
that control can be implemented on the lowest system level within a security kernel. On the 
other hand, on operating system level, control is only possible on the granularity-level of files. 
A privacy policy should also be supported at database or application level where access 
control is possible on granularity of records or elements and where purpose binding and 
necessity ofaccess could be further checked in dependence on the element's values. In order 
to support this possibility of an additional value dependent control at database or application 
level, the privacy property of purpose binding only demands that the purpose of the current 
task has only to be a subpurpose (subset) of the purpose of the object and that it has not 
necessarily be equal to it. Global control is possible at operating system level, e.g. when a file 
is opened it can be checked whether the purpose of the current task is part of the purpose of 
the object. A finer control is then in addition possible at database level, where purpose binding 
can also be checked dependent on the element's values and where the equality of the purposes 
can be checked. An interesting approach to implement privacy controls on database level was 
introduced by [Brautigam/Holler/Scholz 90]. 

In contrast to TCSEC, more recent Security Evaluation Criteria such as ITSEC [ITSEC 91], 
CTCPEC [CTCPEC 93] or the Draft Federal Criteria [FC 92] do not require a particular 
security policy. A system that enforces the privacy model could be evaluated according to 
these criteria. The privacy model can be enforced together with other security models. This 
could be done according to Hilary Hosmer's multipolicy paradigm [Hosmer 92]. 

5.3 Comparision to other security models 
The concept of such a formal privacy model that restricts access of a user based on his/her 
current task, is similar to the concept of role-based access controls (as introduced in 
[Ferraiolo/Kuhn 92]) that restrict access of a user based on his/her role that he/she is currently 
performing. Like the role-based model, the privacy model has the advantage of easy 
administration of the user rights. But in contrast to the role-based model by Ferraiolo and 
Kuhn, where roles can be hierachically structured (roles can be composed of roles) with 
inheritance of rights, the requirement of necessity of data processing forbids inheritance of 
rights and therefore requires that only tasks ofone hierarchy level are modeled. 

The integrity-principles of Well-Formed Transactions and Separation of Duties, that are 
enforced by the Clark Wilson model [Clark/Wilson 87], can also be realized by the privacy 
model approach. 
Transactions could be introduced to the privacy model by attaching a set of transactions to 
each task that are needed to complete this task. Consequently, the set NA has to be changed 

148 
I 



to include tuples of the form (Ti, Oj, TRANSk, x) meaning that for the performance of task Ti 

the x-access to object Oj by performing transaction TRANSk is needed. The principle of 

separation of duties can be achieved, if the sets of authorized tasks that are attached to the 
subjects and the sets of transactions that can be attached to the tasks are chosen appropriately. 

6. A holistic approach towards a privacy-friendly use of 
security mechanisms 

Security mechanisms should not only directly address privacy requirements, but should also be 
used in a privacy-friendly way to resolve the conflict between security and privacy. As the 
problem of vulnerablity is not only a technical problem, but has also social, legal, 
psychological dimensions, a holistic approach towards a privacy-friendly use and 
implementation of security mechanisms is necessary that has to involve specialists from 
different disciplines. So besides the enforcement of a privacy policy to protect the privacy of 
the system's data subjects, such a hollistic approach is also needed to protect the personal 
control data about users and usees produced by security mechanisms. This hollistic approach 
should particulary contain the following mechnanisms (see [Fischer-Hiibner/Yngstrom/Holvast 
92]): 

a.) Educational Mechanisms 
The persons that are responsible for system security, such as the system-designers, auditors 
and security administrators, should be taught about the privacy-interests and rights of the users 
and usees. An important countermeasure to vulnerability could be gained, if information and 
understanding is given to planners and practitioners of IT -security as well as to users and 
usees. 

b.) Legal Mechanisms 
Special legal attention is needed to restrict the use of personal data needed by security 
mechanisms to only security purposes, to prohibit its misuse and to control its use: 

Usage for security purposes only: 
The principle of purpose binding that is already a requirement of most western privacy acts 
must also be applied to personal data collected or processed by security mechanisms. The 
German Data Protection Act in § 14 IV BDSG therefore restricts the use of personal data 
collected for the purpose of monitoring data protection, safeguarding data or ensuring proper 
operation ofa data processing system exclusively for such purposes. 

The right to be informed: 
According to most western privacy acts, data subjects have the right to be provided with 
information on data concerning them, as well as the right to have incorrect data corrected and 
illegally stored data deleted. However, it might be forbidden to inform the user or usee about 
data collected on him/her by security mechanisms, if these data fall into a legal clause for 
secrecy. Users and usees should at least be informed about the kind of events that are 
audited. 
It is being discussed, whether data subject should not only be informed about the stored data 
concerning him/her, but also about how their personal data are being processed, as otherwise 

149 



they would not have the chance to control the correctness of processed personal data. For 
intrusion detection expert systems the question is raised, whether rules, that extract personal 
information out of audit data should be known by the users. Otherwise, they would not have 
the chance to control the correctness of personal data produced. On the other hand, if so
called a-priori rules that encode information about system vulnerabilities and hacker strategies 
are known by the users, the rules will not be capable of protecting against such kinds of 
attacks any longer. Furthermore, these rules can also contain sensitive information about the 
system's vulnerabilities, e.g. about bugs or virus replication techniques - if rules for dynamic 
virus detection are used -, that should be kept secret, as otherwise they could be misused. 
Consequently, users should just have the right to be informed about the kind of rules being 
used. 
The draft "Privacy for Consumers and Workers Act", that was introduced to the U.S. 
Congress in 1990 and intends to prevent potential abuses of electronic monitoring in the 
workplace, attempts to regulate how an employee must be informed by their employers about 
the form of electronic monitoring to be used, personal data to be collected, the use of personal 
data collected, its interpretation, etc. prior to the monitoring process. It also states that 
employees shall have access to all personal data obtained by electronic monitoring. This act 
lacks any restrictions on the monitoring process and on the volume of data, that are allowed to 
be collected. 

Participation of the work council: 
According to the German Workers' Legislation ("Betriebsverfassungsgesetz") the workers 
representation (Works Council, "Betriebsrat") must participate in the decision to introduce any 
system, that can be used or misused for performance monitoring. Arrangements that were 
made without the participation of the works council are regarded as invalid. Therefore, 
security mechanisms that can be misused must be accepted by the works council. If an 
intrusion detection system is accepted by the works council, they should also have influence 
over what actions are being monitored and the profiles used. It should be discussed, whether 
the use ofuser profiles that store information typically needed for performance control, should 
be prohibited. 

c.) Technical mechanisms 
Besides the legislative means to control the collection and use of personal data used by 
security mechanisms, technical protection of that data are also needed. 

Protection from illegal and unnecessary accesses: 
Security relevant personal data, such as data in password files, access rights databases, audit 
trails and in profiles of intrusion detection systems, have to be protected from illegal and 
unnecessary accesses. 
Audit trail data should just be read by an auditor for security relevant analysis only. For 
intrusion detection systems, further control mechanisms are needed that restrict accesses to the 
profiles in the knowledge base. The auditor shall only have write-access to the knowledge base 
to influence the intrusion detection process by defining the statistical profiles or adding new 
rules. He/she should on principle only gain read-access to the knowledge base in cooperation 
with the works council or with another person that cares for the privacy interests of the users. 
Only alarm reports and summary reports should be directly readable by the auditor. 

150 



Reaching anonymity through the use of pseudonyms: 
Another approach to protect personal access control information or personal information in 
audit trails or intrusion detection profiles could be the use of pseudonyms instead of real 
subject-names. Methods for a privacy-friendly design of transaction systems by the use of 
digital pseudonyms were already introduced by [Chaum 85]. 
For example, formal anonymity ofaudit trails or intrusion detection profiles could be achieved, 
if pseudonyms are used in the audit records and replace the subject identifiers that are used in 
the system. The replacement function could be implemented by an encryption procedure. 
Proper key management has to guarantee that the key is kept secret and can only be derived 
by an auditor in cooperation with the works council in case of an security alarm, that has to be 
analyzed in more detail (e.g. in order to unmask an intruder). 
The question, whether the audit trails or profiles still describe personal data, depends on the 
question, whether a reidentification of subjects is comparatively easy. This question depends in 
tum on whether the encryption key can be considered as secret and on the additional 
knowledge, that could be known and used by a potential attacker for reidentification. Audit 
trails and profiles contain the data or statistics about the actions and behavior of subjects or 
subject groups. So information about the typical behavior or actions of subjects could be used 
for reidentification. But such information is often not known by an attacker and represents 
information that an attacker wants to get at via reidentification. As more and more of such 
information can be accumulated over some time, the pseudonyms should be changed regulary 
after a certain time interval. The problem of reidentification must always be carefully analyzed 
from case to case. 
Such methods for reaching formal anonymity of control data by the use of pseudonyms 
should be further elaborated. 

7. Final Remarks 

It was discussed that today' s security mechanisms rarely address privacy directly and can be in 
conflict with privacy interests ofusers and usees. 
The privacy model introduced in this paper should help to develop systems that complement 
other security properties by adding privacy as a security goal. Of course, this model can 
merely help to enforce specific privacy requirements, but it is not sufficient to guarantee 
privacy in general, as other security models can only help to enforce specific security 
properties but not security in general. For the enforcement of the model's privacy 
requirements, appropriate administrative measures are also needed. 
Finally, it has to be mentioned that the holistic approach to a privacy-friendly use of security 
mechanisms is only one attempt to cope with the conflict between security and privacy and has 
to be further refined. 

151 




References: 

[Bell LaPadula 76] D.E. Bell, L.J.LaPadula, "Secure Computer Systems: Unified Exposition and 
Multics Interpretation", Mitre Cooperation, Bedford, Mass. 01730, Januar 1976. 

[Brtiutigam!Holler/Scholz 90} L.Brautigam, H.Holler, R.Scholz, "Datenschutz als Anforderung an die 
Systemgestaltung", Westdeutscher Verlag, 1990. 

[Chaum 85} D. Chaum, "Security without Identification: Transaction Systems to make Big Brother 
Obsolete; Communications ofthe ACM 28/10, 1985, p.l030-1044. 

[Clark/Wilson 87} D.D. Clark, D.R. Wilson, "A Comparision of Commercial and Military Computer 
Security Policies", Proceedings of the IEEE Computer Society Symposium on Security and Privacy, 
Oakland, 1987. 

[CTCPEC 93} The Canadian Trusted Computer Prouct Evaluation Criteria, Canadian System 
Security Centre, Version 3.0e, January 1993. 

[Denning 86} D.Denning, "An Intrusion Detection Model", Proceedings of the 1986 IEEE Computer 
Society Symposium on Security and Privacy, Oakland, 1986. 

[Denning et a/. 87] D.Denning, P.Neumann, D.Parker, "Social Aspects of Computer Secuity", 
Proceedings ofthe lOth National Computer Security Conference, Baltimore, 1987. 

[FC 92] Federal Criteria for Information Technology Security, Draft Version 1.0, NIST & NSA, 
December 1992. 

[Ferraiolo!Kuhn 92} D.Ferraiolo, R.Kuhn, "Role-Based Access Controls", Proceedings of the 15th 
National Computer Security Conference, Baltimore MD, October 1992 

[Fischer-Hiibner!Yngstrom!Holvast 92} S.Fischer-Hiibner, L.Yngstrom, J.Holvast, "Addressing 
Vulnerability and Privacy Problems generated by the Use of IT-Security Mechanisms", Proceedings of 
the IFIP 12th World Computer Cogress, Volume II: Education and Society, Madrid, September 1992, 
Ed.: R.Aiken, North Holland 

[Hosmer 92} H.Hosmer, "The Multipolicy Paradigm", Proceedings of the 15th National Computer 
Security Conference, Baltimore, October 1992. 

[ITSEC 91} Information Technology Security Evaluation Criteria (ITSEC), Provisional Harmonised 
Criteria, June 1991. 

[Ketelaar/Fischer-Hiibner 93} R.Ketelaar, S.Fischer-Hiibner, "On the Cutting Edge between Security 
and Privacy", Proceedings ofthe IFIP WG 9.6 Conference 'Security and Control of IT in Society', 
Stockholm-St.Petersburg, August 1993, Ed.: R.Sizer et al., North Holland. 

[TCSEC 85] DoD Trusted Computer Systems Evaluation Criteria, DoD 5200.28-STD, Washington 
D.C., Department ofDefense, 1985. 

152 




USING A SEMIFORMAL SECURITY POLICY MODEL 

2CAC2 


BETTERI 


Marvin Schaefer2 
Area Systems, Inc. 


10320 Little Patuxent Pkwy. Suite 1005 

Columbia MD 21044 


Gary R. Grossman 
Jeremy J. Epstein 

Cordant, Inc. 
11400 Commerce Park Drive 

Reston VA 22091 

ABSTRACT 
Informal security policy models are not required by TCSEC until class B 1, and formal models not 
until class B2. However, they can be useful at lower levels of assurance. This paper describes 
why we developed a semiformal model for Trusted NetWare, a C2 system. The portion ofthe 
model that describes access rights to the NetWare Directory Services (NDS) Directory 
Information Base (DIB) is shown. 

Keywords: Models, access control policies, DAC, Novell NetWare, X.SOO. 

1. Introduction 

Security policy modeling has a long history ofuse as a tool that aids in designing, understanding, and analyzing the 
functionality and properties of a trusted system and its trusted computing base. Policy modeling is required as part 
of the assurance evidence for trusted systems that enforce policies appropriate to Divisions B and A ofthe Trusted 
Computer System Evaluation Criteria (TCSEC [4]) and the Trusted Network Interpretation (1NI [5]) and Trusted 
Database Management System Interpretation (TDI [6]) of the TCSEC. Such policies include provisions for both 
discretionary and nondiscretionary aspects of access control. There is no TCSEC requirement for policy models of 
systems that only enforce discretionary access control (DAC) policies (i.e., systems appropriate to TCSEC Division 
C). 

The authors are engaged in the analysis and development ofa commercial C2 distributed network operating system. 
This product, Trusted NetWare®, integrates access control over network objects and metaobjects (objects that 
control or defme properties ofthe network itself), over user objects (e.g., files), and over local workstation objects 
(e.g., private files on a temporally shared workstation). The resulting composed product has a very rich access 
control policy, and the authors became convinced at an early stage in the project that a unified security policy model 
could be of considerable value to understanding and controlling development and evaluation ofthe system and its 
future releases. 

1Copyright C 1994 Cordant Inc. 
2Email addresses for the authors are: Schaefer: marv®arca. md. com; Grossman: ggross®cordant. com; 
Epstein: j epstein®cordant. com 

153 




The resulting model consists of informal (natural language prose) and formal (functional set theory) descriptions. 
An algebraic specification style was chosen over the more traditional state transition modeling, as this was found to 
be more natural to understanding the policy. As a means of assessing consistency, the authors produced a few 
informal proofs of selected invariant relationships during the model's development. While this analysis was useful, 
full formality was not needed to obtain benefits from the modeling exercise. 

The evolving semi-formal model has already shown itself to be valuable to the effort. Developers have begun to 
find that mathematical notation makes it a precise and concise reference document. Analysts, including the authors, 
have used the modeling process to identify deficiencies and security flaws in the initial system conceptualization. 

1.1. Overview of the Paper 

This paper is intended to show the value of semi-formal access control modeling to improve the design and analysis 
ofC2 products. Although [semi-]formal models are frequently used to describe composed systems that implement 
mandatory access control policies, we believe our use ofsuch modeling to be unprecedented, as it is not a 
requirement of the TCSEC or the TNI at the C2 level. However, we have found that the resulting model aided 
significantly in our ability to understand the complexities and subtleties of the discretionary access control policies 
ofNetWare's NDS and File System, ofCordant's Assure product, and ofsome ofthe ways in which these policies 
compose with each other. 

We believe that the community should be aware ofthe ways in which this modeling effort has improved our 
understanding ofthe original existing product, ofthe target trusted system we analyzed, planned and discussed at 
the whiteboard, and the resulting trusted system undergoing detailed design refmement at this stage ofthe project. 
We are confident that the target system will offer assurances that could not otherwise have been established were it 
not for the insights that resulted from the detailed analysis ofthe modeling effort. 

This paper establishes that: 

• 	 Models are useful at C2 for finding flaws and inconsistencies in design and in concept. 

• 	 Models are good for placing concepts in proper perspective and for. making a complex policy understandable. 
This is important, since DAC policies are generally targeted to a specific application and are arguably more 
complex than MAC policies. 

• 	 The application of formalism produces a framework for systematically placing concepts, their properties and 
interrelationships in perspective. The formalism normally employed by mathematicians establishes whether 
concepts are well-defmed and complete, and forces correspondences to be produced and mapped. 

• 	 The utility of a model lies in its power to predict consequences of specific system actions and to produce 
answers to unanticipated questions from developers. 

2. C2 Security Policy Modeling 

Almost all recent security policy models have been developed or adapted io address variants ofmilitary-style 
Division A and B policies. In these models, the basis for nondiscretionary access control (or MAC) decisions is 
based on the interpretation ofclassification labels associated with objects containing information and clearance 
labels associated with the system's users and with the active subjects that represent users. The models generally 
exploit the natural partial orderings ofthese labels as a primary basis for granting or denying access. Discretionary 
access controls (DAC), based on the concept ofneed-to-know, are normally relegated to a secondary r6le in these 
models, and a MAC prohibition necessarily dominates access control permissions based purely on DAC. 

The most celebrated of formal MAC models is the family ofmodels stemming from collaborative work ofD. Elliott 
Bell and Leonard J. La Padula [1]. These models are characterized by mediation based on the current state of 
subjects and objects: state transitions are constrained by the set of labeled objects to which each labeled subject 
currently has active classes ofobserve and modify access. In these models, DAC permissions are represented 
conceptually as a complete access control matrix (ACM) [a Ia Lampson [2]], each cell ofwhich specifies the full set 
ofpermitted modes of access between a subject and an object. 

154 




It is possible to model DAC either as a matrix or as a function. In the former approach, a conceptual matrix M is 
produced such that there is a row for each subject, s, and a column for each object, o, and M80 is the complete set of 
type-specific modes of access granted to s for o. In the latter (logically equivalent) approach, a total discretionary 
access rights function ds is defined such that ds(s,o) is the set of type-specific access rights ofs too. The names of 
the subjects that are processes may also occur as objects, since many DAC models control interaction (e.g., 
interprocess communication) between subjects. More precisely, the names of subjects as column headers in M 
represent the object-attribute of subjects (i.e., their address space), so that Mss' represents the permitted access rights 
ofs to the address space ofs'. 

Note that rights entered into M80 may be primitive universal system rights like read, write, append, execute, ... , or 
they may extend to include constrained access to o through specific functions or mechanisms. That is, a type
specific right to an access mode too like read may entail (in the model's interpretation) that o be read by invocation 
of a specific function/rather than directly. In the absence of explicit rights in M80 to any alternative viewing 
mechanisms, g, this generalization of access models would force all ofs's accesses to o to be performed through f. 
Such representation could distinguish between those subjects (or users) permitted to access a database directly, and 
those forced to do so only through a controlled viewing or updating mechanism. Alternative modeling approaches 
are possible and practical, depending on the goals ofthe model's consumer. E.g., a user u that does not have the 
right to access a database D directly would have no access rights entered in the cell MoD but would have invoke . 
privilege in the cell M0fi the cell MJD would show direct modes of access to D. We prefer the former, as it provides 
a direct answer to the question "who may access D and how?" while the indirection in the latter renders the answer 
somewhat more inscrutable. 

Some DAC models distinguish between the absence of any rights by s to o and a prohibition ofs to a defmed set of 
access modes to o. The former may well be represented by those cases where M80 = 0, but this could represent the 
ambiguous situation where either s has neither been granted nor denied rights to o or the situation where s has not 
been granted explicit rights too but has had specific rights denied too. The ambiguity can be avoided by defining 

-.R80), where R80 is the set ofrights explicitly assigned to s for o and -.R80 is the specific enumeration M 80 =(R80, 


oftype-specific access modes prohibited for s too. That is, R80 ={r; Ir; is a permitted access mode} and -.R80 = 

{-.r; 1-.r1 is a prohibited access mode}. Note that each ofR80 = 0 and -.R80 = 0 is independent ofwhether or not 
Ms0 =(0,0). 

The Trusted Net Ware system does not implement negative access controls. However, the present model provides a 
framework for their representation should this become a future objective. 

It is well-known that the access control matrix, M, can be used to model either Access Control Lists (ACLs) or 
Capabilities. That is, the column M...o lists the rights for each subjects to o and is o's ACL; the row M,_lists all of 
the objects and the modes of access to them permitted to subjects, and is the equivalent ofs's capability list. 

Because ofthe richness ofthe Trusted NetWare's tripartite policy and because ofthe object-oriented design and 
data structures, we have chosen not to use a single matrix, but instead to use functional notation through a series of 
effective rights functions ER(s,o) that return the set of type-specific modal rights ofs to o. This makes the model 
less abstract and much closer to the implementation. 

2.1. · NDS DAC Synopsis 

This paper focuses on aspects of the discretionary access control policy for the Trusted NetWare Directory Services 
(NOS) Distributed Information Base (Dm) [7] with the goal of deriving a closed form determination ofthe effective 
rights of users to objects in the Dm. NOS is Novell's implementation ofthe X.SOO global naming standard. 

Access control policy mediation and policy enforcement are provided by NTCB components on the NOS, the file 
servers, and on the client workstations. This paper addresses part of the NOS access control policy. 

NOS's tree-structured om defines the attributes of classes (these are called 'properties' in object instances) and 
class relationships ofall Trusted Net Ware Objects in typed nodes. That is, the om is a database for the overall 
system, and contains information about all of the system resources (e.g., printers, devices, mounted data servers) 
and about all of the users who may access any ofthe system resources. It is important to recognize that the elements 
ofthe DIB are not synonymous with the objects they describe. Obtaining access to the contents of a om node is 
not, in general, sufficient to obtain access to the described network object. · 

155 




om Objects are treated as instances ofencapsulated abstract data types that can be accessed only through well
defmed interfaces. DIB nodes are either containers (i.e., they may have descendent nodes) or leaves according to 
their class defmition. Class instances inherit most properties from their Superclass Objects as in most object
oriented programming models. Trusted Net Ware introduces a powerful generalization on objects' inherited access 
control properties to other objects. Properties defined or inherited for a class are either mandatory or optional: a 
mandatory property must be assigned a non-null value; an optional property may be assigned a null value. 

The Trusted NetWare NOS implements a discretionary access control policy. Rights are accorded to various forms 
ofclasses of subjects, all ofwhich are classed as objects in Trusted NetWare's object-oriented nomenclature. Each 
object instance contains an attribute, called Access Control List (ACL), associated with it that defines access control 
rights of other objects to it as an object and to subsets of its properties. The Access Control List always contains 
inherited values relative to certain properties ofthe object (determined by the object type) and other values that may 
be assigned by authorized objects. 

Within the om, every access request is mediated with the effect that changes in user (or object) access rights are 
immediate. This includes immediate revocation of access rights. 

3. Trusted NetWare Directory Services 

This section describes and formalizes definitions and rules for the discretionary access control policy for the Trusted 
NetWare Directory Services Directory Information Base. We incorporate common notation from algebraic set 
theory and graph theory. 

Trusted Net Ware Directory Services (NOS) is the basis for structure in the network system. It is represented in 
terms ofthe Directory Information Base (DID), a singly-rooted tree structure that serves to defme much ofthe effec
tive access rights ofthe active subject relative to NOS objects. The objects in the Directory represent information 
about a network resource (e.g., about a user, group, printer, volume, etc.). Each object in the om is a member ofa 
named class, and inherits properties from its superclass(es). There is a unique class, Top, which is the superclass of 
all classes, and which has no superclass. All classes inherit specific default attributes from Top, including the ACL 
attribute and the Mandatory Object Class attribute. Each object's structure (i.e., its set ofattributes and properties) 
and its placement (i.e., its parent's required object class) in the NOS Directory tree is defined and constrained by its 
Object Class attribute. 

The tree structure is represented in the model as a mapping by a successor function r ofObjectNodes into the set of 
ObjectNodes: 

r: 0 -+ 20 (the om node successor function) 

Note that r does not map objects from the om to any ofthe file servers' nodes or directory trees, or vice versa. We 
write rn as a simplification ofr(n). r-1n, represents the inverse image ofn under r, and is the set of immediate 
predecessors (i.e., the parents) ofn. In a tree, either r-In = 0 (i.e., n is the root ofthe tree) or n has a unique 
parent #r-1n= 1. 

In order for the om to be a tree, it is necessary that only the root R have no immediate predecessor and that all other 
nodes have exactly one immediate predecessor node, i.e., the following must hold: 

VneDIB,(rln=0<:>n=R)" (n~R=>#rln= 1) 

The ObjectNodes in the NOS om are partially ordered. An ObjectNode is represented as a cartesian product 
(sextuple) consisting of its Class, Superclass, Containment, Name, a set ofMandatory Attributes, and a set of 
Optional Attributes. 

0= ObjectNode • Class® SuperClass ®Containment® NamedBy® 2MandatoryAttributes ® 
20ptiona1Attributes · 

• c®sc® co® nb®2ma®200 

The DIB consists ofthree classes ofnode objects: 

• 	 Root object: the unique node that has no parents in the DID hierarchy 
R•RootNodes { 31 r e D/B3rlr=0} 

156 




• 	 Container object: a node that by class defmition can contain other objects, which may be either container 

objects or leaf objects; e.g., an Organization or an Organizational Unit 


• 	 Leaf object: a node that by class defmition can not contain other objects, e.g., a user, group, Trusted Net Ware 
server, printer, or other network resource. 


La LeatNodes = {I e DIB 3 fl = 0A .£([)} 

CN !I! ContainerNodes = DIB 11 -L 


If a node dis in the Directory, then there is a unique path Jl(d,R) to d from the root node. 
Ifd e DIB then 3IJ1(d.R) 

The path from the root of the tree to a particular object forms the object's complete name or distinguished name. 
Paths in the DIB and in the File System are defmed in NetWare documentation such that the destination node is 
written to the left of the source node. 

Jl(nt:fn3 ) =path from n3 to nd = na=nk-nk-1' ... ·nt·no=n3 3 nj e rnj-l 

The CompleteName ofa om node nd e 0 is Jl(nd, R); the CompleteName of a node nd e Dvin the file system is 
Jl(nd,Rv). 

In addition to its distinguished name, an object in the DIB can also be represented and referenced by an alias. Any 
object in the om can have an alias; if an object has subordinates, its alias will appear to have the same subordinates. 
However, the alias itself must be a leaf vertex, and have no subordinates. 

Each named object in the om tree has a type, and is derived directly from a class template. The class template 
defmes attributes that must be present in all instances ofthe object. These include the Class, e(n), SuperClass, .£(n) 
= .£(e(n)), Containment (the only classes from which the object node may depend), NamedBy (the node's Common 
Name), Mandatory Attributes {those for which a value must be present in the object instance, such as Object Class 
and Surname for a User object) and Optional Attributes (those for which a value may be present in the object 
instance, such as group memberships for a User object). 

A trustee to an object 0 is a user, group or other object that has been granted some specific set ofrights to 0. The 
trustees to an object ~ are precisely those objects included in o2•s ACL: 

tr(o1,~) = OJ is Trustee of~<=> acl(oi•oV 

All objects inherit an ACL attnbute from the Root. At the time it is instantiated, an object's ACL contains default 
trustee assignments that are defined from the class template. These defaults can be selectively overridden at the 
time the object node is created. The ACL attribute may· also be modified afterwards by objects holding (or 
inheriting) the equivalent ofa trustee assignment to the object with at least the Write right to the ACL. 

Commonly used object classes in the Directory tree are: Country, Device, Directory Map, Group, Locality, NCP 
Server, Organization, Organizational Unit, Person, Print Server, Printer, Profile (used to specify a shared login 
configuration), Queue, Resource, Server, Top, User and Volume. 

The Trusted Net Ware Directory is an object to which specific access controls are applied to object and property 
rights of its objects (i.e., of its nodes). These rights are distinct from the rights applied to the file system by a 
Trusted NetWare file server. Hence, access to a om object or one of its properties does not necessarily imply 
access to the Trusted Net Ware object it describes. 

3.1. User Account 

Each user ofTrusted NetWare has an account. The User (account) object is a leaf node in the om, and contains 
attributes that are used to control security and to defme security-relevant privileges ofthe user's execution environ
ment to a server. User nodes dependfrom Organization or Organizational Unit nodes (i.e., their ancestors in the 
directory tree are Organization or Organizational Unit nodes). The User object defmes such user attributes as: user 
name and password, one or more groups to which the user may belong, optional home directory, optional trustee 
assignments, optional security equivalences, mailbox, and login script. 

A UserNode is an object node ofclass User. 

157 




UN= UserNode e { un = <c, sc, co, nb, ma, oa > e 0 Ic=User,sc e {Top, Person, OrganizationaiPerson}, 

co e {Organization, OrganizationaiUnit}, seq e oa, gml e oa, g e gml 

~ 3 gn = <c',sc',co',nb',ma',oa'> 3 g=nb', } 

where gml is the user node's group membership list. The user name is unique over the entire network. The node 
also contains the password used throughout the network. No means is provided for any user, including the 
supervisor, to read passwords associated with any user. 

Trusted NetWare objects belong to the immediate container node from which they depend in the NDS Directory tree 
and, by transitivity, to its predecessor container nodes. In particular, every User object belongs to the Organization 
object or Organizational Unit object in which it is defmed. (Note that belong to is a transitive relationship.) 

Trusted NetWare offers the ability for an administrator to grant membership in one or more named groups to 
individual users. Every user may be members ofone or more groups. Groups may also be members of other 
groups. Each group object belongs to a unique organization or organizational unit, and its individual members may 
belong to different branches of the Directory tree. 

A user object, group object, organizational object (or any other DIB object) may be on the ACL ofany object 
defmed in the DIB tree or in the file system. In this case, the object on the ACL is called a trustee to the DIB object 
or to the file system object. 

The user's ID and the user's group memberships are used as bases for access control mediation. Each unique user 
ID may belong to any number ofdefmed groups, but to exactly one organizational object. 

A user may be assigned a directory that can be used as a private workspace. Specific privileges or limitations may 
be associated with directories. 

Each User node has a login script attribute that contains commands that are executed for the user each time the user 
logs in. Note that these commands all execute on the user's workstation, since there is no mechanism for users to 
execute commands directly on a server. 

A security equivalence, discussed below, is an explicit assignment that allows one User to have the same set of 
trusteeships and rights as each other User or User group contained in the User object's Security Equals List. Every 
UserNode contains a SecurityEqualsList ofall DIB objects to which the user has explicit security equivalence. 

sel(u) = SecurityEqualsList(u) = {o e DIB Iu e UN, u = <c,sc,co,nb,ma,oa>, seqe oa, o e seq} 

User accounts may be subjected to specific restrictions that are independent of the discretionary access control 
policy. Account restrictions are assigned by administrators acting with either SUPERVISOR or other appropriate 
privilege. The assignable restrictions include: designated physical workstations from which the user may login; 
time ofday, by half-hour period, when the user is authorized to login; the number of simultaneous logins the user is 
permitted; the number of times the user can login with an expired password; the number ofconsecutive times the 
incorrect password can be given before the account is disabled; disk space allocated to the account; the account 
balance; and expiration date for the account. 

3.2. Groups and Group Nodes 

A GroupNode is an ObjectNode ofclass Group. Every GroupNode contains an attribute, member, that lists the 
UserNodes and GroupNodes that belong to the GroupNode. 

GN =Group Node e {gn = <c,sc,co,nb,ma,oa> e 0 Ic=Group, member e oa 3 m e member~ m e UN u GN} 

Every UserNode contains an attribute, GroupMembership, that lists the GroupNodes ofwhich the User is a member. 
Every GroupNode contains an attribute, MemberList, that lists the UserNodes and GroupNodes that constitute the 
Group. 

GroupMembership(u) =gml(u) ={g=<c,sc,co,nb,ma,oa> I<c',sc',co',nb',ma',oa'> e UN, g e GN, gm/ e od, 
nb e gm/} 

MemberList(g) =member(g) = {m e (UN u GN) Ig= <c,sc,co,nb,ma,oa>, member e oa, m e member} 

The User Nodes and GroupNodes are distinct and membership is represented consistently in the DIB. 
(UN r. GN= 0) 1\ 'r/ u e UN, 'r/ g e GN, (g e gml(u) <=> u e member(g)) 

158 




3.3. Security Equivalences 

A User object A can be made to have a security equivalence to another object B by the addition of the name of 
object B to object A's security equivalence list. The subject that makes the assignment to object A must write
manage A (i.e., have at least the Write right to the ACL property ofobject A). Through the use ofsecurity 
equivalences, one can pass his own rights to any other user on the network that he manages. 

Every user object is security equivalent to those DID objects enumerated in its SecurityEquals property, seq, to 
every group ofwhich it is a member, or to any object in the om that contains it. Every om object is security 
equivalent to every DID object that contains it. · 

se(ol, ~) e <=> ( o1 = <c,sc,co,nb,ma,oa> e UN A ( ~eseq v ~ e gm/(o1))) v ~ e J.L(o 1,R) 

Some security equivalences are system defaults and cannot be assigned or revoked. All objects are security 
equivalent to the following objects: 

• 	 The [Root] object. 

• 	 Each successive Container object on the direct path from the root node to the object node's Container object 
(i.e., the user node is security equivalent to every one of its ancestor nodes). 

• 	 The [Public] trustee. 

These default security equivalences cannot be changed, nor can they be viewed with administrative utilities. 
V o e DIB, (se(o, [Root]) = se(o, R)) A (se(o, [Public]) = se(o, R)) 

Note that security equivalence is not an equivalence relation. User objects are made security equivalent to the 
[Root] and to each Container object directly from the [Root] to the Container object they are in, which allows any 
object to be a trustee ofanother object. User objects are also security equivalent to any group ofwhich they are a 
member (but are not transitively made to be security equivalent to the members ofthat group). This permits the 
assignment of file rights or rights for accessing a printer to an Organizational Unit, e.g., rather than just to a group 
or specific users. This also permits administrators to use the DID's container objects as groups. 

The [Public] trustee is a special trustee that can be added to any object (as well as to server volume directories and 
files). Whatever rights are assigned to the [Public] trustee are granted to any client, even if that client has not been 
authenticated to Trusted NetWare Directory Services. 

When a system is first installed, the [Public] trustee is granted the Browse right at the [Root] of the DID. This 
allows all User objects in the tree to get around the tree. Ifdesired, this right can be removed from the [Root] 
object. The suggested more secure setup would be to grant the Browse right to the root container ofthe om, 
thereby allowing only authenticated objects to browse the entire tree, provided that the Browse right is not excluded 
by an Inherited Rights Filter (see below). 

3.4. NDS Access Control Lists 

All NOS objects have a property called the Access Control List (ACL). The ACL controls type-specific modes of 
access both to the object and to individual properties ofthe object. The ACL consists ofa set ofACL entries. For 
both the object and for the object's defmed properties, each ACL entry lists the trustee (the object having rights to 
the object or named object attributes) and what those rights are (specific rights assignments). 

Each object in the DIB can have one or more entries in the ACL attribute ofany object. Each entry in an ACL is a 
3-tuple consisting of: a subject name, a protected attribute name, and a rights set. These are further descn'bed 
below. 

• 	 Subject Name: This is the complete name ofa trustee with some right(s) to the object or to some of its 
properties. 


SN:a SubjectName e {CompleteName, (Root], [Public], (Creator], (Self], [lnheritanceMask]} 


• 	 Protected Attribute: The name ofthe attribute to which the rights set applies. It may instead be an identifier 
such as [Object Rights] or [All Attributes Rights]. If the field is [Object Rights], the access rights apply to the 
object ofwhich this ACL is an attribute rather than to its protected attributes. 

159 




PAN= ProtectedAttributeName e {AttributeName, ACL, Object, [Entry Rights], [AllAttributeRights], SMSRights] } 

• 	 Rights set: This field, called the privilege set in standard Novell documentation, enumerates the set ofaccess 
rights that have been granted to a subject relative to the Protected Attribute. If [Inheritance Mask] is being 
specified, it enumerates the set ofallowable rights that may be inherited. 

The AccessControlListElements (ACLE) is the set ofall elements ofaccess control lists corresponding to existing 
om nodes. Each element is a triple consisting ofa subject name, a protected attribute name, and a set ofrights. 
(These elements include the inherited rights filters, which are distinguished by the subject name [InheritanceMask]. 

ACLE =AccessControlListEiements ={acle =<sn,pan,ps> 13m e 0, 3n = <c,sc,co,nb,ma,oa> e 0 3 

sn e SNudV(m), ac/e e oa,pan e PAN,ps e PS} 

The ACL function yields, for any DIB node, the set ofAccessControlListElements that make up its ACL. The acl 
function yields, for any subject and any OIB node, the set ofAccessControlListElements that are in the node's ACL 
and for which the given subject is the subject identified in the access control list element. 

ACL(n) = {acle e ACLE 13 < c,sc,co,nb,ma,oa> e (0 u D) 3 ac/e e oa, n =nb} 
ac/(s,n) = {ac/e =<sn,pan,ps> e ACL(n) Is= sn} 

All om nodes are created with default ACL dACL(n) determined by the node's class. We define the total function 
dACL(n) e(n) on all of the om classes. For notational convenience, we defme !DACL(n) to be dACL(n) e(n). 

There are five ways to assign one object, 0 1 access rights to another object 0 2: 

1. 	 Object 0 1's rights to 0 2 may be specified in one or more entries in 02's ACL. 

2. 	 Rights can be assigned to [Root] or [Public]. 

3. 	 Object 0 1 can be made security equivalent to another object that has rights to 02. 

4. 	 A Parent object of 0 1 can be assigned rights to 0 2. 

5. 	 0 1can be assigned rights to a parent or ancestor of 0 2. These rights will apply to 02 unless they are filtered 
out by an Inherited Rights Filter (described below). 

Note that the ACL enumerates those objects (including User objects) that have access to the particular NOS object 
or its properties, but it does not list the specific accesses the NOS object itself may have to other objects. So, ifa 
User object, u, is being placed in the om, then u's ACL defines the trustees to u and their particular rights to view 
or modify contents of the User object's defmition (e.g., the Login Script for the User object u). Ifu were a trustee to 
other objects (or object properties), the ACL attributes ofeach of those objects would list u's rights to those objects 
or to their properties. 

The ACL is itself an attribute or property of an object, and the ACL can have (as one of its values) a trustee to itself. 
If the trustee has the Write right to the ACL, that trustee is allowed to modify any ofthe rights ofthe object. (This 
follows since the trustee could otherwise modify the ACL to grant itself that right). 

When an object is created, the creator object automatically receives all object and property rights to the newly 
created object. However, the creating object will not receive any right that is not effective (e.g., because ofan 
Inherited Rights Filter) at the new object's level of the OIB. 

Any right r to an object o is a pair consisting ofa ProtectedAttributeName ...e(o) and an element ofthe RightsSet 
defined for ...e(o). The set ofrights contained in an acl is: 

rts(acl(s,n)) • { <pan, rs> 3 acl(s,n) =<s,pan,rs> } 

The set oftrustees is the same as the set ofobjects that appear on some object's ACL; any object can be a trustee. 
T• Trustees • {o eO I 3 n e (Ou D), 3 acle = <sn,pan,rs> e ACL(n) 3 o=sn} 

160 




3.5. Access Rights 


Access rights are granted to objects and to attributes. 


3.5.1. NPSDirectozy ObjectRizbts 

Each object in the Trusted NetWare Directory has rights associated with it These rights control what objects (i.e., 
User objects or other active entities in the system) can do with or do to the specified object (but not with its 
contents). These Directory object rights are: 

Browse 	 The right to see the object in the Directory tree. 

Create 	 The right to create a new object below the specified object in the Directory tree. (This 
right applies only to container objects.). 

Delete 	 The right to delete the object from the Directory tree. Leaf objects and Empty 
Container objects are the only objects that can be deleted. 

Rename 	 The right to change the name ofthe object. This right only applies to Leaf objects. 

Supervisor 	 The right to all object access rights as well as all rights to the object's properties. 

It should be noted that Browse rights are not sufficient to view or modify the contents ofthe object, but only to view 
the object itself . 

.OR= NDSObjectRights e { B, C, D, Ren, S } 

3.5.2. N»SPrQperties 

All objects have properties, each ofwhich can have at least one value. Rights for a given property apply to all of its 
values. These rights control what users or other entities in the system can do to the named property or properties. 
These property rights are: 

Compare 	 The right to compare a value to the value ofthe property. This does not permit direct 
viewing ofthe property value. 

Read 	 The right to read the values of the property. Ifthe Read right is given, compare 
operations are also allowed even ifthe Compare rights permission is not explicitly 
granted. 

Write 	 The right to add, remove, or change any values ofthe property. 

Add or delete Self 	 The right to add or remove itself as a value of the property. The trustee cannot affect 
any other values ofthe property. 

Supervisor 	 All rights to the property. 

PR =NDSPropertyRights 	e { C, R, W, AS, S } 

Property rights can be assigned either uniformly to all properties ofthe object or individually to specific properties 
ofthe object. For example, when a User object is created in the Directory, the User object itself is given the Read 
right to all properties of that object. In addition, by default the user is also given Read/Write rights to its Login 
Script property and the Print Job Configuration property; while the User object is not given default Write access to 
its login restriction properties. 

In summary, the rights set for om objects consists of object rights and property rights, i.e .. · 
RS = DffiRightsSet e { 20R, 2PR} 

3.6. Inherited Rights 

Object and property rights flow from the top ofthe NOS Directory structure down the tree. When rights flow down 
the tree, they are known as inherited rights. However, the only rights that can be inherited are [Object Rights] and 

161 




[All Property Rights]. However, individual property rights, i.e., trustee rights that are explicitly granted to specific 
properties like the ACL, are not inherited. 

Inheritance for a specific user can be controlled by making multiple assignments appropriate to the context of 
operation. 

3.7. Inherited Rights Filter URF) 
The Inherited Rights Filter (IRF) is the Trusted NetWare mechanism that limits inherited rights for all users in the 
Directory. IRFs are available for Directory objects and for [All Property Rights] assignments. The set ofInherited 
Rights Filters, IRF, is that subset of the set ofall AccessControlListElements which are distinguished by the subject 
name [InheritanceMask]. 

IRF= InheritedRightsFilters a {ac/e =<s,pan,rs> e ACLE Is= [InheritanceMask]} ~ACLE 

The function iifyields the set of all inherited rights filters for a node. 
irj{n) = {irfo =<sn,pan,rs> e ACL(n) lsn =[InheritanceMask]} 

In contrast to trustee assignments, IRFs do not grant rights. They exist for the sole purpose ofrevoking rights. The 
IRF explicitly enumerates the rights that may be inherited and any right not enumerated in the IRF is not inherited. 
The effect is that for every object that does not have a trustee assignment to this object node is to allow only the 
specified rights to exist. 

In the instance where a specific trustee assignment is granted, the object to which the assignment is granted will 
override the IRF restrictions. This is true for both object and property rights. They do not affect any rights granted 
at the point where the IRF is installed. 

If the Supervisor property rights are disallowed, all objects not specifically having the Supervisor property right 
granted to the object will be disallowed that right from inheritance. The only exception is the Supervisor object 
right. By default, this right grants all property rights and cannot be limited by a property IRF. So, ifan object 
inherits the Supervisor object right from above, a property IRF has no effect on that object. 

If the Supervisor object right is disallowed via an object IRF, this disallows inheritance ofthe Supervisor right from 
above. Therefore, one can effectively prevent Supervisor access to portions of the Directory by placing object IRFs 
which disallow the Supervisor object right from being inherited. As a consequence ofthis property, it is possible to 
block Supervisor rights completely from a part ofthe DIB. Ifall objects with Supervisor rights are deleted relative 
to a specific section of the Directory tree, there will be no effective way ofmanaging that section ofthe tree. 

The set of trustees is the same as the set of objects that appear on some object's ACL; any object can be a trustee. 

3.8. Effective Rights to an NDS Object 

The effective rights ER(o1,oi) ofa User object or other NOS object o1 to an NOS object o2 are derived every time 
an access is requested. The derivation takes account of the following: 

• 	 the object's set ofexplicit trustee assignments to the NOS object; 

• 	 trustee assignments inherited from o1 's container (implicit security equivalents of o1); 

• 	 if the requesting object is a User object, the trustee assignments to any Group object ofwhich the requesting 
User object is a member (implicit security equivalents ofuser); 

• 	 if the requesting object is a User object, trustee assignments to any object listed in the requesting User object's 
list of security equivalences; 

• 	 trustee assignments inherited from the NOS object's container, that are not filtered out by the NOS object's 
IRF; 

• 	 trustee assignments inherited from the requesting object's container as a trustee of the NOS object's container 
that are not filtered out by the NOS object's IRF. 

The explicit trustee assignments in a node add to those inherited from its parent node, if any. The Supervisor right 
can be masked for object and property rights. These rules are different from those that apply to the File System. In 

162 




particular, the Supervisor right cannot be masked for file system rights. Further, the Supervisor right cannot be 
filtered out by an IRF for files and directories. 

The effective rights ofan object, OJ to an NOS object~ are computed as 

the union of 

{the union ofall explicit trustee rights by OJ and all objects to which OJ is security equivalent to o2} 

with 

{the union ofall inherited rights ofOJ or any object to which OJ is security equivalent to o2}. 

That is, 
{ (r e rts(acl(oJ.~))) 

v (o' e UN, 3o' e DIB 3 se(oJ,o'), r e rts(acl(o',av))} 

v (3 o e J1(o2,R) 3 r e ER(oJ,o)) 
" '<I o' e J.1(o2,fo), r e irj{o') 

3.9. Access Rights Acquisition in the NDS 

In the om, object OJ has right r to object o2 if any ofthe following holds: OJ is a trustee ofo2 with right r; OJ is 
security equivalent to a trustee of o2 possessing right r, or OJOr a security equivalent of OJ has right r to a container 
ofo2 that is not filtered out by an IRF. 

The object o may not necessarily access a node n e DIB, even if tr(o,n). In order for object o to achieve any form 
ofaccess to a node n e DIB, the object must have at least Browse object rights to r-Jn; i.e., it is necessary that 

0 :# ( ER(o,rJn) f"' {<Object, {B,S}>, <ACL, {W,AS,S}>}) 

For some property rights, possession ofan access right to apropertyfP ofnode~ by an object OJ may imply that 
o1has other rights to the property of o2. In particular, ifwe let g(s,P(x)) mean that s has the capability to make P(x) 
True, then 

({<Object,{S}>} e ER(oJ,o2)) => V!Pe... e(~): _gfoJ,{<V',{B,C,D,Ren, S}>} e ER(oJ•oV) 
({<V',{S}>} e ER(oJ.~)) => ~oJ,{<V', {C, R, W, AS, S}>} e ER(oJ•oV) 
({<V',{W}>} e ER(oJ•oV) => ~o1 ,{<V', {R}>} e ER(oJ,o2)) 
({<V',{AS}>} e ER(oJ,o2)) => ~OJ,{<V', {R, wl~ol)}>} e ER(oJ•oV) 

It is easy to prove the following theorem: 
Theorem: Possession of Supervisory Rights to an object is equivalent to possession of Write access to the ACL of the 

object in the sense that: 
'<I OJ,o2 e DIB: 

({<ACL, {W}>} e ER(oJ,ov) => _gfoJ,{<Object,{S}>} e ER(oJ,~)) 
1\ 

({<Object,{S}>} e ER(oJ.~}) => ~oJ,{<ACL, {W}>} e ER(oJ.~)}) 

4. Conclusions 

Trusted NetWare has a rich access control policy that derives from the evolution ofthe mature products from which 
it is being built: Novell's NetWare and Cordant's Assure. Although it was not required for C2, we found it useful, 
indeed invaluable, to develop and use an informal security policy model in order better to understand the composed 
policy ofTrusted NetWare's three network TCB components. 

In this paper, we have given an example ofthe derivation ofeffective rights to objects in the Directory Information 
Base that serves as the trusted product's metadatabase. We have shown a few productions and theorems that follow 
easily from the selected modeling notation. While their statement and proofs appear obvious in the present 
formulation, considerable examination ofdocumentation, commented code, uncommented code- and ultimately, 
interrogation ofdevelopers- was needed to lay the foundation from which to produce these results. 

163 




Since writing the preliminary model, potential flaws and omissions in the evolving NTCB design have been 
identified and resolved, while new ideas have been tested against the model as part of the ongoing development and 
assurance process. 

Inspiration for writing a model for a C2 system came from [3], where a semiformal model was used for a Bl UNIX 
system and [8) where a formal model for the UNIX setuid mechanism is described. 

5. Acknowledgments 

We greatly appreciate the assistance ofLawrence Kpodo (Cordant) and Doug Hale (Novell) who helped explain 
many of the finer points of the NDS security policy. 

6. References 

[I] 	 David Bell and Leonard La Padula, Secure Computer Systems: Unified Exposition and Multics 
Interpretation, The MITRE Corporation, July 1985. 

[2] 	 Butler W. Lampson, "Protection", Proceedings ofthe Fifth Annual Princeton Conference, Princeton 
University, March 1971. 

[3) 	 Blst Informal Security Policy Model, Addamax Corporation, July 1989, Document #288-116-B/1.0. 

[4] 	 Department ofDefense Trusted Computer System Evaluation Criteria, National Computer Security Center, 
December 1985. 

[5] 	 Trusted Network Interpretation ofthe Trusted Computer System Evaluation Criteria, Version 1, National 
Computer Security Center, July, 1987. 

[6] 	 Trusted Database Interpretation ofthe Trusted Computer System Evaluation Criteria, Version 1, National 
Computer Security Center, April, 1991. 

[7] 	 NetWare Application Notes, Volume 4, Number 4, Novell Inc., Part Number #164-000032-004, April 
1993. 

[8] 	 Tim Levin, Steven Padilla, Cynthia Irvine, "A Formal Model for Unix Setuid", Proceedings ofthe 1989 
IEEE Conference on Research in Security and Privacy, May 1989. 

164 




A TAXONOMY FOR SECURITY STANDARDS 


Wayne A. Jansen 

National Institute of Standards and Technology 


A-216 Technology Building 

Gaithersburg, MD 20899 


Abstract: This paper presents a taxonomy of security standards developed to 
ensure a systematic review of security standardization areas appropriate to the 
Department ofDefense (DoD) Goal Security Architecture. The taxonomy relies 
on a simple paradigm based on the notions of uniformity and quality. This 
approach attempts to provide full coverage ofall relevant security standards, yet 
be simple to understand and apply. The taxonomy is also open to further 
refinements and adjustments. Because of the flexibility and simplicity of the 
taxonomy, other initiatives involving the classification of standards may benefit 
from its use. 

1. INTRODUCTION 

The DoD Goal Security Architecture (DGSA) [1] presents a comprehensive view on the 
architecture of an information system from the perspective of security. The orientation of the 
DGSA is toward future information systems with a focus on both users and information. It 
emphasizes distinct autonomous information domains that are distributed among networked 
computer systems. This perspective differs significantly from past treatments of information 
systems security and necessitates reexamination of the security standards landscape from this 
viewpoint. 

Standards can be broadly defined as "something taken for a basis of comparison, or that 
which is accepted for current use through authority, custom, or general consent" [2]. Several 
divisions of security related standards for information technology can be distinguished [3]: those 
in which security is the primary concern, those in which security is an important but secondary 
concern, and those in which security is not specifically addressed but are supportive of security. 
The paper focuses primarily on the first two divisions and assumes the reader has some 
familiarity with security standards. 

There are many ways to view and classify existing and emerging security standards for 
information technology. Despite the scheme used, the classification of some standards is always 
difficult or arbitrary. Although no one scheme is perfect, each serves to help interpret the 
standardization landscape. Here, two principal classes of standards [2] are differentiated: 

(a) Standards for uniformity, and 
(b) Standards of quality. 

It is the sameness of a product that is at issue for standards for uniformity, while 
classification or grading of a product is at issue for standards of quality. With regard to security, 
these classes of standards match nicely with functionality and assurance considerations. Since 
matters of assurance are often overshadowed by functionality, achieving a balance between the 

165 




two aspects early in the scheme is important. Table 1 contains the initial categories of a 
taxonomy for security standards based on the uniformity/quality paradigm. The remainder of the 
paper examines the taxonomy in detail. 

Table 1: Taxonomy of Open System Security Standards 

Iaass IFonn 
I 

Standards for Uniformity Standards for Interchangeability of People with 
Equipment 
Standards for Interchangeability between Products 

Standards of Quality Interpretive Standards 
Standard Assessment Procedures 

2. STANDARDS FOR UNIFORMITY 

For the information technology area, the primary motivation for standards for uniformity 
is that of interchangeability. Two forms of interchangeability standards can be identified: 

(a) · Standards for the interchangeability of people with equipment, and 
(b) Standards for the interchangeability between products. 

The goal of the former is to capitalize on the knowledge and experience people acquire in a 
technology area, possibly through the use of one manufacturer's product. The goal of the latter 
is twofold: to allow products from different manufacturers to work together, and to be able to 
substitute one manufacturer's product for another's. 

2.1 Interchangeability of People with Equipment 

Open system standards for interchangeability of people with equipment are sometimes 
referred to as either driveability or user portability standards. Driveability refers to the notion 
of look-and-feel of the user interface. User portability is a bit more general and refers to the 
ability of a user to move among information systems (i.e., be ported from one system to another) 
without loss of ability or need to retrain. The standardization areas typically associated with 
people/equipment interchangeability include specifications of the following: 

(a) User interface, and 
(b) Language syntax and semantics. 

The undertaking by the Institute of Electrical and Electronics Engineers (IEEE) Portable 
Operating System Interface (POSIX) committee to standardize the look-and-feel of a graphical 
user interface [4] is one of the few examples of the user interface standardization area. The 
specification aims at consistency of behavior between the window systems used by different 
products. The standard alphanumeric keyboard layout [5] derived from manual typewriters is 
another example of a user interface standard. Closer to the subject of security, one can envision 
a set of standard user interfaces for various types of biometric authentication devices. 

166 




The language syntax and semantics standardization area covers wide ground. Included 
are the command line interfaces for shells and utilities, and textual languages for programming, 
data definition, and data manipulation. The IEEE POSIX user portability extension for shell 
services and application utilities [6] is an example of the former, while the Sequential Query 
Language (SQL) database language standard [20] is an example of the latter. 

2.2 Interchangeability between Products 

Product interchangeability constrains products from different manufacturers to be identical 
in certain important characteristics. For this to occur, the benefits of expanding the market must 
outweigh the potential costs of increased competition. Moreover, some characteristics desired 
by customers may need to remain inexplicit to allow product differentiation. 

There are a variety of terms used for product interchangeability with respect to 
information systems. They include application portability, plug compatibility, device 
compatibility, and interoperability. Application portability refers to the movement of an 
application program between information systems (i.e., be ported from one system to another) 
without loss of ability or need for reprogramming. Application portability depends on access to 
the underlying functionality of the platform through well-defined programming interfaces and 
standardized programming languages. 

Both plug compatibility and device compatibility refer to the ability to substitute one piece 
of equipment for another. As with application portability, plug and device compatibility depend 
on detailed interface specifications. Here, however, the interfaces for equipment are usually 
specifications of physical connectors and electrical characteristics. Interoperability is akin to 
compatibility, but conceptually at a system level rather than at a component or device level. It 
refers to the ability of distributed information systems to exchange information and use it 
meaningfully. More often than not, interoperability depends on a set of standards rather than on 
a single standard. Interoperability, besides compatibility of physical interface characteristics, 
requires compatibility of logical procedures, syntax, and other characteristics concerning 
communications across the physical interface. 

Interchangeability may retard innovation since it implies a degree of interdependency 
between products. In spite of this shortcoming, product interchangeability standards are perhaps 
the most active category of standardization since they tend to foster development of broad 
markets. Standardization areas for interchangeability between products include the following: 

(a) Protocols, 
(b) Security information objects, 
(c) Elements of management information, 
(d) Programming interfaces, 
(e) Information exchange structures, and 
(f) Techniques. 

The protocols standardization area is intended exclusively for those standards providing 
interoperability of distributed information systems. All Open System Interconnection (OSI) 

167 




communications protocols are included in this area as well as those protocols associated with the 
Internet Protocol Suite (IPS). 

Security information objects, distinguished as a separate standardization area, are an 
important subset of the protocols standardization area. Security information objects are elements 
of security related information conveyed by communications protocols, but defined independently 
of them. Most security information objects occur at the application layer of the OSI reference 
model [9] and are defined using an abstract notation (e.g., ASN.l [21 ]). A common security 
label specification is an example of a standard intended for this standardization area. 

Elements of management information (EMI) is a standardization area for object class 
definitions. An object class is an abstraction for the computational resources of an information 
system. Object classes define the characteristics, controls, operations, notifications and behavior 
for a category of resource. An instance of an object class corresponds to a specific resource and 
is called a managed object. Standards in this area include OSI generic definitions of management 
information [22]. Likewise, all the management information base definitions specified by the 
Internet community also fall into this area. 

There are numerous standards associated with the programming interfaces standardization 
area. Many of them are interface standards for application programming. An application 
programming interface defines the functional boundary between application software and the 
underlying services of the software/hardware platform. Application programming interfaces 
include such areas as database manipulation, system utilities, and window operations. 
Programming interfaces may be generic (i.e., language independent) or bound to a specific 
programming language. The standardization area includes both types of programming interfaces, 
as well as lower level programming interfaces between platform components. The Generic 
Security Services Application Programming Interface (GSSAPI) [23] being defined by the 
Internet community is a good example of a standard in this area. 

The standardization area of information exchange structures contains standards that govern 
the interchange of information between applications on a single or different platforms. 
Information types include structured data representing documents, graphics, voice, images, et 
cetera. A specification of a common format audit data is an example standard of this area. 
Other examples are the Open Document Architecture (ODA) [24] and Standard Generalized 
Markup Language (SGML) [25] sets of standards. 

The techniques standardization area refers to those standards that specify security related 
mechanisms and algorithms. Standard techniques provide the fundamental building blocks for 
an implementation, and include standards for data confidentiality, data integrity, digital signature, 
and key management. 

2.3 Synopsis 

The standardization areas identified for uniformity standards are summarized· in Table 2 
below. Note that the set of standardization areas is open to further additions and refinements, 
as they are identified. 

168 



Table 2: Standardization Areas for Standards for Uniformity 

Standardization Area IFonn 
I I 

Standards for Interchangeability 
of People with Equipment 

User Interface 
Language Syntax and Semantics 

Standards for Interchangeability 
between Products 

Protocols 
Security Information Objects 
Elements of Management Information 
Programming Interfaces 
Information Exchange Structures 
Techniques 

3. STANDARDS OF QUALITY 

Quality standards provide a means to differentiate between products by either establishing 
two or more comparative categories or by simply establishing a minimal level of acceptance. 
Quality standards often involve labeling or registration of products. They are, therefore, more 
likely than interchangeability standards to require some means of enforcement. Note that, 
although not their primary purpose, quality standards do allow interchangeability and some 
interchangeability standards provide minimum quality levels. 

The principal function of quality standards is to supply information, and many quality 
standards are simply agreements on definitions. Quality standards also include standards of 
identity, design, and performance. Two forms of quality standards can be identified: 

(a) Interpretive standards, and 
(b) Standard assessment procedures. 

Interpretive standards are concerned with the acceptability of products and practices, and 
include definitions of terminology and measurement. For example, specifying fundamental 
characteristics of an information system, such as throughput, and formulas for calculating related 
measures apply here. Standard assessment procedures are concerned with the assessability of 
important characteristics of products and systems. Standard assessment procedures are closely 
tied to measurement and useful when no single method of measurement clearly stands out. They 
provide an objective means of obtaining impartial results that are repeatable and reproducible at 
qualified evaluation laboratories. With some standards, the distinction between the two forms 
is blurred, making classification difficult. 

A pair of standards from the European Commission provide a good example of 
complementary and distinct interpretive standards and standard assessment procedures. The 
Information Technology Security Evaluation Criteria (ITSEC) [26] defines a set of functionality 
and assurance traits, and requirements for assessment of the security capabilities of information 
technology products and systems. The Information Technology Security Evaluation Manual 

169 




(ITSEM) [27] describes how information technology products and systems will be evaluated 
according to the ITSEC. It contains a comprehensive explanation of the evaluation process, 
philosophy and principles, and methodology intended to facilitate mutual recognition of 
evaluation results between European Union member nations. 

3.1 Interpretive Standards 

For the field of information technology, areas for interpretive standards include the 
following: 

(a) Meta-standards, 
(b) Terminology, 
(c) Measures, 
(d) Guidance, 
(e) Profiles, 
(t) Methods, and 
(g) Registration. 

Meta-standards are standards that govern the content of other standards. A number of 
examples involve the OSI security architecture [8], an internationally standardized architecture 
for communications security specified by the International Organization for Standardization (ISO). 
The security architecture builds upon the OSI reference model [9], which is also part of the 
standard. The OSI security architecture defines a set of security services and mechanisms and 
defines fundamental principles to be followed in developing communications protocol standards. 
The OSI security services include confidentiality, integrity, access control, authentication, and 
non-repudiation. ISO Security Frameworks [10] extend each OSI security service beyond 
communications to a broader systems perspective, and add security audit and key management 
areas. Non-OSI examples of a meta-standard include volume one of the Federal Criteria for 
Information Security Technology [7], and the ITSEC [26]. Meta-standards generally affect sets 
of standards categorized in one of the uniformity standardization areas. 

Terminology and measures standardization areas respectively contain standards of agreed 
definitions for common terms and measurements regarding information technology. The guidance 
area contains standards that give insight to the application and use of other standards. The 
National Computer Security Center (NCSC) rainbow series contains many documents appropriate 
for the guidance standardization area. Standards in terminology, measures, and guidance areas 
are generally regarded as end-products; otherwise, they would belong to the meta-standards area. 

The profiles standardization area refers to standards that concisely characterize the traits 
and capabilities of a functional area. Standards in this area generally reference one or more basic 
standards, and are oriented toward procurement. There are many varieties of profiles including 
management ensembles, OSI profiles, security profiles, and protection profiles. 

Ensembles are standards for common, yet independent, management tasks. A 
management ensemble defines how information systems intemperate to solve a specific 
management problem. An ensemble includes a description of the management context, a 
definition of the information model, and a scenario description. The management context 

170 




provides a view of management capabilities by indicating the level of detail at which resources 
can be managed. The information model indicates the resources to be managed and the 
command and control specifications on those resources. The scenario description illustrates how 
the ensemble management function can be applied to the information model and what activities 
occur across the communications interface. The need for management ensembles was first 
recognized by the Network Management Forum and subsequently adopted within regional open 
systems workshops. 

The OSI profiles are functional specifications of layered communications protocol 
standards that are concerned with pan-layer issues. They provide implementation specific details 
concerning subsets, options, and parameters of base protocol standards. Many OSI profiles have 
already been agreed upon within regional implementors' workshops and some of them are being 
standardized as International Standard Profiles. The Government Open Systems Interconnection 
Profile (GOSIP) [28] is an example of an OSI procurement profile standard for this area. 

A security profile [3] defines the requirements for a common set of communications 
security services and associated protocols across all seven OSI layers. A security profile is 
somewhat similar to a Federal Criteria protection profile [7] insofar as it is intended for a large 
number of applications and contains a description of the target environment, identification of the 
range of threats to counter, a specification of how security functions counter the assumed threats,_ 
a specification of the security mechanisms needed to provide the security functions, and the range 
of the realizable quality attainable. However, a security profile concerns only communications 
security and contains extensive details about the protocol mechanisms, while a protection profile 
generally applies to a broader range of information security technology at a somewhat higher 
level of abstraction. 

Methods are standardized procedures for obtaining a desired result. This standardization 
area contains cookbook-like standards. One example of such a standard is the NCSC document, 
Guidance for Applying the DoD Trusted Computer System Evaluation Criteria (TCSEC) [17,18]. 
Standards for conducting risk analysis also would apply here. 

The registration standardization area is a subset of the methods area. It is identified as 
a separate standardization area due to its important role in rendering reputable catalogs of 
information. The registration area concerns standardized procedures for the establishment and 
maintenance of a collection of items. Registration is necessary for many standards to be useful. 
For example, a registered identity is needed to negotiate a common procedure, algorithm, data 
format, and other security attributes for communications. Registration also may involve some 
form of vetting for an item being registered. Most standards in the profiles area require 
registration, as do security information objects and elements of management information. ISO 
procedures already exist for the registration of encipherment algorithms [19]. 

3.2 Standard Assessment Procedures 

Standardization areas for assessment procedures include the following: 
(a) Methodology, and 
(b) Reference materials. 

171 




The methodology standardization area includes those standards that specify common 
procedures for testing or evaluating important characteristics of an information technology 
product. Because evaluation of a product can be a somewhat arbitrary procedure, standard 
methodologies are needed to provide an objective means for obtaining impartial results or 
verdicts that are repeatable and reproducible by other assessment facilities. The ITSEM [27], 
mentioned earlier, is an example of a standard in this area. 

The reference materials area refers to those standards that contain standardized test 
scenarios or other materials for use in product evaluation, classification, or grading. Reference 
materials are needed for performing such activities as product validation, conformance 
assessment, and interoperability assessment. Often, there is a close relationship between 
standards in the methodology and reference material areas. For example, the OSI Conformance 
Test Methodology [29] and associated test scenarios for various communications protocols 
respectively provide an example of standards for these areas. 

3.3 Synopsis 

The standardization areas identified for quality standards are summarized in Table 3. As 
with uniformity standards, the set of standardization areas listed below is open to enhancement. 

Table 3: Standardization Areas for Standards of Quality 

IFonn 
I 

Standardization Area 

I 
Interpretive Standards Meta-standards 

Terminology 
Measures 
Guidance 
Methods 
Profiles 
Registration 

Standard Assessment Methodology 
Procedures Reference Materials 

4. SUMMARY 

This paper presents a taxonomy for security standards based on the notions of uniformity 
and quality. The approach taken attempts to provide full coverage of standards in which security 
is either a primary concern or an important, but secondary, concern. While the taxonomy is at 
a high conceptual level, many specific examples are given to help understand the scheme and 
classify other standards. The taxonomy provides a good balance between matters of assurance 
and functionality, and has proved useful in determining areas requiring standardization with 
regard to a specific architectural framework for security. 

172 



REFERENCES 


[1] 	 Department of Defense (DoD) Goal Security Architecture, version 1.0, Defense 
Information System Security Program, August 1993. 

[2] 	 David Hemenway, lndustrywide Voluntary Product Standards, Ballinger Publishing 
Company, 1975. 

[3] 	 Taxonomy of Security Standardization, Version 2.0, ITAEGV N69, April1992. 

[4] 	 IEEE P1201.2, Recommended Practice for Graphical User Interface Driveability. 

[5] 	 ISO 2530, Keyboard for International Information Processing Interchanging using the ISO 
7-bit Coded Character Set- Alphanumeric Area, 1975. 

[6] 	 IEEE P1003.2a, Portable Operating System Interface (POSIX)- Part 2: Shell and Utilities. 

[7] 	 Federal Criteria for Information Technology Security, Version 1.0, NIST & NSA, 
December 1992. 

[8] 	 ISO 7498-2, Information Processing Systems - Open Systems Interconnection - Basic 
Reference Model- Part 2: Security Architecture, February 1989. 

[9] 	 ISO 7498, Information Processing Systems - Open Systems Interconnection - Basic 
Reference Model, 1984. 

[10] 	 ISO 10181, Security Frameworks for Open Systems, Parts 1-8, June 1994. 

[11] 	 ISO 10021, Information Processing Systems - Text Communications - Message Oriented 
Test Interchange System (MOTIS), Parts 1-7, 1990. 

[12] 	 ISO 10164, Information Technology - Open Systems Interconnection - Systems 
Management, Parts 1-10, December 1992. 

[13] 	 Security Association Management Protocol (SAMP), ISP-421, draft revision 0.4, National 
Security Agency, November 1992, FOUO. 

[14] 	 IEEE P1003.6, Security Interface Standards for POSIX, November 1992. 

[15] 	 ISO 10736, Open Systems Interconnection -Transport Layer Security Protocol, December 
1992. 

[16] 	 ISO 11577, Open Systems Interconnection- Network Layer Security Protocol, November 
1992. 

173 


http:P1003.2a


[17] 	 DoD 5200.26 - STD, DoD Trusted Computer System Evaluation Criteria (TCSEC), 
December 1985. 

[18] 	 CSC-STD-004-85, Technical Rational Behind CSC-STD-003-85: Computer Security 
Requirements -- Guidance for Applying the DoD TCSEC in Specific Environments, 
NCSC, June 1985. 

[19] 	 ISO 9979, Procedures for the Registration of Encipherment Algorithms, Final DIS Text, 
June 1990. 

[20] 	 ANSI X3.135, American National Standard for Information Systems- Database Language 
- SQL, American National Standards Institute (ANSI), October 1992. 

[21] 	 ISO 8824, Information Processing Systems - Open Systems Interconnection 
Specification of Abstract Syntax Notation One (ASN.1). 

[22] 	 ISO 10165-2, Information Technology - Open Systems Interconnection - Structure of 
Management Information- Part 2: Definition of Management Information, August 1991. 

[23] 	 J. Linn, Generic Security Service Application Program Interface, Request for Comments 
(RFC): 1508, September 1993. 

[24] 	 ISO 8613, Open Document Architecture/Open Document Interchange Format 
(ODNODIF), Parts 1-10, 1989. 

[25] 	 ISO 8879, Standard Generalized Markup Language (SGML). 

[26] 	 Information Technology Security Evaluation Criteria (ITSEC), Version 1.2, Commission 
of the European Communities, June 1991. 

[27] 	 Information Technology Security Evaluation Manual (ITSEM), Draft V0.2, Commission 
of the European Communities, April 1992. 

[28] 	 Government Open Systems Interconnection Profile (GOSIP), Federal Information 
Processing Standard (FIPS) 146-1, National Technical Information Service, April 1991. 

[29] 	 ISO 9646, Information Technology - Open Systems Interconnection - Conformance 
Testing Methodology and Framework, Parts 1-7, March 1991. 

174 




The Graphical Display of A Domain Model of Information Systems Security (INFOSEC) 

Through Semantic Networks: A Description of the INFOSEC Semantic Network for 


Information Systems Security Engineers. 


Teresa T. Smith & Kathleen V. Dolan 

National Security Agency 


9800 Savage Road 

Ft. Meade, Md 20755 


(410) 684 7374 


Abstract: 

If information is truly our most precious corporate resource, then the efficient and effective retrieval 
of that information is vital to our success. Equally important is the ability to reuse and record 
decisions made regarding the design of secure systems. Model-based engineering represents a 
paradigm shift which provides the capability to structure information and facilitates the reuse of 
architectures, designs, specifications, and code. Domain analysis is a necessary step in this new 
paradigm. Domain analysis has been defined as "the process of identifying and organizing 
knowledge about some class of problems - the problem domain - to support the description and 
solution of those problems". [2] Our implementation of the model-based engineering paradigm has 
developed, through domain analysis, a structure for the organization of information from the 
Information System Security (INFOSEC) domain. 

In previous work, a multitude of taxonomies or classes of the information in the INFOSEC domain 
have been produced. [ 4,6, 11] Although these taxonomies provide a way ofcategorizing information 
in the INFOSEC domain, aids that conform to those taxonomies and provide INFOSEC engineers 
(ISSEs) with access to that information electronically have not existed, until now. Electronic access 
is important mostly because the complex structure of the relationships within the domain is difficult, 
if not impossible, to adequately describe in paper format. Furthermore, ISSEs appear to prefer 
electronic access to information. Currently, in an effort to provide access for ISSEs to information, 
documents and diagrams are being loaded onto our computer networks, usually without a taxonomic 
guideline. Therefore, lacking a taxonomic guideline, once this electronic information is available, 
the situation now changes to a problem of selection, or finding the information that is needed, in the 
large electronic information base that has been created. 

In the Office of Systems Engineering, we have developed an automated tool to provide ISSEs with 
the ability to efficiently and effectively locate electronic information within the INFOSEC domain. 
This tool, the INFOSEC Semantic Network, displays a taxonomy of INFOSEC by graphically 
representing knowledge in the form of a semantic network. The first section of this paper briefly 
describes domain analysis and the use of semantic networks for domain analysis and information 
retrieval purposes. The second section presents an overview of INFOSEC Semantic Network 
taxonomy and knowledge base of INFOSEC, a brief history of the INFOSEC Semantic Network 
development, and the current capabilities of the tool. Finally, the third section addresses future plans 
for user testing and potential research directions for the INFOSEC Semantic Network. 

175 



' ··-·' 

Section 1: Domain Analysis and Semantic Networks 

If information is truly our most precious corporate resource, then the efficient and effective retrieval 
of that information is vital to our success. Equally important is the ability to reuse and record 
decisions made regarding the design of secure systems. Model-based engineering represents a 
paradigm shift which provides the capability to structure information and facilitates the reuse of 
architectures, designs, specifications, and code. Domain analysis is a necessary step in this new 
paradigm. Domain analysis has been defined as "the process of identifying and organizing 
knowledge about some class of problems - the problem domain - to support the description and 
solution of those problems." [2] Domain analysis should produce a taxonomic guide to a body of 
information that is important to the domain. Our implementation of the model-based engineering 
paradigm has developed a structure for the Information System Security (INFOSEC) domain. In 
previous work, a multitude of taxonomies or classes of the INFOSEC domain have been produced. 
[ 4, 6, 11] The Unified INFOSEC Criteria (UIC) is another project which resulted in the capture of 
a large base of INFOSEC information. Although the taxonomies provide a way of categorizing 
information in the INFO SEC domain and other projects have produced large knowledge bases, aids 
that conform to those taxonomies and provide ISSEs with access to these knowledge bases 
electronically have not existed. 

One method to provide this service is by representing knowledge through the display of semantic 
networks. Research in semantic networks began with a doctoral dissertation in the 1960's on the 
use of semantic networks to represent concepts underlying English words. [3] A semantic network 
displays information in a graphical format. The nodes in the graph are concepts and the links 
between nodes represent relationships between the concepts. This form of knowledge 
representation models one theory for human memory; the theory ofassociative memory. This refers 
to the belief that our memories are structures of nodes and links in which associative connections 
are made. This theory has a long history, in fact, Anderson and Bower have traced the idea of 
associative memory back to Aristotle's time. [1] If we accept the above premise, that humans 
internally store information in structures similar to semantic networks, than storing information 
electronically in this manner to provide for similar retrieval should have positive results. The 
theoretical foundation of this hypothesis is the theory that if we present information to users in a 
manner in which they are comfortable, i.e. semantic networks, then the users will be able to retrieve 
information in a more efficient and effective manner. [5] Based on this theory, we have hypothesized 
that the INFOSEC Semantic Network will aid ISSEs in performing their job duties by providing a 
method of efficient and effective retrieval of information. 

As an example of a semantic network, consider the taxonomy ofliving animals. The Webster Ninth 
New Collegiate Dictionary defines the mammal as, "a class of higher vertebrates comprising man 
and all other animals that nourish their young with milk secreted by mammary glands and have skin 
usually more or less covered with hair." As the definition states, a human is in the mammal class. 
Therefore the relationship between the mammal node and the human node is drawn in Figure 1. 
Another animal in the mammal class is an elephant. This is also depicted in Figure 1. The attributes 
of the Mammal node are: 1) higher vertebrates animals, 2) nourish their young with milk secreted 
by mammary glands, and 3) have skin usually covered with hair. Since an elephant and a human 
are both mammals, they inherit all of the attributes of a mammal automatically. Therefore, in 
creating semantic networks, it is not necessary to repeat attributes but it is possible to refine them. 
If the INFOSEC Semantic Network supported Figure 1, the information about humans, elephants, 
or mammals could be retrieved by a user by clicking on the concept node. This information could 
be in a textual, video, still pictures, or audio format. The relationship between mammals, humans, 

176 




MAMMAL 


ELEPHANT 


FIGURE 1: GENERIC SEMANTIC NETWORK EXAMPLE 

and elephants is another piece of information captured by the semantic network and provided to the 
user. This relationship information, in some applications, may be as important to display as the 
information itself. 

Section 2: The INFOSEC Semantic Network 

This section presents an overview of the INFOSEC Semantic Network taxonomy and knowledge 
base of INFOSEC, a brief history of the INFOSEC Semantic Network development, and the current 
capabilities of the tool. The original taxonomy resulted from an effort to evaluate INFOSEC from 
a top down approach. The top down evaluation resulted in a beginning model that subdivided 
information system security into two classes: security services and security mechanisms. [8] This 
was based on the realization that in the process of designing a secure system, the importance of 
security services is decided. Once security services have been selected, security mechanisms are 
chosen to meet the required functionality of the security services. Therefore, the first model focused 
on security services and security mechanisms and their interrelationships. The rationale behind this 
model was verified by two other sources that began with the breakdown of INFOSEC into security 
services and security mechanisms. [7, 9] 

The basic model began with four basic security services: Integrity, Availability, Authenticity, and 
Confidentiality. These security services were derived from an evaluation of three sources: ISO 7 498 
part 2, The Top Down Decomposition Description Paper, and The Taxonomy of Threats and 
Security Services for Information Systems. [9, 8, 7] Security services were then partitioned into 
subservices, as shown in Figure 2. The concept of security mechanisms subdivided into a listing of 
mechanisms that were also discussed in the above references. A knowledge base of approximately 
80 mechanisms, (e.g., encryption, access control, object reuse) was created to provide information 
for the ISSE along with the relationships between these mechanisms and the security services that 
they support. For example, suppose one declares that data confidentiality is a subservice which has 
a relationship with the encryption security mechanism. The relationship can be captured by the 
semantic network and defined as: in the past we have seen data confidentiality provided through 
the use of encryption at some confidence level. 

The basic concepts of security mechanisms were enriched by attaching through the INFOSEC 
Semantic Network the ability to obtain information from the UIC. The UIC knowledge base covered 
many concepts considered security services and security mechanisms in our taxonomy. Therefore, 

177 




DATA IN1EGRITY 


IN1EGRITY 

AVAILABILITY 

SECURITY SERVICES 

AUTHENTICITY 

CONFIDENTIALITY 

SYSTEM IN1EGRITY 

AUTHENTICATION 

NON REPUDIATION 

DATA 
CONFIDENTIALITY 

TRAFFIC 
CONFIDENTIALITY 

EMANATION 
CONFIDENTIALITY 

SIGNAL 
CONFIDENTIALITY 

FIGURE 2: SECURITY SERVICES AND SUBSERVICES 

it was reasonable to provide the UIC information through the INFOSEC Semantic Network 
interface. Chapters from the UIC which discussed mechanisms like Discretionary Access Control 
(DAC) were provided as information and attached to the DAC concept, in Framemaker and 
Postscript format, in the INFOSEC Semantic Network. Through this attachment, the user only 
needs to click on the concept and select the background information they wish to read. We also 
modelled the discretionary access control UIC chapter in our semantic network, breaking it into its' 
component parts: rationale, requirements, interdependencies, andimplementation. The textual 
information from the UIC gives the user access to approximately 140 written pages on topics such 
as: discretionary access control, mandatory access control, content-dependent access control, 
context-dependent access control, and interdependencies of the Trusted Computer Security 
Evaluation Criteria (TCSEC) requirements. 

The basic taxonomy has since been expanded to include Threat and Security Standards as shown 
in Figure 3. Appendix A also includes a snapshot of the top level of the INFOSEC Semantic 
Network. The threat information was obtained from The Taxonomy of Threats and Security 
Services for Information Systems. [7] This categorization of threat consists of threat consequences 
and threat actions. The Taxonomy of Threats and Security Service for Information Systems states 
that threat consequences "define a negative affect that a threat may have on the secure operation of 
an information system." The four general threat consequences are: Disclosure, Deception, 
Disruption, and Usurpation. Appendix A displays this portion of the threat model. Threat actions 
represent scenarios that could cause threat consequences. For example, a threat action of 
masquerading can cause the consequence of deception. The relationship between security services 
that counter the generic threat consequence, caused by a threat action, is another important piece of 
information that is available through the INFOSEC Semantic Network. These relationships are not 

178 




INFOSEC SEMANTIC NETWORK ~ 

SECURITY MECHANISMS 

SECURITY SERVICES 

SECURITY STANDARDS 

THREATS 

FIGURE 3: TOP-LEVEL VIEW OF THE INFOSEC SEMANTIC NETWORK 

one to one and the INFOSEC Semantic Network is able to provide a graphical depiction of the 
mapping between the security services and threat consequences. This information is likely to be 
very helpful in completing a system security policy and in determining the security requirements 
of a system. 

The security standards information is based on the National Security Agency (NSA) Open Systems 
Standards Profile. [ 10] In the Department of Defense Generic Reference Model there are three 
platform layers and two interface layers. The application platform is broken down into ten service 
areas. These service areas are: data interchange, data management, multimedia, network, operating 
systems, programming, management, real time, security, and user interface. Security standards have 
been associated with each of these service areas. The INFOSEC Semantic Network provides the 
ability to retrieve information on security standards and the service area they support. In addition, 
the connection between the security standards and the associated security service (confidentiality, 
integrity, availability, and authenticity) is provided. Additional information on each standard 
includes an explanation of the support it provides to the application platform service area and the 
security service. Providing this information to ISSEs will enable them to be aware of security 
standards that NSA has reviewed and determined to be required in order to fulfill our goal of 
developing open systems. 

The INFOSEC Semantic Network uses software from the Central Archive for Reusable Defense 
Software (CARDS) program. This software, called the Reuse Library Framework (RLF) is 
Unix-based and govemment-{)wned. RLF met an important objective of our program: NOT 
requiring our users to obtain additional licenses for software or invest monetarily in order to use our 
product. The RLF capabilities include the ability to search for key words, navigate directly to a node, 
navigate between parents and children (example: mammals to humans or confidentiality to data 
confidentiality), display a topography of the network for navigation assistance, graphically display 
relationships between concepts, and perform actions on nodes including calls of text, program 
execution, and presentation of audio or graphics. All of these capabilities are displayed in a 
consistent graphical user interface which maintains a top menu level of six icons. 

The development of the INFOSEC Semantic Network began inNovemberof 1992 with RLF version 
3.1. The development effort focused on providing information on security services and security 

179 




mechanisms and their relationships. After approximately three months of devoted development 
effort, the proof-of-concept version was presented to five program sites, with approximately 15 
individual users, within the NSA beginning in May of 1993. The timeline for these events is depicted 
in Figure 4. The goal of the proof-of-concept test was to determine if our customers reacted 

January 1993 January 1994 

November May October July 

Projected: User Development Proof-of-concept Proof-of-concept Testing to Begin Began Testing Began Testing Ended 

FIGURE 4: DEVELOPMENT TIMELINE FOR INFOSEC SEMANTIC NETWORK 

positively to the retrieval of electronic information in this fashion and if the information base we 
provided was helpful in the design process. The feedback we received was overwhelmingly 
favorable. For example, responding to our questionnaire, one of the system engineering offices 
stated that the INFOSEC Semantic Network was, "extremely helpful in clearing up the relationships 
between services and mechanisms." Another common statement we received from our customers 
was that the INFOSEC Semantic Network "serves well as a completeness check for requirements 
heirarchy." Based on customer feedback, we have continued development and have expanded into 
areas of security standards and threat. We are now preparing for a more extensive user testing phase. 

Section 3: Future Testing Plans and Research Directions 

In July of 1994, we anticipate providing the INFOSEC Semantic Network to a larger test audience. 
At that time we will have a product that provides access to INFOSEC domain information on 
security services, security mechanisms, security standards, and threat. In an approach similar to our 
proof-of-concept testing we are actively soliciting interested programs to use our tool in the design 
of their system. To maximize the benefits ofVersion 2 of the INFO SEC Semantic Network, the test 
project should be in the early design stages. We will work directly with our customers to provide 
training on the use of the semantic network and we will provide continual user support throughout 
the duration of the test project. 

The original test audience documented in their feedback that the INFOSEC Semantic Network was 
a very useful method of representing INFOSEC knowledge. We expect that the additional 
capabilities of Version 2 will serve to increase the value of this tool. The possibilities for the 
expansion of the semantic network are enormous. Our intention is to widen the applicability of the 
tool to other areas of the secure design process. For example, by capturing detailed design 
information and providing connections to various guidance documents and available tools we could 
provide the designer with access to information that would assist in all aspects of the systems 
engineering process. We will rely on feedback from the next set of test projects to guide research 
and development in the future. 

180 




REFERENCES 


[1] Anderson, J.R. & Bower, G.H. (1973). Human Associative Memmy. Holt, New York: Wiley. 

[2] Arango, G., & Prieto-Diaz, R. (1991). Part 1: Introduction and Overview, Domain Analysis 
Concepts and Research Directions. Domain Analysis and Software Systems Modeling, (p. 9-26). 
Los Alamitos, California: IEEE Computer Society Press. 

[3] Brachman, R.J. (1979). On the Epistomological status of Semantic Networks. In N.V. Findler 
(Ed.), Associative Networks: Representation and Use of Knowledge by Computers, (pp. 3-50). 
New York: Academic Press. 

[4] Brinkley, D., Creps, R., & Badger, L. (1989). A Methodology for the Development of 
Application::Specific Security Models for Command and Control Systems. Annual Progress 
Report, 17 March 1989. 

[5] Churcher, P.R. ( 1989). A Common Notation for Knowledge Representation, Cognitive Models, 
Learning, and Hypertext. Hypermedia, .l.Q.l, 269-289. 

[6] Creps, R.E. ( 1989). A Methodology for Defining Application::Specific Security Requirements 
for C3 Systems. 1989 IEEE Military Communications Conference, p. 900-904. 

[7] Gulachenski, B.D., & Costa, M.J. (18 January 1994). Taxonomy of Threats and Security 
Services for Information Systems, Mitre Center for Integrated Intelligence Systems Working Paper, 
WP 93B0000323. 

[8] Information Systems Security Organization, Office of INFOSEC Systems Engineering, Top 
Down Architecture Decomposition Definitions, 21 October 1991. 

[9] International Standards Organization 7498, Basic Reference Model for Open Systems 
Interconnection (OSI), part 2: Security Architecture. ISO 7498-2-1988. 

[10] NSA Open Systems Standards Profile, National Security Agency, Version 1.0, 15 May 1993. 

[11] Smith, G.W., & Williams, J.R. (1994). The INFOSEC Body of Knowledge Framework 
CIBKF): An Introduction. ARCA Technical Report, 22 February 1994. 

[12] Unified INFOSEC Criteria (UIC), First Deliverable, National Security Agency, June 1993. 

181 




APPENDIX A 


TOP LEVEL VIEW OF THE INFOSEC SEMANTIC NETWORK 


182 




APPENDIX A 


SCREEN CAPTURE OF A PORTION OF THE THREAT MODEL 


183 




A New Attack on Random Pronounceable Password Generators Ganesan and Davies 

A New Attack on Random 

Pronounceable Password Generators 


Ravi Ganesan & Chris Davies 

Bell Atlantic 


Silver Spring, Maryland 20904 


ABSTRACT 

Given the choice, most users pick poor passwords that are vulnerable to attack. Using random machine gen
erated passwords can ensure that 'good' passwords are chosen, but are user-unfriendly. Machine generated 
passwords which are 'pronounceable' represent a potential compromise between security considerations 
and user friendliness. Several such generators have been designed, perhaps the most prominent being the 
scheme developed by Morrie Gasser [5] in 1977 and which has being recently adopted as a standard by 
NIST[3}. 

The security of such generators is typically characterized by the overall size of the password space, which is 
typically a fairly large number. This is a fairly good security parameter, if the objective of the attacker is to try 
and compromise a particular account. On the other hand, if an attacker achieves her objective by compro
mising any account(s) on the system, then the overall size of the password space, in itself, provides an insuf
ficient characterization of the level ofsecurity. In fact, as we show in this work, the size of the password space 
of the pronounceable password generators we examined are fairly huge, yet all suffer from a serious weak
ness, which allows the attacker to compromise accounts on the system with significantly Jess effort than the 
size of the password space would suggest. The attacker cannot choose which accounts to compromise, but 
in many realistic situations, an attacker's objectives can be met by compromising any account(s). 

Conceptually, the password space can be thought of as a large bucket, of size K , from which users pick 
passwords. It is also true that one can arbitrarily partition this bucket into several smaller buckets, perhaps of 

different sizes. Consider a small bucket of size b . It might be natural to assume that exactly ~ of the users 

would pick passwords from this bucket. Unfortunately, in the pronounceable password generators we exam
ine in this work, it so happens that a disproportionately large number of users pick passwords from reason
ably small buckets. For instance, in the NIST standard, one such bucket contains only 0.22% of all 
passwords but it can be expected that about 5% ofall users pick passwords from this bucket. The bottom/ina 
is that while the NIST standard claims a password space size of "5. 7 billion" for 8 character passwords, an 
attacker who wishes to compromise any 5 user accounts on a multiuser system with a 100 users, need only 
search through less than 18 million passwords. The impact of the attack depends on the particular imple
mentation and on factors such as 'salting'. Nevertheless, the generators we examined are so acutely vulner
able to our new attack, that we do not recommend that they be used. 

KEYWORDS: Dictionary Attacks, Passwords, Random Pronounceable Password Gen
erators, Smallest Bucket Attacks. 

Introduction 

In this section we chronicle the motivation to use random pronounceable password gener
ators and outline the rest of our paper. 

Why Random Pronounceable Passwords? 
Poorly chosen user passwords remain a major cause of security intrusions. Attackers typi
cally attack such passwords using dictionary attacks. They obtain, either by eavesdropping 
on the network, by requesting from a security server (this is possible in the Kerberos[7] 
system) or from a file on a system, several strings each of which represents known plain
text encrypted with user passwords (e.g. in UNIX a string of zeroes is encrypted with the 

184 




A New Attack on Random Pronounceable Password Generators Ganesan and Davies 

user password). The attacker then attempts to decrypt these strings by methodically trying 
passwords from a dictionary of commonly used passwords, achieving success when a 
string is successfully decrypted to give the original plaintext. A related approach which 
uses less time {but more space) is to pre-compute the encryption of all the passwords in 
the dictionary, so once the strings are obtained, a simple look up is needed to obtain the 
user password. 

There are at least three approaches to solving the problem of poorly chosen user pass
words, and each has its field of use. First, smart cards or token authenticators can be used 
to completely replace the password. Second, proactive password checkers (e.g. [1] or [2]) 
can be used to filter out poor user choices and force the user to pick a good password. 
Finally, it is possible to have the system generate passwords for the user. The last 
approach has two variations: 

1. Generate completely random passwords which are by definition guaranteed to be 
'good'. This approach has the significant disadvantage of making the password hard 
to remember, and more liable to be written down (which has a security cost) or forgot
ten (which has an administrative cost). 

2. A compromise approach is to have the machine generate a random, yet pronounce
able password for the user, with the assumption that a pronounceable password is 
more easy to memorize, and consequently more user friendly. Such a system typi
cally works by combining random character generation with the rules for pronuncia
tion to generate strings which are (hopefully) pronounceable. There are at least two 
important aspects to the design of such a generator. First, are the passwords really 
pronounceable? Since the so called 'rules' of pronunciation are fairly inexact, this is 
an extremely subjective issue, and we do not address it further. Of more interest to us 
is the security of such generators. In the rest of this paper we will illustrate a serious 
vulnerability we have found in all the pronounceable password generators we have 
examined including the NIST standard. In a companion paper [4] we describe a 
scheme we have created which does not appear to have the same weakness. 

In this paper we focus on two random pronounceable password schemes, one a scheme 
used in the version for the Kerberos V source distributed by Sandia National Laboratories, 
and the second the NIST standard [3] based on Morrie Gasser's[S] system. As we shall 
show, both these systems have the vulnerability we alluded to earlier. We note that we 
have observed the same weakness in other pronounceable password generators we have 
studied. 

Finally, it is worth observing that while we have not been able to obtain a security analysis 
of the Sandia scheme, the NIST system is very carefully analyzed in [5]. In fact, the analy
sis is among the more complete and comprehensive of security analyses we have seen, 
and remains a good model of how such schemes should be analyzed. Our conclusion that 
the Gasser/NIST scheme is insecure (much more so now than in 1977 when it was origi
nally released) is a recognition of the fact that all security systems are eventually broken, 
rather than a reflection of the care and expertise that went into the original analysis; we 
reemphasize that we found the original analysis rather impressive in its clarity and compre
hensiveness. Also, by publishing the draft standard for a period of review and making 
source code for the system freely available, NIST encouraged and permitted more detailed 
analyses, such as the one in this paper. This in effect increases the level of security of the 
eventual standard, and from the perspective of commercial users of Government stan
dards, we are appreciative of this careful and methodical approach to the standards cre
ation process. 

185 




A New Attack on Random Pronounceable Password Generators Ganesan and Davies 

Overview of Paper 
In Section 2 we give a generalized description of our new attack. In Section 3 we develop 
criterion for analyzing password systems, which are useful for ensuring that a system is 
not vulnerable to the attack we describe in Section 2. In Section 4 we analyze the Sandia 
scheme against this model and illustrate its vulnerability. In Section 5 we analyze the Gas
ser/NIST scheme and illustrate why it also is insecure. Finally in Section 6 we conclude by 
suggesting possible solutions to counter the attack. 

The New Attack 

Our attack is best described in the form of this simple game. Consider a two dimensional 
space as represented by a rectangle. Let this password space represent the space of 
passwords generated by a pronounceable password generator. This is the first figure in 
Figure 0. Each 'dot' represents a possible password generated. Here is the game: 

- Player 1 has to 'color' N dots, these correspond to the N passwords picked by 
users. 

- Player 2 (the attacker) divides the rectangle into B (not necessarily equal) sub-
spaces, each containing bl' b2, ... , b8 dots respectively. 

If there is a sub-space i that has significantly more than ; colored dots, then Player 2 wins. 

A moment's reflection will show that Player 1 has only one winning strategy, namely, to pick 
the dots to color at random (i.e. in a uniform distribution). 

As we shall see in Sections 4 and 5, the random pronounceable password generators we 
examine have the unfortunate property that the passwords picked by users tend to be clus
tered in easily identifiable areas, as a consequence of which, the systems are extremely 
vulnerable. An attacker does not have to exhaustively search the entire password space, 
and instead, simply searches a small bucket which contains a disproportionate number of 
passwords. 

How do we protect against such an attack? Firstly, as discussed earlier, an attempt can be 
made to ensure that users passwords are picked uniformly from all possible choices. One 
method of achieving this, which may not always be easy to do, is to ensure that all pass
words are equally likely to be generated (e.g. see the Gasser variation discussed in the 
Conclusions). A second method may be to pick a system in which it is difficult for the 
attacker to discover a 'small bucket'. This is difficult to do, but may well be the only alterna
tive in some cases. 

Our depiction of 'dividing the password space' needs clarification. In the Sandia system 
the division is suggested by the way the system works, namely randomly indexing into one 
of twenty five buckets from which passwords are picked. In the NIST scheme we divided 
up the space using the first unit (i.e. passwords beginning with the unit 'a', buckets begin
ning with the unit 'b', etc.). Both these divisions are arbitrary, and an attacker can choose 
to divide up the space in any way he chooses (e.g. dividing up the space depending on the 
unit that appears as the fifth character). As long as a region with a disproportionate num
ber of passwords is discovered, the attacker has succeeded. 

Finally, we note that while the disproportionately arises because different passwords have 
a different probability of being generated, the key to our attack lies in the aggregate result 
of being able to locate a sub-space with several such more likely passwords. Consequently 
while it may be difficult for an attacker to make a list of 'very likely passwords' for a given 
system, it may be easier for her to discover a sub-space which contains several such pass
words. 

186 




A New Attack on Random Pronounceable Password Generators Ganesan and Davies 

0000000000000000 
0000000000000000 
0000000000000000 
0000000000000000 
0000000000000000 
0000000000000000 
0000000000000000 
0000000000000000 

0000000000000000 
oeoooooeoooeoeoo 
oooeoooooooooooo 
oeoooooooeooooeo 
ooooooooooooeooo 
ooooeoeeooooooeo 
oeoooeeeoooeoooo 
ooooeooeoooooooo 

0000 0000 0000 0000 
oeoo oooe oooe oeoo 
oooe 0000 0000 0000 
oeoo 0000 oeoo ooeo 
0000 0000 0000 eooo 
0000 •o•• 0000 ooeo 
oeoo o••• oooe 0000 
0000 eooe 0000 0000 

+++ 
Figure 0: The first rectangle depicts the password space, with each small circle representing 
a password. The second rectangle shows the selection of passwords (each filled in circle) by 
users (i.e. the action Player 1 takes). The last rectangle shows one possible way to carve up 
(i.e. the action Player 2 takes) the password space. In this instance one of the regions (buck
ets) has a disproportionately large number of passwords, and hence it is profitable for the 
attacker to exhaustively search this relatively small bucket. This is a simplified example, and 
in Sections 4 and 5, we will see examples of this attack in which the bucket(s) which the 
attacker will choose are extremely small relative to the size of the entire password space. 

187 




A New Attack on Random Pronounceable Password Generators Ganesan and Davies 

Criterion for Analyzing Password Space Vulnerability 

Criterion for the security of password spaces have been fairly well studied, and our intent 
here is purely to add to, not repeat/replace, well known criterion (for example those that 
can be found in the Orange book). Our comments apply in general to any password sys
tem, though we shall later discuss their applicability specifically to pronounceable pass
word generators. We are mainly interested in the security of passwords in a mutlituser 
security system (e.g. a minicomputer environment, or a Kerberos server serving several 
users), where the object of the attacker is to: 

Attacker Objective 1: break into ANY account(s) on the system 

It is our opinion that this is a more realistic formulation of the vulnerability most systems 
face, than what appears to have been the traditional formulation of the attacker's motive, 
namely: 

Attacker Objective 2: break a PARTICULAR account on the system 

While it can be argued that the motives of an attacker will differ for each situation, we 
believe that any password system must evaluate security in terms of the difficulty of 
Attacker Objective 1, for two reasons. First, as stated above we speculate that it is the 
more common attacker motive, and second, a system secure against this attacker objec
tive is automatically secure against Attacker Objective 2, but the converse is not true. Con
sequently parameterizing the system on the number of users within the 'security domain' 
being protected is important. 

We now define several parameters and explain them: 

- K the absolute size of the password space. This is the space the attacker need 
search in order to break into a particular user's account. 

- N the number of users in the 'security domain'. The definition of 'security domain' 
is situation specific. Some concrete examples would be: a DEC VMS multiuser 
minicomputer; a network of SUN workstations and servers which use a common I 
etc/passwd file managed by the NIS name server, a Kerberos realm, serving an 
entire organization. The number of users within this domain could range from 50 
users on a minicomputer to several thousand users being served by a common 
Kerberos server. 

- T the maximum time in seconds we assume the attacker can spend on the attack. 
T depends on many factors including t, the time interval between which password 
aging is enforced. When an attacker captures strings encrypted with passwords 
she has a limited time to complete the attack, before the passwords change. For 
instance, after time ~, it is highly likely that half the passwords captured by the 
attacker have changed, and by time r, all the passwords have changed. Depend
ing on the system other factors come into play, and we shall assume that the 
attacker has a constant time r which she can spend on the attack. 

- E the encryptions/second for the particular password scheme, that the most pow
erful attacker we wish to protect against can afford (or has access to). Since this 
"access" may well be illegal this is a hard number to calculate. Unless the attacker 
in question is a large organization, it may be practical to assume that the attacker 

188 




A New Attack on Random Pronounceable Password Generators Ganesan and Davies 

has a high end PC or UNIX server at her disposal. We realize that, for instance, 
specialized hardware for DES encryption has been proposed/built, but we suspect 
that most attackers do not (as yet) have access to these machines. The figure E 

can be calculated in various ways, see for instance Karn and Feldmeir's [6] analy
sis (naturally the actual numbers in that paper are five years old and are obsolete). 

- c an implementation specific constant that captures the amount of effort the 
attacker must expend per user for a specific system. For instance, in UNIX, an 
attacker searching through a dictionary of size v, would have to, because of the 
salting [8], actually search through v x 4096 dictionary words. In this case the con
stant c would be 4096. However, if the attacker is using pre-encrypted dictionaries 
and has enough space to store all the 'salted' variations, then, at run time, the 
attacker need expend no further energy (assuming that time to search a list, etc., 
are small compared to time for encryption) and now c is different. As is clear from 
this example, this constant needs to be chosen with care, after understanding both 
the implementation and the possible methods the attacker will use. In the rest of 
this paper, we will not always explicitly discuss implementation specific details, and 
it should be understood that individual implementations will have different values 
of c, and that a password space that we claim is 'small' in general may well be 
acceptable in implementations where c is large. 

Based on these numbers we now define the criterion for protection against attack. The first 
criterion, which at times tends to be the only one considered by the designers of some sys
tems is: 

Criterion 1: K ,, E x r x c 

i.e. they choose a password space that is large enough that it cannot be easily broken by 
an attacker in a 'reasonable' time. Gasser's analysis adds two closely related, very useful 
criterion, namely: 

Criterion 2: The probability of occurrence of the most probable passwords in the password 
space should be low 

So for instance, although the UNIX password space is very huge, the fact that users pick 
common natural language words with a very high probability implies that the system by 
itself becomes vulnerable to dictionary attacks and does not meet this criterion. Gasser 
discusses this criterion in the context of pronounceable password generators, where as he 
points out, it is no use if the overall key space K is very huge if a few passwords have a 
very high probability of being generated, and are generated very frequently by the system. 
A closely related criterion, which appears to be implicit in Gasser's discussion of the pass
word probability distribution is: 

Criterion 3: It is highly desirable that all passwords in the password space be roughly 
equally probable 

This is really a generalization of Criterion 2, and ensures that there does not exist a subset 
of the password space which can be attacked in lieu of the entire space. Meeting Criterion 
3 appears to be difficult (for instance, it is impossible to alter the NIST standard to meet 
this criterion), and attempting to meet Criterion 4 and 5 might be more realistic. 

189 




A New Attack on Random Pronounceable Password Generators Ganesan and Davies 

Criterion 4: In aN user system with a password space of size K, the attacker should have 
to search through, on average, a password space of ~ in order to break into any one 

account. Consequently ~ needs to be sufficiently large. This can be expressed 1 as: 

K 
N>>CxExT. 

We recommend Criterion 4 be used in place of Criterion 1 since any system meeting Crite
rion 4, will by definition meet Criterion 1, whereas the converse is not true. 

Finally, for pronounceable password generators to avoid the general problem described in 
Section 2, we describe another criterion. 

Criterion 5: It should not be possible to divide the password space into B buckets 

bl' h2, •.• , b8 1 with the probability of users picking passwords from the respective buckets 


being Pp p 2, ••. , p8 1 such that there exists one or more buckets where P; >> 1~1 . 

Meeting Criterion 5 is a necessary (but not sufficient) condition for meeting Criterion 4. 
Further, observe that in cases where Criterion 3 is not met (most realistic cases) meeting 
Criterion 4 and 5 appear to be fairly good substitutes. 

We now turn our attention to the Sandia scheme and the Gasser/NIST systems and illus
trate why they do not meet Criterion 5, and consequently Criterion 4, and hence suffer 
from serious vulnerabilities. 

Vulnerabilities in the Sandia System 

The system we refer to as the "Sandia System" is a pronounceable password generator 
distributed by Sandia Labs along with their version of the Kerberos V source code. As of 
the time of writing this paper we have not been able to obtain further information on the 
antecedents of the scheme (it appears to have been originally developed by IBM) and we 
assume that it is used widely within Sandia. We used the files 7c1 Cpwd.c and 7c1 dpwd.c 
in Sandia's Kerberos V distribution as our source. 

The scheme is fairly simple and works as follows: 

- 25 templates have been created to represent typical rules of pronunciation in 
English. For instance "cvcvcvc" is a template representing words of the form a 
vowel followed by a consonant followed by a vowel. ..... 

- The templates are formed from sets representing, vowels, consonants, double 
vowels, ending vowels, etc. 

- To generate a password, the system randomly indexes into one of the 25 tem
plates (all 25 templates are equally likely to be picked). We refer to the templates 
as template-buckets. 

- It then picks, at random, a password from that particular template-bucket. This is a 
7 character password. 

1. Since the attacker need only, on average, search through half any given space to expect to find a pass
word, the more precise figure is K/2N. 

190 



A New Attack on Random Pronounceable Password Generators Ganesan and Davies 

- In order to inflate the password space, the following is done. Either 1 of 1 0 digits, 
or 1 of 26 alphabets, is randomly added to the password, to bring the total pass
word size to 8 characters. If the eight character is a digit from 0 ..9, then since there 
are 10 choices of digits and since the digit can be added in one of eight positions, 
the password space is expanded by a factor of 80. Similarly, if one of the charac
ters from A..Z is randomly stuffed in, then the effective password space is 
increased 208 fold. 

- Users are presented with several such passwords and asked to pick one. 

Before proceeding to our main security analysis, we wish to note two points: 

1. In our purely subjective opinion, the pronouncability of the passwords generated in 
the first 7 characters is as good (or as bad, depending on your perspective) as any 
other generator. However, the addition of the eigth character, in our opinion, makes 
the result fairly difficult to pronounce. This is especially because the 8th character/ 
digit may well appear in the middle of a pronounceable syllable, thus making the 
entire word difficult or impossible to pronounce. 

2. Presenting users with several choices and letting them pick one, introduces another 
filter from which passwords get selected. It is conceivable that the passwords picked 
by users are actually from a much smaller space than would be suggested by the 
system parameters. We have no way of evaluating if this is indeed the case, and 
assume that passwords are picked randomly from those presented to the user. 

Since the 25 template-buckets are indexed into with uniform probability, it is likely that 1/25 
th or 4% of all users in a N user system pick passwords from a particular template-bucket. 
Given the number of characters in the sets for vowels, consonants, etc., it is trivial to calcu
late the size of each template bucket. The size of each of the template-buckets (without the 
addition of the random eight character is shown below in Figure-1. 

As can be seen, the distribution is highly non-uniform, with most of the passwords in a few 
large buckets. This dramatically changes the expected security of the scheme. The total 
space of 7 character passwords is 71,213,792, and after stuffing the eigth character the 
total space expands to an impressive 14.5 billion. However, in a 100 user system, 4 users 
picked passwords from the smallest bucket, which has a mere 135,800 7 character pass
words, and after stuffing with the 8th character increases to a password space of 27 mil
lion. While an attacker today may balk at searching through 14.5 billion passwords, she 
can search a space of 27 million without too much effort in order to break into 4 user 
accounts on a hundred user system (from another perspective: the attacker would on aver
age have to search through less than 3.5 million passwords to expect to break into 1 
account on a 100 user system). 

191 




A New Attack on Random Pronounceable Password Generators Ganesan and Davies 

Figure 1: Distribution of passwords in template-buckets in 
S a n d ia s c hem e 

18,000,000 -.------------------------ 

16,000,000 
(fJ 

"E 14,000,000 
0 
~ 12,000,000 
(fJ 

~ 10,000,000 

0 8,000,000 ... 
.c 	
Q) 6,000,000 
E 
:::! 4,000,000 
z 

2,000,000 


0 

~N~V~W~OO~O~N~V~~~OO~O~NMV~ 

r-r-r-r-r-r-r-r-r-r-NC\JC\JC\JC\.JN 

Bucket 

In our opinion, the net result is that the system may well be more secure with user chosen 
passwords. For instance, in many systems (though of course not in all) systems adminis
trators have heard enough about dictionary attacks to pick complex passwords. Whereas 
in using this system they may well pick passwords from small buckets, and in effect the 
pronounceable password generator has weakened overall security instead of strengthen
ing it. 

Finally, wish to reiterate, that the non-uniform distribution of the passwords into buckets, is 
the main point we wish to note, and the absolute numbers are of less interest since the 
number of passwords an attacker can actually try will depend on a number of other factors 
(e.g. salting [8] in UNIX systems). 

We now turn our attention to the Gasser/NIST scheme. 

Vulnerabilities in the NIST System 

The NIST system is far more complex, and harder to analyze, but in effect has exactly the 
same vulnerability to smallest bucket attacks as the Sandia system. We provide a high 
level description of the functionality and refer the interested reader to [5] or [3] for more 
details. The scheme works as follows: 

- There are 34 units, the characters A..Z (except Q), CH, GH, PH, RH, SH, TH. WH, 
QU and CK. Each unit has an associated probability of being picked, which corre
sponds roughly to the probability of its occurrence in English. 

192 


http:r-r-r-r-r-r-r-r-r-r-NC\JC\JC\JC\.JN


A New Attack on Random Pronounceable Password Generators Ganesan and Davies 

- There are a series of rules for the appearance and positioning of units, and these 
rules are encoded in two tables- the unit and digram tables. The former describes 
special rules for where the units may appear, and describes whether they are vow
els or consonants, etc. The latter describes the rules according to which two units 
can be juxtaposed. 

- To generate a password the system picks the first unit, from one of the 34 units, 
based on the probabilities associated with each of the units. 

- The system then forms syllables by picking successive units from the list of 34, 
based on the rules in the unit and digram tables. These syllables are then concat
enated together to form the passwords. 

- Lastly, we note, that it will often happen that a particular unit that is picked will not 
be appropriate in a particular place. At this point that unit is rejected, and another 
unit is picked. If the next unit is also rejected, another unit is picked. This process 
is repeated 100 times, after which the entire syllable is rejected. As noted in [5] the 

"limit of 100 is rarely reached. 

The system is analyzed in [5] and [3], and the following results are obtained: 

- The password space is of size 18 million for 6 character passwords, 5.7 billion for 8 
character passwords and 1.6 trillion passwords for 10 character passwords. 

- The most probable passwords have a low probability of occurrence (see Criterion 
2). 

- The probability of occurrence of most passwords are (very roughly) equal. 

In the Sandia scheme the choice of buckets needed to successfully attack the system was 
readily obvious. In the Gasser/NIST scheme, the choice is not so obvious, and, as dis
cussed in Section 2, several choices are possible. As it happens, our first attempt at dis
covering buckets, by differentiating using the initial unit, turned out to result in a successful 
attack, and consequently we did not look further. It is possible that other choices of buckets 
might result in a distribution even more favorable to the attacker. So in our attack on the 
Gasser/NIST scheme each unit represents a bucket of passwords and there are 34 such 
buckets. However, unlike the Sandia scheme which randomly indexes into the buckets, in 
the NIST scheme the probability that a user picks a password from a particular bucket is 
determined by the probabilities associated with the individual unit (since it is very unlikely 
that a password will not be completed once the initial unit is picked). 

Unlike the Sandia scheme it is not easy to directly calculate the distribution of passwords 
into buckets in the NIST scheme. To calculate this distribution, which is shown below in 
Figure-2 we resort to the technique Gasser frequently uses in his analysis. In this tech
nique passwords are generated completely at random, and are then passed through the 
system acting in filter mode, where it determines if the password could have been gener
ated by the generator. As the passwords were generated randomly, sorting the sample into 
buckets will reflect the actual distribution of passwords into buckets. 

Clearly, like in the Sandia scheme, the distribution of passwords is highly non-uniform. 
However, unlike the Sandia scheme, all the buckets themselves are not equi-probable. 
Rather, the probability that a bucket is chosen by the system is tied to the probabilities 
assigned to the individual units. Figure-3 juxtaposes the distribution of the passwords into 

193 




A New Attack on Random Pronounceable Password Generators Ganesan and Davies 

buckets with the probability of a particular bucket (which we can assume is equal to the 
probability that a user will pick a password from a particular bucket). 

F igure-2: Distribution of panwords into buckets in N1ST standard. 

14.00% 

12.00% 

10.00% 

., 
"E 
~ 8.00% ., 
~ 
-E 6.00% 

~ 

4.00% 

2.00% 

0.00% I [I 
- J_.I .-.1 

0:1 ..0 u "'0 Q) - Ol ..c ·- ·- X - E c::: 0 Q. ..... 00 - ~ > ~ )( >. N ij ~ -a -€ ~ £ j 

BUCKETS 

As can be seen from Figure 2 there are several small buckets (the buckets for R, T, X, GH, 
SH, TH, QU and CK) but Figure 3 suggests that rather than the smallest bucket itself, it is 
more beneficial for the attacker to attack the small buckets with a relatively high probability 
of being chosen (e.g. the buckets for Rand T). It is likely that slightly less than 5% of users 
will pick passwords from the R bucket and another 5% from the T bucket. Yet the size of 
the R bucket is a mere 0.31% of the overall password space, and that of the T bucket, a 
mere 0.22%. Consequently, though the NIST standard would suggest a security of a pass
word space of 5.7 billion, for 8 character passwords, an attacker can expect to break into 4 
accounts of a 100 accour;1t system after searching through a mere 12.5 million passwords, 
and can expect to break into one account, on average, after searching 1.6 million pass
words! Once again, as in the Sandia scheme, we stress that the absolute numbers are 
less relevant than the non-uniformity in the distribution. The actual numbers will change 
depending on factors like salting, but the existence of the very small buckets creates a seri
ous weakness, which causes us to suggest that the scheme not be used without some 'fix' 
to the problem. 

194 




A New Attack on Random Pronounceable Password Generators Ganesan and Davies 

Figure 3: Juxtaposition of p erce nta g e of passwords in each bucket with probability of the 
bucket being chosen. 

14.00% 

12.00% 

!!3w_ 
13 ~ 10.00% 

:::0 u 
.c :::0 
c::.C 

~ ~ 8.00% 
0~ 
,., 0:::: 
(I);.:... 

:a~ 6.00% 
c.:.: 
-:.c
0 Ill 
Ql.C
g' e 4.oo% 
-c.
0:::: 
Q) 

!::!
&:. 2.00% 

0.00% 
Ill ..a u '"C Q) - Cl .s::; ·- ·- -"' - E 0:::: 0 c. ~ ., :::0 -"' 

0'" u 

• Percentage 

~Probability 

-I 
1-

~ 
1- t--

~ \II It- ~ LIIII§S ~. ~. ~. ~ ~ ~. ~. ~ 
- :::0 > 3:: X >. N ti "§, -a t ~ £i ~ 

Bucket 

Conclusions: Protecting Against Smallest Bucket 

Attacks 


Here are a number of options to protecting against smallest bucket attacks, listed in no 
particular order: 

1. Use a generator which distributes passwords into buckets uniformly. One such design 
is described in a companion paper[4]. 

2. Use the Gasser variant: In this system, passwords are generated at random, and 
passed through the generator acting as a filter. The distribution of passwords into 
buckets is still non-uniform, but the probability of a user picking a password from a 
bucket is exactly equal to the ratio of the size of the bucket to the overall key size, 
thus meeting Criterion 5. Gasser proposed this system but pointed out that it is 
somewhat inefficient. Since 1977, when Gasser proposed this method, however, the 
speed of computers has increased to the point where the inefficiency is a non issue. 
However, we are extremely reluctant to recommend this as a fix for three reasons. 
Firstly, we describe the complexity of the Gasser scheme, from a security analysis 
perspective. We believe that to be 'certifiably' secure, a system must be as simple as 
possible, so that the design and implementation can be readily analyzed and tested. 
The Gasser scheme does not meet this test. Secondly, password generators should 

195 




A New Attack on Random Pronounceable Password Generators Ganesan and Davies 

be 'portable' across multiple human languages, without requiring significant redesign 
and recertification. The Gasser scheme is largely English specific. Lastly, in our 
purely subjective opinion, passwords generated by the Gasser scheme are not suffi
ciently pronounceable (relative to some other generators we have seen). Since the 
designs described/referenced in [4] (one our own design, and one a design available 
from a major manufacturer) are automatically portable to all languages and, in our 
subjective opinion, generate more pronounceable passwords, we recommend these 
be considered as serious alternatives to the Gasser variant. We wish to observe 
however, that having invented one of the suggested alternatives, we may be prone to 
some amount of bias! 

3. Use a password length which makes even the size of the smallest bucket an attacker 
can find large enough. We have not experimented with 10 character passwords for 
which the key size is stated to be of size 1.6 trillion. However, assuming the distribu
tion of passwords into buckets is similar to that of 8 character passwords, the attacker 
would have to, for a 100 user system, on average have to search through 440 million 
passwords. This may be acceptable. We do not however, recommend this option 
since subjecting users to 1 0 character passwords seems a high price to pay for an 
effective key space size of a mere 440 million. 

4. The scheme itself can be fixed to ensure uniformity of bucket sizes by changing the 
rules in the unit and digram tables. Given the complexity of the Gasser scheme, we 
would expect that this would be extremely difficult to achieve. 

5. It is probably worth investigating the effect of the following experiment: Instead of 
picking units according to their probability of occurrenqe in English, pick units with a 
uniform distribution (i.e. each of the 34 units has a 34 probability of being picked. 
Since the rules of pronunciation are determined by me digram tables, this will not 
affect the pronouncability of the resulting passwords. We suspect that this will not 
solve the problem, but it is an interesting experiment since, in our opinion, the proba
bilities tied to the units serve no purpose anyway, and a simpler system is easier to 
analyze. 

6. As a quick 'fix' we recommend completely removing all the very small buckets. 
Observe that this does not solve the problem, and only succeeds in improving the 
odds against the attacker slightly. The attacker can then switch his attention to one 
very large bucket, and then focus on the small buckets within that large bucket, e.g. 
passwords beginning with AR or AT. It is this complication that leads us to recom
mend that an alternate, easier to analyze, system be used. 

Our bottomline recommendation is that NIST adopt a simpler more readily analyzable sys
tem which is designed to meet the five Criterion we identified in Section 2. 

Acknowledgments 

We are extremely grateful to Andy Goldstein of DEC for providing us with the 10 million 
passwords that we used to perform our analysis of the NIST scheme. We thank Chuck Din
kel of NIST for providing us with useful information on the NIST standard. We are deeply 
grateful to Raymond Pyle of Bell Atlantic for his insightful review and encouragement. 
Finally, our gratitude to the anonymous referees for forcing us to carefully rethink our work, 
and hence make it more coherent. 

196 




A New Attack on Random Pronounceable Password Generators Ganesan and Davies 

References 


[1] 	 Bishop, M., "Proactive Password Checking", 4th Workshop on Computer 
Security Incident Handling, August 1992. 

[2] 	 Davies, C. and R. Ganesan, "BApasswd: A New Proactive Password 
Checker", 16th National Computer Security Conference, September 1993. 

[3] 	 FIPS PUB 181, "Automated Password Generator", Federal Information Pro
cessing Standards Publication. 1993. 

[4] 	 Ganesan, R., "BApronounce: A New Random Pronounceable Password 
Generator'', Submitted for publication. 

[5] 	 Gasser, M. "A Random Word Generator for Pronounceable Passwords", 
National Technical Information Service (NTIS) AD A 017676. 

[6] 	 Karn, P.R. and D.C. Feldmeier, "UNIX password security - Ten years later", 
Advance in Cryptology - CRYPTO 89. G. Brassard (Ed.) Lecture Notes in 
Computer Science, Springer-Verlag. 1990. 

[7] 	 Kohl, J., C. Neuman and J. Steiner, "The Kerberos Authentication Service", 
MIT Project Athena (October 8, 1990) Version 5.3. 

[8] 	 Morris, R. and K. Thompson. "Password Security: A Case History'', Commu
nications of the ACM, 22(11 ). November 1979. 

197 




DEVELOPMENT HISTORY FOR PROCUREMENT GUIDANCE USING THE TRUSTED 

COMPUTER SYSTEM EVALUATION CRITERIA(TCSEC) 


MAJ {USA) Melvin L. DeVilbiss 
National Security Agency 
Standards Criteria & Guidelines Division 
9800 Savage Road 
Fort George G. Meade, MD 20755-6000 

In this 10 year effort, through contracts with MITRE, through a National Computer 
Security Center {NCSC) working group, and now a National Security Agency {NSA) 
sponsored Procurement Guideline Working Group {PGWG}, NSA has produced TCSEC 
Procurement Guidance, meeting the customer requirements, with Department of 
Defense {DoD) wide, as well as Federal Government wide, support. 

BACKGROUND {see figure 1) 

CSC-STD-001-83, Trusted Computer System Evaluation Criteria, was published in 
1983. Development of guidance for procurement using this criteria was initiated, 
under a contract with the MITRE Corporation, that same year. In December of 1985, 
CSC-STD-001-83 was approved as DoD 5200.28- STD. By 1985, MITRE had provided 
two revised drafts of procurement guidance {PG) to the Agency. A third draft was 
delivered to the Agency in 1986, which was in-turn presented to DoD organizations 
for review and comment. 

Significant confusion erupted about this third draft that almost destroyed the effort 
of developing procurement guidance for the TCSEC. To begin the confusion, the Air 
Force was determined to implement procurement guidance as quickly as possible 
and attempted to do so by publishing procurement handbooks drawn from the third 
MITRE procurement drafts. These handbooks eventually became Air Force Security 
Instructions and Manuals, AFSis and AFSMs respectively. Their handbooks 
attempted to deal with a wide range of issues, now known as INFOSEC. 

Simultaneous to the Air Force development, issues within the Agency began to flair 
over the MITRE '86 version. These issues ranged from improper specification of 
TCSEC requirements, Criteria Creep with requirements specifications, and simply a 
lack of understanding between COMPUSEC Specialists and Acquisition Specialists. 
On 24 July 1987, the MITRE '87 version was officially declared unacceptable within 
the Agency. But the Air Force continued their work with the MITRE '86 version, they 
later dubbed the "Burnt Orange Book." MITRE delivered a final PG revision to the 
Agency on 1 Feb 1988. 

On 24 June 1988, the NCSC initiated an internal working group to correct the 
technical problems of the MITRE document and complete the guideline by Sept 
1989. On 22 February 1989, the first complete draft was published for internal 
review. After internal review of this draft, the conclusion was that the NCSC 
document did not address the target audience properly and had too many holes in it 
to be effective. A procurement expert was finally brought in to help. A revised, and 
final, NCSC draft was produced on 20 March 1989. Essentially, work came to a halt 
with the working group because Data Item Descriptions {DIDs), or the development 
of such, were either too big or too cumbersome for the working group to handle. 

198 




DEVELOPMENT HISTORY FOR THE PROCUREMENT GUIDELINE SERIES 

OB 
designated 
as DoD 
5200.28
STD in 
December 

implem
the MITRE '86 
version 
(known 
"Burnt 

NCSC 
forms an 
internal 
working 
group 

ent 

of PG 
as the 

OB") 

NCSC 
working 
group 
disbands 

changed 

Project 
refocused, 
and phased 

Project 

changed 
twice 

4 
85 

I 
86 87 

~ 
88 

~ I 
89 

~ 
90 

~ I 
91 92 

~· 
93 

t t t t 
Last MITR
PG version 
(of at least 
four) 

E Last of two 
NCSC PG 
versions 
completed 

Vol1/4 
published 

•Vols 

DIRECTORY 

Orange Book 
Procurement Guideline/Guidance 
To Be Delivered 
To Be Published 

OB 
published 
as CSC
STD-001
83 

4 I 
83 84 

...... t
1.0 
\.0 

PG 
project 
init1ated 
with 
MITRE 

Air Force 
moves to 

delivered 

OB = 
PG = 
TBD = 
TBP = 

Project 
Management 

Management 

I 
94 

t 
2/4 & 3/4 I IVoldelivered 4/4 

TBD 
Vol2/4 
published 

'-

D 

95 

t 




Grumman Data Systems (GDS) was placed under contract to develop an integrated 
procurement guideline, using the last NCSC version, on 7 September 1990. The first 
GDS version was delivered and mailed out for review in December 1990. Part of this 
version was delivered to the National Institute of Standards (NIST) to assist in the 
development of a Federal Procurement Guideline titled, Computer Security 
Considerations in Federal Procurements: A Guide for Procurement Initiators, 
Contracting Officers, and Computer Security Officials, dated March 1992. On 11 Jan 
1991, the project was transferred to me. 

To bring the project to a successful (i.e. publish procurement guidance) conclusion, I 
asked that two major decisions be made: 

1) Define an "integrated system" using the TCSEC requirements; 
2) If unable to provide this definition, allow me to attack the definition by first 
providing procurement guidance against the TCSEC, then proceed from there 
with technical reports and canvassing the users for their experiences, with the 
eventual goal of providing system level procurement guidance. 

The result was: 
1) We didn't know how to define an integrated system using the TCSEC, and 
therefore could not use the GDS version of the PG; 
2) We therefore gained approval to develop guidance in four phases, each 
phase producing one of each of the four procurement guidelines. First, we 
were to explain the technical relationship of the TCSEC to the overall 
acquisition strategy of an Information System. We would then provide 
Specifications and Statements of Work and develop and catalog a set of DIDs 
specifically calling out the data requirements of the TCSEC. Finally, we were 
to provide government evaluation guidance of offerer proposals to assist in 
the assessment of government requirements satisfaction by the offerers. 

By August 1991, the first and third volumes were under development. The final 
version of Volume I, borrowed and revised from the Air Force handbooks, was 
received on 30 Mar 1992, but took until January 1993 to make it through publication 
editing, management approval and final publication production. On 13 April1992, 
Volume 2, a revision of the last GDS version, was approved for development. 
Volume 4 was placed under contract on 1 June 1992. I was assigned to the Federal 
Criteria on 9 December 1992, and transferred the project in January 1993. 

The final versions of Volumes 2 and 3 (Volume 3 also borrowed heavily from the Air 
Force handbooks) were delivered in January 1993. Volume 2 took until September 
1993 to make it through publication editing, management approval and final 
publication production. Volume 3 continued to be held up by technical difficulty 
with the proper wording of DIDs until July 1993, when all DIDs supporting all levels 
of trust from C2 through A 1 were finally approved. It is expected to take until 
February 1994 to make it through publication editing, management approval and 
final publication production. In the meantime, the new project officer left 
government service requiring yet another project management change in June 1993. 
I returned to the project part time in July 1993. Volume 4 could be concluded in 
1994, but it is difficult to make such predictions. 

THE PROBLEM 

The main reason for past failures of this project was the inability of (Computer) 
Security specialists to accurately communicate requirements to Acquisition specialists 
in language that was contractually (legally) binding to the developer. 

200 



The eventual success of the project was based on the foundation we built upon 
lessons learned from past failures. We did this by asking the Armed Services to come 
together with NSA in a working group to: 

1) describe past contractual failures at specifying accurate requirements, 
2) propose solutions, 
3) develop a solution based on the best proposal. 

The proposed solution was complex because: 
1) there is DoD guidance on the procurement of Automated Information 
Systems (AISs), DoD-STD-7935A, 
2) there is guidance on the procurement of software, DoD-STD-2167 A, 
3} there is no DoD guidance for the procurement of security in AISs. 

Therefore, there exists no basis for specifying AIS security in contractual language
the problem we had to solve for the customer. 

To compound the problem, security in AIS is a subgroup to both AIS development 
and security (AIS or not) requirements, both of which have extensive DoD 
requirements specifications. We defined the common ground between the two. 

To add one more twist to the problem, security is a requirement which starts at the 
concept phase of an acquisition and does not end until the final disposition (i.e. 
disposal) of the product, system, component, etc. In other words, from concept to 
operational testing, to certification and accreditation, to full scale production, to 
recertification and reaccreditation, to final disposal, security exists as a requirement 
which must be defined. We defined security in AISs through this entire process. 

Finally, Acquisition personnel understand contractual requirements, but rarely 
understand the totality of what they are requiring in the contract. Hence, the 
government is replete with Contracting Officer Technical Representatives to assist 
the contract people with developing the actual language of the contract. In terms of 
security in AISs, there is no common ground for understanding the technical 
requirements of security in AIS specifications and procurement requirements to 
make them applicable to both the free and open competition act and to sound, 
legally binding specifications. We provided this common ground. 

THE SOLUTION 

The complex solution was to divide the project into four interdependent volumes, 
which must be taken in there totality (see figure 2). Like an interpreter, we devised a 
common language (the Introduction, Volume 1) for all parties: Acquisition 
Specialists, AIS security specialists, and contract lawyers. We set the stage by which 
we could technically, accurately, and legally bind vendors and integrators while 
satisfying the fair and open competition act. The first document does not provide 
requirements of any kind. It is a pointer! A pointer to reference manuals, be they 
acquisition documents, security documents, certification documents, etc. It also 
points to the succeeding three volumes in this series. It is these three volumes which 
deal with the technical requirements in terms of procurement format, i.e. 
Statements of Work, Specification Language, and (peculiar to DoD) Data Item 
Descriptions. 

201 




----Figure 2. INFOSEC Procurement Guidance Deve opment 
)I 

Indicates plausible direction for future Indicates division between 
development COMPUSEC vs INFOSEC 

orientation 

WE ARE HERE! NCSC-TG-024, Version-1, 

Vols 1/4 through 4/4, A Guide to 

Procurement of Trusted Systems: 


MIL HANDBOOKPROCUREMENT GUIDELINES 
EPL COTSEPL COTS 

Volume 1: An Introduction to 

Procurement Initiators on 

Computer Security Requirements 


Volume 2: Language for RFP 

Specifications and Statements of 
 ~' Work -An Aid to Procurement COMPUSEC ~ Initiators ORIENTED ~ 

~~ Volume 3: Computer Security 

Contract Data Requirements List 
 ~ 4 .--------,1 

~ Note: 

~ the 


Volume 4: How to Evaluate a 


and Data Item Description Tutorial 

~ dotted 
~ line mayBidder1

S Proposal Document- An 
~ be 

~ adjusted 
Aid to Procurement Initiators and 
Contractors 

~~ to keep 
~, pace 

~ with, i.e. 
' in 

~~ INFOSEC support 
~ ORIENTED of, the 

'~ .. ' develop-
PROCUREMENT GUID~NE ment of 

NON-EPL CO~ the 
INTEGRATION CQMSIDERED Federal 

~I"' Criteria 

~ 

~ 


~ 


~~ 'It 

... MIL HANDBOOK ~ ~ PROCUREMENT GUIDELINE 
DEVELOPMENTAL ITEMS +-----~~ DEVELOPMENTAL ITEMS ~ 

~ INTEGRATION ADDRESSED 

202 




The basis for the introductory document,Volume 1, was the Air Force Handbook. 
Information Intelligence Sciences (liS), Inc. worked the handbook from the Air Force 
perspective up to the DoD perspective. 

The purpose of Volume 1 is to advise the procurement initiator that many issues are 
involved with procurement of AIS security and point him or her to key manuals for 
additional information. We introduce the Acquisition Specialist to the Computer 
Specialist, and vice versa, and point them to the following three volumes, as well as 
to the importance of certification/accreditation planning in the procurement 
process. Again this document is a pointer. Each chapter has a set of pertinent 
references to the topic at hand. 

Volume 2 is designed to facilitate the contracting process by providing Specification 
and Statement of Work (SOW) language to procure a trusted system, hopefully 
satisfied by a product from the NSA Evaluated Product List (EPL). System security 
requirements are provided in contract language for direct incorporation into a 
Request for Proposal (RFP). It is technical in nature and duplicates, in a contractual 
context, the words and intent of the DoD TCSEC. This document is for use by any 
DoD or non-DoD organization specifying trusted system requirements. For DoD 
organizations, it specifically calls out Data Item Descriptions (DIDs) unique to the 
DoD and references Volume 3 for details. The basis for development of Volume 2 
spans the entire project from the original MITRE work, through the NCSC working 
group, to Grumman Data Systems (GDS) for the most significant integration 
refinements, then eventually to liS for strictly Computer Security refinements. 

Volume 3 provides the DoD officially approved DIDs and explains the packaging 
procedures for accurately describing the trusted system data requirements. The 
document is for use by DoD procurement initiators when considering the acquisition 
of trusted computer products. Non-DoD organizations will find the Contract Data 
Requirements List Tutorial informative in that the tutorials provide considerations 
wh1ch should be made while determining the level of trust desired. Limitations of 
use of this document are noted, but this guideline is applicable to the data 
requirements for any acquisition in which security is a factor, whether the 
procurement is from the EPL or not. The basis for Volume 3 started with the Air 
Force Handbooks but was greatly massaged through a significant amount of 
research by G DS. 

Volume 4 provides information needed to assist a procurement initiator in 
developing proposal evaluation criteria, factors, and procedures. This guideline will 
also assist in the writing of Sections Land M of an RFP for security in AISs. Again, the 
requirements for this guideline are without regard to an EPL or non-EPL proposal. 
The basis for Volume 41ies with the three previous volumes, DoD 5000 series 
acquisition documents, and DoD Directive 7920.1, Life-Cycle Management of 
Automated Information Systems. CTA, Inc. of Colorado Springs, Colorado is melding 
the requirements from these sources into Volume 4. 

SUMMARY 

The gist of this ten plus year effort, is that the Agency started with the TCSEC and 
attempted to develop procurement guidance for it. MITRE laid the groundwork and 
suffered the brunt of criticism. The Air force attempted to implement the MITRE 
version of procurement guidance but learned some hard lessons. The Army and 
Navy borrowed from the Air Force and continued to learn these hard lessons. NSA 
plowed on, trying to get a handle on the problem, all the while our customers were 

203 




driving through the rain making slow, but never-the-less, steady progress. Then we 
all got together, put the puzzle in order and produced this guidance, see figure 3. 
Considering the time, varying levels of support and complexity, I think we owe 
MITRE and the Air Force a hand for leading the way. Now we need to look at the 
future and address integrated system procurement guidance. 

ARMY 

/ 
MITRE 1iJ11 AF ... NCSC 1iJ11 PCWG 1JJ11 TG-024 ' Vols 

' 1 thru 4 / 
NAVY 

Figure 3. Development of TCSEC Procurement Guidance 

CONClUSION 

We've answered the mail for the customers. We have responded to their needs, and 
done so with their help. They sat down with us in a working group, helped write the 
documents in formats their people prefer and associate with, and responded to a 
vendor, DoD, Federal Government, personal user review list over 135 in number, not 
once, but three times. And all of this since March 1991. 

The casual and folksy style {particularly of Volume 1) was the preferred style of the 
customer, and the majority of reviewers. Given that the last three volumes, by the 
nature of their information, must be technical, the armed services preferred a casual 
introduction to the entire process of managing the acquisition of trusted systems. 

The response from the field is a resounding "bravo." 

Our high expectations of usefulness for these documents are already being met with 
draft copies of the first three volumes in contractual applications within the services. 

204 




REFERENCES 


DoD 5200.28-STD, II DoD Trusted System Evaluation Criteria, II December 26, 1985. 

NCSC-TG-024, Version-1, Vol 1/4, "A Guide to Procurement of Trusted Systems: An 
Introduction to Procurement Initiators on Computer Security Requirements," 
December 1992. 

NCSC-TG-024, Version-1, Vol 2/4, "A Guide to Procurement of Trusted Systems: 
Language for RFP Specifications and Statements of Work- An Aid to Procurement 
Initiators," June 30, 1993. 

NCSC-TG-024, Version-1, Vol 3/4, "A Guide to Procurement of Trusted Systems: 
Computer Security Contract Data Requirements List and Data Item Description 
Tutorial," February 28, 1994. 

NCSC-TG-024, Version-1, Vol4/4, "A Guide to Procurement of Trusted Systems: How 
to Evaluate a Bidder's Proposal Document - An Aid to Procurement Initiators and 
Contractors" (draft). 

205 




Exporting Evaluation: 
an analysis of US and 
Canadian criteria for 

trust 

Paul A. Olson 

As of this year, both the US and Canadian governments have criteria for rat
ing trusted products. While this is a very good development, clearly it would 
be better to have a single, unified criteria for both countries. This would cre
ate one big market rather than two smaller markets, which would benefit both 
the vendors and their respective governments. Efforts in this direction are 
underway. In the meantime, can anything be done to allow placing products 
on both evaluated product lists? This paper will compare and contrast both 
sets of criteria, analyze the possiblity of mapping B 1 through A 1 require
ments to a Canadian equivalent. It will then present some options. 

Unbundled Requirements 

The first and most obvious difference between the two documents is that the 
Canadian one is titled "trusted computer product" criteria, and the other is 
titled "trusted computer system" criteria. This points to the most fundamental 
difference between the two: the Canadian requirements are "unbundled", not 
tied together, so that a product may have different ratings, with different 
names, for different security features. This approach fits the general term 
"product". Orange book requirements are very closely coupled under a single 
name, and are very interdependent; this approach fits the term "system". Any 
attempt at a mapping must find collections of Canadian criteria requirements 
that include something corresponding to each orange book criteria class 
requirement. 

Although each document uses different terminology, there is a great deal of 
similarity in the mechanisms and assurances that they describe. Looking no 

206 




deeper than the title of each requirement, one can arrive at the following 
mappmg: 

Bl: 

• T2 Assurance 
• Discretionary Confidentiality (CD-2) 
• Mandatory Confidentiality (CM-2) 
• Object Reuse (CR-1) 

• Domain Integrity 
• Separation of Duties (IS-1) 
• Self Testing (IT-3) 
• Audit (WA-2) 

• Identification and Authentication (WI-2) 

B2: 

• T4/5 Assurance 
• Covert Channel Analysis (CC-2) 
• Discretionary Confidentiality (CD-2) 
• Mandatory Confidentiality (CM-2) 

• Object Reuse (CR-1) 
• Domain Integrity (ffi-2) 

• Separation of Duties (IS-1) 
• Self Testing (IT-3) 
• Audit (WA-2) 

• Identification and Authentication (WI-2) 
• Trusted Path (WT-1) 

B3: 

• T5 Assurance 
• Covert Channel Analysis (CC-2) 

• Discretionary Confidentiality (CD-2) 

• Mandatory Confidentiality (CM-3) 
• Domain Integrity (ffi-2) 

• Object Reuse (CR-1) 

207 




• Separation of Duties (IS-1) 

• Self Testing (IT-3) 

• Audit (WA-3) 

• Identification and Authentication (WI-2) 

• Trusted Path (WT-2) 

• Recovery (AY-1) 

Al: 

• T7 Assurance 

• Covert Channel Analysis (CC-2) 

• Discretionary Confidentiality (CD-2) 

• Mandatory Confidentiality (CM-3) 

• Domain Integrity (ffi-2) 

• Object Reuse (CR-1) 

• Separation of Duties (IS-1) 

• Self Testing (IT-3) 

• Audit (WA-3) 

• Identification and Authentication (WI-2) 

• Trusted Path (WT-2) 

• Recovery (AY-1) 

Security Features 

If a computer customer is trying to compare US and Canadian products, the 
above list is about as close as one can come to defining what, say, B2 means 
in Canada, and what approximates a B2 in the US .. However, this is based 
so ley on a comparison of topics. In the actual text of the requirements, there 
are several crucial differences that must be considered. 

The two criteria sets are much alike in the area of assurance and assurance 
mechanisms (e.g., hardware self-testing). They are very divergent in areas of 
policy and security mechanisms. CD-2 and CM-2, for example, do not 
exactly correspond to orange book DAC and MAC. CD-2 states 

208 




The TCB shall enforce an approved discretionary confidentiality pol
icy to protect against information disclosure. The approved policy 
shall define the set ofthe product's objects to which it applies. [2] 

CM-2 states the same thing regarding a mandatory policy. The orange book 
criteria also state that a policy will be used, but they go on to stipulate what 
consititutes an approved policy. The MAC requirement in the orange book 
states: 

The TCB shall enforce a mandatory access control policy over all 
..... subjects, objects, and 1/0 devices ... that are .. accessible by 
[untrusted] subjects.These subjects and objects shall be assigned 
sensitivity labels that are a combination ofhierarchical classification 
levels and non-hierarchical categories, and the labels shall be used 
as the basis for mandatory access control decisions.[]} 

The requirement goes on to specify the read and write policy. There are also, 
of course, five to eight additional requirements detailing what labels will look 
like, how they will be controlled, and what they will be attached to. The 
orange book DAC requirement likewise specifies what a correct discretionary 
policy looks like: 

[The TCB] shall allow users to specify and control sharing of .. · 
objects and shall provide controls to limit propagation ofaccess 
rights .... [l] 

and at B3: 

[The] access controls shall be capable ofspecifying,for each named 
object, a list ofnamed individuals and a list ofgroups ofnamed indi
viduals with their respective modes ofaccess to that object. [1] 

Plainly the two sets of criteria are very different, yet they are also related. 
Because the US criteria are more specific, and the Canadian criteria more 
general, one may think of the US MAC and DAC requirements as subsets of 
CM-2 and CD-2. That is, Bl-thru-Al MAC will meet the CM- requirement, 
but a CM- rated product will not necessarily meet Bl MAC. 

Thus, a customer that for exam_Ql~ needs a Bl-ish product can avoid those 
Canadian products that lack a CM- rating, but for those that have CM- rating, 
he (or someone) must verify that the ~oTicy supported by the CM- product IS 
at least as restrictive as TCSEC MAC. That is, one that will not permit any 

209 




access that would be disallowed by TCSEC mandatory controls involving 
labels and dominance. The same is true for products with discretionary con
trols. For example, a policy of total isolation of domains (appropriate for 
some applications) is more restrictive than TCSEC MAC, and could be inter
preted to meet the requirement. 

Identification & Authentication vs. WI-

These requirements map very well; both require that users be authenticated 
before logon, that the authentication mechanism will be protected, and that 
certain attributes will be attached to them to assist in the enforcement of secu
rity policy(s). However, because the TCSEC requirement is tied to other 
requirements, it is more specific about what those attributes will be. In this 
case, a label rangy_jllld a unique, auditable identity are required by TCSEC 
I&A, where the WI- requirements stipulate simply unspecified "attributes". 

Again, a TCSEC-rated product will meet the WI- requirements. A WI- rated 
pro!-luct IJlight also meet TCSEC I&A, but further analysis will be needed to 
venfy thts. 

Audit ys WA

TCSEC audit and CTCPEC WA- both require a protected, accurate audit trail 
that enables tracking of users' actions and certain attributes about them (date, 
time~ etc.). The difference, again, is in the details: TCSEC audit gives a hst of 
requued auditable events before saY.ing "and other security-relevant events 
[If'. The WA- requirements allow the submitted audit policy to define the 
security-relevant events, and do not require that process/object labels be 
included in audit records. Again, this is because audit is not bundled together 
with any labelling requirements. Interestingly, the WA- requirements exP.lic
itly mandate the P.resence of audit reduction tools, which are only implicitly 
required (i.e., by interpretation) in the TCSEC. 

TCSEC audit will meet WA- requirements. WA- rated products will meet 
TCSEC audit if the list of events includes the necessary items, and the audit 
records include all relevant labels. 

Object Reuse vs. CR-1 

These two requirements are nearly identical, except that the TCSEC again 
adds a detail, that not even "encrypted reP.resentattons of information fl ]" are 
to be available in reallocated objects. Without those words, presumabfy CR-1 
could be inteqJreted to re_gard encrypted data as "unavailable." Alternatively, 
CR-1 could forbid it on tlie grounds-that it is not an "acceptable object reuse 
policy [2]". 

Trusted Path vs. WT-

Both of these requirements prescribe a reliable, unforgeable communication 
:Qath both prior to logon and whenever a user-to-TCB channel is needed. As 
this is a relatively simple mechanism, the two requirements not suqJrisingly 
map very well, and may be regarded as equivalent. According to tlie table 

210 




above, therefore, B2 Trusted Path equals WT-1, and B3/A1 Trusted Path 
equals WT-2. 

Assurance 


The assurances of each criteria set also map rather well with one another, 
especially as the Canadian criteria do not unbundle the assurance require
ments to the same degree as the security features. The "intrinsic" assurances 
(the ones that improve the process of desigQ and develo_~>ment of the product) 
are rolled into one requirement set, calle<fT-1 through T-7. Other forms of 
assurance such as domain separation and product self-testing are broken out 
into separate requirements, presumably because they are more "active", i.e., 
they provide assurance of correct operation while the system is running. Still 
other forms of assurance have no correpondance at all m the TCSEC, such as 
resource containment, fault tolerance and robustness, and are not addressed 
in this mapping exercise. 

However, the CTCPEC assurances are bundled together in a different manner 
that TCSEC assurances. For exam_QJe, the m- or domain isolation require
ment maps to ~portion of the TCSEC system architecture requirement. Both 
require tfie TCff to have "a domain for Its own execution that protects it from 
external interference and tampering". However, the same system architecture 
requirement also stipulates how the TCB will be designed and structured. 
This is done elsewhere in the CTCPEC, in the "Architecture" section of the 
T-1 through T-7 requirements. Again, this probably reflects the view that 
domain isolation is a separate, pro-active protection mechanism, and good 
architecture is more an mtrinsic charactenstic of a secure product. 

In addition, the different sets of assurances are like the different sets of fea
tures in that the TCSEC is more particular and the CTCPEC more general. 
This again reflects the fact that the TCSEC is addressed to a ~articufar type of 
product, general-puqJose operating systems, where the CTCPEC wishes to 
address a wider variety of product types. Some specific differences, and simi
larities, are described below: 

System Architecture 

B1 system architecture maps fairly well to ffi-2 and T-2 (Architecture), 
except that B 1 stipulates "process isolation through the provision of distinct 
address spaces under [TCB] control [1]". The first paragraph offfi-2 requires 
that the domain policy "identify the TCB domain and other domains [2]". If 
a vendor's domain policy identifies "other" domains as process address 
spaces, then the two requirements map cleanly. Also, the TCSEC require
ment says that the TCB "shall isolate the resources to be protected so that 
they are subject to the access control and auditing requirements", where T-2 
Architecture says simply "The TCB shall enforce the product's security pol
icy". Allowing for the unbundling principle, the two requirements are nearly 
the same, again except for the bit about isolation. When mapping a system's 
ratings, therefore, some additional analysis should be done to verify that 

211 




domain and resource isolation are used to meet the CTCPEC requirements, 
thereby matching the TCSEC requirements. Note that in the type of system 
the TCSEC was designed to rate, it is hard to envision how else to properly 
control resources other than to isolate them. Consequently it will probably 
not be major issue. 

At B2, the system architecture requirement adds hardware support for the 
protection mechanisms, least privilege, and a TCB made of "well-defined, 
largely independent modules [1]". In the CTCPEC, the T-3 architecture 
requirement says that the TCB be made of "well-defined, largely independent 
components [2]", T-4 requires the use of protection mechanisms in "the 
underlying abstract machine", and T-5 requires the principle of least privi
lege. The T-5 architecture requirements, therefore, map best to B2 system 
architecture. The only issue is whether an "abstract machine [2]" maps to 
"hardware[l]". Clearly it can, but again a given rated product must be ana
lyzed to verify this. Interestingly, T-5 architecture also adds minimal com
plexity, a conceptually simple protection mechanism, and "modularity, 
abstraction, and data hiding", roughly analogous to B3 system architecture. 
The only quibble is that B3 says "layering" rather than "modularity". Layer
ing is a concept most relevant to operating system design, and was probably 
thought too specific for the CTCPEC. A CTCPEC-rated product would have 
to include layering during initial design, in order to fully map to the B3 
requirement. 

System Inte2rity 

The Bl-Al system integrity requirement maps virtually one-for-one to the 
CTCPEC IT-3 requirement. The IT-3 requirement even includes explicitly 
what US evaluators require by interpretation. 

Covert Channel Analysis 

The CC-2 requirement maps most closely to B2 covert channel analysis. It 
actually requires more than B2, because the CTCPEC does not make the dis
tinction between storage and timing channels that the TCSEC does. How
ever, it also does not impose any explicit bandwidth restrictions other than a 
vendor's estimate of the maximum allowable by the product's intended envi
ronment. A B2 system would need to be analyzed for timing channels to fully 
map to CC-2, and a CC-2 product would need to verify that the maximum 
bandwidths of all channels are within TCSEC limits. 

212 




At B3, the timing/storage distinction goes away. Bandwidths will still have to 
be compared. At A1, formal methods must be used in the analysis. No CC
requirement calls for this. A vendor would have to undertake covert channel 
analysis with this in mind in order to map the two requirements . 

. CC-3 calls for elimination of covert channels, which is implicitly considered 
impossible in the TCSEC. There is no mapping here. 

Separation of Duties 

The IS-2 requirement maps virtually one-for-one with the B2 and B3 trusted 
facility management requirements. B3 requires that assuming an administra
tive role be an auditable event where IS-2 does not, another side-effect of 
unbundling. If the IS-2 product contains a WA- rating, it can be analyzed for 
this extra requirement. 

Trusted Recovery 

B3 trusted recovery maps best to the AY-1 requirement. AY-1 actually con
tains more specific requirements than B3. For example, it requires the vendor 
to define failures and discontinuities from which recovery is possible, and to 
establish failure thresholds beyond which the product must be re-installed. A 
B3 system must be analyzed for these qualities before a mapping can be 
established. 

Other Assurances 

All the other assurances in the TCSEC, trusted distribution, specification & 
verification, configuration management, security testing, and documentation, 
have counterparts in the T-2 through T-6 requirements that map with little dif
ficulty. The terms and phrasing are very similar in both documents. No addi
tional analysis is needed in these cases to establish a mapping. 

Evaluation Options 

Given the technical issues outlined in this paper, several options present 
themselves in the case of vendors who would like to be on both North Amer
ican evaluated products lists. Evaluation agencies in both countries can elect 
to do one of the following with the other's ratings: 

(A) Nothing. Re-evaluate the system according to one's own criteria from 
scratch. This describes the present situation. It has the advantage of consis
tency with one's own evaluation program, but is highly undesirable for many 

213 




reasons. It unecessarily constricts the market for trusted products, it wastes 
time and money, and it virtually insults one another's technical expertise. 

(B) Translate. Refine a mapping process and translate ratings from one crite
ria to the other. This would require altering or adding to the evaluation pro
grams of each country. It has the advantage of reducing customer 
misunderstandings, and saves time and money by re-using each other's anal
ysis. It would still require some effort to perform the extra analysis of the sort 
outlined in this paper, however. It also might effectively make vendors who 
want to sell in both countries build their products to two different standards 
simultaneously. This would make them more costly, particularly at higher 
levels of trust. 

(C) Publish. Simply post one another's rated products as a separate part of 
one's own evaluated products list, and optionally publish some document to 
help customers make sense of the other's ratings. For the evaluator agencies 
this is the least costly option of all, requiring no additional analysis or map
ping. For vendors it increases customer base without having to build to two 
standards. For the customers it increases the number of types of rated prod
ucts, although it also requires them to understand two different rating 
schemes. 

Conclusion 

Although the two North American criteria sets differ in underlying philoso
phy, rating scheme, and other attibutes, the desired result is the same: to make 
computer security products widely available. To that end it is clearly desir
able to create as wide a market as possible. Prior to the publication of a Com
mon Criteria, an in-depth comparison of the two criteria sets might open the 
way for mutual recognition of one another's evaluation work. Futher analysis 
might be pursued in comparing TNI and TDI ratings with the CTCPEC. 

Bibliography 

[1] Trusted Computer System Evaluation Criteria, 1985, DOD 5200.28 STD 

[2] Canadian Trusted Computer Product Evaluation Criteria, Version 3.0e, 
1993, The Government of Canada 

214 




WHAT COLOR IS YOUR ASSURANCE? 


David R. Wichers, Joel E. Sachs Douglas J. Landoll 
Area Systems, Inc. Area Systems, Inc. 

10320 little Patuxent Parkway, Suite 1005 8229 Boone Blvd., Suite 610 
Columbia, MD 21044 Vienna, VA 22182 
wichers@arca.md.com landoll@arca. va.com 
sachs@arca.md.com 

Abstractl 

This paper compares and contrasts a number of prominent development and evaluation 
methods to illustrate that the type of assurance they provide varies. It then presents a 
taxonomy of assurance which clarifies the different assurance aspects of these 
development and evaluation methods. This taxonomy is intended to help the community 
recognize, understand, and focus on particular assurance issues by facilitating the 
definition, discussion, and comparison of the type of assurance provided by existing or 
proposed development or evaluation methods. 

Keywords 

Assurance, Development Methods, Evaluation Methods, CMM, TSM, TCSEC, ITSEC, 
Federal Criteria, CTCPEC, RAMP, ISO 9000, CCEP, Profiling, Certification, Accreditation, 
Security Engineering Capability Maturity Model (SE CMM) 

Introduction£ 

A common misperception exists that assurance has a single meaning, purpose, or goal. 
People tend to lose sight of the fact that there are many different types of assurance and 
the need for assurance varies. This paper discusses this misperception and presents a 
taxonomy which will clarify the different aspects of assurance and help the community 
recognize, understand, and focus on particular assurance issues. 

To quote Webster's, assurance is "something said or done to inspire confidence" [1]. 
Inspiring confidence is the fundamental part of assurance that is intuitively understood. 
People also understand that confidence is inspired by different methods. What they 
tend not to understand is that these methods inspire different types of confidence and 
may even be targeted at different types of products or systems. Contributing to this 
confusion is the fact that many of the methods for providing assurance are similarly 
organized into levels of improvement, which makes people think they are equivalent. 
Some methods even have misleading names, which is also confusing. The focus of this 
paper is to eliminate this confusion and present a taxonomy which facilitates defining, 

1 The title of this paper was inspired by the book "What Color is Your Parachute?" by Richard Bolles. [2]
2 This research was supported by the National Security Agency under Contract Number MDA904-93-C

C029. This work was accomplished as part of a joint effort by NSA's Systems Security Engineering 
Division, Area Systems, and CSC Professional Services Group to develop a Security Engineering 
Capability Maturity Model. 

215 




discussing, and more accurately comparing the type of assurance provided by the 
various development or evaluation methods. 

Background of Research 

The authors are part of a team that is developing a Security Engineering Capability 
Maturity Model (SE CMM) [3]. This model, which is based on the Software Engineering 
Institute's Capability Maturity Model (CMM) [4], is intended to help security 
engineering organizations define and improve their security engineering process, much 
in the same way as the CMM promotes process improvement for software engineering 
organizations. As part of developing the SE CMM, we needed to understand how 
different development and evaluation methods provide assurance since assurance is a 
key aspect of security engineering and is not present in the CMM. This research helped 
us gain this understanding, and has influenced the practices in the SE CMM for 
improving an organization's ability to provide assurance throughout their security 
engineering process. 

Research Approach 

To help identify and illustrate the different aspects of assurance, we examined the 
prominent development and evaluation methods which are listed and briefly described 
in Table 1. To facilitate this examination, we characterized each of these methods in 
order to be able to compare and contrast them. The key to the characteristics we used is 
presented in Table 2 and the characterization of each method is presented in Table 3. 

Table 1: Development and Evaluation Methods Examined 

Short Name Name of Method Description 

CMM Capability Maturity Model for Software SEI' s Software Development Process 
Improvement Methodology 

lSM Trusted Software Methodology SOlO's Methodology for Developing Mission 
Critical Software 

TCSEC/ 
TPEP 

Trusted Computer sr,stem Evaluation Criteria, 
Trusted Product Eva uation Program 

DoD Trusted Product Criteria and Evaluation 
Methodology 

llSEC I 
llSEM 

Information Technolo~ Security Evaluation 
Criteria, Information echnology Security 
Evaluation Method 

European Trusted Product and System 
Criteria and Evaluation Methodology 

Federal Criteria Federal Criteria for Information Technology 
Security 

Proposed U. S. Trusted Product Evaluation 
Criteria 

CTCPEC Canadian Trusted Computer Product Evaluation 
Criteria 

Canadian Trusted Product Evaluation 
Criteria 

RAMP Ratings Maintenance Phase Program TPEP Product Rating Maintenance Program 

ISO 9000 Series Quality Management and Quality Standards ISO Quality Assurance Standards 

CCEP Commercial COMSEC Endorsement Program NSA COMSEC Evaluation Methodology 

Profiling Center for Profiling NSA Trusted Product and System 
Assessment Methodology 

Certification Certification of Government systems DoD System Procurement Requirement 
Verification Methodology 

Accreditation Accreditation of Government systems DoD Decision to Operate Methodology 

216 




Table 2: Characteristics of Development and Evaluation Methods 

Characteristic Description of Characteristic 
Introduction Date When the method was first introduced. 
Purpose of Method What the method was intended to explicitly achieve. 
Intended Target of 
Method 

What it was intended to be applied to (e.g., all products, trusted products, 
systems, software). 

Premise of Method What it was hoped the purpose of the method would ultimately achieve. 
Strategy of Method How the method attempts to achieve its purpose. 
Criteria 
Organization 

How the criteria portion of the method is organized. 

Requirements 
(broken into the 
following areas:) 

Each table entry indicates that requirements are levied in that area by the 
criteria. The text of the entry describes how compliance with those 
requirements are actually evaluated. 

-Target Arch The architecture of what is being built 
-Target Design The design of what is being built 
-Target Implem The implementation of what is being built 
-AssurEvid The assurance evidence J>I'Oduced throughout development 
-EngProc The engineering process used throughout development 
-EngEnvir The physical and computational environment in which development is done 
-Target Envir The environment in which the product or system is to be, or is being, fielded 
-Risk of Use The risks of using what is being built 

Purpose of 
Evaluation 

Why the evaluation is done. 

When Evaluated When in the lifecycle the evaluation is performed. 
How Evaluation is 
Performed 

How and where the evaluation is done. Where is relative to the development 
location. 

Who Performs 
Evaluation 

Who performs the evaluation. 

Result of 
Evaluation 

The quantifiable result which is made available after the evaluation is 
complete. 

Description of Development and Evaluation Methods 

The following four part table describes each development and evaluation method listed 
in Table 1. The key to the characteristics is presented in Table 2. It is intended to 
represent the essence of each method rather than every detail. A specific set of 
terminology is used as well, which is not always the same terminology used by every 
method described. This was done to make the terminology in the table as consistent as 
possible, and to facilitate the ability to analyze, compare, and contrast the methods. 

217 




Table 3: Description of Development and Evaluation Methods (Part 1) 

CMM TSM TCSEC/TPEP 
Introduction Date 1986 1991 1983 
Objective of 
Method 

• Provide Guidance for: 
-Defining 
-Improving 
a software development 
organization's software 
development process 

• Provide metric for identifying 
qualified software contractors 

• Provide: 
- Guidance for establishing 
-Metric for evaluating 
- Basis for specifying 
safeguards to be integrated into 
the software development process 

• Provide: 
- Guidance for developing 
-Metric for evaluating 
- Basis for specifying 
COTS trusted products 

Intended Target 
of Method 

• All Software • Mission Critical Software 
-for Strategic Defense 

• COTS Trusted Products 
- for DoD Environments 

Premise of 
Method 

• Improving process will: 
-improve quality 
- reduce cost 
- shorten schedule 
of software projects 

• Strict controls will reduce the 
potential for both: 
- malicious and 
- inadvertent 
subversion of the software 

• A common criteria will: 
- make trusted products more 

widely available 
- provide a basis for: 

measuring assurance 
specifying security requirements 

Strategy of 
Method 

• Criteria defines: 
- organizational structure 
- management structure 
-fundamental engineering activities 
necessary to achieve higher levels of 
maturity. 

• Criteria used to assess status of 
process maturity and suggest 
improvements 

• Criteria defines specific levels of 
control on: 
-engineering environment 
-activities in engineering process 

• Independent evaluators monitor 
and document degree of 
compliance with targeted level 

• Criteria defines specific levels of: 
- security features 
-assurance 
of COTS trusted product 

• Independent evaluation ensures 
compliance with targeted level 

Organization of 
Criteria 

• 5 Hierarchical levels 
- Levels 1 through 5 of 
-increasing process maturity 

• 6 Hierarchical levels 
- TO through T5 of 
-increasing environmental and 

procedural controls 

• 6 Hierarchical levels 
- D through A1 of 
- increased features 
bound to 
- increased assurance 

Requirements How Evaluated How Evaluated How Evaluated 
-Target Arch Analyze 
-Target Design AnaJyze 
-Ta~Imt>lem Test 
-AssurEvid Analyze 
-EnK_Proc Confirm Process Exists Confirm Process is Followed 
-EngEnvir Confirm Controls are Used 
-Target Envir Somewhat addressed in Yellow Book 
-Risk of Use Allowed risks described by Yellow Book 

Purpose of 
Evaluation 

• Identify Current Maturity Level 
• Identify Improvement Path 

• Monitor Compliance 
• Document Level of Compliance 

• Verify Criteria Compliance 
• Provide Criteria Guidance 

When Evaluated • Assessment Before Development 
• Self-Monitor During Development 

• Throughout Development • Post Design 
• Primarily Post Development 

How Evaluation 
is Performed 

• Maturity questionnaire 
• On-site interviews with personnel 
• Review of documented procedures 
• Examination of capability evidence 

• Detailed on-site assessments of: 
- process evidence 
-process documentation 
-environmental controls 

• On/Off-site design analysis 
• Off-site: 

- review of assurance evidence 
- technical review boards (TRB) 

which perform independent QA 
• On-site testing 

Who Performs 
Evaluation 

• SEI or Government personnel 
• Organization does self assessments 

• Government personnel 
• Government representative 

• NSA personnel 
• NSA representatives 

Result of 
Evaluation 

• CMM level identified 
• Process strengths and weaknesses 
• Recommended improvements 

• Degree of compliance is 
documented 

• Given rating for highest TCSEC 
level where all requirements are 
satisfied 

• Final evaluation report (FER) 
which describes product and how 
it meets its requirements 

• Evaluated products list entry 

218 




Table 3: Description of Development and Evaluation Methods (Part 2) 

ITSECIITSEM Federal Criteria 3 CTCPEC 
Introduction Date 1990 1992 (Draft) 1993 
Purpose of 
Method 

• Provide: 
- Guidance for developing 
-Metric for evaluating 
- Basis for specifying 
COTS trusted products & systems 

• Provide: 
- Guidance for developing 
-Metric for evaluating 
- Basis for specifying 
COTS trusted products 

• Provide: 
- Guidance for developing 
-Metric for evaluating 
- Basis for specifying 
COTS trusted products 

Intended Target 
of Method 

• COTS Trusted Products & Systems 
-for Government and Commercial 

Environments 

• COTS Trusted Products • COTS Trusted Products 
-for Government Environments 

Premise of 
Method 

• A common criteria will: 
- make trusted products more 

widely available 
- provide a basis for: 

measuring and specifying 
assurance requirements 

• Complete Freedom in: 
-feature 
selection will promote products 
which meet market needs 

• A common criteria will: 
- make trusted products more 

widely available 
- provide a basis for: 

measuring and specifying 
assurance requirements 

• Complete Freedom in: 
-feature 
-assurance 
selection will promote products 
which meet market needs 

• A common criteria will: 
- make trusted products more 

widely available 
- provide a basis for: 

measuring and specifying 
assurance requirements 

• Complete Freedom in: 
-feature 
selection will promote products 
which meet market needs 

Strategy of 
Method 

• Define specific assurance levels 
• Target of Evaluation (TOE) defines: 

-combinations of security features 
- a specific assurance level 

• Vendors can define their own TOE 
• Independent evaluation ensures 

compliance with selected security 
features and assurance level 

• Include effectiveness of security 
mechanisms in evaluation 

• Protection Profiles define 
combinations of: 

., -security feature 
-assurance development 
- assurance measurement 

requirements 
• Vendors can define their own 

Protection Profiles 
• Protection Profiles can be targeted 

to meet particular needs 
• Independent evaluation ensures 

compliance with profile 

• Define specific security feature 
components 
- Allow vendors to select and build 

any desired combinations of 
these feature components 

• Define specific assurance levels 

• Independent evaluation ensures 
compliance with selected security 
feature components and assurance 
level 

Organization of 
Criteria 

• 3 Independent Areas 
- 6 Hierarchical Assurance levels 

E1 through E6 
- 2 aspects of effectiveness 
-Vendor defined security features 

• 3 Independent areas define 
unbundled: 
- security feature 
-assurance development 
-assurance measurement 
components 

• Only predefined components can 
be used to form a profile 

• 8 Hierarchical Levels 
- TO through 17 of 
-increased assurance 

• Unbundled security feature 
components 

RE!Qui!_ements How Evaluated How Evaluated How Evaluated 
-Target Arch Analyze Analyze Analyze 
-Tar~ Design Analyze Analyze Analyze 
-Target lmplem Test Test Test 
-AssurEvid Analyze Analyze Analyze 
-EngProc Confirm Process Confirm Process 
-Eng_Envir Confirm Controls Confirm Controls Confirm Controls 
-Target Envir Consider Controls Specified in Profile 
-Risko£ Use 

Purpose of 
Evaluation 

• Verify Compliance with Target of 
Evaluation 

• Verify Compliance with Profile • Verify Compliance with assurance 
level and selected security features 

• Assistance in development 
When Evaluated • Post Design • TBD by Criteria Authors • Post Design 

• Primarily Post Development 
How Evaluation 
is Performed 

• Off-site: 
-assurance documentation review 
- product documentation review 
-testing 

• On-site review and testing 

• TBD by Criteria Authors • Off-site: 
- review of assurance evidence 
- technical review boards 

• On-site testing 

Who Performs 
Evaluation 

• Government Certified Commercial 
Company 

• TBD by Criteria Authors • Government personnel 
• Government representative 

Result of 
Evaluation 

• Pass I Fail for features and 
assurance level specified in TOE 

• Pass I Fail for features and 
assurances specified in profile 

• Pass I Fail for assurance level and 
selected security features targeted 

219 




Table 3: Description of Development and Evaluation Methods (Part 3) 

RAMP ISO 9000 Series CCEP 
Introduction Date 1989 1991 about 1983 
Purpose of 
Method 

• Maintain the assurance of 
previously evaluated Trusted 
Products 

• Provide guidance for software 
quality assurance 

• Ensure adequacy of design and 
correctness of implementation 
for COMSEC devices. 

Intended Target 
of Method 

• Evaluated COTS Trusted Products 
-for DoD Environments 

• All Software • Government COMSEC Devices 

Premise of 
Method 

• A defined process for maintaining 
the evaluation rating will: 
-ensure that new versions of 

evaluated products are still 
TCSEC compliant 

-keep the list of evaluated 
products current 

• Guidance for software quality 
assurance will: 
-establish quality principles 
-promote international consensus 
- address customer expectations 

• Documenting all COMSEC: 
-knowledge 
-guidance 

• and using this guidance will: 
- improve assurance of 

COMSEC devices 

Strategy of 
Method 

• Prescribe controls on the process 
used to maintain the product 

• Require vendors to perform their 
own security analysis 

• Require training for vendor 
security analysts (VSAs) 

• Vendors defend why the changes 
made maintain the rating from the 
previously evaluated product 

• Describe controls and methods for 
preventing nonconformance with 
requirements at all stages from 
development through maintenance 

• Require supplier to demonstrate 
capability to: 

-develop 
-supply 
-maintain 
software products 

• Establish Principles for: 
-Design 
- Development Environment 

• Select and tailor to each project 
• Analyze Design for: 

- Principle adherence 
-Single fault analysis 

Organization of 
Criteria 

• By Role: 
- Defines specific activities that 

must be performed by each role 

• All TCSEC requirements from the 
original evaluation still apply 

• By Life-Cycle Activities 
- while intended to be 

independent of the life-cycle 
model used, the organization is 
based on the fact that quality-
related activities should be 
organized according to the life-
cycle model used. 

• Compendium of principles for: 
-Design 
- Development Environment 

• Compendium 
- Ordered by topic 
-Not broken into levels 

Requirements How Evaluated How Evaluated How Evaluated 
-Target Arch Analyze Changes 
-Target lJesign Analyze L_hanges Analyze 
-Targetlmplem Test Test 
-AssurEvid Analyze Cll_anges Analyze 
-EngProc Confirm Existence and Audit Confinn Existence 
-EngEnvir Confirm Controls 
-Target Envir 
-Risk of Use 

Purpose of 
Evaluation 

• Ensure rating of product was 
maintained for new release 

• Validate supplier's capability to 
develop, supply, and maintain 
software products 

• Verify Principles Compliance 

When Evaluated • During and After Maintenance • Assessment before development • Throughout development 
• Emphasis on detailed design 

How Evaluation 
is Performed 

• Vendor performs their own 
security analysis of changes 

• Vendor defends analysis results 
• Government audits process 

• On-Site Audit of quality assurance 
activity evidence, e.g., during: 
-Planning 
- Design and Implementation 
-Testing and Validation 

• Detailed Evaluation 
- Review of developer provided 

analysis 
-Additional independent 

analysis 
Who Performs 
Evaluation 

• Vendor personnel (Must be NSA 
recognized VSA) 

• NSA personnel can as well 

• Registrars accredited by country's 
Registrar Accreditation Body 
(An industry supported entity) 

• NSA personnel only 

Result of 
Evaluation 

• Pass I Fail for target level 
• Ratings maintenance report and 

updated Fmal Evaluation Report 
• Updated evaluated products list 

entry 

• Recommended/Deferred/Not 
Recommended for compliance 
with the standard 

• Pass/Fail 

220 




Table 3: Description of Development and Evaluation Methods (Part 4) 

Profiling3 Certification Accreditation 
Introduction Date 1993 1960's 1960's 
Purpose of 
Method 

• Catalog and describe: 
- security products 
-systems 

• Ensure compliance with security 
requirements 

• Provide technical assessment to 
accreditor 

• Understand: 
- risk of fielding system 
-operational impacts due to 

vulnerabilities 
Intended Target 
of Method 

• Security Products or Systems 
- for DoD Environments 

• Government Systems • Government Systems 

Premise of 
Method 

• An independent assessment and 
documentation of: 
-security features 
- interoperability information 
of security products will: 
-provide useful information to 

acquisition organizations, 
certifiers, and accreditors 

• Independent technical analysis 
will: 
- ensure all requirements are met 

(including security) 
- identify strengths and 

weaknesses 
-support accreditation decision 

• An informed decision to operate 
will ensure security risks are: 
- understood 
-reduced to an acceptable level 

Strategy of 
Method 

• Does not levy any requirements 
• Examine vendor claims or 

program requirements 
• Examine products or systems to: 

-gather facts 
-test features 
-test interoperability 
-document results 

• Does not levy any requirements 
• Ensures that program's security 

requirements are met 
• Provides assessment information 

to a ccredi tor 

• Does not levy any requirements 
• Identifies security risk 
• Ensures security features and 

assurance is sufficient to 
mitigate the security risk of 
fielding system 

Organization of 
Criteria 

•N/A •N/A •N/A 

Requirements'i How Evaluated How Evaluated How Evaluated 

-Tal'l(et Arch Review 
-Tarstet Desistn Review and analyze 
-Tanzet Implem Test Review and analyze Survey or Test 
-AssurEvid Review Review 
-En~~:Proc 

-EngF.nvir 
-TaT~~:et Envir Considers for Systems Review 
-Risk of Use Identify Identify and Understand 

Purpose of 
Evaluation 

• Identify Security Features 
• Investigate Interoperability 
• Develop pre-analyzed 

comoositions of products 

• Ensure Requirements 
Compliance 

• Identify Risk of Use 
• Understand Risk 
• Make Accreditation Decision 

When Evaluated • Post Design • Throughout Development • Pre-~eration 
How Evaluation 
is Performed 

• Short Off-Site Assessment of 
product(s) in NSA or vetted 
industry lab 

• Assess requirements 
• Detailed assessment of system 
• Perform risk analysis 
• Analyze risk trade-offs 

• Site accreditation survey 
• Assessment of system risks and 

proposed countermeasures 
(certifier recommendation) 

Who Performs 
Evaluation 

• NSA personnel 
• NSA representatives (including 

industry) 

• Government personnel 
• Government representatives 

• Designated Approving 
Authority 

Result of 
Evaluation 

• Description of product or 
system 

• Risk of use report 

• Assessment of adequacy of 
system achieving mission 

• Certification recommendation to 
Accreditor 

• Decision to operate 

Results 

Based on the descriptions in Table 3, we present the following results, which include 
some trends, identify the primary assurance characteristics of these development and 

3 Note that the description of the Evaluation Process for the Federal Criteria and Profiling efforts are 
estimates as evaluations following either of these methods have not yet been performed. 

4 Note that the methods listed in part 4 of this table do not levy their own requirements. Rather, they 
ensure or confirm that the vendor claims or program requirements are actually met. 

221 




evaluation methods, and describe some potential relationships between them. We then 
present the SE CMM approach to assurance, which is based on these results. 

Trends 

In comparing the different development and evaluation methods reflected in Table 3, a 
number of trends become evident. First of note is the movement away from bundling 
together features to assurance, which can be seen in how the criteria are organized. The 
Federal Criteria extends this to the point where each desired feature and assurance 
technique can be chosen by the vendor. Secondly, the Government is no longer the lone 
driver of these efforts, which is illustrated by who performs evaluations. More and 
more, industry is also driving them or, as is the case of ISO 9000, taking the lead. Lastly, 
there appears to be a trend to recognize that one must truly affect the engineering in 
order to best affect the end product or system (e.g., CMM, TSM, ISO 9000). Overall these 
trends reflect a shift from rigid government controlled methods to more flexible 
cooperative ones. 

Assurance Characteristics 

In order to differentiate the assurance aspects of these development and evaluation 
methods, we identified their key assurance characteristics. These are based on the 
following observations: 

• 	 Assurance activities are normally divided between the production of the assurance 
evidence and the evaluation of the evidence. 

• 	 The assurance benefits achieved by different methods varies. 

• 	 The explicit target of the method is sometimes not the same as the end target. For 
example, the CMM explicitly targets the software process but it is intended to 
ultimately affect the software produced. 

• 	 The assurance benefit varies with the explicit or end target. For example, the TSM 
tightly controls the software development process, which ultimately should 
minimize the number of errors in the software produced. 

From these observations, we identified the following primary assurance characteristics 
of a development and evaluation method: 
• 	 Assurance method, in terms of both: 

Production method (specifically what is produced, how it is produced, who 
produces it, and when) and 
Evaluation method (specifically how it is evaluated, who evaluates it, and when) 

• 	 Assurance benefits, in terms of both: 

Direct benefit relative to the explicit target; and 

Indirect benefit desired for the end target. 


• 	 Assurance target, in terms of both: 

Explicit target; and 


End target (a system or product), which may be the same. 


222 



Table 4 summarizes these assurance characteristics for each method we examined: 

Table 4: Taxonomy of Assurance of Development and Evaluation Methods 

Assurance Method Assurance Benefit Assurance Target 
Production Evaluation Direct Indirect Explicit End 

CMM 
Guide Process 
Improvement 

Assess Current 
Development 
Process 

Improve 
Development 
Process 

Improve 
Software 
quality 

Engineering 
Process 

All Software 

TSM 
Levy Strict 
Controls 

Document 
degree of 
Compliance 

Control 
Development 
Process 

Minimize 
errors 

Development 
Process and 
Environment 

Software for 
Strategic 
Defense 

TCSEC/ Require Ensure Ensure N/A Security Same 
ITSEC/ Specific Compliance adequate Relevant 
Federal Assurance with respective enforcement of Software and 
Criteria/ Activities Criteria respective Hardware 
CTCPEC security policy 

RAMP 

Define 
Required 
Maintenance 
Process 
Elements 

TrainVSAs 

VSAEnsures 
Compliance 

Government 
audits process, 
reviews security 
analysis 

Ensure 
adequate 
security 
analysis and 
product 
controls 

Ensure 
adequate 
enforcement 
of security 
policy 

Maintenance 
Process 

Security 
Relevant 
Software 
and 
Hardware 

1509000 
Series 

Define 
SoftwareQA 
Standard 

Assess 
Compliance 
with Standard 

Improve 
SoftwareQA 
Process 

Improves 
quality 

Quality 
Assurance 
Process 

All Software 

CCEP 

Define 
COMSEC 
Principles and 
Analysis 
Techniques 

Ensure 
Compliance 

Ensure 
correctness, 
tamperproof
ness, and single 
faults will not 
cause policy 
violations 

N/A Entire Device, 
including 
Software, 
Hardware, 
and Container 

Same 

Profiling 

N/A Assess Verify vendor 
functionality & 
interoperability 
claims 

N/A Products and 
Systems 

Same 

Certifica
tion 

N/A Requirements 
Compliance 
Verification 

Ensure 
requirements 
aremetand 
system can 
accomplish 
mission 

N/A Operational 
System 

Same 

Accredita
tion 

N/A Risk Analysis Risks are 
mitigated, or 
understood and 
accepted 

N/A Operational 
System 

Same 

This table illustrates the differences in the type of assurance these methods provide 
Much like intensity, hue, and tint define the dimensions of color, these three 
characteristics can be thought of as defining the 'color' of the assurance provided by the 

223 




method. Unlike for color, these assurance dimensions (i.e., method, benefit, target) are 
not completely independent of one another. Specifically, the assurance benefit is 
completely dependent on the method since it is the assurance method which defines the 
activities that are performed to produce the assurance. 

The assurance target, however, is somewhat independent of the assurance method and 
benefit. Although the assurance method was developed to produce a specific type of 
assurance for a specific target, it is usually possible to apply the method to a different 
target with some interpretation. However, it is important to recognize the limits of these 
methods. First, the benefit to the target is defined by the assurance method and not the 
target. For example, applying the CMM to a trusted system may improve the 
development process but not necessarily provide sufficient assurance that the security 
policy is adequately enforced. Second, the benefit gained may not make sense for the 
specific target. For example, applying the TCSEC to a non-trusted system is non
sensical, since a non-trusted system has no security policy to enforce. 

Relationships Between Methods 

Although Table 4 differentiates the assurance aspects of these development and 
evaluation methods, there are potential relationships between them. First, for two 
methods with the same end target, it is possible to combine and/or trade-off 
approaches. For example, if it is known that a more mature process was used to design, 
develop, and test the implementation, then one could reasonably consider reducing the 
reliance on analysis of the end product to gain additional assurance. Second, for those 
methods with end targets that may be composed of several products, the assurance 
gained by the product development methods compliment the assurance gained by the 
method used to compose the products into a system. This second relationship is the 
notion behind the various trusted product evaluation criteria, which use product 
evaluation results to support the development of systems composed of these products. 

SE CMM Assurance Approach 

The objective of theSE CMM is to help security engineering organizations define and 
improve their security engineering process. This paper has illustrated the diversity of 
current development and evaluation methods that produce assurance. Any one or more 
of these methods may be required as part of a given project. Therefore, an 
organizational process must be adaptable to these diverse methods. TheSE CMM 
promotes such a process by introducing practices that help an organization define and 
improve their ability to efficiently and effectively produce assurance, regardless of the 
assurance method. SE CMM practices help an organization incorporate any specific 
assurance requirements, activities, or roles required for a specific project. By 
recognizing this incorporation of specific assurance requirements as part of the 
organizational process, the SE CMM practices adapt to and strengthen any 
development and evaluation method required by a specific project. 

This SE CMM approach improves assurance both directly and indirectly. First, 
assurance is directly improved by applying a sound engineering process to project 
assurance activities (e.g., efficiently and effectively incorporating project specific 

224 




assurance requirements into a defined organizational process and ensuring 
coordination between activities). Second, assurance is indirectly improved through 
practices within the security engineering process which focus on improving the entire 
security engineering process (e.g., process definition, measurement, verification, and 
improvement), which will in turn improve the product. 

Conclusions 

While often discussed as being different ways for achieving the same result, the 
assurance gained from various development and evaluation methodologies is actually 
quite different. Just as colors can vary in intensity, hue, and tint, the assurance provided 
by these methodologies can vary in several dimensions (i.e., method, benefit, target) as 
well. To reason about the assurance to be gained from a particular methodology, these 
characteristics must be examined in detail and in ways that distinguish among and 
between the production and evaluation method, the direct and indirect benefit, and the 
explicit and end target. 

Some form of assurance has become a standard requirement in the development of 
computer products and systems. Existing and emerging development and evaluation 
methods offer a myriad of techniques to produce and measure the assurance required. 
The community needs to understand and be able to recognize the differences in the 
assurance provided by various development and evaluation methods. In addition, 
future work needs to provide a more detailed taxonomy of assurance production and 
evaluation techniques. Such a taxonomy would help the community understand and 
focus on issues and support trade-off analyses when developing new methodologies, 
combining existing ones, or identifying the assurance activities necessary for specific 
products or programs. 

References 

[1] 	 Webster's New World Dictionary, 3rd College Edition, Prentice Hall, 1991 

[2] 	 Richard N. Bolles, 'What Color is Your Parachute?" Ten Speed Press, Berkeley, CA, 1993 

[3] 	 Karen M. Ferraiolo, Jeffrey R. Williams, Douglas J. Landolt,"A Capability Maturity Model for Security 
Engineering," Proceedings of the 1994 Canadian Computer Security Conference, May 1994 

[4] 	 Software Engineering Institute, Capability Maturity Model for Software, Version 1.1, February 1993 

Bibliography 

Canadian Trusted Computer Product Evaluation Criteria, Version 3.0e, Canadian System Security Centre, 
Communications Security Establishment, January 1993 

Department of Defense, Trusted Computer System Evaluation Criteria, DoD 5200.28-STD, December 1985 

Department of Defense, Computer Security Requirements - - Guidance for Applying the Department of Defense 
Trusted Computer System Evaluation Criteria in Specific Environments, CSC-STD-003-85, 25 June 1985 (Also 
known as the 'Yellow Book') 

Information Technology Security Evaluation Criteria, Harmonised Criteria of France -Germany- the 
Netherlands- the United Kingdom, Version 1.2, June 1991 

225 




Information Technology Security Evaluation Manual, April, 1992 

International Organization for Standardization, Quality Management and Quality Assurance Standards -Part 
3: Guidelines for the application of ISO 9001 to the development, supply and maintenance ofsoftware, ISO 9000-3, 
1991 

National Institute of Standards and Technology, Federal Criteria for Information Technology, Version 1.0 
(DRAFT), January 1993 

National Security Agency, Specification for General Functional Security Requirements for a Telecommunications 
System (SECRET), 2 June 1991 

National Security Agency, Rating Maintenance Phase Program Document (DRAFT), Version 2.0, October 
1993 

Strategic Defense Initiative Organization (Now the Ballistic Missile Defense Organization), Trusted 
Software Methodology, June 1992 

226 




BFE Applicability to LAN Environments 

17th National Computer Security Conference 

Abstract: 	 BLACKER Front Ends (BFEs) were originally designed for use 
in X.25 packet switch networks. Today BFEs are the only 
packet encryption device with an A 1 level of trust. However, 
network topologies currently rely more on Local Area Network 
(LAN) infrastructures than X.25, potentially limiting the use of 
BFEs as security devices. This paper documents testing 
performed to determine if BFEs can be easily integrated into 
LAN environments. BFEs enhanced to support higher serial 
clock rates form an important component of the testing. 

The testing involves the insertion of BFEs into an existing 
single-level operational intemet. The BFEs are used to protect 
(via encryption) test data while it traverses the operational 
intemet. BFEs are already in operational use on this network 
in their traditional X.25 connection mode, so it is also 
necessary to maintain cryptographic separation between the 
operational and test BFE traffic. 

The testing demonstrates that BFEs can be integrated into 
LAN environments to provide security services to the LAN
attached systems (as well as Wide Area Network (WAN) usage). 
The throughput capabilities are adequate for many of the 
applications commonly used. 

Authors: Tom Benkart Dave Bitzer 
Director of Engineering Member of Technical Staff 
ACC Network Systems DoD 
Voice: 410-290-8100 Voice: 301-688-6058 
FAX: 410-290-8106 
teb@sys.acc.com Bitzer@DOCKMASTER.NCSC.MIL 

Government Security Proof Of Concept Keystone Program 
sponsor: DoD/Keith Abemethy 

Contract MDA904-93-C-G090 

Keywords: 	 Access Control Center, ACC, BLACKER Front End, BFE, 
Discretionary Access Control, DAC, Key Distribution Center, 
KDC, Mandatory Access Control, MAC, Multi-Level Secure, 
MLS, Network Security, Packet Security, Security Architecture, 
Security Policy 

227 




Introduction 

BLACKER Front Ends (BFEs} were originally designed for use in X.25 
packet switch networks. Today BFEs are the only packet encryption device with 
an Al level of trust. However, network topologies currently rely more on Local 
Area Network (LAN} infrastructures thanX.25, potentially limiting the use ofBFEs 
as security devices. This paper documents testing performed to determine ifBFEs 
can be easily integrated into LAN environments. BFEs enhanced to support 
higher serial clock rates form an important component of the testing. 

The testing involves the insertion of BFEs into an existing single-level 
operational internet. The BFEs are used to protect (via encryption} test data while 
it traverses the operatioiial internet. BFEs are already in operational use on this 
network in their traditional X.25 connection mode, so it is also necessary to 
maintain cryptographic separation between the operational and test BFE traffic. 

BLACKER Overview 

The BLACKER system is a COMSEC system for packetized data that 
comprises three devices: a BFE, a Key Distribution Center (KDC}, and an Access 
Control Center (ACC}. It is approved for encryption of all levels of classified 
traffic. It also meets all the requirements of a COMPUSEC system at the Al level 
of trust. 

As its name implies, the BFE is designed to be placed at the front end 
(network side} of a single host or an IP router front-ending a collection of hosts. 
The generic term "site" is used to refer to either of these configurations. The site 
could be single level (untrusted} or Multi-Level Secure (MLS}. The BFE will 
protect that site from malicious external networks and preserve the trustedness 
of a site-to-site connection across an untrusted network. BFEs provide both 
mandatory and discretionary access control. 

The KDC is an automated generator and distributor of all the encryption 
keys for a group of BFEs. The KDC uses the packet data network itself to 
securely distribute the needed keys to each BFE. An ACC is paired with each 
KDC to provide the access tables, permissions, audit functions, and other system 
status and control features needed to support the system. 

BFEs have been operational since 1989. The usage has been primarily with 
X.25 packet switch networks (with access link rates constrained to 64 Kbps and 
below) and single-level hosts. This testing utilizes enhanced BFEs capable of 
supporting X.25 interfaces operating at clock rates of 400 Kbps, as well as 
prototype Ethernet BFEs with Ethernet interfaces on their network (black} side. 

Integrating BFEs into LAN Environments 

Integrating current BFEs into LANs requires protocol conversion between 
X.25 and the LAN protocol (Ethernet in this testing}. The protocol conversion is 
accomplished in two ways in this testing. First, internal conversion using 
prototype Ethernet BFEs. Second, COTS IP routers with both Ethernet and X.25 

228 


http:thanX.25


interfaces can be used on either side of the BFEs. With either approach, the X.25 
interfaces of the BFEs are transparent to the remainder of the LAN infrastructure. 

Since packet switches are not involved in these configurations, the clock 
rates of the X.25 serial lines are no longer constrained to the 64 Kbps range. This 
testing uses existing BFEs at interface clock rates up to 150 Kbps and enhanced 
BFEs at rates up to 400 Kbps. 

Although using IP routers as protocol converters might appear to 
significantly increase the cost of using BFEs, the availability of low-cost routers 
makes this approach very attractive since it does not require any changes to or 
reevaluation of the BFEs. Note that the cost of a BFE and routers is less than the 
cost of one comparable Motorola Network Encryption System (NES). 

Security Policy 

The security policy for this testing requires the same, or better, access 
control to sites and individual hosts within sites than is now provided on the 
operational network. The policy comprises two parts. The mandatory part states 
that all personnel will have access only to those systems for which they hold 
formal clearances. The discretionary part states that clearance alone is 
insufficient justification for access. Individual permissions shall be verified and 
mediated for. test access. The applicable laws, regulations, and security 
requirements stated below constitute the security policy. 

Mandatory component No host will be connected to another host at other 
than a common security level, that level being set by the system security 
administrator. A host is defined as any device, computer, router, bridge, etc. 
containing data at a security level or levels, or containing a process that when 
invoked may divulge information at a security level. "Connected" means any 
virtual or physical circuit, intended or unintended, or the ability to invoke remote 
processes, or pass traffic on that circuit. "Common level" means read and write 
access at that level at both hosts. Hosts may be untrusted or trusted, and the 
National Computer Security Center (NCSC) yellow book will be followed with 
respect to range of connectivity. 

Discretionary component No host will be connected to another host without 
the direct permission of the test System Administrator. Strict configuration 
control will be maintained and no unnecessary connectivity will be allowed. 
Cryptographic isolation from all operational traffic, including operational 
BLACKER traffic, will be mandated. 

Architectural Approach 

The security architecture calls for viewing the existing system-high intemet 
as an inner (backbone) network, and surrounding that network is a second, 
potentially MLS, outer intemet. BFEs and routers provide integrity and 
confidentiality between the networks, so that: 

1. 	The outer network(s) uses the inner inter-network for transport services 
and views the inner inter-network as a class A network (e.g., network 

229 




21.0.0.0). The BFEs and routers provide IP-level security services 
connecting the outer and inner networks. 

2. 	The inner inter-network views these devices as hosts or routers on their 
network and has no view of the outer network(s). If the inner and outer 
networks have a security level in common, limited connectivity may be 
permitted at that common level. 

3. 	The BFEs and routers enforce both the confidentiality and integrity 
policy requirements. The integrity policy preserves host and level of 
origin assurance and includes authentication and protection against 
spoofing and modification by systems within the inner network. Crypto 
key separation is based on both host pair and securityI compartment 
level of the data.~being transmitted. Electronic key distribution counters 
handling problems and formal system certification provides high 
assurance of continual policy enforcement, trusted distribution, and 
trusted recovery as specified by 5200.28-STD criteria at the Al level. 

This test involves three distinct implementations of the_ security 
architecture. One requires all traffic to pass through the BFEs, while the others 
support selective usage of the BFEs. All three implementations are depicted in 
the following figure. 

Separation Via BFEs Selective BFE Usage Selective BFE Usage 
Via Loop Router 

HOST 	 HOST HOST 

Separation Via BFEs 

With this implementation, all traffic leaving a site is encrypted while 
traversing a backbone packet network of a different (either higher or lower) level. 
The BFEs are integrated into the LAN environment by connecting them to routers 
that support both Ethernet and X.25 interfaces. In order to communicate 
through a BFE, two entities must be operating at the same level. Since BFEs are 
MLS devices, a single BFE can support simultaneous connections to multiple 
entities of varying sensitivity levels on its host side. 

230 



The BLACKER System Administrator has full control of access 
authorizations between sites, at an Al level of trust. Confidentiality is assured 
across the inner network and integrity is assured in that the inner network hosts 
or processes cannot initiate or alter a valid message. Because of the MLS nature 
of the BFE, it becomes easy to add or change a security level or compartment, as 
opposed to single-level cryptographic devices that must be replicated at each 
level/compartment. 

This implementation adheres stringently to the integrity and confidentiality 
requirements defined above. ·No connectivity between the inner and outer 
networks is permitted. The BFEs can further limit connectivity between sites via 
DAC mechanisms. DAC mechanisms within the routers can provide finer 
granularity on connectivity between inter-site hosts. If a single level of data is 
involved, the router need not be MLS. If multiple levels are involved, the router 
must be MLS. Individual hosts could still be single level if they are isolated to 
LAN segments of a single level (connected to the MLS router). 

Selective BFE Usage 

With this implementation, not all traffic entering or leaving a site passes 
through a BFE. Instead, all traffic passes through a trusted router and the router 
controls which traffic passes through the BFE. For example, traffic destined to 
a particular remote site will always have a known destination IP address. The 
routing tables can be configured to automatically forward all datagrams for that 
site to the BFE for encryption. The decision to forward the datagram through the 
BFE can be based on other information as well, such as an IPSO label. In this 
implementation, connectivity between sites is controlled by the network 
administrator via configuration of the router, as well as the BLACKER system. 
Note that the BFE plays a second key role here by providing the network 
administrator a trusted channel to remotely control the configuration in each 
router, preventing spoofing and unauthorized changes. 

This implementation inherently operates in a multilevel mode, since it 
supports simultaneous communication with remote systems at more than one 
level. Therefore, the router must be trusted. Since proper implementation of the 
security policy depends on proper labeling of the datagrams, any hosts 
communicating with inner systems must also be trusted (other hosts could be 
isolated to single-level LANs by the trusted router). Note that without encryption, 
confidentiality is lost for the traffic that leaves the site and integrity is not assured 
for incoming traffic. The level of trust for this implementation would be the lesser 
of the levels of trust of all the trusted systems. 

Selective BFE Usage Via Loop Router 

With this implementation, not all traffic entering or leaving a site passes 
through a BFE. Datagram flow for outgoing traffic is controlled by the end users 
by specifying the loop router or border router as their next hop (this can be done 
for all destinations or selectively for different destinations). If the loop router is 

231 




selected, it controls whether or not datagrams should be sent through the BFE 
before being forwarded to the border router. Incoming traffic is forwarded directly 
to the end system by the border router, if it is not encrypted, and is forwarded to 
the BFE (through the loop router) if it is encrypted. In this instance, connectivity, 
confidentiality, and integrity are controlled by the users via the routing tables on 
the (trusted) end systems, rather than the network administrators. Note that the 
BFE again provides the network administrator a trusted channel to remotely 
control the configuration in each router, preventing spoofing and unauthorized 
changes. 

For MLS operation, this implementation requires trust in all systems within 
the site. It is especially suited for a transition strategy while this architecture is 
being implemented on an existing (system-high) intemet, since it can be 
transparent to any existing hosts and routers. 

To take advantage of the confidentiality and integrity services provided by 
the BFEs, a prudent network administrator could use the Selective Usage or Loop 
Router implementations even when the security levels of the inner and outer 
networks are the same. 

Summary 

All of the implementations are interoperable if permitted by the security 
policy. Each one offers different capabilities to the site hosts, with corresponding 
requirements of the level of trust placed in those hosts. Assurance levels are 
specified by DoD Directive 5200.28. 

Test Description 

In order to provide "real-world" results, all the testing was performed across 
an existing operational intemet. The goals were to demonstrate the feasibility of 
BFE usage on I.ANs, measure the performance capabilities of BFEs in that role, 
and demonstrate that the security policy was correctly enforced. 

Testing began with simple configurations to gain experience with the 
security architecture. This phase included usage of the prototype Ethemet BFEs. 
At that time, no users were dependent on the BFEs for any operational 
requirements. This phase lasted just long enough to gain confidence in the 
performance, reliability, and security of the systems. 

The second phase involved operational usage of the BFEs by a limited 
number of users. This usage focused on typical day-to-day requirements such as 
sending and receiving email, remote host access (e.g., telnet), and file transfers. 
Since the existing network infrastructure could not be disturbed, the Loop 
Configuration described above was most commonly used. This implementation 
permitted individual users on a LAN to use the BFE simply by changing their 
default router to be the Loop Router. No other users on the IAN were affected. 
The Loop Routers were usually configured to insert and strip the IP Security 
Option (IPSO) labels required for MLS operation. Since high-trust routers and 
hosts were not available for the testing, the range of levels was severely 

232 




constrained. However, the concepts for greater separation with high-trust 
systems were demonstrated. 

The final test phase added additional participants. This was significant 
since the added users did not have detailed knowledge of BFEs or network 
routing, requiring the security services to be totally transparent. In all, over 30 
users at 24 sites were active participants. They were encouraged to use their 
systems in a normal manner and report any perceptions of added delay 
introduced by the BFEs. This phase lasted several months. 

Performance Measurements 

Quantitative measures of the overall system performance were obtained via 
three different mechanisms: a throughput measurement tool, ping, and FTP. 

The throughput measurement tool was used in two different configurations. 
First, two BFEs connected via a single Ethemet segment (with no other traffic 
present on the LAN) were used in determining the maximum throughput of the 
BFEs. The throughput measured in this configuration was 266 Kbps for 
bidirectional traffic and 297 Kbps for unidirectional traffic. Second, throughput 
was measured across the intemet both with and without BFEs in the 
communications path. Throughputs were measured at 48 packets per second 
with BFEs and 91 packets per second without BFEs. 

Ping proved invaluable as a network debugging tool as a simple and reliable 
indicator of network connectivity. The round trip times (RIT) reported by ping 
were very consistent and were measured both with and without BFEs in the 
communications path. Across the intemet, RITs were consistently 25 to 40 ms 
without BFEs and 160 to 270 ms with BFEs. The times reported were sensitive 
enough to indicate whether the BFEs in the path were running at the higher clock 
rates. Since BFEs are known to require approximately 25 ms to process and 
forward a datagram, the measured values are consistent with the expected 
results. 

FTP was the most extensively used performance measurement tool, since 
it reflects usage that is representative of most operational users. FTPs were 
performed between many different system pairs with a wide range of variables. 
These variables include: 

Maximum Transmission Unit (MTU) - Each host is responsible for choosing 
the datagram size for messages it creates. This value is known as the MTU. 
Since the traffic flow involves transmission between systems on different 
networks, the default MTU is fixed at 576 bytes regardles~. of the actual 
optimal size. Systems which implement Path MTU Discovery are able to 
dynamically discover the actual optimum message size. 
Clock Speed- The serial clock speed on the X.25 interfaces between the 
BFEs and routers is a limiting factor. The clock speed may also influence 
BFE behavior such as flow control and retransmissions between it and the 
router. 
Receive Window - The recipient of the file transfer paces the sender by 
permitting only a specified number of bytes to be in transit at any time. 

233 




The ideal setting of this parameter results in the sender exhausting its 
window just as the acknowledgements are received for the first bytes of 
data in the window. Since BFE processing increases the round trip time 
(RTT), the acknowledgements take longer to be received and the ideal 
window size is larger than without BFEs. 
Number of Large Buffers - The PC/TCP software used on PCs includes a 
variable for the number of large buffers allocated for datagram 
transmission. When the receive window was increased, it was necessary 
to increase this parameter to take full advantage of the larger window. 
It quickly became apparent that the operational traffic on the intemet did 

significantly impact the throughput measurements achievable. The intemet was 
not a transparent pipe of "infinite" capacity, but a real system (frequently heavily 
loaded) that did impact the traffic flow of the test systems. The best throughput 
numbers were invariably obtained during off hours when the intemet was least 
heavily used. 

The results indicate that the single most important variables are the receive 
window size and number of large buffers (applicable to PC/TCP only). The BFEs 
add processing delay to the overall communications path and maximum 
throughput can be obtained only when the sending system never stops 
transmitting. On UNIX systems the default values for these variables are 
normally high enough to work quite well with the BFEs in the path. However, the 
default values for the PC/TCP software resulted in poor throughput. 

The highest throughput measurement obtained was 170 Kbps. This was 
not made in a sterile laboratory environment, but over the operational network. 
The "typical" rate was approximately 80 Kbps. This value is comparable to the 
results measured on this network without the BFEs in the path. Perhaps the 
most significant observation to be made is that the FfPs did complete regardless 
of the throughput, proving the ability of the TCP implementations to dynamically 
adjust to the transfer rate available from the network at any time. 

Performance Model 

During the test, personnel developed a performance modeling tool for the 
system. The model has as parameters the bit rate (clock speed), packet data 
length (MTU), fixed processing delay (per packet), FTP delay, and TCP receive 
window size. It assumes a 40-byte datagram header and a 50-packets-per-second 
processing limit (by the BFEs). Throughput predictions are generated for receive 
window siz~s of 2048, 4096, and 8192 bytes. The model assumes that sufficient 
transmit buffers are available in the transmitting system never to throttle 
datagram transmission, no message loss, and no retransmissions. Sample 
graphical output from the model is shown below for interface clock rates of 150 
and 300 Kbps. 

The model points out several interesting factors. Before analyzing the 
output from the model, one assumption made by the tester was that throughput 
would improve by using larger packet sizes (in FfP transfers). As the graphs 
show, this is not necessarily the case. As packet sizes increase, the length of time 

234 




required for acknowledgements to reach the sending system increased. This 
could result in the transmit window closing, resulting in an overall drop in 
throughput. This factor can be alleviated by using larger TCP windows. 

The testers also assumed that simply increasing the clock speed of the BFE 
interfaces would result in significantly better throughputs. However, by 
comparing the two graphs it is obvious that the clock speeds become significant 
only when large TCP windows are used. 

300 kbits/sec 
14-Jun-94 

250 

200 

Qz .. 150 . r-Q"U 
0 ~ 
lil "'{/) g
i/l"..c:
E-o E-o 100 
en 

50 

0 
0 100 200 300 400 500 600 700 800 900 

PACKET DATA LENGTH 

....-- f.L 

/ 
v ~ 

" 
A 

/ ~ 
A 

~+ 

L 
~;:_ 

/ 

v 

-- 2048 -+- 4096 -r- 8192 

150 Kbits/sec 
14-Jun-94 

250 

200 

50 

0 

/ 
v ~---";.. 

~ 
v !-""' 

).. 

- t--. i+ 

~ > 

0 100 200 300 400 500 600 700 800 900 
PACKET DATA LENGTH (BYTES) 

_2048 _4096 _8192 

, 2048 meas. + 4096 meas. ;.. 8192 meas. 

235 




Conclusions 

1. 	 BFEs can be successfully integrated into LAN/router environments. 
2. All three implementations of the security architecture are functionally sound. 
3. 	The test participants stated that the throughput available from the three 

implementations is adequate for many types of their operational traffic, 
including email, remote login (telnet}, and file transfers (FrP). 

4. 	Tuning of parameters in the end systems is important for obtaining optimum 
throughput. 

5. 	Sites can be quickly converted to the implementations described in this paper 
because the BFE infrastructure (i.e., access control and key management 
policies and procedures, ACC and KDC) already exists. 

6. 	The prototype Ethemet BFEs operate as intended. 
7. 	Although there are few trusted hosts on the Evaluated Products List (EPL) 

today, the BFE is ready to provide full network security services to MLS hosts 
on LANs in accordance with the DoD Directive 5200.28, as they become 
available. 

8. 	The lack of widespread availability of high-trust hosts and (especially) routers 
limits the range of levels which can be processed by this architecture. 

Bibliography 

BLACKER Front End LAN Security Keystone, ACC Network Systems, December 
1993. 

CX/SX Trusted Facility Manual, Harris Computer Systems, May 1992. 

DoD Directive 5200.28, Security Requirementsfor Automatic Data Processing (ADP) 
Systems, revised April 1978. 

Filter Router Test Report Executive Summary, ACC Network Systems, April1994. 

Interface Control Document Including ICD Supplement for BLACKER Front End, 
BLACKER Program Phases 2 and 3, July 1993. 

National Computer Security Center, Department of Defense Trusted Computer 
System Evaluation Criteria, DOD 5200.28-STD, December 1985. 

National Computer Security Center, Final Design Assessment Report of Ford 
Aerospace Corporation Multinet Gateway System Advanced Development Model 
(Version 4.0), C22-REPT-01-90, June 1989. 

National Computer Security Center, Trusted Network Interpretation, NCSC-TG
005, July 1987. 

PC/TCP Network Softwarefor DOS, FfP Software, February 1993. 

236 




1 

The Architecture of Triad: 

A Distributed, Real-Time, Trusted System 


Authors: 

E. John Sebes 
Nancy Kelem 

Trusted Information 
444 Castro Street, St
Mountain View, CA 
415/962-8885 . 

Systems, Inc. 
e 800 
94041 

Terry C. Vickers Benzel 
Mary Bernstein Eve Cohen 
Jeff Jones Jon King 
Trusted Information Systems, Inc. 
11340 W. Olympic Blvd., Ste 265 
Los Angeles, CA 90064 
310/477-5828 

Michael Barnett 
David M. Gallon 
Roman Zacjew 
Locus Computing Corporation 
5910 Pacific Center Blvd. 
San Diego, CA 92121 
619/546-9500 

Abstract 

The Triad project is a prototype trusted operating system development. The name Triad represents the 
trio of requirements which this system must satisfy: multi-level security, real-time processing, and distributed 
processing. The goal of this project is to merge and advance the research in these three areas. This paper 
describes the background, design approach and trade-offs, features, and architecture of the Triad system. 

Keywords: Trust, real-time, distributed systems, Mach, B3, thread migration, distributed IPC, scheduling 
coherence.1 

Overview 

The Triad project is a prototype trusted operating system development, named for the trio of requirements 
which this system must satisfy: multi-level security (MLS), real-time, and distributed processing. The goal 
of this project is to merge and advance the research in these three areas, with a focus on providing pro
cessing capabilities for real-time distributed military C31 applications which process information of different 
classifications. 

The motivation for Triad development is the observation that it is easier to add real-time and distributed 
proce.ssing functionality to a MLS operating system (OS) than it is to add security to a real-time and/or 
distributed system. Therefore, Triad will be developed by augmenting an existing trusted OS base with 
features that support real-time distributed processing. The OS base, TMach2 [1], has been designed to be 
extensible, portable, and supportive of distributed processing. This base system is being augmented with 
real-time and distributed processing features, including: adaptable real-time scheduling within a replaceable 
scheduler framework (described in Section 5.2); scheduling coherence, shuttles, and passive servers (described 
in Section 5.3); distributed inter-process communication (described in Section 5.4); and replication of servers 
and objects (described in Section 5.5). These features will provide the basic abstractions and functionality 
identified in the previous study phase of the project [2]. 

The Triad System design emphasizes both reuse and assurance, by extending TMach's B3-targeted layered 
architecture to incorporate existing mechanisms from current research in real-time scheduling, distributed 
inter-process communication (IPC), and replication. The goal is to maintain the B3-level assurance of the 
base trusted OS, while adding the new functionality identified in a previous study phase of work based on 
the Alpha distributed real-time OS [3]. Trade-off analysis is also a key element of the design approach. 
When adding this new functionality, we must carefully weigh the effects of requirements from each of the 
three areas on requirements from the other two, in order to achieve an appropriate balance of functionality 
and resolve any conflicts. 

The next section describes the background of the project, and its basic issues. Then, Section 3 describes 
our approach to addressing these issues, and Section 4 describes the trade-offs inherent in the issues. Finally, 
Section 5 describes the architecture of the Triad System, and the features provided within that architecture. 

1 This project is supported by Rome Labs, under U.S. Government contract number F30602-93-C-0235. 
2TMach is a Registered Trademark of Trusted Information Systems, Inc. (TIS) 

237 




2 Background 

The real-time components of Triad represent the evolution of real-time systems that span the domain of 
complex, heterogeneous, industrial and military systems. In early real-time systems the design focus was 
sheer speed of execution, using minimal executives and careful application tuning, in order to synchronize 
with external world events. As processor power increased and costs dropped, more generalized approaches 
for designing and re-using real-time system software began to emerge. Modern real-time system designs take 
advantage of the techniques of computational predictability analysis and adaptable scheduling aigorithms. 
The basic intent is to enable the completion of a function at the right time taking into account computation 
time, resource access time, and other factors, rather than simply striving to perform the function with as 
few instructions as possible. 

This change of focus from fast to predictable allows a richer functional mix within a single real-time 
system. For example, it enables the incorporation of distribution technology which, in turn, enables the use 
of redundancy and replication of processing resources to increase a real-time system's survivability. 

The need for multi-level security is becoming manifest in parallel with the increasing technical scope 
of real-time systems. The drive to integrate multiple applications brings with it the need to separate the 
applications algorithms and data from one another since they may embody drastically differing sensitivity 
levels and integrity levels. The traditional "really fast" real-time design pitted the use of trust mechanisms 
against mission success. However, the modern generalized real-time system design avoids that pitfall and 
largely mitigates many such design goal conflicts. In addition, the use of "system build" techniques [4] 
(described in Section 4.1.1) is used to further eliminate any remaining potential conflicts that can arise at 
run-time. 

Distributed system requirements are an additional factor of the increasing scope of both real-time systems 
and MLS systems. A distributed system is a collection of computers connected by a high-speed interconnect 
or network. This collection, or cluster, is controlled by software that makes the underlying interconnect 
largely invisible. As a result, ordinary users and application software view the cluster as a single computer 
system, and can remain unaware of its distributed nature. Such distribution functionality is essential not 
only for geographically distributed command and control software, but also for real-time systems which 
require resource redundancy for fault tolerance. 

The Triad Project is a research effort sponsored by Rome Labs, awarded August 1993, to produce a robust 
proof-of-concept prototype demonstration in December 1995. We will complete requirements definition stage 
in mid-1994 and the software detailed design in the second half of the year. In addition to the technical goals 
described here, the Triad project will employ an integrated 2167a development process which incorporates 
TCSEC security documentation and review with that of generic software development. The project stems 
from earlier Rome Lab sponsored research in the area of multi-level secure distributed operating systems 
(MLS DOS study) [2]. 

3 Approach 

The Triad System will incorporate modern operating system features from the three basic areas, to form a 
TMach-based operating system supporting the basic functionality identified by the MLS DOS study effort, 
specifically its programming abstraction, scheduling algorithm, and formal security policy approach. The 
use of the programming abstraction (threads making distributed object-oriented remote procedure calls) is 
described in Section 5, and is facilitated by the addition to TMach of shuttles, described in Section 5.3. 
The scheduling algorithm usage is in the context of the replaceable scheduler interface work, described in 
Section 5.2. Finally, the Triad policy has already been formulated by merging elements of the MLS DOS 
policy and the TMach policy. 

Various features of TMach are central to our approach. Most importantly, TMach provides the MLS 
functionality needed for Triad. Our decision to use TMach is based in part on the judgement that it is easier 
to add real-time and distributed processing functionality to a MLS system than it is to add security to a 
real-time and/or distributed system. Due to TMach's B3 layered architecture and modular implementation, 
it turns out that real-time and distribution extensions are required for a small number of components, and 
that the real-time extensions are largely orthogonal to the distribution extensions. 

Likewise, since TMach is designed to be extensible, it lends itself well to the kind of extensions needed 
for the Triad system and Triad applications. Being composed of several distinct servers, TMach can be 

238 




readily augmented by new servers, such as application-level servers implementing new application types of 
objects. The object-oriented design of TMach server also means that they can be readily augmented with 
new subsystems to implement distribution. Further extensibility is derived from the Mach microkernel [5] 
which was designed to be extended into a distributed environment in the manner required for Triad. Thus, 
not only does extensibility at both the TMach server level and Mach microkernellevel support the addition 
of distribution functionality, but this extensibility was explicitly designed partly for distribution. 

Finally, because TMach is built on top of the Mach microkernel, it has portability benefits that are 
critical for distribution. The microkernel is structured so that all hardware-specific (non-portable) software 
is isolated, so as to permit straightforward modification for porting to multiple platforms. The TMach 
software itself has no hardware-specific portions. As a result, it can run on any h·ardware base to which 
a suitable version of the microkernel has been (or will be) ported. This portability is essential to future 
use of Triad, in that some distributed applications may require operation in an environment composed of 
heterogeneous hardware bases. 

4 Trade-off Analysis 

In addition to the MLS DOS study foundation and the TMach basis, trade-off analysis is a key part of the 
Triad design approach. Each of the three areas of requirements has ramifications for the other two, and we 
consider these interactions in terms of three pairs of one area against another, each of which is described in 
the following sections. 

4.1 Real-time Processing versus Security Requirements 

In designing the Triad System to provide both real-time processing and satisfy security requirements, several 
trade-offs must be assessed. There are several areas where security versus real time appear to be in direct 
conflict, and then there are other areas where the trade-offs required are less dramatic. The follo~ing issues 
in interactions between security and real time are addressed in the Triad design: 

Scheduling in any sophisticated scheme provides the potential for covert channels in a trusted system. In 
some sense, covert channels due to scheduling algorithms are unavoidable. However, there is in fact a 
very much reduced threat of covert channel exploitation because of certain environmental characteristics 
of many real-time systems: systems which provide real-time processing are intended for use in a closed 
processing environment, rather than a general development-oriented OS environment. Such closed 
environments typically do not support a general programming environment and have extremely limited 
or no human interaction during real-time processing. These aspects of trusted real-time systems greatly 
reduce the threat of covert channel exploitation. The Triad approach is to address these issues through 
a design that satisfies real-time scheduling goals while reducing the opportunity for modulation of 
covert channels. 

Responsiveness versus potential covert channel bandwidth is an issue because real-time systems are de
signed to be highly responsive to application needs, i.e., provide rapid predictable service times. This 
is particularly true in the case of the Benefits Accrual (BA) scheduling model which forms the basis of 
scheduling in the Triad System. On the other hand, this trade-off is potentially challenging because in 
the secure systems community, the traditional approach to reducing or eliminating covert channels is to 
add constraints to the scheduler (including introducing non-determinism, partitioning resource usage 
by security class, and/or using static scheduling). However, the inverse properties (predictability, flex
ible resource usage, and dynamic scheduling) are all critical to meeting real-time requirements, so the 
Triad System must be designed to provide a high degree of responsiveness. Therefore, the Triad design 
identifies potential covert channels, and uses this information to attempt to determine the difficulty of 
closing or reducing the bandwidth of certain channels. 

Flexibility The Triad System design includes a replaceable scheduler interface. The Triad prototype in
cludes a scheduler module using this interface, with appropriate security assurances made for that 
particular scheduling module, because all scheduling must take place in the Trusted Computing Base 
(TCB). As a result, any application-supplied scheduler extensions would need to be accompanied by as
surance evidence. Specific recommendations will be provided as to what form such assurance evidence 
should take. 

239 




Separation of Mediation from Enforcement TIS research has studied the trade-offs involved in the 
performance overhead for certain security related operations versus efficient and predictable real-time 
processing. We have shown that traditional access mediation can be divided into two phases-mediation 
and enforcement-and this concept plays a central role in the design of TMach security services. 
Furthermore, we have found that for many real-time systems a considerable amount of access mediation 
can be done a priori. As a result, mediation can be done as part of the system build process, and 
enforcement can be done during real-time processing. 

Assurance The B3 system architecture calls for a layered, modular TCB of minimal size which uses the 
techniques of data abstraction and data hiding. The key to satisfaction of this requirement in the 
Triad system is to minimize changes to the TMach TCB. The modifications Triad will require in the 
kernel and servers will not affect the existing TMach layering scheme. The addition of the distributed 
IPC layer will not violate good layering principles, since it will offer services to the TCB layer but not 
require services of the TCB layer; in turn, the distribution layer will use services offered by the kernel, 
but not offer any services relied upon by the kernel. 

4.1.1 System Build 

Central to each of these areas is the use of system-build techniques. Build-time options can be used to 
control the way that covert channels are addressed, to allow build-specific approaches to providing the kind 
of scheduling and responsiveness needed for that build, depending on the threats that covert channels pose 
in the system's actual deployed operational environment. Build-time options can also be used to specify the 
use of an additional or alternative scheduling module. Also of critical real-time importance is build-time 
access mediation (described in [4]). The system build process will assist in changing the user-oriented aspects 
of TMach, e.g. user login and subject creation, to an embedded system orientation which allows security 
subjects, objects, and their access sets to be pre-defined at system build time. 

In addition, the system build process can be used to implement decisions about distribution and repli
cation of some trusted servers. For example, some servers, such as those for Audit and Identification and 
Authentication (I&A) have databases that need not be replicated in cases where I&A data is static, or where 
changes are rare and can be handled administratively. In these cases, system build techniques can ensure 
consistency among copies of the database, without the use of additional run-time functionality. 

4.2 Security Requirements versus Distribution 

In discussing trade-offs between security requirements and distributed processing requirements, covert chan
nels are, once again, a key issue. Distribution can potentially both exacerbate and alleviate covert channels. 

In the Triad System, the most obvious way in which distribution mechanisms introduce covert channels 
is through the synchronization mechanisms used for coordination of distributed servers on different nodes. 
These synchronization mechanisms use limited resources that can be exhausted. This can produce a storage
like covert channel in a trusted multi-level server. 

Another way in which distribution can exacerbate covert channels is in the area of timing channels. 
First, accessing resources on a remote node can introduce noticeable delays and therefore introduce possible 
timing channels. Secondly, in a non-distributed (single node) trusted system, the actual exploitation of 
timing channels can be difficult because of the noise introduced by many subjects sharing the resources. 
However, in a distributed system, it is possible that a set of cooperating Trojan Horses on multiple nodes 
could focus on a covert channel on a single node and exploit that channel more effectively than would be 
possible on that node alone. 

However, just as there is more processing power in a distributed system which can introduce new covert 
channels, there are also more mitigating factors. First, there are more total resources of the combined 
system. These resources, if used properly, can make storage or timing channels that result from resource 
exhaustion harder to exploit because it will be harder to exhaust the resource. In order for this to be true, 
resources must be managed globally rather than locally or partitioned. Likewise, there is also more noise, 
from the latency of communications between nodes, which makes more difficult the exploitation of timing 
channels. 

The common feature among these covert channel considerations is that the factors (total resources, 
resource allocation, communications mechanisms, communication latency) are specific to a particular opera

240 




tiona! environment. Therefore, the appropriate measures can only be completely determined at system-build 
time. 

4.3 Real Time Requirements versus Distribution 

When considering the trade-offs between real-time requirements and distributed system functionality, diffi
culty arises because some distributed system operations can take an arbitrary amount of time while real-time 
operations can have deadlines which must be met. 

As a result, the design of the Triad System includes a method of ensuring real-time requirements while 
preserving distributed system functionality. Specifically, the Triad System provides mechanisms to trade 
off satisfaction of deadlines versus replication. The Triad System uses a replication protocol based on the 
Cronus [6] replication protocol. The important characteristic of this protocol which is particularly useful for 
the Triad system is the ability to vary the amount of computation needed for replication consistency. This 
approach will allow for considerable flexibility in making trade-offs. 

In general, the approach to implementing distribution functionality is to implement it outside the execu
tion paths of potential real-time processing whenever possible (e.g. background processing for consistency 
updates), and when not possible, to provide features (such as that described above) that allow tuning of the 
amount of distribution processing that can delay time-bound computation. 

5 Triad System Architecture and Features 

Triad provides object-oriented services in client-server environment, implemented in a layered architecture. 
This section describes the architecture and the various real-time and distribution features that are mentioned 
in the description of the various architectural layers. 

5.1 Architecture 

The Triad System has a layered architecture consisting of 5 layers: 

Kernel Layer: a Mach microkernel, executing in hardware-protected space, and providing the basic ab
stractions to the rest of the TCB and to untrusted applications. These abstractions include the thread 
(the schedulable unit of execution), the task (a group of threads sharing an address space and an iden
tity), and message-based IPC (inter-process communication) using protected capabilities called ports. 
This IPC service is commonly used for local RPC (remote procedure call) between threads of different 
tasks, and includes the shuttle mechanism. 

Distribution Layer: a TCB layer which transparently extends the microkernel's IPC service to operate 
between hosts, providing the same IPC between threads whether or not their tasks are on the same 
host. This service is optimized for the cases when it is being used for remote RPC, and includes 
functionality for scheduling coherence. 

System Security Layer: a TCB layer consisting of trusted system servers which provide access to all 
system resources via access-controlled objects, in accordance with the Triad security policy. Each 
object has a type, and each type has a specific set of operations (or methods) implemented by a 
manager for that type. Each manager is a trusted server. As a result, system services are implemented 
in a client-server, object-oriented manner. 

Application TCB Layer: an application TCB layer consisting of trusted servers providing non-system 
services by managing application-specific types of objects needed by specific applications. 

Untrusted Code Layer: an application and OS layer containing untrusted code. Application code may 
include untrusted clients and type managers, as well as OS servers that implement the services of a 
specific OS (such as Unix or DOS) on top of TMach's services. 

Of these, the first three layers are part of the Triad System; the fourth and fifth layers are application 
specific. However, a Unix server in the Untrusted Code Layer will be available for application software which 
uses the Unix application programming interface (API). The affected components ofthe base TMach system 
are: the kernel, by the separation of its scheduling aspects into a replaceable scheduling module, and by the 
addition of the migrating shuttle mechanism for RPC; and two of the servers, where the changes will in no 

241 




way affect the TMach's modularity or layering. In addition, a new seryer will be added to handle distributed 
IPC (diPC). 

This architecture enables Triad's basic concept of operation, the invocation. To use some system or 
application service, a client invokes a method on an object, resulting in an RPC to a server. The shuttle 
mechanism ensures the scheduling coherence of the RPC. The distributed IPC service handles cases where 
the server is located on a different host (or where the server invokes an operation of another server that is 
a different host) by transparently forwarding the invocation to the other host and handling the scheduling 
coherence on the other host. The following sections describe this overall functionality in more detail. 

5.2 Scheduling 

The real-time features of Triad are largely implemented as Kernel Layer functionality of scheduling and 
thread management. Real-time scheduling is provided by an implementation of Benefits Accrual real-time 
scheduling algorithm [7]. However, rather than replacing the Mach microkernel's scheduler with a BA 
scheduler, the Triad approach is to utilize current Mach research in replaceable schedulers [8]. 

In• this approach, the internal structure of the Mach microkernel is altered so that the scheduler imple
mentation is separated from the rest of the microkernel code in a highly modular manner. The resulting 
interface between the scheduler and the rest of the microkernel is referred to as the replaceable scheduler 
interface. This interface is general enough to accommodate the requirements of various scheduling algo
rithms, including BA. Within the scheduling subsystem that implements this interface there is a module 
that implements a particular scheduling algorithm. This module can be replaced to implement the desired 
algorithm for a particular system. 

The Triad prototype will use a 1\.fach microkernel with a,replaceable scheduler interface and replace 
the standard scheduling algorithm module with a new module that implements the BA algorithm. Thus, 
even though the scheduling algorithm is different, the rest of the microkernel need not be changed. This is a 
particularly important result for the Triad System, since different real-time systems have different scheduling 
algorithm requirements. 

Thread attributes are the focus of the thread management aspect of Kernel Layer real-time functionality. 
Each thread has a number of attributes, some of which pertain to scheduling (e.g. priority in the standard 
Mach scheduler). As part of the replaceable scheduler interface work, thread scheduling attributes are 
extended to support a range of scheduling algorithms. In the Triad prototype, which uses the BA algorithm, 
the thread scheduling attributes which will be used are the those pertinent to BA, including statistical 
measures of thread activity, as well as hard and soft deadlines. 

5.3 Scheduling Coherence 

Other than the BA scheduler, the principal Kernel Level real-time functionality in Triad is a mechanism 
called scheduling coherence. Scheduling coherence is a means to ensure that all the work of a particular 
real-time computation is scheduled in the same way. This is important when the computation may include 
an RPC. Consider the common client-server model, where a client makes an RPC, and the RPC is carried 
out by the server. When a client thread is performing some time-bound computation, the thread's scheduling 
attributes have been set to particular values so that the computation is likely to complete in time. While 
a server thread executes the client's RPC, the client thread is sleeping. If the server thread has different 
scheduling attributes than the client, then the server thread will be scheduled differently than the client 
thread, perhaps getting a smaller share of processing resources, with the result that the computation may 
not complete in time. 

5.3.1 Shuttles for real-time RPC 

We will make use of a recently developed mechanism called shuttle migration [9][10] to provide scheduling 
coherence for RPC. In this paradigm, the thread abstraction is the schedulable entity, comprising the 
stack and processor state. A shuttle comprises the scheduling policy and parameters and resource attributes. 
During RPC the shuttle migrates to the new task, bringing with it to the new task exactly that information 
required for scheduling coherence. In the server task a waiting empty thread attaches to the migrating shuttle 
and, now an active thread, it executes the appropriate server code to handle the message. 

242 




5.3.2 Process Isolation 

We are currently analyzing the use of shuttle migration and its effect on TMach's trusted servers. One 
immediate area of concern is the effect on B3 process isolation and subject definition. 

The task is the "process" -like abstraction of the Mach kernel, and the unit of subject definition in TMach, 
because it is a protected domain of execution-address space, and set of memory object and ports-that is 
permanently bound to a set security attribute. \Ve need to assure that, though shuttles migrate between 
tasks, the usual distinction between tasks, and hence between subjects and between isolated processes, is 
preserved. 

When a thread is executing in a task, it has access to everything in the task's address space, and it has 
some execution context within that address space. When its shuttle migrates to a new task on RPC, that 
execution state is preserved and left behind, remaining inactive until the shuttle returns to the task. The 
new task in the RPC chain must have an empty thread for the incoming shuttle to be bound to. When a 
shuttle enters an empty thread, it carries no state from the previous task other than the thread's scheduling 
attributes. While the shuttle is executing in the new task, the new active thread has no special access to 
anything in earlier tasks in the RPC chain. The same is true when a shuttle exits a thread to return to the 
previous task. In addition, once a shuttle has exited a thread, the exited thread retains no state information. 

The security-critical user identity is maintained as well-the user identity associated with a thread is the 
user identity of the task in which the thread is running. The information flow between the calling task and 
the called task of a migrating shuttle RPC is restricted to the thread's attributes, the calling task's RPC 
message, and called task's reply message; and these two messages are exactly the same information that is 
passed in a traditional RPC. 

As a result of all these properties of shuttle migration, all the security-related attributes of the tradi
tional thread model remain with the task-specific thread. Therefore, the critical "process isolation" security 
requirement is still met, and the definition of the subject is unchanged. 

5.4 Distributed IPC 

The microkernel provides an IPC service which is the basis of all communication between tasks on the 
same host. The distributed IPC service is exactly the same service as the microkernel's IPC, but provides 
for communication between tasks that are on different hosts in a distributed system. The Triad System 
component that implements this service will be based on the x-kernel implementation of Mach IPC between 
networked hosts (11]. 

5.4.1 Distributed IPC Server 

The distributed IPC mechanism is implemented by the distributed IPC server. With local IPC, one task 
sends a message to another using a port held by the other task. The port is a protected capability representing 
a message queue which is held by one receiving task, and to which messages can be appended by potentially 
multiple sending tasks. When one task sends a message to another task which is on a different host, the diPC 
server is involved as an intermediary. The sending task does the message-send over a port, but the receiver 
of that port is not really some task on another host; this is not possible because the kernel only knows 
about tasks on the host it manages. Instead, the receiver of the port is the diPC server, which receives the 
message from the sender. This port represents a port on another host, where the message's real destination 
task runs. The transmission of the message between these two client tasks is the result of the cooperation 
between the diPC server on the sender's host and the diPC server on the receiver's host. In other words, 
the diPC server acts as a stand-in for remote tasks that local tasks can communicate with; and local ports 
received by the diPC server are stand-ins for ports that those remote tasks are receivers for. 

When the diPC server receives a message over a local port, it checks to see what remote host and remote 
port correspond to the local port. Then, the message data (and other information including which port it 
is bound for) is sent over the network to the diPC server on the receiver's host. This diPC server sends the 
message via local IPC on the port received by the actual receiver of the message. 

The diPC server shares critical security-relevant functionality with the Mach microkernel: both are 
responsible for propagating identification data which is essential for the TMach TCB to enforce access 
controls. Each TMach task has an attribute called a security identifier (securityiD) which represents the 
user, groups, etc. of the human associated with the task. One important feature of the Mach microkernel's 

243 




IPC service is that each message is tagged with the securityiD of the sending task. This sender security ID is 
critical to the enforcement of the security policy by the TMach TCB. The diPC server transmits the sender 
securityiD with the message data over the network to the remote diPC server, which sends the original 
securityiD in the message to the receiver of the message. Since the diPC is separate from the kernel, no 
kernel modifications will be required, nor will there be an affect on kernel assurance. 

5.4.2 Distributed Scheduling Coherence 

Another function of the distributed IPC service is implementing scheduling coherence by providing dis
tributed emulation of local thread migration. This emulation is needed because Mach microkernel threads 
are inherently local abstractions (the Mach microkernel is unaware of other hosts). Hence, a Mach micro
kernel thread cannot truly migrate to another host. However, the diPC server can implement a close analog 
of thread migration. 

When the diPC server is handling an IPC message that is the outgoing part of a migrating thread 
RPC, some specific actions are needed to maintain scheduling coherence. With each message's data that 
is transmitted to another host, the diPC server must also send some more information about the thread 
that sent the message: its scheduling attributes. This information is used by the receiving diPC server to 
perform its distributed emulation of thread migration. 

Once a thread migrates into the diPC server and the outgoing message data is transmitted, the thread 
goes to sleep. On the receiving machine, the diPC server uses a local thread to act for the sending thread on 
the other machine. This thread migrates from the diPC server to the message's destination task. But before 
doing so, the diPC server ensures that this thread has the same scheduling attributes as those that arrived 
with the message, i.e. the scheduling attributes of the sending thread. As a result, the receiving host's RPC 
processing is scheduled coherently with the computation in the sending thread on the other host. 

5.5 Servers and Replication 

Although the basic real-time and distribution functionality is implemented in the kernel and distribution 
layers of Triad, upper layers also have a role to play. 

With respect to real-time, there are four higher-level aspects of real-time functionality. First, for those 
system servers that can be used by application servers or clients with real-time requirements, the system 
server implementation must ensure that critical functions are carefully coded so as to predictably execute 
in bounded time for a time-bound thread. Second, these system servers must use activations, so that time
bound client threads can migrate into the server task to execute server code (see Section 5.3.1). Third, 
application servers must also use activations when appropriate for the same reasons. Fourth, in order to 
ensure that each real-time RPC is scheduled coherently, the migrating-thread RPC interface must be used 
by any application servers and clients which make RPCs and which have real-time requirements. 

Thus, higher-level real-time functionality is largely a matter of correctly using lower-level functionality, 
and this requirement is pervasive for any real-time-relevant code. For distribution, however, the situation 
is somewhat different. The main lower-level distribution functionality is distributed IPC, and no particular 
efforts are required of higher-level code to use this transparently implemented service. However, there is 
more to distributed service than IPC, and it is the TMach system servers that must implement the rest of 
the distribution functionality. 

Of the TMach servers, though, there are only two servers that must provide distributed functionality. 
These are the Root Name Server (RNS) and the File Server (FS). The RNS is TMach's central security 
server which implements the reference validation mechanism (RVM) by providing access to all objects and 
implementing the access controls on them. In addition, the RNS implements some system object types 
including the directory. The File Server implements another primary system object type, the file. The 
remainder of the system servers either provide services whose distribution functionality can be handled by 
system build techniques (see Section 4.1.1), or provide services that are inherently local (e.g. device access) 
and which have no distributed aspect. 

In Triad both the RNS and FS are replicated servers. That is, multiple hosts run an instance of the 
server, and each server instance cooperates with instances on other hosts, to provide a distributed service. 
In addition, application-level servers may or may not be replicated, depending on application requirements. 
If server replication is needed, then the application server implementation can be based on the same server 

244 




framework as the system servers, and use the same replication library that will be used to implement Triad 
extensions to the TMach RNS and FS. As a result of such server replication, the service would be provided 
by multiple instances of the server. This increases the reliability of the service, and its availability in the 
face of host failures. Availability and reliability may also be preserved in additional failure modes (such as 
network partition), depending on the network topology, the amount of server replication, and the degree of 
cooperation between peer server instances. 

5.5.1 Object Replication 

The primary distribution functionality of the Triad RNS and FS is object replication. In addition, the RNS 
uses object replication to provide a global name space. The Triad RNS on each host implements the local 
TMach name space of that host, and extends this name space into the distributed system, via its cooperation 
with other RNS instances on other hosts. As a result, the name space is uniform throughout the distributed 
system, so that every object can be accessed by the same name regardless of which host the accessor resides 
on. 

Object replication is technique used by replicated servers that implement a type, i.e. a set of similar 
objects and a set of operations on those objects. This technique allows for various degrees of availability of 
objects, in spite of node or server failures. VVithout object replication; a server that implements a particular 
object stores the data of that object, and performs the operations on the object using that object data. 
The object is globally available throughout the distributed system, since clients anywhere in the system can 
contact the server for service on the object-subject of course to access controls. However, if that server or 
its host goes down, then the object is unavailable. Even though the service itself may still be available via 
other replicated server instances (which manage other objects of the same type), there is no availability of 
objects that are managed solely by the down server instance. 

This sort of single-point-of-failure availability problem can be mitigated by the use of object replication, 
in which multiple server instances maintain a replica of the object data. As a result, any one of these 
servers can provide service for the replicated object. Not every object of a type need be replicated, and 
not every server managing the type has to keep a replica. This, replication can be flexibly used to provide 
reliable service for an object in potentially several failure modes, depending on the number of replicas, their 
distribution within the network topology, and the nature of the object's consistency requirements, 

The consis.tency of the object data is the key issue in object replication. By allowing multiple servers 
to provide service to one object, one allows the possibility that multiple servers could modify their replica's 
data, causing it to become inconsistent with the replicas of other servers. There are a variety of different 
consistency mechanisms that can be applied to this situation, but no one of them is suitable for all the 
different kinds of types of objects that could be replicated-or indeed even for all the objects of one type. 

Therefore, the Triad approach is to implement a consistency mechanism that is flexible enough to meet 
various needs. To do so, Triad has adopted the version-voting mechanism of Cronus and the approach 
described in [6]. Within this approach, an update to a replica is predicated upon the updating server 
obtaining locks on other replicas from other servers. The number and/or proportion of all replicas that 
must be locked is a value that can be specified differently for different replicated objects. Likewise, there are 
settable parameters for the propagation of new values to replicas that did not participate in an update. As a 
result of this flexibility, Triad will implement a replication mechanism that is scalable to distributed systems 
of various sizes. The Triad implementation is in c+ +, an object-oriented language, in a highly layered and 
modular fashion. The changes required for replication will be orthogonal to the principal functionality of 
the servers, and can be accomplished without changing the design or structure of the servers. 

6 Conclusion 

The Triad project is developing a prototype Triad system designed to provide processing capabilities for 
real-time distributed military C3 I applications which process information of different classifications. Triad 
uses a base Mac)l microkernel and TMach trusted servers, for the required multi-level security features. 
This base is extended with real-time and distribution features which are used to provide services-including 
migrating thread RPC, distributed IPC, distributed name and file service-which clients and application 
servers utilize to perform distributed computation meeting real-time requirements. 

245 




Our approach is one that minimizes the impact on the assurance and functionality of the existing B3 
system base which we are extending. The real-time scheduling microkernel modifications enhance the as
surance of the system ·by increasing modularity and defining security requirements for the use of alternative 
real-time scheduling algorithms. Because of the layered, modular, object-oriented structure of the TMach 
servers, the addition of Triad distribution functionality does not impact the existing TMach functionality of 
the server. The real-time changes to the servers-supporting migrating thread RPC-has very little effect 
on the existing implementation; the only difference being the initialization code that sets up activations 
for migrating threads. Indeed, a server can support both styles of RPC-migrating or non-migrating-by 
setting up both activations and standard threads in such a way that the same RPC operation is executed 
regardless of which style of RPC the client uses. 

Thus, we have started with an existing extensible B3 MLS trusted system base, and established that 
real-time and distribution extensions can be made in a way that is consistent with the B3 level of assurance. 
Furthermore, we have identified that there is a small and manageable set of security requirements for the 
new real-time and distribution functionality-largely restricted to the distributed propagation of security 
attributes, and the identification of covert channels in real-time scheduling. We have analyzed the tradeoffs 
between the three areas, and determined the use of system-build techniques to manage these tradeoffs, both 
in the area of real-time (reducing the threat from scheduling covert channels) and distribution (replicating 
objects to be local to clients, to avoid incurring network communication overhead in real-time computa
tion). Finally, we have determined that the Triad extensions of TMach are not only consistent with the 
existing subject/object definitions and policy of TMach, but also supportive of the concepts of operation 
and programming abstraction identified in the previous study phase of the project. 

Therefore, we are confident that we are developing a prototype system that combines trusted MLS 
services with distributed real-time computation in a manner which supports emerging requirements for 
modern sophisticated real-time systems. 

References 

[1] 	 Trusted Mach System Architecture, TIS TMach Edoc-0001-93B, Trusted Information Systems, Inc., 24 
May 1993. 

[2] 	 Greenberg, Ira, et al., The Multilevel Secure Real- Time Distributed Operating System Study, RL-TR
93-101, Rome Laboratory, May 1993. 

[3] 	 Northcutt, J. Duane, et al, Decentralized Computing Technology for Fault- Tolerant, Survivable (f3 I 
Systems, Functional Description, 1 December 1988. 

[4] 	 Benzel, T.C. Vickers, et al, The Role of System Build in Trusted Embedded Systems, Proceedings of the 
13th National Computer Security Conference, Volume I, October 1990. 

[5] 	 Accatta, M., Baron, R., Bolosky, VV., Golub, D., Rashid, R., Tevanian, A., and Young, M., Mach: A 
New Kernel Foundation for UNIX, Proceedings of USENIX, July 1986. 

[6] 	 Floyd, Richard et al., Future Directions for Replication in Cronus, BBN Systems and Technologies 
Corporation, 16 April 1990. 

[7] 	 Jensen, E. Douglas, A Timeliness Model For Scaleable Real-Time Computer Systems, Transactions of 
DECUS, Fall 1992. 

[8] 	 Golub, D., Adding Real-Time Scheduling to the Mach Kernel, 1993, unpublished. 

[9] 	 Ford, Bryan, LePreau, Jay, Evolving Mach 3.0 to a Migrating Thread Model, Proceedings of USENIX 
Technical Conference, 17 January 1994. 

[10] 	 Burke, Condict, Mitchell, Reynolds, Watkins, Willcox, RPC Design for Real-Time Mach, Open Software 
Foundation/Research Institute, 12 April 1994. 

[11] 	 Orman, Hilarie, et al., A Fast and General Implementation of Mach !PC in a Network, Proceedings of 
USENIX Mach III Symposium, 19 April 1993. 

246 




CONSTRUCTINGAIDGHASSURANCEMAILGUARD 

Richard E. Smith 

Secure Computing Corporation 


2675 Long Lake Road 

Roseville, Minnesota 55113 


Abstract 

This paper describes the mail guard constructed as part of 
the Secure Network Server (SNS) Development Program. 
The SNS Mail Guard (SMG) provides a highly trustwor
thy device for transferring electronic mail between 
networks of differing security levels in accordance with 
site specific policies. The site defines its message transfer 
policies based on specific tests of message contents. The 
development effort pursued high assurance through com
pliance with trusted software development requirements 
and through formal assurance of security properties. The 
resulting mail guard uses the type enforcement capabili
ties of the LOCK® trusted computing base (TCB) to 
provide the most trustworthy facility achievable with 
current technology. We have found that high assurance 
security does not visibly impact mail guard performance. 

1. Introduction 

The Secure Network Server (SNS) Development 
Program applies the LOCK® Trusted Computing 
Base (TCB) [6] to network security services. The SNS 
program's goal is to provide a set of useful network
ing facilities that achieve high security assurance [7]. 
The first phase of SNS has produced the SNS Mail 
Guard (SMG), a device capable of controlled reclassi
fication of electronic mail (e-mail). The SMG connects 
to local networks that use the Internet protocol suite 
and the Simple Mail Transfer Protocol (SMTP). Users 
on such networks operating at different security 
levels can use the SMG to exchange e-mail in a con
trolled fashion (Figure 1). 

Organizations that handle sensitive or classified data 
generally establish separate computer networks for 
each sensitivity level of data they must handle. Each 
network operates in a "System High" mode without 
security labels to indicate the sensitivity of its data. 

~11111111111111111111111111~ 

Workstation user operating at ~ 
SECRET System High ~ 

~ 
~ 
~ 

Bidirectional 
EMail Traffic 

Local network operating at 
SECRET System High 

Workstation user operating 
at UNCLASSIFIED 

Bidirectional 

EMail Traffic 


Local network operating 
at UNCLASSIFIED 

Figure 1: The SMG allows users inside a protected, System High enclave to communicate via 
Unclassified electronic mail with users outside the enclave. 

© 1994 Secure Computing Corporation 

247 



This is because cost effective, commercially available 
equipment never provides security labels reliable 
enough for such applications. By default all data in 
such networks is implicitly labelled according to the 
most sensitive data thereon. 

E-mail connectivity has become so important that 
disconnected groups and organizations suffer a rec
ognized operational disadvantage. Today, this is the 
common fate of groups operating on a classified 
network. Commercial equipment is not built to keep 
classified information separate from unclassified. If a 
classified user composes an unclassified message, 
there must be a special facility to reliably release the 
unclassified information to the unclassified network. 
This facility must be highly trustworthy to prevent 
the wrong information from flowing between the 
networks. This is the purpose of the high assurance 
SMG. 

The SMG accepts e-mail messages from one network 
and, according to the destination address, routes 
them through a reclassification procedure (Figure 2). 
If the procedure approves the message for reclassifi
cation, then the message is reclassified and passed to 
the appropriate network for delivery. The decision 
making process for reclassification is implemented 
using one or more special procedures called "filters." 
The choice of filters is controlled according to site 
specific policy decisions and configured by the 
SMG's site administration. Different filters may be 
applied to e-mail traffic depending on the e-mail's 
source and destination networks. 

The architecture of the SMG allows the integration of 
a variety of filters, depending on the release require
ments for the site using the guard. Individuals 
composing e-mail on personal workstations 
protected behind an SMG must ensure that the 
message contents conform to the site's release 
requirements. Some filters may require that individ
uals use special software or hardware (like 
cryptographic services) at their workstations. 

The following describes several filters being 
produced by the SMG program. Filters are individu
ally enabled or disabled according to site security 
requirements. Each makes its message release 
decision based on detecting specific types of infor
mation in an e-mail message submitted for 
reclassification: 

• 	 SMTP sender or recipient addresses. The filter 
compares the name of the message's sender 
and its recipients against a database of 
addressees. The sender and recipients must all 
be allowed to send or receive e-mail through 
theSMG. 

• 	 Classification label. The filter searches the body 
of a message for a line of text indicating the 
security classification of the message's 
contents. The author of the message must 
insert the label into the message to specify the 
sensitivity of the message's contents. 

• 	 Attachment file types. The filter searches the 
message for attached files in a variety of 
application specific formats. Each attached file 
must be of a type that is permitted to traverse 
the SMG. A site can use this facility to block the 
accidental importation of executable binary 
files that may contain virus software. 

• 	 Attachment review indicator. The filter 
searches attached files for a special tag and 
checksum to indicate that the file had been 
reviewed by special software (the "attachment 
review module" or ARM) on the sender's 
personal workstation. If the site requires 
attachment review, then the SMG will transmit 
the message only if attachments it contains 
have been reviewed using the ARM. 

• 	 MOSAIC/MSP digital signature. The filter 
verifies that the body of the message is 
formatted according to the Message Security 
Protocol (MSP) and signed using the MOSAIC 
digital signature algorithm [3]. The SMG will 
transmit the message only if the message is 
signed with a valid signature. The filter may 
also verify that the signature certificate belongs 
to an individual authorized to send e-mail 
through the SMG. 

• 	 MOSAIC/MSP encryption. The filter verifies 
that the body of the message is formatted 
according to the Message Security Protocol 
(MSP) and the message text has been encrypted 
and signed using MOSAIC. The SMG will 
transmit the message only if its contents are 
properly encrypted. 

248 




If a site decides to allow e-mail to flow in a given 
direction between two networks, the site must 
choose which filters will be applied to that e-mail 
traffic. The choices must maximize the likelihood 
that reclassification and release decisions are based 
on information produced by the witting act of an 
authorized individual rather than on accidental or 
corrupted contents of an e-mail message. The SMG 
will typically base its reclassification decisions on 
information produced or transported by unassured 
commercial equipment, since that is the equipment 
in common use today. 

The choice of filters, then, depends on the security 
properties of the networks being connected to the 
SMG. Small, isolated local networks might use 
physical security and strong configuration controls 
to ensure the integrity of e-mail passed to an SMG. 
Larger, less controlled networks may require the 
stronger evidence of user identification and message 

integrity provided by a cryptographically protected 
digital signature. 

2. Mail ~ard structure 

The SMG combines off the shelf networking software 
with specially developed guard software, hosting 
both on the LOCK TCB. A common problem in such 
systems is to keep the less trustworthy off the shelf 
software separate from the more trustworthy guard 
software. It is important to ensure that flaws in the 
off the shelf software will not prevent the guard 
software from doing its job. The underlying TCB 
must protect the integrity of the different software 
components from one another, and it must ensure 
that the guard software is never bypassed. 

On LOCK, we rely on the Type Enforcement facility 
to achieve this. Type enforcement is a special form of 
mandatory, rule based access control provided in 

''''''''''''''''''''''''''''~ 

Workstation user operating at S Workstation user operating at 

UNCLASSIFIED receives email SECRET System High S 
composes an UNCLASSIFIED S 

email message S 
s 

Message 
Transfer Agent 

Software 

Inside 
the mail 
guard 

BOUNDARYS 

Reclassifier § 
Filters verify 

UNCLASSIFIED 
properties 

from the SECRET enclave rc:::::::::~ 

Message 
Transfer Agent 

Software 

Figure 2: The SMG uses LOCK's type enforcement to isolate the behavior of its off the 
shelf message transfer agent software from its reclassification procedures. 

249 



addition to conventional, label based access control 
rules. Like access control based on labels, type 
enforcement completely prevents a program from 
reading or writing data items unless it is specifically 
allowed to under the system's security policy. Unlike 
label based access control, type enforcement is asso
ciated with particular programs and particular types 
of data files. 

By placing type restrictions on collections of 
programs and data items, we can require data to flow 
through a group of programs in a specific order. This 
allows us to take data from a program of dubious 
integrity, pass the data through another program that 
"censors" it or takes other measures to insure the 
data's integrity, and then pass it to a third program 
that assumes the data has the established integrity 
properties. This technique is called an "assured 
pipeline" and is fully described in [4]. 

The SMG implements an assured pipeline to allow 
its mixture of software components to interact effec
tively while preserving necessary security 
properties. Figure 2 illustrates the principal compo
nents of the mail guard: 

• Message transfer agent (MTA) software 

• Reclassifier software (gray bordered box) 

• Incoming and outgoing mail queues (ovals) 

• Boundary between security levels (dashed line) 

• TCB boundary (gray line) 

None of the programs illustrated here run in any 
form of kernel or "root" mode with unlimited access 
privileges. All these programs are constrained by 
type enforcement so that they operate as an assured 
pipeline. 

The mail guard pipeline has a message transfer agent 
at each end and the reclassifier in the middle. The 
reclassifier itself consists of separate programs in 
separate domains to enqueue messages for reclassifi
cation, invoke the appropriate filters, and to write 
the approved messages to the incoming queue for 
the receiving message transfer agent. 

The message transfer agents are not allowed to read 
messages across the boundary between security 
levels in either direction. This forces all reclassifica
tion to go through filters, where virus checks on 

incoming executable files and other such activities 
may occur. 

3. Why hildt assurance? 

The purpose of high assurance in the SMG is to 
ensure that reclassification tests are always 
performed and never bypassed, regardless of how 
strong or weak the tests themselves might be. This 
provides command authorities at the site with 
certainty that reclassification and release decisions 
are made in accordance with the specified policy. 
Furthermore, the authorities must be certain that 
they can reliably modify the SMG's policy to respond 
to changes in the network configuration and 
perceived threat. 

High assurance techniques in trusted software devel
opment increase the visible trustworthiness of the 
resulting system. Procedural requirements for 
trusted software development assure that all devel
opmental steps are carefully thought out and the 
results are consistently checked. Formal models and 
analyses of the system's architecture increase the 
likelihood that all security relevant design flaws 
have been eliminated. In our experience on the 
LOCK development program, analysis also uncovers 
subtle features, design constraints, and interdepen
dencies that would not otherwise have been 
recognized. This leads to a more thorough under
standing of the overall system, its security 
requirements, and its limitations. 

A mail guard is essentially a filter that restricts the 
flow of data so that "acceptable" messages flow from 
one security level to another, and "unacceptable" 
messages do not. Physical security provides 
assurance that data only flows between the levels via 
the guard. Walls, floors, protected cabling, and 
physical access control measures prevent data from 
flowing between levels except through the guard. 
The LOCK TCB provides a solid framework which 
prevents data from flowing between levels except 
when passing through the filter software. The LOCK 
formal assurance work provides the detailed look at 
the trustworthiness and effectiveness of that frame
work. The mail filters are made modular with respect 
to the LOCK formal assurance; they are developed 
and tested separately, and their behavior is analyzed 
as an extension to the existing system. 

250 




It is important to note that formal assurance does not 
provide some unilateral stamp of quality. All that 
assurance can do is indicate that the system 
preserves some specific property. In the case of the 
SMG, the formal assurance focuses on preservation 
of label based, mandatory access control on data 
handled by the SMG. 

4. Trusted software development 

The SMG development contract mandated that all 
TCB software be developed in compliance with trust 
requirements of the Trusted Software Methodology 
(TSM) developed by the Strategic Defense Initiative 
Organization [2]. The specific requirements called 
out in the contract were roughly similar to those 
associated with Level 3 of the Software Engineering 
Institute's Capability Maturity Model [5]. The TSM 
rates software development trustworthiness on a 
scale from TO ("untrusted") to TS ("highly trustwor
thy"). The SMG program specifies a mixture of 
requirements ranging from T3 toTS. The T3 require
ments primarily apply to environmental and 
organizational policy issues: properties of the 
software development environment, for example. 
The TS requirements are associated with software 
development procedures: design analysis, test case 
development, and formal reviews, for example. 

Both contractor and government personnel responsi
ble for the SMG program were trained in the TSM. 
This training provided the rationale for the require
ments and an overview of how they might be 
applied. The training course made it clear that 
perfect compliance with the TSM was in fact beyond 
the state of the art in software engineering. The rec
ommended approach to this problem is to document 
all requirements that could not be complied with and 
explain how the program will handle the associated 
risks. 

The SMG program inherited many of its develop
ment tools and procedures from the LOCK program, 
which started in the mid 1980s. This placed practical 
constraints on the feasibility of incorporating 
radically new tools or procedures for complying 
with TSM requirements. An internal review found 
that it was not feasible to comply with the letter of 
approximately 8% of the 438 TSM requirements that 
applied to the program. These requirements were 

analyzed with respect to risk to the program, docu
mented, and submitted to the contracting 
organization for subsequent approval. 

An important difference between SMG development 
philosophy and that of the TSM is the selective appli
cation of formal assurance. The TSM implicitly 
focuses on service assurance: the developed systems 
must provide faultlessly reliable service and not be 
sensitive to internal or external denial of service 
attacks. SMG requirements, on the other hand, focus 
on the highest possible assurance of security proper
ties. High assurance was not applied to portions of 
the system whose effects on security could be 
otherwise constrained. The SMG incorporates "off 
the shelf' components (hardware and software) and 
uses a variety of hardware and software mechanisms 
to constrain their effect on the system's security 
properties. 

The TSM requirements mandated by the contract are 
applied to all TCB software. This does not include 
"off the shelf" software, so the TSM was not applied 
to the TCP /IP software or the message transfer agent 
(MTA) software. These are constrained by high 
assurance hardware and software mechanisms so 
that they can not directly interfere with system 
security. All software that makes security policy 
decisions is subjected to formal assurance as well as 
the TSM requirements. 

5. SMG formal assurance 

Formal assurance techniques provide the basic 
evidence that a system is fundamentally trustworthy. 
It provides a distinctively global view of the system's 
security properties that can not be duplicated 
through postdevelopment inspection or test. It also 
enforces a special discipline on the system develop
ment process that focuses early attention on potential 
security problems. The analytical products of formal 
assurance provide strong arguments for the 
soundness of a TCB design, profoundly increasing 
the TCB' s trustworthiness. 

SMG assurance focuses on assuring label based 
access control. The assurance shows that a message 
will be reclassified if and only if the message 
presented to the reclassifier is found to be acceptable 
by whatever filters are applied to it. The assurance 

251 




work says nothing about the behavior of entities 
outside the TCB, which are primarily off the shelf 
Internet protocol components. Nor does the 
assurance work guarantee availability or perfor
mance. Since the assurance focuses on label based 
access control, it does not address enforcement of 
need to know. 

The challenge in TCB development is to extend the 
TCB's capabilities without invalidating previous 
assurance work. Using LOCK, we proceed by 
showing that the SMG enhancements either preserve 
or are constrained by LOCK's existing security mech
anisms. The enhancements consist of network device 
drivers, the TCP /IP protocol stacks, and the MTA 
software. 

Device drivers on LOCK execute in user mode. Each 
interface is assigned a single security label, so the 
driver is unable to affect label based access control 

decisions. Thus, the network device drivers are con
strained by TCB access enforcement mechanisms. 

The same approach is applied to the TCP /IP 
protocol stacks. Separate instances are provided for 
each distinct security label and each is tasked with 
processing network traffic at its single security level. 
The same holds true for the message transfer agent 
software. Therefore, all off the shelf protocol 
software is constrained by the TCB and unable to 
influence label based access control decisions. This 
limits the amount of analysis required to show that 
the message transfer agent software maintains label 
based access control with high assurance. 

As discussed previously, authentication and identity 
based access control for e-mail are not handled by 
the LOCK TCB. The level of assurance required is 
subject to site policy depending on the facilities 
available on the networks served by the SMG. 

0 	 0 
C\1 

0 0 	 0 0 0 0 0 0 0 0 ... 	 It) <D .... CD 0 C\1"' 	 "' 
Speed of Service (seconds) 

Figure 3: In performance tests, the SMG achieved an average speed of service of 52 sec
onds (the time to send a message from one host through the guard to another host, with 
null security filters). Security filtering adds an average worst case overhead of 53%. 

252 


0 



6. Performance 

An astonishing result of the original LOCK develop
ment effort was its level of performance. Standard 
benchmarks had trouble measuring a consistent dif
ference between the performance of LOCK/ ix, 
LOCK's Unix compatible environment, and that of 
an unmodified commercial Unix system operating 
on similar hardware. Uncertainties in benchmarking 
techniques make all such measurements suspect, but 
the results make it clear that high security assurance 
has not significantly reduced LOCK's performance. 

Measurements of the SMG exhibit similar perfor
mance. Measurements of the MTA software running 
on the SMG show negligible difference in perfor
mance against the same software running on a 
comparable commercial Unix platform. MTA effi
ciency is particularly important in the SMG since 
each reclassified message must pass through two 
separate MTAs. An independent test and evaluation 
contractor found that the SMG consistently kept up 
with commercial mail server software. 

Figure 3 shows the results of performance tests on 
the SMG. These tests measured speed of service 
while handling bidirectional mail traffic consisting of 
10,000 byte messages. The tests did not use security 
filters. The analysis found the average delivery time 
("speed of service") was 52 seconds for messages 
transmitted across the SMG, with a worst case of 113 
seconds. 

Filter 

Speed of 
Service 

(seconds) 

No Filtering 52 
Access Control Filtering 75 
Digital Signature (estimated) 76 
Encryption (estimated) 80 

The above table compares the SMG's average speed 
of service when applying different types of security 
filtering. The first two entries are based on direct 
measurement of SMG performance. The second two 
are estimates based on an SMG performance model 
incorporating the measured performance of the 

Tessera crypto card. These figures are all within the 
speed of service requirements identified for the 
Defense Message System, providing an order of 
magnitude or better design margin for incorporating 
security filters on non-critical message delivery [1]. 

Acknowledgments 

This paper reports the efforts the very capable SMG 
development team of Secure Computing Corpora
tion's Sever Products Group. The formal assurance 
work benefited from the valuable contributions of 
Secure Computing's research organization. 

This work was supported by Contract MDA904-93
C-C034. The author also thanks the anonymous 
reviewers for their constructive comments. 

References 

[1] 	 DoD, ''Defense Message System (DMS) Required 
Operational Messaging Characteristics (ROMC)," 
Department of Defense, 23 April1993. 

[2] 	 GE Aerospace, "Trusted Software Methodology Volume 
1: Trusted Software Program Demonstration, 
Assessment and Refinement," SDI-5-SD-91-000007, 
Strategic Defense Initiative Organization, Washington 
DC, 17 June 1992. 

[3] 	 MOSAIC Program Office, "MOSAIC Program 
Overview," Version 2, Ft. Meade, MD, 28 January 1994. 

[4] 	 Richard O'Brien and Oyde Rogers, "Developing 
Applications on LOCK," Proceedings ofthe 14th National 
Computer Security Conference, Washington, DC, October 
1991, page 147. 

[5] 	 Mark C. Paulk, Bill Curtis, Mary Beth Chrissis, and 
Charles V. Weber, "Capability Maturity Model for 
Software," Report CMU/ SEI-93-TR-24, Software 
Engineering Institute, Carnegie-Melon University, 
Pittsburgh, PA February 1993. 

[6] 0. Sami Saydjari, Joseph M. Beckman, and Jeffrey R. 
Leaman, "LOCK Trek: Navigating Uncharted Space," 
Proceedings ofthe IEEE Symposium on Security and Privacy, 
Oakland CA, May 1989, page 167. 

[7] 	 Richard Smith, "MLS File Service for Network Data 
Sharing," Proceedings ofthe Ninth Annual Computer 
Security Applications Symposium, Orlando FL, December 
1993. 

253 




Controlled Execution UNIX* 


Lee Badger 

Homayoon Tajalli 


David Dalva 

Daniel Sterne 


Trusted Information Systems, Inc. 

3060 Washington Rd. (Rt. 97) 


Glenwood, MD 21738 


Abstract 

Although standard mandatory and discretionary access control policies provide control over data, 
they do not control the identities of programs executed on a given computer system. This aspect of 
standard access controls is part of the TCSEC [12] security paradigm in which programs are presumed to 
be hostile and therefore irrelevant to a system's security policy. Controlled Execution (CE) is an access 
control policy representing a significant departure from this paradigm. A CE policy states the identities 
of specific programs authorized by the policy to be executed on a given computer system. A CE policy 
is specified by a trusted system administrator, enforced by aCE Trusted Computing Base (CE-TCB), 
and mandatory for users and programs. 

A suitably configured CE policy confers a variety of security advantages including: 1) binding of 
processing resources to authorized applications, 2) control over privileged subjects (such as the UNIX 
root user), 3) heightened penetration resistance and, consequently, 4) enhanced data integrity. CE 
can be used to strictly control computer virus propagation. A particularly appropriate application 
of CE is to hosts that connect to the Internet but must not be vulnerable to system or application 
corruption. Experimentation with a CE implementation based on UNIX has demonstrated that CE can 
be harmoneously integrated into the UNIX system architecture with moderate effort, broad backward 
compatibility with existing applications, media, and networks, and enhanced control over the root user. 1 

Introduction 

Computer systems now manage a vast pool of information assets on behalf of governments, institutions, 
companies, and individuals. Every month, thousands of computer systems connect to the Internet and to 
other networks, bringing both increased communications capabilities and increased vulnerabilities. Commer
cial operating systems (e.g., UNIX variants, DOS, etc.), which have a primary responsibility for preventing 
intentional or accidental destruction of information assets, typically employ (at best) discretionary access 
control (DAC) for protection of operating systems and data. In recognition of DAC vulnerabilities to trojan 
horse attacks [14, 4], in 1985 the U.S. government promulgated a standard, the Trusted Computer System 
Evaluation Criteria [12], for a class of trusted systems implementing mandatory access controls in addition 
to other security services. Nine years later, however, trusted systems constitute only a tiny fraction of the 
information infrastructure. Several factors probably have impeded market acceptance of trusted systems, 
including high cost, the lengthy TCSEC evaluation process, and generally reduced functionality relative to 
untrusted systems. An additional factor is a perceived mismatch between the security controls provided by 
trusted systems and the needs of many potential customers. The failure of trusted systems to obtain signifi
cant market share motivates an alternate approach. This paper proposes such an approach and presents the 

*UNIX is a trademark of UNIX System Laboratories, Inc. 

1 This work is sponsored by ARPA/CSTO under ARPA order #7311, contract MDA972-90-C-0027. 


254 




concepts, costs, and benefits of a security policy and implementation strategy providing practical security 
that is compatible, effective, and affordable. 

Controlled Execution2 (CE) is an access control mechanism that constrains a system to execute only the 
application programs that are members of a set of authorized application programs specified by a Trusted 
System Administrator (TSA). A fundamental and highly assured portion of aCE system is responsible for 
carrying out TSA's commands. ACE system enforces the specified CE policy on all other users and on all 
programs. If the behaviors of all of the installed programs are understood, the behavior of a CE system can 
also be understood: the CE system's behavior is a composition of the behaviors of its installed programs. 
In this aspect, CE represents a significant departure from the TCSEC MAC paradigm in which application 
programs are presumed to be malicious, nothing about their behavior is assumed, and the purpose of a TCB 
is to impose a restraining policy on the data accesses that the "unknown" application programs may attempt. 
In contrast, CE explicitly addresses what we believe to be a current security reality: application program 
behaviors are security relevant. This reality surfaces continually in day-to-day operations. For example, 
a simple security policy that a purchasing officer is only authorized to approve checks up to a maximum 
amount can be enforced at the operating system level only by restraining the set of applications to those 
enforcing the required constraints. A suitably configured CE policy confers a variety of security advantages 
including: 

computing resource control Specific programs can be bound via CE to specific computer systems 
(CPUs', memory, devices, etc.). These hardware and software resources are bound to the installed 
program set and cannot be diverted for unauthorized applications. 

control over privileged subjects Privileged subjects (such as the UNIX root uid) are confined to execute 
only the installed applications. This reduces the possibility of a trojan horse or virus penetrating a 
system because the malicious code would have had to be installed as an authorized application. Addi
tionally, CE prevents even privileged subjects from corrupting the system or its approved applications 
either intentionally or accidentally. 

heightened penetration resistance A significant class of system penetrations depends on the attacker's 
ability to install and execute malicious programs on the target system. The ability to run malicious 
programs exposes the system call interface to attack, possibly exploiting low level security flaws in the 
system. This class of penetrations is closed by CE. 

enhanced data integrity All data is processed by known, authorized programs. This control over pro
grams executed enhances data integrity since unauthorized and perhaps malicious programs never have 
an opportunity to access data. One example of a malicious program is a program that has been infected 
by a computer virus. A virus can only execute on a CE system if the (already) infected program has 
been installed by the TSA as an authorized application. Even if a virus if accidentally installed on 
a CE system, CE prevents further propagation because the virus is not able to alter other installed 
applications. 

The CE policy of limiting execution to programs in a preauthorized set may appear to be overly restrictive; 
however, our experience with a UNIX prototype has indicated that CE has only minor usability impact 
for many activities. Although not appropriate for every system, CE is applicable to many systems that 
have relatively stable application sets, including document processing and email systems, file servers, and 
many compile-only software development machines. CE is appropriate in many contexts where users have 
no need/authority to install or change programs, for example: turnkey systems used by banks and hospitals, 
computer controlled manufacturing, financial accounting, etc. A particularly appropriate application of CE 
is to hosts that connect to the Internet but must not be vulnerable to system or application corruption. Our 
prototype experience indicates that CE can be harmoneously integrated into the UNIX system architecture 
with moderate effort, broad backward compatibility with existing applications media and networks, and 

2 Patent Pending. 

255 




enhanced control over the root user. In the context of the current dichotomy between inexpensive, DAC
only commercial operating systems and expensive trusted operating systems providing MAC, CE appears 
to offer the framework for a much needed middle ground of security-enhanced yet cost-effective systems. 

The purpose ofthis paper is to present both the advantages and disadvantages of the CE policy and a-specific 
application to UNIX. We first explore CE concepts and then interpret those concepts for the UNIX system 
architecture. Next we discuss the design and implementation of the CE UNIX prototype. Finally we review 
related work and preview future directions. 

Controlled Execution Systems 

A CE system enforces an access control policy over two kinds of system events: program installation and pro
gram execution. A CE system enforces its access controls regardless of the actions taken by an (erroneously) 
installed application. To provide this policy, a CE system must be able to protect its own integrity as well 
as the integrity of the authorized applications. Additionally, a CE system must have control over the API 
that controls program execution (e.g., the exec() family of system calls in UNIX). Figure 1 shows the general 
structure of a generic CE system. A CE system manages hardware devices and memory, providing (and 
controlling) a system call interface. Although figure 1 may suggest a monolithic operating system kernel, CE 
can be applied equally well to micro-kernel based operating systems such as OSF/1 MK. A CE system must 
have available to it a set of locally controlled devices that together constitute the Protected Media (PM). 
The PM is usually implemented by a disk device but may be any persistent storage device. The PM stores 
the CE operating system image, any internal persistent space needed by a CE system as it runs (e.g., swap 
space), and all the installed applications. The special characteristic of the PM is that it can only be modified 
by the TSA and by the CE operating system for internal bookkeeping. This access control applies regardless 
of any privileges possessed by application processes of the host operating system. We designate the portion 
of aCE system that is responsible for enforcing the CE policy the CE Trusted Computing Base (CE-TCB). 
The CE-TCB includes the PM, at least one console device, the operating system image that resides on the 
PM, and a small set of utility programs for installing authorized applications and performing maintenance 
operations on the PM. 

CE protected os space 

g~g 
Console 

Figure 1: General CE Structure 

To allow a TSA the ability to install applications, a CE-TCB must be able to reliably authenticate the 

TSA and ensure that other users are not able to impersonate TSA requests. A variety of strategies exist 


256 




for establishing this trustworthy connection between the TSA and a CE system, most notably the Trusted 
Path mechanism discussed in the TCSEC [12]. A trusted path for CE may be significantly simpler than 
that required for the TCSEC. For the TCSEC, the trusted path must identify all users to provide accurate 
auditing and to ensure that users do not penetrate other user accounts. This requires a trusted path that is 
available for all users. In contrast, the CE trusted path need only distinguish between the TSA and all other 
users. Depending on the level of convenience required for the installation of new programs, the CE trusted 
path can be implemented with different combinations of system support and administrative controls. 

Once a set of authorized programs has been installed on the PM, authorized programs and users may execute 
them. Any attempt to execute a program that does not reside on the PM results in a CE access control 
denial. In the context of CE, program execution is a program file activation event (e.g., for UNIX, the exec() 
system call) followed by a sequence of program events. For a CE-TCB that exports a particular application 
programming interface (API), both the activation and the successive events are calls to the API. Depending 
on its input, each program is capable of a set of behaviors where a behavior is a particular sequence of 
program events. A CE access control policy bounds the set of behaviors that a system permits; a CE-TCB 
behavior is a composition of the program behaviors for the system's authorized programs. 

Interpreters and Trust in Applications 

An inherent limitation of CE is that a CE-TCB can only enforce execution control at its ezported API. 
If an authorized application contains an interpreter (e.g., a shell), programs interpreted on the interpreter 
appear as data to the CE-TCB and will not be controlled. This problem primarily affects the CE benefits 
of controlled computing resources and enhanced data integrity : an interpreter could use processing power 
for unauthorized applications and possibly corrupt important data. This is potentially a significant prob
lem because many widely used programs contain interpreters with various levels of programmability. This 
problem can be addressed at various levels of cost and assurance by authorizing only programs that: 1) do 
not contain interpreters, 2) contain restricted interpreters, or 3) interpret only files stored on the PM. This 
problem does not significantly reduce the CE benefits of control over privileged subjects and heightened 
penetration resistance because the CE-TCB integrity and the integrity of approved applications cannot be 
affected by interpreters. 

A related, important issue is that a TSA must decide whether or not to install a program based on its 
anticipated behavior. If a single malicious program is installed, it could behave in an arbitrary manner 
and therefore could potentially divert computing resources to unauthorized uses or damage data. However, 
as in the case with interpreters, a malicious installed program cannot alter either the CE system or other 
installed programs. The primary defense is to obtain programs only from trustworthy providers. A number 
of strategies can be used to increase trust in the programs, including testing and source code analysis. While 
absolute knowledge of a program's behaviors may not be possible using those means, a software selection 
can be based (as it commonly is) on a probability, or reasonable expectation. 

Controlled Execution UNIX 

A CE UNIX (CEU) system is a UNIX system that has been modified to enforce (perhaps in addition to 
TCSEC policies) the CE policy. The purpose of this section is to present a design and rationale for a CEU 
system. There are many variations of UNIX representing deviations and extensions to the "traditional" 
UNIX concepts and structures. The design presented here is based on the features and structures of "tradi
tional" UNIX (hereafter, just UNIX). This section will first briefly review UNIX structures, identify UNIX 
components that must be inside the CE-TCB, discuss required modifications to UNIX components, and 
finally discuss resulting implementation assurances. 

Figure 2 shows the general UNIX system structure. The UNIX kernel manages physical memory, one or 
more CPUs, and a set of connected devices. The kernel provides the process abstraction by timesharing 
its CPUs and implements file and file-system abstractions on connected devices. UNIX processes (in figure 
2, init, P1, and P2) manage the only threads of control. A UNIX process is generally a file that has been 

257 




set in execution by the UNIX kernel. Every file is either a device-special or a regular file. 3 In either case, 
the kernel implements a file-oriented interface that allows (and confines) processes to interact (in figure 2, 
dotted lines) with devices in a structured manner. Processes interact with the kernel, each other, and all 
devices indirectly through system calls that are mediated by the kernel. Generally, an attached device can 
be treated as a file; the kernel provides system calls to open, read, and write these files. Additionally, some 
devices are interpreted by the kernel as file systems (in figure 2, Root FS, FS 2, and FS 3). A file system 
is a collection of files that are related via a hierarchical naming scheme; file systems allow processes to view 
portions of devices as discrete data containers. 

······················.
:~Root.. .. --·=-· .... ~....... . ........ ...:.. ..... . ' .... .
"'<. 
:Fs 2: :Fs 3: 
'·······~ 

Syscalls 

Fs:..• . . .
. . . 

: : :. . . 


.......... 


Figure 2: General UNIX Structure 

Informally, a UNIX CE-TCB can enforce execution control by requiring that all programs that can run 
reside on special devices over which the kernel has complete control. The collection of such devices is the 
protected media (PM). The system can ensure that files are only added to or removed from the PM by the 
system administrator and that only the system administrator can modify files on the PM. In addition to 
providing files and file systems to the rest of the system, the system uses the PM for its internal purposes 
(process swapping and paging); this prevents implementation dependencies on untrustworthy media. The 
components of the example UNIX CE-TCB are: 

PM At least one local secondary storage device under local control of the CEU operating system. 

UNIX kernel The CEU image stored on the PM. 

Init process This process is the master coordinator for other processes. This process brings the system to 
multiuser or single user mode. 

cp program When used from the trusted path, copies files. 

rm program When used from the trusted path, removes files. 

command shell When used from the trusted path, processes interactive user commands. 

system programs A small set of programs required for maintenance of the PM (primarily, the fsck pro
gram). 

Other UNIX components may be included for ease of use, but the policy only depends on these. 

3 Note we are ignoring special files such as named pipes, directories, FIFOs, sockets, and symbolic links because their 
properties are not relevant to general discussion of CEU. 

258 



Because every request to execute a new program is made to the CE-TCB and because the CE-TCB controls 
the contents of the PM, the CE-TCB is able to enforce the execution control policy on those requests. The 
kernel creates and manages all processes and can therefore mediate process create requests. The kernel's 
mediation ensures that processes only execute if their executables are stored on the PM. The kernel is able to 
perform this mediation because it has access to the (device) locations for executable files at process execution 
time. 

In order to enforce the CE policy, the CE-TCB must protect itself from modification. Because the UNIX 
system provides address translation, processes cannot directly modify the kernel. By ensuring that the 
kernel only depends on the PM for its correct operation and by protecting the PM from modification, the 
CE-TCB can protect itself. Processes can access devices (including those that constitute the PM) in only 
three different ways: 1) accessing the device special files that represent physical devices, 2) file-oriented 
operations on files contained in file systems that represent attached devices, and 3) changes to the kernel's 
internal memory management (swapping) policy using special system calls to alter the configuration. 4 The 
CE-TCB protects itself from all three possibilities through small changes in the kernel calls that manipulate 
device special files and file systems. CE access control falls into two general categories: 1) if a UNIX object 
exists on the PM, prohibit modify access, and 2) if a UNIX object does not exist on the PM, prohibit execute 
access. 

A number of mediation points are required in the UNIX API to implement the CE policy. A high level list 
IS: 

exec, execv, execve These functions are only enabled when the program to be executed resides on the 
PM. These functions preserve the CE policy because the PM only holds system programs and approved 
applications. 

creat, mknod, mkdir, rmdir, unlink, rename, truncate, chown, chmod These functions are only 
enabled when the object to be created or modified does not reside on a read-only file system of the 
PM or when the function is issued by the TSA. 

open This function is only enabled when the flags argument to open() does not include "write," when the 
object to be opened does not reside on the PM, when the system is initializing, or when the function 
is issued by the TSA. This function helps to preserve system integrity by guarding all other functions 
that operate using file descriptors returned by open. 

swapon This function instructs the kernel to use the passed devices for swapping. This function is only 
enabled for devices that constitute the PM; swapon can therefore not be used to compromise the 
system's integrity or to violate the CE policy. 

write This function is only enabled following an open for a file that specifies write access. The open and 
creat calls guard this operation so that the CE policy is preserved. 

ioctl This function implements many operations on devices. The operations are categorized into reading 
and writing operations; an open or creat call must have returned a descriptor open for writing for the 
writing operations to be used. This function is therefore guarded by the open and creat functions. 

ptrace This function is disabled because it would allow one application to insert arbitrary code into another. 

A primary UNIX benefit from CEU is reduction of the strength of the powerful UNIX root privilege while 
maintaining most of its usefulness. The root privilege is currently a significant UNIX security weakness. 
Many applications need to run as root; the presence of many programs holding the root privilege results in a 
weakest-link phenomenon in which any root-privileged program can, through mistake or intent, compromise 
the integrity and security of an entire system. A number of systems and standards [11, 9, 13] have separated 

4 Newer versions of UNIX may implement additional means for accessing devices, such as the provision for dynamically 
loadable device drivers; such additional mechanisms would also have to be controlled by a CE-TCB. 

259 




the root privilege into a set of privileges to more closely implement the principle of least privilege. This 
approach is not ideal, however, because the root privilege still exists as a collection of separate privileges 
and because one privilege can sometimes be used to obtain others. 

CEU makes a substantial departure from the typical strategy for dealing with root. Because the CE policy 
is compatible with standard UNIX applications, there is no need to provide privileges to suspend the policy. 
This allows the CE policy to be enforced even on the root user, making the root privilege irrelevant for 
the CE policy and the CE-TCB. The CE UNIX interpretation therefore protects against misuse of the root 
privilege in two ways: 1) only authorized applications can execute, and therefore the use ofthe root privilege 
is confined to them, and 2) even if a malicious application is installed, the CE-TCB protects itself from any 
modifications, regardless of privilege. 

UNIX Prototype 

In order to validate the controlled execution concept and its interpretation to UNIX, a prototype-CEU system 
was developed. The prototype is based on the OSF/1 MK operating system running on an HP Apollo 9000 
model 710 PA-RISC Desktop Workstation. The implementation effort required was approximately 5 staff 
weeks. 

Two sets of changes to OSF/1 implement the controlled execution prototype. The first set of changes controls 
modification of the protected media. The prototype implements a protected media by checking write access 
to a designated set of disk partitions and other critical device special files at the system call interface. The 
identities of these devices are compiled into the kernel as a table and consulted by an internal mediation 
function as processes access system resources through the API. Access decisions are based on the state of a 
variable that denotes the run state of the system. Three run states are defined: booting, single user mode, 
and multiuser mode. Run state support includes a new system call to set the run state of the system, with the 
limitation that it can only increase (e.g., single-user mode to multiuser mode). When the system is booting, 
write access is permitted to the protected media but only through communication with a cryptographically 
authenticated control facility. The boot state therefore implements a trusted path to the TSA. After the 
system has completed the boot sequence and goes into multiuser mode, all attempts to modify the protected 
media are denied. Single user mode is treated the same as multiuser mode in the prototype. 

The second set of changes limits execute access to programs residing on the protected media when the system 
is in single or multiuser mode. Very few system programs were changed: 

Init The init program is the first process. Since it controls the booting of the system, it changes the run 
state when the system enters a new mode. It was also modified to mount the writeable /root file system 
(described below) immediately in conjunction with mounting the protected media root filesystem. 

Passwd The passwd program was modified to use the /root filesystem, where the passwd file now resides 
(ie., /rootjetcjpasswd). 

Vipw Like the passwd program, vipw was modified to use the /root filesystem for temporary storage. 

Because the protected media is read-only after the system has booted, the file system organization had to 
be altered both to permit other system configuration (e.g., changing the system startup script in /etc/rc, 
adding users, backup) to be performed without writing to the PM and also to maintain compatibility with 
programs that expect to find and modify specific files and directories on UNIX systems (e.g., /tmp). A new 
file system, /root, was introduced to hold these writeable entities and to represent the normal UNIX root 
file system. During system bootup, the init program mounts /root read/write so that other programs can 
find it. The standard jusr, /tmp, jete, /dev, etc. directories were created under /root. Symbolic links were 
then created in the protected media that point to these directories on the read/write root. This allowed 
some links to be replaced by writeable files on the read/write root, therefore allowing old programs to find 
writeable versions of files in the normal UNIX locations. 

260 




With the exception of several system programs that were not converted, the prototype behaved like an 
unmodified UNIX system. The standard programs ran normally, including the compiler, but newly generated 
executables, or copies of executables from the protected media, could not execute. 

Penetration Testing Experience 

To validate the soundness of the prototype, a 40-hour penetration study was conducted by an experienced 
UNIX programmer with complete access to the prototype source and consulting from the prototype's de
signer. The penetration effort was conducted with two sets of rules: in the first, the attacker could use 
only installed applications. In the second, the attacker had use of a subverted application that allowed the 
attacker to stress the system's system call interface. In the second case, the attacker attempted to gain 
control over the entire system. Under the first assumption, the attacker discovered two weaknesses that 
allowed unauthorized modifications of the PM: 

• 	 The last-modified inode fields for files on the PM could be updated using the touch command (which 
uses the utimes() system call). This trivial modification of the PM resulted from incomplete mediation 
in the prototype. 

• 	 The Network File System (NFS) subsystem in the OSF/1 MK system uses its own access control 
functions. These functions had not been modified in the prototype to prevent modifications of the PM. 
This more significant vulnerability also resulted from incomplete mediation in the prototype. 

Under the second assumption, the attacker discovered that the OSF/1 specific facilities for loadable kernel 
modules and calling functions in loaded modules could be misused to take control of the OSF/1 system. 
These penetrations also resulted from incomplete mediation. 

All of the penetrations were easily correctable and resulted from the prototype status of the tested CEU 
system. None of the penetrations indicated conceptual problems with CEU. 

Related Work 

Systems that restrict execution comprise the most closely related work. Many systems allow some restrictions 
to be placed on which programs can be executed, however the authors know of no existing system that 
makes execution control fundamental in that it is administered and enforced independently of other security 
mechanisms and (most) system administration activities. Several access control mechanisms are relevant 
to CE. CE could be implemented using Domains and Types [3] by marking all executable programs with 
a type T and ensuring that no domain holds execute access for any other type and also that no domain 
holds modify access forT. The integrity model proposed by Clark and Wilson could also be used to express 
a CE policy. In that model, a subset of a system's data objects are labeled as constrained data items 
(CDis); the system maintains a set of authorized programs that are permitted to operate on the CDis, 
the transformation procedures (TPs), and the users that are permitted to run the TPs. Very few systems 
have implemented either Domains and Types or mechanisms corresponding directly to the Clark/Wilson 
model. Complexity of administration and implementation expense may account for this. Although these 
access control technologies have clear value, when only execution control is required, we believe that a 
product-quality CE implementation can offer similar execution control at lower cost. 

Virus countermeasures are also relevant to this work. As summarized in [5], virus countermeasures fall 
into four groups: prevention, detection, containment, and recovery. Virus detection can be performed by 
scanning executable files for particular virus signatures, by computing checksums on executable files, or by 
comparing program behavior to expected behavior as determined by an analysis of program source code. The 
major deficiency of these forms of detection is that virus code may execute before a virus is detected. When 
signature scanning is used, viruses whose signatures or behaviors are not known to the detection program 
may not be detected. Checksums may be vulnerable to viral attack. Similarly, errors in analyzing program 
behavior may permit a virus to spread undetected. Once detected, containment is the process of limiting the 

261 




further spread until the virus can be removed (recovery). Containment and recovery often require draconian 
measures such as isolating infected systems until "clean" versions of programs and data can be restored 
from backup media. As this can be expensive and time consuming, prevention is the preferable strategy 
where it is feasible. In the absence of a CE environment, virus prevention is mainly attempted through risk
reducing administrative controls that isolate systems from potentially malicious programs or keep track of 
suspicious network patterns [5]. CE-TCBs provide stronger control over the introduction and containment of 
computer viruses and worms because only system administrators can install or modify executable programs. 
This allows CE-TCBs to remain connected to open networks while preventing infection due to accidental 
or intentional installation of a virus by non-administrative users. CE provides a more useful prevention 
technique because systems need not be isolated to prevent infections. As an example, the internet worm [8] 
would not have spread to CE-TCBs. 

Future Directions 

Two new ideas have emerged from the CEU work. The first is the use of CE to bind software to hardware so 
that hardware suppliers can target (and price) hardware for specific customers and applications. The second 
is that, along with tamper-detectable or tamper-resistant packaging, CE may support remote monitoring 
facilities and allow the export of some high performance systems that could not otherwise be exported. 
Currently, some supercomputers must be constantly manned to ensure that they have not been diverted to 
unauthorized applications. CE may provide the same assurances without need for expensive and constant 
human monitoring. Research is ongoing [15] on the formulation of both software and hardware protection 
measures and the corresponding organizational support (to ensure conformance on the customer's part) to 
provide this capability at reasonable cost. 

Other applications include combining CEU with MAC and improved accountability to reduce opportunity 
for exploitation of covert channels. 

Conclusions 

CE appears to be an extremely powerful policy for binding specific computer systems to specific authorized 
applications and for ameliorating system and data integrity threats. CE provides both a means to prevent 
unauthorized programs from running and a guarantee that, even if an authorized program contains malicious 
or erroneous code, the program cannot damage the CE-TCB. This provides a stable system on which to 
implement other policies such as disclosure and integrity policies. A particular benefit of CE-TCBs is that 
they are immune to typical virus infections. The internet worm [8], for example, would not have infected 
CE-TCBs because the worm's spreading technique depended on the ability to compile and execute malicious 
code on target machines. 5 

The functional requirements of Controlled Execution indicate that the policy may have wide applicability 
to operating systems. The UNIX interpretation of CE is compatible with standard UNIX concepts, requires 
few source code changes, and provides increased system integrity even in the presence of (installed) malicious 
root programs. This effectively addresses a major UNIX security weakness. The combination of increased 
control, high compatibility, and low cost appears to offer a middle ground for operating systems that is less 
costly than trusted systems and more resistant to a variety of threats than current untrusted systems. 

* 

References 
5 However, the worm might have compromised user accounts on CE-TCBs by guessing passwords. Such authentication 

attacks are not preventable using only access controls. 

262 



[1] 	 D.E. Bell and L. Lapadula, Secure Computer System: Unified Ezposition and Multics Interpretation. 
(Technical Report No. ESD-TR-75-306, Electronics Systems Division, AFSC, Hanscom AF Base, Bed
ford MA, 1976). 

[2] 	 K.J. Biba, Integrity Considerations for Secure Computer Systems, USAF Electronic Systems Division, 
Bedford, Mass., ESD-TR-76-372, 1977. 

[3] 	 W.E. Boebert and R.Y. Kain, "A Practical Alternative to Hierarchical Integrity Policies," Proceedings 
of the 8th National Computer Security Conference, Gaithersburg, Md., P. 18, 1985. 

[4] 	 W.E. Boebert, and C.T. Ferguson, "A Partial Solution to the Discretionary Trojan Horse Problem," 
9th Security Conference, DoD/NBS, September 1985, pp 141-144. 

[5] 	 D.M. Chess, "Computer Viruses and Related Threats to Computer and Network Security," Computer 
Networks and ISDN Systems, Vol17, 1989. 

[6] 	 D.D Clark and D.R. Wilson, "A Comparison of Commercial and Military Computer Security Policies," 
Proceedings of the 1987 IEEE Symposium on Security and Privacy, Oakland, Cal., 1987. 

[7] 	 F. Cohen, "Computer Viruses," Proceedings of the 7th DoD/NBS Computer Security Conference, 1984. 

[8] 	 P.J. Denning, "The Internet Worm," American Scientist, Vol 77 March-April 1989. 

[9] 	 Final Evaluation Report of American Telephone and Telegraph System V /MLS Release 1.1.2 Running 
on Unix System V Release 3.1.1, Oct. 18, 1989, CSC-EPL-89/003. 

[10] 	 J.A. Goguen and J. Meseguer, "Unwinding and Inference Control." Proceedings of the 1984 IEEE 
Symposium on Security and Privacy, 1984. 

[11] 	 G.L. Luckenbaugh, V.D. Gligor, L.J. Dotterer, C.S.Chandersekaran, N. Vasudevan, "Interpretation of 
the Bell and Lapadula Model for Secure Xenix," Proceedings of the 9th National Computer Security 
Conference, Sept. 1986, p113. 

[12] 	 National Computer Security Center, "Department of Defense Trusted Computer System Evaluation 
Criteria," DoD 5200.28-STD, December 1985. 

[13] 	 POSIX 1003.6 Draft 12, Sept. 1991. 

[14] 	 M.D. Schroeder, "Cooperation of Mutually Suspicious Subsystems," PhD dissertation, M.I.T., 1972. 

[15] 	 D. Sterne, "Safeguards and Supercomputers," TIS Technical Report TISR 461D, Aug 24, 1993. 

263 




ARCHITECTURES FOR C2 DOS/WINDOWS

BASED PERSONAL COMPUTERS~ 


Securing an "Unsecurable" Operating System 

Jeremy Epstein, Gary Grossman, Frederick Maxwell, 

Noble Veirs III, Albert Donaldson, Cornelius Haley2 


Cordant, Inc. 

11400 Commerce Park Drive 


Reston Virginia 22091 


ABSTRACT 

DOS and Windows-based personal computers 
have many well-known security problems. 
While there are many products which offer 
security features for DOS/Windows, assurance 
is notably lacking. A variety of solutions to 
meet the Trusted Computer System Evaluation 
Criteria (TCSEC) Class C2 requirements for 
both functionality and assurance are presented 
along with descriptions of advantages and 
disadvantages ofeach solution. While few of 
the approaches described here are new, we show 
that architectures which are theoretically 
suitable are not practical, and perhaps the "best" 
solution is obtained through careful balancing of 
tradeoffs. 

1. Introduction 
Personal Computers (PCs) based on MS-DOS 
[1,2] and related systems3 are known to be 

!Copyright © 1994 Cordant Inc. 

2Email addresses for the authors are: Epstein: 
jepstein@cordant.com; Grossman: 
ggross@cordant.com; Veirs: noblev@pulse-sys.com; 
Donaldson: al@escom.com; Haley: 
nhaley@cordant.com. 

3Henceforth, we will refer to MS-DOS and related 
systems such as Novell DOS collectively as DOS 
systems, specifying the variant when relevant. We 
include Microsoft Windows, which acts as an 
extension to DOS. 

highly insecure and cannot be secured without 
major architectural changes, primarily because 
they do not provide any separation between the 
operating system and applications. Because 
they are so widely used, it is desirable to extend 
the PC hardware and software architecture to 
meet the Trusted Computer System Evaluation 
Criteria (TCSEC [4]) Class C2 requirements. 
There are many ways to accomplish this task, 
depending on the resources available for 
developing the solution and the acceptable 
impact on the end user. 

This paper describes the DOS/Windows 
architecture and explains its fundamental 
problems. It then summarizes the requirements 
for a C2 system and describes a variety of 
approaches to meet the C2 criteria. 

2. DOS Architecture 
DOS is a highly extensible operating system for 
personal computers. It is routinely extended to 
support varying types ofl/0 devices and new 
applications. While it is intimately tied to the 
Intel 80x86 family of processors, it is an "open" 
system in that specifications for extending it are 
pub1ic4, and many companies build extensions. 

4Jn many areas the "openness" ofDOS is not by 
design, but rather because many ingenious 
developers have made the effort to figure out parts of 
the interface and to publish their fmdings. This has 
become more problematic as new interfaces become 
increasingly complex. 

264 


mailto:nhaley@cordant.com
mailto:al@escom.com
mailto:noblev@pulse-sys.com
mailto:ggross@cordant.com
mailto:jepstein@cordant.com


In a DOS system, the operating system and all 
applications share a single address space. 
Applications can request services from the 
operating system, from the Basic Input Output 
System (BIOS), or directly from the hardware 
(typically by executing IN and OUT instructions 
to read.and write device registers). While 
memory management is not built into DOS, it 
has been added using conventions such as the 
DOS Protected Mode Interface (DPMI [3]) 
specification, which describes how cooperating 
applications share the processor and memory. 
Unfortunately, use ofDPMI services is simply a 
convention, and is not followed by many 
applications. Many popular applications, 
including Microsoft Windows, do not adhere to 
the DPMI conventionss. 

Newer members ofthe Intel80x86 family (e.g., 
80386, 80486, Pentium) include a facility to 
create virtual 8086s. However, there is no 
capability to create virtual 803866 systems. In 
particular, unprivileged instructions can be used 
to detect whether the software is running in the 
most privileged level ofthe hardware. As a 
result, software can detect whether it has 
complete control ofthe machine and refuse to 
operate if it does not. Additionally, memory 
management hardware which could be used to 
provide virtual 8086 boxes is used by 
applications such as Windows for their own 
purposes. Hence, any attempt to create virtual 
systems is likely to encounter compatibility 
problems with existing applications. 

From a security perspective, DOS is a single 
user system which has none ofthe basic security 
features common in larger systems. All security 
is based on physical access to the computer. 
There is no concept of system logins or of 
access controls. By comparison, even 

5Applications which use DPMI services can run 
under Windows, but Windows itself cannot run under 
a system which provides DPMI services. 

6We will use the term 80386 to refer to the 80386, 
80486, Pentium, and compah'ble processors. 

commercial versions ofUNIX and VMS include 
identification and authentication facilities, 
access controls, and have operating system 
kernels which can meet the reference validation 
requirements for trusted systems. Thus, 
building a trusted DOS system is a much larger 
hurdle than building a trusted UNIX or VMS 
system, even at moderate levels of assurance. 

In DOS, the operating system can be 
manipulated by applications without limitation. 
Because applications share an address space 
with the operating system, applications 
frequently modify operating system data 
structures to take control of interrupts. For 
performance reasons, applications also bypass 
the operating system and make direct accesses 
to the hardware. DOS is typically extended 
using device drivers and Terminate and State 
Resident (TSR) programs, both ofwhich modify 
the operating system data structures by 
intercepting interrupts. Since security was not a 
concern for DOS developers, even the simplest 
forms ofobject reuse are not prevented (e.g., 
memory and disk are not cleared before 
allocation). As a result of these weaknesses, 
viruses and other forms ofmalicious software 
have flourished. 

3. C2 Requirements 
The TCSEC functional requirements for Class 
C2 fall into four areas: 

1. 	 Identification & Authentication (I&A): 
users must be identified (typically by 
providing a user ID) and authenticated 
(typically by providing a password) before 
using the system. 

2. 	 Discretionary Access Control (DAC): 
Access to objects on the system by subjects 
must be mediated by a DAC policy based on 
user and/or group identities. 

3. 	 Audit: Auditing of security relevant events 
must be performed. 

4. 	 Object reuse: Objects must be cleared 
before reuse by subjects belonging to a 
different user. 

265 




The objects to be protected on a DOS system 
are conventionally defined as 110 devices (e.g., 
serial and parallel ports) and the files on the 
disk7 • Memory and registers are not protected, 
because DOS systems are single-user at a time. 
Rather, all transient memory (including memory 
on peripheral cards) is cleared between each 
user session. 

There are several commercial products for DOS 
which meet the C2feature (I&A, DAC, audit, 
object reuse) requirements, including Assure 
from Cordant and Watchdog from Fischer 
International. Meeting the C2 assurance 
requirements is much more difficult, since DOS 
does not have anything which approximates a 
Trusted Computing Base (TCB) which can be 
used to ensure that the functions are not being 
bypassed or otherwise manipulated. Without a 
TCB, malicious software can disable the 
security software simply by overwriting 
appropriate parts ofmemory. Security remains 
intact only so long as the implementation 
remains unknown: the dreaded "security through 
obscurity". 

4. Possible Architectures 
In this section we describe a number ofpossible 
system architectures for a Class C2 DOS 
system. We divide the approaches in several 
different ways: 

• 	 Separation ofTCB and non-TCB using 
hardware or software. Hardware separation 
would place the TCB on a physically 
separate computer, while software 
separation will run both the TCB and non
TCB on the same processor, using existing 
hardware mechanisms (such as rings and 
memory protection) to protect the TCB. 

• 	 Granularity ofobjects protected and access 
control policies. As was previously 
mentioned, objects on a DOS system are 
normally considered to be the files and 110 
devices. Using coarser-grained defmitions 
ofobjects (e.g., entire disks rather than 
individual files) allows for some 
simplifications in the system architecture. 

All of these approaches rely on the fact that 
DOS workstations are single-user at a time, and 
not multi-user systemss. We will assume that 
the computers themselves are physically 
protected from tampering. This is a large 
assumption, since Pes are normally on users' 
desks and not in a locked computer room. 
However, it is necessary to assume that the user 
cannot use monitoring equipment to detect what 
data is being manipulated. 

After considering these basic issues, several 
architectures which take different approaches to 
these issues are presented followed by several 
alternative approaches. 

Untrusted 
Operating 
System 
and 
Applications 

Untrusted Applications 

Boundary 

System bus (TCB Boundary) 

lb: Hardware Separation 

7As will be seen later, other defmitions ofthe objects 8Tbere are multi-user DOS-compatible systems, but 
to be protected can have interesting effects on they are not widely used and we will ignore them for 
implementations. the purpose ofthis discussion. 

266 




4.1. Hardware vs. Software ICB 
Protection 
This section compares the hardware and 
software TCB protection mechanisms. In both 
cases we assume that the TCB will provide the 
required C2 features: DAC, I&A, audit, and 
object reuse. 

Software TCB protection schemes use memory 
management and multi-state features to partition 
the computer into two or more domains, one or 
more ofwhich contains trusted code, and one or 
more ofwhich contains untrusted code (Figure 
la). This is the traditional approach used in 
building trusted systems. To the best of our 

Hardware TCB protection schemes rely on 
having two (or more) CPUs. One or more of the 
CPUs run TCB code, and one or more ofthe 
CPUs run untrusted code (Figure lb). The 
system runs two complete operating systems: 
one in the TCB portion of the system, and a 
second (which may be the same or different) in 
the untrusted portion. The separation 
mechanism is the physical connection between 
the machines, which can be viewed as a 
network. All applications, including Windows, 
run on the untrusted CPU(s). Because DOS is a 
single-user at a time system, the complete 

I 
TCB I 
Bou~ 

I 

I 

I 

I 


L ______ _j 

uests 2b: TCB Mediation of File uests 

knowledge, every operating system successfully 
evaluated against TCSEC used this approach. 

In the DOS environment, software protection 
schemes have limitations. As previously noted, 
the 80x86 architecture provides for virtual 8086 
environments, but not virtual 803 86s9. Thus, a 
Virtual Machine Monitor (VMM) [5] can be 
constructed to provide virtual 8086s. However, 
any application (such as Windows and many 
third party memory managers) which believes it 
has control of an 80386 will be unable to runlO. 
As a result, the system might be less desirable to 
users. 

9yirtuaJ 80386 processors could be emulated or 
provided by single-stepping, both ofwhich are very 
slow and hence not feasible. 

lOA limited version of Windows, known as Standard 
Mode, can be run in a virtual 8086. 

contents ofthe untrusted CPU can be cleared 11 

between users to avoid object reuse problems. 

Hardware separation is implemented by 
building a board which plugs into the existing 
personal computer. The add-in board has a 
CPU, memory, and support chips (e.g., clocks, 
boot ROMs). It may also include 110 devices, 
as described in the next section. 

There are numerous advantages to a hardware 
separation approach. Perhaps most importantly, 
hardware separation is inherently more secure 
than software separation. Compatibility 
problems are minimized because the untrusted 
operating system and applications have total 

nwe assume that a trusted mechanism is possible to 
clear the untrusted CPU. In the worst case, this can 
be done by requiring that the computer be power
cycled between user sessions. 

267 




control of a CPU, just as they do at present. The 
add-in board could be used even in low end 
systems (e.g., 8086 or 80286 computers) which 
cannot support the multiple domains necessary 
for software separation. If the protocol is 
carefully defmed, it may be possible to build a 
hardware separation mechanism which is 
independent of the operating system being run 
on the untrusted CPU12. However, the tradeoff 
is cost: at least one extra CPU (with its own 
memory and support logic) must be added to the 
system. Because ofthe additional hardware 
cost, this approach might reduce the potential 
market for such a product relative to an 
approach which does not require a second 
processor. While hardware separation of a TCB 
has been used in operational systems, it has 
never been used in an operating system 
evaluated against TCSEC.l3 

4.2. Granularity of Objects Protected 
The objects in a system should be defined iil a 
way that makes sense for how they are used. 
For DOS systems, the two main types of objects 
are files and devices. Memory and registers are 
typically not objects because they belong to the 
currently logged in user, which is the only 
subject in the system. 

4.2.1. File Access Controls 
While DOS does not provide any access 
controls, third party products such as Assure 
implement a discretionary access control policy 
for DOS files. In Assure, the administrator can 
place access control lists (ACLs) on files, 
directories, and paths. As an adjunct to the 
traditional DAC policy, anti-viral features in 
Assure can be used to deny write access to 

12The TCB card could have a variety ofbus adapters. 
This would allow building C2 versions ofother 
systems, such as the Apple Macintosh, at a relatively 
nominal engineering cost. 

Busing a separate hardware device for the TCB was 
used in at least one network evaluation (the Verdix 
VSLAN), but has not been used in any operating 
system evaluations. 

executable files (such as .EXE, .COM, and 
.BAT files). Assure provides auditing on file 
operations. The Assure DAC policy meets the 
C2 criteria, and could be implemented as part of 
theTCB. 

The current Assure product works by 
intercepting file requests, mediating them, and, 
if acceptable, passing them on to DOS to be 
fulfilled (Figure 2a). Assure does not have a 
non-bypassable TCB, and hence does not meet 
the C2 requirements. Rather, the file requests 
must be intercepted and passed off to the TCB 
where they are mediated and fulfilled (Figure 
2b ). The access control database must itself be 
safeguarded by the TCB. In DOS there are 
several levels at which the intercept can occur. 
The most useful level is the redirector, which is 
intended to support remote file systems. Thus, 
the TCB boundary for file operations can be 
defined as the redirector interface, provided that 
the TCB is built in such a way that there is no 
other means to gain access to files. 

Rather than considering individual files and 
directories to be objects, another view is to 
consider disk partitions (known as volumes) to 
be the file objects. In this model, the operating 
system and applications might be placed in a 
partition which would be read-only, while 
individual users would have their own 
partitions. Sharing of files would be 
accomplished by putting them in a partition 
which is accessible to others. In this model, 
auditing could be performed upon the first 
access to a file in a volume, but need not refer to 
the specific file being accessedl4. The main 
advantage ofthis approach is simplicity: the 
access control decision is simply a matter of 
comparing the sector number being read or 
written to a range ofvalid sector numbers. The 
access control decision could easily be made in 
hardware, thus reducing the complexity of the 

14Since the audit log would only provide the volume 
identifier rather than the file name, the log would be 
of limited value to an auditor. 

268 


http:TCSEC.l3


TCB software and increasing the system 
performance. While this approach certainly 
meets the C2 requirements ofcontrolling access 
to objects, it does not meet user expectations for 
access control or audit granularity. 

A third view ofaccess controls is to view each 
disk block as an object, and mediate access to 
the blocks. This is not an unreasonable concept, 
since DOS provides primitives for accessing 
individual disk blocks (primitives that are used 
by many applications). Ifaccess controls could 
be set on each block, this approach could meet 
the C2 requirements. However, users think in 
terms offiles, not disk blocks, so it is not a 
particularly useful view. · 

problem is more difficult. If the devices are 
physically connected to the TCB (Figure 3a), 
the TCB hardware could perform mediation. 
Connecting all devices to the TCB is expensive, 
because it requires that the physical boards be 
modified to plug into the TCB card rather than 
the existing system bus, or that the logic be 
physically placed on the TCB card. However, if 
the devices are connected to the existing bus 
(Figure 3b), the TCB hardware cannot prevent 
access because the untrusted CPU is free to 
make requests without any opportunity for 
mediation. There are at least two ways to avoid 
this problem: reverse the roles or implement bus 
locking logic. 

CPU 

System bus (e.g., ISA) 	 System bus (e.g., ISA) 
I 

3a: Devices Connected to TCB Card 	 3b: Devices Connected to Bus 

4.2.2. Device Access Controls 
Just as there are several ways of thinking about 
files and directories, there are several ways to 
consider I/0 devices. Because of its nature as a 
single-user machine, all devices on an ordinary 
DOS system are available to a user with access 
to the system. DOS applications need not open 
devices; rather they simply execute hardware 
I/0 instructions to access the devices directly. 
To meet the C2 requirements we must provide 
some type of access control on devices. One 
approach is a single access rights for all devices 
on the system. It is more useful to provide 
access control on a per-device basis, so one user 
might have access to the modem in a system 
while another user might not. 

Implementing a DAC policy on devices is 
particularly tricky. In a software-separation 
approach, the operating system can use features 
of the 80386 architecture to allow or deny 
access to any device running in a virtual 8086 
box. In a hardware separation approach, the 

• 	 Reversing the roles means the existing CPU 
runs the TCB software and the add-in card 
runs the untrusted software. By doing so, 
the existing system bus can be made trusted, 
and the add-in card could have logic to deny 
access before the request is placed on the 
bus (i.e., a portion ofthe add-in card, which 
interfaces to the existing bus, is part of the 
TCB). This has the unfortunate side effect 
that if the add-in card has a lower 
performance CPU than the existing CPU 
(which would likely be the case to minimize 
the cost ofthe add-in card), upgrading to a 
C2 solution would reduce the system 
performance. 

• 	 Bus locking logic is the preferred solution: 
hardware on the add-in card watches the 
address lines on the bus, and determines 
whether the address is authorized. If it is 
not, the add-in card halts the bus (by raising 
the busy signal), thus crashing the machine! 
This is a drastic measure, but the only way 

269 




to stop an 110 operation which has already open, close, read, write) and send them across 
begun. the system bus. Virtually all applications, 

4.3. Example Solutions 
This section describes a number of systems 
which select different solutions to the problems 
posed in the previous sections. Each ofthe 
solutions presume that a trustworthy TCB 
(whether hardware, software, or both) can be 
built. The detailed design of the TCB for each 
case is beyond the scope of this paper; we focus 
on the system architecture. 

4.3.1. Hardware Desktop File Server 
In this approach, the TCB is protected using 
hardware separation. The existing CPU behaves 
as a diskless workstation. The TCB card 
includes the disk controller so the disks are 
physically inaccessible from the untrusted CPU. 
Serial and parallel ports are part ofthe TCB 
card as well so device mediation can be 
performed without having to crash the system 
(as previously described). 

The software running on the TCB card is 
primarily a file server, albeit one which services 
requests only from a single-user at a time. 
When untrusted software (including the 
untrusted operating system) needs file access, a 
message is sent over the system bus requesting 
the desired access. The protocol used could be 
NFSIS, NCP16, or a simpler protocol designed 
for this purpose. Although the file server 
software could be a UNIX system, a NetWare 
server, or any other similar system, 
minimization ofmemory requirements (and 
hence the cost of the TCB card) points to a less 
sophisticated file server. 

Software running on the untrusted CPU is 
generally unchanged. An untrusted redirector 
must be added to intercept file requests (e.g., 

lSNetwork File System, the de facto standard for 
UNIX environments. 

16NetWare Core Protocol, used for communicating 
with Novell NetWare servers. 

including those which directly manage system 
memory, can be run. The only applications 
which will not work are those which insist on 
directly manipulating the disk, such as Norton 
Utilities. Programs which access the serial and 
parallel ports would see the ports if the user is 
authorized to use them. If the user is not 
authorized, the TCB board will treat the 110 
requests as if the ports do not exist. 

The primary advantage of this architecture is the 
clearly defined TCB interface which has the 
potential for a high assurance system, while still 
retaining complete compatibility with existing 
applications. The primary disadvantage of this 
approach is the cost to the end user. Depending 
on the amount of memory required, the card 
could cost as much as the computer itself. 

4.3.2. Hardware Block Mediation 
This architecture is similar to the desktop file 
server concept. However, instead of 
intercepting.fi/e requests using the redirector 
interface, this architecture intercepts block 
requests and forwards them to the TCB. As 
such, it looks to the untrusted CPU like a disk 
controller rather than a file server. When a 
block request is received, the TCB reverse 
engineers the operation by examining the block 
number being modified and the type of request. 
By examining file system structures, it can be 
determined whether a block is part ofa file or a 
control structure. Ifthe block is part ofa file, 
the TCB can calculate what file the block 
belongs to and whether the user has the desired 
access to the file. If the block is part of the file 
system control structure, looking at the specific 
modifications (i.e., comparing the new image of 
the block being written to the old image on the 
disk) can determine whether a file has been 
created, deleted, or extended, and the 
appropriate access control decisions can be 
made. Attempts to make invalid accesses or 
modifications can be treated as unrecoverable 
110 errors on the disk, thus maintaining the 
fiction that the TCB is a disk controller. 

270 




Dynamic reverse engineering ofblock requests 
sounds quite difficult. However, the DOS file 
system layout is very simple. At least one 
productl7 has implemented this mechanism 
without substantial difficulty. Because the 
system only supports a single user at a time, it is 
possible to build a bit map ofblocks accessible 
to the user, hence reducing the reverse 
engineering overhead on each 110 operation. 

The main advantage of this approach is that 
even those applications which access the disk 
can operate, provided that they don't try to 
access parts of the disk that are denied by access 
control restrictions. The main disadvantages are 
that the TCB interface is difficult to justify (the 
semantics ofthe interfaces are very complex) 
and it is tied to a particular file system layout. 
The cost of the hardware is probably no less 
than the desktop file server approach. 

4.3.3. Hardware Partition Mediation 
This architecture assumes that mediation is done 
at the disk partition level, not the file level (i.e., 
user Smith can access anything in cylinders 0
27 and 95-124). Because the mediation is much 
simpler than any ofthe other architectures, it 
could be done by an enhanced disk controller. 
An add-in board could include hardware to 
protect devices, but need not have its own CPU. 
In this approach, the existing CPU would 
initially run trusted software. After initializing 
the device protection and partition information, 
the CPU would run untrusted software. 
Hardware features would prevent modifying the 
device protection data until the system is 
rebooted. 

Unlike the other hardware-based architectures, 
this one could be built fairly cheaply. Without 

17The Arbiter, from Automated Answers, Inc. uses 
this strategy for a completely different pwpose: 
connecting DEC Q-Bus and UniBus devices to PCs 
running DOS, Windows, or OS/2. To the DOS 
machine, a Q-Bus or UniBus disk looks like a DOS 
file system although it may really contain a VMS file 
system. 

the need for a second CPU and its memory, the 
add-in board could be very inexpensive. The 
untrusted software would not change at all, and 
the trusted software would be minimal. By 
mediating at the partition level, any untrusted 
operating system can be used. The tradeoff is 
flexibility: access control is at a partition level 
which provides minimal flexibility to an 
administrator or user. 

4.3.4. Trusted DOS 
This architecture is a software attempt to make 
DOS into a trusted operating system. Rather 
than defining the TCB interface as file requests 
(and running DOS outside the TCB as a diskless 
workstation), it tries to define all ofthe 
interfaces used by DOS applications and defme 
their security implications. It is architecturally 
similar to today's C2 and B 1 UNIX products: an 
existing operating system is enhanced, 
documented, and tested to meet the criteria. 
However, it is much more difficult to do for 
DOS, both because there are so many interfaces 
and because the lack ofanything approximating 
a TCB has encouraged applications to bypass 
the operatipg system. Thus, although it is the 
most straightforward approach conceptually, it 
is the most difficult to achieve and the most 
likely to have compatibility problems with 
existing applications. 

4.3.5. 	 Software Desktop File Server, 
Block Mediation, and Partition 
Mediation 

These architectures are the same as the 
hardware desktop file server, hardware block 
mediation, and hardware partition mediation 
(respectively), except that instead ofusing two 
CPUs, a Virtual Machine Monitor (VMM) is 
used to separate the untrusted software from the 
trusted software. The untrusted domain believes 
it is running on a diskless workstation (just as 
the untrusted CPU did in the hardware 
architectures), but instead ofmaking file or 
block requests to a TCB card, it makes the 
requests to a data server in the same CPU. The 
VMM enforces separation and passes messages 
between the untrusted and trusted software, but 

271 




provides no facilities on its own. Note that 
there are three operating systems running on the 
same CPU in this architecture: the VMM, the 
trusted operating system, and the untrusted 
operating system (Figure 4). 

Untrusted 
Operating 
System 
and 
Applications 

The advantage of these approaches compared to 
the hardware versions is that they do not require 
a second CPU with the attendant costs. The 
disadvantages are that they will not be able to 
run applications (such as Windows) which 
require complete control ofthe CPU, and that 
performance will suffer because of the 
additional overhead created by the VMM and 
the data server. 

4.4. Other Approaches 
This section describes several other alternative 
architectures which do not fit in the general 
scheme described above. 

4.4.1. Device-less Workstation 
Most ofthis paper has discussed means to 
provide controlled access to devices and files on 
a workstation. Another possibility is to make 
not merely disk-less workstations, but device
less. In this approach, workstations would have 
a CPU, memory, keyboard, mouse and screen, 
but would not have any floppy or hard disks, or 
other 110 ports. A modified network card would 
not allow promiscuous mode (which allows a 
workstation to listen to all messages on the 
network). Procedural controls could be used to 
ensure that the computer is power cycled after 
each user is finished, thus clearing all memory 
on the machine. Trusted software would be 
remotely booted from a file server, and all 
authentication would be performed by the file 

server, not by the workstation. As a result, the 
network must be physically protected from 
eavesdropping. Access to files could be via a 
network, which could enforce access controls 
instead oftrying to enforce access controls at 
each workstation. 

This is clearly the simplest approach to 
providing a secure workstation, as the 
workstation becomes an intelligent terminal. 
Just as dumb terminals can be used in trusted 
mainframe and minicomputer systems, so could 
a device-less workstation be used in a network 
environment. The clear tradeoff is usability: if 
the central file server is unavailable, all 
workstations are useless. As such, while we feel 
that such an approach could meet the C2 
requirements, it would not be particularly 
useful. 

4.4.2. Plug-In Chip 
One of the more unusual architectures is to 
perform mediation at the CPU level. In this 
approach, the existing CPU would be removed 
from its socket, an intermediate chip set in. 
place, and the original CPU plugged back on 
top. The intermediate chip would be the TCB 
and would have the capability to mediate each 
operation. 

There are two major problems with this 
approach: it may not be possible to do the 
physical operation and obtaining assurance from 
the design would be impractical. Many chips 
are soldered to boards, so they would not be 
able to work with this approach. Also, there are 
many different types of CPU chips (e.g., number 
ofpins, clock speed), and each would require a 
different mediator chip. It is far from obvious 
how to design a mediator chip which would 
enforce security policies such as DAC and 
auditing. For these reasons, this approach is 
mostly an intellectual curiosity. 

4.4.3. Hosting DOS on Other Operating 
Systems 
Perhaps the most obvious solution to building a 
trusted DOS workstation is to run DOS hosted 
on another system. For example, there are 

272 




several UNIX systems being evaluated at C2 or 
B 1 which include DOS emulators, and 
Microsoft is currently evaluating the Windows 
NT operating system which also includes a DOS 
emulator. IBM's OS/2 can also emulate DOS, 
and it appears capable ofmeeting the C2 
requirements. All ofthese are both reasonable 
and unreasonable: they would certainly make 
the task ofbuilding a C2 system simpler (it's 
much easier to build a C2 UNIX or OS/2 system 
than a C2 DOS system}, but all carry heavy 
penalties. While DOS can be run in 1MB of 
memory, and DOS with Windows can run in 
2MB, current UNIX, NT, and OS/2 operating 
systems all require at least 6MB (and preferably 
much more). Disk space requirements for 
UNIX, NT, and OS/2 are also much greater than 
DOS. Thus, the cost to the end user is 
significant in tenns ofadditional memory and 
disk space required. Additionally, the end user 
must learn to handle another operating system to 
get their job done. 

The second main difficulty with running DOS 
hosted is that none of the emulations are 
complete. Some applications simply won't run. 
Windows applications tend to be relatively non
portable. While the introduction ofWABI 
(Windows Application Binary Interface) may 
eventually yield the ability to run Windows 
applications compatibly on non-Windows 
systems, for now this seems to be a goal rather 
than a reality. 

S. Copclusjoos 
There are many ways to provide C2 DOS 
systems. The basic techniques have been 
known for years: building virtual machine 
monitors, trusted operating systems, and 
hardware separation. Because ofthe 
engineering realities ofDOS and the massive 
installed base, compatibility with ordinary DOS 
is critical for a product to have a chance in the 
marketplace. 

Unfortunately, none ofthe solutions are perfect. 
The hardware separation solutions are relatively 
expensive to the end user. Software separation 
solutions suffer from compatibility problems 

due to the lack ofa completely virtualizable 
processor. Perfonnance is a likely bottleneck in 
the software solutions as well. Trusted 
operating system approaches may have the 
greatest opportunity for compatibility, but 
would be the hardest to gain assurance. 

We do not believe there is a single "best" 
solution. Choosing the appropriate solution is a 
matter ofbalancing compatibility, perfonnance, 
and price requirements with engineering effort 
available. 

6. Acknowledgments 
The authors are grateful to other members of the 
Cordant development team who made many 
useful comments and suggestions on this article, 
including Ron Field, Mike Hantman, Rod 
Roark, Barbara Maguschak, and Mike Ryan. 
We also appreciate numerous conversations 
with our colleagues at Novell, including Craig 
Teerlink, Kevin Kingdon, and Doug Hale. 

7, References 
[1] 	 The Programmer's PC Sourcebook, 

Second Edition, Thorn Hogan, Microsoft 
Press, 1991. 

[2] 	 Undocumented DOS: A Progammer's 
Guide to Reserved MS-DOS Functions and 
Data Structures, Andrew Schulman, et. 
al., Addison Wesley, 1994. 

[3] 	 Department ofDefense Trusted Computer 
System Evaluation Criteria, DoD 5200.28
STD, December 1995. 

[4] 	 DOS Protected Mode Interface 
Specification, Version 1.0, The DPMI 
Committee, March 12, 1991. 

[5] 	 Operating Systems, Stuart Madnick and 
John Donovan, McGraw Hill, 1974. 

273 




A Practical Hardware Device for System and Data 

Integrity as well as Malicious Code Protection 


T.E. (Ted) Elliott 

Communications Security Establishment 

Department of National Defence 


P.O. Box 9703, Terminal 

Ottawa, Ontario, Canada 


KlG 3Z4 

613-991-7506 Fax: 613-991-7411 


telliott@cse.dnd.ca or, TEElliott@dockmaster.ncsc.mil 

Abstract 

This paper outlines an applied research project with an objective to develop a practical integrity prod
uct implemented in hardware. The analysis and rationale involved in this prototype development are 
presented. Areas where such hardware devices may be considered for integrity protection are presented. 

Key Words: National security policy, computer security, integrity policy, hardware device, read-enable, write
enable, disconnect, anti-virus, key-lock, storage access control, storage device, interface, mode of operation, 
intellectual property 

Introduction 

Many authors have provided a great deal of discussion of the theoretical concepts and alternative 
views on what precisely the term integrity should imply, both for "data" and for "system" 
attributes and the respective protection philosophies.£1 - 61 Little discussion or guidance for 
integrity protection is available within federal government doctrine 1 either within the United 
States or Canada. Although there is mention of integrity within the TCSEC[71 it is only within 
the confines of the trusted computing base: "System Integrity - Hardware and/or software features shall 

be provided that can be used to periodically validate the correct operation of the on-site hardware and firmware 

elements of the TCB (Class Cl)." In spite of the major expansion of the CTCPEC[81 to include integrity 
criteria, there has yet to be any product offered for integrity consideration regardless of whether 
confidentiality or availability forms part of the same product security policy. Considering the 
supplementary cost and "fuss factors" of traditional "trusted products", it was felt necessary to 
keep an open approach, if possible, to include any integrity product development that might also 
be used with all commercial operating system platforms. 

At the NIST/NCSC 1993 16th National Computer Security Conference two items are important. 
Mr. Pickering's keynote address stressed the importance of developing cost effective security 
products through international cooperation. As well, the need for an integrity model, for elec
tronic voting systems and other systems where life or safety issues are paramount protection 
requirements, was presented. [91 A prototype software program was proposed to properly identify 

Doctrine is used to cover security policy, standards and guidelines. 

274© 1994 - by T .E. Elliott 

mailto:TEElliott@dockmaster.ncsc.mil
mailto:telliott@cse.dnd.ca


executable software on the IBM PC platform and this relates somewhat to system operational 
integrity.[lO] 

In summary, there are no specific ways for addressing integrity from within the Canadian and U.S. 
federal government doctrine now available- no defined integrity labels, tags or integrity process 
controls are available. At present in the U.S. "No government wide schemes exist which are based on 
the need to protect the integrity or availability of information."l11l However, the same paper includes 
"Interpretation of the Computer Security Act's definition of sensitive is, ultimately, an agency responsibility. 
Typically, protecting sensitive information means providing for one or more of the following: 

Integrity - The information must be protected from errors or unauthorized modification. 

Another Bulletin in this series from NIST concerning security issues in public access systemsl12l 
lists specific security issues: 

#1. - Maintaining Data Integrity ... 
... #5. - Preventing Computer Viruses ... 

#6. - Legal Considerations ... 

The first, maintaining data integrity, includes mention of using CD-ROM technology for on-line 
data storage for distribution with physical protection from user modification. Under discussion 
of virus prevention there is no mention of any other hardware technology. For guidance on legal 
issues operators are urged to consult legal counsel. 

There are too few hardware products, with integrity features, presently available in the client/server 
or desktop environment. Previous work involving a combination of software and hardware 
functionality was uncovered in the course of this work, but was not evidently available in 
commercial production.l13l 

Background and Analysis 

When any computer system is required to be secured and examined, for purposes such as audit, or 
for a police expert's forensic court evidence, how can the integrity of any information residing 
upon storage devices be assured? These platforms, in most cases, also comprise non-trusted 
operating systems. Upon power-up, how can the integrity of their total information set, retrieved 
from write enabled storage, be adequately assured? 

A number of years ago, a project database system within the federal government was running 
at two separate sites, utilizing duplicate application environments and database files. During a 
backup at one site, operator error unknowingly damaged the hard disk before the diskette backup 
was started. Murphy was the operator's best friend because only one set of diskettes were used 
and these were overwritten with the backup of the severely damaged hard disk volume. A panic 
call was received requesting a complete set of the database files from the second site. Seven 
DOS diskettes and fifty-six files were copied and rushed by taxi to the second site for restoration 
of the database by the application programmer. Fifty-four of the files copied without error to a 

© 1994 - by T .E. Elliott 275 



PC with a replaced hard disk, but two files could neither be recovered by DOS nor with Norton 
UtilitiesTM. Immediately, the security officer had good reason to ponder the integrity of the sole 
remaining database! As it turned out, a second copy of the two suspect files was successfully 
used to complete the restoration of the damaged site's operations- but what do we really have 
even today for maintaining "integrity" with any database system, over any operating system? 
Further, not even the expert application programmer knew that the DOS verify command should 
have been set to "Verify ON" for all operations. It seemed to me that even with this installed, a 
lot of third party software would not utilize "DOS verify on" when backup to tape was employed. 

During the second week of February, 1994, Sybase, one of the vendors of Trusted database 
products, currently undergoing evaluation with the NCSC of NSA were making a product an
nouncement and demonstration in Ottawa, the capital of Canada. Based upon my questions with 
individual staff of this particular company, there appeared to be some interest in considering 
feasibility of adapting their database software to not only reside behind read-only hardware 
protection, but to also consider allowing storage volume(s) of data also to reside behind such 
protection, when production requires only read access for most users. 

Since 1985, incidents of malicious code interruption or data loss to federal processing systems 
have been reported at an increasing rate.2 And, this is in spite of an investment which I believe 
includes "anti-virus" and related scanning and virus removal software that has cost the taxpayer 
millions if not billion(s) of North American "dollars"! Now, I believe there has never been 
a malicious code incident involving the standard facsimile system, at least those that do not 
employ computer processing and storage devices. In addition I've often heard system security 
colleagues say to me "If the product is only implemented in software, it's probably not strong 
enough." They would say this to me with the TCSEC and the CTCPEC (criteria) objectives 
having been held close to their hearts (and mine). Ancillary to this of course was the corollary 
statement "If it requires reasonably strong "trust" the product would employ a hardware basis." 

In 1986 I received an 8086 Intel based ffiM-compatible PC XT complete with a 20Mb hard 
disk. Within two years I was planning the addition of a modem to allow me to link this "private" 
host to those available on dial-up lines. Being aware that some "public" bulletin board systems, 
the Internet, and related environments may be plagued with malicious code and "unauthorized 
actions", I was concerned about my own personal reputation, i.e. integrity, should any of my 
PC information become tainted with any malicious code - criminal action, modification etc. In 
signing for authorization of my access rights to Internet hosts at CSE, called manitou and at 
NSA, called dockmaster, I felt apprehension with particularly my own hard disk storage content 
and its "integrity" over which I had not even had reasonable configuration controls or related 
tools. Furthermore, off the shelf software from the local KMart might contain anything 
it didn't even run when loaded! What I would have liked was the ability to boot the PC as 
a "dumb" terminal, with only basic local printing and communications software protocol, and 
occasionally down/upload with diskette(s). No write capability was desired from the whole hard 
disk storage during such remote access. 

In Canada, the Royal Canadian Mounted Police EDP Security Branch have the responsibility to assist all federal institutions 
except for the Department of National Defence, and this includes a special team of experts for assisting them on request concerning 
malicious code incidents. 

276© 1994 - by T .E. Elliott 



Based upon the above experience as a starting goal, I set about planning to define what might 
be within possible grasp. As well my objective was to achieve a product that might help the 
widest possible domain, and which coincidentally may be novel enough to warrant granting of 
intellectual property rights. Figure 1 presents my view of those relevant parts of the PC platform, 
as one example. The figure of course is applicable to any other platform such as offered by 
SUN, Hewlett Packard, Digital Equipment Corporation and the many other manufacturers. 

Area for research work 
ST-506 Hard Disk Drive (20 Mb) (between 1/F and drive) ----- ,---· ....----.... ....... _ 


Ribbon Cable (1/F to drive) 
(34 conductor) ----- ___ ..._ 

, 
,-'~'A:" drive floppy..'' 

, ,' , , 

,, 
I , 


: "B:" drive floppy ,,'
1 

I I , 


r---------------r 

' ' I' 

•' 
I 

' ' ' ' ' ', 
I 

I ' ' ',
' ' 

I ' ' 
I 

Note: The 20 conductor cable from the I BUS with slots cin PC Motherboard 
interface card to each hard disk is not 

I 
I 
I

changed with installation of prototype, and 
I 
I

is not shown in the figure. 

Disk Interface Card (MFM, ST412) 

Figure 1 - Locating the possible Hardware Control Locations 

In view of the design shown there would not seem to be much that can be done without major 
cost implications within the motherboard of the PC design. Nearly all of the CPU processing 
and memory chip technology is purged upon power off, or reset, and nearly all of both the DOS 
operating system and application software is loaded from the hard disk at either power up or 
re-boot. Now when the loading of the CPU and motherboard components occurs at power up 
(or re-boot) the storage device must function in read-only fashion, but in the case of magnetic 
disks, such as the 20 Mb model of the present platform, it was, and still is, designed to be only 
operable in the combined "read and write enabled" fashion. This totally exposes the disk as a 
"wide open" vulnerability to any conceivable threat agent, malicious code, unauthorized activity 
or natural accident! My personal goal therefore was to provide a security (special operation) 
control for the specific mode of connection between any/all system storage devices and the CPU 
or mother board. By accomplishing this goal I would attempt to allow improved control through: 

1. installing new software or operating system or data files with "read & write enabled" mode; 

© 1994- by T.E. Elliott 277 



2. 	 changing appropriate disk volumes to lock them in "read-only enabled" mode~ 
3. 	 changing appropriate disk volume(s) to lock them in disconnect ("read & write disabled") 

mode; 
4. 	 forcing object reuse by ensuring power off sanitization before the mode change is effected; 
5. 	 reporting to the operator, any attempt to conduct a write or read operation that was not 

permitted by the current operational mode (for each disk). 

Indeed, the floppy drives provide some of the above functions already. Reference to the various 
types of information is also appropriate at this point. Figure 2 shows at least three various types 
of information resident within the storage device(s) of any system. 

User Data 

e.g. files in Wordperfect or 
Publisher format, etc. 

Application (Software) 

e.g. Wordperfect, Publisher, etc. 

Operating System (Software) 
1·-----
I 

e.g. DOS, UNIX, TXENIX etc. I TCBI 
I 
I 
I 

Figure 2 - Types of Information 

All of these types of information are stored on one or more computer storage devices connected 
to the central processing unit or mother board, in the typical PC. It was therefore expected that 
all could be protected for integrity purposes if a single device could be conceived! 

Accordingly, planning and design was done for the following hardware prototype. 

Prototype 

Purpose 

The prototype (Hardware Protection Control for Computer Storage Devices) provides user control 
of read and write access to each connected storage device(s). The primary intent was to achieve 
a hardware only (i.e. no software is involved) implementation of the following device security 
policy: User, or a special security-authorized user is provided absolute control of read and write 
action to all storage devices by a physical switch, in which only hardware would be used. No 
software or firmware was desired for the avoidance of increased risk and evaluation costs. 

© 1994- by T.E. Elliott 	 278 



First Implementation 

The prototype device was made for the IBM PC XT/AT and IBM compatibles that use the ST506 
disk I ST412 disk interface standards. The prototype design was based upon a half-card, with 
certain Tempest design considerations, and an extra ribbon cable to insert it between the existing 
system disk controller and the physical disk drive(s). Component costs were approximately $100 
(without Medico lock). Alternative designs may be easily implemented for other storage device 
interface standards e.g. SCSI, IDE, etc. 

Functional Description 

The device as prepared offers three different modes of hardware operation, selectable by physical 
switch3: 

1. 	 Normal Operation with both read and write enabled; 
2. 	 Protected operation with only read enabled but write disabled; 
3. 	 Disconnected operation with both read and write disabled; 

The selection switch may be an external toggle switch, an externally mounted Medico keylock, 
an internal keylock or by internal DIP switch. To prevent any "object reuse" or contamination 
when a new mode is selected, the user may require system reset or cold boot prior to mode 
change being effected. Present device mode setting indication may be provided by: 

a. 	 coloured LED e.g. (Position 1. Green, Position 2. Yellow, Position 3. Red) 
b. by other suitable means, such as switch position labels. 

When any error occurs an option to allow selection of: 

1. 	 reporting the error back to the system; or, 
2. preventing the error from being reported back to the system may be user setup. 

When an attempt to read or write occurs that is not allowed (in the present mode) then: 

1. 	 a sound annunciator beeper (with status active or inactive); or, 
2. 	 notice by other suitable means may be provided (e.g. light indication). 

There is also need to allow the device to control multiple devices, without restriction on the 
mode that each may be running in or be changed to. 

Applications 

Some typical installations may include: 

a. 	 With the switch in the Protected read-only position the system storage is immune from all 
modification, malicious code, viruses etc. 

3 A fourth mode may be feasible i.e. Special operation with write enabled but read disabled. 

© 1994- by T.E. Elliott 	 279 



b. 	 With the switch in the Protected read-only position in a sensitive text word processing 
application (e.g. on a hard disk containing MS-DOS and Wordperfect), all sensitive e.g. 
U.S.: Unclassified but Sensitive, or Canada: Protected-A, Protected-B or higher sensitive 
data is absolutely restricted to other storage, guaranteeing the hard disk cannot ever contain 
or receive such sensitive data and cannot float up to the "high water level of sensitivity". 
The storage device will remain "Black" regardless of "Red" information processing at any 
level or category of sensitivity to disclosure. 

c. 	 With the switch in the Protected read-only position on a hard disk containing any trusted 
system or secure application software (e.g. financial and banking functions), the information 
integrity is and shall remain absolute. 

d. 	 With the switch(s) Disconnected removing read and write MS-DOS system access, and 
allowing read-only access to MS-DOS boot and communication software (e.g. terminal 
emulation of dumb terminal mode for remote trusted host workstation access) the PC is 
reduced to the minimum for trusted system access; integrity of the terminal emulation setup 
is guaranteed by Read-Only mode while the more powerful MS-DOS system is removed 
(no read or write). 

e. 	 With storage device(s) secure in the Protected read-only mode, for software, including 
trusted tools, used for development of trusted products, one can be assured of their maximum 
integrity in a fashion parallel to the intent expressed in the "Yellow Books"14• 15 for a 
"closed environment". 

The prototype wire-wrap half card is shown in Figure 3. This card has been tested in a PC with 
live versions of selected malicious code and in all cases of use in both Protected and Disconnected 
mode of operation, the connected disk storage integrity was untouched. A commercial version 
was requested for installation of the device in an office virus scanning workstation, but at the time 
there was not any commercial design ready for such production. With the passage of time, the 
MFM interface has been phased out on all current PCs in favour of the SCSI and IDE interfaces. 

280
© 1994 - by T.E. Elliott 



Figure 3 - Prototype on a half card for a personal computer 

Summary 

This product prototype may assist in the refinement of criteria for integrity. Consideration of 
such a prototype under the Federal Criteria, under the CTCPEC, and under the Common Criteria 
to be released this spring may allow its basic product security policy to be validated or lead to 
appropriate prototype changes. This product is also available for commercial implementation 
should there be demand to allow this practical security to be realized, in its present form. Any 
readers or vendors who may be interested in commercializing this development are invited to 
enquire about a license agreement from Mr. K. Aspila, Director of Patent Administration, Tel. 
613-992-3800, Fax 613-995-5111, Department of National Defence, MOen George R. Pearkes 
Building, 101 Colonel By Drive, Ottawa, Ontario, Canada, KlA OK2. 

Acknowledgments 

The author is grateful for extensive training provided by the Communications Security Estab
lishment including legal encouragement from Mr. Reagan Walker of the Department of Justice 
and especially to Messrs. R. Gonzalez, R. Hysert and T. McKenzie for their contribution of 
hard work, support and encouragement. Mr. H. Kelly of the Department of Defence contributed 
significantly on this IP application. 

© 1994- by T.E. Elliott 281 



References 


1. 	 K. J. Biba, Integrity Considerations for Secure Computer Systems, Mitre TR-3153, The 
Mitre Corporation, Bedford, Massachusetts, April 1977 

2. 	 David Bonyun, I.P. Sharp Associates Ltd., Ottawa, Canada, A New Model of Computer 
Security with Integrity and Aggregation Considerations, Department of National Defence, 
Ottawa, Canada, Contract Report TP-78-4116-1, 21 March 1978 

3. 	 David Bonyun, I.P. Sharp Associates Ltd., Ottawa, Canada, Aspects of Integrity, Contract 
Report CP-86-5402-13, March 1986 

4. 	 Report of the Invitational Workshop On Integrity Policy in Computer Information Systems 
(WIPCIS), October 27-29, 1987, Bentley College, Waltham, Massachusetts, sponsored in 
part by the National Bureau of Standards 

5. 	 Zelia G. Ruthberg, William T. Polk, Report of the Invitational Workshop on Data Integrity, 
NIST Special Publication 500-168, September 1989 (377 p.) 

6. 	 Terry Mayfield, J. Eric Roskos, Stephen R. Welke, John M. Boone, and Catherine W. 
McDonald, Institute for Defense Analysis, Integrity in Automated Information Systems 
NSA/NCSC C Technical Report 79-91, 16 September 1991 (149 p.) 

7. 	 Department of Defense, Trusted Computer System Evaluation Criteria, (TCSEC, "Orange 
Book"), DoD 5200.28-STD, December 1985, 13 

8. 	 Communications Security Establishment, Government of Canada, The Canadian Trusted 
Computer Product Evaluation Criteria, Version 3.0e, January 1993 (available by FTP from: 
ftp.cse.dnd.ca login as anonymous, password: username@site) 

9. 	 Roy G. Saltman, An Integrity Model is Needed for Computerized Voting and Similar Systems, 
Proceedings of the 16th National Computer Security Conference, September 20-23, 1993, 
471-473 

10. 	Russell Davis, Software Checking with the Auditor's Aid, Proceedings of the Sixth An
nual Computer Security Applications Conference, Tucson, Arizona, December 3-7, 1990, 
298-303 

11. 	U.S. Department of Commerce, Technology Administration, NIST, CSL Bulletin- Advising 
users on computer systems technology, November 1992, Sensitivity of Information, page 
2, paragraph 2. 

12. 	ibid, May 1993, pages 3-5. 
13. 	Datapro Reports on Information Security, pages IS32-338-101 to -104, © 1989 McGraw

Hill, Incorporated 
14. DoD Computer Security Centre, Computer Security Requirements- Guidance For Applying 

The Department of Defense TCSEC In Specific Environments, CSC-STD-003-85, 25 June 
1985, "Yellow Book" 

15. 	DoD Computer Security Centre, Technical Rationale Behind CSC-STD-003-85: Computer 
Security Requirements --:- Guidance For Applying The Department of Defense TCSEC In 
Specific Environments, CSC-STD-004-85, 25 June 1985, "Yellow Book" 

282© 1994- by T.E. Elliott 

http:ftp.cse.dnd.ca


PARTITIONING THE SECURITY 

ANALYSIS OF COMPLEX SYSTEMS 


Howard Holm 

National Security Agency 


ATTN: C71 

9800 Savage Road 


Fort Meade, MD 20755-6000 

(410) 859-4458 


Holm@DOCKMASTER.NCSC.MIL 


This paper re-examines the problem of Trusted Computing Base (TCB) 
boundary definition with specific application to systems built from multiple 
components. Although the classic definition can be expanded in a relatively 
straight-forward way, the composition of components is rarely considered 

formally early enough to guide the product design. The concepts should be 
useful in product development, evaluation, integration, evaluation, and 

accreditation 

Keywords: distributed systems, networks, TCB, TCSEC, TNI, TDI 

June 3, 1994 

Over the past several decades, the most common information system architecture has progressed from 
isolated single-vendor solutions to highly integrated combinations of hardware and software from 
independent developers. The foundations of information system security were initially constructed 
with the early isolated single-vendor types of systems as models. The classical foundations can be 
extended to encompass the newer more complex architectures. However, there are few successful 
implementations which can be emulated. The goal of this paper is to provide a re-statement of infor
mation security fundamentals with respect to the more complex architectures. It is hoped that this will 
serve to provide a framework for discussion of security between developers, integrators, evaluators, 
and accreditors. 

Background 

As described in the Trusted Computer System Evaluation Criteria (TCSEC)[2], the Department of 
Defense (DoD) has a long history of research in computer security. Research by itself is insufficient to 
increase DoD security; the findings of the research must be reflected in available computer products. 

283 


mailto:Holm@DOCKMASTER.NCSC.MIL


The Security Policy 

The National Security Agency (NSA) Trusted Product Evaluation Program (TPEP) evaluates the 
security of computer products, and thereby provides a source of computer security advice and an 
incentive to produce ever more secure products. The primary metric used by the TPEP to assess secu
rity is the TCSEC, which is focused on stand-alone, multi-user, single-vendor systems. As systems 
have grown more complex, the TPEP has attempted to address the security issues with intetpretations 
of the TCSEC such as the Trusted Network Interpretation (TNI)[4] and Trusted Database Intetpreta
tion (TDI)[5]. The former was originally intended to address systems constructed from products that 
individually could not address all the TCSEC requirements. The later was intended to address appli
cations layered on an existing TCSEC system. 

It is the author's experience, as an evaluator for the TPEP, that many individuals fail to recognize the 
value of the systematic approach to systems security principals embodied in the TCSEC, but rather 
are distracted by the detailed requirements in the TCSEC and its interpretations into believing that 
none of the TCSEC principles apply to today's more complex technology. The remainder of this 
paper will attempt to show how those principles can be applied and provide some high-level exam
ples of implementation. This paper does not necessarily reflect current TPEP policy and any per
ceived differences should not be inferred to reflect changes to TPEP processes. 

The Security Policy 

The first and most basic principle which can be extended is that of the system security policy. The 
system security policy includes the confidentiality, integrity, and availability concerns related to the 
particular information system. It may also include a policy for accountability. This is traditionally 
embodied in a set of requirements. The TCSEC is an abstraction of many of the policy requirements 
for a general putpose Department of Defense (DoD) system. 

A policy need not be contained within one component of a system. The TNI is an example of parti
tioning (the TCSEC) requirements into a smaller set of requirements for each component. The IDI 
offers an alternate way to partition policy components among discrete software components. 
Although it is implied in the TNI, the TDI presents a more explicit argument that the requirements for 
each component are not completely independent and some must apply to every component. 

Hosmer [3] and others have examined the problems of integrating disparate policies. However, even 
if the policies of the various components are compatible with a global policy the implementation of 
the components may be incompatible. This is where many current implementations encounter diffi
culty. When each product developer determines the security requirements for his specific product, 
implicit assumptions are made about the policy enforced by other associated products. An integrator 
is then left to assemble the pieces and try to provide a coordinated policy as an afterthought. The 
TPEP program in its evaluations against the TNI requires a Network Security Architecture Document 
(NSAD). A well-written NSAD can be very useful in describing the policy and requirements 
expected by a component of other components. Some thought is currently being given to requiring a 

284 




The Security Domain 

"Trusted Software Architecture Document" for TDI evaluations that would describe the trusted appli
cation interface provided and/or expected by a product. 

While the TPEP use of these documents for evaluation is significant, it needs to become standard 
practice for integrators and accreditors to expect such documents. These documents should be made 
widely available early in a product's life-cycle. It does not help an integrator to build a cohesive sys
tem to be handed documents describing widely disparate security policies and implementation expec
tations. Thus even though the components may be enforcing some local policies, the usefulness of the 
NSAD is limited to those portions of the policies which are being enforced by the components as a 
whole, and to policies which build upon more primitive policies. 

The Security Domain 

Once the security policy is established, the system security features which implement the policy must 
be developed, analyzed and tested for each component and for the combined system. The traditional 
view is that there are exactly two types of entities; trusted and untrusted. With respect to this the 
TCSEC does a reasonable job of defining the Trusted Computing Base. 

Trusted Computing Base (TCB) - The totality ofprotection mechanisms within a computer 
system-- including hardware, firmware, and software-- the combination ofwhich is responsi
ble for enforcing a security policy. 

The "protection mechanisms" here must be seen not only as the mechanisms implementing the secu
rity features of the system, but rather everything that can affect the correctness of the security fea
tures. The TCB ideally demonstrates the three design requirements for a reference validation 
mechanism as described by Anderson [1]: 

1. 	must be tamperproof 

2. 	 must always be invoked 

3. 	 must be small enough to be subject to analysis and tests, the completeness of which can be assured 

Historical Definitions 

This historical paradigm of the TCSEC is to take the view that a system contains some information, 
and provides interfaces for accessing that information to system users. A boundary is drawn around 
the parts of the system that enforce the security policies with respect to that information. This then is 
theTCB. 

A traditional understanding of the TCB as used in the TPEP includes the following: 

1. 	 In general, all hardware (and firmware) must be part of the TCB because it operates at a level 
where it could subvert any security policies or mechanisms implemented in software. In some very 
restricted cases, it is possible to have non-TCB hardware, even for what are ordinarily TCB func

285 




The Security Domain 

tions (such as disk drives), through the use of hardware isolation mechanisms or cryptographic 
techniques. 

2. 	 All the mechanisms needed to meet the security requirements must be part of the TCB. The 
TCSEC requirements provide a good example of what is needed and is what TPEP evaluations use 
as the starting point for determining what is in the TCB. 

3. 	The fact that a mechanism is in the TCB does not mean that its only use is in the context of the 
TCB. For example, commands used by administrators and libraries used by mechanisms within the 
TCB can be used by non-administrators and need not be considered a TCB interface if the mecha
nism cannot affect the security policy when called from outside the TCB. 

4. 	Although not active components of the system, the databases on which the TCB software depends 
must be considered part of the TCB. 

This sort of definition is useful for determining what in the system needs to be controlled and ana
lyzed. But it has some limitations even in the historical context. 

For some policies, such as Discretionary Access Control (DAC) and object reuse, the only way to 
ensure that the TCB can always enforce the requirement is for everything a user executes to be part of 
the TCB. If users are not constrained to execute only TCB code then the code they execute may 

1. 	not invoke the expected TCB interfaces, 

2. 	 invoke additional TCB interfaces, or 

3. 	 simulate the effect of the expected TCB interfaces. 

This is the classic trojan horse style of attack. While TPEP evaluations do impose some restrictions 
on what a system administrator may execute in an attempt to limit this sort of attack, in general a non
administrative user is not so constrained. 

Another historical weakness is in the area of terminals. A subverted terminal could, for example, 
store passwords and recall them later. This is clearly something that could affect the correct operation 
of the security mechanisms. TPEP evaluations often assume a "dumb" terminal which has no pro
grammability. The interpretation of "dumb", if taken more seriously, would imply an examinable set 
of requirements limiting the functionality of the terminal. In a sense levying implementation require
ments on the terminal to support the system-wide policy. 

Expanded Definitions 

As network components have become more prevalent, it has become clear that a terminal is a very 
simple case of a connected component. In the case of more complex interfaces, an NSAD supplies the 
security requirements for the missing component. Nevertheless there is, at some level of abstraction, 
a system with a coherent security policy. Even Internet connected hosts have some sense of the larger 
policy restricting users to hosts for which they are authorized. In the case of simple hardware (e.g. 
disk drives and terminals) a short description of the security characteristics of the device would seem 

286 




The Security Domain 

appropriate. The policy they are required to conform to may be simply to be policy-neutral - neither 
enforcing any policies or impeding any of the larger system's policies. 

Multiple Security Domains 

Just as the TNI and TDI have allocated policy to different components, they have allocated the TCB 
to different components called TCB partitions and TCB subsets respectively. While the TCB is 
required to protect itself from everything outside itself a component TCB is not required to protect 
itself from the TCB of other components except to the extent the interface descriptions mandate pro
tection. 

In using the historical definitions, there are essentially only two domains: trusted and untrusted. This 
comes from the fact that the TCB requirements are explicit that the TCB not rely on anything outside 
itself. A more generalized notion is to break up the system interfaces into collections that have similar 
policies. 

Every information system used in critical applications would require the existence of a domain repre
senting the TCB. Special application systems might require nothing other than this domain. More typ
ical is the historical conception of a general purpose computer system. The system itself and 
administrators are trusted, the users are all trusted with their own data, but not with each other's. In 
these cases there is also an implied third domain - the outside world - and it is not trusted at all. 

In the following examples, the system and administrative domain is depended on by all the others and 
fills the role of the TCB. While from a TPEP evaluation perspective everything else is simply 
untrusted with respect to the TCB, in the real world there are gradations of trustiness, and potentially 
more mechanisms to implement the security policy. At the very least there are hierarchical schemes of 
trust where some domains are completely trusted by other domains, and peer domains where both 
peers trust some underlying domain, but not each other. There are also schemes where some domains 
are trusted only to a certain extent by other domains. This last case is the most difficult to characterize 
in integration documentation, and at some level of complexity may. not be adequately describable. 

The following example systems will be used to clarify the multiple domain concept. The term "TCB" 
will be used to refer to the most basic self-protecting part of the system. It is similar to a traditional 
TCB, however, in some cases administrative interfaces will not be included. The TCB and the "Out
side world" are always domains in the examples. 

Example 1: A University Computer 
A university computer system can be pictured with four domains. 

1. Administrators & TCB- completely trusted 

2. Accounting- trusted with student financial information, but not grades 

3. Registrar- trusted with all student grade information 

287 




The Security Domain 

4. 	Educators - trusted with limited student grade information and their own information 

5. 	 Students - trusted only with their own information, and not to modify their own financial or grade 
information 

6. 	 Outside World - e.g. hackers, former students 

In a system that allowed on-line manipulation of grades a facility (e.g. trusted path) to ensure that 
only authorized educators were able to manipulate grades would be needed as well as controls on stu
dent financial information. 

Example 2: A Hospital Computer 
A hypothetical hospital can also be pictured with six domains. In fact the domains here share many 
parallels with the University Computer. 

1. 	Administrators & TCB- completely trusted 

2. 	 Supervisors - trusted with all patient information 

3. 	Emergency Medical Staff- trusted with all patient medical information 

4. 	 Medical Staff- trusted with information on own patients 

5. 	 Accounting - trusted with patient financial, but not medical information 

6. 	 Outside World - patients, visitors 

It is clearly easier to imagine a hospital environment limiting users to a single application interface. 

Example 3: A Utility Company Operations Computer 
Perhaps the simplest end of the spectrum. A computer system trusted only to prevent unauthorized 
users' access. 

1. 	Administrators & TCB- completely trusted 

2. 	 Outside World - terrorists, hackers 

Example 4: A Networked Development System 
This is probably the most typical style of system used today. Not only are user interfaces of interest 
from a security policy standpoint, but interfaces to other systems are equally of interest. 

1. 	Administrators & TCB- completely trusted 

2. 	 Other systems within the department - completely trusted. 

3. 	Other systems within the company - trusted with company wide information 

4. 	 Users- trusted with their own information as well as public information, may be physically remote 

5. 	 Outside World - trusted to see press releases, etc. 

288 




Building Systems 

Here the system can not always enforce the security policy on data controlled by the users. However, 
it is responsible for correctly implementing a coordinated security policy with the systems in the 
fourth and fifth domains. 

Example 5: A DoD Multilevel System 
This is perhaps the most interesting example. There are no completely trusted users. Only the TCB is 
completely trusted. 

1. 	TCB- completely trusted 

2. 	 System Administrators - Trusted to administer parts of system when working together, but not as 
individuals 

3. 	System Auditor- Trusted with knowledge of all actions on system, but not to affect policy deci
sions. 

4. 	Compartment A users- Users trusted with their own information up to compartmented A 

5. 	Compartment B users- Users trusted with their own information up to compartmented B 

6. 	 Secret users- Users trusted with their own information up to secret 

7. 	Uncleared Users- trusted with their own information 

a. 	 Outside World - hostile countries, etc. 

This system can be envisioned with a great many constraints on the actions of users. The two person 
administrative control and the controls on the auditor are examples. It is also fair to say in this exam
ple that all the application code on the system (i.e. everything a user can execute) has some level of 
trust in an effort to prevent trojan horses. Guidelines for the introduction of software including analy
sis of the software will permit the policies, including DAC and object reuse to be strictly enforced. 

Building Systems 

If systems were custom built and designed specifically for the security policy of the purchaser very 
little more would need to be said. Unfortunately, most systems today are built by a specific site to 
meet their needs from collections of existing products from commercial manufacturers. This means 
that each site must attempt to construct a system that is secure as a whole out of pieces that may have 
more or fewer features and more or less assurance of correct implementation. 

The two problems that then present themselves are partitioning the security policy among the compo
nents and defining the TCB boundary both within each component and as an entity once the compo
nents are combined. An accurate and detailed interface security dependency description embedded 
within a view of the system architecture as presented by an NSAD can be a large step forward in pro
viding information to compose the components. 

289 




Evaluating Security 

As was stated earlier, developers need to improve the documentation of the security dependencies of 
and policies enforced by their products. Integrators need to relate their experience to developers to 
guide the creation of products with easily com posable and useful policies. Certainly with communi
cation components can be developed for at least some broad classes of policies although specialized 
policies implemented in only a few systems still present unique problems for composibility. 

For today, however, the poor development documentation leaves the integrator and evaluator with a 
significant amount of work even for widely used policies. In the absence of NSAD-like documenta
tion, a security policy and interface assumptions need to be developed for each component. These can 
then be compared to determine if the policy seems to be coherently implemented by the combined 
system. 

Evaluating Security 

TPEP evaluations seem to have begun to look at the world more in the manner advocated by this 
paper. Obviously, within the constraints of looking at systems for conformance to general require
ments rather than applicability to a particular environment, there is no way to look at the complete 
range of possible interface policies. However, some characterizations can be made even for general 
policies. 

Several recently evaluated products have been general purpose systems with a network interface eval
uated against the TNI. Those systems provided the evaluation team a NSAD describing the security 
assumptions at the network interface. The product NSADs will hopefully prove useful to integrators 
and accreditors when combining products evaluated with these documents. In addition, more effort is 
being put into describing the software interfaces for trusted applications both in systems that support 
applications and in the applications themselves. These examples should provide some experience 
with creating and using NSADs for combining products that will improve the usefulness of these doc
uments over time. 

Unfortunately, the limited scope of general purpose evaluations means that even widely used trusted 
application software for a particular product may not be in the TPEP evaluated TCB of that product. 
Integrators and acceditors are then forced to examine the trusted applications for each new composite 
system. This is particularly unfortunate if the applications enforce additional policy which the ulti
mate system security policy requires but the TCSEC did not. 

References 

[1] Anderson, J.P. Computer Security Technology Planning Study, ESD-TR-73-51, vol. I, AD-758 
206, ESD/AFSC, Hanscom AFB, Bedford, MA, October 1972. 

[2] DoD 5200.28-STD Department ofDefense Trusted Computer System Evaluation Criteria, 
December 1985. 

290 




References 

[3] Hosmer, Hilary H., "The Multipolicy Paradigm," Proceedings of the 15th National Computer 
Security Conference, October 1992, Baltimore, MD, pp. 409-422. 

[4] NCSC-TG-005, Trusted Network Interpretation of the Trusted Computer System Evaluation Cri
teria, Version 1, July 1987. 

[5] NCSC-TG-021, Trusted Database Management System Interpretation of the Trusted Computer 
System Evaluation Criteria, Version 1 , April 1991. 

291 




THE COMPOSITION PROBLEM: AN ANALYSIS 

Guy King 
Computer Sciences Corporation 


7471 Candlewood Road 

Hanover, MD 21076 


410/684-3573 


"Intellectuals seek only to understand the worldi but 
the point is to change it." (paraphrase of Karl Marx) 

Abstract. Because the "cash value" of previous construals of the so-called 
composition problem has disappointed expectation, this paper reexamines the 
foundations of this problem. It discusses the grammar of secure system 
composition and provides a conceptual analysis of the term "composable" i records 
insights suggested by the juxtaposition of secure automated information systems 
with nonsecure systems and with trusted productsi touches on the "logic" of 
secure system compositioni and offers a new statement of the composition problem. 

Keywords. Composition Problem, Secure System Integration, Standards, Trusted 
Products 

1. Introduction. 1 

In the current economic environment, government agencies and commercial 
enterprises desire as much as possible to satisfy their automated information 
system (AIS) needs through the use of commercial off-the-shelf (COTS) products. 
For secure AISs this has proved so difficult that the difficulty has been given 
a name: the "composition problem." 

The composition problem has been defined in various ways. One common definition 
is along the following (epistemic) lines: 

The composition problem is the problem of knowing what inferences one can 
make about the security properties of a composed system from the security 
properties of its constituent products. 

The constituent products of a secure system are ideally trusted COTS products 
which, having been successfully evaluated against a set of security requirements 
by the National Computer Security Center (NCSC), are named on the NCSC' s 
Evaluated Products List (EPL) . 

Since great quantities of ink have been spent to solve this problem and still the 
problem remains, a fresh look at the foundations of the problem seems in order. 
This paper documents an attempt at such a look. 

2. The Grammar of System Composition. 

'Combining two products to form a system' is logically prior to 'combining two 
trusted products to form a secure system'. Put another way: if two trusted 
products cannot be combined to form a system, they certainly cannot be combined 
to form a secure system. So before analyzing the grammar of secure system 
composition, we shall examine the grammar of system composition. 

Consider the utterance 

"Products X andY are composable into a systemS." 

1 This paper is based on work performed under Contract MDA904-93-C-B053 for 
the National Security Agency (NSA) . 

292 



Syntactically, "composable" is a polyadic operator: . it relates multiple 
constituents with some whole, thus: 

C ([X, Y], S) 

In the semantics of everyday English, "composable" means "able to be combined." 
In the utterance "Products X andY are composable into a systemS," we do mean 
that the two products are able to be combined; but we mean more than this. 

We mean also that they are able to be combined together to form some sort of 
unity, namely, the system S. When combined, the products do not merely exist 
"side-by-side," as it were, without any interrelation. Together they form a 
system, as we say, and together they satisfy the system's security requirements. 

When we say that two products are composable, we also mean to imply something 
about the ease of combining them. We do not mean that their combination is 
merely logically possible. We mean that it is relatively easy to combine the 
products to form a system. We mean that we should neither have to change the 
products nor to develop additional code in order to be able to combine them. 

3. Systems and Products. 

It is remarkable that the composition problem is viewed as pertaining to the 
composition of secure AISs from trusted (and untrusted) products but not to the 
composition of other AISs from untrusted COTS products. (Let us call these other 
systems "nonsecure," meaning by this that security requirements do not figure 
importantly in their design.) 

This is remarkable because secure AISs are, surely, just a species of AIS. It 
is a mystery, therefore, why composition should be a problem for the former but 
not the latter. 

This apparent anomaly is an important clue to the solution of the composition 
problem. 

Reflection reveals, first of all, that integrators of nonsecure systems from 
untrusted products have also faced the composition problem. They, too, have 
experienced difficulties trying to make two AISs interoperate, and trying to port 
an application to a different operating system (or a new release of the old one) . 
They speak of "the interoperability problem" or "the applications portability 
problem" rather than of "the composition problem"; but "What's in a name? That 
which we call a rose/By any other name would smell as sweet" (Shakespeare, [8]) - 
and "the composition problem" as fetid. 

Reflection indicates, second, that, though the perception is false that 
integrators of nonsecure systems have not faced the composition problem, there 
is good reason for this perception: an increasingly large number of untrusted 
COTS products are composable into systems. For example, popular COTS 
wordprocessing, spreadsheet, graphics, and DBMS software products are portable 
to a number of widely used operating systems; and various mainframe computers and 
workstations can interoperate through the use of standard communications 
protocols (TCP/IP, etc.). 

One strand of the history of the integration of nonsecure systems from untrusted 
products is, then, the story of the progressive conquest of the composition 
problem. 

Study of that history reveals, thirdly and most importantly, the means by which, 
in the sphere of nonsecure systems, the composition problem is being solved. It 
is being solved through the implementation of standardized interfaces, protocols, 
and data for.mats. 

This lesson is embodied in NIST's Applicability Portability Profile: The U.S. 
Government's Open System Environment Profile [6] (hereafter, "APP Guide") . Using 

293 




IEEE's POSIX Working Group P1003.0's OSE Reference Model as a basis, the Guide 
defines seven service areas (Operating System [OS] , Network, Data Management, 
Human/Computer Interface, etc.), each of which "addresses specific components 
around which interface, data format, or protocol specifications [i.e., standards] 
have been or will be defined" ([6], p. 10). 

As a glance at the APP Guide [6] or its Department of Defense (DoD) analog, the 
Technical Reference Model and Standards Profile Summary [1] (hereafter, 
"TRM&SPS"), shows, there exist very few standards in the area of security. And 
of the few which do exist, fewer still are rated high enough (using the APP 
Guide's rating factors of level of consensus, product availability, completeness, 
maturity, stability, de facto usage, and problems/limitations) to be included in 
the Profile. 

The TRM&SPS [1] names the Trusted Computer System Evaluation Criteria [3] 
(hereafter, "TCSEC"), as one of the security standards. The TCSEC, of course, 
is the document containing the sets of requirements against which candidate 
products are evaluated by the NCSC for trustedness. It is by now notorious that 
the TCSEC, published in December, 1985, was written with standalone mainframe 
computers as the paradigm of a trusted product; since its existence predates the 
rise of networked hosts and workstations, its requirements do not address 
interfaces or protocols for the communication of security information. (Security 
information includes the following: userids, passwords, audit data, groupids, 
security labels, privileges, authorizations.) This, quite simply, is the reason 
the composition problem is so severe for trusted products: since composability 
is not a TCSEC requirement, trusted products are not designed to be, hence are 
not, composable. 

This explanation of the problem of composition for secure systems arose from a 
comparison of secure with nonsecure systems. It could have arisen just as well 
by comparing secure systems with trusted products. 

Trusted products and secure systems (or, for that matter, products and systems 
generally) do not in concept differ in kind but exist on the same continuum, as 
it were. We say that trusted products are components of secure systems; but a 
trusted product can itself be a system. Also, a secure system can be composed 
of other secure systems. And a trusted product can consist of trusted products 
(for example, of an evaluated hardware platform and of an evaluated operating 
system) . But we could as well call this "compound trusted product" a secure 
system, since its components are trusted products. 

Given that the terms "trusted product" and "secure system" are thus relative, and 
that they can be applied to the same referent, how is it that INFOSEC 
professionals speak of the composition problem with respect to secure systems but 
not with respect to trusted products? Expressed otherwise: why is it possible 
(relatively) easily to engineer trusted products but not secure systems? 

The answer is obvious: a trusted product is relatively easy to engineer because 
the interfaces, protocols, and data formats necessary to compose the product's 
modules are defined by the product's developers. If in the development of a 
trusted product no developer cooperated with any other to define the interfaces, 
protocols, and data formats needed for inter-module communications but each made 
up his/her own definitions, then the composition problem would exist for trusted 
products, too. 

The composition of secure systems is a problem because the security-relevant 
interfaces, protocols, and data formats have been defined in no standards; the 
result is that each trusted product developer has had no choice but to define the 
external security interfaces, protocols, and data formats by his/her own lights. 
The Babel thus produced is the problem of composition. 

294 




4. The Grammar of Secure System Composition. 

When we say that two products can be combined to form a secure AIS, we mean that 
in the resultant combination there is minimal loss of the security properties of 
the constituent products; or, a maximal subset of the security properties of both 
products is inherited by the composed system. 

We mean further that this maximal inheritance, this minimal loss, proceeds in a 
rulelike manner. If it did not, then when users had need of a system with 
particular security features and assurances, they would have no basis for 
selecting these constituent products rather than those. If security property 
inheritance were not rulelike but arbitrary, then to compose, say, a Bl system, 
one would have no more reason to select as constituent products ones satisfying 
Bl requirements than ones satisfying B2 requirements, or C2, etc. (One could as 
well speak here of the CSn or LPn Protection Profiles of the Federal Criteria [7] 
as of TCSEC evaluation classes; or of the functionality/assurance ratings of 
international standards. TCSEC ratings are instanced here because of their 
widespread familiarity.} 

It was and is the intent underlying the EPL that users be able to infer, from the 
need for an AIS with certain security properties, the security properties of the 
trusted products from which to compose the system. This has also been the actual 
practice within DoD for years: if, for example, according to DoD Directive 
5200.28 [2], users need a system which satisfies TCSEC Bl requirements, they are 
to try to satisfy this need by composing their system of COTS operating systems, 
DBMSs, etc., which have an EPL rating of at least Bl. 

The rules of security property inheritance constitute the "logic," then, which 
secure system composition from COTS products should obey. Examples of theorems 
in this "logic" are: 

A system composed of a trusted and untrusted component (where the* 
untrusted component enforces none of the system's security 
requirements, and can circumvent none} has the rating of the trusted 
component. 

* 	 A system composed of (say} two Bl components is itself Bl. 

* 	 A system composed of (say} Bl and C2 components has an overall 
digraph equal to the lower of the components' digraphs--in this 
case, C2 

(See also the NCSC Trusted Network Interpretation of the [TCSEC] [5], Section 
A.2, "Composition Rules."} 

When trusted products are designed to satisfy such theorems, then users will have 
the basis needed for selecting from among them when aiming at a system of a 
certain security functionality and assurance (Bl, say}. 

To summarize what is meant by 'two [or n] trusted products are composable into 
a secure AIS': 

The two products can be easily integrated with one another, in true 
"building block" fashion, 

(1} 	 without either of them being modified, 

(2} 	 without the use of integrators' "glue" (i.e., unevaluated trusted 
code}, and 

(3} 	 with maximal inheritance by the system of the products' security 
properties, according to a set of specified rules. 

295 




The results of this attempt to look again at the foundations of the composition 
problem suggest that we ought to reconstrue it along the following lines: 

{1) 	 To identify those properties which trusted products must come to 
have if they are to be composable in the above sense; and 

{2) 	 To draft and promulgate standards which require such properties of 
trusted products. 

5. Conclusion. 

In Section 1 above was described an epistemic construal of the composition 
problem; and the remaining sections ended with a reconstrual of this problem. 
In this concluding section an analogy will be drawn which, it is hoped, will 
confirm the error of the epistemic version and the correctness of the 
reconstrual. 

Imagine a world in which bricklayers seek to construct stable buildings using 
bricks not of the sort currently in use {rectangular, about 2.25" by 3.25" by 8", 
and of moist clay hardened by heat) but of varying sorts--some rectangular, some 
square, some pentagonal, some spherical, etc., with differing centers of gravity; 

2" by 	3 11 5 11some by 7" , some by 6" by 13" , etc. ; some made of hardened clay, some 
of steel, some of plastic, some of papier-mache, etc. Imagine next that, in 
response to the great difficulties they encounter in achieving stable houses, 
these bricklayers devote significant effort to cataloging the stability-relevant 
properties of the various sorts of brick as well as the kinds of relations which 
the sorts can bear to one another, and then to analyzing this data to discover 
what inferences they can draw about the stability-relevant properties of the 
resulting houses from the stability-relevant properties of the constituent 
bricks. 

The "construction problem" which the bricklayers expended so much effort to solve 
does not differ in essentials from the epistemic version of the composition 
problem. Guided by this statement of the problem, INFOSEC professionals have 
sought answers to analogs of the bricklayers' questions: 

{1) 	 What kinds of relations can trusted products bear to one another in 
systems? 

{2) 	 What are the security-relevant properties of trusted products when 
in such relations? 

{3) 	 What inferences can be drawn about the security-relevant properties 
of the composed system from the security-relevant properties of the 
constituent products? 

As with the bricklayers, so here: despite such cataloging and analysis, 
composing secure systems from trusted products is not significantly easier. 
Secure system integrators continue to bemoan the difficulty of their task; and 
accounts of their experiences remain a staple of INFOSEC Conferences. 

Nor is this surprising. The epistemic version of the composition problem is 
shown to be mistaken by the Fallacy of Composition, which has the following form: 

{P) 	 The members of a set, or the parts of a whole, have some property P; 
therefore, 

{C) 	 the set, or the whole, has property P. 

One example of this ~llacy is: 

all the parts of this machine are lightweight; therefore, 

this machine is lightweight. 


296 




Another example is: 

all the components of this AIS are secure; therefore, 

this AIS is secure. 


In short, it is fallacious to argue from the properties of components to the 
properties of the whole. 

NCSC C Technical Report 32-92, "The Design and Evaluation of INFOSEC Systems: 
The Computer Security Contribution to the Composition Discussion" [4], expresses 
it this way (p. 12) : 

" ... in general, one cannot ask about the composition of an arbitrary set 
of elements--one does not interconnect a VCR, a carburetor, and a toaster, 
independently of any system context, and then ask, 'what policy is 
enforced?' Composition does not occur by accident!" 

It's true: a secure system composed of trusted products must be engineered. 

This entails, among other things, that the component products must be designed 
to be securely composable with one another. That these products are not 
currently so designed is shown by the difficulty encountered by all who attempt 
to compose a secure system from them. Q.E.D.: current trusted products lack 
some properties necessary for them to be composable into secure systems; and the 
composition problem ought to be restated to address this lack. 

The bricklayers' analysis was ineffective because it did not change the 
properties of the various types of bricks used; bricks continued to lack the 
(standardized) properties necessary to make stable construction easy. Once 
appropriate standards were articulated and enforced for the production of bricks, 
easy construction of stable houses quickly followed. 

Likewise, current trusted products lack some properties necessary for them to be 
composable into secure systems. Once standards specifying those properties are 
articulated and enforced, easy composition will follow. 

Here, as so often in life, the trick is to know, of the things which are 
changeable, what ought to be conserved and what changed. Trusted products are 
changeable, and far more and better security can be realized if they are required 
to accord with appropriate security interface, protocol, and data format 
standards. 

297 




REFERENCES 

1. DISA, Department of Defense Technical Architecture Framework for Information 
Management {TAFIM) , Vol. 2, Technical Reference Model and Standards Profile 
Summary, Version 2.0, Final Draft, 1 Nov 93. 

2. DoD Directive 5200.28, "Security Requirements for Automated Information 
Systems {AISs) ," 21 Mar 88. 

3. DoD 5200. 28-STD, Trusted Computer System Evaluation Criteria {TCSEC), Dec 85. 

4. NCSC C Technical Report 32-92, "The Design and Evaluation of INFOSEC Systems: 
The Computer Security Contribution to the Composition Discussion." 

5. NCSC-TG-005, Trusted Network Interpretation of the Trusted Computer System 
Evaluation Criteria {TNI), Version 1, 31 Jul 87. 

6. NIST, Application Portability Profile (APP): The U. S. Government's Open 
System Environment Profile, Version 2.0, May 93. 

7. NIST & NSA, Federal Criteria for Information Technology Security, Vols. 1-2, 
NIST & NSA, Version 1.0, Dec 92. 

8. Shakespeare, Romeo and Juliet. 

298 




"MAKING DO WITH WHAT YOU'VE GOT" 


Janis W. Berryman Bruce F. Kennedy 
The Boeing Company Cubic Applications, Inc. 
P. 0. Box 3707, MS SE-74 PSC 303; Box 50 
Seattle, WA 98124-2207 APO 96204-0050 

ABSTRACT 

"Making Do With What You've Got" is a common-sense approach to enhancing system security with low
cost COTS (Commercial-off-the-Shelf) hardware and software. Today's economy and reality of industrial 
espionage is forcing companies to look at the cost of security and make choices. The choice to have a 
high level of security can be accomplished by purchasing National Computer Security Center (NCSC) 
approved software, i.e., A1 level. Most systems today are operating at either an NCSC-approved or 
designed-to-meet C2 level of trust. This paper offers an alternative to companies faced with the dilemma 
of needing additional security beyond C2, but having too few dollars to provide the added protection of 
approved A-1 rated software. The .solution is "Making Do With What You've Got" which implements, in a 
more rigorous fashion, selected features of NCSC Division B by addressing specific elements of the 
B1/B2 protection. The approaches taken by these authors for processing classified information are not to 
be interpreted as an elimination of the use of NCSC trusted systems. In fact, the NCSC levels are a refer
ence model for achieving a cost-effective solution. This paper includes a case study using Digital 
Equipment Corporation VAX/VMS systems to illustrate some practical applications of this concept. 

KEYWORDS 

Common Sense Approach; Risk Management; NCSC Levels of Trust; Cost-effective Security; VAX VMS; 
Risk-Assessed Compartmentation. 

INTRODUCTION 

Today's economy is currently at work in your computer rooms. Disguised as budget crunches and 
"No More in '94" business plans, it has forced computing security professionals and system ad
ministrators to become innovative, maybe even daring, if his/her company is to survive The 
Nineties. 

Historically, government agencies employed the concept of risk avoidance to ensure a secure sys
tem or network. By definition, the more money you spent, the more secure your system. 
Survivors of this way of doing business can espouse to the wounds of users and management 
demanding more access to a system or network, while customers were levying more security 
requirements - making the needed access almost impossible to achieve. 

Rather than continue with risk avoidance, companies must begin anew with risk management. 
More often than not, companies have a requirement to ensure separation of data and individual 
accountability. One way this could occur is with a requirement to protect sensitive or proprietary 
information in the commercial or unclassified world. Examples would include separating Human 
Resource or Medical data from engineering, design or technical data. Perhaps more familiar is the 
requirement to separate data based on a need-to-know or the need for individual accountability. 
Either or both of these requirements are found in classified environments. When this occurs, users 
are required to be uniquely identified and the operating system must maintain an automated audit 
trail. To do this, system administrators and computing security professionals rely on systems 
which have been rated at the NCSC Class C2 level. Class C2 systems are chosen because these 
systems are at the lowest hierarchical point of trusted systems designed to provide individual 
accountability and need-to-know protection. A C2level of trust only provides discretionary access 
control which restricts access to objects based on who the subject is and/or the group to which the 
subject belongs. A C2 level of trust cannot provide the capability to put trusted labels on the 
output. A human must review the content in order to provide the correct labeling of the output. 

299 




In general most companies with two or more projects requiring a protection of need-to-know and 
individual accountability have basically the following ways to do business: (1) dedicated resources 
(duplicate equipment); (2) dedicated periods, where each project schedules usage of the same 
resources; or (3) compartmented, where both projects are processed simultaneously within a 
trusted computer system which is relied upon to maintain the project and data separation. 

Processing with dedicated resources provides a company with the possible advantage of having an 
in-house system that may suffice. The disadvantage of dedicated resources is higher costs and 
longer lead times for facilities and hardware/software procurements. 

Dedicated periods processing implies that a company has the advantage of having existing re
sources to support both projects. The disadvantages of dedicated periods of processing are the 
need to schedule project time and inefficient computer use. 

Traditionally, companies faced with this dilemma have chosen NCSC-rated equipment for a trusted 
computer baseline (TCB). Defense companies relying on the TCB have the advantage that it is an 
easier way of getting customer approval to process. Disadvantages of processing in the compart
mented mode in the past have been the cost and schedule impacts of procurement and implementa
tion; sometimes loss of compatibility with other machines; cost of any required conversions when 
changing platforms to obtain and maintain a TCB; and often times an increase in operating costs 
due to the unique setup. 

Although viable options for some companies, the above three solutions all have one security con
cept in common - risk avoidance at whatever cost the company is willing or required to expend. 

RISK MANAGEMENT 

The need for companies to be innovative, cost effective, and results oriented is causing some com
panies to look at a fourth option; a new security concept called risk management. Risk manage
ment is a logical, rational, and cost effective approach that can meet the intent of the NCSC, B 1 
level of trust. Risk management meets the intent by combining physical, personnel, and system 
access controls with dedicated system and security administration providing rigorous configuration 
management. Sufficient controls are put in place to minimize human error and to provide audibility 
and accountability for user actions and system activity. Applied correctly, risk management pro
vides system and security administrators detailed knowledge of the circumstances under which 
users may gain unauthorized access to specified data, and enables them to implement additional 
countermeasures, if needed. Risk management lets the company be in control of setting its priori
ties. It ensures that all projects and users have state-of-the-art technology available for their use, 
and provides the tools for a company to work smarter and to enhance competitiveness. 

The accepted probabilistic equation for risk is threat times vulnerability times consequence less 
countermeasures. Threat is the probability that something will attack your system. Vulnerability is 
the probability that if an individual targets your system for an attack, he/she will be successfuL 
Consequence is the damage done when a successful attack occurs. Countermeasures are any pro
vision put in place to minimize the vulnerabilities of your system. 

Rather than use the probabilistic model, risk management evaluates all elements of the risk defini
tion, understands the cost of a successful attack either in terms of dollars or national security, and 
judiciously applies countermeasures. In short, risk management is understanding what you are 
willing to pay for a loss - either up front or after the fact. 

Figure 1 is a process flow showing the steps a company would take prior to implementing a risk
assessed security model. 

300 



No 

Set Initial Conditions 

Risk Acceptance 

Mission Accomplishment 
Net Savings = ROM$ - CM$ 

Risk Determination 

Figure 1 - Process flow for implementing risk-assessed security model 

Once a company has reviewed its requirements and determined that a risk management approach is 
appropriate, it must then set the initial conditions. Setting the initial conditions is an exami
nation of the options available and a determination of the rough order of magnitude (ROM) of costs 
for each option. Available options may be somewhat restricted, especially in the defense industry 
where accrediting authorities determine criteria for viable alternatives. Less restrictive in the com
mercial world, a company may be expanding its business base by acquiring another business, or 
reducing its operations through consolidation or centralization. 

To adopt a risk management security profile, the company must conduct a self-analysis of its 
existing security profile and assess the cost of maintaining that profile. Remember that a com
pany's total security profile includes physical, personnel and system access(es). A company 
should ensure good physical access controls over computer rooms, network trunks and placement 
of terminals and printers. Likewise, a company policy defining users who are authorized to have 
computer accounts should be in effect. During the self-analysis, a company must study and 
understand the level of security needed. Items such as proprietary information, the Privacy Act, 
regulatory agencies demands, and management philosophy are just a few of the areas that will need 
examination. 

Risk determination requires an assessment of threat, vulnerabilities, countermeasures, and cost 
of a loss. Table 1 on the following page is a matrix showing risk determination factors. 

Risk acceptance occurs when a company understands what data is being protected; how much it 
costs to protect that data; what data needs to be protected in the future; how much the company is 
willing to pay for future protection; and chooses an option available. A company determines the 
degree of risk it is willing to take by: (1) understanding the security features inherent in the hard
ware and software used; (2) knowing what system administration buys; and, (3) implementing and 
maintaining configuration control over the hardware and software to ensure the accuracy of the risk 
determination matrix. 

Inherent security features may not provide any security unless the capabilities of that system are 
properly evaluated and some effort is expended to implement them properly. A good example is 
the VMS 5.5 operating system. When the VMS operating system was first evaluated by the 
NCSC, Version 4.3 was rated as meeting a Division C, C2 level of trust in 1986. By 1994, 
Digital Equipment Corporation (Digital) has expended a lot of effort during its Rating Maintenance 
Phase (RAMP) in bringing this operating system forward, and has not overlooked some of the 
security controls required by commercial users of its product. As a result, VMS version 5.5 has 
are significant controls that a knowledgeable system administrator could take advantage of to 

301 




~ 


Table 1 - Risk Determination Matrix 

w 
0 
N 

DESCRIPTION/NCSC 
REQUIREMENT 

THREAT VULNERABILITY COUNTERMEASURE RISK 

3.1.1.3 LABELS Individual workaround 
requiring concentrated effort 

Network copy using explicit 
access via batch files. 

Disable explicit copy by using 
secondary passwords; audit trails; no 
interactive access to compartmented 
host. 

Low 

3.1.1.3.2.3 LABELING 
PANTED OUTPUT 

*AND* 

Accidental spillage; markings 
are not mandatory. 

An authorized user sees 
unauthorized data. 

Printing under control of centralized 
computing facility staff; all print jobs 
require use of banner pages for front 
and back of printouts. 

Low 

3.1.2.2 AUDIT ANY 
OVERRIDE OF PRINTED 
OUTPUT MARKINGS 

DITTO DITTO DITTO Low 

3.1.1.4 MANDATORY 
ACCESS CONTROLS 

Individual work-around of 
device ACLs requiring 
concentrated effort. Activity 
unable to be monitored. 

An operator may modify 
configuration either 
deliberately or inadvertently. 

Strict configuration management to 
ensure configuration integrity; audit 
trail documentation. 

Low 

3.1.2.2 AUDIT Unable to adequately monitor 
system. 

Lack of knowledge on system 
activity. 

Use knowledgeable system and 
security administrators to review 
system activity. 

Medium 

3.2.2.1.1 TRUSTED 
COMMUNICATIONS PATH 

Ethernet monitor. Inform
ation intended for another 
host may be monitored. 

An authorized user sees 
unauthorized data. 

Ethernet is fully enclosed within 
limited-access computing facility. 

Low 

Password grabber program 
emulating login. 

Legitimate user USERIDs and 
passwords may be 
compromised. 

Login terminals use VMS secure 
server feature (break key). 

Low 

Note: The Risk Determination Matrix is used as a tool to identify those areas covered by the Bl NCSC requirements which are not initially met with a C2 
VAXNMS system. Each requirement is evaluated for associated vulnerability and threat. Countermeasures are developed to offset the vulnerability and a risk 
determination is made which looks at the likelihood of the threat and the potential of the vulnerability given the countermeasures. This table shows those risks 
being assessed as Low, Medium, or High, but any scale could be used. For this Risk Determination Matrix, a risk of High was considered unacceptable. 



upgrade a security profile to meet the intent of a level higher than C2, without expending the 
dollars to buy such a system or additional third-party products. 

The second important item to risk management is good system administration. An infrastructure of 
well-trained, knowledgeable individuals who understand the system and are capable of implement
ing the system's available tools; who can administer it properly; and, who regularly maintain the 
established system and security administration baseline. Proper administration requires all security 
controls to be explicitly addressed. Users are allowed just enough access to do their job efficiently, 
and are encouraged to exercise discretion in permitting access to files. Privileges are granted only 
if absolutely necessary - not by default. In addition to user and system access, the company's 
computing security staff should be sufficiently trained to make effective use of their own system 
accounts to monitor system and audit trail activity. This would also allow for an informal 
implementation of the Trusted Facility Management requirement found in Division B, Class B2. 

Regular maintenance is important to catch potential problems early. It will ensure that users are not 
using "workarounds" for security. Early detection of security problems lets users know there is 
proactive administration, as opposed to reactive crisis-management of security incidents. 

Implementation of a sound configuration management program is a required baseline for maintain
ing a level of security. There is nothing wrong with a company knowing what their assets are, 
where they are located, how they are being used, and how they can be used in the future. Without 
a constant level of security, you cannot achieve a higher level. 

In a risk management approach, the resulting security profile requires achieving configuration 
control of your system administration as the baseline. Normally, system administrators are famil
iar with only software control, i.e., application, versions, licenses, compatibilities. Under risk 
management, the operating system parameters will be maintained similar to a software development 
environment. In a software development environment, lines of source code, version configura
tions, test cases, bug fixes, etc., are under configuration control. In a risk managed security envi
ronment, configuration management procedures will be in place encompassing items like: system 
administration parameters; default access control lists (ACLs); command procedures. 

After a company has determined its risk acceptance position, verification and testing is per
formed. The verification process has the following steps: (1) each countermeasure (see Table 1) is 
reviewed; (2) a course of action determined; (3) appropriate implementation is in place; and (4) 
effectiveness of each countermeasure is tested. For example: Using application of mandatory 
access controls requires placing Access Control List(s) (ACLs) on each device. The countermea
sure is implemented when the ACLs are in place. The effectiveness is tested by a three step 
demonstration as shown in Example 1, beginning with Step 1, Category B device ACL: 

Example 1, Step 1, Category B device ACL: 

VAXl > show device/full CATB_DISK 

Disk VAX1$DUB101:, device type RA70, is online, mounted, file-oriented 
device, shareable, available to cluster, error logging is enabled. 

Volume status: subject to mount verification, file high-water marking, 

write-through caching enabled. 

Device access control list: 


(IDENTIFIER=[CATB,*],OPTIONS=PROTECTED,ACCESS=READ+WRITE+EXECUTE+DELETE) 
(IDENTIFIER=[*,*],OPTIONS=PROTECTED,ACCESS=NONE) 

303 




Example 1, Step 2, ACL for Category B device top-level directory (Master File Directory or MFD): 

VAXl >directory/security CATB_DISK: [000000]000000.dir 

Directory CATB_DISK: [000000] 

OOOOOO.DIR;l [STAFF,SYSTEM] (RWED,RWED,RE,E) 

(IDENTIFIER=[CATB,*],ACCESS=READ+EXECUTE) 

(IDENTIFIER=[*,*],ACCESS=NONE) 


Example 1, Step 3, Category A user attempting to access the Category B device: 

$ SET DEFAULT CATB_DISK: [000000] 

$ DIR 

%DIRECT-E-OPENIN, error opening CATB DISK: [000000]*.*;* as input 

-RMS-E-PRV, insufficient privilege o~ file protection violation 


An entry is then made into audit log by the operating system. If the testing is unsuccessful, you 
would return to the self-analysis step. 

Throughout the whole process, a company must maintain thorough written documentation for each 
step. Demonstration requires affirmation that the process flow was completed in total. After a 
successful demonstration, an analysis of the cost savings would be conducted. At this point, 
defense industries would begin the process to get approval from their accrediting authority. 

The formula for cost savings is: Net Savings =ROM$ - countermeasure$. In the beginning, 
when initial conditions were set, options were identified and a rough order of magnitude of costs 
were associated with each one. With the information derived from completing the process flow and 
using the ROM and countermeasure dollars in the cost savings formula, a company can realize its 
best option. 

CASE STUDY 

The risk-assessed compartmented system methodology was applied to a small computing lab with 
three large-scale VAX platforms and one micro VAX all running VAXNMS V5.5-2. One VAX is 
a shared resource in batch mode for users on the other V AXes and the micro VAX. The main pur
pose of implementing a risk-assessed compartmented system in this environment is to provide the 
same level of computing resources for two projects (Category A and Category B). Category B re
quires only a small amount of interactive processing and can utilize a micro VAX for that purpose. 
However, it requires computing resources for batch jobs which far outstrip available funding. 

Applying the process flow, identified above, demonstrated that a significant cost savings would be 
obtained by sharing the large Category A batch machine (V AX3), Thus, the challenge is to imple
ment acceptable controls in this environment which can be accepted for a risk-assessed compart
mented system. 

There are three major areas addressed by the implementation for a specific system configuration on 
VMS: 1) separate characteristics for each account to identify clearance and authorization for access 
to a specific category of data; 2) the use of mandatory access controls through device Access 
Control Lists (ACLs) and login command procedure elements; and, 3) establishment of baseline 
network controls to restrict communications to authorized nodes and usernames. 

A basic configuration would consist of a microVAX (mVAX) dedicated to run Category B 
only. V AX2 is set up tQ run both Category A and Category B batch jobs with each project having 
its own data disk(s). the diagram shows that the mVAX Category B users are allowed access 

304 




only to the V AX2 Category B data. MV AX users are not able to access V AX2 Category A data. 
Mandatory access controls (device ACLs) are in place to prohibit Category B users from accessing 
Category A data. Figure 2 shows the DECnet configuration of the Microvax to the VAX and 
available node access. 

MicroVax VAX2 VAX1 VAX3 

Figure 2 - VAX DECnet configuration 

Both V AXl and V AX3 are Category A systems. The diagram shows that they have access to each 
other. V AXl users are only able to access (if authorized) VAX2 Category A data. Protections are 
set to prohibit Category A users from accessing V AX2 Category B data. DECnet is configured so 
that dedicated Category A machines (V AXl & VAX3) cannot communicate with the dedicated 
Category B machine (m VAX). The NCP (Network Control Program) files that configure and 
control DECnet have file protections in place to prohibit users from accessing or altering them. 

During account setup, users for specified categories will have separate accounts assigned with 
unique group User Identifier Code (UIC) numbers (i.e., not the same as a group using another 
category) and an associated rights identifier for that category and separate account charge. These 
accounts must be limited to TMPMBX and NETMBX privileges. 

Use of Mail is not affected by device ACLs, UICs, or Rights Identifiers. In order to disable Mail, 
the DISMAll., flag must be set in the user's UAF record. 

Mandatory Access Controls would require the use of Separate disks for Category A and B 
users. These disks should be restricted with the use of a device Access Control List (ACL). This 
ACL would limit access on that disk to the specified category rights identifier only. Example 2 
shows one possible configuration for a device ACL using the VMS ACL editor. The combination 
of the two ACL's is necessary to deny access to all other users. Also, default protections on the 
device (S,O,G,W) need to be modified to limit access. As long as a user matches the group and 
has GRPPRV or anyone who has SYSPRV, he/she can circumvent the ACL, unless default 
protection is set to (S:,O:,G:,W:)--no access for anyone outside of the ACL. This may require that 
the ACL include access for SYSTEM to do backups, or else ensure any process doing backups has 
the BYPASS privilege. 

305 




Example 2, Device ACL example using VMS ACL editor: 

$SET ACL/EDIT/OBJECT_TYPE=DEVICE DUB100 Omit colon 

(once in ACL editor, add the following ACE's) 

(IDENTIFIER=[CATB,*],OPTIONS=HIDDEN+PROTECTED, 

ACCESS=READ+WRITE+EXECUTE+DELETE) 


(IDENTIFIER=[*,*],OPTIONS=HIDDEN+PROTECTED,ACCESS=NONE) 


[ctrl-z] to exit 

$SHOW ACL/OBJECT_TYPE=DEVICE DUB100 ! Omit colon 

Device ACLs are not saved after system shutdown, and must be restored either manually or by a 
command procedure. The HIDDEN option can be used if users should not know about the imple
mentation of the security controls. However, it makes setup more cumbersome as it can only be 
added through the ACL editor. ACLs on the Master File Directory (OOOOOO.DIR) for each disk are 
retained after system shutdown and could be used to backup device ACLs. Queue-based ACLs 
would backup printer device ACLs. 

Note: Protected and hidden ACLs operate under special rules for modification and deletion. Any 
testing done with the ACLs should be done without these options set. After testing is complete, 
the ACL editor should be used to add those options. The ACLs should be hidden and protected 
prior to users having access to the system. 

Network access controls for DECnet must be implemented to prevent a user from accessing a 
Category A account from a Category B account and vice-versa. 

DECnet access explicitly using a username and password can be denied by requiring all users on 
the system to have a secondary password. A simple secondary password (such as 'CATB') would 
be sufficient to deny network authentication through explicit access. A secondary password can be 
set up on an account by doing MODIFY/PASSWORD=("",secondpwd) USER in AUTHORIZE. 

Using a simple secondary password effectively denies network authentication through explicit 
access. In the case study, this method should be required for the Category B users. If the user 
changes the secondary password, then it must be 6 characters long and unique in the same sense as 
the primary. This can be bypassed by allowing the user to log on once with a single password and 
change it. Example 3 shows how the account can be modified. 

Example 3, Initial Account Setup in Authorize 

$RUN SYS$SYSTEM:AUTHORIZE 

UAF> COPY/OWNER="John Q. Public"/UIC=[427,77]/DIRECTORY=[JQP]

/NOPASSWORD DEFCATB JQPCATB 

UAF> MODIFY/PASSWORD=FIRSTPWD JQPCATB 


<User logs in to account and selects initial password> 

$RUN SYS$SYSTEM:AUTHORIZE 
UAF> MODIFY/PASSWORD=("",CATB) JQPCATB 
UAF> MODIFY/NOPWDEXPIRED JQPCATB 

This will give all Category B users a short, simple secondary password and disable explicit access 
over the network. 

306 




Proxies have been set up on the m VAX only for V AX2. V AX2 proxies to m VAX are only for 
designated Category B accounts. No proxies from the mVAX are set to VAX2 Category A 
accounts. 

The use of SET HOST should be disabled. It can be limited or completely disabled. Limiting it 
can be accomplished through DCL commands in SYS$SYLOGIN. 

The DECnet configuration in NCP (Network Control Program) needs to be modified to allow 
access only from authorized hosts. This will ensure that other Category A machines on the net
work will not have access to the Category B m VAX. Example 4 shows the parameters used to 
disable connectivity to the mV AX (Step 1) and an example of what error messages are displayed 
when a user tries to access the m VAX from V AXl, and V AX2 (Step 2). 

Example 4, Step 1, NCP parameters to disallow access from a specific node 

ncp> set node 1.4 access none ! changes to volatile database 
ncp> define node 1.4 access none ! changes to permanent database 

Commands to remove the node name associated with the node address from the database (if they 
exist already) are: 

ncp> clear node 1.4 name ! changes to volatile database 
ncp> purge node 1.4 name ! changes to permanent database 

Example 4, Step 2, Attempted access from an unauthorized machine: 

VAX1 > SET HOST VAXCATB 
%SYSTEM-F-NOSUCHNODE, remote node is unknown 

Attempted access from an unauthorized machine using its DECnet address: 
VAX1 > SET HOST 1028 
%SYSTEM-F-UNREACHABLE, remote node is not currently reachable 

The rnVAX DECnet configuration is set to have VAXl, V AX2 and V AX3 unreachable to users. 
Node names have also been removed from the DECnet database to disable remote logins. 

File protections have been set on the DECnet configuration files and system login files to prohibit 
tampering. Example 5 shows the files and protections. 

Example 5, Critical system files and protections: 

SYS$SYSTEM: 
NCP.EXE;2 [STAFF, SYSTEM] (RWE, RWE, RWE,) 
NETCONFIG.COM;2 [STAFF,SYSTEM] (RWED, RWED, RWE, ) 
NETSERVER.COM;11 [STAFF, SYSTEM] (RWED,RWED,RE,E) 
NETSERVER.EXE;1 [STAFF,SYSTEM] (RWED,RWED,RWED,RE) 
NETPROXY.DAT;1 [STAFF,SYSTEM] (RWE, RWE, RWE,) 

SYS$SYSROOT: [SYSMGR] 
SYLOGIN.COM;94 [STAFF,SYSTEM] (RWED,RWED,E,E) 

The secure server feature of VMS has to be implemented. This will affect direct-patched 
terminals only. It is implemented by issuing the DCL command SET TERMINAL/SECURE
/PERMANENT <terminal-name>. This can be included in the 
SYS$STARTUP:STARTUP _ V5.COM file. 

307 




A system password can be required for direct-patch terminal logins. This is implemented 
through the DCL command SET TERMINAL/SYSPWD/PERMANENT <terminal-name>. This 
could also be included in the SYS$STARTUP:STARTUP _ V5.COM file. To set the system pass
word through AUTHORIZE, ADD/SYSTEM PASSWORD=SYSTEMPWD would do it. It can 
also pe changed by SET PASSWORD/SYSTEM at the DCL prompt. Terminals set up with secure 
server and system password require that the break key be pressed, followed by the system pass
word and carriage return. 

These preparations assume that the login source (direct-patch terminals) is defined in advance. 
Then SYS$SYLOGIN can be used to verify login from these terminals only. The above terminals 
are defined in SYS$SYLOGIN so that users will not be able to access Category B from other areas 
in the company. All users login initially using the system login file (SYS$SYLOGIN logical 
name). This login file tests to see what accounts are Category A or Category B. All Category B 
accounts are granted access only on the designated terminals and all other accounts are refused. 

The above implementation is not meant to reflect a comprehensive configuration, but should show 
some specific methods for enhancing V AXNMS to meet a more stringent security requirement. 
This configuration shows how manually setting up user configuration, rights identifiers and using 
device ACLs, the intent of Division B, Class B 1 security requirements can be met. This configu
ration is used in the risk determination matrix as the countermeasures to specific vulnerabilities. 
The approach taken to securing this V AXNMS network can be applied to other systems as well. 
Following the risk acceptance process flow and evaluating specific countermeasures for other 
systems would produce a result which could be analyzed for acceptable risk. 

SUMMARY 

Staying in business during The Information Age requires companies to bring security issues to the 
board room and make rational, logical, and cost-effective decisions. These decisions cannot be 
made without understanding: (1) what you are trying to protect; (2) what your threat and vulner
ability state is; and, (3) how much you are willing to pay, either in terms of dollars, time, or effort. 
The discussion of risk management in this paper was designed to give some insight into the steps 
required for a company to make the right decision at the right cost. 

REFERENCES 

Department of Defense Trusted Computer System Evaluation Criteria ('Orange Book'), DOD 
5200.28.STD, December 1985. 

Guidance for Applying the Department of Defense Trusted Computer System Evaluation Criteria in 
Specific Environments ('Yellow Book'), CSC-STD-004-85, June 1985. 

Guide to VMS System Security, Digital Equipment Corporation, June 1989. 

308 




MODERN MULTILEVEL SECURITY (MLS): 

PRACTICAL APPROACHES FOR INTEGRATION, CERTIFICATION, AND 


ACCREDITATION 


Bill Neugent, Mike Burgoon, Jeanne Firey, and Mindy Rudell 
The MITRE Corporation, 7525 Colshire Dr., McLean, VA 22102, U.S.A. 

Abstract This paper summarizes strategies for achieving Multilevel Security (MLS) and describes near-term MLS 
capabilities being fielded. It outlines approaches for overcoming remaining hurdles in the areas of application 
integration, certification, and accreditation. Approaches include central registration, automated tools to check fielded 
capabilities, and common accreditation precedents. Current common accreditation precedents are described that 
establish new ways of thinking about modes of operation and assurance for MLS capabilities. The paper is derived 
from and builds upon work performed for the Department of Defense (DoD) MLS Program. 

Keywords: Accreditation, Application integration, Assurance, Certification, Computer security, DoD MLS Program, 
Multilevel security 

Introduction* 

For years the target of skeptics, multilevel security (MLS) capabilities are now being 
successfully fielded at an increasing rate. Yet this long-sought success opens the door to new 
problems. Current MLS fieldings confront hurdles that are different in kind from past MLS 
efforts, in part because MLS capabilities must be changed frequently in the field and because any 
change can subtly yet substantially undermine the MLS foundation. 

The MLS capabilities currently being fielded are primarily workstations and guards. A major 
new element complicating MLS workstation fieldings is that security is dependent on the 
effective security integration of frequently changing commercial applications. Security guards, 
on the other hand, support few or no commercial applications but also can change dynamically, 
because of dynamic security sanitization and data releasability requirements. 

This new dynamic climate raises fundamental questions about how the Department of Defense 
(DoD) goes about correctly integrating, certifying, and accrediting such configurations. This 
paper also identifies other hurdles in achieving successful MLS fieldings and suggests 
approaches for addressing them. The approaches are being investigated by the DoD MLS 
Program, and might lead to some significant changes in how DoD manages MLS capabilities. 

Background 

Lack of MLS within DoD computer systems has long been recognized as a significant 
shortcoming, because it limits interoperability and data fusion. To help address this problem, the 
DoD MLS Program was officially established in January 1990. The Defense Information 
Systems Agency (DISA) is the program manager, the Joint Staff is the central proponent for user 

* 	 This paper is primarily derived from work performed under Contract DAAB07-94-C-H601 
for the Defense Information Systems Agency (DISA). 

309 



requirements, the National Security Agency (NSA) is the security coordinator, and the Defense 
Intelligence Agency (DIA) is the intelligence systems coordinator. The purpose of the DoD MLS 
Program is to expedite the fielding of MLS operational capabilities within DoD. 

The DoD MLS Program was created because the marketplace for MLS products has been slow to 
materialize. In a sense, MLS technology insertion has stalled and needs a push to get it moving 
on its own. DoD has invested substantial funds to develop criteria and evaluate products; vendors 
also have invested substantial funds to create MLS products in response to DoD criteria, but the 
products still are incomplete or immature. Assistance from DoD is needed in marrying the 
products to DoD operational requirements and environments. The strategy thus has been to fund 
the DoD MLS Program to acquire and field near-term MLS capabilities. (The term capability 
means a collection of one or more products or components that can be integrated into a system to 
provide operational abilities.) The DoD MLS Program applies resources in focused attempts to 
integrate and field existing MLS capabilities, work out their shortcomings, and smooth the path 
for subsequent fieldings. By this injection, the objective is to both satisfy critical DoD MLS 
needs and stimulate the marketplace. 

The DoD MLS Program strategy is to field the most promising products now as early operational 
capabilities in those applications and organizations where MLS needs are most acute, with 
resources focused on a small, common solution set. The strategy is to start fielding simple 
solutions; build incrementally to more complex capabilities; and expand from individual MLS 
components to common suites of components (e.g., incrementally add local area networks 
(LANs), database management systems (DBMSs), high assurance hosts, routers, and integrated 
communications security (COMSEC) products). Efforts are focused on the most mature products 
(e.g., those easiest to integrate, with effective vendor support). Much attention is placed on 
balancing security and useability. Much attention also is placed on seeing that the MLS 
capabilities fit easily into existing and near-term site architectures. For example, MLS 
workstations must be on a vendor platform already used by the site and must support common 
environments (e.g., Joint Deployable Intelligence Support System (JDISS)). New solutions are 
prototyped in laboratories. Then the concept of operation, security functionality, and the security 
design are worked out at a selected lead site. As capabilities are proven in the field, DoD MLS 
Program oversight can be phased out and widespread fielding of proven capabilities can proceed. 

Near-Term MLS Capabilities 

This strategy has been followed for several years and successful fieldings are ongoing. Currently 
the DoD MLS Program is focused primarily (but not exclusively) on four MLS solutions: the 
Command and Control guard, the Standard Mail Guard (SMG), two-level workstations, and the 
Operations (Ops)/lntelligence (Intel) interface. 

• 	 The Command and Control guard supports high-to-low and low-to-high flow between a 
command and control system and a lower-classified system. Essentially all transfers are 
fully automated, with guard review based on configurable context tables. 

• 	 The SMG supports two-way unclassified e-mail between classified and sensitive 
unclassified environments. The SMG is a joint effort of the DoD MLS Program and the 
NSA Multilevel Information Systems Security Initiative (MISSI). 

• 	 Two-level workstations are Compartmented Mode Workstations (CMWs) or other 
trusted workstations that are used to span two different environments (e.g., TOP 

310 



SECRET and SECRET). Normally the two environments spanned both operate in 
system high mode. 

• 	 An Ops/lntel interface is a CMW, placed in series with a filtering router, that can be 
used to span a security range greater than that which can be spanned by a CMW alone. 
The interface supports the key concept of an Ops/lntel user, who uses the workstation 
to operate in both environments. This solution is not limited to Ops and Intel 
environments. The only difference between a two-level workstation and an Ops/lntel 
interface is that the latter also includes a filtering router. From a user's view, both 
capabilities can be thought of as MLS workstations. 

In general, these capabilities are either guards or workstations. Security guards are devices that 
mediate data flow between systems at different security levels. Both guards listed above provide 
fully-automated review of data flow and are built on high-assurance platforms. 

Two-level workstations (and Ops/lntel interfaces) can provide richer functionality than guards. 
Because MLS workstations house the user interface, they can support an MLS operational view, 
even though the hosts and servers accessed operate system high. A user at an MLS workstation 
can be essentially a full-capability user of two systems at two different security levels and can 
transfer data between the systems. One MLS workstation thus replaces two system high 
workstations, while providing a look-and-feel similar to that of non-MLS workstations. Since a 
number ofMLS workstations support open systems standards, this is a forward-looking 
architectural approach that provides MLS for standards-compliant applications and supports a 
migration strategy to increased use of commercial software. 

Despite the promise of these solutions, there are significant hurdles in fielding such MLS 
capabilities. Some of the main risk areas are application integration, certification, and 
accreditation; all are discussed below. 

Application Integration 

Efforts to field MLS capabilities encounter the same integration problems as do other efforts 
(e.g., bugs in systems and applications, incompatibilities between applications, and lack of 
compliance with standards). Because MLS platforms enforce proper application behavior, they 
are not tolerant of applications that behave improperly. As a result, there are a variety of reasons 
why commercial applications might function incorrectly (or not at all) on an MLS workstation: 

• 	 Use of a license server, shared among multiple instantiations (at different security 
levels) of an application 

• 	 Use of temporary buffers shared among multiple instantiations of an application 
• 	 Use of disallowed system calls 
• 	 Attempts to seize the root window or the display color map 

In many cases, applications can run on trusted platforms only if they are given privileges such 
that they are allowed to bypass the Trusted Computing Base (TCB). This is unacceptable from an 
accreditation standpoint. Some trusted workstation vendors maintain a list of applications 
purported to run on their trusted platforms, but do not point out that the applications must be 
given extensive privileges in order to run. In one case, a vendor claimed that an application was 
running with no privileges, whereas further questioning revealed that the application came with a 
license server that had to be given MLS privileges. Sometimes an application can be made to run 

311 




without privilege by reducing its capability. For example, in some cases a color application can 
be accommodated by forcing it to run in monochrome or with a reduced set of colors. Sometimes 
an application will run properly on an MLS workstation, but a new release of the application will 
not. Even minor application upgrades to seemingly harmless packages such as untrusted word 
processors can introduce subtle new vulnerabilities. 

The best solution to these problems is to work with the vendors to have the commercial 
application software changed (for all users, not just for DoD). Vendors are sometimes reluctant 
to do this, but have proven willing when DoD can convince the vendor that the changes will 
increase the marketplace for the product. Sometimes it is not possible to change the commercial 
product and it becomes necessary for the integrator to write small trusted utilities (with limited 
system privileges) to perform simple MLS functions. An example of such a utility is one that 
mediates between different instantiations of an application that expects to communicate by 
shared software. In several cases, software developed by MITRE for such purposes has been 
incorporated by application vendors into subsequent commercial releases of the application. 

There are a number of reasons to be optimistic that applications will become more compatible 
with MLS workstations. In some ways, MLS workstations function as though they were test 
machines that verify compliance with client-server environment (CSE) standards. Some of the 
technical characteristics that prevent applications from running on MLS workstations also would 
prevent them from operating in a CSE. As systems and applications evolve to CSEs, they will 
become more compatible with MLS workstations. In addition, now that MLS workstation sales 
are increasing, MLS workstation vendors, government laboratories, integration contractors, and 
others are establishing integration and porting laboratories to investigate which applications work 
on MLS workstations, which do not, and how the ones that do not work might be changed to 
work. This has the effect of both applying pressure on application vendors to upgrade their 
products and helping them to do so. Finally, the DoD MLS Program is planning to start a 
"registry" of applications that run acceptably on MLS workstations, with specific instructions on 
how to configure the applications properly. 

Still, however, integration complexities will remain, due to applications that interpret standards 
differently, that use calls not allowable on secure systems, that exercise advanced operating 
system features not available on trusted workstations, or that simply do not comply with 
Application Program Interface standards or good programming practices. For the time being, 
substantial technical expertise is required to integrate applications onto trusted workstations. 

In a broad sense, achieving a secure configuration initially remains difficult, but probably no 
more so than for past MLS fieldings. The significant new complication is the continuing need for 
MLS integration as software applications change. Where feasible, one way to address the 
problem is to limit fieldings to a common set of applications, to rely on central integration offices 
to perform secure integration, and to share information among integrators and certifiers. 
Fortunately, this strategy is consistent with strategies in several DoD communities (e.g., 
intelligence, command and control, counterdrug), which are selecting common sets of 
applications to create common operating environments. Work of the central integration offices 
can be overseen by central certification offices. 

At a minimum, there must be central registration of fielded MLS capabilities, so that 
administrators can be alerteg to problems and fixes. For some security guards, a program office 
can support central registration. CMW s might be registered to a central DoD office. 

312 




Certification 

With both security technology and penetrator expertise advancing rapidly, much care is needed 
in certification. For MLS systems, effective certification is crucial. Even when the products in 
use have been rated by the National Computer Security Center (NCSC), much certification is 
needed to assess modifications to the rated product, to assess the integrated system as a whole, 
and to assess compliance with additional requirements such as integrity and denial of service 
requirements and requirements unique to the environment. Highly skilled specialized expertise is 
needed for the certification of MLS capabilities. These specialists must have the latest knowledge 
of attacks and vulnerabilities. 

The challenge is to achieve effective certification with minimal resources. One way to do this is 
to define and manage a set of common accreditation precedents, with recertification required 
only if changes to the system, threat, or environment are sufficient to invalidate the original 
precedent. This not only reduces certification costs, but also permits thorough certification of the 
initial precedent by highly qualified people. This managed precedent approach best applies when 
there are common environments whose needs can be met by common security capabilities. 
Common accreditation precedents are discussed in the next section. 

Initial certification must encompass the actual fielded configuration, to ensure that internal 
controls (e.g., UNIX parameter settings, security tables, application privileges) are properly 
configured. Proper configuration of the system can be as complex and important as designing an 
acceptable security architecture. A strong MLS design is of little use if the system is improperly 
configured. This is a crucial certification concern, because there will be strong incentives for 
integrators working under cost and time pressures to place more emphasis on getting applications 
running than on getting applications running securely, especially if there are not qualified 
certification personnel to review the configuration settings. Because of operational pressures to 
get new applications running and because even subtle configuration changes can undermine 
security, there are real dangers that some MLS capabilities might give the illusion of MLS 
while in fact creating vulnerabilities that were not possible in system high systems. 

Certification has too often been narrowly viewed as something that happens before a system is 
placed into operation. But certification does not end when the system becomes operational. 
Changes demand continuing certification as part of configuration management. Unfortunately, 
field security officers typically are not technically qualified and do not have the time to certify 
fielded (and changing) MLS capabilities. Automated security assessment tools are critically 
necessary to ensure that system security is maintained after the initial certification. Fundamental 
changes to the certification process are needed so that certifications require an in-place tool 
infrastructure that can accommodate continuous system changes. 

Commercial and freeware tools are available that assess generic systems (e.g., UNIX). These 
tools, such as Security Analysis Tool for Auditing (SATAN), also enable inexperienced people 
to launch automated attacks on systems. The existence of such tools to aid attackers makes it 
even more critical that the tools first be used by defenders to test defensive fortifications. MLS 
systems require tools that assess for proper MLS configurations (e.g., they should check program 
privileges, user authorizations, network configuration). Such tools will require careful design and 
control, to protect against disclosure of the tools and to minimize the impact should disclosure 

313 




occur. The tools need to be run on a regular basis to test system defenses from the inside and 
outside and should check for known vulnerabilities. 

Internal tools (i.e., run from the systems they are checking) can be built to expand or supplement 
tools that already come with MLS workstations or third-party tools such as Security Profile 
Inspector (SPn. External tools (i.e., can be built to expand or supplement commercial and 
freeware sources. An infrastructure must also be in place to update the tools frequently, as new 
problems and fixes arise. External tools might be viewed as network test tools and internal tools 
as configuration verification tools. Much work is needed to expand and improve current tools 
and facilitate their use by people who are not expert on system internals. 

Different tools and procedures are needed to ensure proper certification of guards that are 
changed in the field (e.g., to ensure that a new type of data is not released or to begin allowing 
release of certain data to a participant). Such changes are necessary to satisfy dynamically 
changing mission needs, especially in missions involving multiple security environments (e.g., 
different nations). Since modem military missions evolve quickly, changes must be made, tested, 
and implemented in the field. Guard needs are different from MLS workstation needs, in that 
guard changes are more likely to be limited in scope (e.g., to a few sites or for a short time 
interval). Tools to implement and certify these changes must be fielded before guards can be 
modified in the field. The tools should be approved in advance by the accreditor; clear rules are 
needed on what procedures must be followed in making changes and what can and cannot be 
changed. 

Accreditation 

Currently, DoD Directive 5200.28 provides general guidance on how to apply MLS technology 
to different environments [1]. However, expert interpretation is needed in applying this guidance 
where it has not been applied before. Furthermore, the guidance is general and leaves many 
technical questions unanswered. It has often been stated that there is a need for improved 
guidance that is more clear and less subject to misinterpretation. In fact, a good case can be made 
that DoD already has such guidance in the form of accreditation precedents, which represent a 
sort of Case Law for DoD MLS. Serious consideration should be given to using precedents 
(rather than high-level policy) as the primary bases for accreditations. This requires further 
experience with approaches for establishing and managing common accreditation precedents. 
The DoD MLS Program is beginning an effort to establish and manage several common 
accreditation precedents, through efforts to field common MLS capabilities. These fielding 
efforts are providing lessons learned that might change how security is managed within DoD. 

Some of the lessons involve establishing the common accreditation precedents. Central to this 
process is the pairing of specific MLS capabilities to common environments. This pairing is 
necessary to ensure adequate analysis (via a real, detailed, worked example) of whether a 
capability provides sufficient protection for a particular environment. Examples of common 
capabilities established by the DoD MLS Program are the near-term MLS capabilities 
summarized above under that heading. A primary lesson learned from establishing common 
precedents is that environmental differences complicate definition of precedents that truly are 
common. Typically, two or (preferably) three different fieldings are needed before a common 
precedent can be fully established. These fieldings gradually add greater functionality and 
capability and address the operational needs of different environments. They also clarify which 

314 




site differences can be expected (e.g., different common operating environments) and which truly 
are site unique (e.g., locally developed software). 

Another interesting lesson learned regarding establishment of precedents is that the initial 
precedent is not based on specific requirements. Rather, the precedent is constructed by a highly 
subjective risk management process, involving much interaction with accreditor(s). Once the 
precedent is established, it can be used as a requirements baseline for subsequent fieldings. This 
is an interesting finding, in that certification does not apply in its traditional sense. That is, 
certification is usually defined as determining compliance with requirements. Without a 
requirements baseline against which to measure, certification is more subjective. The complexity 
and subjectivity involved in establishing and certifying common accreditation precedents leads to 
the conclusion that the people involved must be the top security engineers and accreditors 
available to DoD. While objective guidance surely can be used to assist the creation of new 
precedents, much of the processjs inherently subjective. 

The second area of lessons learned involves managing the common accreditation precedents. 
Once a precedent has been established, subsequent fieldings are assessed against the precedent, 
with a determination made of whether the precedent still applies. The accreditor must decide 
whether a follow-on fielding is a variation or a new precedent. Sufficient changes in the 
environment, system, or threat might call for a new precedent. Even when follow-on fieldings of 
a common capability are performed, they still will bring incremental changes to the initial 
accreditation precedent. This increases the complexity of managing the precedents. 

New Precedents for Operating Modes and Assurance 

Two important aspects of the common MLS capabilities currently being fielded are that (1) they 
do not operate in what has traditionally been thought of as the MLS mode of operation, and (2) 
they take non-traditional approaches towards achieving overall system assurance. In other words, 
the precedents establish new ways of thinking about modes of operation and assurance for MLS 
capabilities. The new ways of thinking are summarized below. These precedents illustrate that 
guidance based upon fielded common capabilities is a necessary supplement to guidance based 
on generic, high-level policy. 

Sample Precedent: MLS Workstation 

Most vendor MLS workstations are targeting class Bl (or CMWs). Initially, a concern was raised 
that most MLS environments need class B2 or higher protection, in accordance with DoD 
Directive 5200.28, enclosure 4 [1]. It is important to stress, however, that Bl MLS workstations 
as applied by the DoD MLS Program do not violate the DoD Directive. The Directive applies to 
many situations in which, for example, SECRET and TOP SECRET cleared users directly access 
the same system and might even have direct access to the operating system. In contrast, the MLS 
workstations discussed above do not support direct or indirect access by users cleared at different 
levels. Instead, all users with access to MLS workstations are cleared to the highest level of data 
processed on either system. 

The point here is that the DoD policy does not explicitly apply to the environments in which 
many MLS workstations are being used (i.e., where workstations support simultaneous access to 
existing legacy systems at different system high security levels, but do not permit MLS use of the 
workstation itself). In the case of the Ops/Intel interface, this mode of operation is referred to as 

315 




system high (special case). MLS capabilities are the goal, not the MLS mode ofoperation. This 
is not a trivial semantic distinction. The MLS mode of operation still is needed for some MLS 
DBMSs, servers, and other capabilities, but it clearly is not the only way in which MLS 
capabilities can be used. 

Sample Precedent: Guards 

Guards offer a way of achieving assurance that is different from that described in the Trusted 
Computer System Evaluation Criteria (TCSEC) [2]. That is, guards represent the use of multiple, 
independent checks as an alternative to relying upon one check. Philosophically, this is similar to 
the separation of duties used in banking applications and the two-man control used in military 
applications. So, though different from the TCSEC approach for assurance, it is not a new 
approach. Underlying the use of guards is the presumption that a physically separate, 
independent check, taken together with checks provided within the connected systems, provide a 
degree of assurance beyond that of either component by itself. 

Sample Precedent: Ops/Intel Interface 

This is an important new accreditation precedent; it represents a new way of interpreting security 
policy that broadens the scope of CMW applicability. It combines a DoD-originated solution 
(i.e., a CMW) and a commercial solution (i.e., a filtering router or commercial firewall) in series 
to achieve greater security than either solution could provide by itself. 

Conclusion 

Current MLS fieldings are different in kind from early fieldings and are establishing new ways of 
thinking about MLS. MLS capabilities still require careful security engineering and integration 
and are not turn-key capabilities. Adequate resources must be budgeted for application 
integration, certification, and accreditation. Central registration, automated security test and 
configuration verification tools, and common accreditation precedents are needed to oversee 
MLS capabilities that change dynamically in the field. 

Recent technological advances have made some MLS technology ready for application in the 
field. A significant number (i.e., 10-20) of improved or new MLS products are becoming 
available that appear to overcome many of the shortcomings of past products. A window of 
opportunity is opening. Government and industry must work together to take advantage of this 
opportunity, and must refme and apply MLS capabilities in order to establish a broader 
marketplace for MLS. The promise of MLS technology has never been higher. 

Acknowledgments 

This paper benefits from ideas and experiences contributed by COL Joe Sheldon, 

LTC Joe Alexander, Pete Kurzenhauser, and Charley West of DISA; by John Seymour of the 

Joint Staff; by conference reviewers; and by Kate Arndt, Jeff Berger, and Gary Huber of The 

MITRE Corporation. 


316 




References 

[1] DoD, 21 March 1988, Security Requirements for Automated Information Systems, DoD 
Directive 5200.28, Washington, DC. 

[2] DoD, December 1985, Department ofDefense Trusted Computer System Evaluation Criteria, 
DoD Directive 5200.28-STD, Washington, DC. 

317 




APPLYING COMPUSEC TO THE BATTLEFIELD 

Diane M. Bishop and Stephen R. Arkley 

Computer Sciences Corporation 

1301 Virginia Drive, Fourth Floor 
Fort Washington, PA 19034 

Abstract 

In the past, Army tactical automated information systems (AIS) were exempt from the stringent 
security requirements imposed by regulations. As tactical systems evolved from single purpose 
stovepipe systems to networks of systems, additional security is required. For many tactical 
systems, the application of strict and inflexible security requirements may be excessive and 
restrictive. Security requirements for tactical AIS often inhibit the ability to complete the 
assigned mission in a timely and user friendly manner. Systems are currently being developed 
and certified using the DoD 5200.28-STD [21, Trusted Computer Security Evaluation Criteria 
(TCSEC) and NCSC-TG--005 [51, Trusted Network Interpretation (TNI) standards. The 
application of these standards to tactical systems should be more flexible to allow the 
Designated Accreditation Authority (DAA) the ability to implement the security measures which 
allow the system to fulfill mission requirements while providing an adequate level of security. 
The security requirements should be developed using the TCSEC and TNI criteria as the initial 
input to the security engineering process. Refinement of requirements to fit the tactical mission 
is then done based on a risk assessment. Certification should be an evaluation of the system's 
performance against these developed requirements, rather than an evaluation against a 
TCSEC rating. 

Keywords: Computer security, tactical, access control, battlefield, AIS, requirements, TCSEC. 

Introduction 

AIS and communications systems with AIS features are proliferating the tactical battlefield. 
There is a bonafide need for most of these systems to interface, either full time or part time, with 
other systems. Current security doctrine dictates the security requirements and procedures 
based solely on user clearances and the type of information being processed. In many cases, 
the TCSEC class resulting from applying the TN I and CSC-STD-004-85 [61, Guidance for 
Applying the Department of Defense Trusted Computer System Evaluation Criteria in Specific 
Environments (Yellow Book), are based on a network containing a broad base of users with 
different needs-to-know, clearances and access rights. This current methodology does not 
provide any flexibility to the DAA to use the TCSEC requirements as a starting point and, 
through a pragmatic approach, adjust the specified security requirements to counter the specific 
risks associated with their system. This type of common sense approach would save scarce 
budget dollars by validating the need for each of the security requirements as well as the 
identifying requirements which are counterproductive to the mission. 

318 




The application of security requirements dictated by the TCSEC, regardless of actual need, may 
jeopardize the timely accomplishment of the tactical mission. As the multitude of worldwide and 
widely diversified networks are connected, it is easy to rationalize the need to apply the 
requirements of the A 1 security evaluation class to everything. The blind application of security 
requirements without considering the mission and risks during the engineering process could 
result in excessive cost, wasted time and adverse mission impact. This paper examines some 
of the key considerations when conducting a pragmatic assessment of the level of security 
needed in a tactical system, and discusses an alternative to the current method of identifying 
requirements and certifying AIS. 

Background 

Much of the current security guidance was written in the 1980s (e.g., TCSEC, 1985; 
MIL-STD-2167A, Defense System Software Development, 1985; NSDD 145, National Policy 
on Telecommunication and AIS Security, 1984). When this documentation was written, many 
tactical systems were exempt from the security requirements imposed on non-tactical systems 
(e.g., Army Regulation (AR) 380-380 exempted Army Battlefield Automated Systems (BAS) 
from requirements contained in that regulation). However, in August 1990, AR 380-380 was 
superseded by AR 380-19 131, which no longer exempted BAS from these requirements. 

This was a major change to the manner in which security for tactical systems was applied. AR 
380-19 requires all Army systems, with the exception of dedicated systems, to at least meet the 
requirements of the C2 security evaluation class contained in the TCSEC. In accordance with 
AR 380-19, only Major Command (MACOM) commanders or the Administrative Assistant to the 
Secretary of the Army are authorized to approve exceptions to the TCSEC requirements. 

COMPUSEC Considerations in Requirements Definition 

Tactical systems are unique in that they normally serve a specific, limited range of functions and 
are used under conditions which demand the user be able to quickly, accurately and easily use 
the system. Conditions such as darkness, extreme cold, and high stress make these demands 
difficult to meet. For example, if it is necessary for the user to enter a user ID and a password in 
a time-critical situation, the system is not supporting the mission. 

The current method of determining security requirements does not take any mission 
requirements into consideration until well into the accreditation process. Requirements are 
currently determined by using the Yellow Book and TNI to calculate a security evaluation class 
which consists of a predetermined set of requirements listed in the TCSEC. This set of 
requirements is applied against all systems, regardless of size, equipment type, or mission. The 
certification process is used to evaluate the system against this predetermined set of 
requirements. If a requirement is not adequately met, because it adversely impacts the mission 
and therefore is not fully implemented (if at all), it is identified during the certification testing. A 
residual risk analysis, which considers the system threats, vulnerabilities and the mission, is 
then performed to quantify the level of risk associated with the requirement not being fully met. 
If the risk is determined to be too high, countermeasures must be applied to mitigate risk. 
Because the requirement was not fully met, the system cannot be certified to meet the TCSEC 

319 




security evaluation class. Although the selected countermeasure may mitigate the risk, it does 
not satisfy the requirement (e.g., the use of physical security to mitigate the risk of not having 
password protection). Therefore, in deciding to accredit the system the DAA is obligated to 
accept any residual risk. 

If mission ·requirements are considered during the engineering assessment, rather than during 
the accreditation process, any TCSEC requirements which have an unacceptable impact on the 
tactical mission would be identified early in the process and excluded. The risk associated with 
not implementing that requirement would be determined as part of the threat/vulnerability 
analysis which is performed during the engineering assessment. If the risk appears to be too 
high, other more acceptable security measures (either manual or automated) would be applied. 
During certification, that requirement would not be evaluated since it had been excluded. This 
would allow the DAA to tailor the security requirements to support the tactical mission and 
certify the system against the developed requirements rather than against the predetermined 
requirements mandated by the TCSEC security evaluation class. 

The following paragraphs discuss the major considerations in applying this practical approach. 

Purpose and Use 

The intended purpose and use of the system must be identified in the greatest detail possible in 
order to provide accurate information for use in the rest of the requirements definition process. 
In an effort to minimize unnecessary expenses, many Services are calling for systems which 
can be used both ina tactical environment and in garrison. Many of the high-tech systems 
require constant hands-on training in order for the user to stay proficient. This means that the 
system is exposed in multiple environments to many types of users. Knowing this during the 
design phase is important so the appropriate security can be incorporated into the design rather 
than added on as an afterthought. 

Details pertaining to the system's purpose and use will also provide the type of information in 
the system (classification, caveats and handling restrictions) and the users' status (e.g., 
clearance, need-to-know). This information can be used to perform the initial requirements 
definition. 

Initial ReQuirements Definition (RecWellow Book) 

This initial requirements definition, using the TNI and Yellow Book, is based on the maximum 
classification and number of categories of the information in the system, and the minimum 
security clearances of the personnel using the system. The initial requirements definition results 
in the determination of a mode of operation and calculation of the TCSEC security evaluation 
class and associated security requirements. 

For example, a portable electronic key management device is being developed in an open 
environment which will be used by personnel who are cleared to the SECRET level (Rmin=3) 
and which will process SECRET information with two categories, with one containing SECRET 
data and the other containing unclassified sensitive information (Rmax=4). Using the Yellow 
Book, we determine the requirement is for multilevel security mode of operation and a B1 class 
of security. The security evaluation class and associated security requirements will be used as 
the initial input for further developing the security requirements. 

320 




Threat Environment 

The threat environment is one key consideration when developing the security requirements for 
a system. The threats a tactical system will be exposed to in a garrison environment will differ 
from those encountered when it is deployed in a tactical environment. For systems which will be 
used in both environments, the greater threat environment should be used to develop security 
requirements. The threat to a tactical system in a deployed environment is very difficult to 
determine. The location and method of employment may be different each time the system is 
deployed. The known and postulated best-guess threat must be determined by the intelligence 
community based on experience. The threat in a garrison environment is more easily 
determined, since the location and method of employment are known. For example, a computer 
used to maintain unit logistics information may be used at Fort Campbell, Kentucky in a Supply 
Officer's office; however, when deployed it may be mounted in a vehicle and airlifted to an 
unknown area of operation. 

The threat information must be as detailed as possible based on the intelligence communities' 
broad base of information. Often this information is highly classified; however, it is critical that 
accurate, detailed threat information be used in conjunction with equally detailed system 
vulnerability information. The threat information should be validated by the appropriate agency 
(e.g., Intelligence and Threat Assessment Center (ITAC) for the Army) prior to use. 

System Vulnerabilities 

System vulnerabilities must be analyzed from all aspects of the system's employment. The 
vulnerabilities in garrison as well as a tactical environment must be addressed. With the 
movement toward seamless networks, one of the key areas to analyze is the network and its 
composition. Situations such as the possibility of covert channels, connections which are in 
violation of an established treaty, or connections to another U.S. system which has 
unacceptable risk, must be prevented. It is conceivable that an adversary could connect to and 
exploit a system by working their way through several other systems. An adversary will follow 
the path of least (security) resistance to gain access to what they are targeting. Another 
potentially devastating vulnerability may exist in the system's susceptibility to the introduction of 
a virus, Trojan horse or logic bomb. 

Some vulnerabilities may be very obvious, while others may be more difficult to determine and 
properly document. A system's vulnerability to Electromagnetic Pulse (EMP), which could result 
in denial of service, would need to be identified during the engineering process. On the other 
hand, the vulnerability to a loss or compromise associated with the use of a removable hard 
disk drive for the storage of classified information is better known and understood. 

Risk Assessment 

Using the information resulting from the threat and vulnerability analysis, an accurate 
assessment of system risks can be made. This assessment explores the probability of an 
identified threat attempting to exploit a system's vulnerability, the likelihood of success, and the 
postulated ramifications if the vulnerability is exploited. The risk assessment is most accurate if 
a specific threat is associated with a specific vulnerability. Even if there is no known threat, a 
significant vulnerability should be treated as though an adversary will exploit it. This step in the 

321 




engineering process may also identify/justify areas where security requirements may be 
reduced. 

For example, suppose an adversary has the capability (high probability of success) and desire 
(high probability of an attempt) to intercept data by tapping into fiber-optic lines (threat). The 
system design does not prevent the tap or notify the user that a tap has been installed 
(vulnerability). Because of the use of Communications Security (COMSEC) devices by the 
system, the data will be encrypted and therefore unreadable by the adversary (minimal 
ramifications of success). Based on this analysis, it may be determined that the risk to the 
system is low in this particular case. 

The risk assessment results are part of the basis for justifying the requirements. 

Requirements Definition 

A system, regardless of type, will only be used if it is reliable in terms of timeliness of 
information delivery and ease and speed of use. The implementation of security requirements 
should be as transparent as possible to the user, while fully supporting the mission and 
providing adequate security. 

Developing the system requirements is a critical step in the engineering assessment process. 
This engineering process correlates system risks, mission needs, TCSEC requirements and 
technical considerations, and will be used to develop and justify the requirements needed. In a 
case where high security is needed in a garrison environment, but those requirements 
adversely impact the mission when deployed, the capability for authorized personnel to turn 
those features on and off may satisfy the needs for both operating environments. The 
requirements developed in this step of the engineering assessment, rather than the TCSEC 
requirements, will be evaluated during the certification testing. This gives the DAA the flexibility 
to develop requirements which best support security and the mission, and gives the engineers 
the ability to build a system which is user friendly and less costly. 

The engineering assessment process feeds into the certification and accreditation process. 
Figure 1 shows the relationship between the engineering assessment process and the 
accreditation process. 

Certification Testing 

Certification testing is part of the accreditation process and comprises the formal evaluation of 
the requirements. In this approach the certification testing would evaluate the developed 
requirements, which consider the mission and system risks, rather than the list of requirements 
in the TCSEC. During this comprehensive evaluation, the technical and nontechnical security 
requirements of the system are thoroughly tested and evaluated. This establishes the extent to 
which the system design and implementation meet the specified set of security requirements. 
After completion of the certification testing, a certification report is generated and included as 
part of the accreditation documentation. 

322 




Preliminary Risk 
Assessment 

......, 
r----~--.......~ 

Certification testing is based on the 

\ 
\
\ ,.....~~~~~...., 
I
/L----.,.-------1

I 

developed security requirements 
rather than the TCSEC security 
evaluation criteria. 

Flaure 1 : Reaulrements Definition Process 

Residual Risk Analysis 

The residual risk analysis, which identifies the risk that remains after the implementation of the 
requirements, is an important part of the risk management process. These results include the 
risks associated with system requirements implementation, and takes into account threats and 
vulnerabilities outside of the system requirements. For example, there may be risks based on 
how well the procedural security responsibilities of the Terminal Area Security Officer (TASO) 
and the users are executed. A detailed assessment of all risk must be made during the risk 
management process. As shown in Figure 1, the certification testing, User's Security Manual 
and the risk management process support each other in an iterative process designed to 
identify and reduce risk. Using the results of the certification testing as part of the input to the 
risk management process, a residual risk analysis is conducted to determine what risks remain 
and at what level. The results of this analysis are formally documented and included in the 

323 




Security Plan/Accreditation Documentation for the DAA's review. If the residual risk is 
determined to be acceptable, the accreditation is approved. If the residual risk is too high in the 
DAA's opinion, additional security measures are selected to mitigate those risks to an 
acceptable level. 

The security requirements should be balanced between acceptable risk (DAA's opinion) and 
mission demands. Generally, the mission is not fully supported if the level of computer security 
is inadequate to protect sensitive or classified data. Conversely, if there is an excessive level of 
security, the mission support level could be low since the security features may hinder mission 
progress. When considering risk, if there is very little computer security, there normally is high 
risk. If there is excessive security, the interrelationship of the security features may introduce 
additional risk. The optimal level of security provides the most mission support while reducing 
the risk to the lowest reasonable level. Figure 2 shows the interrelated impacts of risk and 
mission support on the optimal level of security. 

Least 

Legend 
--  RISK 
- MSNSPT 

Least LEVEL OF COMPUTER Most 
SECURITY 

HighMost 

Low 

Figure 2: Security-Balance between Risk and Mission 

The decision to have more or less security, based on the demands of the mission, ultimately 
rests with the DAA. The method each DAA uses to determine risk, and what is to be considered 
an acceptable level of risk, will vary between DAAs. This is a result of different levels of 
experience and training among DAAs, an inconsistent quality of support/advice received, and 
the use of numerous risk assessment methodologies. The resulting wide range of risk analysis 
results is a known problem; however, with limited experience in global networking, specifically 
the interconnection of vastly different networks of networks, the current way of performing risk 
analyses is the best available. The solution to bringing the results of the DAAs' risk decisions 
closer into line with each other rests in the continued improvement and consistent application of 
advanced security technology as well as the development of a standard set of security 
methodologies. These methodologies should be included in a single standard which serves as 
the security methodology reference. This reference should include a detailed description of the 

324 




approved methodologies for use in the engineering process arid the accreditation process (and 
their subprocesses). 

COMPUSEC on the Tactical Battlefield 

Considering the mission needs and developing system requirements before beginning the 
accreditation process has several key advantages. These advantages include: 

• 	 DAA flexibility to tailor the system to best support the mission. 

• 	 Justified set of security measures. 

• 	 Cost and time savings. 

• 	 Less chance of incurring new risks associated with implementing a requirement which 
adversely impacts the mission or is unnecessary. 

Examples of requirements which may not be justified are the need for a trusted path or a login 
sequence for a device which is used in an environment where physical protection is provided by 
the user (e.g., digital photographic camera system); the need for an audit trail where the user is 
known and is authorized to execute all functions the device is capable of performing (e.g., 
Forward Entry Device); or the need to have the human-readable output on a Liquid Crystal 
Display (LCD) labeled SECRET when access to the device is limited to personnel with a 
SECRET clearance and a need-to-know. In extreme cases, members of the Armed Forces 
would be required to log on and enter a password despite operating under conditions which 
may make these tasks next to impossible. Audit requirements may slow the system's speed and 
response time to an unacceptable level. 

The need for and level of each of the security requirements should initially be justified based on 
the TCSEC security class, and then further developed using the results of the risk analysis and 
mission requirements before beginning the accreditation process. 

Cost savings could be achieved by not wasting time or resources implementing unnecessary 
requirements. This reduces the time and expense of producing programming code, designing 
hardware, writing associated documentation, and testing features which are not needed. 

For each requirement that is implemented, there is the chance that additional risk may be 
incurred. For example, if a network has the (unjustified) requirement to collect audit data, there 
is a requirement for audit management. This could entail the transmission of audit data to 
primary and alternate collection points on a scheduled basis. This exposes the information to 
possible compromise and uses part of the communication media's bandwidth which may have 
been better used to transmit mission data. It also means that a system administrator must 
manage additional files, take time to review the audit logs, and take appropriate action if a 
discrepancy is discovered. If the requirement for audit was identified as counterproductive to the 
mission during the engineering assessment, and therefore not specified as a requirement, none 
of the additional risk associated with maintaining audit information would need to be assumed. 

Designing tactical systems for a specific purpose helps reduce the requirement for extensive 
security. If a system is designed to send field artillery target data, and the information is 

325 




preformatted by the system, the risk of an adversary exploiting the network is remote. Using 
communications security techniques, the data can be encrypted (data confidentiality), 
authenticated (data integrity) and the network can be designed to remotely disable (disconnect) 
the system in the event of capture or malfunction. These protective measures provide a great 
degree of protection for tactical systems. 

Given a tactical system which has been designed for a specific purpose, the two major security 
requirements should be the ability for the system/user to authenticate and the ability to isolate 
the system from the rest of the network. The purpose of the authentication is to ensure the data 
being received is legitimate. If a device begins sending erroneous data, the network should 
immediately know. The ability to isolate the device from the network prevents an adversary from 
overloading the system with erroneous data or exploiting the system. The need for data 
confidentiality may or may not be a major consideration. The ability of state-of-the-art 
COMSEC devices make this an easier requirement to fulfill. 

Conclusion 

The approach discussed in this paper defines security requirements using the TCSEC as a 
starting point. The TCSEC requirements are then adjusted based on the mission, threats and 
vulnerabilities. The resulting set of developed requirements are then used in the accreditation 
process. Certification testing evaluates how well the system meets the developed requirements 
rather than the TCSEC list of requirements. This approach gives the DAA the flexibility to fully 
meet the mission requirement; while providing adequate security, cutting costs and reducing the 
potential for creating additional risk. This approach is based on the application of interpretations 
of AR 380-19 and the experiences of various contractors and government agencies gained 
during the development of tactical automated information systems and communications 
systems with AIS features-in particular, the systems used in the Army Tactical Command and 
Control System (ATCCS). 

References 

[1] 	 DoD Directive 5200.28, Security Requirements for Automated Information Systems (AISs), 
Department of Defense, 21 March 1988. 

[2] 	 DoD Standard 5200.28-8TD, Department of Defense Trusted Computer System 
Evaluation Criteria, National Computer Security Center, December 1985. 

[3] 	 AR 380-19, Information Systems Security, Headquarters, Department of the Army, 
Washington, DC, 1 August 1990. 

[4] 	 AFR 205-16, Computer Security Policy, Department of the Air Force, 28 April 1989. 

[5] 	 NCSC-TG-005 Version-1, Trusted Network Interpretation, "Red Book", National Computer 
Security Center, 31 July 1987. 

[6] 	 CSG-sTD-004-85, Guidance for Applying the Department of Defense Trusted Computer 
System Evaluation Criteria in Specific Environments, "Yellow Book", Computer Security 
Center, 25 June 1985. 

The contents of this paper are not necessarily the official views of, or endorsed by, the U.S. Government, 
Department of Defense, Department of the Army, Program Executive Officer Command and Control 
Systems, or the Army Communications-Electronics Command (CECOM) and Fort Monmouth. 

326 




SECURITY REQUIREMENTS FOR CUSTOMER 

NETWORK MANAGEMENT IN 


TELECOMMUNICATIONS 


Vijay Varadharajan 

Hewlett-Packard Labs. 


Filton Road, Stoke Gifford, Bristol 

U.K. 

1 Introduction 

The Customer Network Management (CNM) is an emerging standard defined by the CCITT 
to allow telecommunications service subscribers, i.e. the customers of telecom organization 
(TOs), on-line access to the network for the purpose of management. It is different from 
the conventional method used by the telecom operators where complaints are made via 
telephone, and bills are sent via mail. CNM allows telecom organizations to extend the 
subscribed telecommunication services into the customer premises. This will enable the 
customers to link this information to their private network management system. CNM 
allows customers to perform a wide range of activity such as inventory management, service 
ordering, accounting management, amongst others. The future trend is that CNM is going 
to become increasingly important particularly in the telecommunications market, where 
there is a greater need for giving customers access to information such as how much they 
are paying for and for what services. 

This paper considers the CNM application and outlines possible security requirements that 
arise in this environment. The aim of this paper is to clarify some of the assumptions 
and point out some of the security threats that can arise, and propose the type of security 
services and mechanisms that are necessary. We look at some of the design choices. We 
do not describe protocol details in this paper. They form the subject of another paper in 
preparation. 

2 CNM Overview 

The main aim of CNM is to support integrated management of the entire portfolio of Tele
com supplied services, within the customer network. In addition, the customer's network 
also consists of a complex range of equipment, which are components of the end-to-end 
network service required by the customer to achieve some defined business objective [1]. 

327 




The customer network can be considered to consist of a connectivity communication in
frastructure services, an infrastructure of equipment - voice and data equipment as well 
as desktop and host computer systems -, and supporting system software and end-user 
applications. 

CNM capabilities are intended primarily to enable customers to manage their portfolio of 
Telecom services. To get a better idea on CNM capability, let us briefly consider inventory, 
service ordering, and accounting management in this context. 

CNM Inventory Management allows the customers to maintain information about the 
Telecom supplied items that the customer subscribes to. These items include equipments 
such multiplexers and PBXs, communication circuits such as voice tie-line between 2 PBXs, 
and other miscellaneous items such as modem cabinet. The customer is able to view and 
change some attributes and relationships related to the inventory items that he uses. Fur
thermore, information on these supplied items can be merged with information on the cus
tomer's private inventory items (e.g. LAN, Host) to provide a complete inventory picture 
related to the customer's business. 

CNM Service Order Management allows the customer to perform on-line ordering of 
new services, modification of existing services on a "need to" basis. Status of a service order 
request can be tracked automatically by this CNM function. 

CNM Accounting Management provides a customer with on-line and timely delivery of 
invoicing and telecom usage information on the services he subscribes to. This function can 
also provide analysis, processing and reporting capabilities on a range of invoicing, telecom
munications and financial usage topics. The customer is able to get a better understanding 
on the amount he is paying for the services, whether he is charged for services that belong 
to other customers, and whether he has over-subscribed a certain service. 

2.1 System Diagram 

The platform upon which the management soutions can be built in the area of CNM includes 
the following : 

• 	 Communication Infrastructure. 


This provides distribution-transparent access to objects. 


• 	 Presentation infrastructure 

A user selects the managed object on the graphical map and executes commands 
through pull-down menus that are controlled by windows. 

• 	 Data Relationship Store 

This is a repository of information which comprises managed object instances as well as 
relationships (linkages) between these instances. The information can be manipulated 
via management applications. 

• 	 CNM applications 

In general CNM applications will also need to access other data NOT managed by the 
platform and as ~uch accesses to such data may or may not be controlled by access 
control mechanisms outside that of CNM. 

328 



• 	 Development Tools 


Assist developers to deliver solutions with a minimum of effort. 


2.2 Usage Scenarios 

There are two types of CNM systems : (i) Customer Premise Station (CPS) and (ii) Value 

Added Integrator (VAl). This is illustrated in Figure 1. 

The CPS is the CNM system installed at the customer's location. A user of CNM may be 

an employee of the TO's customer or may be an employee of the TO itself. When using 

CNM applications, a user would probably access both organization (whether customer or 

TO) private data and TO provided data. 

Typically TO provided data resides on the Value Added Information (VAl) whilst organisa

tion private data resides on the Customer Premise Station (CPS). TO provided data MAY 

reside on the CPS because of performance or cost considerations. 

Typical usages include : 


1. 	 A user at the CPS accesses information in the Customer Private database using a 
CNM application. 

2. 	 A user at the customer site accesses information in the Customer Private database 
via "local" customer network. 

3. 	 A user in (1) or (2) above accesses information from the the VAl owned by the telecom 
service provider- TO operator. 

3 Analysis 

3.1 Security Threats 

Consider the situation where a user U through CNM application A in machine X requests 

for information stored in a database through application B in machine Y. In our discussion, 

the application Bin Y is in fact the remote DRS. DRS is a trusted component; in particular, 

we trust the DRS for access mediation to the VAl. 

Let us now consider the important threats in this environment. These are a subset of 

possible threats given in[2]. 


• 	 Masquerading: A user U' via some application A pretends to be user U to the DRS 
(local or remote). 

• 	 Unauthorized Access: Unauthorized access to information in remote DRS. 

A user should only be able to access the information he has permissions for from 
allowed systems. 

Information in the remote DRS (in Y) is accessible to anyone who has root permissions 
or the database administrator capability. Furthermore, as third party products other 
than DRS may be involved, secure access to data cannot be guaranteed if proper 
access controls are not enforced. Thus there is a responsibility on local management 
as well as in the CNM platform. 

329 




CUSTOMER TELECOM OPERATOR 


Customer Promise 
Station (CPS) 

Datastore .·: .·App···· < ~(J>i: ..-.•• 
Wide Area 
Network 

Value Added 

Integrator (VAl) 


0 
M 

M 


CUSTOMER 


Fig 1: Customer Network.Management Environment 




• 	 Communication Security Threats 

1. 	 Modification of messages between machines X and Y thereby affecting the con
tents of the request from A to B, or the results from B to A. 

2. 	 Eavesdropping on the messages from machines X to Y. 

3.2 An Example 

These security threats were then explored in a practical situation, in the context of a 
Telecom provider requirements. This led to an informal classification of the perceived threat 
as HIGH or LOW given below. (Note that this is just one example and is not intended to 
be representative of a wider set). 

• 	 Masquerading : HIGH 

• 	 Unauthorized Access to DRS : HIGH 

• 	 Modification of Messages : HIGH/LOW 

• 	 Eavesdropping on Messages : LOW 

3.3 Architectural Considerations 

Before we discuss the required security services, let us set out some assumptions about the 
platform and its consequences for the appropriate architecture of security services. 

We assume that security is to be enforced as far as possible through the platform itself and 
not through the management applications that use it. This implies that the target DRS 
should be responsible for guarding against masquerading and unauthorized access, and it 
should be the responsibility of the user /calling application to present proof of identity to 
the DRS. However there is no need for the user/calling application to interact directly with 
the target DRS. The task of getting proof understandable to the DRS can be delegated to 
the authentication service, which is distributed across all the mutually aware CNM hosts. 

If the management application is not to be trusted to carry out authentication on behalf of 
the target DRS, it should neither be trusted to make access decisions. Hence an application 
may make use of function masks for local restriction of the user, but this is not part of the 
security solution of the platform that we envisage. 

We will also assume that the access mediation is carried out by the DRS. That is, the 
access policy resides within the DRS and that both access decision and enforcement are 
carried out by the DRS. Other alternatives are possible. For instance, we could envisage 
a separate authorization server component that acts as a repository for access policies. 
The user/calling application can obtain from this authorization component the relevant 
privileges, and present them along with the proof of identity to the DRS. Using these two 
pieces of information, the DRS can grant or deny access to its information. We will not be 
discussing such an approach in this paper. 

4 Security Services 

This section addresses the security services which are required to counteract the security 
threats mentioned above. 

331 




4.1 Against Masquerading 

To counteract the threat of masquerading, we need to ensure that the user claiming to be 

U is actually U, and that the request comes from the claimed machine X. 


There are essentially two approaches to achieving this: 


1. 	Target DRS trusts the local authentication service at the initiating end to have au
thenticated the user U. 

2. 	 Direct authentication of user U by the target DRS in machine Y. 

As mentioned above, the first approach is achieved using a component of the authentication 
service in each CNM machine. The initiating application uses the authentication service to 
establish the user's identity. This authenticated information is then presented to the DRS 
which can then make its access control decisions based on this presented information. 

In the second approach, the target DRS does not believe the authentication process carried 
out at the initiating end. 

In the CNM environment, in any case we have to assume that the CPS administration 
takes proper care of its secrets. So long as this is true, the PTT CNM station can guarantee 
protection for data relating to a customer, and to protect against masquerading amongst 
CPS users. Hence we believe that the first approach is more appropriate. 

In fact the gurantees are "contractual" in nature. In this respect, the PTT does not trust 
the customer in order to protect its own interests, but has to make assumptions about 
customer behaviour - which are supported by the design of the platform - in order to 
provide a service. In other words, if a CPS administrator says something, PTT will believe 
it provided there is a guarantee that the former has actually said it, what was said has not 
been altered, and has beeen said recently. 

'Within the first approach, it is possible to distinguish two cases. The initiating end may 
authenticate its users without any other support. On the other hand, it may make use a 
trusted third party, which is shared with other peer machines. This choice has implications 
for trust, but also having all possible users of CNM registered on a single trusted system 
would make administration more easy to manage. Such a third party machine may also be 
used to allow machines - X andY, for example- to authenticate each other. 

Authentication Information 

This is the information used to prove identity of users and machines which includes pass
words and keys. These may be used in conjunction with other technology such as smart 
cards. The information needs to be protected from modification, and depending on the kind 
of cryptographic quantity involved, in addition divulgence. 

Authentication Protocols 

Depending on the choice of authentication mechanisms - public key, symmetric key - ap
propriate authentication protocols can be provided. Several protocols have been developed 
using both public key and symmetric technologies [6], [8], [9], [7], [10]. There is no need 
to reinvent another P!"otocol from scratch. We will be describing the protocol details in 
another follow-up paper. 

332 



As part of this authentication process, a common conversation key can also be exchanged 
between initiator and target, which can be subsequently used to protect communications 
between them. 

Another aspect to consider is the nature of communications between X and Y. If the commu
nication is such that the two machines set up a link which would exist for a session allowing 
exchange of several messages, then the mutual authentication can be performed once per 
session. An alternative option is the provision of message by message authentication. 

4.2 Against Unauthorized Access 

To counteract the threat of unauthorized access, we require access control mechanisms. 
In providing such mechanisms, we need to consider what access control information is 
used in the decision making process, including access rules, and what entities - human 
or software- are responsible for supplying or modifying such information, inferring access 
decisions, and enforcing those decisions. Naturally, these objects need to be supported by 
the authentication service. 
Consider again the case where a user U through CNM application A in machine X requests 
for information stored in a database through application B in machine Y. Once again, B 
in our case is the target DRS. We will assume that the authentication of the user to his 
local machine, and between machines, has taken place. That is, DRS in Y knows that the 
request is from U /X. 

Enforcement 


As metioned earlier in Section 3.2, DRS can now enforce controls to decide whether to 

grant the request or not. It can check the role of user U (administrator, owner, user) of 

the partition in which the requested data object resides, and depending upon the role, 

the corresponding rights the user has (for operations) and whether they match with the 

operation being requested. As such, the target DRS is the final controller in this process. 


Access Control Information 


Access to organisation private data would be limited to users belonging to that organisation. 

TO provided data is intended to be shared between the TO and the appropriate customer. 

The information contributing to the access control decision include : 


• Decomposition into partitions. 

• User to role mapping (which user has what role with respect to which partition). 

• User to group mapping, and group to rights mapping. 

• Rights allowed by each role (administrator, owner, user) 

• Simple access rights: read, write, create, delete or more generally method names 

• Rights to grant and revoke simple access rights 

4.3 Against Communication Security Threats 

Integrity of information transferred between X and Y can be provided using an integrity 
cryptographic checksum. Calculation of such a cryptographic checksum involves the use of 

333 



a key. The choice of the key depends on the cryptographic system and the security protocols 
used. For instance, this key could be either the conversation key which was established as 
part of the mutual (X-Y) authentication process described earlier, or the private key of a 
public key system. 

Confidentiality of information transferred between X and Y can be provided using en
cryption mechanisms. This once again, involves the use of a key. This key could be the 
conversation key which was established as part of the mutual (X-Y) authentication process 
described earlier. 

4.4 Auditing 

Finally, there could be an additional security requirement for audit logs. This can be 

regarded as complementary to access control enforcement. 

-Logging accesses to database informatiqn (VAl): who (userid) from what machine (machine 

id) did what operation (operation id) on what object (objectid) at what time (timestamp), 

and the result of the request (granted or not) 

- Allowing the administrator to define the type of events which should be logged, and the 

severity status. 


4.5 Architectural Components 

Authentication Components 

We have a single Authentication/Certification Server principal in a domain, and an Au
thentication Service Component principal on each machine. The role pl_ayed by the Server 
is dependent on the type of cryptographic technology used- public key or symmetric key. 
For instance, here is one possible scheme : The Server acts as a Certification Server and it 
retains public keys and certificates associated with the principals, the principals being the 
users, applications and machines. 
When a principal in machine X (e.g. an application A, XA) wishes to request a service 
from another principal on aremote machine Y (e.g. DRS), their respective Authentication 
Service Components communicate. If the Authentication Service Component of machine 
X is not aware of its counterpart component of machine Y, then it will make use of the 
Certification Server as a direct()rY to obtain the certificate containing the public key of Y. 
Now mutual authentication between X and Y can occur and a common conversation key 
between XA and DRS can be established. 

Access Control Components 

In this environment, we can have the access control component residing within or as part 
of the DRS. This access control decision information needs to be accessible to DRS. There 
also must be interfaces for initializing and updating this information. We can have the 
following interfaces: (a) An Administration Interface that allows administrators and policy 
setters to specify the policy information. (b) An Evaluation Interface that allows the DRS 
application to evaluate the request at runtime. There may be an additional interface to 
support for policy auditing purposes. 

Communication Security Components 

These include cryptographic modules providing encryption mechanisms (symmetric key and 
public key algortithms), hash functions, and providing secure storage. 

334 



Auditing Components 

In this environment, we can have the auditing component residing within or as part of the 
DRS to log accesses to database information. There must be interfaces for specifying the 
the type of events which should be logged and how the logs can be queried and anlaysed, 
and for enabling logging to occur at runtime. 

5 Possible Security Solution in Stages 

Following this analysis of possible security threats and requirements in the CNM environ
ment, we can consider security enhancements to be carried out in stages. At the first stage, 
we might consider the following (See Figure 2) : 

5.1 User Authentication Mechanisms 

For each CNM machine, there will be a local component of the authentication service (AS). 
This will carry out authentication of local users, providing information that will serve as 
proof of identity to the target DRS in any management activity during that user session. A 
target DRS will in turn rely on its local AS component to validate the authentication proof 
presented to it. Users and AS components will be registered at a single certification server 
( CS) on a trusted machine. 

• 	 Authentication Information 

User : user id, password, key 


Machine (AS component): machine id, key 


• 	 Local component of the Authentication Service (AS) in each system 

• 	 Protection of authentication information during transfer 

-	 Public key based mutual authentication protocols between machines 

• 	 Establishment of security parameters between initiating application and target (DRS) 
providing the basis for making access control decisions. 

• 	 Registration of CNM users and AS components at a single Certification Server 

5.2 Access Control Mechanisms 

• 	 Access control will be based on user id, machine id, and user role. 

• 	 Policy will reside at the target DRS. Role information will enable management rights 
at the customer site to be represented, whereby some restricted set of users at the 
customer site can be granted the ability to change the access privileges of the other 
valid users, and to register new valid users. 

• 	 Access control enforcement done by the target DRS, deciding whether to grant access 
or not using the authenticated information (from the request), and the access control 
policy information at the target. 

335 



Customer 

(CPS) Telco Op (VAl) 


cs : C1-qf- u.f.;-v.- ~>' tiU 

Acs : AU::P.!.s ce.~bl SQ.( .;\Ly" 

A5c ~ 

Gm.":ia.M.: 

1.0
Ak.~"h·~r....... ~'(U~c..t ~~t).wti:- M 

M 

G.w.~.~ Ho~.fe., 

Figure 2 : Security in CNM : Architecture Components - Stage 1 

Vijll'f.Y · ll J~n1984 



5.3 Remaining Issues 

The chief remaining issue is the selection of the cryptographic techniques to be used to 
provide the authentication service. The choice is between a using a pure asymmetric key 
approach and using a mixed symmetric and asymmetric approach [5]. In the latter case, 
asymmetric techniques are used for long-lived security information, while symmetric tech
niques are used for message by message protection within the scope of a user session, or the 
binding between a management application and the target DRS it accesses. 
In determining which choice is more appropriate for the CNM environment, here are some 
of the factors contributing to the decision. 

5.3.1 Trust and Performance 

In the mixed scheme, following the initial authentication between the ASs on the initiating 
machine and the target machine where DRS resides, a conversation symmetric key is es
tablished. This symmetric conversation key is used within the scope of a binding between 
a management application and the DRS. If this key were compromised within a machine 
accidentally, the consequences would be very limited. In that case, it is reasonable to give 
such keys to the initiator (management applicatio~) and target DRS for their direct use. 
Message by message protection (authenticity and integrity) is achieved without a context 
switch. 

In a pure asymmetric scheme, assuming a single level of keys, the private key component is 
involved in providing the authenticity and the integrity of requests between the management 
application and the DRS. The consequences of compromise ofthis private key would be more 
serious than in the case of the mixed approach. This leaves the choice of investing greater 
trust in the construction of the management applications and DRS or retaining the keys in a 
separate address space, incurring a performance penalty for message by message protection. 
Furthermore computation based on an asymmetric approach is more intensive than a cor
responding symmetric one. 

5.3.2 Confidentiality 

Symmetric techniques offer much better performance for the provision of confidentiality. If 
confidentiality is to become necessary, it is better to choose the mixed scheme. 

5.3.3 Availability of the technology 

The best asymmetric algorithm to use (on technical grounds alone) remains RSA [3]. Within 
the USA, its use involves obtaining licenses from RSA Inc. There are several symmetric 
algorithms, the popular one being DES [4]; however use of such algorithms for confidentiality 
purposes is subject to export regulations. 

Summary 

In this paper, we have analysed the security requirements for CNM applications, and con
sidered some of the design choices in the provision of appropriate security services, and the 
security architectural components that are required. The trend is that CNM is increasingly 
becoming important in the telecommunications market, where there is a greater need for 

337 




giving customers access to information such as how much they are being charged and for 
what services. 

References 

[1] 	 Bellcore, SMDS Customer Network Management Service, Technical Advisory TA-TSV
001062, Issue 2, Feb.1992. 

[2] 	 ISO 7498-2, "Information Processing Systems - Open Systems Interconnection - Ref
erence Model - Part 2 : Security Architecture", ISO 1988. 

[3] 	 R.Rivest, L.Shamir, L.Adleman, "A method for obtaining digital signatures and public 
key cryptosystems", Commun. ACM, Vol.21, No.2, 1978, pp120-126. 

[4] 	 National Bureau of Standards, "Data Encryption Standard", FIPS Pub.46, NBS, US 
Dept. of Commerce, 1977. 

[5] 	 G.J .Simmons, "Symmetric and Asymmetric Encryption", Computing Surveys, Vol.ll, 
No.4, 1979. 

[6] 	 John Kohl and B.Clifford Neuman, The Kerberos network Authentication Service, V5, 
Draft 4, Dec.1990. 

[7] 	 Open Software Foundation, Distributed Computing Environment (DCE) Rev.l.O- In
troduction : Chapter 3.5. 

[8] 	 International Organization for Standardization (ISO), ISO /IEC JTC1/SC27 : Peer 
Entity Authentication Exchange Mechanisms 

[9] 	 International Organization for Standardization (ISO), ISO/IEC JTC1/SC27 : Key 
Management : I, II and III. 

[10] 	 Vijay Varadharajan, Phillip Allen and Stewart Black, An Analysis of the Proxy Problem 
in Distributed Systems, Proc. of the 1991 IEEE Symposium on Research in Security 
and Privacy, 1991. 

Acknowledgements 
The author would like to thank anonymous referees and his collegues Phillip Allen and 
Jonathan Griffin for their valuable inputs. 

338 




1 

SUPPORT FOR SECURITY IN DISTRIBUTED 

SYSTEMS USING MESSIAHS 


Steve J. Chapin Eugene H. Spafford 
Department of Mathematics COAST Laboratory 

and Computer Science Department of Computer Sciences 
Kent State University Purdue University 
Kent, OH 44242-0001 West Lafayette, IN 47907-1398 

sjc@cs.kent.edu spaf@cs. purdue.edu 

Abstract 

The MESSIAHS project is investigating the construction of a set of mech
anisms to support task placement in autonomous, heterogeneous, distributed 
systems. In this paper we explore aspects of the MESSIAHS system that support 
security in distributed systems. 

In particular, we will concentrate on aspects of MESSIAHS that defeat denial 
of service attacks, provide :firewalls, protect private system description infor
mation, and support matching of tasks and systems based on security ratings. 
Development of these features will allow tasks to be scheduled in a heteroge
neous distributed system, while protecting data and system integrity. 

MESSIAHS is a set of mechanisms that ties together disparate computing 
resources to achieve distributed processing without sacrificing local control. 
MESSIAHS is novel in that it includes support for autonomous systems while 
providing flexible, scalable mechanisms to implement scheduling algorithms for 
heterogeneous distributed systems. 

Keywords: distributed systems, scheduling, security, autonomy, availabil
ity, visibility 

Introduction 

We are investigating scheduling support mechanisms for autonomous, heterogeneous, 
distributed systems. Our goal is to develop mechanisms that allow scheduling al
gorithms to be implemented for large-scale distributed systems using heterogeneous 
hardware and software, across administrative boundaries. Such large-scale distributed 
systems can achieve performance surpassing that of the largest parallel supercomput
ers [11], and increase utilization of underutilized computing power [8]. As part of 

339 




2 

this work, we have developed a set of mechanisms and a prototype implementa
tion called MESSIAHS: Mechanisms Effecting Scheduling Support In Autonomous, 
Heterogeneous Systems [5, 4]. 

Our research is motivated by three factors. First, decentralization of computing 
systems has introduced administrative domains as a barrier to distributed computing. 
To overcome this, some method must be found to unite systems from incompatible . 	 . 
administrative domains while respecting the autonomy of the individual systems. 
Second, many researchers have concentrated on scheduling and load-balancing algo
rithms while assuming the existence of the mechanisms necessary to support them 
(see, for example, Sarkar and Hennessy [13], Lo (12], or Blake [1]). They have ei
ther designed ad-hoc mechanisms to support particular algorithms, or limited their 
research to theoretical analysis of the scheduling algorithms. Third, users of com
puter systems may require resources that are not available locally, such as specialized 
processors or remote databases. 

This paper concentrates on security aspects of the MESSIAHS mechanisms, which 
ties in with the first factor listed above. As part of the support for distributed 
computing across administrative domains, MESSIAHS provides mechanisms that 

1. 	 thwart denial of service attacks, 

2. 	 can act as a firewall to limit access by outside systems, 

3. 	 can restrict the flow of sensitive system description information outside an ad
ministrative domain, 

4. 	 and allows systems and tasks to be labeled in support of partitioning based on 
security requirements. 

Section 2 gives background information describing the MESSIAHS system. Sections 
3, 4, 5, and 6 describe the MESSIAHS mechanisms that support the four points listed 
above. Section 7 contains concluding remarks and proposes future directions for our 
investigation of security in distributed task placement. 

MESSIAHS Background 

Our systems are structured in a hierarchical fashion based on virtual systems repre
senting administrative domains. A virtual system is composed of a set of subordinate 
virtual systems. Within each of these sets there can be many machines, which could 
be further grouped into virtual systems. At the lowest level, each machine is the sole 
member of a virtual system. We call an encapsulating virtual system a parent, and a 
subordinate system a child. Children with the same parent are called siblings. 

For example, figure 1 displays part of the administrative structure of the Kent 
State University Mathematics and Computer Science Department. Within the de
partment, there are several generally accessible machines such as Chaos and Nimitz, 
as well as machines supporting specialized research projects. One of these projects is 

340 




Figure 1: A subset of the machines in the Kent State Math/CS Dept. 

the Operating Systems Research (OSR) project, which has administrative authority 
over a set of machines including Ogion, Vetch, and Jasper. 

In MESSIAHS, each virtual system in the hierarchy has a scheduling support module 
that is responsible for maintaining the set of information required by the scheduling 
policy. Scheduling algorithms take a set of tasks and a description of the underly
ing multicomputer and devise an assignment of tasks to processors according to an 
optimizing criterion. 

Our method for supporting scheduling decisions has three main parts: the sys
tem description vector, the task description vector, and the update protocol used 
to communicate between systems. The description vectors contain state description 
information, including system processing load, memory statistics, processing capabil
ities, and storage capacities. The update protocol sends system description vectors 
between modules. 

The model for update flow is that a module collects several description vectors, 
adds information describing the local system, and condenses the resulting set of de
scription vectors into one vector to facilitate scalability. This vector will be advertised 
to its parents and children. The module can also decide not to include data in the 
outgoing vector based on security constraints. 

When a task is submitted for execution, a task description vector is sent to a 
scheduling module. 1 The scheduling module compares the task description to its 
own system description and the system description vectors it has received from other 
systems. Based on the scheduling policy, the module chooses one of the systems and 
attempts to schedule the task there. 

MESSIAHS attempts to sacrifice the least autonomy for participating systems. 
There are four types of autonomy in distributed systems, as defined in [9, 6, 7], 
and refined in [4]: execution autonomy, communication autonomy, design autonomy, 
and administrative autonomy. Execution autonomy means that each system decides 
whether it will honor a request to execute a task; each system also has the right to 
revoke .a task that it had previously accepted. Communication autonomy means that 
each system decides the content and frequency of state advertisements, and what 
other messages it sends. A system is not required to advertise all its capabilities, nor 
is it required to respond to messages from other systems. Design autonomy gives the 
architects of a system freedom to design and construct it without regard to existing 

1These requests are called scheduling requests. 

341 




3 

systems, yielding heterogeneous systems. 
Administrative autonomy means that each system can have its own usage policies 

and behavioral characteristics, independent of any others. In particular, a local sys
tem can run in a manner counterproductive to a global optimum. In the usual case, 
scheduling modules will cooperate, but administrators must be free to set their local 
policies or they are unlikyly to participate in the distributed system [2, 8]. 

The next four sections examine the behavior of the module and show how the 
autonomy support within MESSIAHS facilitates security in distributed systems. 

Denial of Service Attacks 

Communication, administrative, and execution autonomy form a basis to thwart de
nial of service attacks. Each system can autonomously decide whether or not to 
accept any task. Thus, policies can be written to use current load or the identity of 
a requesting system as criteria to screen incoming requests. 

MESSIAHS implements two interface layers that scheduler-writers can use to im
plement their algorithms. The first, called the MESSIAHS toolkit, is a library of 
function calls that can be used with a high-level language such as C [3]. The sec
ond, the MESSIAHS Interface Language, or MIL, is an interpreted language that is 
especially tailored to the task of scheduling [5]. 

Either of these interface layers can be used to implement scheduling filters. A 
filter takes two description vectors and returns a numerical result indicating how well 
they match. A task filter compares an incoming task description vector to a system 
description vector and returns an integer. A negative number indicates an error during 
the evaluation of the filter, while zero indicates that there is no match. In either case, 
the task is not accepted for input. Positive integers indicate a match. In general, 
larger values imply a better match, although a boolean filter can be implementing by 
returning the same value for all matches, e.g. the integer one. 

For example, the local policy could decline scheduling requests when the local 
load average exceeds a threshold. This would limit the impact of outside tasks on the 
system, although it would not discriminate between legitimate and malicious requests 
for resources. A policy based on the source of the request could ensure that the task 
comes from a trusted source. A mixture of these policies could limit the number of 
tasks from untrusted sources while also limiting the total load on the system. In this 
way, an attempted denial of service will consume at most a small percentage of the 
resources of the machine. 

Communication autonomy can also help to defeat denial of service attacks. Be
cause a system is not required to respond to a message, it can simply ignore suspicious 
scheduling requests. This diminishes the possibility of saturating the scheduling mod
ule with requests from outlaw systems. It also eliminates a possible covert channel, 
wherein an attacker could study the behavior of the system in response to spurious 
scheduling requests. 

In addition, execution autonomy allows the scheduling policy to revoke or migrate 
running jobs. This facility can be used to remove tasks consuming excess resources, 

342 




4 

or to respond to a surge in load caused by an attempted denial of service attack. 

Firewalls 

It is sometimes desirable to mask the details of a resource, while still allowing outside 
access. This is commonly done for electronic mail systems, and is usually implemented 
through the use of a firewall [10]. All attempts to access a resource pass through the 
firewall, and the outside agent accessing the resource cannot tell the exact location 
of the resource. 

For example, in figure 1, the OSR node can act as a firewall to hide the presence 
of Vetch, Ogion, and Jasper. It can still advertise some of their capabilities to the 
other nodes in the system, but it appears as if all their resources are located at the 
OSR node. 

MESSIAHS incorporates two mechanisms to accomplish this: information conden
sation and proxy acceptance. Information condensation takes place when two or more 
update vectors are combined to form a single vector for advertisement. For example, 
OSR combines the capabilities of OSR, Vetch, Ogion, and Jasper into a single vector 
that can be sent to nodes outside the virtual system rooted at OSR. In the process, 
all identifying information, such as location information of individual resources, is 
removed. 

For example, suppose Ogion were an SGI Indy running IRIX 5.1 2 
, Vetch were a 

SPARC IPC running Sun OS 4.13 
, and Jasper were a 486 clone running FreeBSD. The 

information advertised by OSR would indicate the presence of MIPS, 486, and SPARC 
processors, as well as the presence of the IRIX, BSD, SunOS operating systems. 
There is no indication which processor is running which operating system. The OSR 
node knows this, but does not advertise it to the outside world. This might cause 
another node to send a spurious request to OSR, e.g. a request to run a task on 
a SPARC processor running the BSD operating system. However, OSR will have 
enough information to discard the request, and no tasks will be misscheduled as a 
result. 

This leaves open the question, "If a task is scheduled on a system, how is it moved 
to the system without the originator knowing where the system is?" The solution 
used in MESSIAHS is the proxy accept. When passing a scheduling request to an 
interior node, the firewall logs the request, replaces the originator's address with its 
own address, and waits for the response from the interior node. If the node accepts 
the request, it sends an acceptance message back to the firewall. 

Upon receipt of the accept message, the firewall replaces the address of the ac
ceptor with its address, and forwards the acceptance to the originator of the request. 
The originator then treats the firewall as the acceptor, and forwards the task for 
execution. The firewall then forwards the task to the real acceptor, and continues to 
act as an intermediary between the acceptor and the outside world. 

2Indy and IRIX are trademarks of Silicon Graphics, Incorporated. 

3 SPARC and SunOS are trademarks of Sun Microsystems, Inc. 


343 




struct statvec { 
float min, max, mean, stddev, total; 

}; 

typedef struct statvec Statvec; 

struct procclass { 
bit32 nsys; I* number of machines in this class *I 
Statvec qlen; I* run queue statistics *I 
Statvec busy; I* load on cpu (percentage) *I 
Statvec physmem; I* total physical memory *I 
Statvec freemem; I* available memory *I 
Statvec specint92; I* ratings for specint 92 *I 
Statvec specfp92; I* ratings for specfp 92 *I 
Statvec freedisk; I* public disk space statistics *I 

}; 

Figure 2: Statistics vectors and processor classes in MESSIAHS 

5 Control of Advertised Information 

To be secure, systems must not advertise sensitive information to untrusted systems. 
The communication autonomy support in MESSIAHS allows scheduling policies to omit 
data from their outgoing vectors. This feature can be used to filter outgoing data to 
be consistent with a security policy. 

To facilitate scalability, MESSIAHS uses a statistical representation of the capa
bilities of a virtual system. That is, instead of listing specific ratings of individual 
machines, the minimum, maximum, mean and standard deviation for a capability are 
kept, as well as the number of systems represented in a vector (see figure 2). 

To partition the possible space of attributes, machines are divided into classes 
based on logarithmic scale of their processor speed, with a structure containing sta
tistical information regarding the available resources for machines in each class (see 
figure 2). In this way, information can be condensed while still providing enough 
information for scheduling algorithms to make intelligent choices. 

MESSIAHS provides routines to automatically combine multiple statistical vectors 
into one. This is the mechanism used by the module to coalesce multiple system 
descriptions into the description of a single virtual system. The autonomy support 
within the mechanisms allows fields to be omitted from the combination. For example, 
if the OSR project administrator does not want the capabilities of Jasper advertised 
to nodes outside the project, he can specify that Jasper's resources not be included in 
OSR's advertised vector ..~Both MIL and the scheduling toolkit allow the administrator 
to restrict information advertisement in this fashion. 

344 




begin combining 
string $out.tier not match($out.tier, "preferred"): 

set $out. tier + ":preferred"; 
string $out.department not match($out.department, "research"): 

set $out.department +":research"; 
end 

Figure 3: A code fragment from MIL using labels 

The obvious tradeoff is this scheme is the size of the advertised vectors versus 
the degree of detail present in the vectors. The approach taken allows the vectors 
to be kept to a reasonable size4 while still providing sufficient visibility of individual 
machines so that scheduling algorithms can function well. 

6 Extension and Labeling Support 

In addition to the fixed data represented by statistical vectors, MESSIAHS also allows 
administrators to extend the system description vector. This affords the mechanisms 
flexibility in supporting scheduling algorithms, and can be used to support secure 
processing based on security classifications. 

Systems can insert labels in their extension vectors to indicate the security clas
sification required to run a task on that system. Tasks can include a security label 
listing their security classification. The scheduling algorithm can match the levels to 
ensure that the task's security rating is equal to or higher than that of the system. 

The MESSIAHS mechanisms can improve the efficiency of a distributed computa
tion. Large jobs can be partitioned into smaller tasks based on their security require
ments, and then only those tasks that require secure processing will be run on secure 
sites. Tasks that do not require secure processing can be run on any general-purpose 
processor within the distributed system. This not only reduces the load on the se
cure installations, it increases the security of these systems by ensuring that only 
computations that require secure resources are run there. 

This labeling mechanism could also be used in commercial systems. Within a 
single organization, tasks could be labeled with their department of origin, e.g. sales 
or research. Systems could protect private data by only executing certain classes 
of jobs. This mechanism could also be used by an institution that sells processing 
time to outside customers. The institution could offer different tiers of service, and 
jobs from customers would be labeled based on the tier they had purchased. Jobs 
from more expensive tiers might receive preferential treatment by being given higher 
priority, or being assigned to faster computers. 

Figure 3 shows an example usage of labeling written in MIL. Assume that the 

4The update vectors in the prototype implementation are approximately two kilobytes in size. 

345 




7 

intent is to advertise that the virtual system will run tasks for preferred customers 
within the research department. This code fragment makes sure that the service tier 
preferred appears in the outgoing description vector, and ensures that the research de
partment label also appears. Again, outside systems cannot determine if the preferred 
tier applies to the research department, but this will not cause a breach of security. 

Two factors complicate the use of MESSIAHS for this type of service. First, there 
must be some method of ensuring that machines and tasks cannot spoof higher secu
rity classifications or service tiers. Second, there must be guarantees that the data in 
the extension area remains private and uncorrupted, because communication auton
omy allows intervening systems to read or alter the contents of an advertisement. In 
the absence of a distributed secure network, we are left to devise software solutions 
to these problems. 

We can use well-known authentication techniques such as message digests, digital 
signatures, and public-key encryption to ensure the validity of labels and vector con
tents (see, e.g. (14]). A possible solution to the second problem is to encrypt private 
data within the extended portion of the task description vector so that only trusted 
hosts can view the secret data. However, this scheme presents the difficulty that 
intermediate nodes have no semantic knowledge of the encrypted information, and 
therefore cannot apply any combining rules to condense the information. Finding a 
clean solution to this dilemma is an open problem. 

Concluding Remarks 

We have described the MESSIAHS system for scheduling support. MESSIAHS includes 
generous support for autonomy in distributed systems, and this autonomy support 
can form the basis for security measures. 

We have shown how the scheduling support mechanisms can support four aspects 
of security: thwarting denial of service attacks, acting as a firewall, restricting the 
flow of information outside an administrative domain, and allowing systems and tasks 
to be matched based on their security requirements. 

The MESSIAHS system has several potential applications. for distributed systems 
in a trusted environment. The mechanisms can support process migration and load 
balancing. Because the update protocols track which machines are available, fault 
tolerance can be layered over the mechanisms. The revocation facility can support 
transaction management in a nested-transaction environment. 

Our plans for the future are to study the issue of cryptographic techniques to 
handle end-to-end security issues. However, there are significant barriers to be over
come to prevent nodes from advertising encrypted, sensitive information outside an 
administrative domain. 

References 

[1] 	 B. A. Blake. Assignment of Independent Tasks to Minimize Completion Time. 
Software-Practice and Experience, 22(9):723-734, September 1992. 

346 




[2] 	 A. Bricker, M. Litzkow, and M. Livny. Condor Technical Summary. Technical Re
port 1069, Department of Computer Science, University of Wisconsin-Madison, 
January 1992. 

[3] 	 S. Chapin and E. Spafford. Implementing Scheduling Algorithms Using MESSI
AHS. Scientific Programming, 1994. to appear in a special issue on Operating 
System Support for Massively Parallel Computer Architectures. 

[4] 	 S. J. Chapin. Scheduling Support Mechanisms for Autonomous, Heterogeneous, 
Distributed Systems. Ph.D. Dissertation, Purdue University, 1993. 

[5] 	 S. J. Chapin and E. H. Spafford. Constructing Distributed Schedulers with the 
MESSIAHS Interface Language. In 21th Hawaii International Conference on 
Systems Sciences, volume 2, pages 425-434, Maui, Hawaii, January 1994. 

[6] 	 W. Du, A. K. Elmagarmid, Y. Leu, and S.D. Ostermann. Effects of Local Au
tonomy on Global Concurrency Control in Heterogeneous Distributed Database 
Systems. In Second International Conference on Data and Knowledge Systems 
for Ma~ufacturing and Engineering, pages 113-120. IEEE, 1989. 

[7] 	 F. Eliassen and J. Veijalainen. Language Support for Multidatabase Transactions 
in a Cooperative, Autonomous Environment. In TENCON '87, pages 277-281, 
Seoul, 1987. IEEE Regional Conference. 

[8] 	 C. A. Gantz, R. D. Silverman, and S. J. Stuart. A Distributed Hatching System 
for Parallel Processing. Software-Practice and Experience, 19, 1989. 

[9] 	 If. Garcia-Molina and B. Kogan. Node Autonomy in Distributed Systems. In 
ACM International Symposium on Databases in Parallel and Distributed Sys
tems, pages 158-166, Austin, TX, December 1988. 

[10] 	 S. Garfinkel and E. Spafford. Practical UNIX Security. O'Reilly and Associates, 
1991. ISBN 0-937175-72-2. . 

[11] 	 A. H. Karp, K. Miura, and H. Simon. 1992 Gordon Bell Prize Winners. IEEE 
Computer, 26(1 ):77-82, January 1993. 

[12] 	 V. M. Lo. Task Assignment to Minimize Completion Time. In Distributed 
Computing Systems, pages 329-336. IEEE, 1985. 

[13] 	 V. Sarkar and J. Hennessy. Partitioning Parallel Programs for Macro-Dataflow. 
In ACM Conference on Lisp and Functional Programming, pages 202-211, Au
gust 1986. 

[14] 	 Bruce Schneier. Applied Cryptography. John Wiley & Sons, 1994. 

347 




A TECHNICAL APPROACH FOR DETERMINING THE IMPORTANCE 

OF INFORMATION IN COMPUTERIZED ALARM SYSTEMS* 


David S. Fortney Judy J. Lim 
Lawrence Livermore National Laboratory Lim & Orzechowski Associates 

P.O. Box 808, L-195 
Livermore, CA 94550 USA 

dfortney@llnl.gov 

198 Stone Valley Way 
Alamo, CA 94507 USA 

jlim@ sandia.gov 

ABSTRACT 

Computerized alarm and access control systems must be treated as special entities rather than as 
generic automated information systems. This distinction arises due to the real-time control and 
monitoring functions performed by these systems at classified facilities and the degree of 
centralization of a site's safeguards system information in the associated databases. As an added 
requirement for these systems, Department of Energy (DOE) safeguards and security 
classification policy is to protect information whose dissemination has the potential for 
significantly increasing the probability of successfuladversary action against the facility, or 
lowering adversary resources needed for a successful attack. Thus at issue is just how valuable 
would specific alarm system information be to an adversary with a higher order objective. We 
have developed and applied a technical approach for determining the importance of information 
contained in computerized alarm and access control systems. The methodology is based on 
vulnerability assessment rather than blanket classification rules. This methodology uses a system 
architecture diagram to guide the analysis and to develop adversary defeat methods for each 
node and link. These defeat methods are evaluated with respect to required adversary resources, 
technical difficulty, and detection capability. Then they are incorporated into site vulnerability 
assessments to determine the significance of alarm system information in the context of a facility 
attack. This methodology was successfully applied to the Argus alarm, access control, and 
assessment system developed at the Lawrence Livermore National Laboratory. Argus is 
software-driven, contains interrelated databases, shares host computers, and communicates with 
field processors and alarms through a common network. The evaluation results provided insights 
into the importance of alarm system information while the methodology itself provided a 
framework for addressing associated information protection issues. 

INTRODUCTION 

Computerized alarm and access control systems are increasingly being used at classified 
facilities to automate site security by providing real-time control and monitoring. Given the 
functions they perform, these systems and their associated databases are rather unique entities 
and should not be viewed just as automated information systems. Adding to the complexity of 
the situation is the DOE safeguards and security classification policy [1] to protect information 
whose dissemination has the potential for providing adversaries with significant advantages for a 
successful attack. Thus recently DOE has attempted to address the protections that must be 
provided to computerized alarm systems in the new classified computer security order. The key 
issue lies in the determination of the importance to an adversary of the information being 
processed or transmitted in the alarm system. This paper presents a technical approach that is 

*work performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National 
Laboratory under Contract W-7405-Eng-48. 

348 




based on the discipline of vulnerability assessment to address this issue. Prior to presenting the 
methodology, we will ftrst discuss the function of an alarm and access control system and the 
role it plays in the overall site safeguards program. We also need to be aware that the 
information in the alarm system may not be classifted, but that the system itself serves to protect 
other classifted matter. 

Alarm systems 
Sites handling or storing sensitive information or matter have sensors to detect potential 
intrusions, systems to monitor these sensors and assess alarms, and entry control systems to 
allow routine access by authorized personnel. Recent sophisticated computer-controlled alarm 
and access control systems have supplanted previously-used electromechanical systems devoid 
of any centralized intelligence. Because of the computerization and integration of these sensors 
and the accompanying wealth of information processed and stored by these alarm systems, 
computer security and information protection requirements now apply to these "intelligent" 
systems in addition to many regulations speciftc to alarms. Computerization provides a new 
medium by which safeguards system components may be defeated, increases the speed in which 
the adversary can achieve the defeat, and can decrease the detectability of the compromise or 
defeat. Alarm system integration using computers introduces the potential for single points of 
failure in the site safeguards system; that is, the adversary may only need access to a database to 
defeat several diverse sensors. Lastly, the centralization of data in these alarm systems potential 
poses operations security concerns in that the accumulation of the various data could provide 
sufftcient information to let an adversary circumvent site safeguards. 

The LLNL-developed Argus system [2] is an example of a computer-controlled, state-of-the-art 
alarm system. Argus is comprised of three main subsystems: the alarm subsystem, the entry 
control subsystem, and the security console which provides a map-based alarm assessment and 
response force communications capability (see Fig. 1). These systems share relational databases, 
host computers and fteld processors; and communicate with fteld processors using a common 
encrypted communications network. 

The system services facilities at LLNL's main site, as well as several remote locations via 
encrypted microwave communications. Except for alarms or other anomalous conditions, the 
system is designed to operate without security personnel involvement. This is accomplished by 
using badge readers, accompanied by personal identification numbers (PINs) and biometrics to 
authenticate individuals. 

Vulnerability assessment framework 
Although systems like Argus play a significant role in a site's physical protection posture, they 
must be evaluated in the context of the overall safeguards and security system protecting the site 
against adversary missions such as theft or sabotage of sensitive information or other valuable 
assets. For an adversary to successfully attack a facility, he or she may have to defeat physical 
barriers, locks, human surveillance, and armed guards. Defeat of the alarm and access control 
system may or may not be an intermediate step for the adversary to accomplish the mission. The 
alarm system and its associated databases are only one part of the site safeguards system. 
Therefore, the vulnerability of the alarm system and the value of alarm system information can 
only be evaluated within the framework of a higher-order adversary mission that a site's 
safeguards and security system is designed to protect against. 

349 




Remote 
Access 
Panel 

REMOTE ALARM STATIONS 

CCM'a 

SubHost 

Minicomputer 


Security Console 

HOST MINICOMPUTERS 

SubHost 
Minicomputer 

~---,:E:P~-~ 

<J~ 
Remote Terminals 

Entry Control Devices 
SECONDARY ALARM STATION 

CENTRAL ALARM STATION 

Jll 


Figure 1. Argus system schematic 

The framework for evaluation is provided by a site vulnerability analysis 01A) that identifies 
ways in which the site is open to attack or damage by a spectrum of threats. A site VA focuses 
on human adversarial threats, including insiders, outsiders, and combinations of insiders and 
outsiders possessing a range of capabilities, resources, and knowledge. These adversaries may 
attempt malevolent acts such as theft or diversion of sensitive material, radiological or 
toxicological sabotage, or compromise of classified information. The consequences of these acts 
can adversely impact public health and safety, national security, or lead to monetary loss. The 
site VA delineates the various scenarios that may be used by an adversary to attack a facility, 
evaluates the relative likelihoods of the scenarios re.ing successful, and quantifies the baseline 
risk for the facility. · 

Facility assets are typically protected in a graded fashion, with the most valuable assets located 
within several concentric facility protection layers. An adversary must defeat and traverse each 
of these layers in order to reach the critical assets. The adversary will attempt to defeat each 
layer without being detected or unduly delayed. There may be many "defeat methods" the 
adversary could employ to defeat the layer. VAs usually assume that adversaries are aware of 
available options and make choices among these options to develop an optimal overall strategy 
that maximize their chances of success. Adversary success is a function of detection, assessment, 
interruption, delay, and neutralization. For example, it is customary to assume a nonviolent 
insider threat would choose to minimize the probability of being detected; a violent outsider 
force would be more concerned with minimizing delay so as to complete their mission before 
they can be interrupted (and neutralized) by the facility response force. 

350 




In conducting a VA, analysts need to clearly define the capabilities and the decision criteria of 
the threats under consideration. For each layer of the safeguards system, the analyst needs to 
think like the adversary to brainstorm and refme potential defeat methods. These defeat methods 
are then evaluated considering safeguards measures that would detect or delay the adversary. 
Using the adversary's decision criteria, an optimal overall strategy is determined. Computer 
models and tools have been developed to support the conduct of site VAs. 

Our approach for evaluating the importance of alarm system information is to evaluate alarm 
system vulnerabilities in the context of a site VA. Exploitable alarm system vulnerabilities are 
identified, quantified, and included as part of an overall adversary strategy for perpetrating a 
higher-order goal-for example, theft of weapons grade plutonium. Critical alarm system 
information is then identified as that information that significantly increases the probability of 
adversary success or significantly reduces adversary resources needed for a successful attack. 

EVALUATION METQODOLOGY 

The methodology for determining the importance of alarm system information entails applying 
the VA process to a state-of-the-art system to determine potential vulnerabilities and their 
possible exploitation. These system vulnerabilities are folded into a site vulnerability assessment 
to determine if they provide the adversary with new defeat methods that are more powerful or 
more effective in accomplishing the overall objective. This methodology, developed to evaluate 
the LLNL-developed Argus system, entails six steps: (l)Threat defmition; (2) Alarm system 
characterization; (3) Defeat method development; (4) Evaluation of defeat methods; 
(5) Incorporation into site VA; and (6) Determining importance of alarm system information. 

Threat Definition 
The frrst step in any VA is to defme the relevant threats to be analyzed. Threats to be considered 
can include insiders, outsiders, and mixtures of insiders and outsiders, and threat parameters can 
include: the number of adversaries; equipment, skills, knowledge and financial resources; and 
objectives, motivation and willingness to use risky or violent strategies. For VAs of any 
computer-based system, it is especially important to defme the level of technical knowledge and 
sophistication, and available resources for such activities as building specialized electronic 
devices and special-purpose computers that can cost millions of dollars. The DOE threat policy 
defines a spectrum of threats and threat capabilities to be considered in site VAs. 

For our application, we consolidate the threats into three major threat types: outsiders and two 
types of insiders, privileged and nonprivileged. Privileged insiders are defined as those with 
special access and knowledge to alarm system information or systems, whereas nonprivileged 
insiders are other site personnel. Several subcategories of privileged insiders are considered to 
account for different levels and types of alarm system knowledge and access, and several 
subcategories of nonprivileged insiders are considered to account for different levels of access to 
our target of interest. From a classification perspective, the threats of interest are the 
nonprivileged insiders and outsiders, since the privileged insiders would likely have access to the 
classified information. However, from an information exploitation perspective, the privileged 
insider is of particular interest, since they are the most knowledgeable and could best attempt to 
misuse the information to exploit the alarm system. 

351 




Alarm system characterization 
Computerized alarm and access control systems are comprised of central host computers or 
servers, field processors to monitor and report alarms and to control entry points, intermediate 
communications network and concentrators, computer terminals, and central and secondary 
alarm stations with alarm assessment and communications capabilities. These systems monitor 
and control various end devices, such as sen~ors, access control locks, badge readers, and closed 
circuit television cameras. In some systems, such as Argus, there are also remote field locations 
and secondary alarm stations with microwave communications links back to the central system. 

Because of the interconnectivity of the alarm system and the number of types of communications 
links and end devices, a comprehensive VA must consider the possibility of a system attack from 
any point in the system. For instance, one cannot assume that a sensor could only be disabled at 
the sensor itself, or at a point between the sensor and the host computer. Depending on the 
configuration of the system, it may be possible to defeat a sensor via a totally separate path, such 
as from a seemingly unrelated communications link. To ensure a comprehensive and disciplined 
evaluation approach, a detailed system architecture diagram is developed. This schematic should 
show the architecture of the system, and delineate categories of devices (nodes) and 
communications connections (links) for analysis. At this stage, the analysts should gain an 
overview understanding of how the alarm system functions, and also understand the role of each 
of the nodes and links, as well as collect pertinent documentation and specifications. 

Given this characterization of the physical configuration of an alarm system, the logical 
configuration implements a real-time control and monitoring of the sensors and the transmission, 
processing and protection of the associated data. Alarm system data consists of basic types of 
information: system configuration information such as sensor types and location, component 
specifications such as detection sensitivity levels and model types, personnel area access 
authorization information, personnel authentication information such as "protected.. PINs and 
biometric parameters, and operational trends of the safeguards system in terms of the reliability 
of components and scheduled states of inactivity. For an adversary to access any of this 
information or use the alarm system, he or she must first defeat the system. 

Defeat method development 
As opposed to their simpler predecessors, computer-based alarm and access control systems are 
subject to a wide range of technically sophisticated defeat methods highly dependent on system 
design and implementation. To generate defeat methods for a particular system requires iterative 
interviews with system designers, hardware and software engineers, cryptologists and security 
personnel to understand the technical and procedural details of how the various components and 
communications links operate and could be exploited. Often the defeat methods are involved and 
require a series of adversary actions spread over time.to defeat even a single communications 
link. The elicitation and defeat method development process involves an initial interview with 
the cognizant expert to gain a system understanding, obtain pertinent written documentation, and 
outline generic defeat possibilities. We then develop potential defeat methods for each node and 
link on the alarm system architecture diagram. In subsequent interviews of the same expert, we 
present the defeat methods and solicit feedback: Are the defeat methods plausible? If not, why 
(i.e., what would technically prohibit the defeat method)? Are the defeat method's 
implementation details correct? What is the easiest way for an adversary to implement the defeat 

352 




method? For certain complicated defeat methods, multiple experts have to be consulted and four 
or five interview iterations are necessary. 

The defeat methods generated are highly dependent on system design and implementation. Some 
illustrative defeat method categories are: 

• 	 Sensor defeats or tampering 
• 	 Introduction or substitution of surrogate devices or components 
• 	 Communications link defeats such as tampering inside conduits or junction boxes; 

defeating polling or line supervision; installing intelligent eavesdropping devices or 
sniffers; and defeating line encryption by obtaining the encryption keys, breaking the 
cryptoalgorithm, or obtaining access to an unencrypted segment of the 
communications link [3,4]; 

• 	 Capture of a privileged login to issue commands to tamper with alarm information 
• 	 Badge, PIN, or biometric device defeats. 
• 	 Tampering with backup archives of system software or configuration data 
• 	 Tampering with source code (e.g., "trapdoor") or data prior to their being used on the 

production alarm system 

Eyaluation of defeat methods 
Once the defeat methods have been generated and described in sufficient detail, they are 
evaluated in terms of their usefulness to the adversary in perpetrating the overall mission. For 
each defeat method, we consider three resource attributes: the amounts and types of resources 
required, the type and level of adversary knowledge and sophistication, and the amount of 
required access. Next we identify any safeguards that protect against each defeat method, and we 
quantify the likelihood of the adversary successfully completing the defeat method. We describe 
these steps in the following paragraphs. 

The resource types include number of persons; type and cost of required equipment, including 
tools, computers, and electronic devices; and adversary task time. For some defeat methods test 
devices or surrogate devices may need to be constructed and tested ahead of time. When 
specialized devices or computers are required, it is important to ascertain their commercial 
availability. In estimating the required time for a defeat method, both the time to prepare away 
from the facility (including building test or surrogate devices, etc.) and the task time at the 
facility (including time to implant eavesdropping devices, etc.) should be included. 

The adversary knowledge. and sophistication levels include the type of expertise required 
(software, database, system programming, network communications, electronic components, 
etc.) and an estimate of the difficulty of the task. A constructed scale proves useful in delineating 
the inherent difficulty of the tasks as well as to differentiate task difficulty for the various threat 
types. For our application, we define the following scale: 

353 




Scale Description of adversary skill level 

Very Low Requires no particular computer-related or technical knowledge. 

Low Requires competent adversary who knows general functional information 
about the system. 

Medium Requires competent adversary with detailed information about the system 
and/or specific computer knowledge and expertise. 

High. Requires extremely knowledgeable and experienced adversary with 
extensive information about the system and/or extensive computer 
knowledge and expertise. 

Very High A difficulty level that may be theoretically possible, but in practice, even a 
team of experienced system programmers would not be assured of 
successful implementation. 

Now we specify the required access to perpetrate the defeat method, such as access to physical 
areas of the facility, to privileged keys or combinations, to privileged computer accounts, or to 
privileged data. For those adversaries without the requisite access, we specify how that adversary 
may attempt to gain that access. This may involve reviewing existing site VAs, or performing 
partial VAs. We need to also consider the possibility that one alarm system defeat method could 
be used to gain the access required for another alarm system defeat method-for instance, 
gaining privileged computer logins may be one step of another alarm system defeat method. 

Once the defeat methods have been evaluated for resource requirements, adversary knowledge, 
and access, we may be able to exclude certain defeat methods for use by certain adversaries. 
Defeat methods requiring resource attributes incompatible with those assumed for the adversary 
are eliminated (for that adversary). For example, we preclude outsiders using strategies that 
involve repeated physical access to controlled facilities with a closely knit work group. 

Finally we identify the safeguards capable of preventing or detecting the adversary to estimate 
the probability of detection for each adversary type. For each defeat method, we estimate the 
probability of timely detection (i.e., probability that the facility detects the adversary before it is 
"too late") by eliciting opinions from technical experts-engineers, system programmers, 
operators, aild administrators. It was sufficient for our purposes to use a constructed scale for 
that probability assignment [5], with each scale point representing a probability range: 

Scale Probability 
range 

Probability description 

Very Low 0.0-0.1 Adversary is "heavily favored" to succeed. 

Low 0.1-0.25 Adversary has the advantage, but is not "heavily 
favored;" 

Medium 0.25-0.75 Neither adversary nor system has the clear advantage; 
"toss up" 

High 0.75-0.9 System has the advantage, but is not "heavily favored." 

Very High 0.9-1.0 System is "heavily favored" to detect and interrupt 
adversary before mission completion. 

354 




In addition to timely detection, after-the-fact detection also plays a significant role for 
computerized systems. Timely detection focuses on the ability of the facility to detect and 
interrupt the adversary before mission completion, whereas after-the-fact detection is the ability 
of the facility or system to detect that a defeat method was attempted in the past. The primary 
value of after-the-fact detection is to provide traceability of adversary events and assurance that 
no successful attack has been perpetrated. 

Incorporation into site YA 
We assume that a site VA has already identified the feasible adversary scenarios to achieve the 
ultimate mission (e.g., the theft of weapons grade plutonium). These scenarios typically involve 
direct defeat of the actual safeguards components and procedures. The site VA has also 
quantified the associated likelihoods and impacts of the scenarios, determined the adversary's 
optimal scenario, and quantified the overall risk of the adversary mission. Thus a baseline risk 
has been established for comparison with criteria for risk acceptance. Now by incorporating the 
alarm system defeat methods into the site VA, we can explore whether it is advantageous for the 
adversary to use alarm system defeat methods in lieu of the methods previously identified in the 
VA. If alarm defeats provide adversary advantage, we go on to determine the value of alarm 
system information in the context of overall site risk. 

The VA methodology uses computer models to assimilate the alarm system defeat methods to 
generate new adversary strategies for facilj.ty attack and to select an optimal adversary strategy 
from this setto quantify the underlying risk from each threat. This is accomplished by adjusting 
the optimal mission strategies from the site VA to include alarm system defeat methods when 
they prove more beneficial to the adversary than the non-alarm system defeat methods 
considered in the baseline site VA. 

Integrating the alarm system defeat methods into the site VA framework allows us to assess the 
impact of the use of alarm system defeat methods and adversary access to alarm system 
information on the overall facility risk. For instance, use of these methoqs may provide the 
adversary with more efficient or powerful means of accomplishing the facility attack. 

If a new attack strategy involving use of the alarm system information increases the facility's 
perceived risk unacceptably, safeguards upgrades to reduce the risk should be considered. These 
upgrades may be analyzed to ensure cost-effective risk reduction. The safeguards may either be 
applied to the alarm system, or to another aspect of the safeguards system, since what is 
important is reduction of overall facility risk. Moreover, if use of the alarm system information 
or defeat of components would significantly improve the adversary chances of success or 
significantly reduce the required resources for his mission, then the information or system 
component merits robust protection. 

Determinin& the importance of alarm system information 
We are now in a position to evaluate the information in the alarm system and its associated 
documentation, and to identify the information that is significant from a vulnerability 
perspective. Recall that the site VA has established the risk equivalences between adversary 
scenarios employing different defeat methods. That is, a theft scenario involving adversary 
tampering of door position sensors, locks, and intrusion detectors would be equivalent to a 
scenario with adversary tampering of the alarm system database to gain facility access and 

355 


http:facilj.ty


inactivate alarms if both scenarios have the same detection probability. The importance of alarm 
system information is now evaluated within this framework. 

Alarm system information may be evaluated as one of three general types: al~ system design 
information,.alarm system configuration data, and facility vulnerability information. Each of 
these requires a slightly different approach to determine information value: 

Alarm system design information is technical information on alarm and access control system 
design such as design philosophy, system architecture, hardware components, algorithms for 
protecting and processing alarms, message protocols, and database schemas. Much of this 
information may reside in technical system documentation as well as be directly observable from 
the alarm system itself. The critical alarm system design information is that which was found to 
be significant to an adversary in perpetrating a defeat method that proves useful for the overall 
mission. If this information resides only in written technical documentation and not deducible 
from other sources, it should be treated as very sensitive. If however, the information can be 
directly observed or derived from the alarm system itself, an evaluation is performed on the 
difficulty of doing this. If obtaining the information from the system can be done expeditiously 
or must be done necessarily in conjunction with using the information to defeat the system, then 
the information need not be considered particularly sensitive. If this is not the case, the 
information protection should be commensurate with the incremental difficulty of accessing the 
alarm system to obtain the information prior to using it in the defeat method. 

Alarm system configuration data is site-specific information particular to the implementation of 
the alarm and access control system. Ex~ples include facility maps, location, types, and 
sensitivity settings of sensors and other field h~dware, rules for alarm configuration and mode 
changes, personnel access authorization data and rules, personnel authentication data such as 
PINs and biometric data, and encryption keys. We note that particularly sensitive configuration 
data, such as encryption keys, may only be contained in protected hardware components of the 
system, and not generally accessible in configuration databases. Alarm system configuration data 
found to be significant to an adversary in perpetrating a defeat method that facilitates the overall 
mission is evaluated in the same manner as system design information, and the information 
protection is commensurate with the difficulty increment. 

Facility vulnerability information includes information potentially revealing vulnerabilities in 
the facility's safeguards and security system. The information may be information from various 
sources that do not by themselves reveal vulnerabilities, except by being integrated and "fused" 
to provide a "bigger" picture. This information may include such things a.S the presence of 
unalarmed pathways, or the fact that the facility is temporarily in a more vulnerable state (such 
as some emergency). This information must be evaluated in the context of non-alarm system 
security measures that may mitigate the potential vulnerability. For instance, the potential 
vulnerability implied by the fact that alarms are undergoing maintenance must be evaluated 
while considering the security contingency measures. 

In all three categories, the primary focus is that alarm information which significantly improves 
the adversary's overall prospects of success, or significantly lowers the resources required for a 
successful attack. Also of interest is that information which allows the defeat of the alarm and 
access control system, but Whose impact on overall mission success is nominal. Specifically, 
information which significantly improves the adversary's prospects can be defined to be 

356 




information which allows for a significant decrease in detection probability or task time for the 
optimal strategy. We note that some information appearing to be significant may be "nice to 
have" in advance, but would not materially affect strategy success since the information is 
obtainable in "real time" by the adversary. 

Protection of significant alarm system information can be complicated, since protection 
mechanisms for sensitive information do not protect against the privileged insider adversary and 
may not protect against other threats any more than is already being afforded by the alarm 
system itself. To mitigate the risk of adversary use of significant alarm system inforination 
against the facility may require technical system upgrades rather than conventional physical and 
administrative information protection.mechanisms. Also, alarm system designers should 
consider information importance during system design, and information of high utility to an 
adversary should be excluded from the system whenever possible. If such information must be 
included, system design should preclude its easy exploitation (e.g., critical encryption keys 
should reside only in protected hardware). 

SUMMARY 

We have developed and applied a vulnerability-based methodology for the evaluation of the 
importance of alarm system information to an·adversary. Our evaluation approach is premised 
on the existence of a site VA which has established the baseline risk for the site relative to 
higher-order adversary missions. The site VA provides the relative framework for evaluation of 
alarm system information. The usefulness or importance of this type of information to an 
adversary is based on determining equivalences to sets of sensors, components, and procedures 
that an adversary would otherwise have to defeat in achieving his mission. Our application to a 
computerized, state-of-the-art alarm and access control system-LLNL's Argus system- have 
given us certain insights on the versatility of the evaluation approach and also particularly on the 
value of alarm system information to an adversary. Although this methodology was developed 
and applied to computer-based alarm systems, we note that it could easily be generalized and 
applied to any computer system with a significant role in a site's safeguards and security system. 

REFERENCES 

1. 	 CG-SS-2: Classification Guide for Safeguards and Security Information, U.S. Department 
of Energy, Office of Classification and Technology Policy, Washington, DC (July 1990). 

2. 	 Lawrence Livermore National Laboratory, Argus: A Sophisticated System for High-Security 
Facilities, UCRL-TB-105443 (January 1993). 

3. 	 Simmons, Gustavus J., ed., Contemporary Cryptology: The Science ofInformation Integrity, 
New York, NY: IEEE Press (1992). 

4. 	 Chritton, Michael R., "Line Supervision of Alarm Communications," Proceedings ofthe 
32ndAnnual Meeting ofthe Institute ofNuclear Materials Management, Vol XX, pp. 557-62 
(July 1991). 

5. 	 Sicherman, A., T. A. Renis, and R. A. Saleh, "Validating Detection Probabilities for the 
ASSESS Insider Module," Proceedings ofthe 31st Annual Meeting ofthe Institute of 
Nuclear Materials Management, Vol XIX, pp. 701-07 (July 1990). 

357 




ASAM: 

A Security Certification and Accreditation Support Tool 


for 

DoD Automated Information Systems 


Loreto Remorca, Jr. & Robert Zomback V. Michael Caputo 
William Barr 

Secure Solutions, Inc. U.S. Army CECOM, Space and MICON Services Company 
9404 Genesee Avenue, Terrestrial Communications P.O. Box 1398 
Suite 237 Directorate Eatontown, New Jersey 
La Jolla, CA Ft. Monmouth, New Jersey 07724 
92037 07703-5203 

AMSEL-RD-C3-IS-P, #26 

Abstract 

This paper provides an introduction to the All-purpose Security Assessment Model (ASAM) automated 
tool. ASAM is an on-going effort to define and implement an automated tool to support the security 
certification and accreditation efforts of the Department of Defense (DoD) automated information 
systems. ASAM uniquely integrates key aspects of the DoD certification and accreditation process that 
have been absent from most other security evaluation I assessment tools. In particular, ASAM 
addresses security issues across the entire system life-cycle, incorporates generic accreditation as 
defined by AR 380-19 and integrates a generic threat model. 

This research and development effort was supported by U.S. Army Communications-Electronics 
Command, Space and Terrestrial Communications Directorate under Contract No. DAAB07-89-AOSO. 
This paper describes the initial ASAM efforts which are currently focused on the development of the 
Risk Management Review (RMR) portion of the ASAM. 

Introduction 

The U.S. Army Communications-Electronics Command (CECOM), Space and Terrestrial 
Communications Directorate, has identified the need to develop an automated tool to assist security 
analysts in the ongoing work of accrediting Army Tactical Command and Control System (ATCCS), 
telecommunications and automated information systems. This paper presents the requirements and 
rationale for the top level design of the All-purpose Security Assessment Model (ASAM) automated 
tool. 

The earliest vision for the ASAM tool was to establish a process tailored to the risk assessment 
requirements of the tactical battlefield environment. Though ASAM still retains its original focus, it 
has evolved and expanded to support the more general objective to define and develop an automated 
framework for a comprehensive security certification and accreditation process. 

At the heart of the ASAM tool design is the automation of the manual methodology currently in use to 
develop the generic accreditation documentation for the U.S. Army's Lightweight Tactical Fire 
Direction (LTACFIRE), Reserve Component Automation System (RCAS), and Fire Support Ada 
Conversion (FSAC) systems. In ASAM, this function is defined as the qualitative risk assessment that 
is part of the overall RMR process. The remaining ASAM functions serve to support .the remaining 
activities in a security certification and accreditation process. 

358 




ASAM Overview 


With the constant advances in computer and telecommunication technology, security is becoming an ever 
increasing area of concern. The DoD has addressed these concerns with the establishment of applicable 
evaluation methods, standards and regulations. 

The DoD risk assessment process has evolved over many years. This evolution is most recently reflected 
in the Army's update to AR 380-380, AR 380-19. AR 380-19 introduces the concept of a generic 
accreditation approach which permits accreditation of systems to be fielded at many locations. The 
application of the generic accreditation process has the following beneficial effects: 

• 	 Lowers the overall system cost 

• 	 Decreases the time to field tactical systems 

• 	 Provides a higher level of security expertise during the accreditation process. 

The ASAM approach offers benefits that are not realized when conducting a typical accreditation. 
These benefits include the ability to address security concerns throughout the development environment 
to overcome the following shortcomings: 

• 	 During the development process changes may be made to the initial design 

• 	 Developers may not track security requirements or be aware of them 

• 	 Implementation may not be verified against the DoD security requirements 

• 	 System changes necessitated after implementation are not cost effective. 

These and other shortcomings indicate that the current security analysis process does not identify the 
security related problems at the appropriate times in the development life-cycle process. This failure 
results in the following negative impacts: 

• 	 A relatively high cost to correct the problems 

• 	 Delay or cancellation of the project 

• 	 An undesirable change in the system security mode of operation 

• 	 A decision by the Designated Accreditation Authority (DAA) that the security posture 
of the system is not acceptable and must be enhanced. 

The recommended systems engineering approach to correct these failures is to involve the security 
analyst as a member of the development team from its inception and throughout the development 
process. Security related issues and recommendations that are addressed early on are most likely to 
result in an accredited system that meets the needs of the DoD without incurring any unnecessary costs. 

359 




ASAM Requirements 

The requirements for ASAM have been derived from the early ASAM studies and analyses, open 
discussions during ASAM reviews, feedback from an early ASAM prototype (non-functional) and the 
"lessons learned" from ATCCS and RCAS accreditation efforts. One study of particular interest, 
conducted early in the ASAM project, was a review of the current state-of-the-art in automated risk 
assessment tools. The results from this study were influential in defining initial objectives for ASAM 
and was published under contract as the "Risk Assessment Tool Evaluation" report. The minimum 
ASAM general and system requirements are described in the paragraphs to follow. 

General Requirements 

During the ASAM analysis phase, the minimum certification and accreditation process requirements for 
an automated tool applicable to automated information systems were determined to be as follows: 

• Provide environment-specific support 

• Provide full life-cycle support 

• Incorporate applicable mandates and requirements 

• Address trusted system issues. 

Environment-&pecific Support 

Many automated information systems generate unique operational requirements because of its 
surrounding environment. In particular, military tactical systems possess garrison and deployed mode 
system operations and maintenance requirements that must be addressed for accreditation. Adoption of 
the a well defined Army RMR process will allow ASAM to readily address these unique factors. 

Life-Cycle Support 

The key to ASAM is the capability to perform evaluation and compliance activities throughout the 
system life-cycle that will support the certification and accreditation process in its entirety. The 
system development life-cycle defined in ASAM is depicted in Figure 1 below. 

360 




System Definition 

ASAM Reports 
ASAM Reports 

Phase 

ASAM Reports 

ASAM Reports 

Figure 1. ASAM Application Across System Life-Cycle 

In many cases, ASAM will be used to perform risk assessments of systems that are already operational. 
However, by using ASAM in the earliest stages of system development, system design deficiencies can 
be detected and corrected with the least impact. As ASAM is used throughout the system life-cycle, 
ASAM will effectively and efficiently gather and report the security assurance information required to 
complete the certification and accreditation processes. 

Security Mandates and Requirements 

Systems that require accreditation most often must meet mandated Government security requirements, 
greater program requirements, as well as specific mission security requirements. As such, pre-specified 
Government security requirements are incorporated into ASAM to provide compliance tracking for the 
security analyst. ASAM will also allow for the addition of program- or mission-specific and other 
security or functional requirements that are not able to be pre-specified in an ASAM database. 

Trusted System Issues 

The ASAM design philosophy treats confidentiality, integrity, and service assurance as security policy 
statements which require the implementation of protection mechanisms and assurances for their 
enforcement. ASAM will incorporate the DoD Trusted Computer System Evaluation Criteria (DoD 
5200.28-STD) "Orange Book" requirements for each level of trust. In particular, ASAM will address the 
Orange Book requirements for trusted system accountability and assurance. ASAM will model the 
Guidance for Applying the DoD Trusted Computer System Evaluation Criteria in Specific Environments 
(CSC-STD-003-85) "Yellow Book" concept of the interrelationship between the security mode of 
operation and the risk index. 

361 




In addition to the COMPUSEC issues above, ASAM will address and incorporate INFOSEC issues in 
the areas of: 

• Procedural Security 

• Personnel Security 

• Physical Security. 

System Requirements 

Since the completion of the ASAM analysis phase, ASAM specification I development efforts have 
focused on developing a richer understanding of the Army generic accreditation process. The Army 
generic accreditation process has evolved and matured since the inception of the ASAM project. In 
response, the ASAM generic accreditation model has been adapted to meet these changes. 

To achieve a balanced ASAM RMR process, the qualitative RMR was supplemented by the inclusion of 
a quantitative risk assessment. The qualitative-side of the assessment provides for consistent 
estimates of risk supported by descriptive statements of justification. The quantitative assessment 
provides for quick system-level security evaluations that can serve to refine the qualitative assessment 
focus. 

In addition, requirements arising from the needs of the security analyst during the system life-cycle 
became apparent. These include the following: 

• Timely decision making by project management 

• Assurance documentation tracking 

• Security requirements tracing. 

Accreditation Model 

Accreditation is the formal declaration by the DAA that a specified automated information system 
(AIS) is approved to process classified information at a specific security mode of operation using a 
prescribed set of safeguards. The process of performing the necessary assessments and preparing the 
documentation necessary for the DAA to make a decision is called the accreditation process. In a 
generic accreditation, the DAA approves all aspects of operation of an AIS except those that are 
specific to the location and operational environment of the system. 

The ASAM generic accreditation model, used during the LTACFIRE, RCAS, and FSAC programs, is 
illustrated in Figure 2. Unique aspects of the ASAM generic accreditation model are its early analysis 
of the threat environment and its identification of user-defined system security requirements. 

ASAM will guide the analyst in performing an evaluation of the system's technical and non-technical 
security features to establish the extent to which it meets the security requirements based upon the 
threat model described in the next section. ASAM will also generate security requirements analysis 
data that when combined with the threat analysis will feed into the certification. 

ASAM will then conduct a RMR to assess the level of threat, system vulnerabilities, and estimated risk 
based on a correlation of the threats and vulnerabilities. The RMR includes recommendations for 
additional countermeasures needed to reduce risks that are considered to be unacceptably high. 

362 




Finally, a Users Security Manual/Standard Operating Procedure (USM/SOP) is developed to delineate 
the guidelines for the safe operation and location of the system. ASAM identifies those areas which 
may require a SOP to be generated. These SOPs are then expanded upon manually by the accreditation 
team. 

It should be noted that the process just described is normally performed cyclically with feedback from 
later stages providing additional inputs into earlier stages as time moves forward. 

Generic Threat Model System Security Requirements 

Natural Disasters and System Failures 
Accidents and Errors .... DoD Directive 5200.28 

AR 380-19 
DoD 5200.28-STD (Orange Book) 

ROC for System 
Other system specific requirements 

(e.g., SOW, Contract, etc. ) 

(software design errors and operator errors) 
Hostile Acts by Auth & Unauth Individuals 

Physical Combat 
Electronic Warfare 

.... 

I I 

I 


Certification 
(Evaluates system, existing procedures) 


Determine how well the system meets its security requirements 

(independent security testing, evaluation of other evidence) 


Identify any security weaknesses 

DAA review and approval 


I 

Risk Management Review 

Determine risk to the system as a result of threat's ability to exploit weaknesses 

(factor in likelihood, motivation, capability, resources of threats) 


Determine countermeasures and incorporate into system or procedures 

Identify residual risks and determine if they are within acceptable limits 


I 
Users Security Manuai!SOP 

Security procedures for command, security staff, end user 

Incorporates required countermeasures 


I 

Generic Accreditation 

Determine recommendation to DAA based on Certification, Risk Management Review, Procedures 

Complete AR 380-19 generic accreditation documentation requirements 


Present to DAA for approval 


Figure 2. ASAM Generic Accreditation Model 

363 




Generic Threat Model 


The ASAM RMR process is driven by the generic threat model depicted in Figure 3. Generic threats 
were identified based upon system threat assessment reports from a variety of tactical, 
telecommunications, and automated information systems. The threat model was developed to account 
for generic threats in both non-combat AISs and battlefield automated systems (BAS). Potentially, all 
threats in the figure could be brought to bear against a system. 

Physical 

Combat 


Threats 

Threat 
Agents 

Software Deliberate Deliberate Electronic 
Design Attack by Attack by Warfare 

Error Authorized Unauthorized 
Individuals Individuals 

Operator 
Error I I 

Comm. 
Failure 

• Progranmers • Terrorists 
• Maintainers • Demonstrators 
•Operators • Saboteurs 
•Users •Thieves 

AREAS OF POTENTIAL HARM 

Unauthorized Manipulation Unauthorized Disclosure Denial of Service or Use Unauthorized Use 
of Information 

Figure 3. Generic Threat Model 

Risk Assessment Process 

AR-380-19 prescribes a risk management review to be conducted during the generic accreditation. The 
risk management review consists of the following four steps: 

• Perform a risk assessment 

• Identify and implement countermeasures 

• Determine whether or not risks are acceptable 

• Commit to on-going risk management. 

The risk assessment is based on an analysis of threats to a system, identified system vulnerabilities to 
these threats, and the magnitude of the resultant risks. The risk assessment enables the security 
analyst to determine what countermeasures must be implemented to result in acceptable levels of risk 
for each area with residual risk. Finally, the requirements for on-going effectiveness reviews are 
determined. 

364 




The ASAM Risk Assessment Process is based on the generic accreditation process developed for Army 
certification and accreditation is illustrated in Figure 4. The risk assessment is driven by expected 
threats to the system, and by the embedded system security features. Therefore, the top layer of the 
risk assessment process depicts both the requirements that drive the system design, as well as the 
threats that can potentially be brought to bear against the user requirements-driven solution. 

IThreats and Threat Agents ! I 
I 

System Requirements I 
I

IPotential Attacks Against System I I 
I 

System Design I 
I I 

I 

System Capabilities and Vulnerabilities 

I 

Resulting Vulnerabilities Due to Threats 

and Exploitation of Weaknesses 

I 

Likelihood of Attack 


Areas of Potential Harm 


I 
Risk AssessmentI I 


Figure 4. ASAM Risk Assessment Methodology 

Generic Threat Model-Driven Risk Assessment 

ASAM initially determines a subset of threats from the Generic Threat Model that can take advantage 
of the system vulnerabilities. These threats are applied to each system life-cycle to determine the 
level of risk. The ASAM risk assessment process subdivides the system life-cycle into the following 
phases: 

• Development and production 

• Fielding 

• Garrison operations 

• Exercises 

• Combat operations 

• Post deployment support and maintenance. 

A quantitative risk assessment is available to the security analyst to perform this initial threat 
evaluation. This quantitative approach supplements the overall qualitative approach ofASAM by 
providing a high-level security assessment to validate the security requirements of the tactical 
system. 

365 




Threats include natural disasters and system failures, accidents and errors, and hostile attacks, such as 
deliberate attacks by authorized or unauthorized personnel and combat activities. These threats and 
threat agents, illustrated in Figure 2, are evaluated, and potential attacks against the system are 
assessed and documented. 

Security Requirements Driven Risk Management Review 

The ASAM risk assessment methodology also involves a security requirements-driven risk management 
phase. This approach applies threats against system security requirements. If the system is judged to 
meet a specific security requirement, the risk is considered to be minimal or none. If the system does not 
meet a specific security requirement, or it can not be determined that the requirement is met, then the 
risk is considered for further evaluation in the RMR process. 

The system design is evaluated during the risk assessment. The accreditation team performs a security 
certification to ensure that all system security requirements are met, and if not, documents the 
identified design deficiencies for consideration in the risk assessment. The results of the system 
certification are then considered to judge whether or not the system is at risk due to the specific 
weaknesses in security features and functions determined during the certification. Threats and threat 
agents are resisted by the system, by the security practices and SOPs, and by the total operational 
environment within which the system operates. 

Security Capabilities and Vulnerabilities 

The threat-driven and security requirements-driven portions of the assessment methodology result in an 
enhanced understanding of the system capabilities and vulnerabilities. As a result of these analyses, 
the accreditation team develops a greater understanding of: 

• 	 System security capabilities and features 

• 	 System certification results - how well the system meets its security requirements 

• 	 The ability of threats and threat agents to exploit shortfalls identified in the system 
certification 

• 	 System operational procedures, security SOPs, and other countermeasures. 

Based on this enhanced understanding, the accreditation team identifies the resulting system 
vulnerabilities due to threats and their potential exploitation of system security weaknesses. The 
system security shortfalls represent areas of potential vulnerability that may be exploited by the 
potential threats. Threats may attempt to exploit system security deficiencies during any life-cycle 
phase. If the system is vulnerable to a potential threat, further evaluation determines if the 
capabilities of the system or the controls and procedures built into the operational environment can 
mitigate the threat. 

Estimating Likelihood of Attack and Residual Risk 

Threats that survive this vulnerability assessment by being able to penetrate or bypass system security 
features or exploit system weaknesses are then evaluated to determine the likelihood that the threat 
would cause harm to the system. "Likelihood of attack" is a function of the motivation of the threat 
agent and its associated capabilities and resources to carry out the hostile act. Areas of potential harm 
include unauthorized disclosure, denial of service or use, unauthorized manipulation of information, 
and unauthorized use. The likelihood of harm to the system is derived from this analysis. The 
qualitative evaluation, or "sum" of the individual vulnerabilities determines the overall system 

366 




vulnerability. Finally, the likelihood of attack and the likely severity of the potential damage are 
combined to determine the residual risk. 

Final Risk Assessment 

Finally, the system residual risks are rank ordered by likelihood and potential damage. A 
determination is made as to whether or not the risk can be eliminated by identifying potential security 
controls and countermeasures. Technical/ cost/schedule/benefit implications are considered to ensure 
that a sufficient return on investment can be realized through addressing the specific risk. This will 
lead to the correction or change to a specific system security feature or function, or the implementation 
of additional physical or procedural security controls. The residual risks are then evaluated to 
determine whether they can be eliminated or reduced to an acceptable level. 

Threat agents can attack system assets (e.g., information, hardware, and software) at any time during 
the system life-cycle. The likelihood of a threat agent attack against a system will vary according to 
the current life-cycle phase. The effectiveness of countermeasures will also vary depending on the life
cycle phase. Thus, the level of risk is assessed separately for each of the system life-cycle phases. 

ASAM Process Flow 

The ASAM automated tool provides an application framework allowing for the incorporation of 
additional accreditation functions in the future. Figure 5 depicts the normal order of processing within 
ASAM. The shaded area highlights the initial ASAM development to provide the security analyst 
with the ASAM RMR (RMR) portion of the automated tool. 

Risk 
Management 

Review 
Accreditation 

Report 

~ 
~ 

Figure 5. ASAM Process Flow 

367 



Since the security assessment process is iterative throughout the development life-cycle, ASAM is 
designed to provide the security analyst with a tool that is sensitive to these life-cycles and that is 
tailored to issues specific to each life-cycle phase. ASAM will provide the analyst with a minimum 
set of reports as follows: 

• System Description • Vulnerabilities List 

• Generic Threat Model • Final Threat Model 

• Standard Security Requirements • Qualitative Risk Assessment 

• Documentation Requirements • Quantitative Risk Assessment 

• User-Defined Security Requirements • SOP List 

• Requirements Deficiencies • Draft Accreditation . 

System Definition Function 

The System Definition function gathers preliminary system description data. ASAM uses this data to 
determine the initial system description, security requirements, and preliminary threat model. This 
system information is used to derive the "Yellow Book" TCSEC class and specific security requirements. 

Documentation Tracking Function 

The Document Tracking function determines the standard security documents required for the system 
being evaluated and provides a document tracking mechanism to follow the scheduled delivery I 
availability of these documents. Though missing documentation is an obvious deficiency, in many 
instances, delays in availability of security documentation can adversely affect the system 
development process if not addressed in a timely manner. 

Requirements Compliance Determination Function 

The Requirements Compliance Determination function tracks and examines the nature of compliance of 
individual security requirements that need to be satisfied I implemented. In the early stages of the 
life-cycle, the Requirements Compliance Determination function may simply examine compliance with 
a specified requirement. Analyzing the same requirement in later stages may require elaboration to 
provide documented assurances that the requirement is effectively implemented I tested. 

Security Evaluation Function 

The Security Evaluation function identifies an initial list of vulnerabilities based on the requirements 
deficiencies of the system being evaluated. This list can then be modified I updated as necessitated by 
the system and its system environment. At a minimum, ASAM should include the following list of 
vulnerabilities to begin the security evaluation: 

• Access to trusted source code not properly controlled 

• System not properly protected from theft 

• Lack of automated security features 

• Interconnection of systems processing information at different classifications , 

• Connection to unencrypted transmission channels. 

368 



Risk Management Review Function 


The Risk Management Review function finalizes the threat model and performs both a quantitative 
and a qualitative risk assessment. The quantitative process is based on guidelines for computer security 
risk analysis that are compatible with international information technology security evaluation 
criteria (ITSEC) standards. The qualitative process is based on the manual methodology used to 
currently accredit the Army tactical and information systems. 

ASAM uses the quantitative method to aid the analyst in focusing security evaluation efforts and to 
refine the preliminary threat model. The final threat model will then feed directly into the 
qualitative method. With this input, the qualitative process can immediately highlight those 
threats found to be significant during the quantitative process. As the development progresses, the 
periodic reviews of the quantitative and qualitative assessments will uncover and identify other 
security deficiencies. 

Accreditation Report Function 

The Accreditation Report function produces a list of the standard operating procedures (SOPs) that are 
required, as well as a draft accreditation report. The SOP list will be used to ensure that the final SOP 
meets the system requirements. At a minimum, ASAM should specify the following items for inclusion 
in the SOP: 

• Access controls 

• Handling of security incidents 

• Requirements for a security training and awareness program 

• Handling of classified data 

• Emergency destruction of the system. 

Acknowledwnents 

The authors of this paper wish to thank NSA and U.S. Army CECOM for its support and sponsorship of 
this effort. We also wish to acknowledge the following individuals for their contributions to ASAM: 
Mr. Michael Ware, Mr. John Preusse, Mr. Jeff Vignes, Mr. Kym Blair, Mr. Thomas Haley and Mr. Lester 
Lanphear. 

369 




81-UR-94-001 


A FINANCIAL MANAGEMENT APPROACH FOR SELECTING 

OPTIMAL, COST-EFFECTIVE SAFEGUARDS UPGRADES FOR 


COMPUTER- AND INFORMATION-SECURITY RISK MANAGEMENT1 


Suzanne T. Smith, Barranca Inc., POB 1349, Los Alamos NM 87544 

Stephen Gale, University of Pennsylvania, 200 S 36th St, Philadelphia PA 19104 

William J. Malampy, Univ. of Pennsylvania, 200 S 36th St, Philadelphia PA 19104 


ABSTRACT 

Just because yesterday's enemies have become today's friends does not imply 
lessened security needs. Moreover, today's tight money requires achieving 
security intelligently, no more than needed, and within budget. We explain how 
to achieve optimal risk management for computer- and information-security 
systems with a new software tool integrating two existing approaches: LAVA (the 
..b.os Alamos Vulnerability/Risk Assessment system, developed by Smith at Los 
Alamos National Laboratory} and VAM (the Value Added Model}, developed by 
Gale et al. at the University of Pennsylvania's Wharton School}. The LAVAN AM 
amalgamation is a comprehensive tool for optimally upgrading security systems, 
based on potential exposure to loss (risk}, subject to budget constraints. The 
combined tool calculates loss exposures as a function of the weaknesses or 
vulnerabilities in the existing baseline safeguards (countermeasures} system, the 
current threat strength, and the impact (cost} on the organization of successful 
threat attacks. Its reports describe vulnerability, threat, and loss exposure values 
in monetary and linguistic terms; these reports also give a linguistic cost/benefit 
basis for implementing strategies for upgrading missing or inadequate 
countermeasures. Then it identifies in monetary terms the baseline system's net 
present value (NPV} to the organization; a monetary cost/benefit analysis on 
possible upgrade strategies calculates the strategy's NPV and an internal rate of 
return (IRR} for the possible strategies. Optimal strategy candidates maximize 
NPV and have IRRs at least as large as the opportunity cost of capital, benefit-to
cost ratios greater than unity, and minimized vulnerability and loss exposure in 
areas most of interest to the organization. 
Keywords: Risk management, vulnerability assessment, threat assessment, 
financial management, cost/benefit analysis, net present value, internal rate of 
return, optimal strategy, cost-effective safeguards upgrades. 

1Copyright © 1994 S. T. Smith, S. Gale, and W. J. Malampy. Permission is granted to the National Computer Security 
Conference Committee for publication and release of this paper in the proceedings of the 17th National Computer Security 
Conference. All other rights reserved. ' 

370 




I. Introduction 

This paper explains how to achieve optimal risk management for computer- and 
information-security systems with a new software system1 

• 
2 that integrates two existing tools: 

LAVA3 
-
7 (the _bos Alamos Vulnerability/Risk Assessment system, developed by Smith at Los 

Alamos National Laboratory) and VAM 8 
-
12 (the Value Added Model, developed by Gale and 

Malampy at the University of Pennsylvania's Wharton School). 
There are four sections beyond this introduction. The first three sections are overviews 

of how LAVA's computer and information security model works, how the VAM segment works, 
and how the integrated LAVA/V AM Portfolio system works; the final section contains conclusions. 

II. The LAVA Segment 

LAVA, a systematic approach to vulnerability and risk assessment, examines in detail 
three separate entities: first, the weaknesses (or vulnerabilities) in the safeguards system 
protecting a group of assets, owned or valued by an organization, from a set of undesirable 
occurrences or outcomes that can be caused by a threat or set of threats exploiting the system 
weaknesses; second, the strength of the current threat against the system; and third, the potential 
costs to the organization if any or all of the outcome set should occur as a result of some threat 
attack. 

LAVA has three distinct parts. The first part is the mathematical model upon which the 
rest of the LAVA system is built; this model is based on classical risk assessment theory, utility 
theory, expert systems theory, cognitive science, hierarchical systems theory, fuzzy set theory, 
possibility theory, and natural language processes. The second part is a general software 
system, an expert system framework, implementing the mathematical model as a user-friendly 
software engine (or computer program) that drives a variety of application systems. The third part 
is made up of the several application system models, each of which is a knowledge-based expert 
system, whose data appears to the user as sets of interactive questionnaires and sets of 
instruction screens. The most familiar of these LAVA application systems is LAVA/CIS, the 
application for Computer and information Security that has been in use throughout the federal 
government since 1984; a newer, related application system is LAVA/LAN, the application for 
_bocal Area Network security. 

Each LAVA application system has, as basic components, sets of assets, threats, and 
undesirable outcomes. LAVA defines an asset as something of value to the organization that 
must be protected from harm or compromise. There are essentially two kinds of assets: tangible 
assets and informational assets. For LAVA/CIS and LAVA/LAN, there are four asset sets. The 
first is the facility, defined as personnel and the physical plant-whatever constitutes the base of 
operations. The second is the computer hardware, including computers and ancillary equipment 
like printers, plotters, data communication devices, terminals, and so forth. Third is all machine
interpretable information, which is coded or encrypted information that requires machine 
translation before it makes sense to a human, such as software, cad-cam files, computer or word
processor data files, encrypted messages, and so forth. Fourth is all human-interpretable 
information, encompassing documents (such as phone book, personnel lists, schedules, 
engineering drawings, itineraries and routings, maps, organization charts, other charts, plots, 
diagrams, printed computer output, letters, reports, scratch notes, and so forth), video and 
computer-screen displays, other displays (such as blackboards, strategy boards, bulletin boards, 
status boards, and the like), and conversations. 

LA VA defines threats as active forces (human forces or forces of nature) that can harm 
or compromise the organization's assets. Most LAVA application models have three threat 
categories, each having several subcategories. We first consider all natural and random hazards, 

371 




including unintentional human error (handling, maintenance, poor training) or equipment 
malfunction; widespread (or regional) major hazards, including catastrophic fire, flood, seismic 
activity, volcanic disasters, severe storms like hurricanes or tornadoes, and so forth; ordinary fire 
damage; ordinary water damage; power abnormality damage; heating, ventilating, or cooling 
damage; .maintenance or housekeeping damage; and so on. Next, we consider the onsite human 
adversary, assuming malice aforethought on the part of the adversary, who is able through 
legitimate or illegitimate means to pass through or evade normal physical security at the 
organization's physical outer perimeter and is on site; this threat includes disgruntled employees; 
authorized insiders; hostile intelligence services; industrial spies; terrorists; paramilitary 
organizations; mentally unstable persons; political activists; the press; and so forth. Finally, we 
consider the offsite human adversary, again with malice aforethought assumed, but whose 
location is exterior to the organization's physical outer perimeter; similar to the previous threat 
except the perpetrator is located outside the physical outer perimeter of the organization's 
property, it includes hostile intelligence services; industrial spies; terrorists; paramilitary 
organizations; mentally unstable persons; political activists; the press; and so forth. 

Each human threat agent may have one or more goals as part of the attack agenda. 
Some of these goals may include sabotage, unauthorized control of information or other assets, 
ransom or extortion, political or economic advantage, political unrest, adverse publicity or loss of 
reputation for the organization, publicity for a cause or themselves, breakdown in international 
relations, strategic advantage, revenge, surmounting an intellectual challenge, fomenting 
revolution or war, or satisfying an irrational need resulting from general insanity 

Undesirable outcomes are the unwanted results of a successful attack by a threat or 
combination of threats against the organization, the facility, or one or more of the organization's 
assets. For both LAVA/CIS and LAVA/LAN, there are six undesirable outcomes: unauthorized 
access or use; theft (or abduction for personnel asset); damage, tampering, or unauthorized 
modification (or physical injury or mental tampering, for personnel asset); destruction (or death, 
in the case of personnel asset); unauthorized disclosure; and unavailability or denial ofuse (which 
can include hostage or siege situations causing unavailability). LAVA models the degree of 
possibility of each outcome's occurrence for each threat-asset pair, and keeps track of these 
values in a fuzzy outcome possibility matrix. It is important to note that a single event can result 
in the simultaneous occurrence of more than one of the outcomes. 

Impacts or costs to the organization of attacks, whether successful or not, are measured 
in both monetary and nonmonetary (or linguistic) terms, and come about from a variety of cost 
factors. Monetary cost factors are calculated for such things as investigation and followup, 
replacement, repair, retraining, business interruption, loss of future business or funding, business 
or contract termination, litigation, fraud or embezzlement, and so forth. Nonmonetary cost factors 
can arise from such potential events as disruption of international relations, organizational 
embarrassment, loss of strategic posture, loss of public trust or confidence, loss of reputation, 
organizational stress or disruption, loss of morale, invalidation of treaties, loss of future funding, 
unsafe or restrictive working conditions, and so on. 

Each outcome can occur in varying degrees of severity for each [threat, asset, safeguards 
function] combination. Outcome severity depends on the degree of possibility of the outcome for 
each [threat, asset, outcome] combination as expressed in the outcome possibility matrix, the 
organization's value structure with respect to the outcome set (an organization may have a 
greater aversion to one outcome over another), the strength of the current threat, the value of the 
asset to the organization, and the relative weakness of the safeguards function (the performance 
measure of the safeguards function, which is called "vulnerability measure" in the LAVA reports). 

Having established the threat, asset, and outcome sets and the outcome possibility matrix, 
we then address what constitutes the "ideal" safeguards system (the one you would have if 
neitfler time nor money were considerations) for preventing the threats from attacking the assets 

372 




and achieving the postulated outcomes. 
LAVA's safeguards system model represents the kinds of controls needed to protect the 

assets from the threats. A set of control functions, called Safeguards Functions, is defined for 
each discrete pair of threat-asset combinations in such a way as to provide complete protection 
if the combined degrees of functional control are adequate for the sensitivity of the operation. For 
this we define a set of safeguards functions for each of the distinguishable threat-asset pairs so 
that the relative importance of each function within the set of functions for each T-A pair is about 
the same. The degree of functional control is determined by aggregating the levels (or degrees) 
of completeness of the control subfunctions, or Safeguards Subfunctions. For each of the 
individual safeguards functions, we define a set of subfunctions that provide performance criteria 
for the adequacy and completeness of that safeguards function; each of the subfunctions is 
devised so that the relative importance of a subfunction within a specific function is about the 
same. Completeness of each safeguards subfunction is determined by aggregating the 
completeness scores of the Safeguards Elements (specific safeguards, protective measures, and 
countermeasures associated with each safeguards subfunction) and their Attributes 
(characteristics of the individual countermeasures that contribute to their strength and 
completeness). 

The safeguards elements and attributes are modeled as questions in one of LAVA's 
interactive questionnaires (the Vulnerability Assessment Questionnaire); each element and 
attribute is related to the safeguards system model as an element of control necessary for the 
completeness of one or more, often many, of the safeguards subfunctions. LAVA's analysis of 
the data thus gathered establishes two things: what constitutes the baseline safeguards system 
used as input to VAM, and what vulnerability levels are inherent in that system. 

Using several detailed questionnaires, LAVA collects the site-specific information from 
teams of persons associated with each site. The questionnaires and other application-specific 
data required for the software engine to operate upon arise from the existing safeguards orders; 
from inspection, evaluation, and certification criteria; from checklists and standard operating 
procedures; and from discussions with recognized experts in the field. LAVA produces automated 
reports detailing: what constitutes the existing safeguards system at the site under analysis; what 
safeguards mechanisms are candidates for use in upgrading the safeguards system; the strength 
of the existing threat; the vulnerability measures for each safeguards subfunction with respect to 
the existing threat; and what the potential loss exposure is for each [threat, asset, safeguards 
function, outcome] combination, in both monetary and nonmonetary terms. 

Using LAVA's approach for vulnerability/risk analysis has benefits that do not accrue from 
the use of other, more quantitative, probabilistic methods. First, LAVA's automated report 
generators produce results that are immediately usable, both by managers who must make major, 
far-reaching decisions and by security personnel in the field whose job it is to maintain an 
acceptable level of safeguards. Second, because LA VA produces both qualitative and 
quantitative results, users feel more comfortable with the results because they understand both 
the results and the information that produced those results. Third, because LAVA does not 
require the user to generate probabilities (often unfounded) for its operation but instead relies on 
a natural-language, user-friendly interface to acquire its data, users are more willing to act upon 
its results. And finally, because of the team environment in which an assessment is performed 
and the discussions that arise among team members, the process itself of using a LAVA 
application has proved to be an experience that both raises the security consciousness of the 
users and enhances the overall working environment at the facility. 

Ill. The VAM Segment 

Originally, the purpose of the Value Added Model (VAM) was to answer questions about 

373 




the monetary value that security measures added to corporations. It determined which security 
strategies produced the highest financial return to an organization given past patterns of 
breaches and/or threats to corporate property (tangible or intangible). As such, VAM 
characterized the safeguards system risk problem as finding those security strategy(ies) that 
maximize the value added to the organization given specified risk level, and determining the value 
added (the benefits that the security system adds to the organization) in terms of the value of the 
losses avoided by a given security strategy relative to an existing or security strategy. 

In the VAM software, we structure the analysis as follows. First, the security analyst 
defines and identifies the kinds and extent of the safeguards system risk problems that are of 
interest (or critical) to the organization. Then VAM selects one or more technically and 
operationally feasible security strategies that, from the perspective of the security analyst, are 
likely to prevent the attacks that cause risk or mitigate the potential losses once the breach has 
occurred. For each technically and operationally feasible safeguards system strategy, VAM next 
computes the expected losses, benefits and costs. Then VAM estimates the value of the security 
strategy by substituting these benefits and costs into its financial analysis (investment) 
component. After the VAM software has analyzed all of the combinations of technologies and 
operational procedures, it makes a ranking according to each of the three investment 
criteria-NPV, IRR, and Benefit/Cost Ratio. Finally, VAM generates a report describing the 
ranking of technologies and operational procedures, and prepares and presents to management 
their financial projections for final decision-making on investment. 

VAM has five operational modules (Problem Definition, Exposure and Breach Analysis, 
Security Component Feasibility Analysis, Formulation of Security Strategies, and Estimation of 
Breach Occurrence) and four financial modules (Expected Loss Estimation, Expected Benefit 
Estimation, Cost Estimation, and Investment Analysis). VAM ranks candidate security strategies 
according to their relative value added to the organization using three measures of investment 
analysis-Net Present Value (NPV), Internal Rate of Return (IRR), and Benefit/Cost (B/C) ratio. 

NPV quantifies the value added of safeguards system strategies by computing the sum 
of the present value of each strategy's stream of expected benefits (net of annual operation and 
maintenance costs generated over the economic life of the strategy) less the initial purchase and 
installation costs. Using this measure, the investment decision is simple: invest in the S&UCS 
strategy that has the largest NPV (given that the NPV is greater than zero). 

IRR is the discount rate that sets the NPV of a safeguards system strategy equal to zero. 
Specifically, IRR is the discount rate that equates the present value of the security strategy's net 
benefits (including interest earned from investing these benefits) and the initial purchase and 
installation costs. The investment decision rule for accepting a strategy is again simple: accept 
any strategy whose IRR is at least as large as the organization's opportunity cost of capital, as 
set by the chief financial officer or other accepted authority. 

B/C ratio measures the safeguards system strategy's "bang per buck invested". B/C ratio 
is the appropriate measure of the value(C)added of a security strategy when the size of the 
capital budget is the principal constraint in the resource allocation process. The investment 
decision rule for accepting a security strategy is to accept any strategy whose ratio is greater than 
unity (1). 

IV. How Does the LAVA-VAM Portfolio Model Work? 

The LAVA-VAM joint approach, called the Portfolio Model, incorporates LAVA's critical 
outcome and vulnerability estimation procedures with the VAM's methods of assessing investment 
decisions to provide an integrated model for the analysis of safeguards systems. LA VA elicits 
the parameters of the baseline security system and provides a relative vulnerability analysis 
(score) for all safeguards functions and subfunctions, its assessment of dynamic threats, and its 

374 




analysis of consequences through the use of the expert system model. VAM provides a means 
for assessing the financial value added of alternative countermeasure strategies relative to 
baseline conditions. 

Three additional components of a comprehensive safeguards system model make the 
approach truly functional. First is a procedure/database that generates a comprehensive list of 
potential penetration scenarios for analysis. Second is a database of the available technical, 
operational, training, managerial and related support functions that constitute alternative 
countermeasure strategies and a procedure for selecting and combining them with respect to 
specific analytical criteria. Third is a user-friendly human/computer interaction process, one based 
on Microsoft Windows, that permits safeguards system analysts to use this system in a simple, 
straightforward manner under a variety of operational conditions. 

This integrated model provides a system that calculates the optimal configuration of 
effective and efficient safeguards countermeasures for computer- and information-security 
systems. LAVA, although expressing loss exposure in both monetary and nonmonetary terms, 
operates without using a specific organizational budget constraint and so suggests, as candidate 
safeguards improvements, all safeguards elements it finds to be either missing or inadequate in 
performance. The VAM, on the other hand, currently uses financial indicators of expected loss 
functions as the basis for its calculations of investment decisions. In the Portfolio Model, LAVA's 
measure of vulnerability is used as the calculation base, and the optimal decision for investments 
in safeguards countermeasures is based on maximizing the decrease in the assessed 
vulnerability of the system, while maximizing the value-added, given a specified budget constraint. 

As currently designed, the Portfolio Model for safeguards systems for computer- and 
information-security systems is based on the use of Microsoft Windows as the operating 
environment. The Windows screens facilitate navigation through the Portfolio Model and consist 
of commands relating to LAVA, VAM, the data collection and analysis procedures, and 
countermeasures database. The opening segment of the assessment includes material consisting 
of definitions, instructions, the assessment team, and basic data on the history, operation and 
spatial configuration of the site and the organization. The next step consists of a series of 
screens that facilitate LAVA's Vulnerability Analysis (VA) section, including the VA Interactive 
Questionnaire to be answered by the assessment team; the VA scoring; the preparation of the 
VA report, which shows the degree of weakness of each of the safeguards subfunctions and lists 
the missing and inadequate elements in the safeguards system; and the production of a file for 
analysis by the VAM containing all of the elements in the existing safeguards system. 

Then the user sees another series of screens in which the VAM calculates the value
added of the existing safeguards system, including a relative valuation of the current safeguards 
system (that is, in terms of a comparison with other system elements, given the cost of each 
element of the safeguard system and its operation) and a comparison of the purchase and 
operating costs as determined from the database on available countermeasure strategies. 

Next comes a series of MS Windows screens on LAVA's Dynamic Threat section, which 
determines threat strength with respect to [threat, asset, safeguard functions] combinations, 
generates a report listing the current threat strength showing the respective degree of vulnerability 
for each of the safeguards subfunctions, and produces a file of all the candidate safeguards 
elements (independent of cost and time) for VAM analysis. 

Then a series of Windows screens guide the user through the Consequence Analysis 
section of LAVA (questionnaires, scoring, and automated reports), including the organization's 
evaluation of its assets (asset worth); the impacts of each possible successful attack for each 
[threat, asset, safeguards function, outcome] quadruplet (in both monetary and nonmonetary 
terms); and the loss exposure for each quadruplet (in both monetary and nonmonetary terms). 

The next step of the Portfolio Model draws on both VAM and LA VA and the available 
countermeasures database. Initially, VAM calculates the value-added of the safeguards elements 

375 




that LA VA produces as candidates (that is, those that bring the vulnerability score as close to 
zero as possible). Next, it selects from the available countermeasures database additional 
candidate strategies for analysis subject to the budget constraint. Using each candidate strategy 
in successive iterations, LAVA calculates new vulnerability and risk measures for that strategy 
upgrading the safeguards system (that is, decreasing the vulnerability score). Finally, VAM 
calculates the value-added of each alternative safeguards combination to determine the optimal 
strategy--the one that produces the highest value-added and maximum decrease in vulnerability 
and risk, given the organization's specified budget. 

The Portfolio Model's final product is a report identifying the elements of the optimal 
strategy for upgrading the safeguards system. The Portfolio Model generates the report by 
means of reference to a series of screens in Windows that allow for combining text, tabular, and 
graphical information. Under the current designs, the report is capable of providing detailed 
information on the scenario(s) analyzed and the variation in safeguards necessary to protect the 
site under varying conditions. Where appropriate, the report will also review additional financial 
assumptions including alternative cost conditions and budget constraints. 

IV. CONCLUSIONS 

The Portfolio Model is an integrated system made up of the key processes of LAVA and 
VAM; it also includes a database on available countermeasures and their costs. The entire 
system operates under a MS Windows-based control structure. The purpose of the Portfolio 
Model is to assist safeguards policy makers, designers, and engineers in selecting the most 
effective and cost-effective systems, given the need to simultaneously achieve efficiencies in 
investment patterns. The model design, moreover, both reflects the complexity of selecting 
modern safeguards systems and takes advantage of the existing state of the art with respect to 
the available analytical and decision support procedures. 

What we believe we have done is to advance the state of the art from an adequate but 
primitive state where there are two approaches to the common problem (of intelligent computer
and information-security system upgrades to minimize vulnerability and risk, according to system 
sensitivity, within the organization's budget) to an advanced state with single model, the Portfolio 
Model, which produces the grounds for integrating considerations of effectiveness and efficiency 
in the selection of safeguards system upgrades for computer- and information-security systems. 

REFERENCES 

1. 	 S. T. Smith, S. Gale, and W. J. Malampy, "LAVAN AM: An Integrated System for Optimal 
Risk Management in Ultra-High Risk Facilities," Proc. 1993 Symposium on High
Consequence Surety: Academic Views, Albuquerque, NM (October 1993}, 81-UR-93-002. 

2. 	 S. T. Smith, S. Gale, and W. J. Malampy, "Optimal Risk Management in Ultra-High Risk 
Facilities: LAVAIVAM-A New Approach," (81-UR-94-002) Proc. 1994 International 
Conference on Fuzzy Logic, San Diego CA, September 1994). 

3. 	 S. T. Smith and J. J. Lim, "An Automated Method for Assessing the Effectiveness of 
Computer Security Safeguards," Proc. IFIPS Second International Congress on Computer 
Security, Toronto, Canada (September, 1984). 

4. 	 S. T. Smith and J;. J. Lim, "Risk Analysis in Computer Systems--An Automated 
Procedure," Information Age, Vol. 7, No. 1, pp. 15-18 (January 1985). 

376 



5. 	 S. T. Smith et al., "LAVA: A Conceptual Framework for Automated Risk Analysis," in L. 
A. Cox, Jr. and P. F. Ricci, eds., New Risks: Issues and Management, pp. 315-330. New 
York: Plenum Press, 1990. 

6. 	 S. T. Smith and M.-L. Jalbert, "LAVA/CIS Version 2.0: A Software System for Vulnerability 
and Risk Assessment," Proc. 13th National Computer Security Conference, Washington, 
DC (October 1990). 

7. 	 S. T. Smith, "LAVA/CIS Version 3.0a: A User's Guide (Draft)," Barranca Inc. Publication 
81-UR-93-001 (June 1993). 

8. 	 S. Gale, K. Duncan, et al., "Conceptualizing a Value Added Approach to Security 
Management," Security Journal, 3 (1992), pp. 4-13. 

9. 	 S. Gale, K. Duncan, et al., "The Atkinson Value-Added Model," Security Journal, 3 (1992), 
pp. 14-26. 

10. 	 S. Gale, K. Duncan, et al., "An Implementation of the Atkinson Model," Security Journal 
3 (1992), pp. 27-44. 

11. 	 S. Gale and W. J. Malampy, "Research on the Value-Added Model for Security Analysis," 
Proc. 39th Annual seminar of the American Society of Industrial Security, Washington, DC 
(August 1993). 

12. 	 S. Gale and W. J. Malampy, "The Relationship of the Value-Added Model (VAM) to LAVA 
and the Development of a Comprehensive Portfolio Model Incorporating LAVA and VAM 
in a User-Friendly Human/Computer Interaction Format," presented to the Symposium 
on High Consequence Surety (Academic Views), Albuquerque, NM (October 1993). 

377 




1994 NATIONAL COMPUTER SECURITY CONFERENCE 

THE ELECTRONIC INTRUSION THREAT 
TO NATIONAL SECURITY & EMERGENCY PREPAREDNESS 


TELECOMMUNICATIONS: 


AN AWARENESS DOCUMENT 


AUTHORED BY: 	 Dr. Joseph Frizzell 
Office of the Manager, National Communications System 
701 South Courthouse Rd 
Arlington, VA 22204 
(703) 692-0524 
frizzelj@cc.ims. dis a. mil 

Mr. Ted Phillips (POC) 
Booz· Allen & Hamilton Inc. 
8283 Greensboro Drive 
McLean, VA 22102 
(703) 902-5420 
(703) 902-3172 fax 
phillips_ted@ bah.com 

Mr. Traigh Groover 
Booz· Allen & Hamilton Inc. 
8283 Greensboro Drive 
McLean, VA 22102 
(703) 902-5376 
groover_ traigh@bah.com 

378 


mailto:traigh@bah.com
mailto:frizzelj@cc.ims


1.0 INTRODUCTION 

This paper presents an assessment ofthe threat posed by individuals or groups that gain 
unauthorized access to elements of the nation's public telecommunications infrastructure. These 
individuals and groups, who will be referred to here as electronic introders, currently possess the skills 
and tools to cause disruptions or denials of service, remotely monitor telecommunications traffic, steal 
sensitive information from network elements, modify network data bases, and commit fraud. 

The United States Government is concerned with the threats from electronic intrusion because 
of its heavy reliance on public telecommunications networks to maintain communications in times of 
national emergency or crisis. Over 90 percent of the U.S. Government's telecommunications services 
are provided by commercial carriers. National security and emergency preparedness (NS/EP) 
organizations rely heavily on the public switched network (PSN) 1 to provide telecommunications 
services in times ofnational crisis or disaster. 

This paper is based solely on open source information -- case histories, electronic intruder files, 
technical journals, and other freely-available data The reasons for this approach are three-fold. First, 
the nature ofthis information creates none of the restrictions imposed by the use of classified or 
proprietary data Second, intruders are quite prolific when writing about themselves and have 
generated hundreds of megabytes ofdata about their activities, all ofwhich are available electronically. 
Third, the high level of interest by those outside the computer underground has resulted in a large 
volume ofperiodical literature and academic work focused on electronic intrusion techniques and 
incidents.2 

2.0 TARGETS AND TECHNIQUES 

Electronic intruders constitute a significant threat to the telecommunications infrastructure in 
the United States. They have made intrusions into key network elements, created denial-of-service 
problems, monitored communications, searched network data bases, and modified and deleted data 
base information. On at least two occasions, they have compromised NS/EP telecommunications 
services. Because of electronic intruders' increasing knowledge and skills in telecommunication 
systems, the threat to the PSN from electronic intruders is continually growing. 

2.1 Degree of PSN Penetration 

Electronic intruders have penetrated every category ofnetwork elements of the PSN including 
switching systems; transmission systems; operations, administration, maintenance, and provisioning 
(OAM&P) systems; signaling systems; and packet networks. Though obtaining accurate information 

1Because no single term is descriptive enough to encompass all the components and networks which comprise the 
U.S. telecommunications infrastructure, this paper defines the term PSN in a very broad manner. In addition to 
the switched network. this paper uses the term PSN to include virtually all terrestrial telecommunications systems 
and networks such as public data networks, cellular systems, and signaling networks. 

2 This paper's source material is listed in Appendix A. Readers are encouraged to request a copy of the 
identically-titled report upon which this paper is based from the Office of the Manager, National Communications 
System, Office ofPlans and Programs, 701 South Courthouse Road, Arlington, Virginia 22205. 

379 



concerning the frequency of attacks on particular network elements is virtually impossible due, in part, 
to the vast majority of attacks not being reported, it is apparent that electronic intruders have regularly 
attacked all types of networks that are linked to the PSN. 

Points of Intrusion. Carriers' internal corporate networks3 have been a fertile ground for 
exploitation by electronic intruders. One ofthe characteristics of the current telecommunications 
infrastructure is that all network elements are highly interconnected via carriers' internal corporate 
networks. This connectivity provides remote access to network elements for network engineers, 
technicians, craftsmen, vendors, and other legitimate users. Remote access to network elements is a 
double-edged sword -- it enables carriers to reduce operating costs, but it also provides many intrusion 
opportunities for electronic intruders. 

Since important systems reside on carriers' corporate networks, significant security provisions 
are normally implemented. However, these countermeasures are usually employed around the 
perimeter ofthe network, at dial-in ports and gateways. Once legitimate users or electronic intruders 
are authenticated by these perimeter security points, they can attempt to connect to a wide variety of 
network elements and other resources. 

The Poulsen Case. One recent case illustrates the potential for abuse posed by electronic 
intruders. On April11, 1991, law enforcement authorities arrested Kevin Lee Poulsen in Van Nuys, 
California, 17 months after he was indicted on a variety of computer fraud and wiretapping charges. 
Poulsen, known by the handle Dark Dante, allegedly masterminded a complete computer and 
telephone system invasion. Ifthe allegations against Poulsen are true, he was responsible for the most 
comprehensive, coordinated attack on the PSN ever documented. 

Some ofthe allegations against Poulsen and his two accomplices are informative. Poulsen 
allegedly intruded on local exchange carrier (LEC) service provisioning systems numerous times. He 
allegedly modified existing telephone services, added new telephone services (some without billing), 
forwarded calls to other numbers, and dual-provisioned telephone lines. He allegedly intruded on LEC 
maintenance/test systems to electronically monitor telephone conversations. He allegedly intruded on 
LEC data bases and obtained telephone numbers (some unlisted), street addresses, customer names, 
and other sensitive data. He allegedly physically broke into carrier offices and stole equipment, 
software, identification badges, and other material. He allegedly compromised ongoing law 
enforcement investigations. He allegedly sold sensitive data obtained from LEC data bases. He 
allegedly illegally established or modified telephone services for other individuals. He allegedly 
manufactured false identification, including telephone company badges and drivers licenses. He 
allegedly intruded on other computer systems for profit, including California DMV, several credit 
bureaus, and an Air Force computer network. 

The MOD Case. On July 8,1992, several members of an electronic intruder group known as 
the Masters ofDisaster (aka. Masters ofDeception, aka Masters ofDestruction) were indicted on 
11 counts including conspiracy, wire fraud, computer fraud, and interception of electronic 
communications. Some of the allegations against the members of MOD are informative. 

3 Carriers' corporate networks are used to interconnect network elements in their traffic networks, to provide 
connectivity for remote network administration, maintenance, repair, and other functions. 

380 



The group developed and unleashed programmed attacks on telephone company computers. 
They monitored data transmissions on X.25 networks, looking for passwords and access codes. They 
illegally accessed PSN computers, created new circuits, added services with no billing records. They 
changed an adversary's long distance carrier to more easily obtain the adversary's calling records. They 
sold passwords and access codes for money and destroyed data in several computer systems. The 
MOD members arrested reached a plea bargain agreement and received sentences ofover one year. 

2.2 Information Gatherin2 Activities 

Electronic intruders have demonstrated a high level of competence in identifying, and gaining 
information on PSN network elements and services. War dialing is usually the primary method of 
information gathering for novice and developing electronic intruders. War dialing is accomplished by 
using a software tool that rapidly dials all numbers within a specified range. Electronic intruders 
frequently scan the 200, 55X, 57X, 95X, 97X, and 99X exchanges in given NPAs because this is 
where carriers frequently place their internal test and maintenance services. Once a dial-up access 
number is found to a system, the next step many junior electronic intruders take is trashing, or 
dumpster diving. Trashing is the activity of sorting through the trash dumpsters of telecommunication 
companies in order to find information such as system manuals, computer printouts, reports, discarded 
login account and password combinations, memoranda, telephone directories. Perhaps the most 
common information gathering tactic used by the more experienced electronic intruders is that of social 
engineering. Social engineering is the act of impersonating telecommunication employees or network 
security managers in order to gain valuable information including passwords, logins, and access 
numbers. The most dangerous, but least wide-spread threat in this area is unlawful entry into 
telephone company facilities. The Poulsen case illustrated the potential for exploitation posed by 
electronic intruders breaking and entering into LEC end offices. 

2.3 Increasing Technical Sophistication 

Electronic intruders are continually developing more creative and sophisticated methods for 
compromising various elements of the PSN. 

Cellular/Wireless Attacks. As the use ofwireless telecommunication services has exploded 
during the past decade, electronic intruders have sought to exploit these technologies. The primary 
concern pertaining to this type of attack is the disclosure of sensitive information. Cellular phones can 
be exploited by any person using a properly equipped police scanner (capable of monitoring the cellular 
frequency band, 824-894 Mhz). With this equipment, electronic intruders can easily monitor cellular 
transmissions and capture potentially sensitive data This is especially important when cellular users 
pass credit card numbers, login/password data, access codes, or other sensitive data. 

Packet Network Attacks. Data networks are an integral part of the nation's 
telecommunications system. Public packet switched data services offered by telecommunications 
carriers are one manifestation of these networks. Most carriers also use packet networks for their 
internal corporate networks. As discussed earlier, these networks connect operations, administration, 
maintenance, and provisioning (OAM&P) systems, switching systems, and other network elements 
together. Electronic intruders consider these PDNs and corporate networks to be fertile ground for 
exploration. Consequently, computer underground bulletin boards and publications contain an 
abundant supply ofnetwork user identifications (NUis) and network user addresses (NUAs) for PSN 

381 




•.·•.•.P.•.•.·: 

m~~m~m~ 

elements. One ofthe techniques invented by electronic intruders to avoid toll charges is called 
weaving. This involves dialing into a local computer or network, exiting the computer/network on an 
outdialline, connecting to another computer/network, and outdialing again to the target system. 
Weaving in and out of computers not only avoids toll charges, but it also makes tracing intruders 
difficult, ifnot impossible. Today, this technique is used by a vast majority of electronic intruders as a 
means to avoid arrest. Electronic intruders are also beginning to exhibit skills related to direct 
manipulation of data network devices (such as packet assembler/disassemblers, or PADs). These skills 
are noteworthy because ofthe reliance on packet switched networks for connecting network elements. 

Advanced Software Techniques. In recent years, electronic intruders have begun to utilize 
advanced software techniques in their activities. This phenomenon is a natural outgrowth ofbasic 
electronic intruder activities, in which software tools play a large role. However, a different genre of 
software tools is being increasingly used by advanced electronic intruders. These tools are often 
custom-developed by members ofthe computer underground, and they are frequently distributed to 
other electronic intruders with both source and object code, allowing for quick and easy modification to 
suit specific tasks. 

The most dangerous type of this software is new or modified code which the electronic 
intruders plant surreptitiously inside network elements. These small programs can be written to 
function like software viruses, worms, or trojan horses. Currently, there have been only a few 
documented cases of surreptitious code being planted in PSN network elements. However, if an attack 
of this type were successful, it could prove devastating to the PSN. 

A second advanced software technique gaining popularity in the electronic intruder community 
is equally dangerous. This technique involves modifying legitimate software tools stolen from 
telecommunications carriers and equipment manufacturers. At least four well publicized incidents 
illustrate this problem: Kevin Mitnick, a.k.a. Condor, Herbert Zinn, aka. Shadow Hawk, the Legion 
ofDoom (LOD), and Leonard Rose, a.k.a. Terminus. In each of these cases, source code for network 
elements was stolen electronically and modified for purposes unintended by the owner. In these four 
cases, no PSN network element was compromised by the planting ofmodified source code. However, 
the skills demonstrated by these electronic intruders could easily be applied to the PSN. 

Programmed Attacks. A highly sophisticated form of software attack has been detected 
several times in various networks, and is considered to be the leading edge of electronic intrusion 
activities. These are called programmed attacks because they rely on highly customized software 
programs that target specific types of computers or network elements. Little data has been gathered on 
these attacks because they are seldom detected. One apparent purpose for programmed attacks is for 
reconnaissance to gather information about the network. These programs can be assumed to be the 
result ofsignificant prior effort on the electronic intruders part. In addition to the MOD case described 
above, the LOD case illustrates electronic intruder skills in this area In 1990, several members ofthe 
Atlanta branch ofthe Legion ofDoom were arrested on charges ofpenetrating and disrupting 
telecommunications network elements. Federal agents accused the LOD members ofplanting a series 
ofdestructive "time bomb" programs in network elements in Denver, Atlanta, and New Jersey. These 
time bombs were designed to shut down major switching hubs, but were defused by telephone 
company employees before causing any damage. The capability illustrated by this category of attacks 
has not fully matured. However, a coordinated attack using these types of tools ~rected at the PSN 
with a goal ofdisrupting NS/EP telecommunications could result in widespread outages. 

382 




3.0 RELATED THREAT ISSUES 

The electronic intrusion threat to NS/EP telecommunications is not limited to members of the 
computer underground whose activities have been described in earlier chapters as "electronic 
intruders." Three other significant threats arise from telecommunication industry insiders, industrial 
espionage operations, and foreign organizations. 

3.1 The Insider Threat 

Telecommunication industry employees could constitute a threat to the integrity ofthe PSN if 
they engage in unauthorized activities. While there is little data on losses from attacks on PSN systems 
by telecommunications employees, data from the computer/data processing industry shows that 
between 60% and 80% ofall malicious computer crime is committed by insiders. 

The insider threat has three dimensions. The first type of insider threat is honest mistakes or 
badjudgment calls made by employees. While most studies show that this threat constitutes a large 
percentage ofdollar losses, these losses are not caused by a malicious or unauthorized action, and are 
therefore not within the scope ofthis discussion. 

The second type of insider threat is the disgruntled employee. These employees are motivated 
by revenge or spite against his/her employer. These persons' actions can range from spontaneous 
minor activities (such as deleting files in a computer) to highly orchestrated widespread attacks. These 
persons almost always seek to damage the company either physically or economically. 4 The current 
economic climate within the telecommunications industry, given the trends toward downsizing and 
increased automation, has created potentially large numbers of disgruntled employees. 

The third type of insider threat is the coopted employee or mole. These are normal employees 
who are approached by electronic intruders, saboteurs, foreign agents, or other criminals and offered 
money to gather information or provide access to systems. This threat can be highly insidious and 
result in large losses for companies because a mole may remain in his or her job for years without 
raising suspicion -- while providing a stream ofhighly sensitive data to outsiders. Frequently, 
disgruntled employees tum into moles if they perceive that they can harm their former organizations or 
if they can profit from these actions. In addition, a variety ofother persons who have skills, knowledge, 
and access may be coopted by malicious outsiders; including vendors, contractors, customers, and 
employee family members. Dozens ofmoles have been discovered in the telecommunications industry 
in the past few years. 

3.2 Industrial Espionage 

Historically, industrial espionage has not proven to be a major activity in the computer 
underground. The reasons for this probably stem from the natural adversarial relationship between 
corporations and members of the computer underground. Corporations and the public perceive 

4 Occasionally, disgruntled employees seek to harm specific persons (such as a former supervisor or coworker), 
rather than the company. These cases are outside the topic of this discussion. 

383 



electronic intruders to be unscrupulous, untrustworthy, and opportunistic. However, a new generation 
of electronic intruders emerging in the computer underground are motivated primarily by financial 
gain. These electronic intruders have offered their services for sale, and even published price-lists for 
their services. Electronic intruders' skills in communications monitoring, PSN data base access, and 
social engineering make their services highly valuable to industrial spies. 

3.3 Foreign Involvement 

The issue offoreign involvement in electronic intrusion activities in the United States PSN is 
complex. Telecommunications networks are truly international. They stretch beyond national 
boundaries, they bridge continents, and they provide connectivity to virtually every comer of the globe. 
Consequently, electronic intrusion activities are also international in scope. Many developed countries 
have computer underground movements that include toll fraud, virus creation, computer intrusion, and 
network attacks -- including the Netherlands, Canada, Brazil, Israel, Australia, Spain, Sweden, Ireland, 
United Kingdom, Czech Republic, Bulgaria, Russia, Austria, Greece, Switzerland, Romania, Hungary, 
Germany, Belgium, France, Italy, South Africa, Belorus, and Japan. 

Over the past decade, networks in many other countries have been the target of intrusions by 
computer criminals. Since the world's telecommunications networks do not stop at national 
boundaries, electronic intruders regularly attempt to penetrate systems outside their own countries. In 
fact, most electronic intruders view "cyberspace" as a universe free from political boundaries. Given 
the truly international nature of the computer underground, electronic intruders generally do not care 
where targeted network elements and computers physically reside. 

Because the U.S. has the largest and one of the most highly developed information 
infrastructures in the world, foreign electronic intruders have been targeting systems in the United 
States for many years. The best documented example is the case of the Hannover Hacker documented 
in Cliff Stoll's book "The Cuckoo's Egg." Another recent example appeared in a videotape made by 
Emmanuel Goldstein, editor of2600 magazine. He filmed a team ofDutch electronic intruders 
breaking into U.S. military computers by exploiting poor security practices. In these two cases, the 
targets for the intrusions were mainframe computers, not PSN network elements. However, the skill 
sets exhibited by these groups of intruders could be directed at PSN network elements as easily as 
mainframe computer centers. 

All research indicates that this issue of international "transborder" electronic intruders is a 
diversion from the real issue, which is espionage. Electronic intruders in the U.S. have similar 
capabilities and motivations to those in foreign countries. The one exception to this rule, however, is 
the involvement offoreign intelligence services (FIS). 

Foreign intelligence services have directed activities against computer systems in the United 
States in recent years. The most well publicized of these cases involved Pengo and the Chaos 
Computer Club (CCC) in Germany. In this case, the KGB recruited German electronic intruders in the 
Hannover branch of the CCC, including Hans Hubner (alias Pengo). Pengo was actively engaged in 
electronic intrusion activity at the time (mid 1980s). He and several ofhis CCC colleagues acted at the 
direction of a KGB case officer and compromised several military and research computers in the U.S. 
In return, they received money, drugs, and other favors from the KGB. 

384 




The Hannover incident illustrates that many electronic intruders have developed advanced skill 
sets for gathering data electronically. As noted in Section 3, electronic intruders have also developed 
other skill sets directly related to telecommunications networks that focus on service disruption, denial 
of service, and fraud. These skill sets have always been high-interest targets for FISs. There has been 
little unclassified evidence that FISs have directly targeted, penetrated, or compromised the PSN in the 
U.S. However, there is a great deal of circumstantial evidence and speculation in the open source 
literature concerning foreign adversaries such as Libya, Iraq, and Iran targeting the U.S. networks. 
Many open source reports have postulated about the motivations of the former KGB and GRU 
intelligence services in Russia National news organizations have also raised questions about the 
electronic espionage activities ofFISs in "friendly" countries such as France, Japan, and Israel. 
However, to date, there has been little unclassified evidence of direct FIS actions against U.S. PSN 
assets. 

This is not to say that a potential threat does not exist. A number of espionage opportunities 
requiring data gathering and denial ofservice skills have arisen recently for FISs. These require the 
services of electronic intruders or telecommunications employees -- both of which could be high payoff 
operations. The electronic intruder's recruitment and direction of activities would be much lower risk 
than the employee's. Electronic intruders can be enticed into attacking the PSN in a variety ofways: 
common interests, offering the technical support of intelligence officers, or merely challenging 
electronic intruders' technical capability. However, a disgruntled employee, once recruited based upon 
money or revenge, provides the ideal insider whose actions -- and results -- are more reliable. 

4.0 POTENTIAL IMPACT ON NSIEP TELECOMMUNICATIONS 

Sections two and three of this document outline the capabilities possessed by electronic 
intruders to disrupt and monitor telecommunications services. This section of the report seeks to 
describe the potential effects of these threats. If these threats were fully realized, significant effects 
would be felt by NS/EP telecommunications users. 

More than 90% of Government telecommunications traffic transits leased PSN facilities. 
Consequently, the impacts of any security problem with the PSN has the potential to affect NS/EP 
users. However, targeting of specific Government telecommunications systems and services could 
more directly cause NS/EP telecommunications users to experience these effects. These effects are 
discussed in the paragraphs below. 

4.1 Denial or Disruption of Service 

Denial or disruption of service can be caused either intentionally or unintentionally by 
electronic intruders. Intentional disruptions have not been common in past years because most "smart" 
electronic intruders do not want to destroy the systems where they are working. However, this 
situation is changing. A new breed of electronic intruder is being motivated by financial gain and these 
individuals would undoubtedly disrupt PSN services if the price were right. In the past 3 years, 
electronic intruders have crashed or disrupted signal transfer points (STPs), switches, OAM&P 
systems, and other network elements. 

The Government's position on the electronic intrusion threat, based on Department ofDefense 
and Department ofJustice input and analysis, identifies three key concerns: 

385 




"... denial of service, unauthorized monitoring, and remote points oforigin external to the United 
States. These concerns are reflected in the capabilities of intruders that were noted in documented 
case studies ofPSN intrusions." 

During its deliberations in 1991, the President's National Security Telecommunications 
Advisory Committee (NSTAC) Network Security Task Force framed the denial ofservice issue in this 
manner: 

"A motivated and resourceful adversary, in one concerted manipulation ofnetwork software, could 
degrade at least portions of the PSN and monitor or disrupt the telecommunications serving NS/EP 
users." 

Many electronic intruders are highly skilled, knowledgeable individuals with engineering-level 
expertise in PSN systems. Adversaries would find these skills to be a high-interest item. Groups of 
electronic intruders, when organized and funded by interested adversaries, have the capabilities to 
launch sophisticated widespread attacks on the PSN. These types of attacks could result in significant 
degradations in the nation's NS/EP telecommunications capabilities, create significant public health and 
safety problems, and cause serious economic shocks. 

4.2 Unauthorized Disclosure of Sensitive Information 

Electronic intruders have demonstrated a high level oftechnical skills, and are able to capture 
information from the PSN and related systems in three primary ways: 

• 	 Electronic eavesdropping. Electronic intruders are able to monitor telecommunications 
circuits electronically, record telephone conversations remotely, capture and reproduce 
facsimile transmissions, and capture digital data off of monitored circuits. Frequently this 
digital data includes sensitive information such as login identifications, passwords, and source 
and target addresses. 

• 	 Packet data monitoring. Electronic intruders are able to electronically monitor packet data 
networks and reconstruct data streams using stolen or compromised X.25 diagnostics tools. 
This capability represents a significant improvement in previously reported electronic intruder 
capabilities involving PAD-to-P AD attacks. 

• 	 Electronically intruding on network elements. Electronic intruders are able to break into 
network elements that contain subscriber information such as names, addresses, cable pairs, 
and circuit termination points. They are able to electronically gather traffic and billing records 
and other sensitive NS/EP data. They are able to read and modify service classes, circuit 
identification numbers, and other codes associated with particular circuits. 

The sheer volume of electronic intrusions on key network elements raises concern with the 
sensitivity ofthe information residing in network elements and data bases. While no known attacks 
have targeted network elements seeking to compromise large quantities ofthis data, in at least two 
instances NS/EP activities were severely compromised by electronic intruders. 

386 




4.3 Unauthorized Modification ofNetwork Databases/Services 

Electronic intruders have demonstrated a high level of technical skill in modifying PSN 
databases and subscriber services. They have added unauthorized accounts to service control points, 
service provisioning systems, digital cross connect systems, and other network elements. They have 
added and modified user services, forwarded calls, modified service classes on circuits, and turned off 
billing on specific circuits. On data networks, electronic intruders have changed the routing tables and 
service descriptions for specific users. 

This level ofpenetration and skill illustrates the fact that electronic intruders could seriously 
compromise NS/EP telecommunications. An adversary would find these skills valuable in supporting 
intelligence gathering and espionage activities. Private citizens and corporations have been targeted by 
electronic intruders with these types of attacks. The likelihood ofthese types of attacks continues to 
increase because attacks of this type do not require large-scale technical resources to complete. 
Therefore, they are attractive to electronic intruders and other hostile adversaries 

4.4 Targeting of Government Telecommunications Systems/Services 

There are many types ofNS/EP telecommunications systems and services which exist to fulfill 
specific NS/EP missions. Some are highly complex offerings, while others are little more than 
specialized commercial services established for Government use. One common thread unites virtually 
all of these NS/EP systems and services -- an overwhelming majority either transit or reside on existing 
PSN facilities. From the PSN's perspective, most NS/EP traffic is indistinguishable from normal 
traffic. Because of this reliance on the PSN infrastructure, most NS/EP systems and services are 
vulnerable to some or all the threats described in this document. 

Five specific threats have the potential to affect NS/EP telecommunications services. These 
are discussed below: 

• 	 Some special Government services store their service access codes on network elements. The 
types ofnetwork elements storing these codes have experienced numerous unauthorized 
intrusions over the past 24 months. These intrusions were not targeted toward any specific 
Government NS/EP services. 

• 	 A special Government service provides emergency restoration and provisioning of 
telecommuni<;:ations circuits. This service relies on specific priority codes to be included with 
each circuit's service records. These records are managed and maintained on network elements 
that have a long history ofvulnerabilities from electronic intrusions. 

• 	 In several computer underground publications electronic intruders have discussed methods for 
exploring a dedicated Government NP A Because ofthe lack ofopen source data on this NP A, 
electronic intruders have not made many inroads, but this will change over time. Electronic 
intruders clearly view the mystery of this NP A (and other dedicated Government 
telecommunications services) as a challenge. 

387 




• 	 Electronic intruders have explored and compromised E911 systems. Significant degradations 
ofservice for E911 systems are possible if they were to be targeted by malicious electronic 
intruders. 

• 	 Systems which support DoD force projection are high-profile targets during military alerts and 
periods ofnational emergency. There have been many unconfirmed reports ofU.S. military 
communications systems being targeted during recent military actions published in the open 
source literature. Even though these sources can not be confirmed in an unclassified context, 
military communications systems are an obvious target for espionage and counterforce 
activities by adversaries. 

Any Government service which transits or resides on PSN facilities is vulnerable to the same 
sort of electronic intrusion threats faced by non-Government services. Threats from service disruption, 
denial of service, unauthorized disclosure of data, unauthorized modification of service, and fraud are 
present in the PSN and should be considered when making contingency and emergency service plans. 

388 




APPENDIX A 


REFERENCES 


389 




APPENDIX A 

REFERENCES 


2600SP93 

Spring 1993. "Letters to the Editor." 2600: The Hacker Quarterly. Volume 10. 
Number 1. 

2600SU93 
Summer 1993. "A Guide to the 5ESS." 2600: The Hacker Quarterly. Volume 10. 
Number2. 

2600VID 
Autumn 1991. "The Hacker Video." 2600: The Hacker Quarterly. Volume 8. 
Number3. 

ACPREFIX 
February 1992. Internet newsgroup discussion on 800 database. 

ALEXANDER91 
Alexander, Michael. October 21, 1991. "Justice Unit Spurred on by Cross-border 
Hackers." Computerworld. 

AP4989 
April9, 1989. "Crackdown on Hackers Urged." Associated Press. 

AP51388 
May 13, 1988. "Virus Hits UNIX at Bell Labs." Associated Press. 

ASSIST103 
1991. "Security Alert for Novell Network Software." ASSIST Bulletin 91-3. 

BARLOW90 
Barlow, John. 1990. "Crime and Puzzlement, Parts 1 and 2." Whole Earth Review and 
other computer underground publications. 

BASNET1 
Sk8 The SkinHead (hacker alias). November 1989 (est.). "Basic Networking." 

BELL TRASH 
The Dragyn (hacker alias). 1989 (est.). "Bell Trashing." 

BOOTLEG6 
June 1992. Reprint of"Cracking Down on Abuse." MCI World. 

390 




BRUNNER75 
Brunner, John. 1975. The Shockwave Rider. New York: Ballantine. 

BRUNNSTEIN91 
Brunnstein, Klaus. July 29, 1991. Computerworld. 

BULLIES 
Flanagan, William G. December 1992. 11 The Playground Bullies Are Learning How to 
Type. 11 Forbes. 

CAPITAL92 
Tichy, Roland. October, 1992. 11 Authentic, Topical, Inexpensive ... Capital. 

CC593A 
Rothfeder, Jeffrey. May 1993. 11Holes in the Net. 11 Corporate Computing. 

CC593B 
Quinn, Brian. May 1993. 11Dialing for Dollars. 11 Corporate Computing. 

CDUGD91 
February 1991. Computer Down-Under-Ground Digest, Issue 1. 

CFCA91 
Communications Fraud Control Association. 1991. Annual Fraud Estimates. 

CFCA193 
Communications Fraud Control Association. December 1992- January 1993. 
Communicator. 

CFSB791 
Klopp, Charlotte. July 1991. Computer Fraud & Security Bulletin. 

CHENOWITH92 
Chenowith, Richard. 1992. 11 Allpoints. 11 Intercon Security, Ltd 

CIA92 
1992 (est.). Criminals Into Anarchy. Volume 1, Issue 1. 

COMPCONF91 
November 21, 1991. 11Prosecution & Defense... The Computer Conference Newsletter. 

COOK90 
Cook, W.J. May 1990. 11 Uncovering the Mystery of Shadowhawk. 11 Security 
Management. 

391 




COSMOS86 
Sir William (hacker alias). 1986. "The 1986 COSMOS Files Part III: Service Order 
Input." 

CPP92 
The Raven (hacker alias). 1992. "The Ultimate Cellular Phone Phreaking Manual, Parts 
1 and 2." 

CRIMCOST 
Kay Russell. "Calculating the Cost ofComputer Crime." /nfosecurity News, Volume 3, 
Number6. 

CUD104 through CUD530 
April11, 1990 to April24, 1993. Computer Underground Digest. Volume 1, Issue 4 
through Volume 5, Issue 30. 

CW52592 
Schwartz, Jeffrey. May 25, 1992. "Users Size Up Hacker Tracker." Communications 
Week. 

DATAPRO 
August 1992. "Common Channel Signaling System Number 7." Datapro Information 
Services Group. 

DEBATE 
McMullen, Barbara and John McMullen. March 18, 1991. "'Hacker' Debate Heats Virus 
Conference." Newsbytes. 

DENNING90 
Denning, Dorothy. 1990. "Concerning Hackers Who Break Into Computer Systems." 
DEC Systems Research Center. 

DFP1 through DFP4 
January 1992 to May 1992. Digital Free Press. Volume 1 through Volume 4. 

DIA90 
Young, Stanley and Michael Higgins. June 14, 1990. "Threat to the Public Switched 
Network." Presentation to the Defense Intelligence Agency. 

DIA93 
May 10, 1993. Position statement of the U.S. Government on electronic PSN intrusions. 
Based on December 3, 1990, briefing to NSTAC. 

DIGITAL 
Phantasm (hacker alias). September 12, 1992. "Digital Underground." 

392 




DM11091 
October 1991. Digital Murder. Volume 1. 

EDWARDS92 
Edwards, Dr. Jack. March 1992. Meeting ofthe Network Security TaskForce. 

EFF402 
December 1992. EFFector Online. Volume 4, Issue 2. 

FRAUD SEC 
Stusser, Daniel. "Securing Your Systems Against Fraud." Networking Management. 
Volume 10, Issue 6. 

FREEDMAN93 
Freedman, Alan. 1993. Electronic Computer Glossary. Electronic publication. 

GE5 
Hayduke, George. 1989. The Get Even Series. Port Townsend, WA: Loompanics 
Unlimited. 

GffiSON84 
Gibson, William. 1984. Neuromancer. New York: Ace. 

GREEN92 
Green, James Harry. 1992. The Business One Irwin Handbook ofTelecommunications. 
2nd ed. Homewood, Illinois: Business One Irwin. 

HACKDEA 
Bushaus, Dawn. December 1990. "DBA Falls Prey to Hackers; Theft of Services Could 
Amount to $2 Million." Communications Week. 

HACK GUIDE 
The Mentor (hacker alias). December 1988. A Novice's Guide to Hacking- 1989 
Edition. 

HACKUNLM 
October 1989. Hackers UnlimitedMagazine. Volume 1. Issue 1. 

HAFFNER91 
Haffner, Katie and John Markoff. 1991. Cyberpunk: Outlaws andHackers on the 
Computer Frontier. New York: Simon and Schuster. 

HD07 
Hacker Supreme (hacker alias). 1986. Hackers' Directory. Volume 7. 

393 




IHA191 
June 1991. International Hackers Association Newsletter. Volume 1. 

INDUSTRIAL1192 
November 1992. "Competitive Intelligence; A Key to Marketplace Survival." Industrial 
Marketing. 

INFORM2 
January 1992. Informatik. Issue 2. 

JROGR149 
Jolly Roger (hacker alias). 1990 (est.). "A Short History ofPhreaking." 

LANDRETH85 
Landreth, Bill. 1985. Out ofthe Inner Circle: A Hacker's Guide to Computer Security. 
Belleview, Washington: Microsoft Press. 

LANMAG93 
June 1993. "Glossary." LANMagazine. Volume 8. Number 6. 

LEVY84 
Levy, Steven. 1984. Hackers: Heroes ofthe Computer Revolution. Garden City, Long 
Island: Doubleday. 

LOD1 through LOD4 
January 1, 1987 to May 20, 1990. Legion ofDoom/Legion ofHackers: Technical 
Journal. Volume 1 through Volume 4. 

LODINDICT90 
U.S.A. vs. Robert Tiggs and Craig Neidorf. U.S. District Court, Northern District of 
Illinois, Eastern Division. No. 90, CR 70. Violations: Title 18, United States Code, 
Sections 1343 and 2314. 1990. 

LOL012 
October 22, 1991. Legion ofLucifer- Phone Hackers United to Crash & Kill 
Newsletter. Volume 1. Issue 12. 

LOL020 
August 29, 1991. Legion ofLucifer- Phone Hackers United to Crash & Kill Newsletter. 
Volume 1. Issue 20. 

LT42393 
April23, 1993. "Computer Hacker Accused ofUnfairly Winning Prizes." Los Angeles 
Times. 

394 




MARTEN76 
Marten, James. 1976. Telecommunications and the Computer. Englewood Cliffs, NJ: 
Prentice-Hall, Inc. 

MEYER89 
Meyer, Gordon R. 1989. "The Social Organization ofthe Computer Underground." 
M.A. Thesis, Northern Illinois University, De Kalb. 

MEYERTHOMAS90 
Meyer, Gordon R. and Jim Thomas. 1990. "The Baudy World ofthe Byte Bandit: A 
Postmodernist Interpretation of the Computer Underground." Department of Sociology, 
Northern Illinois University. 

MITNICK4 
Kellner, Mark. January 2, 1989. "Hacker is Jailed for Theft: Allegedly Steals DEC 
VMS Code." MIS Week. 

MTRASH 
Kid & Co. and The Shadow (hacker aliases). 1984. "More on Trashing." 2600: The 
Hacker Quarterly. 

NB12090 
Woods, Wendy. January 20, 1990. "Three Indicted for Stealing Classified Data." 
Newsbytes. 

NCSA5692 
National Computer Security Association. May/June 1992. NCSA News. 

NCS-M93 
Manager, National Communications System. August 1993. "Status Report on the 
Security of the Public Switched Network: Report to the Chairman, Inter-Agency 
Working Group." 

NEWTON93 
Newton, Harry. 1993. Newton's Telecom Dictionary. Electronic publication. 

NFX5 
October 1991. New Fone Express. Issue 5. 

NFX61192 
November 1991. New Fone eXpress. Volume 6. 

395 




NRC89 
National Research Council. 1989. "Growing Vulnerability of the Public Switched 
Network: Implications for National Security Emergency Preparedness." 

NSA102 
June 23, 1991. National Security Anarchists. Volume 1. Issue 2. 

NSA103 
July 1, 1991. National Security Anarchists. Volume 1. Issue 3. 

NSTAC90 
National Security Telecommunications Advisory Committee. 1990. "Proceedings of the 
Network Security Task Force." 

NSTAC92 
National Security Telecommunications Advisory Committee. 1992. "Proceedings of the 
Network Security Task Force." 

NSTF90 
November 1990. Network Security Task Force Report to NSTAC XII. 

NSTF92 
June 1992. Network Security Task Force Report to NSTAC XIV. 

NW6192 
Taff, Anita. June 1, 1992. "Bill Would Protect Government Agencies from Toll Fraud 
Charges." Network World. 

OTA87 
U.S Congress, Office ofTechnology Assessment. October 1987. Defending Secrets, 
Sharing Data: New Locks and Keysfor Electronic Information, OTA-CIT-310. 
Washington, DC: U.S. Government Printing. 

PARKER83 
Parker, Donn. 1983. Fighting Computer Crime. New York: Charles Scribner's Sons. 

PHANTSYIO 
November I, 1992. Phantasy. Volume 3. Issue 10. 

PHANTSYII 
November 6, .J992. Phantasy. Volume 3. Issue 11. 

PHRACK01 through PHRACK43 
November 1985 to July 1993. PHRACKMagazine. Volume 1 through Volume 43. 

396 




PHN02-04 
1989 (est.). PIHUN Newsletter. Volume 2. Issue 4. 

PHUN88 
September 30, 1988. PIHUN Newsletter. Volume 1. 

POST32391 
Potts, Mark. March 23, 1991. "Hacker Pleads Guilty in AT&T Case." Washington 
Post. 

POWELL90 
Powell, Dave. September 1990. "Network Abuse: Who's the Enemy." Networking 
Management. 

QUARTERMAN90 
Quarterman, John S. 1990. The Matrix: Computer Networks and Conferencing 
Systems Worldwide. Bedford, Massachusetts: Digital Press. 

R&ROP 
Fred Steinbeck (hacker alias). 1991 (est.). "Dealing with the Rate and Route Operator." 

RAYMOND91 
Raymond, Eric. 1991. The New Hacker's Dictionary. London: The MIT Press. 

RSKS1364 
July 14, 1992. RISKS Digest. Volume 13. Issue 64. 

RSKS1438 
March 7, 1993. RISKS Digest. Volume 14. Issue 38. 

SANDZA84 
Sandza, Richard. November 12, 1984. "Night of the Hackers." Newsweek. 

SCHWEIZER93 
Schweizer, Peter. 1993. Friendly Spies: How America's Allies Are Using Economic 
Espionage to Steal Our Secrets. New York: The Atlantic Monthly Press. 

SECMAN1-93 
January 1993. SecurityManagementMagazine. 

SHERMAN85 
Sherman, Kenneth. 1985. Data Communications: A User's Guide. Reston, Virginia: 
Reston Publishing Company, Inc. 

397 




SJMN41391 
Barnum, Alex. April13, 1991. "Computer Fugitive Fits In: Man Eluded FBI With Low 
Profile." San Jose Mercury News. 

SJMN52791 
Barnum, Alex. May 27, 1991. "Hacker's Obsession Led Him to Jail." San Jose Mercury 
News. 

SOCENG89 
Fallen Angel (hacker alias). September 1989. "Social Engineering: How to Get 
Information." 

SPOOFER91 
Goodfellow, Geoffi-ey S., Robert N. Jesse, and Andrew H. Lamothe, Jr. 1991. "The 
Electronic Serial Number: A Cellular Sieve? Spoofer Can Defraud Users and Carriers." 

SRI93 
SRI International. 1993. "Vulnerabilities ofthe PSN." 

STOLL89 
Stoll, Clifford. 1989. The Cuckoo's Egg: Tracking a Spy Through the Maze of 
Computer Espionage. New York: Doubleday. 

STOLL89-2 
Stoll, Clifford. May 1988. "Stalking the Wily Hacker." Communications ofthe ACM. 

STOLL89-3 
Stoll, Clifford. September 1987. "What Do You Feed a Trojan Horse?" Proceedings of 
the lOth National Computer Security Conference. 

SWEDISH90 
1990. Annual Year Protocol ofthe Swedish Hackers Association. Volume 3. 

SWEDISH92 
February 1992. Annual Year Protocol ofthe Swedish Hackers Association. Volume 4. 

TAOTRASH 
The Phoenix Force (hacker group). 1988 (est.). "Art ofTrashing." 

TD1190 
November 1990. Telecom Digest Guide to Special Prefixes/Numbers. 

THEFT 
Grata, Joe. August 29, 1993. "2 Teen 'Hackers' Held in Break-ins Troopers Seek 4 
other 'Computer Whizzes' in Equipment Thefts." Pittsburgh Post-Gazette. 

398 




TNSlO 
November 18, 1987. Tolmes News Service. Volume 10. 

TRASHTECH 
Master ofReality (hacker alias). 1989 (est.). "Trashing Techniques." 

UKACT05 
Gold, Steve. May 8, 1990. "UK Anti-Hacking Bill Goes Through to House of Lords." 
Newsbytes. 

UKACT07 
Gold, Steve. July 5, 1990. "UK: Computer Misuse Bill receives royal assent." 
Newsbytes. 

UMPOULSEN 
Episode featuring the case ofKevin Poulsen. New York: NBC television program, 
Unsolved Mysteries, May 1991. 

UNLISTED 
The Jolly Roger (hacker alias). 1990 (est.). "Unlisted Phone Numbers." 

USRESEARCH 
USA Research. 1992. "1992 IPA Computer Virus and Hacker Study." 

UXU002 
1991. Underground eXperts United. Volume 1. Issue 2 

UXU033 
1991. Underground eXperts United. File 33. 

UXU047192 
January 1992. Underground eXperts United. Volume 47. 

WINTERMUTE I 
Wintermute (hacker alias). February 1991. Unnamed article on Cyberpunk. 

WSJ082290 
Wilke, John R. August 22, 1990. "Open Sesame: In the Arcane Culture ofComputer 
Hackers, Few Doors Stay Closed." Wall Street Journal. 

ZONE2 
Black Death (hacker alias). 1991 (est.). "The Phreaking Articles- Volume 2." 

399 . 




