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ABSTRACT 

This paper presents the design of a kernel for certifiably 
secure computer systems bein~ built on the Digital Equipment 
Corporation PDP-11/45. The design applies a ~eneral purpose 
mathematical model of secure computer systems to an off-the-shelf 
computer. An overview of 'the model is given. The paper includes a 
specification of the design that will be the basis for a ri~orous 
proof of the correspondence between the model and the design. This 
design and implementation has demonstrated the technical feasibility 
of the security kernel approach for designing secure computer 
systems. 

This work was carried out by The MITRE Corporation under contract 
to the United States Air Force Electronic Systems Division, Contract 
Fl9628-75-C-0001. 
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PREFACE 

The security kernel design given in this paper is a major 
revision of a kernel desi~n described in [Schiller]. In the original 
design a distinction was made between the information and control 
structures of a computer system, and the access controls dictated by 
our mathematical rnodel of secure computer systems were only applied 
to the information structure. To protect the control structure we 
stated that "it is the responsibility of the system designer to 
systematically determine all possible channels throu~h the control 
structure ... (and prevent) the associated state variable from 
being controlled and/or observed". After that design was published 
it became obvious that the approach to protectinrr the control 
structure was not adequate. The systematic determination of channels 
was equivalent to havin~ a QOdel that protected the control 
structure. 

Consequently, refinements were added to the model to allow the 
same mechanisms to protect both the information and control structure 
objects of a system. The basic technique used is to organize all of 
the data objects in the system into a tree-like hierarchy, and to 
assign each data and control object explicit security attributes. 
The major difference between the revised desiP-n given in this paper 
and the original desi~n is the incorporation of the model 
refinements. In addition, this paper benefits from an additional 
year's study and understanding of the computer security problem. 
Familiarity with the original design is not required. 
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SECTION I 


BACKGROUND 


INTRODUCTION 


The PDP-1 1/45 Secure ~ystem Design is intended to provide a 
design, based on a general purpose mathematical model of secure 
computer systems, for building secure systems on the Digital 
Equipment Corporation PDP-1 1/45, an off-the-shelf computer. The 
primary goal of the design is to bridge the gap between the abstract 
secure system defined by the model and the elements of 
state-of-the-art hardware and software systems. A secondary goal is 
to develop a design that applies to specific systems to be 
implemented on the PDP-11/45. The approach taken has been to apply 
the model, which is completely ~eneral in its nature, to a design 
that will support non-trivial systems with security requirements. 
The model is applied to the PDP-11/45 hardware which is sufficient to 
support the model and secure systems, but not as complex as other 
available hardware. The technical issues of special interest are the 
mathematical modeling of secure systems, the secure system software 
design, and the impact of hardware on the desi~n. This report 
presents the design and discusses the decisions made in ~enerating 
the design. This section provides background for understanding the 
general problem area and the approach taken in attacking it. (Some 
of the material in this section has been taken from [ESD] and 
[Lipner].) 

THE PROBLEM OF CONPUTER SECURITY 

As larger, more powerful computers are employed for Air Force 
information systems, the desirability of operating in a "multi-level 
security" mode increases. A computer operating in such a mode 
performs simultaneous processing of data havin~ different levels of 
classification and provides simultaneous (typically on-line) support 
to users with differing clearance levels. This mode of operation is 
desirable because it is often impractical to clear all system users 
for the highest level of data, or to separate the processing of 
different levels by time of day. The most severe multilevel security 
problem is presented by an "open" system - one in which uncleared 
users have access to a computer that is processin~ classified data. 
As recently as 1970 experts in the field felt that the provision of 
security for a general purpose computer system operating in an open 
environment was beyond the state-of-the-art. 
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The primary problem of computer security is that of 
certification: how can one assert that a system provides adequate 
security for a given application. The problems of certification 
range from specification through the production of correct hardware 
and software to testing. Previous work in this area has convinced us 
that security cannot be "added onto" existing computer systems. 
Current systems (IBM's OS/360/370 and Honeywell's GCOS, for example) 
are notoriously easy to penetrate. Attempts to "repair" contemporary 
systems are expen~ive and increase the malicious user's cost to 
penetrate by a negligible amount. The selective rei~plementation of 
contemporary systems would cost even more and would at best serve to 
increase the cost of penetration [Anderson]. The only feasible 
approach to providin~ security (and therefore completely blockin~ 
penetration attempts) is to consider the problem of security and 
certification throughout the Hhole sys tern development process - from 
specification to design, implementation, and testing. 

BASIC CONCEPTS 

The ESD computer security panel [Anderson] identified the 
concepts of a reference monitor and security kernel as fundamental to 
a secure computer system. The reference monitor is that portion of a 
computer's hardHare and software Hhich enforces the authorized access 
relationships betHeen subjects and objects. Subjects are system 
entities such as a user or a process that can access system 
resources, and objects are system entities such as data, programs, 
and peripheral devices that can be accessed by subjects. The 
security kernel for a specific computer is the softHare portion of 
the reference monitor and access control mechanisms. The reference 
monitor must meet three essential design requirements: 

First, the reference monitor must be tamperproof. It is obvious 
that if the reference monitor can be tampered Hith, its ability to 
protect programs and data can be destroyed. In the most elegant 
case, the reference monitor can protect itself with the same 
mechanisms it uses to protect other information. 

Second, the reference monitor must be invoked on every attempt 
to access information. This requirement does not mean that the LOAD 
and STORE instructions of a user's process must be executed 
interpretively by kernel software with extensive checks. Rather, 
every reference must be checked by either software or hard•rare that 
is provided with sufficient information to make the correct decision 
on granting or denyin~ access. 

Finally, the reference monitor must be sub-ject to certification. 
"Subject to certification" implies that the reference monitor's 
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correctness must be provable in a rigorous manner using a 
mathematical model as the basis for the criteria to be met. 

In addition to meeting the above requirements, a reference 
monitor must also implement a well defined set of access control 
rules. In the case of a secure computer system for military use, 
these rules are defined by ~ilitary security regulations. Basically, 
they require that a user be cleared to the proper level, have any 
formally defined special access permissions (categories) that may be 
required, and have a "need-to-know" before he is allowed to access 
information. 

The approach to obtaining a secure system involves first 
defining the security requirements, and then creating a conceptual 
design that can be shown to provide the required protection (i.e., a 
model): The model formally defines an ideal system (in our case one 
that complies with military security requirements), and provides a 
basis for testing a subsequent implementation. Once a reference 
monitor that meets the requirements previously described has been 
implemented, ccmputer security has been achieved. Of the software in 
the system, only the kernel (the software portion of the reference 
monitor) need be correct. The access controls and all of the other 
features of the hardware on which the kernel depends must be correct. 
The operating system proper and/or applications software can contain 
inadvertently introduced bugs or maliciously planted trap doors 
without compromising security. 

sum.1ARY 

In this section we have presented the problem of computer 
security and an outline of an approach for solving it. The remainder 
of the report will present a design for a kernel which will serve as 
the basis for secure systems to be built on the PDP-1 1/45. The first 
application of the 11/45 kernel will be to support a file system for 
a multilevel data base. 
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SECTION II 


TECHNICAL APPROACH 


INTRODUCTION 


This section presents the technical approach to designing a 
security kernel for the PDP-1 1/45. The subsections discuss the 
objectives of the design effort, how the design relates to the desi~n 
of the Multics system, the mathematical model that is the basis for 
the design, hardware requirements for secure systems, and finally, 
some of the special problems presented by I/0 (input/output 
processing) in a secure system. 

OBJECTIVES 

A lon~ ranr,e goal of our work in the area of computer security 
is to solve the complete security problem. We would like to build a 
completely general (i.e., ucomputer utility") system that can be 
certified (proven) secure. This work includes developing 
mathematical models of secure computer systems to serve as a basis 
for subsequent designs, and identifyin~ appropriate ch2racteristics 
that the supporting hardware should have. 

As a subgoal we want to build a prototype secure system to 
verify our ideas about computer security and apply them to perform 
useful work in the near term. This prototype system will not have 
all of the capabilities of a general purpose system and will be built 
on hardware that is less complex than the hardware reauired to 
support a computer utility. The advantages of building a prototype 
are: 1) it presents a problem of reduced complexity and therefore 
increases the likelihood of success in the near term, and 2) the cost 
of implementing a prototype system in terms of time, manpower, and 
equipment is much less than that of a general system. Althou~h the 
initial system to be built on the 11/45 will be of limited generality 
in its functional characteristics, the mechanisms for achievin~ 
security will be based on completely general principles. Much that 
is learned will be applicable to the solution of the ?eneral computer 
security problem. Not only will the prototype development 
investigate problem areas related to the security of ~eneral purpose 
systems, but the resulting kernel design should be applicable to mini 
and medium sized computer systems with a need for multilevel 
security. 
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RELATION TO MULTICS 

While most contemporary general purpose systems have notoriously 
ineffective security controls, there is one system, tvlultics 
[Organick], that is far superior with respect to security controls. 
This superiority is no accident - protection of user information was 
a key design goal from the_inception of the Multics effort. Multics 
has, however, been penetrated [Karger and Schell]. One could argue 
that the lack of security in Multics is due to the design methodology ­
its design is not based on a model of secure systems and no attempt 
has yet been made to certify the Multics security controls. 
Nevertheless, Multics is the prime system that a prospective secure 
system designer can look to for positive guidance. Since the 
structure of Multics has influenced the PDP-1 1/45 kernel and our 
mathematical model of secure computer systems, a brief overview of it 
is given here. The material that follmvs is taken from [Bensoussan, 
Clingen, and Daley]. 

The key feature of !1ultics is its virtual memory. t1ultics uses J~J~~ ·} 
segmentation to satisfy two design goals: 1) to allow all on-line./ i)Jf 
information stored in the system to be directly addressable by a 
processor and hence ~vailable for direct reference by any 
computation; 2) to control access, at each reference, to all on-line 
information. The basic advantage of direct addressabili ty is that 
the copying of data is no longer mandatory. Many users can share a 
single copy of a compiler or other system procedure, and users need 
not have an I/0 system read portions of data files into main memory 
and then write the data back out. 

If all information in the system may be directly addressable, 
then there is an obvious need to control access to this information 
both for the self-protection of a computation from its own mistakes, 
and for the mutual protection of users sharing the system from each 
other. n·e-::t,€6 hniq1fE!"''Tor · ;:ichiP.'vi i'i!f-~orofecFron':CTs···lc\ 'ccrmoa-rtmen taJ. i ze 
gJ)-·j,nfo-tma.tion into seg:e1ents,- &t)d'_ t2 ~ ~!S ~:)ciafe With ·each· se~:ment ;~·,. 
.ffe~ of access at tributes" fer e2ch 'user· '>lho r.i'3_'y":2.::ice.ss:~·ffie:-:se·~ment'. 
-Seg.ne:nts .· rii"e' diJ:'eQtlY ad'dressaole ··and ~the:access at·tri:tra·t:e·s are 
gl:ieckeo:;oy::the.'.hard~t<~Fr>e.:.·up·on::.-eacfl'::seginef~t2r::?.t!rr.~ns~~J~.Y:.~..(;lll..Y..:J.lser:.\ 

In nonsegmented systems, the use of core images makes it nearly 
impossible to control shared information in core. Even if the 
nontrival problem of addressing the shared information in core were 
solved, access to this information could not be controlled without 
additional hardware assistance. The different parts from which the 
core image is synthesized are indistinguishable in the core ima~e; 
they have lost their identity and thereby lost all their attributes, 
such as length, access ri~h ts, and name. Thus, n::msegm~J:D::¢.i1~::!12rdJfg·f~ 
ts''~:i1~'ae'Q"t1are:·ya.r::-'con.tr.oi fe-ct ·'s~fia:rrn P:~:Tn~ :'c~or;e-~-,memo r.Y:: · · ____, 
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In segmented systems, hardware segmentation can be used to 

divide a core image into several parts - segments. Each segment is 

addressed through a segment descriptor containin~ the segment's 

attributes; if these attributes include access at each reference, 

then the hardware can control access to the information in the 

segment at each reference. 


If the number of segments that a user wishes to reference 
exceeds the number of se~ment descriptors available to him, then 
segmentation loses some of its effectiveness. The user may be forced 
to call the supervisor to free se~ment descriptors so that they can 
be reused to access other segments. This form of user controlled 
segment descriptor allocation can require a significant amount of 
pre-planning by the user. Alternatively, the user can choose to 
collect.the information fro~ several different se~ments into a single 
segment. This approach is a form of buffering - it requires that 
information be copied and lose its original identity. Multics avoids 
these problems by providin~ a number of segment descriptors 
sufficiently large to allow, in most cases, a segment descriptor for 
each segment required for a computation. The Multics supervisor also 
automatically associates a descriptor with a se~ment when the segment 
is first referenced by a computation. Thus, Multics users need not 
concern themselves with the allocation and deallocation of segment 
descriptors, nor need they resort to buffering information. 

In a system where the maximum size of any segment is small 
compared to the size of main memory, it is possible to move complete 
segments into and out of main memory. If, in this type of system, 
different segments can have different current sizes, then the 
allocation of main memory to segments can be a difficult problem. 
Furthermore, if, as is the case with Multics, segments can become 
suf~ciently large so that only a few can be entirely main memory 
resident at any one time, then memory allocation is made even more 
difficult. 

The allocation of main memory is vastly simplified by dividing 
segments into equal-size parts called pages ..~!location of ~pa6~~tq 
<a··· ser:'tE£0~11S.C.:made'"on··cr·per-page· bas_.:i:_.~,.--~0\L?.lJ __ page_;:;_ar.e the ..same' 

f'size! In addition to.. simpli fyiru~--allocation, paging also permits 
large segments to be handled with no problems because only those 
pages of a segment that are currently being referenced need be in 
main memory. 

An address space in Multics is the set of segments that a 
process can reference with a segment number - the set of se~ments for 
which a process has descriptors. .I.n~.Z,'iJI~r,:alJ~:~-~.9_Qn::p.roces~ h§I:;>~~ 
LirJ.j;.ttt;tE!;c;a.9-si.r&ii~..i!SiQ~. A key aspect of t-lultics is that its supervisor 
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does not operate in a dedicated process or address space. Instead, 

the supervisor is "distributed" - its procedure and data segrJents are 

shared arnon~ all Multics processes. The execution of the supervisor 

in the address space of each process facilitates communication 

between user procedures and supervisor procedures and the 

simultaneous execution, by several processes, of supervisory 

functions. Since supervisor segments are in the address space of 

each process, they must be"protected from user programs. This 

protection is achieved by havin~ the supervisory and user procedures 

execute in sepa~ate domains (in Multics, protection rings). 


The name of a segment and its other attributes (length, memory 
address, list of users allowed to access the segment, time of 
creation, etc.) are kept in an entry in a cataloR"ue. In Multics, 
this catalogue is implemented with several segments of a special type ­
directqry - organized into a tree structure. The name of a segment 
is a list of subnames that reflect the position of the segment in the 
tree. The base directory of the tree is called the ROOT, and 
subnames are separated by ">". Figure 1 shows a possible directory 
hierarchy. 

Comparing the Multics supervisor and the PDP-1 1/45 security 

kernel is somewhat like comparing apples and oranges. Multics is a 

prototype computer utility that provides a variety of user-oriented 

services. It is supported by a powerful and complex multiprocessor; 

it has been operational since 1969; consists of about 300,000 lines 

of source code [Organick]; and it is part of the product line of a 

major computer system vendor (Honeywell Information Systems). The 

11/45 kernel simply provides security controls for a reasonably 

complex general purpose environment, but it does not support 

user-oriented features. The 11/45 kernel is built on a 

straightforward, medium-sized computer. The initial implementation, 

which contains about 900 lines of source code, has only been 

operalional since mid-1974, and it has not yet performed any useful 

work. It might be appropriate to compare the Hultics kernel with 

the 11/45 kernel, or a general purpose operating system built on the 

11/45 kernel with the complete Multics supervisor, but in both cases 

the first item in the comparison does not currently exist. 

Nevertheless, it is interestin~ to make some comparisons between 

Multics and the 11/45 kernel. 


!h'e'"":ta.siC'"~'tmir·~.:axres"'"·oeE\-ie'en:~'~1<JiiTcs'::r~ri?"~f'he:':::1:tlfi5~'i~e.r:.~:~e~ 
rt1:l.af.:~~they both. implement ~.,one:. :Level ;·-segmented virtual. memory· ~~T t:h··~q 
L~i.r:.e.c..to..ry hi~t.?X~)1Y.;::·q,ng~J)o-J;h.:o9~~~-t.rJb.uta ..the superv1sqr/.kerJ"i~1::·.?9t£~J? 

1A simple file system to run on the 11/45 kernel is currently being 

implemented. 
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The supporting mechanisms are similar 

to the extent that they can be, but differences in the supporting 
hardware have an impact in this area. The basic difference is that 
the 11/45 kernel implements a set of primitives that allow algorithms 
to operate within the virtual memory environment, whereas Multics 
provides much more than a set of primitives. While protection of 
information was a primary desi~n goal from the inception of the 
Multics effort, and an atte6pt was made to isolate the protection 
mechanisms from the rest of the supervisor by having them execute in 
the most privileged domain (ring 0), the Hultics system has been 
penetrated - the Multics protection mechanisms are not effective . . 
[Karger and Schell]. This lack of effectiveness may be due to two ~\Y- ;~<1"~(\·.1
causes: 1) rim~ 0 is rather large (about 60,000 lines of source code , ·; . · ,. 

[Sal tzer ( 2)]) and extremely complex; and 2) the protection ,., , \ · 

mechanisms are not based on a model - there was no criteria for Hhatc., . {y. ·. \' 

belonged in ring 0 and what did not. Thus the fundamental difference· 

between the 11/45 kernel and Multics is that the 11/45 kernel is 

based on a model of security and Multics is not. The use of a model 

makes it possible to precisely define what compromises the 11/45 

kernel and to rigorously prove assertions about its behavior. 


THE MATHEMATICAL NODEL 

One of the key aspects of the security kernel design is that it 

is based on a mathematical model of secure computer systems ([Bell 

and LaPadula], [LaPadula and Bell], and [Bell]). T:".0-rtev~J9'PP:er.:t,.i,.G:~.t1 


i1 h:e mode I ·';!;§f.-a:,z£ea.c.t·ion::-..to."''t.h.e,.,·iria<i€ou.acV<·~or:.::coh''£empo rary. :sys.tern6. 

fU.tl:.cut_ :Uodels :for<iiulda.nce.. ;··:{'Ts'tem "·desigrt~rs:·ar.e.Jq~Q~!:L·.::..tt9;.";~PP:.~X;::;:~ 

b_?c security-related' technicues· throu.'!hout- the desir;n. -and1 

~r~;plc:~ent.ation .of 8 .system.. Designers use t_heir intuition·~t9' 


£~.e.t.crmine the meth~~~- of ~~ould:..be nemitrators 'ancf'attemnt to bl~~~ 

tli_(_;i:·.L.J.ppropriately .. :Bot.'' iust ··as ·testinp; can -only indicate the' 

_pr:';sc:nce.; ,and not the absence, of bU<ZS in··software~ ., C'?ne'frationl 

~-t tcu;pts .can OD ly demonstrate 'that,.-•a:;:::sys.t.em .i:S'c.nOD'"'S€CUr.e;::onot. that;. 

[:L·t. is. secure. Consequently, certification of.. systems· desiJ;Sned on th~., 

Q.§?.iS Of. intuition and ad hoc techniques,' and 'tested ~:to the point 0~ 
11_J]}§JJC.cess.f'ut· .penetration· at teniP:ts·,'·'T_l't';)lGt;,:,;.te:c.hni.cal1yu;.~.Ustifi~JP... ·' 

The model, in contrast, ri~orously and precisely defines the 

notions of "security'' and "compromise", and identifies elements that 

correspond to those in real systems. The model is a finite state 


2c1early, these concepts were not developed independently by both 

systems. The 11/45 kernel desi~n evolved towards the Multics design 

as the utility of its structure as a framework for protection 

mechanisms became apparent. 
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machine model and gives a set of rules of operation for making state 
transitions. If the system is initialized to a secure state (and 
again, the notion of secure state is rigorously defined), then the 
rules of operation guarantee that all subsequent states are secure. 
These rules can be transfor~ed into algorithms suitable for 
implementation on a digital computer. 

Two of the basic elements of the model are subjects and objects. 
Subjects are active system entities such as users or processes that 
can access system resources, and objects are passive system entities 
such as data and program segments, and peripheral devices, that can 
be accessed by subjects. The model defines types of access that a 
subject may have to an object. These access types include read-only 
access, append access, execute access, and write/read access. For 
the 11/45 kernel, only read/execute access (abbreviated read access) 
and wrtte/read/execute access (write access) are used in accessing 
segments. ,J1_,;.6.!i!'::l::~e~:orrly,;:3!£i£.~~~,JllOcd~~sr..used,~d::na±n~r-.oceS&::~
onflifiuiil'C..at.:.t:Otii. '-·· ··-···-·· 

State of the System 

The state of the system with respect to se~rity is represented 
by four sets - b, t1, f, and H [Bell]. The set 1:) indicates the 
current access relationshi~ between all subjects and objects - that 
is, for each subject b identifies the objects that the subject can 
currently access and it also indicates the permitted mode of access. 
Thus b is a set of triples of the form (subject identifier, object 
identifier, access mode). ,..J.JJ.n 1 1.._.1 'e._'

----o:-:ci£1. A'fi'.Jr'~~h~r)
~corresponds to an access matrix and is used by the moae~, 

implement "need-to-know" security. Elements of 11 are accessed by 
subject identifier and object identifier, and each element of M 
indicates in what mode, if any, the specified subject may access the 
specified object. Thus, M represents the potential access of 
subjects to objects. ~~~ 

~_.....----...,..__ 
The set ~J]gives the security level of all subjects and objects 

in the system. A security level is composed of two parts - a 
classification (or clearance) and special access categories. 
Classifications are strictly ordered - a subject cleared to secret 
may access unclassified, confidential and secret objects. Categories 
are not strictly ordered, but are partially ordered by set inclusion. 
A subject with categories x and y may observe an object with category 
x or categories x and y, but not an object with categories y and z. 
The combination of strictly ordered classifications and partially 
ordered category sets ~ives a security level that is partially 
ordered. Thus it is meanin~ful to say that. one security level is 
greater than, less than, equal to, or isolated from another security 
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level. (Two security levels are isolated from each other if one is 
neither greater than, less than, or equal to the other.) 

Finally, the set IT;Dindicates how the objects are hierarchically) t AJA- /, 
organized in a directory-tree structure. ~ 

The system satisfies the basic military security requirements if 
all triples in b (subject, object, access mode) are such that the 
security level of the subject is greater than or equal to the 
security level of the object. The basic rules of the model allow for 
changes to b. If a subject wishes to add an object to its portion o]· 
b in some mode, it invokes the model rule that ~overns the particular 
state change. The algorithm of the rule consults f and H in 
determining whether or not the state chan~e will be permitted, and 
adds the new triple to b, if the' change is permitted. The model 
assumes that subjects can and will access objects as permitted by b. 
There are no security constraints on the removal of triples from b. 

Potential Compromise 

In addition to preventing explicit security compromises, the 
model also prevents potential security compromises. Potential 
compromise is a meaningful situation within a computer system but it 
has no analogy in the external "people/paper" system. If an 
individual has a secret clearance he may read documents classified 
secret, but he may also write documents classified confidential. By 
virtue of his clearance he is trusted not to include secret 
information in the confidential document, in the same sense that he 
is trusted not to disclose secret information in any other 
unauthorized manner. When this individual is using a computer system 
the situation changes, because programs that he has little knowledge 
of will be executing on his behalf. For example, he may invoke a 
compiler to translate a PL/I program into machine language. One 
could assume that the compiler performs the required language 
translation and nothing else, but in buildin~ a secure computer 
system we cannot assume that a pro~ram behaves properly (with respect 
to security requirements). Rather, unless a program is proven to 
behave in a certain fashion as described by a mathematical model or 
formal specification, we cannot make any statements about its 
behavior and must make the assumption that the program attempts to 
violate security regulations. If in fact the program does act in a 
malicious manner, then we say that it contains a "Trojan horse" 
[Branstad]. Continuing with our compiler example, in addition to 
doing the translation, the compiler may copy some of the invoking 
user's secret information into an unclassified file. At a later 
time, an uncleared user may read the unclassified file, thus gaining 
access to secret information. The compiler had access to the secret 
information because it was running on behalf of a user cleared to 
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the compiler 

/~ 

/ 
secret. It acted the way it did because 
to penetrate the system. 

We can now restate the problem of potential compromise in terms 

of the model. We say that the potential for a security compromise 

exists if, for example, a subject simultaneously has read access to a 

secret object and write access to an unclassified object. The ,_ 

potential for compromise is realized if two events occur: 1) the/?)' 

subject, either inadvertently or deliberately, reads secret ,~ 

information from the secret object and writes it into the 

unclassified object, and 2) a second subject whose clearance level is 

unclassified ~ains access to the unclassified object and reads the 

secret inforr1a tion in it. 


At least two ways of preventing this type of situation from 

occurring are known. The first is to up~rade the classification of 

the unclassified file to secret, which is known as establishing a 

"high water" mark [Weissman]. The second way is to deny a subject 

simultaneous write access to an unclassified file and read access to 

a secret file and to prevent similar situations from occurring. This 

second solution to the problem of preventing potentia~ security 

compromises is defined as preservinR: the *-property. .Th:i 


~:.:;::·.r~?er~:: r. :c; t:ir·e·3 tJ!~;;l,l '60Jects. to· which. e sutYjOl'>t h"S ":He ..

l ac~;;;.:.,~ ;,c.,e ·~:Je same secL.rity level c;_h3 that ~ll obJects to ~vhlch ·1t 

has read access hav:e.. a securrtv ,:fevel.laas· than··or·-eoua1.. to ·Jhe....write.~ 

f!eed!'Lt~--ltlve!l.;"" Slnce a suoje~£ will always have ~rlte ·~cc.ess to 


•some 	object if"it is to perform a computation, we define the current 

security level to be that level at which the subject wishes to have 
 1 

write access. In determining: whether or not to grant access to a~.. 
!'I' 


object, need-to-knoH is checked by consulting H, and then the (,;,'( 

security level of the object is compared to the subject's current 

security level to check that both the security and *-properties are 

preserved. 


It appears that in useful computer systems some subjects will 

not be abl~ to perform as required if the *-property is applied to 

them. For this reason the model introduces the concept of trusted 

subject - .t !'USt.e:d;;.Sub]ect~s-~ao~JiOt::.have~:-tne~·*:..or·ap·erVra·pp1ied.':U) CJI I' 

l ' 

I 

.:r~ne:n·r~'::;tri.lF ·tru3t ··r£1 these •.stib~jects··aerives~ :from ,t,he·o:f.act.· :that,~l.'i. 


prcgrams:::'th2t ·-they".:exec u te are-·cert i fie_ct t;.P.~...behaye ::...in..-~ a.< ~.wa rm.en" 

g_Qusistent.'<>wi th seC.i.irity.·:r.ea·\Ut:'ementsj• Thus, if a trusted subject 

needs to invoke a compiler, then the entire compiler must be 

certified to be free of any Trojan horses. The certification 

requirement highHghts the advantages of the *-property. Since most 

subjects will be untrusted there is no need to certify the programs 


3Pronounced "star-property". The term is from [LaPadula & Bell]. 
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/'\~.Jn ,.1
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they execute. This situation is indeed fortunate because 
certification of a complete operating- system and user sup·port 

()
, 

programs is far beyond current software technolo::~ [ 6 1 , .' 17_':(
Transition Rules t~../.t- A 

~tv · ' ·-e.r~1
The model provides rules that do things ot er than chan~e t~ 

triples in b. ftules are provided for changing l'1 and for creating and 
~t~. Since these rules ~ive subjects a form of control 
over objects, the model must have a mechanism to deal with control. 
The mechanism used is to hierarchically organize the set of objects 
into a directory tree. The use of this mechanism is not arbitrary ­
it was chosen to allow the application of security controls to every 
object in a real computer system, rather than just the segments or 
files. S"ve-~y- d~j,,~t except- fot~·~·ffii:(root ··ooJect··:-·n-a~"~r'P"Ob:Ject 'thatt~:t» 

-cr:r:r>ecfl.y·s·uperior.to:·it'"tn· t:h·8-"'i1:fe'r'~rc-hy.y.::fi1I's··..,..ab--ject,~<i'iLbe·cal1ed" 
€::fre.::'p'iiFeh~. The number of objects that are directly inferior to an 

1 
y 

given object is arbitrary. 1:·"2~-~-Q'del'~ :seLH;.describes 'tne hierardnJ 
'-""' ~r~·_nD.Ject's~"at:"an'Y''iUVel'i· ~instant ..;~:· __ rf a subject has \n·ite access toJ ~~:~ 

/"; . ... \,~;,..,: C'.ri'<:o ~ 0 t1-,~;r, 't-·"·-~!T!'~o·' o• b-''-16..-.tC,' • f'cr' '- O .,,d·:·•·t bJ.S -,_)i ~'-:···- ·-'..1_:-C':' ' 'L•ct. J.~---c~··. --.-ac~,.n~wo ~·-'-~~ ln.~.lOr'. LJO c.1 J.·~> ..!:) 

r ..~'· •tcan ch.?n2'e :~11@:~?,.9.~~$§. J?r;-vlleges-" . .LQr.calJ,c.O:b Je~t_s ·.rn_:(eJ::.:LOr-" to 0 or·'' 
p_,(/ lde.lete .~t.r.!..~,!l}~. ..·. ·. . ....... -­

·,c__."/ Nmv that the for:n of control has been identified, the security f JA 
"\\\¢ requirements for exercising control Hill be developed. -Aze£1:.•.obje~t ( ...!vr 

1 

l(~~ has security attributes. These security attributes include the 1 ) 

)' ·lj:;. ecurity level (classification f[£,d _;p.ctegp!By, set), the column in i'1 ~~t~1,,t {l~f'((it.>1 ~~~ gi · the access pernissions1'an~tneNattfibute that indicates
\l whether . not the object exists. ~~~~-~j-~~~-~----~~~..?'?!1_t~.?~ over an 

~~~:!:~~~~tt~~ :~~~set;eb:f:;~; -~~ei_~--~~~~bu_t;~~~W- - -~---"1.:~4/t~ 
can, in genera , oetermine if th <t st e chancr_e ccurred, they have • --n,.r~b 

. Ci.n.te.c.p.r:,.e~ read access !.£.~the at tributes~ If one subject has )-(J Y::4..~ 
-~ite accessto an objec-ts at~and another sub'ect has red (.j<t..~~.r-'-.......... 
acce then inTonnation~·passed between subjects via these A ,;r!.eN.tJ'ti 

A attributes. The model must insure that this assage of information · "u_,~,"'<,, 
/' , _ges not violate security requirement~J ~ !aolv ;;~X...... 

. ~ i·t -~~c~.q 
~ vO~iJA The approach taken to this problem employs th structure of _t~_ s-v~olc!..­
!:f' r hie~!:'.,9.~) ,The attributes of ~an object are obiect..~. themselves, arlc! L-,~Jfr. /c~e, 

,tYtiJ)I.t\ (aCCess 1s controlled to these "attribute" objects in he same manner! ""[1-,_f.t "}""0 7~at cess to "ordinary" data objects is controlled. t1ore _j ~ ict ~:'e.~ :" 

.--......-:.,,._,._ 

\( 4The value oft e security level attribute can only best at 
\\object creation tr. e, whereas the access perm.ission attri_~~~~~~- can be 

modified any time a er the object has been created. --............ 

~t~~~·~::_\ b~ (. . {~''f ~"-· ..~~ .· ~t;/1~1 • -- f1{~t Ity_,_,ts .. ''" F / '··.·.rr: 
~ ~.-{"\/"' (J a - ,, ... ' rl IAJ'J'I I R 

mailto:11@:~?,.9


/ _~;,__xs. 

/or not it is trusteql.. 
\_,_-­ ...~.~,~.,--..··"' .. ~···" 

I 
. ':~~VI\ 

(~f.n:\J.;__.}l) ~ 


\ lY rvY 	 j?lfl-, j.
~;%:.('~specifically, the attributes of an object are kept in the object's · 

i 

111 ft;;rf;l/.~ 
1~,~j~~,./"' parent directory, and the security level of these attributes is the . obll}dV.J' 
• same as e security level Of tUe dif'Mtor'9'· Ifius if >'i.{.t~~,)f.,Y,r · ~ 

~) bv, , ~~~~~dent. ial o~r;:~t1 ~e~~~~ object~~n~~~=~~i~~r:~~~~x~~e~h~e. ~se t~e1	 he'-~~~~ 
'"' l ,\'•'' 	 f<A</1 • I\ \.,.vv .2~rity level of t_Q_E;?__s_~cr:g_.~~bject 's attributes_· _ con_Li_d..e.ntiaL ~~·~ 

11 	
The security requirements should··-be-·clear:-rr a, rule ,"changes 
(Hrites) the at.tributes or· some object then the ·ing su~b·e.ust h~~.J .~ 
currently have write access to the object's parentF and if a rule ' / 
reads the attributes of an object (as the rules that add trip-es o b ) 
do) then the sub ·ect must have read access to the object's parent. ( J;vu.-elf,/ 
Since he *-property is applied when access to directories is 
requested, the rea 1n~ and writing of attributes cannot be used to 
pass infort:1a tion from a high security level to a low security level. 
Thus the hierarchy allows the same mechanisms to protect both the ~ •M 

info rma tion~~:_~-~~:·=-~~~·--~E .. ?b)~g~ ~~an~L!J1~...ll1.U~~~-~~/(·J~ td- At the level of the model the only attributes that an object has 

are s ~c t.rf i ty at ErfDt.!tes:--Intne~'pfocessor·creSTfnln~C~~c·"secur1T~F··~~-· 


I 

~nTer'PretaiTOO" of the object abstraction must be made. 

This interpret~tion will create addi~ional attributes,.and access to~ ~ 

these new attr1butes cannot necessar1ly be controlled 1n the same wa .· 


7 	 as access to the security attributes is. He will deal Hith this · 
problem of controlling access to non-security attributes in later 
sections. · 

A few last points will be made to co~plete the discussion of the , ,,/) 
hierarchy. If a confidential object is inferior to a secret object ( l>tJ.AeffiY/j 
then a subject cleared to confidential can never access the 
confidential objec~ si~e,the subject can never have read access to1
the secret object.'~ ~ aV~id situations like this the concept of 
"cpr.Jpatibility" is introduced ...~~-_.h.Ler•ar-chy.. is compatible if security 
,i evel.S~::.:ru:eC::.trOfi.""OErOiT!easing-,aa•~'moveB::;:a-m-m the...."lierarchy ·from' t he-1 

~oo~, i.e., the security level of an object in the hierarch must 
ah;ays be grea ..er an or equal o e securit level its arent. 

e - --~---~ - -..- - ·- 1s g1ve n 

I 
' write access 

. 
to the root at initialization depends on the particular 

require~s, the security level of the subject, and whether 

1nce o as no oarent its se~urit· rib tes are ·• 
_tr=CP1e1f~-giVin~··alrs1IDJ-e't!t~:n:rt·;·least;. .r'e'a:IT-~.§'9.§:~§. £-o_;,th~;Y.oot:_-mus'f~:~e": 

1 . in b.. a t ...friitlali zanon/· 
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Relation to Reference Monitor 

Now that an overview of the model has been given, the 
relationships amon~ the reference monitor concept, the model, the 
security kernel, and hardware access controls will be discussed. The 
reference monitor is an abstraction of the (hardware and software) 
mechanisms that mediate all attempts by subjects to access objects. 
The decision to permit oc deny cess is a function of the reference/ ~;'-'- , Lt" 
monitor's internal data base. the s stem is to b~_!~on<:Ll=9J..!2.§r:!~~~ 
then this data base must be mo iabl€. The model is an '-''__,_..J. 

interpretation of the reference monitor abstraction, and describes 
the behavior of a secure system in terms of a four component data 
base (b, ~' f, and H) and rules of operation. These rules specify 
how the data base may be changed; they represent an "authorize" 
operation. It is assumed that the access relationships specified by 
b can and will occur - the "access" operation is implicit. Clearly 
the relationship(between the reference monitor and the model is that: 
1) the reference'monitor can only allow subjects to access objects as 
permitted by its representation of the model's set b; and 2) the data 
base of the reference m_onitor' must correspond to the model's data 
base and can only change as permitted by the model's rules. [{~/·-~----·~ 

..------------ ········ .. - ... .... ... ·········· ····-· -----------------=" 	 //- .--~;)' ·' '.;_"j' 
The reference monitor of a physical compute~ system is ~~alized :~ 

by a combination of hardware and software; the portion required in ·-· 
software depends on the capabilities and limitations of the hardware. 
For example, one might expect that the hardware architecture would 
permit direct access to objects in all desired modes and that the 
hardware access controls would constrain accesses~to those allowed by 
b. The hardware access controls' data structure (descriptors) would 

be a representation of b, and the.kernel would simply be a 

realization of the model rules. e-rn general, however, the situation 

is not this simple. There may _oe objects to whis_h. th0..?I'Ji:!iare 


, 	 · cannot properly control acces~ and there may b( alternative 
1 

~-
1 

1 

ftr representations of the same security state) Either one of these 7. 
situations calls for a kernel function mat does not change the j t"· 


.. security state.~In the former case there would be one or more . · 

functions '~~it ~terpretive access to an o9ject; in the latter) 


'~there would be f~l,ions for cfian1nng t:fie repreE~!l:~.0:-~1-~C?E!._of the J 

~ secu,rity state wi tho;rt'-changin~ tne actuaT state.I -------~ 

An example based on Multics should clarify this point. If 

several objects were located in the same segment, then the Multics 


. ~ardware access controls, which operate on a per segment basis, could 

( not be used to control access to these objects, for they could not 


{'..'¥'..
'•) 	 permit a subject to access one object in a segment without accessing 

all of the objects in the segment. This situation requires functions 
o allow subjects interpretive access to thi-s type of object. In 


addition, runct:±-~ns•;...tnat-""-fuove~:-·se~Se'rltS:~:;:f5ehre·en-~~m,d.'ii'j.me'mory·-arid' 
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' ~~Qondary -s~orage do not allaH objects to be acce.~sed or. chan~e-_tlre 
~'-ecurity_ state, but these functions must be in: the ke.rnel-becaus~ 

~tJI.eY. change the reprcse.ntation of the security ·state -and- ttl~~ 
t.f_~pre~~nJa tion rm.lst_ alvmys... be consiStent W'i th-::-the-'.(Jurl'ent ·securit,:p 
s:tata• Thus the functions of the security kernel fall into three 
classes that correspond to the fundamental operations of "authorize", 
"access", and "null": 1) ftP~l~~¥that correspond to the rules of 
the model, thus changing t'h-e secur1£\ state; 2) functions that 
implement a part of the r,~fere[lce monitor by allowing interpretive 
access to objects as per~~~by the current security state, thus 
complementing the hardware access controls; and 3) functions that 
change the representation of the current security state~.J /t<Ldt) 

HARDWARE REQUIREJ·1ENTS 

In this subsection we brief5y discuss hardware architecture 
requirements for secure systems. While every computer scientist 
knows that any computation that can be performed can be done on a 
Turing machine, Turing machines are used only for pedagogical 
purposes. The primitiveness of Turing machines makes the 
accomplishment of even the simplest computations a very complex task. 
Thus, more advanced architectures have been developed to facilitate 
the use of computers for doin~ productive work. 

In light of the above argument it should be clear that there are 
no absolute hardware requirements for secure computer systems - any 
hardware is theoretically acceptable. Given the current state of 
technology, however, certain hardware features are essential if we 
are to build secure systems. These essential features simplify the 
software portion of the reference monitor. Simplification- OfJ 

i;"l.9ftware, at· the-· expense-~of':"addi tional·.-·hardware is necessary becaUi:fe' 
.producing provably corr.ect·,..softi·Ia!'e Ts".'::l major technical problem inl 
,£_~puter security.• .! There are tJ:g___ b.~sic hard__?I§.rSi_,f_~.a.tures .that.ar.e 

&;§§antial •...•, .. ~.. :! ·--- ·-· ~---· 
".---~ •••·•· •"'" -··--- •• - •• , .................. ..,.... ---...-,......,....., ........-- _., __,.,..,,~~---~--·-··.··-·- ··--- _,.,.__,..••. - - . - . . ..• ·- ',#'


The. first of· t::ese features is suooort for· .i·segmehted fifemor?-y 
whe·r~~access to sec;•-cents is throu.zh unf~rgec:ble .?egr~~nt....o~.SPript.orsl 
&h§!LJ.nclude. an. access contr.ol field/ The ar&tuments supporting this 
feature as essential to security are similar to the arguments for a 
segmented memory given in the subsection on Multics. Segmentation 
allows all information in the system to be stored in one type of 
object - the segment. Having to support only a single object type 
si~plifies the kernel. The descriptor driven addressing that is part 

5A more complete treatment of hardware considerations is given in 

[Smith]. 
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of segmentation allows the basic reference monitor function of 

mediating all accesses to objects to be performed by hardware, thus 

helping to minimize the impact of security controls on efficiency. 


ITt:e.-_-o·t~-~r>--·e·ssent ia l 'hard~~~~.!"!r.~:f.§R:~.g:rE?::·t~L.Jtlb!-:t"..taple.::·exec'U.t::ton 
,&tgng.:;jJ1;? (cr. ;;; ta,t_e_s _o.r mo.das.Y. This feature is used in most 
contemporary systems to protect operating systems from applications 
programs. In a secure syitem it will be used to protect the kernel 
from the rest of the software in the machine. Strictly speaking only 
two execution domains are necessary - one for the kernel and the 
other for everything else - but in practice it will still be 
desi:abl~ to continue to p~_o.te~~ __the ?.P.e~a_ting sys~em from 6 a ppll.ca t1ons sof tHare so tllp_e.s _Qf!mS'!tU.~?:.J.Qr rn9.r~J. Jl.J.:..l._J;::;Q'§..:!J..s_e.f.u:l. 

The kernel design presented in this report is for the PDP-1 1/45. 
The 11/45 has an optional memory management unit (MMU) that checks 
all references to memory and recognizes three access modes ­
write/read/execute access, read/execute access, and no access. The 
MMU is an adequate hardware base for building a segmented memory 
system. The MMU in the 11/45 also implements three domains of 
execution - kernel, supervisor, and user. Thus the PDP-1 1/45 can be 
used as the hardware base of a secure system. 

Before leaving this subsection on hardware requirements it is 
worth mentioning that the I/0 architecture can be important. I/0 is 
the subject of the next subsection. 

INPUT/OUTPUT 

Input/output operations are a critical aspect of secure computer 
systems because they are the interface between two distinct security 
enforcement systems. On one side are the internal logical security 
controls of a computer system that associate security attributes with 
the information in the system, and on the other side is the external 
"people/paper" system that employs physical separation and document 
markings. Clearly, a primary requirement for I/0 in a secure ­
computer system is that the security attributes of information are 
correctly transferred as information moves between the internal and 
external environ~ents. This subsection will briefly review some of 
the issues involved in secure I/0. A more complete treat~ent of 
these issues and solutions to various I/0 ~elated problems is given 
in [Burke] and [Mogilensky]. 

6Multiple domains can be implemented in software on a machine with 
two hardware domains. An example is the original implementation of 
Multics on the GE 645 [Organick]. 
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..Ac~i-c~~-r.equtre.menbc.fot':"~s:ecune~·.crol!J11u t·e !" · s ymems""'i·s·,,t ha·b.:?:& 
.g~,nerah,siecur ity:.~-ma-rking--·poHcy.ii~fo r,:~'c1·a·s"sffi ea"T/O"''tna teri~1-""b-e?' 
.e.:~tab<Hshed-/ Security markings are indications that are placed 
directly on, attached ta, or included with classified material. The 
purposes of a marking policy are to satisfy the security regulations 
that require that all classified infor~ation have an indication of 
its actual classification; and to insure that the security attributes 
of classified data are accurately maintained for all I/0 transfers. 
One aspect of a marking policy is a labeling policy - labels are 
security markinR;s that are J:<:enerated by the co~puteP system itself 
(as opposed to markings that are pre-printed on forms used by the 
computer system). In developing a marking policy it is imoortant to 
consider the difference between unilevel and multilevel I/0, whether) 	 ( I/0 material can or cannot be removed from the computer system, and 

1 the e~tent to which the I/0 data is human-legible. 

Although a computer system may be operating in a multilevel 
security mode, some or all of the I/0 devices may be operating in a 
unilevel mode. An I/0 device is unilevel if it only processes 
information at a single security level. The level at which the 
device operates can be changed by a security reconfiguration. This 
reconfiguration can be as simple as changing the forms with 
pre-printed security T.arkings that a line printer uses. 

ll'~a--:-aevfc€ ·carr·-tra:rral'e:'~data:~at'''nibT'e" than. one"·se-curi ty "lev~) 
<~ ~-thout human intervention, then the de':tce is cperatinv, in ~ 

~ o.mVltllevel mode ..~-In-this mode it will---be-necessary for.the comt:n.H;e).J 
~Y.§.t~m.....tQ~:g~ru~:rgte::.:.."§e.Cllc:t.:t.r~lqQ.el.s..\ 

I/0 material that can be removed from the computer system 
includes such things as printed output and magnetic tapes; CRT 

4 	 (cathode ray tube display) output and data ot'raveling between nodes in 
a network cannot be removed from the system. In addition, the 
human-legibility of I/0 material can vary. Printed and CRT output is 
directly human legible, magnetic tape and network messa~es are not. 

'-------	 In [r1ogilensky] a general security marking policy is developed. · 

It is not sufficient simply to have a marking policy; the policy 
must also be effectively applied to the actual computer system. In 
order to satisfy security requirements for I/0, [Burke] considers 
three ~jar types of I/0 function: 1) authentication; 2) controlled 
attachment; and 3) controlled operation. Authentication establishes 
the identity of the user or I/0 medium at the I/0 device. Once 
authentication has been performed, the internal security controls 
know the security attributes of the I/0 device. Attachment is the 
(usually software) connection of the device.to some process in the 
computer systen. Finally, controlled operation is the mechanism that 
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enforces the allowed attachments and insures that security labels, if 
they are bein~ generated, are valid. 

From a hardware point of view, we can see that most current 
architectures, which either give a process access to all I/0 devices 
or to no I/0 devices, make the implementation of controlled 
attachment and controlled operation difficult. In this environment 
only certified interpretive software can perform physical I/O 
operations. 

A desirable I/0 architecture is one where the hardware controls 
access to I/0 devices on a per device basis. With this architecture 
controlled attachment involves changing the hardware access controls' 
data base. If a device is operating unilevel (meaning trusted 
.security labels are not required), controlled operation is enforced 
by the.hardware and uncertified software can perform the physical 
I/0. This mode of operaticn is desirable because the I/0 subsystems 
of modern operating systems are often large and complex. 

The PDP-11/45 has a desirable I/0 architecture for unilevel 
devices that do not have direct access to memory (non-DMA devices). 
I/0, for these non-DMA devices, is performed by reading and writing 
specific main memory locations that act as device control and data 
registers. To the exter.t that these device registers can be isolated 
in individual segments and a set of registers controls a single 
device, the MMU controls access to I/0 devices on a per device basis. 
Unfortunately, DMA (direct memory access) devices bypass the MMU when 
they access main memory. ·T?f'i:fs:;."·~:r.e'f'-t'cf-r:r-~d :'soJ~t~;are·:mus·tP"'ehe·ck:.-the 

~a-lidt ty···of ··an~r.Jo-~rno·ry.):',~ferencEf~_::_,~..~DHA~'re.liice~:-w:.rrl:.~·rienrorfii'::.t.·erore 
~~~l::t,_J/..0 .. 9P~ati.on.~is .. ini.tiatect'. On the 11/45, this checkinf!: can be 
relatively straightforward, because each I/0 operation is 
individually initiated by the CPU. 
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SECTION III 


DESIGN CONCEPT 


INTRODUCTION 


This section presents· an overview of the design of the security 
kernel. The first subsection introduces the concept of levels of 
abstraction [Dijkstra (1)] which has heavily influenced the design. 
The remaining subsections present the major levels of the design. 

LEVELS OF ABSTRACTION 

Abstraction is a way of avoiding complexity and a mental tool by 
means of which a finite piece of reasoning can cover a myriad of 
cases [Dijkstra (2)]. The purpose of abstractin~ is not to be vague, 
but to create a semantic level in which one can be absolutely 
precise. Dijkstra's levels of abstraction have been demonstrated to 
be a powerful design methodolo~y for complex systems, most notably 
Dijkstra's "THE" system and the Venus Operating System [Liskov]. In 
general, the use of levels of abstraction leads to a better de~ign 
with greater clarity and feHer errors. A. level is defined not only 
by the abstraction that it supports (for example, a segmented virtual 
memory) but also by the resources employed to realize that 
abstraction. Lower levels (closer to the machine) are not aware of 
the abstractions or resources of higher levels; higher levels may 
apply the resources of lower levels only by appealing to the 
functions of the lower levels. This pair of restrictions reduces the 
number of interactions among parts of a system and makes them more 
explicit. 

Each level of abstraction creates a virtual machine environment. 
Programs above some level do not need to know how the virtual machine 
of that level is implemented. For example, if a level of abstr~ction 
creates sequential processes and multiplexes one or more hardware 
processors among them, then at higher levels the number of physical 
processors in the system is not important. 

By the rules of levels of abstraction, calls to a procedure at a 
different level must always be made in the downward direction, and 
the corresponding return in the upward direction. For maximum 
clarity, downward calls should be to the next lower level, but there 
will always be cases where calls that skip over one or more levels 
can be justified. Returns are always to the calling pro~ram, except 
in the event of a severe error where several of the calling 
procedures may be skipped over by the return. Figure 2a shows the 
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.. 
structure of a system where most calls are to functions of the next 
lowe!' level, but the level 1 function x is called from levels 2, 3, 
and 4. 

When a ring ierarchical 
added to the system~,-s±rn~~~~~~~~~~-~~~~ 
consist of contiguous levels. Thus the kernel, which must be the 
innermost ring (ring 0), should consist of the level of abstraction 
that implements the reference monitor concept and the supporting 
levels beneath that level. In our example system, the boundary 
between ring 0 and ring 1 may come between level 2 and level 3 as 

/
/ 

shown in Figure 2b. Follmving the policy of makin12; a ring consist of 
contiguous levels, all cross-ring calls are automatically to an inner 
ring and this is the type of ring crossing call that is supported by 
the PDP-1 1/45 hardware. 

It is possible, however, that function x has no security 
implications, so it can be removed from the kernel as shown in Figure 
2c. Now, however, calls by level 2 functions to function x (level 1) 
are an outward ring crossing. Unfortunately, this type of a 
procedure call is not supported by the 11/45 hardware (or other 
computers with a hardware rin~ mechanism), so if it is to be used at 
all, it must be implemented with certified software. A case where 
this calling structure might occur is with the scheduler of a· 
multiprogramming system. The scheduler may appear at a low level of 
abstraction, but if we make a distinction between the scheduler -
code that implements the policy that selects the next process to run -
and the process multiplexor - code that implements the mechanism that 
binds a process to the hardware, - then it can probably be proved 
that the correctness of the scheduler is not necessary for security. 
Thus, we would want to remove it from the kernel, in spite of the 
fact that it may be called from the kernel. 

This example illustrates an apparent conflict between the ~oals 
of overall system clarity and a small and simple kernel. One could 
argue that one of these goals, or the use of levels of abstraction 
with its requirement of strict hierarchical layering, or the use of 
protection rings causes the conflict. A machine that provided the 
more general form of non-hierarchical protection domains would solve 
this problem by allowing an internal partitioning of the kernel. 
Domain machines, however, are not currently available. Since we are 
forced to use a ring machine and we believe that the levels of 
abstraction design methodology will facilitate certification of the 

' kernel, our only choice is to compromise one or both of the design 
goals of overall system clarity and a small simple kernel. This 
issue will be discussed further as design details are presented. 
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LEVELS OF THE KERNEL 

In designing the security kernel, levels of abstraction have 
been used in the translation of the abstract elements of the 
mathematical model to tangible elements of a secure computer system. 
The first steps taken were to make an interpretation of the model 
elements (i.e., objects are virtual memory segments and subjects are 
sequential processes) and to provide at some level of abstraction a 
set of functions that controls access to these elements. Thus the 
abstraction created by this level is that of a secure com~uter 
system. It must be emphasized that what this secure system level of 
abstraction does is to effect the implementation of the reference 
monitor, thus insuring that the system is always in a secure state. 

The specific design structure chosen for the actual 
implem~ntation of the interpreted elements is done by lower levels of 
abstraction, as shovm by Figur·e 3. While the software at these 
levels is not cognizant of specific security requirements, it is part 
of the kernel because the correct operation of the secure system 
level functions depends upon the correctness of lower levels. We 
choose to place the segmented virtual memory level above the proces 
level because segments can be shared by processes, and because we 
want to be able to start a new process running when the current 
process must wait for a segment to be swapped into main memory. The 
PDP-1 1/45 hardware provides a form of main memory segmentation that 
is used in the implementation of the process abstraction. 

It should be clear that the boundary of the kernel belongs 
immediately above the secure system level of abstraction. Software 
outside of this perimeter can execute the unprivileged hardware 
instructions and invoke mthe func~~.~o.vj,GJ.ed..~y the -:._~c-~--~)::0."' 
~el with arbitrary arguments. Since the unpriVlit:g-eo machine 
4nstructions cannot put the system into an unsecure state and the·. 

secure system functions make no assumptions about the legality of . 

arguments passed to the, , t e a-trr'i't;r"<"crt'-·ehe~·-S<y,s.t~m j,.,§,..A,n'Ci-e1)er1(fent 


~9f w at a ove the secure system level of abstraction 
d·oes or does not do. Thus the implementation of the security level 
of abstraction and the implementation of the lower, supporting 
levels, gives us a complete security kernel. 

While the initial presentation of the kernel's levels of 
abstraction will be made from the bottom up, it should not be 
inferred that the kernel was designed this way. Rather, the design 
was constrained at the top by the mathematical model and at the 
bottom by the characteristics of the PDP-1 1/45. The bottom hardware 
constraint was somewhat more rigid than the model constraint because 
the abstract elements can be interpreted in a variety of ways. Since 
all design decisions must be in harmony with both constraints, the 
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design technique was "middle out" - up towards the model and down 
towards the 11/45. The choice of a bottom up presentation is 
somewhat arbitrary and was made because we feel it is easier to build 
on concepts that are well understood. 

LEVEL 0 - THE HARDWARE 

The PDP-1 1 is an advanced family of 16 bit mini to medium sized 
computers with a powerful instruction set, hardware-managed stacks 
that facilitate procedure nesting and the coding of reentrant 
procedures, and a set of general purpose registers that can be used 
as accumulators and/or index re?isters. An optional feature of the 
PDP-1 1/45 that makes it a suitable base for a secure system is the 
memory management unit (Mi1U) and its associated three domains of 
execution - kernel, supervisor, and user. Although the memory 
management unit is described as a ~eneral purpose memory management 
device [Digital] and one might hope to implement a Multics-like 
two-dimensional virtual memory with demand paging, it appears that 
the MMU is most reasonably used to divide main memory into logical 
address spaces with associated access controls. 

The key to understandin~ the MMU is the dynamic address 
translation process it performs (illustrated in Figure 4). Every 
time an effective address is generated during instruction execution, 
it is treated as a 16 bit virtual address and translated to an 18 bit 
physical address before the reference to main memory is made. The 
translation is controlled by the contents of a set of eight 
segmentation reg,isters. Each se~mentation register specifies the 
base and limit addresses for an area of main memory, and access 
control information. Recognized modes of access we will initially 
use include null access, read access, and write access. A 16 bit 
effective address is treated as a two dimensional virtual address by 
having the high order 3 bits select one of the eight segmentation 
registers and the remaining 13 bits be a displacement into the area 
of main memory addressed by the selected segmentation register. The 
~1U acts as a hardware reference monitor and generates a fault when 
the displacement is too large or access is attempted in a mode that 
is not permitted. 
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In the PDP-1 1/45, there are three sets 9f segmentation 
registers, one for each domain of execution. The current domain 
of execution has associated with it one of the three sets of 
segmentation registers which is selected before the remaining part of 
the dynamic address translation process occurs. Provision for 
multiple register sets is part of the hardware implementation of 
multiple execution domains and allows a process to be given a 
different address space and/or the same address space with different 
access rights depending on the current domain of execution. 

Several characteristics of the t1HU have a limiting effect on the 
kernel's functionality. Since there is only one level of address 
translation (the segmentation registers are addressed directly and 
then one add operation is performed), the MMU can be used to provide 
a segmented memory or a paged memory but not both. Because 
segmentation is vital to our design of a secure system we must have 
non-paged segments. 

In Multics, the occurrence of a fault while referencing a 
virtual memory segment can signal one of at least two different cases ­
an attempt was made to access a segment (or that part of a segment) 
that was not in main memory or an attempt was made to access a 
segment in a prohibited manner. In the former case the hardware 
provides the tlultics supervisor with sufficient information to allaH 
corrective action and successful re-execution of the faulting 
instruction. The latter case indicates an access violation and is 
handled appropriately. The PDP-11/45's Mtv!U provides only limited 
information Hhen a fault occurs. This lack of information makes it 
difficult to distinguish betHeen the missing segment/page fault and 
access violation cases, and also to resolve missing segment/page 
faults with "small and simple" software. The impact of this MMU 
characteristic on the design will be dealt with in the section that 
discusses the segmented virtual memory level of abstraction. 

7Actually, the MMU has tHo sets of segmentation registers for each 
domain of execution. The hardware uses the Instruction (I) Space 
registers for all memory references that involve instruction fetches, 
index words, absolute addresses, and immediate operands. The Data 
(D) Space registers are used for all other references. Language 
Processors must be aware of the difference between I and D Space and 
generate code appropriately - program constants that are not 
immediate operands cannot be in the same segment with program code. 
Since the language processors used in the initial implementation of 
the 11/45 kernel are not aware of I and D Space, the D Space 
segmentation registers are disabled and all address translations use 

Space registers. 
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One other aspect of the MMU is worth mentionin~ at this time. 

Since the segmentation registers are directly addressed and not 

accessed indirectly via a base register, the processor state consists 

of a large number of registers. Saving and restoring the processor 

state is quite time consumin~ because all of the registers must be 

saved/restored one at a time - the PDP-1 1/45 has no block move 

instruction. While performance characteristics are an important but 

secondary consideration in this prototype development, the cost of 

context switching could have a severe impact on a secure production 

system built on the 11/45. 


!ffi:$ ·abstrac{tiOn .-f~f-'level Q 'Ts·· t.i.' ·proc'2ssor--wi·th ·a. seg·mented mairf" 
memory. T~l':? basic r'e3o:w·2e used in creatin<:>:: this abstraction is the· 

J1HU __ har'dW&.l'e, but there is also.sor.1e software in tl1e implementationi/ 
:There is _a_. _::.a.bl? th::>t indicates how· main memory is segmented anrl .:a 
j't?n?t ion. that ~-uses information _in_~thi.s. :.table:.. t,();;·S.9Q::?t_r;~9-~'':_~l1~..--~~:::~,~ 
~segment_st ~ ;;;_criPf,,o rs} 
~~...,,..,_....---~--

LEVEL 1 - SEQUENTIAL PROCESSES 

Level 1 creates the process abstraction. We use the "standard" 
(and somewhat vague) definition of process - a process is a procedure 
in execution. The design supports a fixed number of processes; each fw~ 
runs on a virtual machine and consists of an address space and 
control information about the process~ At level 1 it is sufficient / 
~o know that the address space is defined by the control information, 
part of which is the contents of the se~mentation registers. Level 1 ~ 
software has the responsibility for allocating the processor to one 
of the processes whose dynamic progress is permissible. 

At a given time, a process is in one of several possible 
execution states [Saltzer ( 1)]. Figure 5 shov;s the relationships 
among the various execution states and the actions that move a 
process froQ one state to another. In the inactive state a process 
does not have an address space and cannot run. ,B;·--proc~l?-.~-;:..ca:n::o~ly:.tre 
tirO'V'etl'"'Out··,.of'·!:-{and<-'also~:'into.}:::±.he~;ina€H've· ·state~~by:_:J'J, sp~<;i:~ 
<'eX:St!U:t:i've-:·pr·oces·s-;:·that·:~rs:.:.'neve·r-=.:rn·_~the":'Thacti v~;·p~<9-e. At the time 
that it moves a process out of the inactive state, the executive must 
establish the initial address space of the process. The purpose of 
the inactive state is to create a mechanism for minimizing the 
resources required to support a process that is not currently needed 
(perhaps because less than the maximum number of users are currently 
signed onto the system), but is one of a fixed number of processes 
defined by the implementation. · 

rn·ac-t-fve::::p:r;oces·s---is··-ei t her. blocked---or.,.unb . .l-,9~.J..),~_g.,...,""l.n_,..,t.he 

-6I8(rt(ed··s tate/ :~.:process is Hai tiiu:r~for. 1:he__o.ucur-~enQe-.g£..,J%EN~~S:.?&1· 
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An unblocked process is either in the runnin~ state or ready state. 
:JJ:le;;-.r.un nin g :state :·.simpty:.::s.D;nifies""J;nat.::~:the..pt"·.O.ces.S:-haS:.:the;;;eplfJ 
:a~l.ncated .to.,.itl Above level 1 the running and ready states are 
logically equivalent. In the ready state a process is ready to run 
(its dynamic progress is permissible) but must wait for the CPU to be 
allocated to it. Processes enter the ready state from the blocked 
state when the event for which they Here Haiting occurs. Ir..ansiti.o:n 

.9-.t:;!!':Pr:09-e::;ses -be.tvzeen. the ...read;.: ~nd .running ..s tate_s,:;-j.:_S:-,~ontrc~.l.~~;~~Y,.·ii 
§1;rt.PJ..e..: .sGnedu-U.r~::;:POl:i9-.Y..J~!-er.p~1-,:tc:,~.e_:~~~;::}1 - · ·'" · ·· · 

The hardHare resources of this level are the CPU and a real-time ) 
clock. A data base is employed to contain state information about ( bl"u~ 
the processes and to help manage them. This state infomation 11> o\, 
includes a definition of each process's address space, an indication~~' 
of its execution state, and a specification of the user associated) ~ ~ 
with the process and his security attributes. No interpretation of 
these security attributes is made at this level (the operation of 
level 1 is independent of their value), rather, space is set aside in 
level 1's data base for security attributes as a convenience for 
higher levels. 

Several different types of functions are provided by level 1. 
Two sets of functions are provided for the synchronization of 
processes - Dijkstra's P and V functions (explained in Appendix I) 
and message send and receive for interprocess communication. In the 
level 2 subsection we ivill explain hmv P and V are used to handle I/0 
interrupts. More detail on these synchronization functions and the 
rationale for providing two sets of functions where one might suffice 
is given in the next section. 

tevcl ·r··imprements a :sitnpl~·scheduling policy'_.::~·-_tt'ltL.highest; 
:E.r.~g.r:tty .process that is ·r"eaqy,,to.rtm _h?,s..t.h_~· CPU- alloc;?ted.,tocitJ. 
To allow a more sophisticated scheduling policy to be implemented

• outside of the kernel a function can be provided to dynamically\' 
~-.. change process priorities. A discussion of the issues involved is 


~~ provided in the next section. 

1 

( 1'-,~ ' ..., Finally, as online users log on and off the sys tern (and as batch 
\~0 ~·jobs are initialed and terminated) it is necessary to provide them 

'\t ~ with processes and then to terminate these processes. Two functions­r ~~ activate process and deactivate process - are provided for this 
':\.•"' purpose. 

Level 1 creates a multiprogramming environment which effectively 
~ -~' implements the co-existing subjects that are a major element of the 

model. ~ 

1~? 
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LEVEL 2 - SEGHENTED VIRTUAL' MEMORY 

The second level of abstraction creates a segmented virtual 
memory, building on the segmented main memory provided by level 0 
(the hardware). Se~ments are the primary storage entities of the 
system and will be the basic object to which access is controlled by 
the security level of abstraction. As mentioned in the subsection on {;A-t ~~ 

level 0, the characteristics of the Mr1U limit the flexibility of the L • • .o.X\- ; _;;. 
segment abstraction created at this level. In particular, one would~·~~~ 
like (as Hultics does) to implement variable sized segments ~ ~ fL 

consistinrs of fixed sized pages. The use of pa!!ing facilitates thehJ ~ · 
dynamic growth of segments, permits only part of a segment to be 
swapped into main memory, and vastly simplifies the allocation of 
both primary and secondary memory. Unfortunately, the 
characteristics of the MHU force us to implement unpa12:ed segments. 

!·ra-si~pli fy The design w: have implemented fixed. sized s:gm:nts -: .--· , ·J L1!f.tU'{I.J 

1 that 1s, when a segment 1s created a permanent size ~-~~--~_., AJ ti(;:U.( :
\~?ified and resources are allocated aQJ?ropria~ rr only a ( "-- ?:;· '(ffJ 

c 

1ro~ · 
7 

single size wet'e provided the resultin_g- system would be difficuit-'1o 
) 

-\i __,_,! ' 

use, especially when the small number of segmentation registers (8 (________________ 

per domain) is considered. A small se~ment size would severely limit 

the amount of virtual memory that a process could directly address at 

any given instant; a large segment size would tend to waste space. 

Thus the design provides for fixed sized segments available in a \~ 


variety of sizes. The actual number of sizes will be an ~ ( 

implementation decision subject to hardware constraints - sizes must y 

be multiples of 64 bytes up to 8K bytes maximum. Sinc_e_~y~n__t_h~--- \~ 

la_!.'~~§_t_ segment may be small for some applications ,)we anticipate the v\& ~ 


(c:reation of a file abstraction above the kernel. This abstraction 
I - ­will allow several segments to be treated as a single entity and 

permit subsections of a file (segments) to be individually swapped in · 
and out of main memory. _____________________________________________________) · 
-------------------- -------- ~~~ <,~ 

The lack of adequate hardware to support a demand ~ 


paging/segmentation environment further affects the design at this 

level. The virtual memory provided by this level can best be 

described as a "non-random access" virtual memory. Users of thi~ 

level cannot arbitarily access segments in their address space 

without first indicating an intention to perform this access. This 

intention is indicated by asking level 2 to load a segmentation 

register with a descriptor for a segment before any instructions 

referencing that segment are executed. It is sufficient for level 

to "lock" all segments for which descriptors exist into main memor 

to guarantee that missing segment faults do not occur. Level 2 

considers any fault generated by the MMU to be an access violation 

and simply passes the fault on upward; it does not attempt to take 

any corrective action. Jhe implementation of·level 2 corresponds to 

swapping or overlaying, rather than demand paging. It should be 
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noted that level 2 still implements a one level virtual memory 

because: 1) segments are the only type of storage entity, and 2) as 

different segment descriptors are loaded into the segmentation -~· 


registers the address space of a process can be greater than the size '....t/ 


of main memory. 


Segments have attributes - information that describes the 
characteristics of a segment. From the mathematical model we know 
that at level 3 segments will have security,attributes; at level 2 
they have implementation attributes. Impl tion attributes 
include a se ment's size disk address. The attributes of a 
segmen re contained I e segment's parent directory. ,.(1/4 
At level 2 space is provided 

~ 

in directory entries for security 
attributes but the operation of this level is independent of the 
values of security attributes. Since directories are themselves Iv~ 
segments with attributes residing in other directories, the total /~ 
structure is a directory hierarchy in the form of a tree. The l 
attributes of the root segment of this tree are fixed by the design'\ 
and imolementation. 1 

• ,______t?_______ 

I, 
All segments in the hierarchy are ~tn-er>--dir-Be--t.G-r-¥-=-~ 

data segments. (Segments containing executable code are considered 
C data seP;!nents by level 2.) Although level 2 does not enforce access 

. a? control to segments in general, it cannot permit software above it to 
..-'-'/'1 write directly into directory sAgments, because the correct operation 
\, , of level 2 requires the integrity of the (implementation) attributes 
~, of segments. Functions at this level provide users with an

0j'J 1>/Jf oretive directory write capability. The security requirements 
~ \ enforced at the security level will further restrict access to 
~ ~~ectories because of the nature of some of the segment attributes. 

\ Y ' This point is discussed in the Data Structures subsection of the next 
V section. 

As previously mentioned, some locations in the PDP-11/45's main 
memory are I/0 device control registers. The main memory segments f
that "cover" these locations are permanently bound to data segments 
in the virtual memory. .Thus, __the ··aoi1fty .f.o ::use:. an'":.:'I)i_f:(fevi:ce.::::i;{? 

~tl!P;:~;:;::i:::ea:::~~:~t!:;;;;::;~;~~:.~:::::;;:::~::~~~phor'<f ~ 
~l:'tli. each s~g~ent "cL requires vri_t~-c~qq~~!?.~ :..t.9 ~~kt~~;~ggmel).k:l,.(L;Qf..S).eor;, J 

~C:O-P.--and V o.n. ,tbe.semaphore:.t The I/0 segment semaphores nave a 

special use - the kernel translates I/0 interrupts into V's on the t-f'r1/ L---­

appropriate se1naphores. Thus, \;/hen a process wishes to wait for~ hfo~';Juvt-L 

!nterru t frc;n an I/0 device, it P s on the I/0 segment semaphore, f w 

(presumably blocking Itself. When the int~rrupt occurs, a V is · 

performed and the process becomes unblocked. The kernel is only 

concerned with controlling access to the I/0 segments and semaphores, 


--~---·----------

39 




not with the correct use necessary to assure proper synchronization. 

Level 2 implements a segmented virtual memory by building upon 
\ level 0, e mented main memory' /using secondary storage devices for r 

J..!l~j segment swapping and employing a data base to indicate the state of~\ v;( .rA \ 
·· the virtual memory. The data base consists of the~ \(:i.e, yp~ \' , 

'1 ~. tables for managing: the allocation of secondary storage . ~\) 

1 	 ~:~i~~~~~s·~~~~:s!~:;~~·-~!~:~!~:.~ 1~STr~:i~~~~~~3~~t;~~:m~ci·;n-;::,j~,~e entt~ 2 nuJ 
proce'sses wish to access a se~ment they both access the same phys ·cal .., 
segment and not two different copies. Any segment that is in the 1 

address space of one or more processes or is "wired down" 
(permanently swapped into main memory) is active - it has an entry in 
the AST.. A'tf.':'~~t·i:vE(~se'.~~ab:l-e,...-ent't"'Y"""fAB1ltt:<-).><teem,t;aoi·n:s,-.,,til~z.S.t.El,g.IDe.n.t....::.s 
fJe"t>mahenP;':ilt:'t"rib'ut"es:#'- copied from the directory - as weli-as 
additional attributes associated with the fact that the segment is 
active. These additional attributes include a list of the processes 
that have the segment in their address space and the main memory 
address of the segment if it is currently swapped in. 

Segments in the hierarchy can be uniquely identified in a 

variety of ways. If a segment is active, identifying its entry in 

the AST (aste#) specifies the segment. If a segment is not active 

but its parent is, then the aste# of the parent directory and the 
identification of the entry within the directory that contains the 
segment's attributes (aste#, entry#) specifies the segment. A 
generalization of the (asten, entry#) identification method is the 
complete pathname - a specification of all directory entries, 
beginning with the root, that identify the segment. Finally, each 
segment has a unique identifer - its disk address. Within the 
security kernel the primary segment identification techniques are the 
aste# and the (aste#, entry#). 

L~~ides functions for creating and deleting segments, 
adding and removing segments from a process s address space, and 
creating and destroying segment descriptors./ The segments created_ at 
this level are the basic interpretation of the objects of the 
mathematical model. Although segment descriptors permit access 

l; 	 control to segments, the only access control policy enforced at 
level is the requirement for interpretive directory writes. 
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LEVEL 3 - SECURITY 

The software above level 2 sees a virtual machine with a 

segmented virtual memory (that pt~ovides for access control if 

desired) and the multiprogramming of sequential processes. Thus, the 

major elements of the mathematical model of secure computer systems 

(subjects, objects and access control) have been realized. Given the 

environment assumed by the model, the implementation of security by 

following the rules of the model is straightforward. 


Unlike the lower levels, level 3 has no hardware resources or 

data bases of its own. Level 3 makes a correspondence between the 
 !;!
subjects and objects of the model and the abstractions implemented by 
levels 1 and 2, associates security attributes with these lower level 
abstractions, and controls access to the lower level functions th t 
operate on these abstractions based on the rules of the model. Each lo~v~ 
model rule has two parts - the first part consists of security check~, ~v~ 
:to determine if the requeste!f:;uate cnange can be permitted; if it , ~ --~1-t> 
can, the second Q_art of the rule indicates how the state change is t6"" ~fi 
be made. 1n the kernel level 3 functions perform security checkirllf ~~. 
~then direct levels 1 and 2 to perform state changes if security 1 fF~-
requirements are satisfied. ­

As previously mentioned, the kernel uses processes as the basic 

interpretation of S!lb jects, and segments as the basic interpretation Jr 

~f objects. In addition, semaphores and interprocess commun~cation ~ 
messages are also objec a er an 1ng ~ s own ata structures 
for representing e Hel's data base (b, M, f, H), level 3 uses the 
data structures of levels 1 and 2 for associating security attributes 
\vi th processes and segments. In addition to holding a segment's 
implementation attributes, directory entries contain the segment's 
security level - half of f :-and access control lists - M. The 
(aste#, entry#) method of identifying se~ments is a representation of 
H. The data structures used by level 1 to support processes include 
a specification of each process's current address space (the segments 
that a process can C.J.U:I'~ntly access and the perm~of 
accesS) - the rJodel, S~ and an identification Of the user 
associated with the process together with the user~y 
attributes - the other half of f. 
----------------~----------------

Now that the model has been implemented all remaining scftware 

in the system can be uncertified - contain bugs or malicious 

penetration attempts- without a threat of security compromise if two 

conditions are satisfied. The kernel must be protected and access to 

its functions controlled. These conditions are met by preventing 

uncertified software from ~aining write access to the kernel segments 

and by having only the kernel execute in keinel domain. 


41 




' 
In the next section we will repeat the process of describing the 
kernel, but this time more details and motivation will be provided. 
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SECTION IV 

DESIGN DETAILS 

INTRODUCTION 

In this section the design is a~ain presented, but more detail 
is given. The first subsection discusses the uncertified software 
environment, the second describes the data structures used by the 
kernel, and the remaining subsections give a formal specification of 
the kernel functions. 

UNCERTIFIED SOFTWARE ENVIRONMENT 

The kernel software and PDP-11/45 (with Memory Management Unit) 
create a virtual machine environment for processes consisting of 
uncertified programs. The virtual machine is similar to a real 
PDP-1 1 (not 11/45) in that it has the general purpose registers and 
instruction set of the PDP-11. The virtual machine has, however, a 
much different memory structure - a non-random access seqmented 
virtual memory that is shared with other virtual machines. The 
kernel provides the virtual machine with functions for operating on 
the virtual memory, and for communicating and synchronizing with 
other virtual machines. Programs executing in the virtual machine 
can execute any unprivileged PDP-11/45 machine instruction or invoke 
any kernel function, alt hou'Sh in either case the desired operation 
can be aborted (by the MMU or the kernel) to prevent a security 
compromise from occurring. 

~.~r..arc:hy-;::g_s·:~the.~.systemdi rec~:~Ys~{~~~;~~Y~i r~~~~a~e~~~~ki-:f~~~~-;~;~"'~~~t".s;~~=~~~~lTO'tM~
·.spacj:!_JSS_I. By Vlrtue of secur1ty attnbut:: '\ 

and a security policy, most users of the system will not be able to 
access all of the seP-"ments in ss. T.l:JsL13Ub.st:t.--:t..rtat:·:~r~·us:err.:nna.y~,:.acc~~9 

kii.l.J:~P&::~--._call.ect"a:.c··.v ~!:S~1d&l.J..:~;R~S.5";,~"~..cv.s );. When a user onto the 
system he has a virtual machine-·Trtr~~·n·trC'<f'ttY, a process~ execute on 

"' his behalf. Thisproc-es5wi l have an address space o segments1 

\·constrained in size by certain design and implementation parameters. 
~.~ ~-c M£_---..-_c·a.ll...u:e::··pr.-o.ce.ss·s_·.:ad.·d_-_res_s_·--spac~~~~~~- w.sJ~':anct.:::-it-:.:is. 

\J . · .:; : . .?.Jways -a;· su.?.~-e~.?L~h~~:;:\1:3~r;'~- Y~1 '![§ corresponds to the model's ~.: 
~ ' l' Ideally' He would like to perrni t a process to directly acce§s ali
t t\ ~ segments in its HS, but because of the small number of descriptors 
' ~~, provided by the 11/45 (eight per domain), this approach would 

severely constrain the size of viS. It would probably be necessary
S \ for a process frequently to move a segment out of its WS to make room 
~~~ for a new segment, and then shortly thereafter move the old segment 
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relationships among SS, VS, WS, and AS. ~;f 

The burden of managing WS and AS, and dealing with constraints, 
both security and implementation, imposed by the kernel, falls 

back into the WS. Because of the security checking involved - moving 
a VS segment into WS changes b - this approach could add considerable 
overhead to the computation being performed. To avoid this problem 
it was decided not to limit the size of WS by the number of 
descriptors available and to add another space - .acce-;;-;s"·.spaQ&.:t~:A£..1.- \ 

1£hit 't"'ep't'e:Sents the g.-o-··:::-:. ~S "that a pr;6e·e...~J''3:'7:)'a'n dir'ectly -addt::e§-,~7 
f:l·2C.'"~i.lse .. it, has .descriptcr'3- for--them.' ---~s-·Ts; of__CO\ll"Se, _con~"tl~<k~.P~D. 
b•; "1-':e- number of har<,J,y;eire .deScriptors-available, ar:d ·it i$ _a ~.11I!.set 

f_o~ ·~s:---'Now~·a 'i)r,-oc-ess will remove a segment from AS to make room fop 
another, rather than removin~ a segment from WS. The justification 
for this approach is that the cost of moving a segment into AS is 
less than the cost of moving a segment into a combined WS/AS, becaus 
changing AS does not change the security state. Figure 6 shows the 

clearly on uncertified software. This does not mean that a user 
writing applications software must be familiar with all of the 
kernel's idiosyncrasies, for one.of the functions of an operating 
system might be to make the environment created by the kernel more 
palatable to the user. Before presentin~ the specification of the 
kernel functions, the data structures employed by the kernel will be 
described. 

KERNEL DATA STRUCTURES 

In discussing the data structures of the kernel we have a 
chicken and the egg problem - understanding the design of the data 
structures requires understanding the functions that use them and 
vice versa. We choose to deal with the data structures first because 
their description is more compact than the functions' description. 
We will start with the structures used to implement the segmented 
virtual memory, then discuss the process structures, and conclude 
with the main memory structures. 

Directories 

A directory is a segment that consists of entries. Each 
directory entry is either unused or contains the attributes of some 
other segment. A directory entry (see Table I - the numbers in 
parenthesis after each field name are the size of the field in bits 
for the initial kernel implementation) has a fixed part and a 
variable part - field names for the fixed part begin with "DIR_", for 
the variable part with "ACL_". 
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Table I 

Format of a Directory entry (fixed part) 

and an Access Control List (ACL) element (variable part) 

a Directory entry is accessed by (aste#, entry#): 
DIR_XXX(aste#, entry#) 

DIR_TYPE( 1) DIRECTORY or DATA 
DIR_STATUS( 1) UNINITIALIZED or INITIALIZED 
DIR_CLASS(4) classification 
DIR_CAT(16) category set 
DIR_SIZE(8) size in blocks 
DIR_DISK ( 24) disk address of the segment 
DIR_ACL_HEAD(8) head of the ACL (or 0 if list is empty) 

an ACL element is accessed by (aste#, acle#): ACL_XXX(aste#, acle#) 

ACL_USER( 14) user-id or ALL_USERS 
ACL_PROJECT(8) project-id or ALL_PROJECTS 
ACL_HODE(2) mode of access - WRITE, READ, or NO access 
ACL_CHAIN(8) acle# of next ACL in the chain or 0 

the head of the free ACL element chain is accessed 
by ACL_CHAIN(aste#, 0) 
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The field DIR_TYPE sp~cifies the type attribute of the segment. 
Its value is either DIRECTORY or DATA. .U:l...~e.gJll~-~ts:~~z::.e,.::~j,Ji.;i.'.tlaliiedJ 
~~~£~~,_,~l:te.Y: .. ~CtLfirst · aoces_~_g(j.'. _Data segment,~-~L..~ni~~-~a~iz:_~-~..<?. all 
zeros, and the initialization of directory segments will be explained
J:.:ater::'. The attribute DIR_STATUS indicates whether or not a segment 
has been initialized. Its value is either UNINITIALIZED or 
INITIALIZED. DIR_CLASS is part of the security level attribute - the 
classification. DIR_CAT is the rest of the security level attribute ­
the category set. DIR_SIZE is the size of the seg;ment. The.~.i-iHU, 

f~\;iJt'$3. a:u·:segments ..tO.:.:be:.a mtiltipl~ of.64.bytes in size/ but in 
the initial implementation the size of a segment is a uultiple of 256 
bytes. If the value of DIR_SIZE is zero, the directory entry is not 
being used and the values of all other fields are undefined. 
DIR_DISK is the disk address of the segment. DIR_ACL_HEAD is the 
head of the chain of ACL (access control list) elements for the 
segment.- the ACL is the variable part of a directory entry. If 
there are no ACL elements then DIR ACL HEAD is zero. n 

!h~"-acces·~s'"coirtr'ol··lrsf.·ls" an~l2.e.~:::€a1a:Ej·a~·1rst:·.-:'.ornames~:O~f~:7 

Ll?.~~rmi tted to access a segment)- it corresponds tg a column of the 
matrix 11 and implements need-to-know protection. Users are ~~ 
identified with a tHo part name. The first part (user-id) uniquely ~j)fi'y 
identifies each user. The second part ( project-id) partitions user's Y 
into groups called projects. The use of a two part name facili ta:Jes//) 
granting access to ~roups of users when all of the members are not ~­
known or the membership is dynamically varyin~. 

Whenever a user is on the system the state information of his 

process includes his user-id and the project-id of the project he is 

currently working under. (A user may be allowed to lo~ onto the 

system under one of several different projects.) Similarly, an ACL 

element includes a two part name but either part may be replaced by a 

special flag that indicates "don't care". The "don't care" fla~ is 

represented by the id ALL__USERS or ALL_PROJECTS. Thus the ACL 

elements (Sl1ITH, Dr-1S), (StHTH, ALL_PROJECTS), (ALL_USERS, DHS), and 

(ALL_USERS, ALL_PROJECTS), respectively, permit the user named SrHTH 

to access the se~ment when he is working under the DMS project, 

permit S~1ITH access independent of the project he is working under, 

permit access to all members of the DMS project, and finally permit 

access to all users of the system. 


In addition to a name, each ACL element has a permitted mode of 

access - no access, read access, or write access. Associating the 

access mode with the ACL element rather than the segment itself 


8The 11/45 ACL mechanism is ouite similar to·the Multics ACL 
mechanism as described in [Saltzer (2)]. 
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allows different users to have different access rights. The use of 

the "don't care" flag makes it possible for more than one element in 

an ACL chain to apply to a user - in this case the first element in 

the chain that applies determines the permitted access mode. ~~U 


E!l:Bi'iie'rit s'' a'iie::a::rw.a:ys·~:o t!debl~d: ;-'ff'·OlTJ""'1lmS>'t"~s·pec-i f.i·~~e'"-·1eask· 'spec i f i c;, 

thus elements with a specific user-id and project-id come ·rl.r's'f, an 

(ALL_USERS, ALL_PROJECTS) element can only be last, and elements with 

a specific user and ALL_PROJECTS come before an ALL_USERS,·specific 

project element. Thus the following chain is possible: (SMITH, DMS, 

NO), (JONES, DMS, WRITE), (ALL_USERS, DHS, READ). It indicates that 

all members of the D~~ project have read/execute access to the 

segment except for SHITH who has no access and JONES who has 

write/read/execute access. 


We can now define the ACL element fields. -ACL_HODE is the mode 

of access associated Hi th t~1e element, ACL_USER is the user-id or 

ALL_USE.RS, ACL_PROJECT is the project-id or ALL_PROJECTS, and 

ACL_CHAIN is the link to the next element in the chain or zero if 

this is the end of the chain. In the initial implementation a 

directory segment has 63 usable entries ~numbered 1 to 63) plus a 


~ 1 header entry (entry# 0) and 127 ACL elements that are shared among 

~:..:· ·( ~~~~i;:~:i_~h_~:~:~_ :~1_:~~{;_.€-~~;:~:i~~~:tJ~~~~~---~-~i~(~r-~:!:~;::~
\ P-la.cing .~lL.t.he.;..AC.L; ~e1€ments·':orf'"tne''·Zf'ro"e'e'~h~t±n'. 

of~· d. I•k-vh y··j 
All segment attributesAexcept for 6rR_STATUS and DIR_DISK are 

specified by users with write access to the directory and therefore __ • 
! have the security level ~f··me···-pafeni-<lir-ectOr.:Y) but the values of 1 u,.._, Lw... ~'L DIR_STATUS and DIR_DISK a·re a function of system.. -wide activity..~~~ 4-h-•-t"'·"""~.;t::,~, / 

(' t_Ee case of DIR_STATUS it can be c.banged ..to UilTIA~I~ED. bY, en~ 
\.. process that has access to the se,;rraen · ..aJ;,J;,rJbute,..!)l~~t ha~ , ;.1' r/ ~\l.t ' 

eve o 'sys em · 11 A complete explanation of the ~ ~~\'":v 
nature o the D_JB.:":P±&rrttriAAb·ut·e--i-s-r>~d until we discuss the ~"~"..)

/ {- functions tha~e and delete segm:?;~~t the point is that our ' 
110 view of Uectory seg-rnen1smust""l5~-mn-di-Hea. Directories will be fl& t/ /(;!uc1 

W l cons red to be "composite" objects. Host of the data in a ? 
di~ ctory will bel!- tl1e""sec~.:~J.:L~~~J,...,~e 


11 be at a ig -er ~'~The format of the directory is de!'Tii"ed 

within the secur1. y penmeter so there is no problem in determining 

the security level of a particular data item. Since the segment is 


9usystem high" is a security level that consists of the highest 

classification in the system and the union of all special access 

categories. Thus, with respect to the security condition and the 

*-property constraint, a system high subject may gain read access to 

all information in a system (subject only to the access matrix M). 
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the smallest object to which access is controlled by the MMU, we ~~ ,•'.---~-y) 
cannot permit uncertified software direct read access to directory r 

segments. Thus if uncertified software is to have read access to a 
directory it must be via kernel functions that do the reading ~ 
interpretively and are cognizant of the nature of directories. 

Active Segment Table 

The Active Segment Table (AST, see Table II) is a system-wide 
table that fac~litates the main memory sharin~ of segments among 
processes. Every segment that is in the working space (WS) of one or 
more processes or is wired down has·-·anen-tryin-The''A'sT--·~..t'he~..se"g.ment 
~m-rne<:ns-:r-rts"'ast-e7tTA'sr"'·en1ry?TT:-"~-Tilre·--a:···=d i rectory en try, 
an ASTE is composed of a number of fields. AST_TYPE, AST_STATUS, / 
AST_CLASS, AST_CAT, AST_SIZE, and AST_DISK correspond to the 
similarly named fields in a directory entry. At the time that a 
segment is activated these fields in the ASTE are~Q~~ing from 
~ctory entry~ Since an active se~ment may be in the WS or 
more than one process, we may want to know which processes have it in 
their WS. AST_CPL (connected process list) tells us this (read 
access is implied) and AST_HAL (write access list) indicates which 
processes have write access as well. In the initial implementation 
AST_CPL and AST_WAL are bit maps - if bit n of AST_CPL is 1 then 
process# n is on the CPL. Bit 0 of AST_CPL indicates whether or not 
the segment is wired down. 

'tlhen a process removes a segment from its HS, AST_CPL may become 

zero. This event means that the segment can be deactivated, making 

the ASTE free. Rather than deactivate as soon as possible, we choose 

to deactivate as late as possible - when we need the ASTE to activate 

another segment. Segments that can be deactivated (as indicated by a 

zero AST_CPL) are kept on a chain running through AST_AGE_CHAIN. 

AST_AGE indicates whether or not a segment is on the age chain. The 

rationale for this delayed deactivation is discussed when the 

functions that move segments into and out of a process's WS are 

described. 


thus ~o~~~.E£~~e~c:.:~g~~-~r£~·~r6·-~~·~·~·~%~;;~~~-~;~~-!"~[!·~~~d i~o! ~~n:st ~e 

segment into main memory. AST_ADR is the main memory address of the 

segment if ir is swapped in, AST_ADR will be zero if the segment is
0swapped out. Since the (beginning) main memory address of a 

segment will always be on a 256 byte boundary, AST_ADR need not 


10The maln. memory b · . t address zero ls. used f or theglnnlng a e 

internal kernel data base, and thus zero is never a legal address for 

a user segment. 
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Table II 

Format of an Active Segment Table (AST) entry 

an AST entry is accessed by aste#: AST_XXX(aste#) 

AST_TYPE(1) DIRECTORY or DATA 
AST_STATUS( 1) UNINITIALIZED or INITIALIZED 
AST_CLASS( 4) classification 
AST_CAT( 16) cater:<ory set 
AST_SIZE(8) size in blocks 
AST_DISK(24) disk address 
AST_CPL( 16) connected process list 
AST HAL(16) write access list 
AST=AGE_CHAIN( 16) chain of segments eligible for deactivation 
AST_A'GE(1) UNAGED - segment is not on the age chain 

AGED - segment is on the age chain 
AST_ADR( 16) main memory address of segment 
AST_DES_COUNT(16) number of descriptors for se~ment 
AST_SWAP_CHAIN(16) chain of se~ments eligible to be swapped out 
AST_LOCK ( 1 ) LOCKED - segment is not on the swap chain 

UNLOCKED - segment is on the sHap chain 
AST_CHAIN( 16) used by HASH function and for free ASTE chain 

the head of chains are accessed by AST_XXX(O) 

Table III 

Format of the Process Table (PT) 

the PT is accessed by process#: PT_XXX(process#) 

PT_FLAGS(2) READY, BLOCKED, or INACTIVE 
PT_LINK(6) chain of processes blocked on a semaphore 
PT_PS_ADR(16) main memory address (block#) of the PS 
PT_IPC_QUEUE_HEAD(8) head of the IPC queue 
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include the low order (all zero) 8 bits of the address. It is not 
always sufficient to know that a segment is in main memory, as there 
are times when the nunber of descriptors that exist for a se~ment 
must be known - AST_DES_COUNT (descriptor count) tells us this 
information. 

When a process removes a segment from its AS, AST_DES_COUNT may 
go to zero. This event means that the segment has become unlocked 
and can be removed from main memory. As with the deactivation case, 
we choose to postpone this removal as long as possible. Active 
segments that are eligible to be swapped out are kept on a chain 
running through the AST_SHAP_CHAIN field. AST_LOCK indicates whether 
or not a segment is on the swap chain. 

The last field in the AST is AST_CHAIN. There is a function 
whose ~nput is the disk address of a segment and whose output is the 
aste# of the segment if it is active or zero otherwise. This 
function (HASH) uses the AST CHAIN field. This field is also used to 
chain together ASTE's that a;e free. 

The initial implementation provides 256 ASTE's numbered 0 to 
255. aste# 0 is a header - the AST_AGE_CHAIN, ~ST_SWAP_CHAIN, and 
AST_CHAIN (for free ASTE's) chains begin in aste11 0. 

Process Table 

The Process one of the two basic data struct 
used The PT has 
entry for each process, and 
(see Table III). 

PT_FLAGS indicates the execution state of a process - its value 
is READY, BLOCKED, or INACTIVE. When·several processes are blocked 
on the same semaphore, the processes are chained together through the 
PT_LINK field. PT_PS_ADR is the address of a main memory segment 
(the process segment) that contains additional information about the 
process. It will be described shortly. PT_IPC_QUEUE_HEAD is the 
beginning of a chain of interprocess communication messages sent to 
the process. Its value can indicate one of three possible states: 
1) there are messa~es that have been sent and not yet read by the 
process, 2) there are no messages that have been sent to the process 
and not yet read, and 3) the process has become blocked because it 
wants to read another message and none is available. 

In the initial implementation the PT wi~l also have an area for 
saving hardware registers relevant to exeQution in the kernel domain 
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when the process does not have the processor allocated to it. Since 
this area is not relevant to subsequent design details it is not 
shown in Table III. 

Process Segments 

The second basic data structure used by level 1 is the Process J 

Segment (PS) - there is a process segment (main, not virtual, memory 

segment) for each process. Table IV shows the fields of a process . 

segment. 


PS_CURRENT_PROCESS is the number of the process associated with 

the PS. PS_PROCESS_MASK and PS_PROCESS_NOTMASK are used in accessing 

AST_CPL and AST_VlAL. HASK is all zero except for bit n (;.;here n is / 

the process number), NOTMASK is all ones except for a zero at bit n. / - _ 


PS_USE~_ID and PS_PROJECT_ID identify the user (subject) associated)/ '}? 
7
' "/' 


with the process. PS CUR CLASS (current classification) and \----;.r 

PS_CUR_CAT (current categ;-ry set) define the current security level ···-"" 

of the process. PS_TYPE indicates whether or not the process is a 

trusted subject. 


PS_HEt1_QUOTA is the amount of main memory allocated to the 

process for its AS but not currently being used. PS_IPC_QUOTA is the 

number of interprocess communication objects currently available to 
 7the user for receiving messages from other processes. PS_DISK_QUOTA 

is the disk space allocated to the user of the process but not yet 

used. J; <' I · 
!()· ···ic~ . 

;<[/L.,e_.tl. 
The remainder of the PS is dedicated to arrays used for defining 


the process's address space. PS SDR (segmentation descP~pt_or 

register) and PS_SAR (segmentation address regisferT-~are' t·w~·arrays 

that hold tne-·ns-·cre·sc·rrptor·s··T~Tn~siiper.visor·· do-rna in, -8 .in user 

Ctoi'!'rarrn-·rnat'"'Eir·e·~availaoTe': ' Tl:fe''"third array' p§' SEG~ Ts used'""for 
~tlla.'"p1Ji~--segm€§"nt'numbers "(segil 's - process loca 1 ;egment names) into 

aste# 's (system Hide segment names). Hhen~a- pr.oce~s·e·h·as ::thJ;;·,~Ke.~.a~l~ 
!lf&V~~.;:a:;:S:~gmimt:'";int:o'·:1.·ts-··Hs·;--t-he--ker:l1!?J;c~returns a 9..~gtt...t:;.l)ic~-~-kt,l~~ . .;_,, 0 (~,..... 
lff.t':~c/\ies:s::~uq~~q._klgntJ.y.~uses -to identify the s_e~r:_:~Q..\i. The segment has I v vt·t/ 
an aste# because it must be active, but the aste# cannot be returned, ~S .In ? 

to the user because its value is a function of system wide activi ~-
makin it necessary to c assl y a s a sys em high. Thus, PS_SEG 

s just a mechanlsm s lnto aste#'s. PS_SEG is 
provided by level 1 to level 2 as a convenience, as active segments 
are not meaningful at level 1 - its operation is independent of the 
contents of PS_SEG. Each element of PS_SEG_INUSE, the fourth and 
final array, indicates whether or not the corresponding element in 
PS_SEG is currently in use. 
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Memory Block Table 

tif...Jf.Qleiiiory ·B l oc"K·:Tab·le-)l'1.F;l.I·t:::t~zg:;;.te:V~~~\·Q;~:s 1::1.":U.9.t·~n:-..~:.::\J.~t;,9._:;:tJib 
~ca:.te.::~h.e.~$.t.at.e _g_L,ma,in. m~mory;t A block is the smallest size 
segment - the Ml-iU suppol'ts 64 byte blocks but the initial 
implementation uses 256 byte blocks. Contiguous blocks can be 
concatenated to form main memory se~ments of any multiple block size. 
A:::mainL.memoriy'·s~e·gm~n't~:::.rs.~·eitJier..£·~f.i'!ee:,:oi''-'a1:1.:0c'at·e'd:<ct-epe:nutng ··?Jl 
wh:ethep.:.,or..;;,no.t ... a---v:icr.huai.,memo:r•y1"segment'·Tt:f·~~-b:.ouncF'·to;:·it!. There is an 
entry in the MBT for each block (see Table V) consisting of several 
fields. If a block is the first block in a segr.1ent HBT_FLAGS is 
either FREE or ALLOCATED, otherwise it is CONCATENATED. The rest of 
the fields are not meaningful for CONCATENATED blocks. MBT_SIZE is 
the number of blocks in the segment. If a block is FREE, r·lBT_CHAIN 
is the block# of the next segment in the free chain or zero if this 
is the .end of the chain. (A blockil is the address of the first byte 
in a block with the 8 low order 0 bits removed.) If a block is 
ALLOCATED, HBT_ASTE is the astefl of the virtual memory segment bound 
to it. MBT_CHANGE indicates if the segment has been modified. This 
information can be obtained from hardHare conditions - a bit in each ~----­
segmentation register indicates if the segment "described" by the 
register has been stored into (via an access through that 
segmentation re~ister). 

SPECIFICATION OF THE KERNEL 

f:'1~a:gb'i3,1~"::'6C ¢'E!ftifi.c!a tTo:nr:;±'s.•:A;n:zpr-ove'"'t'fi;=ft?'· t'h e- :·betf<~fY.i'br·"::o f ~<l 

§.'ys·te::: · ;:;or:respc_nds to the beh:<vi or. oL.a m6(lel":'~':'~-The.:~mO'deF1 n'bim 
e._i:ist be pr-oved to exh::.bi t a cer·tain desired:behavio~~.:~::_~io~:...Our.-.ca~ 
~h£,t.....t...'le-ab.s.r.ract .. systemremains in. a--secur-ec.&Eate:~ The final 
representation of the system's security kernel will be as binary ones 
and zeros in the computer's memory. Intermediate representations of 
the security kernel will be used to bridge the vast ~ap between the 
abstract ~odel and the binary ones and zer91 of executable code, thus 
aiding the task of proving correspondence. One form of 
intermediate representation is the higher level language program 
listings of the kernel functions. This representation, however, will 
contain many details that are specific to particular implementation 
decisions and to the language used. What is needed is another 
representation that describes the design of the kernel in a manner 
that is independent of implementation and language considerations. 
We call this representation the design specification and its purpose 
is to bridge the gap between the model and implementation 
representations. The form of the design specification used here is 

11 our certification methodology is discussed in [Bell & Burke]. 
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Table IV 

Format of a Process Segment (PS) 

Process Segments are accessed by process#: PS_XXX(process#) 

PS_CURRENT_PROCESS( 8) .process# 
PS_PROCESS_MASK(16) bit mask 
PS_PROCESS_NOTHASK ( 16) bit mask 
PS_USER_ID(14) user identification 
PS_PROJECT_ID(8) project identification 
PS_TYPE ( 1) TRUSTED Ot' UNTRUSTED 
PS_CUR_CLASS(4) current classification 
PS CUR CAT(16) current category set 
PS=HEN=QUOTA(8) unused main memory quota 
PS_D1SK_QUOTA(16) unused disk space quota 
PS IPC QUOTA(8) unused ipc element quota J 

PS=SDRC16 x 16 array) save area for segmentation registers 
PS_SAR(16 x 16 array) save area for segmentation registersvl 
PS_SEG(32 x 15 array) definition of process's address space (VIS)/· 
PS_S_EG_INUSE(32 x 1 array) TRUE or FALSE 

Table V 

Format of the Memory Block Table (HBT) 

the HBT is accessed by block#: MBT_XXX(blockfl) 

MBT_FLAGS ( 2) FREE, ALLOCATED, or CONCATENATED 
MBT_SIZE(8) size of the area in blocks 
HBT_CHAIN( 14) chain of FREE blocks 
HBT_ASTE# ( 13) aste# of the virtual memory segment 

in the block 
MBT_CHANGE( 1) CHANGED or UNCHANGED 
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derived from a 'form suggested in [Parnas] and used in [Price]. 
Figure 7 shows the validation chain between the various 
representations. 

A "Parnas" specification consists of tHo distinct types of 

functions: 0-functions and V-functions. 0-functions (operate) are 

functions that_~_the state of ~s~em to ~h~ng~. V-functions 

(value) ~turn· the va!UeS:~lfafe vari?~helr only effect is 

the passage of time. The specification of each function includes: 

1) the name of the function; 2) a range for possible values of the 

function, if it is a V-function; 3) an indication of the initial 

value, possibly undefined, for V-functions; 4) a list of parameters 

and their domain; and 5) an indication of the effect of the function 

on the values of other functions, for 0-functions. 


The effect section of each function consists of specification 

statements. These statements denote that upon completion of the 

function certain predicates Hill be true. The ordering of the 

specification statements is not significant and some of the 

predicates are conditional. References to V-functions enclosed in 

single quotes ( ') refer to the value of the V-function at the ti~e of 

call of the 0-function; references not enclosed i~ quotes refer to 

the value of the V-function immediately after completion of the 

defined 0-function. 


Parnas' intention for specification is to ~ive an external view 
of functions. All of the information needed ~~juse 
functions and to implement them must be given, and nothin~ more. 
Also, s pecific?tions.. must be sUfficiently form.?J.. so. that their':7 

~cmpleteness ,- con.sistency and otryer desirable. pro~_eEF-~.e)~"J.h!},;.. our__ ,caseJ", )l 
-c·orrectness) -:?;:'be--determined. }This ·latter requirement seems t .....-··'---· 

•' ,,, .. ' ··-_.. .. . -~--~- .~-·-··-· ••._,_, ~-...-<4..___, ~..--· 

rule out the-u·i:5e--~6T-"naETffal language specifications. Nevertheless, 

without prose descriptions of the intended interpretation, 

~ifica t':_i0[1__§__ ~an__~£1.9J>~.l~ssly confusing. ~ 

----~~-~----·-· ·-·-·-,·----------··--··--'""""'"".. ···-------·-··­

Although it consists of 0 and V functions, the kernel 

specification that follows is not a Parnas specification since much 

more than the minimum information needed to use or implement the 

kernel is given. Also, the ordering of the effect of 0-functions is 

significant. The mechanisms that support the design are included in 

the specification because their correctness must be proven. To make 

this additional information more comprehensible to the reader, the 

specification is structured in much the same way that software is 
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structured by nested procedures - a function is defined in terms of 
othe1 functions, which in turn are defined with more functions,

2etc. 

Specification Conventions 

A number of conventions are used in the kernel specification to 

enhance its clarity and reduce its bulk. One convention is to use 

the data structures defined in the previous subsection. The term 

"DIR_DISK(aste#, entry#)", for example, appears in a number of 

predicates in the specifications of various functions. A 

specification of a V-function DIR_DISK might be: 


Function: DIR_DISK 

possible values: a disk address 

Parameters: DIR_DISK(aste#, entry#) 


Since the value of DIR_DISK is set in some functions and used in 
others, the body of the DIR_DISK specification is empty. Given the 
definition of the data structures, we do not feel that the 
specifications of the V-functions that correspond to the data 
structure elements are necessary for the purposes of this paBer. .. . , 

pA- \'­

12The initial work in certifying the kernel indicates that ~ne _/_,/­
o'" 

nesting of 0-functions hinders the proof process. This proble~is 
being corrected by replacing each "call" of an 0-function v;it:tf the 
body of the called 0-function. The copying works becau~e the 
specification contains no recursive 0-function callsk-"Recursion in 
the V-function definitions is being eliminated by the use of 
~uantifiers. A revised specification for the kernel will be 
..... _ .... -------- .. -- I
published with the proofs. 7 

The use of a structured specification [Neumann, et al] allows 

the description of hierarchical design mechanisms while avoiding l 

nested 0-functions. A complete specification is written for each 


___le~ and then the _Y-:functions at each level (except the lowest) are 

expressed in terms of lower level V-fUilQ_tion_;s. This V-function 

mapping suggests certain implementa-t.":C;-n mechanisms, but these 

mechanisms are not made explicit until 0-functions are (abstractly) 

implemented with lower level 0-functions. Thus, when a high level 

0-function changes the value of a V-function, a call to the lower 

level 0-functions that maintain the corresponding lower level 

V-functions is implied. The specification prover can ig:nore these ?J 

implicit calls because, as a specification, each level is logically' 

cQID~by its~lf. The impo_r_~J,....P-2l!l~_his discussion is that 


. ~ror a giv~rgn~ha.~~n-·tne model there are many pos~ 
~z.:-rec__!:._§.Q..~C..lfl.ca..t.l-Gn-s ·---------------------------------~ 

. ! \.. \ . -< ··o' 
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These V-function specifications can be easily generated if the proof 
requires them. 

Another convention is the use of mnemonic names for function 
parameters and internal variables. Table VI shows the intended 
interpretation of these names. TCP (The Current Process) is an 
internal kernel variable that indicates which process is currently 
bound to the CPU. It is part of the mechanism for implementing a 
distributed kernel and prevents users of the kernel from forging 
their identity. 

Critical Sections 

The specification assumes that the effect of a-functions is 
instantaneous. In the initial implementation this assumption is 
realiz~d by making the entire kernel a single critical section. On 
entry to the kernel a p--:cs--perfotni.ed on a special semaphore (the 
kernel semaphore), and the corresponding Vis not executed until the 
kernel function is complete, unless the function itself is a P on a 
segment semaphore that causes the process to become blocked. In this 
case the kernel semaphore must be released (by a V) before the 
processor is deallocated from the blocked process and reallocated to 
another process, or deadlock could result. 

This approach to providing determinancy is used because its 
correctness is obvious, and for sin~le processor systems with one I/0 
device supporting the virtual memory, it is reasonably efficient. 
The only time that a blocked process has the kernel semaphore locked 
is when the kernel is waiting for internal (segment) I/0 that was 
initiated on the process's behalf to complete. This situation will 
cause system inefficiency only if there are other processes blocked 
waiting to get into the kernel and there are no ready processes. If 
the device is fast (drum or fixed head disk), the inefficiency should 
be minimal. 

If the system has a slow virtual memory device (a moving head 
disk, for example) and/or more than one virtual memory device, the· 
single critical section approach may cause serious inefficiencies. 
In the first case, the time that a blocked process has the kernel 
semaphore locked will increase substantially; and in the second, it 
will not be possible to run more than one device at a time. To avoid 
these inefficiencies multiple critical sections that depend upon the 
data observed and modified by the various kernel functions must be 
introduced and represented in the specification. 

f. 
d' 
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Table VI 

Intended Interpretations 

external kernel function parameters 

seg# 	 segment number of a se~~ent in a process's 
address space (WS) 

entry# 	 identification of an entry within a directory 
class 	 a classification 
cat a category set 
type DATA or DIRECTORY 
size size of a segment in blocks 
mode 	 WRITE, READ, or NO 
user_id user identification 
proj"ect_id project identification 
rer:r.tf identification of a segmentation register 
process# identification of a process 
block# 	 main memory address of a segment 

internal kernel "variables" 

TCP 	 the current process 
aste/t 	 pointer to an AST entry 
daste# 	 aste# for a segment known to be a directory 
acle# 	 pointer to an ACL element 
smfr/1 	 pointer to a semaphore 
i pc e# 	 pointer to an IPC element 
uid 	 unique identifier - a disk address 
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The Kernel Gate and Argument Passing 

Figure 8 shows the specification of the function KERNEL. This 
function is the sole user entry point (or gate) into the kernel and 
the functions that it directly invokes are the "user callable" kernel 
functions. KERNEL uses PCHECK (Figure 9) to verify that the 
parameters given by the user are within the acceptable ran~es. 
KERNEL and PCHECK also check that the seg# parameter (if required) 
specifies a segment that is currently in the process's WS, and 
translates the seg# into an aste#. The functions of the form 
"XXX_PARM" used by PCHECK indicate the parameters required by each of 
the user callable kernel functions. 

Many of the kernel functions set the value of a per-process RC 
(return code) object. The security attributes of the RC object are 
equal tp those of the process. In general, kernel functions set RC 
to indicate whether or not they were called correctly. A few 
functions use RC to return additional information to the user. Each 
process can always observe its own (and only its) RC object. 

In the implementation, reserved locations in the user's stack 
segment are used for argument passing. Before calling the kernel the 
user process places the kernel parameters (including the code for the 
particular kernel function it wishes to invoke) in fixed locations in 
its stack. On entry, the kernel moves the user's stack segment into 
its own address space, copies the parameters into its own private 
(kernel) stack segment, and then performs the validity checkin~ on 
the parameters. The RC object is also implemented as a reserved 
location in the user's stack, thus making it available to the user 
for inspection when the kernel returns. 

The rest of the specification is given in the following 
subsections. 

DIRECTORY FUNCTIONS 

A set of functions is provided for manipulating the attributes 
of segments. These functions change the security state of the system 
by creating and deleting segments and adding and deletin~ elements 
to/from a se~ment's access control list (ACL). The common security 
requirement for all functions that modify segment attributes is that 
the modifying process currently have write access to the.segment's 
parent directory. A function is also provided to set the RC object 
equal to the attributes of a segment. 
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Function: KERNEL 

Parameters: KERNEL( function_code, s"eg#, entry#, class, cat, type, 


size, mode, user_id, project_id, reg#, process#, block#) 
Effect: 
IF (FUNCTION_CODE_MIN s_ function_code ~ FUNCTION_CODE_MAX) & 

PCHECK(function_code, seg#, entry#, class, cat, type, size, 
mode, user_id,. project_id, reg#, process#, block#); 

THEN: Let aste# = PS_SEG(TCP, seg#); 
CASE OF function_code: 

1: CREATE(TCP, aste#, entry#, class, cat, type, size); 
2: DELETE(TCP, aste#, entry#); 
3: GIVE(TCP, aste#, entry#, mode, user_id, project_id); 
4: RESCIND(TCP, aste#, entry#, user_id, project_id); 
5: DIRREAD(TCP, aste#, entry#); 
6: GETW(TCP, aste#, entry#); 
7: GETR(TCP, aste#, entry#); 
8: RELEASE(TCP, aste#, seg#); 
9: ENABLE(TCP, aste#, reg#); 
10: DISABLE(TCP, reg#); 
11: KP(asteff); 
12: KV(aste#); 
13: IPCRCV; 
14: IPCSEi~D( process#, message, USER_DOMAIN); 
15: CONCAT(block#); 
16: SPLIT(block#, size); 
17: KSWAPOUT(block#); 


END; 

ELSE: RC(TCP) = NO; 

END; 

Figure 8. KERNEL FunGtion 
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Creation and Deletion of Segments 

The CREATE function (Figure 10) creates a se~ment inferior to a 
specified directory segment. The parameters of CREATE are the seg# 
of the intended parent, the entry# of a free directory entry in the 
intended parent, and attributes for the segment to be created. These 
attributes are the security level (classification and category set), 
a type (DIRECTORY or DATA), and a size. 

In addition to enforcing the security requirement that the 
process currently have write access to the intended parent segment, 
CREATE also enforces the security requirement of compatlbili ty and 
implementation requirements. The implementation requirements are 
that segments can only be created inferior to DIRECTORY segments, 
that the specified entry# identify an available directory entry, that 
the size is one of the permitted sizes, and finally that the process 
has sufficient disk quota to allow disk space to be allocated to the 
segment. 

The motivation for most of the implementation requirenJents is 
straightforward. The requirement that the user specify an available 
directory entry is somewhat arbitrary - it would be slightly more 
complex for the kernel to search for a free entry. This approach 
allows users to establish certain conventions for the use of 
directory entries. 13 The decision to provide fixed sized segments 
has already been discussed. 

The use of the disk quota mechanism insures us that the 
inability of a process to create a segment because of a lack of disk 
space is strictly a function of that process's behavior, and not the 
behavior of some other process. If the quota mechanism were not used 
all processes would have disk space allocated to them from a common 
pool, and an uncontrolled communication path would exist between 
processes. One process could use up all disk space by creatin~ 
segments and then modulate the (ima~Zinary) bit that indicates whether 
or not the disk is full by deleting and recreating a segment. 
Another process (at a lower security level) could read this bit by 
attempting to create a segment and then seeing if the operation was 
successful. In this design the success or failure of CREATE is 
indicated by the value of the RC object, but removing RC from the 
specification is not sufficient to hide the effect of CREATE from the 
user. The user can determine if the segment was actually created by 

13For example, the segment at entry/! 1 might alHays contain the 
symbolic names of the other segments inferior to the directory, and 
the segment at entry# 2 might be an overflow directory. The file 
system currently being implemented uses conventions similar to these. 
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Function: PCHECK 
possible values: TRUE or FALSE 
Parameters: PCHECK(function_code, seg/1, entry#, class, cat, type, 

size, mode, user_id, project_id, regll, process#, block#) 
Value: 
IF (not SEG#_PARH(function_code) l 

((SEG#_MIN ~ seg/1 ~ SEG#_MAX) & PS_SEG_INUSE(TCP, seg#))) & 
(not ENTRY/f_PARM(function_code) l 

(ENTRYff_t1IN ~ entry# ~ ENTRYII_MAX)) & 
(not CLASS_PA Ri1( function_code) l 

(CLASS_HIN ~ class ~ CLASS_HAX)) & 
(not CAT_PARi'·1(function_code) i 

(catS:. CATEGORY_SET)) & 
(not TY PE_PA Rt1( function_code) : 

((type = DIRECTORY) l (type = DATA))) & 
(not· SIZE_PARt1( function_code) i 

(SIZE_HIN ~ size ~ SIZE_MAX)) & 
(not MODE_PARH(function_code) : 

((mode= WRITE) i (mode= READ) l (mode= NO))) & 
(not USER_ID_PARM(function_code) l 

(USER_ID_MIN ~ user_id ~ USER_ID_MAX)) & 
(not PROJECT_ID_PARtv!( function_code) l 

(PROJECT_ID_(.1IN ~ project_id ~ PROJECT_ID_HAX)) & 
(not REG#_PARH(function_code) l 

(REG#_MIN ~reg#~ REGII_MAX)) & 
(not PROCESSII_PARM(function_code) l 

(PROCESS#_MIN S process# ~ PROCESSfi_MAX)) & 
(not BLOCK/I_PARM(function_code) l 

(BLOCK/I_MIN ~block#~ BLOCK/I_MAX)); 

THEN: TRUE; 

ELSE: FALSE; 


END; 

Figure 9. PCHECK Function 
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Function: CREATE 

Parameters: CREATE(process#, aste#, entry#, class, cat, type, size) 

Effect: 

IF not AST_WAL(aste#, process#) l 


(class< AST CLASS(aste#)) l 

(oat.:/?- AST_CAT(aste/J)) l 

(AST TYPE(aste#) i DIRECTORY) l 

('DIR_SIZE'(aste#, entry#) i 0) 

(size ( SIZE_SET) l 

((type= DIRECTORY) & (size i DIRECTORY_SIZE)) 

(size> 'Ps_DISK_QUOTA'(process#, size)); 

THEN: RC(process#) = NO; 

ELSE: DIR_TYPE(aste#, entry#) = type; 


DIR_STATUS(aste#, entry#) = UNINITIALIZED; 

DIR_CLASS(aste#, entry#) = class; 

DIR_CAT(aste#, entry/f) = cat; 

DIR_SIZE(aste#, entry#) = size; 

DISK_ALLOC(size); 

DIR_DISK(aste#, entry#) = NEXT_DISK_ADDRESS; 

DIR_ACL_HEAD(aste#, entry#) = 0; 

PS_DISK_QUOTA(process#, size) = 


'ps_DISK_QUOTA'(process#, size) - size; 
ANCESTOR(NEXT_DISK_ADDRESS, AST_DISK(aste#)) =TRUE; 
(Vuid)(ANCESTOR(AST_DISK(aste#), uid)); 

ANCESTOR(NEXT_DISK_ADDRESS, uid) = TRUE; 

END; 

UID_SIZE(NEXT_DISK_ADDRESS) = size; 

RC(process#) = YES; 


END; 


Function: DISK_ALLOC 

Parameters: DISK_ALLOC(size) 

Effect: 

C3·k)(('BIT_MAP'(size, k) = 0) & 


(BIT_NAP(size, k) = 1) & 

(NEXT_DISK_ADDRESS = BASE(size) + k*size)); 


Function: ANCESTOR 
possible values: TRUE or FALSE 
initial value: FALSE 
Parameters: ANCESTOR(uid1, uid2) 

Function: UID_SIZE 
possible values: size 
Parameters: UID_SIZE(uid) 

Figure 10. CREATE, DIS~ALLOC, ANCESTOR and UID SIZE Functions 
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trying to read and write it. 

The communication path just described is based on what we call a 
system-wide variable. A system-wide variable can occur any time 
physical resources must be shared among processes. In this case the 
quota mechanism eliminates the communication path - its effect is to 
partitio9 the physical disk into a virtual disk for each4process. It is necessary, of course, for the sum of the virtual 
disks to be less than or equal to the physical disk. It is 
interesting to note that while the quota mechanism is necessary for 
security reasons, one would want something like it even if security 
were not required. The ability of one user to monopolize disk space 
at the expense of others is not desirable in any environment. 

The effect of CREATE if all requirements are satisfied is to 
create.a segment by putting attributes into the directory entry. 
Most of the attributes are directly specified by the user. The 
status of the segment is set to UNINITIALIZED, the ACL is set to 
empty, and space on the disk is allocated. 

The effect statements in CREATE that set the value of the 
V-function's ANCESTOR and UID_SIZE require careful explanation. 
Briefly, these V-functions are a specification mechanism that 
"remember" the shape of the tree and the size of each segr.ient. 
Although this information is embedded in the directory structure, we 
will see that having it in this form simplifies the specification of 
the DELETE function. 

The two arguments to ANCESTOR are the unique identifiers (disk 
addresses) of two segments. ANCESTOR is true if the second segment 
is an ancestor of the first. The ancestors of a segment are its 
parent directory, its parent's parent, and so forth. Thus, the root 
is an ancestor of every se~ment in the tree (except itself). 
UID_SIZE remembers the size of a segment by uid. For comi)leteness, 
Figure 10 gives specifications of ANCESTOR and UID_SIZE. The bodies 
of their specifications are empty because their values are set 
directly by 0-functions. 

The effect of DISK_ALLOC is to allocate space on the disk as 
segments are created and to set the value of NEXT_DISK_ADDRESS to the 
address of the space allocated. The disk is partitioned into a 
region for each segment size, and each region is represented by a bit 
string. There is one bit for each disk area that can be assigned to 
a segment. The bit indicates if the area is free or assigned. 

Actually, a disk quota per security level is sufficient, and this 
result generalizes for all system wide variables. 
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DISK_ALLOC scans the appro{1riate bit string looking for a bit 
indicating a free area, sets the bit to indicate an assigned area, 
and translates the bit address to a disk address. The quota 
mechanism guarantees that DISK_ALLOC will succeed in finding a free 
bit. If each bit string is partitioned into sections for each 
process based on the quotas, then the values returned by DISK_ALLOC 
are a function of each process's behavior, but if the bit strings are 
not divided into sections then each value returned by DISK_ALLOC is a 
function of the behavior of all processes. If the latter case holds 
then the security level of DIR_DISK in each directory entry is 
"system high". 

Now that the explanation of CREATE is complete we pause to make 
an observation - the notion of levels of abstraction is missing from 
the create specification. Levels of abstraction have not been 
abandoned, rather, the specification has collapsed the levels of 
abstraction to make the specification more compact. Conceptually, 
there is still a separation among the abstractions that create 
processes, create segments, and enforce a security policy. Figure 11 
shows an alternative specification of create. The function CREATE 
enforces the security policy, and CREATE2 enforces implementation 
constraints and creates the se~ments. Although it is passed the 
security attributes of the segment to be created, the effect of 
CREATE2 is independent of their value. For the renainin~ kernel. 
functions the levels of abstraction will not be made explicit; we 
hope that the distinction between those parts of the specification 
that enforce the security policy and those that do not will be 
obvious to the reader. 

Figures 12 and 13 give the specifications of the DELETE function 
and its immediate support functions. The user identifies the segment 
to be deleted by giving the seg# of its parent directory and the 
entry# of the segment. The only requirements are that the user 
currently have write access to the parent directory (security) and 
the entry specified is not a free entry (implementation). 

In deleting a se~ment several operations must be performed: 
1) the entry must be cleaned up so it can be reused; 2) if the 
segment is active it must be removed from the address space of all 
processes that currently have access to it and be deactivated; 3) the 
disk space allocated to the segment must be released; and 4) if the 
segment is a directory all of the se~ments inferior to it must be 
deleted. While the kernel would be simpler if only empty directory 
(or data) segments were accepted by DELETE, this approach cannot be 
employed because a user may be ~ermitted to delete a directory but 
not know if it is empty or not. Consider a secret directory inferior 
to a confidential directory. If a confidential user has write access 
to the confidential directory, he can delete the secret directory, 
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Function: CREATE 

Parameters: CREATE(process#, aste#, entry#, class, cat, type, size) 

Effect: 

IF not AST_HAL(aste#, process#) 


(class < AST CLASS(aste#)) i 

(cat.;/: AST_CAT(astefl)); 

THEN: CREATE2(process#,-aste#, entry#, class, cat, type, size); 

ELSE: RC(TCP) = NO; ,e.t-:. u.,~~\ ~-

END; 


Function: CREATE2 

Parameters: CREATE2(process#, aste#, class, cat, type, size) 

Effect: 

IF (AST_TYPE(aste/t) ~ DIRECTORY) l 


( 'DIR_SIZE' (aste#, entr:;fl) i 0) 

(size ( SIZE_SET) I 

((type= DIRECTORY) & (size i DIRECTORY_SIZE)) 

(size> 'PS_DISK_QUOTA'(process#, size)); 

THEN: RC(process#) = NO; 

ELSE: DIR_TYPE(aste#, entry#) = type; 


DIR_STATUS(aste#, entry#) = UNINITIALIZED; 

DIR_CLASS(aste#, entry#) = class; 

DIR_CAT(astc~, e~try#) = cat; 

DIR_SIZE(aste#, entry#) = size; 

DISK_ALLOC(size); 

DIR_DISK (asteif, entry/f) :: NEXT_DISK_ADDRESS; 

DIR_ACL_HEAD(aste#, entry#) = 0; 

PS_DISK_QUOTA(process#, size) = 


'PS_DISK_QUOTA'(process#, size) - size; 
ANCESTOR(NEXT_DISK_ADDRESS, AST_DISK(aste#)) =TRUE; 
(¥uid)(ANCESTOR(AST_DISK(aste#), uid)); 

ANCESTOR(NEXT_DISK_ADDRESS, uid) = TRUE; 

END; 

UID_SIZE(NEXT_DISK_ADDRESS) = size; 

RC(process#) = YES; 


END; 

Figure 11. CREATE and CRFATE2 Functions 
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Function: DELETE 

Parameters: DELETE(process#, aste#, entry#) 

Effect: 

IF not AST_WAL(aste#, process#) l 


(AST TYPE(aste#) i DIRECTORY) l 

( 'DIR_SIZE'(aste#, entry#) = 0); 

THEN: RC(process#) = NO; 

ELSE: Let uid = DIR_DISK(aste#, entry#); 


IF 'DIR_ACL_HEAD'(aste#, entry#) i 0; 

THEN: Let acle# = 


FINDEND(aste#, 'DIR_ACL_HEAD'(aste#, entry#); 
ACL_CHAIN(aste#, acle#) = 'ACL_CHAIN'(aste#, 0); 
ACL_CHAIN(aste#, 0) = 'DIR_ACL_HEAD'(aste#, entry#); 

END; 

DIR_SIZE(aste#, entry#) = 0; 

DELETESEG(uid); 

IF DIR_TYPE(aste#, entry#) = DIRECTORY; 


THEN: (¥duid)('ANCESTOR'(duid, uid)); 
DELETESEG(duid); 


END; 

RC(process#) = YES; 


END; 

Figure 12. DELETE Function 
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Function: DELETESEG 

Parameters: DELETESEG(uid) 

Effect: 

Let aste# = 'HASH'(uid); 

IF as tell i 0; 


THEN: 
(¥process#) (PROCESS#_MIN .5_ process# .5_ PROCESS#_MAX); 

IF 	 (PT_FLAGS(process#) i INACTIVE) & 
'AST_CPL'(aste#, process#); 
THEN: 

(V:seg#)(SEG#_MIN .5_ seg# .5_ SEG#_MAX); 
IF ('Ps_SEG'(process#, seg#) =aste#); 

THEN: RELEASE(process#, aste#, seg#); 
END; 

END; 
END; 


END; 

DEACTIVATE(uid); 


END; 

DISK_FREE(uid, UID_SIZE(uid)); 

(Vpuid)('ANCESTOR'(uid, puid)); 


ANCESTOR(uid, puid) = FALSE; 
END; 

Function: DISK_FREE 

Parameters: DISK_FREE(disk_address, size) 

Effect: 

Let k = ((disk_address- BASE(size))/size); 

BIT_MAP(size, k) = 0; 


Figure 13. DELETESEG and DISK FREE Functions 
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but by virtue of the relative security levels he may not know what is 
in the secret directory, and the success or failure of a delete 
conditioned on directory empty would tell him. 

Operation 1) consists of removing all of the ACL elements from 
the entry and putting them on the parent directory's free ACL element 
chain, and marking the entry free by setting DIR_SIZE to 0. This 
operation is performed in DELETE; 2) and 3) are done in DELETESEG. 
DELETE also determines if the segment being deleted is a directory, 
and if so, determines all of its inferiors with the ANCESTOR function 
and invokes DELETESEG for each one. In deleting an inferior it is 
not necessary to clean up its entry (operation 1), because its parent 
is always being deleted. 

The ANCESTOR function is a mechanism that allows the 
specification to easily identify all of the segments in a sub-tree. 
The implementation does not need the ANCESTOR function (or the 
UID_SIZE function) because it can find all of the segments in a 
sub-tree by performing a tree-walk. 

DISK_FREE, the inve.rse of DISK_ALLOC, is passed the disk addt~ess 
of a segment and the size of the segment. It translates the disk 
address into a bit address and sets the bit in the appropriate bit 
string to indicate that the disk area previously allocated to the 
se~ment is now free. Note that the user's disk quota is not credited 
in the delete function. When a user deletes a sub-hierarchy he 
cannot be credited with all of the disk space freed because he may 
not be entitled to know the size of the sub-hierarchy. At least two 
implementation schemes are possible: 1) as a segment is deleted the 
quota of the user that created the segment can be credited; or 
2) periodically, the entire hierarchy can be inspected and the quotas 
of users can be adjusted to reflect any deletions that have occurred 
during the previous period. In either case, we would want a segment 
attribute to identify the user who created the segment. 

Giving and Rescinding Access 

Functions are provided for glVlng and rescinding access 
permissions (modifying M). Actually, these functions' names are 
deQeptive. The GIVE function adds an ACL element to a segment's ACL 
chain and RESCIND removes an ACL element. Since an ACL element can 
contain the NO access mode, the "GIVE'' function can remove access 
rights from a user. 

The GIVE function (Fi~ure 14) adds an ACL element (mode, 
user_id, project_id) to the directory entry (se~#, entry#) of some 
segment. It requires that the user currently have write access to 
the directory, that the entry is not free, that an ACL element with 
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Function: GIVE 

Parameters: GIVE(process#, aste#, entry#, mode, user_id, project_id) 

Effect: 

IF not AST_WAL(aste#, process#) : 


(AST_TYPE(aste#) i DIRECTORY) l 

(DIR_SIZE(aste#, entry#) = 0) l 

DUPACL(aste#, 'DIR_ACL_HEAD'(aste#, entry#), user_id, project_id) 

('ACL_CHAIN'(astefl, 0) = 0); 

THEN: RC(process#) = NO; 

ELSE: Let acle# = 'ACL_CHAIN'(aste#, 0); 


ACL_CHAIN(aste#, 0) = 'ACL_CHAIN'(aste#, acle#); 
Let position= FACLPOS(aste#, 'DIR_ACL_HEAD'(aste#, entry#), 

user_id, project_id); 
IF position = 0; 

THEN: ACL_CHAIN(aste#, acle#) = 
'DIR_ACL_HEAD'(aste#, entry#); 

DIR_ACL_HEAD(aste#, entry#) = aclef.!; 
ELSE: ACL_CHAIN(aste#, aclefl) = 'ACL_CHAIN.(aste#, position); 

ACL_CHAIN(aste#, position) = acle#; 

END; 

ACL_USER(aste#, aclefl) = user_id; 

ACL_PROJECT(aste#, acle#) = project_id; 

ACL_MODE(astetfo, acle/f) =mode; 

SOADD(aste#, entry#); 

RC(process#) = YES; 


END; 

Figure 14. GIVE Function 
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the same (user_id, project_id) is not already on the ACL (this check 
is performed by DUPACL), and that there is a free ACL ele~ent to use 
for this request. If all constraints are satisfied then the effect 
is to allocate a free ACL element, find the correct position for it 
in the ACL chain, put it there, fill it in as specified by the user, 
and invoke SOADD. The function of SOADD will be explained shortly. 

The specifications of DUPACL and FACLPOS are given later in this 
subsection. FA6LPOS finds the correct position for a new ACL element 
by using the rules discussed in the subsection on data str~.:ctures ­
ACL elements v1ith a more specific (user_id, project_id) go before ACL 
elements with a more general (user_id, project_id). 

The RESCIND function (Figure 15) is the inverse of give - it 
removes an ACL element from the ACL of a directory entry. Rescind 
requires that the user currently have write access to the directory, 
that the specified entry is in use, and that the specified ACL 
element is currently on the ACL. The function's effect is to remove 
the ACL element fro~ the entry's ACL, add it to the directory's free 
ACL element chain, and invoke SOADD. FINDACLE returns the acle# of 
an ACL element, and fiNDPACLE returns the acle# of the previous ACL 
element. These functions will be specified shortly. 

Directory Suooort Functions 

There are a nu~ber of functions to support the nanipulation of 
ACL chains. rigure 16 ?ives the specifications of DUPACL and 
FACLPOS. DUPACL indicates whether or not a given ACL element 
(independent of the mode) is on an ACL chain. FACLPOS finds the 
correct place in an ACL chain to place a new element based on rules 
previously discussed. It employs FI!JDEND to find the last ACL 
element in a chain, and fiNDUSER to find the last ACL element in a 
chain that does not have a user_id of ALL_USERS. Figure 17 gives the 
specifications of FINDEND and FINDUSER, as well as FINDACLE and 
FINDPACLE. FINDACLE finds the acle# of a specified ACL element, and 
FINDPACLE the previous acle# in the chain. 

The specification of SOADD (search out and destroy de5criptors) 
is given in Figure 18. whenever the ACL of a segment chan~es it is 
necessary to insure that any process that has the segment in its WS 
still has access rights. If in fact a process has lost its access 
rights because of the changed ACL, the segment must be removed from 
its WS. SOADD performs this function. 

If the segment is not active it cannot be in the WS of any 
process. Otherwise, for each process on the segment's connected 
process list SOADD determines the process's ·mode of access, 
re-searches the ACL using DSEARCH, and if the search fails removes 
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Function: RESCIND 

Parameters: RESCIND(process/1, astefl, entry#, user_id, project_id) 

Effect: 

IF not AST_WAL(aste#, process#) l 


(AST_TYPE(aste/1) i DIRECTORY) l 

(DIR_SIZE(aste/1, entry#) = 0) l 

not DUPACL(aste/1, 'DIR_ACL_HEAD' (as tell, entry#), user_id, 


project_id); 
THEN: RC(process#) = NO; 
ELSE: Let acle# = FINDACLE(asteff, 'DIR_ACL_HEAD'(aste#, entry#), 

user_id, project_id); ' 

IF acle# = 'DIR_ACL_HEAD'(aste#, entry#); 


THEN: DIR_ACL_HEAD(aste#, entry#) = 

'ACL_CHAIN' (as tefft, acleft); 


ELSE: Let pacle# ~ FINDPACLE(aste#, 

'DIR_ACL_HEAD'(aste#, entry#), acle#); 


ACL_CHAIN(aste#, pacle#) = 'ACL_CHAIN'(aste#, acle#); 
END; 
ACL_CHAIN(astefl, acle#) = 'ACL_CHAIN'(aste#, 0); 
ACL_CHAIN(aste#, 0) =acle/fo; 
SOADD(aste#, entry#);· 
RC(process#) = YES; 

END; 

Figure 15. RESCIND Function 
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Function: DUPACL 

possible values: TRUE or FALSE 

Parameters: DUPACL(aste#, acle#, user_id, project_id); 

Value: 

IF acle# = 0; 


THEN: FALSE; 

ELSE: 


IF 	 (ACL_USER(aste#, acle#) = user_id) & 
(ACL_PROJECT(aste#, acle#) = project_id); 
THEN: TRUE; 
ELSE: DUPACL(aste#, ACL_CHAIN(aste#, acle#), user_id, 

project_id); 
END; 

END; 

Function: FACLPOS 

possible values: acle# or 0 

Parameters: FACLPOS(aste#, acle#, user_id, project_id) 

Value: 

IF acle/f = 0; 


THEN: 0; 

ELSE: 


IF 	 (user id = ALL_USERS) & 

(project_id = ALL_PROJECTS); 

THEN: FINDEND(aste#, acle#); 

ELSE: 


IF 	 (user_id = ALL_USERS) : 
(project_id = ALL_PROJECTS); 
THEN: 

IF 	 ACL_USER(aste#, acle#) = ALL_USERS; 
THEN: 0; 
ELSE: FINDUSER(aste#, acle#); 

END; 

ELSE: 0; 


END; 

END; 


END; 


Figure 16. DUPACL and FACLPOS .Functions 
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Function: FINDEND 

possible values: acle# 

Parameters: FINDEND(aste#, acle#) 

Value: 

IF ACL_CHAIN(aste#, acle#) i 0; 


THEN: FINDEND(aste#, ACL_CHAIN(aste#, acle#)); 
ELSE: ac lei!; 

END; 

Function: FINDUSER 

possible values: acle# 

Parameters: FINDUSER(aste#, aclel!); 

Value: 

IF (ACL_CHAIN(aste#, acleff) = 0) l 


(ACL_USER(aste#, ACL_CHAIN(aste#, acle#)) = ALL_USERS); 

THEN: aclelf; 

ELSE: FINDUSER(aste#, ACL_CHAIN(aste#, acle#)); 


END; 


Function: FINDACLE 

possible values: acle# 

Parameters: FINDACLE(aste#, acle#, user_id, project_id) 

Value: 

IF (ACL_USER(aste#, acle#) = user_id) & 


(ACL_PROJECT(aste#, acle#) = project_id); 

THEN: acle#; 

ELSE: FINDACLE(aste#, ACL_CHAIN(aste#, acle#), user_id, 


project_id); 
END; 

Function: FINDPACLE 

possible values: acle# 

Parameters: FINDPACLE(aste#, vacle#, acle#) 

Value: 

IF ACL_CHAIN(aste#, vacle#) = acle; 


THEN: vacle#; 
ELSE: FINDPACLE(aste#, ACL_CHAIN(aste#, vacle#,), acle#); 

END; 

Figure 17. FINDEND, FI1~USER, FI1~ACLE, and FINDPACLE Functions 
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Function: SOADD 

Parameters: SOADD(daste#, entry#) 

Effect: 

Let aste# = 'HASH' (DIR_DISK(daste#, entry#)); 

IF aste# i 0; 


THEN: 
(¥process#) (PROCESSff..:J1IN ~ process# ~ PROCESSfl_t1AX); 

IF 	 PT FLAGS(process#) ~ INACTIVE) & 

'AST_CPL'(aste#, process#); 

THEN: 


IF 	 'AST_WAL'(aste#, process#); 
THEN: Let mode = WRITE; 
ELSE: Let mode = READ; 

END; 
IF not DSEAF.CH(process#, daste#, 

DIR_ACL_HEAD(daste#, entry#), mode); 
THEN: 

('J.I.segfl) (SEG#_HIN ~ segff ~ SEGff_MAX); 
IF ('PS_SEG'(process#, seg#) = aste#); 

THEN: RELEASE(process#, aste#, seg#); 
END; 

END; 
END; 

END; 
END; 

END; 

Figure 18. SOADD Function 
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the segment from the process's WS with RELEASE. The specifications 
of DSEARCH and RELEASE are in the next subsection. 

The process is not given any explicit notification when the 
kernel removes a segment from its address space. The process will 
receive an error messa~e the next time it tries to access the se~ment 
or use its seg# for the segment as an argument to a kernel function. 
Since the kernel does not "remember 11 that SOADD performed the 
removal 1 the error message Hill not 1 in general, be SUfficient to 
determine the underlyin~ cause of the error message. That is, the 
error messaGe alone will not enable the user to distin~uish between 
the case where some other user removed him from a segment's ACL and 
the case where there is a bug in his program. It seems likely that 
hlllnan intervention 1vill be necessary when a process has a segment 
removed from its address space by some other process. 

Reading Directories 

Since directories are composite objects - they contain data at 
different security levels including system high - users cannot have 
direct read access to directories. A function, DIRREAD (see Figure 
19) is provided to allow users to read the data in directories that 
is at the security level of the directory. This function is an 
example of a function that gives a process interpretive read access 
to an object that is already in its address space as defined by the 
current security state. DIRREAD verifies that the user currently has 
read access to the directory and then stores into the RC object the 
values of the type, security level, and size fields of the specified 
directory entry. 

ACCESSING SEG!-1ENTS 

Functions are provided for moving segments into and out of a 
process's WS - the design's interpretation of the model's set b, and 
a process's AS. The functions that chan~e a process's WS change the 
state of the system with respect to security (and thus correspond to 
model rules), whereas the functions that change AS are only changing 
the representation of the current security state. There are also 
internal kernel functions to support the implementation of WS and AS. 

Getting and Releasing Access 

External kernel functions are provided for gettin~ and releasing 
access to segments - these functions move segments into and out of 
WS. Although a process can .directly address (with machine 
instructions) only those se~ments in its WS that are also in its AS 
because of hardware segmentation register constraints, WS is defined 
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Function: DIRREAD 
Parameters: DIRREAD(process#, aste#, entry#) 

. Effect: 
IF 	 (AST_TYPE(aste#) = DIRECTORY) & 

(DIR_SIZE(aste#, entry#) f 0); 
THEN: RC(process#) = DIR_TYPE(aste#, entry#), 

DIR_CLASS(aste#, entry#), 
DIR_CAT(aste#, entry#), 
DIR_SIZE(aste#, entry#); 

ELSE: RC(process#) = NO; 

END; 


Figure 19. DIRREAD Function 
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(for security purposes) to be the address space of a process. 

The security requirements that must be satisfied before a 
process can get access to a segment are: 1) the process must 
currently have read (or write) access to the segment's parent 
directory; 2) the process must be on the ACL of the se~ment in the 
desired mode; 3) the security condition must be satisfied - the 
security level of the process must be greater than or equal to the 
security level of the segment; and 4) the *-property condition must 
be satisfied - untrusted processes can only have write access to 
segments at a single security level and read access to segments whose 
security level is less than or equal to the write access security 
level. (The write access level is the current security level.) 
Figure 20 shows the two functions for getting access - GETW (get 
write) and GETR (get r·ead). Both of these functions require that the 
user identify the segment he wishes to access by giving the segff of 
the parent directory and the entry# into the parent of the entry for 
the segment. This method of identification is sufficient to enforce 
security requirement 1). The ACL is searched by DSEARCH. In GETH a 
destination is made between trusted and untrusted processes because 
the *-property is not imposed upon trusted processes. For untrusted 
processes it is sufficient to enforce the *-property - it is a 
stronger condition than the security condition. No distinction is 
made between trusted ar.d untrusted processes by GETR because, for 
read access, the security condition and *-property condition are 
equivalent. If all security requirements are satisfied GETH and GETR 
invoke CONNECT which makes implementation checks and moves the 
segment into the process's WS. 

The RELEASE function (Figure 21) removes a segment from a 
process's WS. There are no constraints other than the requirement 
that the seg# parameter be valid. A segment cannot be removed from 
WS if it is in AS. Given that RELEASE must check to see if the 
segment is in the process's AS, it is just as easy for ·RELEASE to 
remove the segment from AS (with DISABLE) as it is to refuse the WS 
removal. The removal from \vS is performed by disconnecting the 
process from the segment's ASTE. If after the disconnection there 
are no other processes connected to the ASTE, then the segment is 
marked as eligible for deactivation by AGE. 

The DSEARCH function searches an ACL chain looking for an ACL 
element that applies to the invoking process - an ACL element with a 
user-id equal to the process's user-id or ALL_USERS and a project-id 
equal to the process's project-id or ALL_PROJECTS. If an ACL element 
is found the mode field is checked. A mode of WRITE is required by 
GETW; a mode of lvRITE or READ is sufficient for GETR. 
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'Function: GETH 

Parameters: GETH(processlf, astelf, entry#) 

Effect: 

IF (AST_TYPE(aste#) i DIRECTORY) l 


(DIR_SIZE(aste#, entry#) = O) l 

not DSEARCH(processlf, astelf, DIR_ACL_HEAD(astelf, entPytf) , \>/RITE); 

THEN: RC(processlf) = NO; 

ELSE: 


IF 	 PS_TYPE(processlf) = TRUSTED; 

THEN: 


IF 	 (PS_CUR_CLASS(processlf) < DIR_CLASS(aste#, entry#)) 
(PS_CUR_CAT(processlf) i DIR_CAT(aste#, entry#)); 
THEN: RC(process#) = NO; 
ELSE: CONNECT(process#, aste#, entry#, WRITE); 

END; 

ELSE: 


IF 	 (PS_CUR_CLASS(process#) i DIR_CLASS(astelf, entry#)) 
(PS_CUR_CAT(processtf) i DIR_CAT(aste#, entry#)); 
THEN: RC(processlf) = NO; 
ELSE: CONNECT(processlf, astelf, entry#, HRITE); 

END; 
END; 

END; 

Function: GETR 

Parameters: GETR(processlf, aste# , entry#) 

Effect: 

IF (AST_TYPE(aste#) i DIRECTORY) 


(DIR_SIZE(astelf, entry#) = 0) l 

not DSEARCH(process/1, aste#, DIR_ACL_HEAD(aste/1, entry#), READ) 

(PS_CUR_CLASS(process/F ). < DIR_CLASS(astell, entry/f)) 

(PS_CUR_CAT(processtf) -~ DIR_CAT(astell, entry#)); 

THEN: RC(process/1) = NO; 

ELSE: CONNECT(process#, aste#, entryll, READ); 


END; 

Figure 20. GETil and GETR Functions 
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Function: RELEASE 

Parameters: RELEASE(process#, aste#, seg#) 

Effect: 

Let block# = 'AST_ADR' (aste#); 

IF (block# i 0); 


THEN: 

(¥reg#)(REG#_MIN i reg# i REG#_MAX) & 


IF ('PS_SAR'(processtJ, reg#) =block#); 

THEN: DISABLE(process#, reg#); 


END; 

END; 

END; 
AST_CPL(aste#, process#) = FALSE; 
AST_HAL(asteif, process/f) = FALSE; 
IF not (3i)((PROCESS#_MIN iii PROCESS#_MAX) & 

(~ST_CPL(aste#, i) =TRUE)); 
THEN: AGE(aste#); 

END; 
PS_SEG(process#, segff) = 'ps_SEG'(processlf, 0); 
PS_SEG(process#, 0) = seglf; 
PS_SEG_INUSE(process#, segff) = FALSE; 

Function: DSEARCH 

possible values: TRUE or FALSE 

Parameters: DSEARCH(process#, astelf, acle#, mode) 

Value: 

IF acle# ~ 0; ~ 


THEN: 
IF 	 ((ACL_USER(aste#, acle#) = ALL_USERS) I 

(ACL_USER(astet!, alee#) = PS_USER_ID(process#)) & 
((ACL_PROJECT(aste#, acle#) = ALL_PROJECTS) l 
(ACL_PROJECT(aste#, acle#) = PS_PROJECT_ID(processtf)); 
THEN: 

IF 	 ACL_MODE(aste#, acle#) = NO; 
THEN: FALSE; 
ELSE: 

IF 	 (mode = WRITE) & 
(ACL_MODE(aste#, acle#) i WRITE); 
THEN: FALSE; 
ELSE: TRUE; 

END; 
END; 

ELSE: DSEARCH(processtf, astetf, ACL_CHAIN(aste#, acletf), 
mode); 

END; 
ELSE: FALSE; 

END; 
Figure 21. RELEASE and DSEARCH Functions 
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HS Support Functions 

The get and release functions invoke internal functions that 
support the concepts of connection, activation, deactivation, and 
eligible for deac,tiva tion. Figure 22 shows the specification of the 
CONNECT function. All seaments that are in the WS of one or more 
processes are active; each process that has a segment in its WS is 
connected to the segment. ·The implementation constraints enforced by 
CONNECT are that the process must have a frTS seg# and the process 
cannot already be connected to the se~ment. If the segment is 
not active it must be activated, and if it is active but eligible for 
deactivation it must be made ineligible. The actual connection is 
made by adding the process to the CPL (connected process list) in the 
ASTE and, if the process is gaining Hri te access, the WAL ( Hr ite 
access list) also. If the connection is successful, CONNECT sets the 
RC object to the value of the seg# by which the process can 
subsequently refer to the segment. 

Figure 23 gives the specification of the ACTIVATE and DEACTIVATE 
functions. The parameters of ACTIVATE identify the segment to be 
activated - the aste# of the parent directory and the entry# of the 
segment's entry in the directory. To activate a segment, a free ASTE 
must be found. A chain of free ASTE's begins at P.ST_CHAIN(O), but 
this chain may be empty. If this is the case, then an ASTE to be 
made free is chosen (by NEXTASTE), and the freein~ is effected by 
deactivating the se~ment using the AST£. We must insure that a free 
ASTE can always be obtained, since otherHise ACTIVATE would fail 
making CONNECT fail. Ultimately GETH or GETR caul d fail for reasons 
that are not necessarily a function of the behavior of the process 
invoking the external kernel function - another instance of the 
system wide variable problem. Since the ability of a process to 
deplete the ASTE resource is constrained by the size of its WS, we 
can guarantee that a free ASTE can always be obtained by making the 
number of ASTE's at least equal to the sum of all WS's plus the 
number of ASTE's needed internally by the kernel. If an active 
segment is not in the WS of any process (or wired down) then it is. 
eligible for deactivation. The actual activation is straightforward ­
the directory entry except for the ACL is copied into the ASTE and 
other fields in the ASTE are initialized. The segment is known not 
to be in main memory, not to have any segment descriptors pointing to 
it, and not to be in theWS of any process. 

15This latter restriction prevents a process from having two 
different seg#'s for a segment. It is enforced to simplify the 
RELEASE function. 
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Function: CONNECT 

Parameters: CONNECT(process#, daste#, entry#, mode) 

Effect: 

IF 'ps_SEG'(process#, 0) = 0; 


THEN: RC(process#) = NO; 

ELSE: Let flag= 'HASH'(DIR_DISK(daste#, entry#)); 


IF 	 (flag i 0) & 

'AST_CPL'(flag, process/f); 

THEN: RC(process#) = NO; 

ELSE: 


IF flag i 0; 
THEN: Let aste# = flag; 

IF 'AST_AGE'(aste#) = AGED; 
THEN: UNAGE(aste#); 

END; 
ELSE: ACTIVATE(daste#, entry#); 

Let aste# = HASH(DIR_DISK(daste#, entry/f)); 
UNAGE (as tell); 

END; 

AST_CPL(aste#, process#) = TRUE; 

IF mode = HRITE; 


THEN: AST_WAL(aste#, ppocesslt) =TRUE; 
END; 
Let seg# = 'PS_SEG'(process#, 0); 
PS_SEG(process#, 0) = 'PS_SEG'(process#, seg#); 
PS_SEG(process#, seg#) = aste#; 
PS_SEG_INUSE(process#, seg#) = TRUE; 
RC(process#) = YES, seg#; 

END; 
END; 

Figure 22. CONNECT Function 
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Function: ACTIVATE 

Parameters: ACTIVATE(daste#, entry#) 

Effect: 

IF 'AST_CHAIN'(O) = 0; 


THEN: Let aste# = NEXTASTE('AST_AGE_CHAIN'(O)); 
DEACTIVATE(aste#); 

ELSE: Let aste# = 'AST CHAIN'(O); 
AST_CHAIN(.O) = 'AS(~CHAIN'(aste#); 

END; 
HASH(DIR_DISK(daste#, entry#)) = aste#; 
AST_ADR(aste#) = 0; 
AST_LOCK(aste#) = UNLOCKED; 
AST_DES_COUNT(aste#) = 0; 
(~process#) (PROCESS#_MIN ~process# i PROCESS#_MAX); 

AST_CPL(aste#, process#) = FALSE; 
AST~WAL(aste#, process#) = FALSE; 

END; 
AST_TYPE(aste#) = DIR_TYPE(daste#, entry#); 
AST_STATUS(aste#) = 'DIR_STATUS'(daste#, entry#); 
AST_CLASS(aste#) = DIR_CLASS(daste#, entry#); 
AST_CAT(aste#) = DIR_CAT(daste#, entry#); 
AST_DISK(aste#) = DIR_DISK(daste#, entry#); 
AST_SIZE(astefi) = DIR_SIZE(daste#, entryil); 
IF 'DIR_STATUS'(daste#, entry#) = UNINITIALIZED; 

THEN: DIR_STATUS(daste#, entry#) = INITIALIZED; 
END; 
AGE (aste/J) ; 

Function: DEACTIVATE 

Parameters: DEACTIVATE(aste#) 

Effect: 

UNAGE (as tell) ; 

IF 'AST_STATUS'(aste#) = UNINITIALIZED; 


THEN: SWAPIN(aste#); 

SWAPOUT(aste/f); 


ELSE: 

IF 'AST_ADR'(aste#) ~ 0; 


THEN: SWAPOUT(aste#); 

END; 

END; 
HASH(AST_DISK(aste#)) = 0; 
AST_CHAIN(aste#) = 'AST_CHAIN'(O); 
AST_CHAIN(O) = aste#; 

Figure 23, ACTIVATE and DEACTIVE Functions 
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' The design is structured so that once a segment is activated, 
the ASTE contains all of the information necessary to s\.;ap the 
segment into and out of main memory and deactivate it - no more 
references to the parent directory are required. To preserve this 
structure it is necessary to set DIR_STATUS to INITIALIZED if it is 
UNINITIALIZED, even though the segment is not initialized at activate 
time. We must, of course, insure that the segment is initialized 
before it is deactivated. 

ACTIVATE invokes AGE to mark the segment eligible for 
deactivation. It does this because at activate time no processes are 
put on the CPL and it is not known if any will be - ACTIVATE is 
invoked by DELETEDIR as well as CONNECT. Finally, there is a 
function HASH whose input is the disk address (a unique identifier) 
of a segment and whose output is the aste# of the segment, if it is 
active, otherwise 0. HASH uses a hashing function and a hash table, 
and reiolves hashing collisions by running chains through the AST. 
ACTIVATE must update HASH's data base. 

The DEACTIVATE function is much simpler than ACTIVATE. It 
removes the segment from the list of segments eligible for 
deactivation, causes the segment to be initialized if it is 
UNINITIALIZED, swaps it out of main memory if it is in, updates 
HASH's data base, and adds the ASTE to the list of free ASTE's~ 

The kernel maintains a list of active segments eligible for 
deactivation by running a chain through the AST_AGE_CHAIN field of 
the AST. The head of the chain is the segment that most recently 
became eligible for deactivation, the tail is the segment that has 
been eligible the longest. In addition to HASH, Figure 24 gives 
specifications for the four functions that deal with this chain, AGE, 
UNAGE, Fir~DUNAGE, and NEXTASTE. (The body of HASH's specification is 
empty because its value is always set by ACTIVATE and DEACTIVATE.) 
AGE adds a segment to the head, UNAGE removes a segment from the 
chain, FI~DUNAGE finds the segment's position in the chain for UNAGE, 
and NEXTASTE returns the aste# of the segment at the tail. NEXTASTE 
implements a policy that does not have to be in the kernel - when a 
segment has to be deactivated to make an ASTE available, the segment 
that has been eligible for deactivation longest is chosen. The 
design is done this way because the policy seems reasonable, the 
distinction between segments eligible for deactivation and those that 
are not must be maintained within the kernel, and to have a mechanism 
that permitted uncertified software to implement an alternative 
policy would add more complexity and overhead than it saved. 

We conclude the treatment of WS functions with a few remarks on 
why we choose to postpone deactivation until the last possible 
moment, rather then doing it as soon as possible. Given the 
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Function: HASH 

possible values: aste# or 0 

initial value: 0 

Parameters: HASH(disk_address) 


Function: AGE 

Paramteters: AGE(aste#) 

Effect: 

AST_AGE_CHAIN(asteft) = 'AST_AGE_CHAIN'(O); 

AST_AGE_CHAIN(O)= aste#; 

AST_AGE(aste#) = AGED; 


Function: UN AGE 

Parameters: UNAGE(aste#) 

Effect: 

Let vasteff = 'FINDUNAGE'(O, asteff); 

AST_AGE_CHAIN(vaste#) = 'AST_AGE_CHAIN'(aste#); 

AST_AGE(aste#) = UNAGED; 


Function: FINDUNAGE 

possible values: aste# 

Parameters: FINDUNAGE(vaste#, aste#) 

Value: 

IF AST_AGE_CHAIN(vaste#) = aste#; 


THEN: aste#; 
ELSE: FINDUNAGE(AST_AGE_CHAIN(vastefl), aste#); 

END; 

Function: NEXTASTE 

posssible values: aste# 

Parameters: NEXTASTE(aste#) 

Value: 

IF AST_AGE_CHAIN(aste#) = 0; 


. THEN: asteii'; 
ELSE: NEXTASTE (AST_AGE_CHAIN(astetl)); 

END; 

Figure 24. lli\SH, AGE, UNAGE, FINDUNAGE and NEXTASTE Functions 
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requirement on the number of ASTE's, it should be clear that as soon 
as processes start to share segments - the CPL of an ASTE contains 
more than one process - there will be more ASTE's than are needed. 
(The requirement for ASTE's assumes the worst case - absolutely no 
segment sharing.) The strate~y of AGEing rather than DEACTIVATing is 
intended to take advantage of these surplus ASTE's. It is much more 
efficient to AGE and then UNAGE than it is to DEACTIVATE and 
ACTIVATE. The assumption·is that there will be segments eligible for 
deactivation that are moved back into a process's WS before they are 
actually deactivated. 

If the hardware had adequate support for segment and page 
faults, then the requirement on the number of ASTE's would go away. 
In the extreme case of little or no segment sharing, it would be 
possible to deactivate a segment out from under a process by settin~ 
a seg~ent fault. Even in this environment, however, it would still 
be desirable to postpone deactivation and to have sufficient ASTE's 
to make the postponement worthwhile. 

Enabling and Disabling Access 

Since the number of hardware descriptors available on the 
PDP-11/45 prevents a process from having a descriptor for each 
segment in its WS (and thus directly accessing it), external kernel 
functions are provided for managing the allocation of descriptors. 
The ENABLE function (Figure 25) moves a segment in a process's WS 
into its AS, allocating a descriptor to the segment. The parameters 
of the ENABLE function are the segif of the segment and the regfl of 
the segmentation register to use. Since moving a segment into AS 
only changes the representation of the current security state and not 
the state itself, all of the constraints imposed by ENABLE are 
implementation· and consistency constraints. ENABLE requires that the 
seg# parameter be valid, that the specified segmentation register be 
free, and that the process have sufficient main memory quota. The 
main memory quota supports a mechanism similar to that used for 
controlling disk space allocation. Main memory is effectively 
partitioned into areas for• each process. This mechanism is required 
because if a descriptor exists for a segment, that segment is locked 
into main memory - missing segment/page faults are not supported. 
The inability of a process to enable access to a segment must be due 
strictly 6o its own behavior and not the behavior of some other

1process. 

16As with the disk quota, a per-security-level main memory quota is 
sufficient for security. 
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Function: ENABLE 

Parameters: ENABLE(process#, aste#, reg#) 

Effect: 

Let size= AST_SIZE(aste#); 

IF ('PS_SAR'(process#, reg#) i 0) 


((AST_WIRED_DOWN(aste#) =OFF) & (size> 'PS_MEM_QUOTA'(process#)); 

THEN: RC(process#) = NO; 

ELSE: 


IF 	 'AST_ADR'(aste#) = 0; 
THEN: SWAPIN(aste#); 


END; 

IF 'AST_LOCK'(aste#) = UNLOCKED; 


THEN: LOCK(aste#); 

END; 

IF AST_TYPE(aste#) = DIRECTORY; 


THEN: Let mode = NO; 

ELSE: 


IF 	 AST_WAL(aste#, process#) =TRUE; 
THEN: Let mode = WRITE; 
ELSE: Let mode = READ; 

END; 

END; 

LSD(process#, AST_ADR(aste#), reg#, mode); 

IF AST_WIRED_DOWN (aste/f) = OFF; 


THEN: PS_MEM_QUOTA(process#) = 'PS_MEM_QUOTA'(process#) ­
AST_SIZE Caste/f); 


END; 

AST_DES_COUNT(aste#) = 'AST DES_COUNT'(aste#) + 1; 

RC(process#) = YES 


END; 


Function: LSD 

Parameters: LSD(process#, block#; reg#; mode) 

Effect: 

PS_SAR(process#, reg#) = block#; 

PS_SDR(process#, reg#) = MBT_SIZE(block#), mode; 


Figure 25. ENABLE and LSD Functions 
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Before a descriptor can actually be constructed, the se~ment 
must be swapped into main memory, if it is not in already, and the 
mode of access that the user has requested must be determined. 
Enabling access to directories is allowed, but the resulting 
descriptor will not actually allow access - the effect is simply to 
lock the directory into main memory. The actual construction of 
segment descriptors and the storing of them into descriptor registers 
is performed by LSD (Load ~egment Descriptor). ENABLE concludes by 
debiting the main memory quota of the process and incrementing the 
descriptor count for the segment. 

The DISABLE function (Figure 26) is the inverse of the ENABLE 
function - it removes a segment from AS and makes a segmentation 
register free by destroying the descriptor in it. DISABLE's only 
parameter is the reg# of the segmentation register and its only 
requirement is that the register actually contain a descriptor. The 
aste# of the segment is determined, the change bit in the descriptor 
register is "remembered", the descriptor is destroyed, the segment's 
descriptor count is decremented, and the process's memory quota is 
credited. If the segment's descriptor count goes to zero, the 
segment is marked as eligible for being swapped out of main memory. 

AS Support Functions 

There are several internal functions that support the 
implementation of AS. Figure 27 shows the specification of the 
SWAP IN and SWAPOUT functions. SWAP IN swaps the segment specified by 
the aste# parameter into main memory. First, SWAPIN finds an area of 
memory of the correct size and removes it from the free chain. Then, 
depending on whether or not the segment must be initialized, it 
either initializes the segment or reads it in off the disk and waits 
for the disk I/0 to complete. Finally, S\olAPIN updates the AST and 
MBT and invokes UNLOCK to put the segment on the SWAP_CHAIN. 

SWAPOUT removes a segment from main memory. The segment need 
not be written back to the disk unless it has changed since it w.as 
swapped in - t1BT_CHANGE indicates whether or not this is the case. 
The segment is removed from the SHAP_CHAIN, and the memory it 
formerly occupied is put on the free memory chain. 

Figure 28 gives the specifications of INITSEG, DISKIO, and the 
two functions that manipulate the SHAP_CHAIN. Directories are 
initialized by marking all entries as free and putting all of the ACL 
elements on the free ACL chain. Data segments are initialized to all 
zero. DISKIO simply initiates a disk I/0 operation. 

The SWAP_CHAIN contains all segments that are in main memory but 
are eligible to be swapped out because there are no segment 
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Function: DISABLE 

Parameters: DISABLE(process#, reg#) 

Effect: 

IF 'PS_SAR'(process#, reg#) f. 0; 


THEN: Let block#= 'ps_SAR'(process#, reg#); 

Let aste# = HBT_ASTE(block/1); 

MBT CHANGE(block#) = 'MET CHANGE'(block#) 


7PS_SDR~CHANGE(process#, reg#); 
PS_SAR(process#, reg#) = 0; 
PS_SDR(process#, reg#) = 0; 
AST_DES_COUNT(aste#) = 'AST_DES_COUNT'(aste#) - 1; 
IF (AST_DES_COUNT(aste#) = 0) & 

(AST_WIRED_DOWN(aste/1) = OFF); 
THEN: UNLOCK(aste#); 


END; 

IF AST_WIRED_DmVN(aste/1) = OFF; 


THEN: PS_MEf'1_QUOTA (process!!) = 'PS_MEM_QUOTA ' (process#) + 
AST_SIZE(aste#); 

END; 
END; 

Figure 26. DISABLE Function 
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Function: StlAPIN 
Parameters: SWAPIN(aste#) 
Effect: 
Let size= AST_SIZE(aste#); 
Let block# = FINDFREE( 't-1BT_CHAIN' (0), size); 
ALLOCMEM ( 'MBT_CHAI N' ( 0) , block#) ; 
IF 'AST_STATUS' (as tell) = UNINITIALIZED; 

THEN: INITSEG(aste#, block#); 
AST_STATUS(aste#) = INITIALIZED: 
MBT_CHANGE(blockfl) = CHANGED; 

ELSE: DISKIO(aste#, block#, DISK_READ); 
MBT_CHANGE (block/f) = UNCHANGED; 
P(DISK_SEHAPHORE); 

END; 
AST_ADR(aste#) = block#; 
MBT_ASTE(block#) = aste#; 
UNLOCK(astefl); 

Function: SHAPOUT 
Parameters: SWAPOUT(aste#) 
Effect: 
Let block#= 'AST_ADR'(aste#); 
LOCK(astefl); 
AST_ADR(aste#) = 0; 
IF 	!1BT_CHANGE(blockf/) = CHANGED; 

THEN: DISKIO(aste#, block#, DISK_WRITE); 
P(DISK_SEt1APHORE); 

END; 
F REEMEM ( 't·1BT_CHAI N' ( 0) , blockif) i 

Figure 27. SWAPIN and SWAPOUT Functions 
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' 
Function: INITSEG 

Parameters: INITSEG(aste#, block#) 

Effect: 

IF AST_TYPE(aste#) = DIRECTORY; 


THEN: 

(¥i)(ENTRY#_MIN iii ENTRY#_MAX); 


DIR_SIZE(aste#, i) = 0; 

END; 

(¥j)(ACLE#_MIN i j ~ ACLE#_MAX); 


ACL_CHAIN(astefl, j) = (j+1) MODULO (ACLE#_!vlAX+1); 
EHD; 

ELSE: segment_contents = 0; 
END; 

Function: DISKIO 

Parameters: DISKIO(aste#, block#, command) 

Effect: 

DISK_ADR = AST_DISK(aste#); 

DISK_COUNT = AST_SIZE(aste#); 

MEM_ADR = blockff; 

DISK_Cm1!1AND = command, ENABLE_INTERRUPTS; 


Function: LOCK 

Parameters: LOCK(aste#) 

Effect: 

Let vaste# = 'FINDLOCK'(O, aste#); 

AST_SHAP_CHAIN(vastefl) = 'AST_SWAP_CHAIN'(aste#); 

AST_LOCK(aste#) = LOCKED; 


Function: FINDLOCK 

possible values: aste# 

Parameters: FINDLOCK(vaste#, aste#) 

Value: 

IF AST_SviAP_CHAIN(vastefl) = aste#; 


THEN: vastefl; 
ELSE: FINDLOCK(AST_SWAP_CHAIN(vaste#), aste#); 

END; 

Function: UNLOCK 

Parameters: UNLOCK(aste#) 

Effect: 

AST_SWAP_CHAIH(asteff) = 'AST_SWAP_CHAIN'(O); 

AST_SWAP_CHAIN(O) = aste#; 

AST_LOCK(astefl) = UNLOCKED; 


Figure 28. INITSEG, DISKIO, LOCK, FINDLOCK and UNLOCK Functions 
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descriptors for them. The design postpones the removal of a segment 
from main memory for as long as possible, for reasons that are 
similar to the deactivation postponement. A process may DISABLE 
access to a segment, thus making it eligible to be swapped out, 
simply because it has run out of descriptor registers and wants to 
ENABLE access to some other segment. If all processes are not using 
their full memory quota or there is some in-core sharing of segments, 
then it may be possible to swap the second segment into main memory 
without removing the first. We choose not to swap out the first 
segment because the process may choose to reENABLE access to it, thus 
requiring its presence in main memory. The three functions that deal 
with the SWAP_CHAIN are LOCK (into main memory), FINDLOCK and UNLOCK. 
LOCK removes a segment from the chain, using FINDLOCK to find the 
segment's position in the chain, and UNLOCK adds a segment to it. 

Toe final set of AS functions deals with the allocation and 
deallocation of main memory segments to virtual memory segments. 
Figure 29 gives the specifications of FINDFREE, ALLOCHEt-1, and 
FREEMEM. Free memory areas are on a chain ordered by block#. A free 
memory area is characterized by its block# - the address of its first 
byte -and its size. ALLOCMEM removes a free memory area from this 
chain and FREEMEM adds an area to it. FINDFREE searches the free 
chain looking for an area of a given size. If one is found, its 
block# is returned, otherwise, we have a problem. Assuming that the 
main memory quota mechanism is correct 1 then a free memory area of 
the desired size can be constructed by some combination of the 
following: 1) concatenating adjacent free areas; 2) splitting a free 
area into two free areas; 3) removing segments on the SWAP_CHAIN from 
main memory; and 4) compacting fragmented free areas. Determining 
the appropriate course of action requires a policy that does not 
belong in the kernel. Rather, the kernel designs assumes the 
existence of a process \·;hose function is to keep the free memory 
chain in "good shape" - sufficient free areas of the right sizes. To 
perfonn this task the kernel provides it with functions that perform 
the three operations just described. These functions are discussed 
in a later subsection. While we expect that this process will be 
correctly implemented and be able to keep ahead of the kernel, the 
kernel must be prepared to deal with FINDFREE's failure to find a 
free area. 

When FINDFREE fails the kernel can do one of two things: 1) it 
can explicitly cause the memory management process to run and only 
permit its three memory struct4ring kernel functions (that do not 
affect the current security state) to be invoked; or 2) it can 
deallocate the CPU from the current proces~, allocate the CPU to any 
other process ready to run (but somehow indicate that the memory 
management process should run), and allow all kernel functions to be 
invoked. If course 1) is chosen, then the original process c~n be 
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Function: FINDFREE 

possible values: block# 

Parameters: FINDFREE(block#, size) 

Value: 

IF blockft = END_BLOCK#; 


THEN: RESTART; 

ELSE: 


IF 	MBT_SIZE(block#) = size; 
THEN: block#; 
ELSE: Fll~DFREE(i-1BT_CHAIN(block#, size)); 

END; 
END; 

Function: ALLOCMEM 

Parameters: ALLOCMEM(vblock#, block#) 

Effect: 

IF 't-iBT_CHAIN' (vblocklf) = blockft; 


THEN: i·1BT_CHAIN(vblockff) = MBT_CHAIN(block#); 
HBT_FLAGS(blockff) = ALLOCATED; 

ELSE: ALLOCt1EM( 'r-1BT_CHAIN' (vblock#), block#); 
END; 

Function: FREEMEM 

Parameters: FREEMEM(vblockf.!, block#) 

Effect: 

IF 't·1BT_CHAIN' (vblockfl) > blockft; 


THEN: HBT_CHAIN(blockff) = 'NBT_CHAIN' (vblockff); 
MBT_CHAIN(vblock#) = block#; 
MBT_FLAGS(blockfl) = FREE; 
!vlBT_ASTE( blockft) = 0; 

ELSE: FREE~lEM( 'MBT_CHAIN' (vblockff), blockfl); 
END; 

Figure 29, FINDFREE, ALLOCME11 and FREEMEM Functions 
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' restarted at the point where FINDFREE was invoked, because the 
security state of the system has not changed. Course 2) is more 
flexible but it requires that we prove that the system is in a secure 
state at the point where FINDFREE fails. Also, the process ~ust be 
restarted at the point where the external kernel function Has 
invoked, because the security state of the system may have changed, 
thus invalidating security checks made before the original FINDFREE 
failure. 

PROCESS COOPERATION 

Mechanisms are provided to allow the sequential processes that 
coexist in the physical computer system to cooperate. These 
mechanisms are used within the kernel to insure its correct 
operat~on, and the kernel provides external functions that allaH 
these mechanisms to be used in an arbitrary manner, subject only to 
security constraints. Two mechanisms are provided - a 
synchronization mechanism that employs semaphores and the P and V 
operations, and an interprocess communication (IPC) mechanism. The 
functions for these mechanisms do not change the security state of 
the system. They provide interpretive access to objects as permitted 
by the current state and, since they can cause the execution state of 
ti process to change, they modify the representation of the current 
state. 

P and V 

P and V are synchronization primitives that operate on 
semaphores. They are the basic synchronization primitives used 
within the kernel, and an explanation of them is given in Appendix I. 
In the specification, synchronization with the disk during segment 
Sl-lapping is achieved by performing a P on the disk semaphore. When 
the disk operation completes, the interrupt handler does a V on the 
disk semaphore. 

To allow users to synchronize with each other the kernel 
associates a semaphore with each segment in the virtual memory. 
Processes that have write access to a segment may P and V on the 
associated semaphore. Write access is required because both P and V 
modify the semaphore, and the execution state of a process may change 
as a result of the P or V. It is assumed that users will use P's and 
V's to coordinate the modification of shared segments and to 
synchronize with their terminal I/0. The user may P on the I/0 
segment associated with his terminal. An interrupt from the terminal 
will cause the V. Whether or not the appropriate conventions are 
followed to insure the cooperation desired by users, is, of course, 
no concern of the kernel. 
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The specification of the P function is given in Figure 30. P 
decrements the semaphore counter and, if the result is negative, it 
blocks the process and adds it to the queue of processes blocked on 
the semaphore. PSWAP is invoked when a process becomes blocked in 
order to allocate the CPU to some other process. 

The function of PSWAP.is to deallocate the CPU from the current 
process and reall~cate it to some other process. This other process 
must be in the READY state. It is possible, that when PSWAP first 
looks, it cannot find a READY process. In this case, it waits for an 
I/0 interrupt (which always results in a V on a I/0 segment 
semaphore), and then looks again. At the level of the specification, 
it is sufficient to change the value of TCP to any process that is 
READY. At the implementation level, more work may be required 
depending upon specific hardware characteristics. On the PDP-11/45 
it is necessary to unload registers associated with the execution of 
the current process and reload them for the new process. This 
save/restore operation must, of course, be done correctly to insure 
security. The specification assumes that the contents of the 
hardware descriptor registers ar•e equal to PS_SDR and PS_SAR for the 
current process. 

If more than one process is READY, PSWAP must have some 
algorithm for selecting a particular process to run. This topic is 
discussed in the subsection on policy functions. For the time being 
we assume that PSWAP has some way of selecting a new process to run. 

The V function (Figure 31) is the inverse of P. It increments 
the counter of a semaphore, and if the result is non-positive, makes 
a process that was blocked on the semaphore ready. If more than one 
process is blocked on the semaphore, VEND finds the process that has 
been blocked the longest, and VUNCHAIN removes it from the queue. 
PSWAP is invoked because a process that was blocked is now ready and 
PSHAP may want to allocate the CPU to it. 

Internrocess Communication 

Although the P and V primitives are probably sufficient for 
implementing any desired form of process synchronization, another 
mechanism, interprocess communication (IPC), is provided. The 
utility of IPC is that it allows the transfer of data between 
processes, and the receiving pr.ocess is provided with the 
identification of the sending process. 

Figure 32 shows the specification of IPCSEND, the first half of 
an IPC sequence. The security requirement for IPC is that a process 
can only send a messa~e to another process at an equal or higher 
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http:PSWAP.is


Function: KP 

Parameters: KP(aste#) 

Effect: 

IF AST_WAL(asteU, TCP); 


THEN: P(astefl); 
ELSE: RC(TCP) = NO; 

END; 

?'unction: P 

Parameters: P(smfr#) 

Effect: 

St,lFR_COUNT(smft'#) = 'SMFR_COUNT'(smfr#)- 1; 

IF S1FR_COUNT(smf'r1J) < 0; 


THEN: PT_FLAGS(TCP) = BLOCKED; 
PT_LINK(TCP) = 'SHFR_POINTER'(smfrfl); 
St·1FR_POINTER ( smfrit) = TCP; 
PSWAP; 

END; 

RC(TCP) = YES; 


Function: PSHAP 

Parameters: PSWAP 

Effect: 

IF (:}processif) ( PT_FLAGS (process#) = READY); 


THEN: TCP = process#; 
ELSE: WAIT; 

PSHAP; 
END; 

Figure 30. KP, P and PSHAP Functions 
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Function: KV 

Parameters: KV(aste#) 

Effect: 

IF AST_WAL(aste#, TCP); 


THEN: V(asteil); 
ELSE: RC(TCP) = NO; 

END; 


Function: V 

Parameters: V(smfr#) 

Effect: 

SHFR_COUNT(smfrff) = 'S~1FR_COUNT'(srnfr/f) + 1; 

IF Sr1FR_COUNT(smfr#) <= 0; 


THEN: 
IF Si1FR_COUNT(smfrfl) = 0; 

THEN: Let process# = 'S~'!FR_POINTER' (smfr#); 
St>!FR_POINTER(smfrfl) = 0; 

ELSE: Let process# = VEND; 
VUNCHAIN( 'S~·1FR_POINTER'(smfr/l) ); 

END; 
PT_FLAGS(processtf) = READY; 
PSvi AP; 

END; 
RC(TCP) = YES; 

Function: VEND 

possible values: process# 

Parameters: VEND(process#) 

Value: 

IF 'PT_LINK'(process#) = 0; 


THEN: processtf; 
ELSE: VEND( 'PT_LINK' (process/f)); 

END; 

Function: VUNCHAIN 

Parameters: VUNCHAIN(process#) 

Effect: 

IF 'PT_LINK' ( 'PT_LINK' (process/f) ) = 0; 


THEN: PT_LINK(process#) = 0; 
ELSE: VU!JCHA IN ( 'PT_LINK' (process/f)); 

END; 

Figure 31. KV, V, VEND and VUNCR~IN Functions 
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Function: IPCSEND 

Parameters: IPCSEND(process#, message, domain) 

Effect: 

IF (PT_FLAGS(process#) ~ INACTIVE) & 


(((PS_CUR_CLASS(process#) L PS_CUR_CLASS(TCP)) & 

(PS_CUR_CAT(process#) ;2 PS_CUR_CAT(TCP))) 

(PT_TYPE(TCP) =TRUSTED)) & 

( 'PT_IPC_QUGTA' (process#) i. 0); 

THEN: Let ipce# = 'IPC_LINK'(O); 


IPC_LINK(O) = 'IPC_LINK'(ipce#); 

IPC_LINK(ipce#) = 0; 

IPC_PROCESS(ipce#) = TCP; 

IPC_DOlvlAIN(ipceil) = domain; 

IPC_DATA(ipce#) = message; 

IF 'PT_IPC_QUEUE_HEAD'(process#) = 0; 


THEN: PT_IPC_QUEUE__HEAD( processif) = ipce/1; 
ELSE: Let eipce# = 

FINDIPCEND( 'PT_IPC_QUEUE_HEAD'(process#)); 
IPC_LINK(eipcetf) = ipce/F; 

END; 
PT_IPC_QUOTA (process//) = 'PT_IPC_QUOTA' (process/f.) - 1 ; 
IF 'PT_IPC_HAIT'(process#) = ON; 

THEN: PT_IPC_HAIT(processff) = OFF; 
PT_FLAGS(process#) = READY; 
PSHAP; 

END; 
END; 

Function: FINDIPCEND 

possible values: ipce# 

Parameters: FINDIPCEND(ipce#) 

Value: 

IF IPC_LINK(ipce#) = 0; 


THEN: i pee#; 
ELSE: FINDIPCEND( IPC_LINK( ipce#)); 

END; 

Figure 32. IPCSEND and FlliDIPCEND Functions 
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security level, unless the sending process is a trusted subject. In 
this case there are no security requirements. The object in an IPC 
sequence is an IPC element. The basic functions of IPCSEND is to 
allocate an IPC element from the free pool, fill it in with the data 
being transferred and sending process identification, and add it 
(using FINDIPCEND) to the queue of elements waiting to be received by 
the receiving process. The process identification includes a domain 
indicator to allow the receiving process to distinguish between 
messages originating in the kernel domain of some other process and 
messages originating in the user domains. 

On the receiving side there are two cases: 1) the receiving 
process is blocked because it is waiting for a messa~e and until this 
IPCSEND there were none available; and 2) the receiving process is 
not waiting for a message. For case 1) the receiving process becomes 
ready and PSWAP is invoked to allow the CPU to be reallocated to it, 
if tha£ action is dictated by PSWAP's CPU allocation policy. 

Since IPC elements are a finite, shared resource, it seems 
reasonable to control allocation of them with a quota mechanism. 
Intuitively, one might think that the quota would be imposed on the 
sending process in an IPC sequence. When a process sent a message, 
its quota would be debited; when a message was received and the IPC 
element was returned to the free pool, the sending process's quota 
would be credited. The problem with this approach is that an action 
by the receiving process, which may be at a higher security level 
than the sending process, modifies the quota of the sending process. 
The sending process could determine if its quota had gone to zero by 
trying to send another message to a second process at the same 
security level and observing a segment shared with this second 
process to see if the message is actually sent. Without giving all 
of the details, we hope that the reader can see that this quota 
implementation would not be secure, because a high~r level process 
could "signal 11 a lower level process. 

An alternative quota implementation is to debit the quota of the 
receiving process when some other process sends it a message, and 
credit the receiving process when it actually receives the message. 
As the specification shows, this is the method used in the 11/45 
design. If the IPC quota of some process has gone to zero then no 
other process can send it any messages. This is not a security 
problem, because a process can only determine if its IPCSEND was 
successful or not if it is sending to a process at the same security 
level. 

The second half of an IPC sequence occurs when a process invokes 
IPCRCV ( IPC receive, see E"igure 33). Again there are two cases: 1) 
there are one or more messages waiting for the pr.ocess; and 2) there 
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Function: IPCRCV 
Parameters: IPCRCV 
Effect: 
IF 'PT IPC QUEUE HEAD'(TCP) = 0; 

THEN: PT_IPC_WAIT(TCP) = ON; 
PT_FLAGS(TCP) = BLOCKED; 
PSWAP; 
IPCRCV2; 

ELSE: IPCUNQUEUE; 
END; 

Function: IPCUNQUEUE 

Parameters: IPCUNQUEUE 

Effect: 

Let ipcef! = 'PT_IPC_QUEUE_tlEAD' (TCP); 

PT_IPC~QUEUE_HEAD(TCP) = 'IPC_LINK'(ipce#); 

RC(TCP) = IPC_PROCESS(ipce#), IPC_DOMAIN(ipce#), IPC_DATA(ipce#); 

IPC_LINK(ipce#) = 'IPC_LINK'(O); 

IPC_LINK(O) = ipce#; 

PT_IPC_QUOTA(TCP) = 'PT_IPC_QUOTA'(TCP) + 1; 


Function: IPCRCV2 

Parameters: IPCRCV2 

Effect: 

IF 'PT_IPC_QUEUE_HEAD'(TCP) ~ 0; 

THEN: IPCUNQUEUE; 
END; 

Figure 33. IPCRCV, IPCUNQU1~E and IPCRCV2 Functions 
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are no messages waiting for the process. In case 1) IPCUNQUEUE 
unqueues the IPC element that has been queued the longest, moves its 
contents to the process's RC object, returns the IPC element to the 
free pool, and credits the process's quota. In case 2) the process 
becomes blocked until a messa~e is received. At that time IPCRCV2 is 
invoked to receive the message. 

POLICY FUNCTIONS 

In any system it is desirable to separate policy and mechanism. 
This is particularly true in secure systems, where the size and 
complexity of the kernel must be minimized. The kernel must contain 
the mechanisms for implementinF, the elements of the system and the 
security policy for controlling access to these elements. P,_ny:;:;p<:'f'l,'i~:y 

f,fra."t~:i:f)TTuerices' fFre:··a1loc2:tion,·qr-physical. resources heed not, ·_?n,ck 
§hourd:;::n_oj:;-,-~.be. in __ t,he -kernel. Tp_e actual allocation of resources.~. 

. '··-- ¥>f•~ 

~crst;:q;r~.perf:o-Pmed ... by. tne ·J::;;::pl'_Ye~t~h'1.~i~,d~~-G.11X':...e~_an_d cg('r_qqJ..,:nanneJ::'t For 
these reasons it is necessary to have external kernel functions that 
communicate policy decisions made outside the kernel to the 
implementation mechanisms within the kernel. The effect of all of 
these functions is to simply change the representation of the current 
security state. 

Memory Control 

The 11/45 kernel design views main memory as a series of fixed 
sized blocks. The size of a block must be a multiple of the minimum 
segment size supported by the 11/45's MMU (64 bytes). The initial 
implementation uses 256 byte blocks. Adjacent blocks can be combined 
into main memory segments. Characteristics of a main memory segment 
include: 1) the address of its first block; 2) its size; and 3) the 
virtual memory segment bound to it, if any. The first block crf a 
main memory segment is either FREE or ALLOCATED, all other blocks are 
CONCATENATED. 

The kernel design assumes the existence of a memory control 
function with the task of keeping the free memory chain in "~ood 
shape" - sufficient free main r:1emory segments of different sizes so 
that the FINDFREE subfunction of SWAPIN always succeeds. In order 
for the memory control function to operate properly it must be able 
to observe the state of main memory, decide how it should be changed, 
if at all, and communicate its.decision to the kernel. To make the 
necessary observations it must have read access to the MBT (Memory 
Block Table) and AST. These tables have a security level of system 
high, because they contain system-wide information on the mapping of 
virtual resources into physical resources. ·Therefore, the memory 
control function cannot be distributed among all process - it must be 
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isolated in a process at a system-high security level. There is no 
need for this process to be trusted, because the kernel does not 
depend on its correct operation, and this process can only 
communicate with other system-high processes. If the process does 
not operate properly the system may fail, but there will be no 
security compromise. 

Figure 34 shows the functions that the memory control process 
can use to communicate its policy decisions to the kernel. One of 
these functions, KSWAPOUT, directs the kernel to swap a segment out 
of :nain memory. Before invoking SHAPOUT the kernel insures that the 
specified segment is eligible to be swapped out. Note that the 
kernel does not check the identity of the process that invokes 
KSWAPOUT. The only security requirement is that the data base that 
must be observed in order to make intelligent use of the memory 
con~rol functions has a security level of system high. Since the 
kernel makes no assumptions about the correct use of the ~e~ory 
control functions, there is no need for it to check the invokin~ 
process's identity. For practical reasons the operating system may 
choose to prevent user processes from using these functions. 

It may not be necessary to swap a segment out of main memory to 
make room for another - changing the size of free main me~ory 
segments may be sufficient. CONCAT and SPLIT are two functions for 
performing this operation. The parameter of CONCAT is the blockf.! of 
a rr.ain memory segment. The kernel requires that this segment be free 
and that the next segment in the free chain be adjacent to it. The 
two segments are then concatenated into a single free seg~ent. The 
parameters of SPLIT are a block# and size. The kernel requires that 
the blockf/ identify a free main memory segment whose size is greater 
than the size parameter. It then splits the segment into two 
segments; the size of the first is equal to the size parameter. 

In any system where memory is dynamically allocated to and 
deallocated from different sized elements, fragmentation can be a 
problem [Knuth]. During kernel operation, it is possible that there 
may be enough free memory for a segment that must be svrapped ·in but 
there is no combination of KSWAPOUTs, CONCATs, and SPLITs that can 
form a free main memory segment of the proper size. The problem can 
only be solved by reallocating virtual memory segments to main memory 
segments. Virtual memory segments, locked in or not·, can be moved 
from one area of main memory to another because the memory ~anagement 
unit prevents the use of physical addresses. In fact, the only 
places that physical addresses need occur are in the AST and se~ment 
descriptors. Thus a function could be provided to physically move a 
segment from one area of main memory to another and make the 
necessary corrections to stored addresses. A specification for this 
function is not given because it may not be necessary for all systems 
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Function: KSWAPOUT 
Parameters: KSHAPOUT(block/1) 
Effect: 
IF (~!BT_FLAGS(blockft) = ALLOCATED) & 

(AST_LOCK(~1BT_ASTE(block#)) = UNLOCKED); 
THEN: SWAPOUT(t-JBT_ASTE(blockft)); 

END; 

Function: CONCAT 
Parameters: CONCAT(block#) 
Effect: 
Let next_blockff = t1BT_CHAIN(block/f); 
IF (t·lBT_FLAGS(blockii) = FREE) & 

( 'HET_SIZE' (block#) + block# = next_block/f); 
THEN: HBT_SIZE(block) = 't1BT_SIZE'(blockff) + 

i·IBT_SIZE ( next_block#); 
MBT_CHAIN(block#) = l1BT_CHAIN(next_blockff); 
t·1BT_FLAGS(next_blockfl) = CONCATENATED; 

END; 

Function: SPLIT 
Parameters: SPLIT(block#, size) 
Effect: 
IF t1BT_FLAGS(blockft) = FREE) & 

(HBT_SIZE ( b lock/t) > size); 
THEN: Let new_block# = block# + size; 

MBT_FLAGS(new_block#) = FREE; 
MBT_SIZE(new_blockft) = 'HBT_SIZE'(block#) - size; 
MBT_SIZE(block#) = size; 
HBT_CHAIN(neH_blockft) = 'HBT_CHAIN' (block#); 
HBT_CHAIN(block) = neH_block#; 

END; 

Figure 34. KSWAPOUT, CONCAT and SPtiT Functions 
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to be built on the PDP-11/45 kernel. 
\ 

Before going on to process control it should be noted that the 
need for the memory control functions and software to use the~ is a 
result of implementing multiple sizes of unpaged segments. If all 
segments were a single size or composed of fixed sized pages 
(assuming hardware support for segmentation and paging), then memory 
allocation would be much simpler. 

Process Control ' 

t7·'§1Hce~·crur::aef-i.r1ftf'O-ri-~o:f'--a-'"5Bcuri t y" ~ompr.omi s e-- ;j_o_e.~'-l10.t7 i ncl.ud1e~\ 
a'eni:ll of service,...,.,-it-o·is-not necessary-for-,the prcc-sss sche:::uli:1g \ 
pbliey to be ...im.plemented .. Hithin the ke~ne.l,;? Schedulinf; decisions can 1 

be made outside of the kernel and the results communicated to PSI-lAP, ' 
the process multiplexor, by suitable external kernel functions. The 
actual mechanisms used are somewhat arbitrary and should depend upon 
specific system requirements. 

As an example, let us postulate that PSWAP implements a policy 
of allocating the CPU to the ready process with the highest priority, 
and within groups of processes with equal priorities the CPU is 
multiplexed in a round-robin fashion. This policy seems simple 
enou~1 to justify implementation within the kernel - a dozen higher 
level language statements should be sufficient. To meet system 
requirements it may be necessary to dynamically adjust process ~ 

priorities. Thl:: reqti.f're!rie nt can-·be met by havi r:<:; the !.-:erne l ass:;}pe 
&ne·~:exi ste-nc-e _of a':scheduler and--providi!ig it with a function to' 
""ange..,proces_~.J~T.t9)'-:;i,.~i.I1.$_,J 

There are at least two ways to implement a scheduler: 1) the 
scheduler can be distributed among all processes; or 2) it can be 
isolated in a process of its own. If it is distributed, then the 
scheduler can make decisions about a process's priority based only 
upon that process's behavior. If the process is in a highly 
interactive phase, the scheduler may choose to give it a high 
priority, and if it is compute bound (doing a large compilation, for 
example) it may have a low priority. If scheduling decisions are to 
be based on the relative behavior of all processes, then the 
scheduler must be isolated in a sin~le process, because the 
information it must observe is at system high. This scheduler would 
insure that it is scheduled with a certain frequency, and each time 
it ran it would observe recent.system behavior and adjust priorities 
appropriately. It is also possible to include time-slicin~ in this 
approach. The scheduler indicates to the kernel what processes are 
to be eligible for time slicing and the appropriate time quantums. 
The actual management of the interval timer-would be by PSYAP. 
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The point of this discussion is to show that since our 
definition of security does not have any i~plications on scheduling 
policy, scheduling can be done in a variety of ways. By selecting 
appropriate kernel functions it is possible to separate the process 
multiplexing mechanism from scheduling policy. 

INPUT /OUTPUT 

Up to this point the design details include no explicit 
provision for I/0. The reason for this apparent om+fsion is that I/0 
can be entirely transparent to the security kernel. If we 
postulate a system where all devices operate in a unilevel mode and 
the attachment of I/0 devices to processes is performed at system 
initialization, then there is nothing more to do. Since the MMU will 
enforce the controlled access to the I/0 devices, and the unilevel 
operation does not require computer generated security labels, all of 
the I/0 can "be performed entirely by uncertified software. 

If requirements de~and a more flexible system environment, then 
it may be necessary to introduce additional kernel functions. For 
example, if we wish to multiplex the line printer among different 
security levels but retain unilevel printer operation, it will be 
necessary to perform a security reconfiguration on the printer each 
time a level change is desired. Externally, this reconfiguration may 
just be a change of the printer forms. Internally, it will be 
necessary to change the security level of the segment that contains 
the printer's control registers to reflect the security 
reconfiguration. The kernel can provide a function to change the 
security level of a segment, and it can insure that changes are only 
made that keep the system in a secure state (in terms of triples in 
b, the *-property, and the compatibility requirement), but the kernel 
cannot determine if"the change of security level is "appropriate". 
Thus the kernel must restrict the use of this change function to 
trusted processes, and trusted processes that use it must be 
certified to use it correctly - for example, to assure that the 
change of security level of the printer control segment is 
coordinated with the change of forms. 

If we wish to avoid reconfi~urations and operate the printer in 
a multilevel mode, then it will be necessary to run the printer with 

17 By I/0 we really mean external I/0- the transfer of information 
into and out of the computer system. Internal I/0 is used in 
implementing the virtual memory and is completely controlled by the 
security kernel. A.lso, He are only alloHing non-D11A devices to be 
used for external I/0. 
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a certified process. Since only the printer process knows the 
security attributes of the information that it is printing, this 
process must produce security labels on the documents it prints. The 
process must be certified to produce correct labels that cannot be 
altered or "spoofed" by uncertified software. 

fne--~ requirements ··ror te·~~in~ls--~r;"~·i;i-i-~r~:-·:_:_iF,';::re-rmfnaY':13''~lo 
b_e used at different levels, then, Hh9n !'l user specifies the security 
level 2.t \>lhich he Hisi1es to operate, there must be a inechanisin to"'' 
guarantee that he is talking to certified software,-~nd not tw 
6n':!ertified software spoofinr; certified:softHat·e. Oneway t'C 
i~plement such a ~echanism is to use terminals that ~enerate a uniqve 
fnterrupt Hhen they are po;:'9red on, "lnd to vectot~ this in~:'jt'rupt i.nto 
t;he·"·kernel. Thus·, .i.f _the user tut·ns the terminal on before l(Jgginvr 
~n;:rrwe. can gua.rantee_~j:,hat, l!_!?.,.:;i,:~;;,,t.i~tlk.~_ng,_~Q:,a --c~_r_t;i(i,e9 J.og-~et;'t 

SUHHARY 

In this section we have presented the kernel primitives that 
will support a static system. In a static system all software 
configuration decisions, including the security level of shared I/0 
devices (printers, card readers, etc.), and non-shared devices 
(terminals), and the binding of users to processes, are made at 
system initialization. The kernel, of course, depends upon the 
initial state of the system being secure. Although initialization is 
beyond the scope of this paper, secure initialization simply requires 
that all of the triples in the initial b are correct with respect to 
the security condition and the *-property, and that the initial 
hierarchy is compatible. User requirements will determine what the 
actual initial state of a particular system is. 

In most systems a static software configuration Hill not be 
acceptable - at a minimum it will be necessary to permit users to log 
on and off the system. This feature must be supported by kernel 
primitives that bind/unbind users to/from processes. This action 
includes the initialization of processes - an operation whose 
security requirements are similiar to system initialization. Thus, a 
ccmplete kernel design specification for a dynamic system Hill 
include functions for initializing and terminating user processes. 
The actual initial state of a user process will probably depend upon 
the requirements of the specific system. 
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SECTIOi~ V 

SUMHARY 

In this paper we have presented the design of a secure system 
kernel for the PDP-1 1/45. The kernel design is based on a 
general-purpose'mathematical model of secure computer systems. Yhis 
section summarizes the accomplishments and limitations of the design 
to date. 

DESIGN LIMITATIONS 

Although the design is based on a proven model of security, He 
have not yet proved that the design corresponds to the model. Thus, 
there may be errors in the design. A methodology for proving that 
the design and implementation representations of a kernel correspond 
to the model has been developed [Bell and Burke]. This methodology 
has been applied to part of this kernel design, and the results 
demonstrate the validity of the proof approach and the correctness of 
the relevant parts of the design. We are confident that any errors 
in the design are not fundamental problems and can be easily 
corrected. 

There is one aspect of the model, however, that in extreme cases 
could be viewed as a fundamental problem. The model is based on an 
asynchronous view of computation. Thus it is possible for programs 
executing outside of the security kernel to influence the response 
time thai other programs see, and to use this ability to modulate 
response time to send "Morse code" [Lampson]. vJe feel that the 
presence of this uncontrolled communication channel is an intrinsic 
problem, but not a serious one because: 1) the kernel can reduce the 
bandwidth of the channel to any desired value by adding noise; 
2) the use of this channel to pass information at one security level 
to a lower level requires cooperating processes at both levels that 
are able to synchronize with each other; and 3) if we have solved all 
other problems we have made a great deal of progress in computer 
security. 

The treatment of hardware in this paper has been limited to a 
discussion of characteristics that the kernel depends on. Two other 
aspects of hardware are important - its correctness and the 
possibility of component failure. By correctness we mean the 
correspondence of the actual hardware to a formal specification that 
describes its behavior. The part of the hardware that the kernel 
depends on, access controls and many instructions, must be correct. 
An error in the hardware will have the same effect as an error in the 
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Function: CONNS8T ' 

Parameters: CON~ECT(processC, daste#, entry#, mode) 

Effect: 

IF 'ps_sEG'(prG(:essif, 0) = 0; 


THEN: RC(process#) = NO; 

ELSE: Let f12,g = 'HASH'(DIR_DISK(daste#, entry/f)); 


IF 	 (flag J 0) & 

'AST_CP L' (flag, process#); 

THEN: fC(process#) = NO; 

ELSE: 


IF f'lag I. 0; 
THEN: Let aste# = flag; 

IF 'AST_AGE' (astet.f) = AGED; 
THEN: UNAGE(aste#); 

END; 
ELSE: ACTIVATE(daste#, entry#); 

Let asteit = HASH(DIR_DISK(daste/1, entryil) ); 
UNAGE(astefl); 

END; 

AST_CPL(astefl, process#) = TRUE; 

IF mode = HRITE; 


THEN: AST_WAL(asteil, process/f) = TRUE; 
END; 
Let seg# = 'PS_SEG'(process#, 0); 
PS_StG(process#, 0) = 'ps_SEG'(process#, segil); 
PS_SEG(process#, seg#) = aste#; 
PS__SEG_INUSE( processi}, segfl) = TRUE; 
RC(process#) = YES, seg#; 

END; 
END; 

Figure 22. CONNECT Function 
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software security controls - it will allow repeated and undetectable 
penetration of the system. Component failure, on the other hand, is 
a probabilistic event. The probability that component failure will 
allow a security compromise can be reduced by adding redundancy, but 
never eliminated. The impact of component failure on computer 
security should be addressed by future research. 

One final comment on hardware: the design considers only sin~le 
CPU (central processing unit) systems. Support for multiple CPU's 
would add complexity to level 1' but could be accomplished with 
existing mechanisms (P and V primitives). 

ACCOHPLISHHENTS 

The principal achievement of this work is a feasible design for 
computer systems that can be proven to implement an abstract model of 
the Department of Defense Security Policy. The model and desi~n 
provide a high degree of confinement of the actions of arbitrary 
(uncertified) programs. Included in the design is a clean handling 
of user I/0. Althou~h the features provided by the design are in 
some sense arbitrary (for example, another desi~n misht do without 
the IPC objects), the security controls are in no way ad hoc- they 
can be proven effective in a rigorous, mathematical manner. 

In summary, this paper demonstrates the soundness of the 
security kernel approach to solving the computer security problem by 
presenting a prototype kernel design. The work ahead includes 
designing a kernel for a large scale system with specific 
requirements in such a way that the impact of the kernel on 
efficiency is acceptable, and finding new hardware architectures that 
facilitate secure system development. 

~£?;~~;....;;u.~ 
W. Lee Schiller 
Intelligence and 
Information Systems 
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' APPENDIX I 

SYNCHRONIZING PRIMITIVES 

The systems to be built on the PDP-1 1/45 will be composed of 
parallel sequential processes, and consequently, primitives for· 
synchronization are requi~ed. The primitives we have chosen are 
Dijkstra's P and V operations. This appendix provides back~round for 
understanding them. (Some of this material has been taken from 
[Dijkstra (1)] and [Horning & Randell]). 

The P and V primitives operate on special purpose inte~er 
variables called "semaphores". Semaphores are usually initialized 
with the value 0 or 1. A P operation decreases the value of a 
semaph~re by 1. If the resulting value of the semaphore is 
non-nep::ative, the process performing the P can continue; if, hoHever, 
the resulting value is negative the process becomes blocked and is 
placed on a queue associated with the semaphore. Until further 
notice in the form of a V operation on the same semaphore by some 
other process, the dynamic progress of the first process is not 
logically permissible and a processor will not be allocated to it. 

A V operation increases the value of a semaphore by 1. If .the 
resulting value of the semaphore is positive, the V has no further 
effect; if, however, the resulting value is non-positive, one of the 
processes on the semaphore's waiting queue is removed - its dynamic 
progress is again logically permissible and a processor may be 
allocated to it. 

Several observations can be made from these definitions. If a 
semaphore value is non-positive its absolute value equals the number 
of processes on its waiting queue. P and V operations must be 
"indivisible actions" - they cannot occur "simultaneously" in 
parallel processes. When a V causes a process to be removed from a 
semaphore's waiting queue it is undefined - logically immaterial ­
which process (if more than one is waiting) is actually removed. (In 
the 11/45 kernel implementation the process waiting the longest will 
be removed.) Finally, a consequence of the P and V synchronization 
mechanism is that a process whose dynamic progress is permissible can 
only lose that status by actually progressing - by performing a P. 

Semaphores can be used in.two different ways. The first is 
mutual exclusion - the protection of a critical section of program 
code or data- and it requires a semap~ore, initialized to 1, for 
each critical section. If all processes precede entry to a critical 
section with a P on that section's semaphore, and perform the 
corresponding V on exit, them it can easily be shown that two or more 
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processes can never be in the critical section simultaneously. The 
second use of semaphores is to synchronize "producer-consumer" 
relationships among processes. When a consumer requires a resource 
it performs a P; the corresponding V is performed by a producer when 
it makes a resource available. The correct iriitialization of the 
semaphore (usually to 0) insures that the consumers do not ~et ahead 
of the producers. It should be pointed out that although the use of 
?'s and V's faqilitates the demonstration of correctness, their use 
does not guarantee correctness. The appropriate conventions for 
using the system's semaphores must be established, and these 
conventions must be followed by the cooperating sequential processes. 
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