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ABSTRACT

This paper presents the design of a kernel for certifiably
secure computer systems being built on the Digital Equipment
Corporation PDP-11/45. The design applies a smeneral purpose
mathematical model of secure computer systems to an off-the-shelf
computer. An overview of the model is given. The paper includes a
specification of the design that will be the basis for a rigorous
proof of the correspondence between the model and the design. This
design and implementation has demeonstrated the technical feasibility
of the security kernel approach for designing secure computer
systems. ’

This work was carried out by The MITRE Corporation under contract
to the United States Air Force Electronic Systems Division, Contract
F19628-75-C-0001. _ S ’
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PREFACE

The security kernel design given in this paper is a major
revision of a kernel design described in [Schiller]. In the original
design a distinction was made between the information and control
structures of a computer system, and the access controls dictated by
our mathematical rmodel of secure computer systems were only applied
to the information structure. To protect the control structure we
stated that "it is the responsibility of the system designer to
systematically determine all possible channels throuch the control
structure . . . (and prevent) the associated state variable from
being controlled and/or observed". After that design was published
it became obvious that the approach to protecting the control
structure was not adequate. The systematic determination of channels
was equivalent to having a model that protected the control
structure.

Consequently, refinements were added to the model to allow the
same mechanisms to protect both the information and control structure
objects of a system. The basic technique used is to orzanize all of
the data objects in the system into a tree-like hierarchy, and to
assign each data and control object explicit security attributes.

The major difference between the revised desisn given in this paper
and the original design is the incorporation of the model
refinements. In addition, this paper benefits from zn additional
year’s study and understanding of the computer security problem.
Familiarity with the original design is not required.
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SECTION I

BACKGROUND

INTRODUCTION

The PDP-11/45 Secure System Design is intended to provide a
design, based on a general purpose mathematical model of secure
computer systems, for building secure systems on the Digital
Equipment Corporation PDP-11/45, an off~-the-shelf computer. The
primary goal of the design is to bridege the gap between the abstract
secure system defined by the model and the elements of
state-of-the-art hardware and software systems. A secondary goal is
to develop a design that applies to specific systems to be
implemented on the PDP-11/45. The approach taken has been to apply
the model, which is completely seneral in its nature, to a design
that will support non-trivial systems with security requirements.
The model is applied to the PDP-11/45 hardware which is sufficient to
support the model and secure systems, but not as complex as other
available hardware. The technical issues of special interest are the
mathematical modeling of secure systems, the secure system software
design, and the impact of hardware on the design. This report
presents the design and discusses the decisions made in generating
the design. This section provides background for understanding the
general problem area and the approach taken in attacking it. (Some
of the material in this section has been taken from [ESD] and
[Lipner].)

THE PROBLEM OF COMPUTER SECURITY

As larger, more powerful computers are emplcyed for Air Force
information systems, the desirability of operating in a "multi-level
security" mode increases. A computer operating in such a mode
performs simultaneous processing of data having different levels of
classification and provides simultaneous (typically on-line) support
to users with differing clearance levels. This mode of operation is
desirable because it is often impractical to clear all system users
for the highest level of data, or to separate the processing of
different levels by time of day. The most severe multilevel security
problem is presented by an "open" system -~ one in which uncleared
users have access to a computer that is processing classified data.
As recently as 1970 experts in the field felt that the provision of
security for a general purpose computer system operating in an open
environment was beyond the state-of-the-art.



The primary problem of computer security is that of
certification: how can one assert that a system provides adequate
security for a given application. The problems of certification
range from specification through the production of correct hardware
and software to testing. Previous work in this area has convinced us
that security cannot be "added onto" existing computer systems.
Current systems (IBM’s 0S/360/370 and Honeywell’s GCOS, for example)
are notoriously easy to penetrate. Attempts to "repair" contemporary
systems are expensive and increase the malicious user’s cost to
penetrate by a negligible amount. The selective reimplementation of
contemporary systems would cost even more and would at best serve to
increase the cost of penetration [Anderson]. The only feasible
approach to providineg security (and therefore completely blocking
penetration attempts) is to consider the problem of security and
certification throughout the whole system development process - from
specification to design, implementation, and testing.

BASIC CONCEPTS

The ESD computer security panel [Anderson] identified the
concepts of a reference monitor and security kernel as fundamental to
a secure computer system. The reference monitor is that portion of a
computer s nardware and software which enforces the authorized access
relationships between subjects and objects. Subjects are system
entities such as a user or a process that can access system
resources, and objects are system entities such as data, programs,
and peripheral devices that can be accessed by subjects. The
security kernel for a specific computer is the software portion of
the reference monitor and access control mechanisms. The reference
monitor must meet three essential design requirements:

First, the reference monitor must be tamperproof. It is obvious
that if the reference monitor can be tampered with, its ability to
protect programs and data can be destroyed. In the most elegant
case, the reference monitor can protect itself with the same
mechanisms it uses to protect other information.

Second, the reference monitor must be invoked on every attempt
to access information. This requirement does not mean that the LOAD
and STORE instructions of a user’s process must be executed
interpretively by kernel software with extensive checks. Rather,
every reference must be checked by either software or hardware that
is provided with sufficient information to make the correct decision
on granting or denying access. '

Finally, the reference monitor must be subject to certification.
"Sub ject to certification” implies that the reference monitor’s

8



correctness must be provable in a rigorous manner using a
mathematical model as the basis for the criteria to be met.

In addition to meeting the above requirements, a reference
monitor must also implement a well defined set of access control
rules. In the case of a secure computer system for military use,
these rules are defined by military security regulations. Basically,
they require that a user be cleared to the proper level, have any
formally defined special access permissions {categories) that may be
required, and have a '"need-to-know" before he is allowed to access
information.

The approach to obtaining a secure system involves first
defining the security requirements, and then creating a conceptual
design that can be shown to provide the required protection (i.e., a
model). The model formally defines an ideal system (in our case one
that complies with military security requirements), and provides a
basis for testing a subsequent implementation. Once a reference
monitor that meets the requirements previously described has been
implemented, ccmputer security has been achieved. Of the software in
the system, only the kernel (the software portion of the reference
monitor) need be correct. The access controls and all of the other
features of the hardware on which the kernel depends must be correct.
The operating system proper and/or applications software can contain
inadvertently introduced bugs or maliciously planted trap doors
without compromising security.

SUMMARY

In this section we have presented the problem of computer
security and an outline of an approach for solving it. The remainder
of the report will present a design for a kernel which will serve as
the basis for secure systems to be built on the PDP-11/45. The first
application of the 11/45 kernel will be to support a file system for
a multilevel data base.



SECTION II

TECHNICAL APPROACH

INTRODUCTION

This section presents'the technical approach to designing a
security kernel for the PDP-11/45. The subsections discuss the
objectives of the design effort, how the design relates to the design
of the Multics system, the mathematical model that is the basis for
the design, hardware requirements for secure systems, and finally,
some of the special problems presented by I/0 (input/cutput
processing) in a secure systen.

OBJECTIVES

A long range goal of our work in the area of computer security
is to solve the complete security problem. We would like to build a
ccrpletely general (i.e., "computer utility") system that can be
certified (proven) secure. This work includes developing
mathematical models of secure ccmputer systems to serve as a basis
for subsequent designs, and identifyine appropriate characteristics
that the supporting hardware should have.

As a subgoal we want to build a prototype secure system to
verify our ideas about computer security and apply them to perform
useful work in the near term. This prototype system will not have
all of the capabilities of a general purpose system and will be built
on hardware that is less complex than the hardware reqguired to
support a computer utility. The advantages of building a prototype
are: 1) it presents a problem of reduced complexity and therefore
increases the likelihood of success in the near term, and 2) the cost
of implementing a prototype system in terms of time, manpower, and
equipment is much less than that of a general system. Although the
initial system to be built cn the 11/45 will be of limited generality
in its functional characteristics, the mechanisms for achieving
security will be based on completely general principles. Much that
is learned will be applicable to the solution of the general computer
security problem. Not only will the prototype development
investigate problem areas related to the security of general purpose
systems, but the resulting kernel design should be applicable to mini
and medium sized computer systems with a need for multilevel
security.

11



RELATION TC MULTICS

While most contemporary general purpose systems have notoriously
ineffective security controls, there 1s one system, Multics
[Organick], that is far superior with respect to security controls.
This superiority is no accident - protection of user information was
a key design goal from the inception of the Multics effort. Multics
has, however, been penetrated [Karger and Schell]. One could argue
that the lack of security in Multics is due to the design methodology -
its design is not based on a model of secure systems and no attempt
has yet been made to certify the Multics security controls.
Nevertheless, Multics is the prime system that a prospective secure
system designer can look to for positive guidance. Since the
structure of Multics has influenced the PDP-11/45 kernel and our
mathematical model of secure computer systems, a brief coverview of it
is given here. The material that follows is taken from [Bensoussan, .
Clingen, and Daley]. ' f,ﬂ

The key feature of Multics is its virtual memory. Hultics usestﬂjﬁﬁ
segmentation to satisfy two design goals: 1) to allow all on-line .~ uf
information stored in the system to be directly addressable by a
processor and hence available for direct reference by any
computation; 2) to control access, at each reference, to all on-line
information. The basic advantage of direct addressability is that
the copying of data is no longer mandatory. Many users can share a
single copy of a compiler or other system procedure, and users need
not have an I/0 system read portions of data files into main memory
and then write the data back out.

If all information in the system may be directly addressable,
then there is an obvious need to control access to this information
both for the self-protection of a computation from its own mistakes,
and for the mutual protection of users sharing the system from each
other. TREITECHATHUS TSY dchieVing orotectlon 1sTES ﬂomoartmentallze
gl inforpation into -seaments,” and *f}ﬁs;001ate with each secment F
set of access attributes-for’ each user yho may ascess EHETsEZnsnY.
Segneubs arg directly. addréssable ‘and theladed¥s attributes are
ghacked by-thesHardware-upon-each ségiiesit reference  by.-any. users,

In nonsegmented systems, the use of core images makes it nearly
impossible to control shared information in core. Even if the
nontrival problem of addressing the shared information in core were
solved, access to this information could not be controlled without
additional hardware assistance. The different parts from which the
core image is synthesized are indistinguishable in the core image;
they have lost their identity and thereby lost all their attributes,
such as length, access rlchts, and name. Thus nonsegmented han wagg
és Hhadsquate. for controlled sharing in core memory~
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In segmented systems, hardware segmentation can be used to
divide a core image into several parts - segments. Each seegment is
addressed through a segment descriptor containing the segment s

~attributes; if these attributes include access at each reference,
then the hardware can control access to the information in the
segment at each reference.

If the nunber of seements that a user wishes to reference
exceeds the number of segment descriptors available to him, then
segmentation loses some of its effectiveness. The user may be forced
to call the supervisor to free segment descriptors so that they can
be reused to access other segments. This form of user controlled
segment descriptor allocation c¢an require a significant amount of
pre-planning by the user. Alternatively, the user can choose to
collect the information from several different segments into a single
segment. This approach is a form of buffering - it requires that
information be copied and lose its original identity. Multics avoids
these problems by providing a number of segment descriptors
sufficiently large to allow, in most cases, a segment descriptor for
each segment required for a computation. The Multics supervisor also
automatically assoclates a descriptor with a segment when the segment
is first referenced by a computation. Thus, Multics users need not
concern themselves with the allocation and deallocation of segment
descriptors, nor need they resort to buffering information.

In a system where the maximum size of any segment is small
compared to the size of main memory, it is possible to move complete
segments into and out of main memory. If, in this type of system,
different segments can have different current sizes, then the
allocation of main memory to segments can be a difficult problenm.
Furthermore, if, as is the case with Multics, segments can become
sufficiently large so that only a few can be entirely main nemory
resident at any one time, then memory allccation is made even more
difficult.

The allocation of main memory is vastly simplified by dividing
segments into equal-size parts called pages. .Alloecation of Spa“é‘tq
a“cﬂrwéﬁt’ismmade’or arper-page-basis, and. ‘all pages.are. the. sane

fsize? 1In addition to simplifying allocation, paging also permits
large segments to be handled with no problems because only those

pages of a segment that are currently being referenced need be in
main memory.

An address space in Multics is the set of segments that a
process can reference with a segment number - the set of segments for
which a process has descriptors. In*vgneralj'eaqnzpnphesu‘haswq
ubitaue.address.space. A key aspect of Multics is that its supervisor
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does not operate in a dedicated process or address space. Instead,
the supervisor is "distributed" - its procedure and data segnents are
shared among all Multics processes. The execution of the supervisor
in the address space of each process facilitates communication
between user procedures and supervisor procedures and the
simultaneous execution, by several processes, of supervisory
functions. Since supervisor segments are in the address space of
each process, they must be protected from user programs. This
protection is achieved by having the supervisory and user procedures
execute in separate domains (in Multics, protection rings).

The name of a segment and its other attributes (lenegth, memory
address, list of users allowed to access the segment, time of
creation, ete.) are kept in an entry in a catalogue. In Multics,
this catalogue is implemented with several semments of a special type -
directory - organized into a tree structure. The name of a segment
is a list of subnames that reflect the position of the segment in the
tree. The base directory of the tree is called the ROOT, and
subnames are separated by ">", Figure 1 shows a possible directory
hierarchy.

Comparing the Multics supervisor and the PDP-11/45 security
kernel is somewhat like comparing apples and oranges. Multiecs is a
prototype ccmputer utility that provides a variety of user-oriented
services. It is supported by a powerful and complex multiprocessor;
it has been operational since 1969; consists of about 300,000 lines
of source code [Organick]; and it is part of the product line of a
major computer system vendor (Honeywell Information Systems). The
11/45 kernel simply provides security controls for a reasonably
complex general purpose environment, but it does not support
user-oriented features. The 11/45 kernel is built on a
straightforward, medium-sized computer. The initial implementation,
which contains about 900 lines of source code, has only been
opera%ional since mid-1974, and it has not yet performed any useful
work. It might be appropriate to compare the Multics kernel with
the 11/45 kernel, or a general purpose operating system bullt on the
11/45 kernel with the complete Multics supervisor, but in both cases
the first item in the comparison does not currently exist.
Nevertheless, it is interesting to make some comparisons between
Multics and the 11/45 kernel.

T G S a g I VS L P e vl C b Ee S /S S
fthat.they both implement a one.level;-segmented virtual.memory with~g
fdirectory hierarchy,;and.bethsdistribute the supervisor/kernel acrcss

1A simple file system to run on the 11/45 kernel is currently being
implemented. .
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ach.prggess in ube “systen. 2 The supporting mechanisms are similar
to the extent tha they can be, but differences in the supporting
hardware have an impact in this area. The basic difference is that
the 11/45 kernel implements a set of primitives that allow algorithms
to operate within the virtual memory environment, whereas Multics
provides much more than a set of primitives. While protection of
information was a primary desien goal from the inception of the
Multics effort, and an attempt was made to isolate the protection
mechanisms from the rest of the supervisor by having them execute in
the most privileged domain (ring 0), the Multics system has been
penetrated - the Multics protection mechanisms are not effective
[Karger and Schell]. This lack of effectiveness may be due to two
causes: 1) ring 0 is rather large (about 60,000 lines of source codeg 4
[Saltzer (2)]) and extremely complex; and 2) the protection i”

mechanisms are not based on a model - there was no criteria for what' /&w”‘

belonged in ring 0 and what did not. Thus the fundamental difference
between the 11/45 kernel and Multics is that the 11/45 kernel is
based on a model of security and Multics is not. The use of a model
makes it possible to precisely define what compromises the 11/45
kernel and to rigorously prove assertions about its behavior.

THE MATHEMATICAL MODEL

One of the key aspects of the security kernel design is that it
is based on a mathematical model of secure computer systems ([Bell
and LaPadula], (LaPadula and Bell], and [Bell] T e development Qi
She model- “baca-feactionsbortherinadequacy: waconﬁemnorary svstemé
hlubCut godels £6rT diiidance; "system~designers-are. forgad £o: applx~aﬂ

hoc sscuprity-related technicues throuchout the design-andy

heRh 4

épyiﬂmenbatlon of. a .system. Designers use their intuition-=teg
Letermine the meLnods of would be penétrators ‘&nd attempt to bloc;iF
fhen ppropriately. - BUt. just as ‘testing can:only indicate the
presence, ..and not the absenoe, of buegs in“softivare;’ censtration?

gt cinpis .can only demchstrate-that- gisystem-iscnon~secure;=not -thak
dt is secure. Cconseguently, certi flcatlon of. systems - designed on they
Qasx: of intuition and ad hoc techniques, and tested to the point-of
gygﬁdccesspul.penetratlon attﬂmots,.1° notitechnicallyesdustified,

The model, in contrast, rigorously and precisely defines the
notions of "security" and "compromise'", and identifies elements that
correspond to those in real systems. The model is a finite state

2Clearly, these concepts were not developed independently by both
systems. The 11/45 kernel design evolved towards the Multiecs design
as the utility of its structure as a framework for protection
mechanisms became apparent.
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machine model and gives a set of rules of operation for making state
transitions. If the system is initialized to a secure state (and
again, the notion of secure state is rigorously defined}, then the
rules of operation guarantee that all subsequent states are secure.
These rules can be transformed into algorithms suitable for
implementation on a digital computer.

Two of the basic elements of the model are subjects and objects.
Subjects are active system entities such as users or processes that
can access system resources, and objects are passive system entities
such as data and program segments, and peripheral devices, that can
be accessed by subjects. The model defines types of access that a
subject may have to an object. These access types include read-only
access, append access, execute access, and write/read access, For
the 11/U45 kernel, only read/execute access (abbreviated read access)
and write/read/execute access (write access) are used in accessing
segments. -Agwpiteronly-asccess modémisuusedednsinberproceass

I3 2% .3 K3
bl s arm

CRRERATEATI0E.

State of the System

The state of the system with respect to security is represented
by four sets - b, M, £, and H [Belll. The set ¥Jindicates the
current access relationships between all subjects and objects - that

is, for-each subject b identifies the objects that the subject can

currently access and it also indicates the permitted mode of access.

Thus b is a set of triples of the form (subject identifier, object

identifier, access\que). ‘ » ﬂéwélﬁ

rlotrinfh
Eﬁﬁcorresponds to an access matrix and is used by the model .

implement "need-to-know" security. Elements of M are accessed by

subject identifier and object identifier, and each element of M

indicates in what mode, if any, the specified subject may access the

specified object. Thus, M represents the potential access of

subjects to objects. eidid e

T N e
The set’fﬁplves the security level of all subjects and objects

in the system. A security level is composed of two parts - a
classification (or clearance) and special access categories.
Classifications are strictly ordered - a subject cleared to secret
may access unclassified, confidential and secret objects. Categories
are not strictly ordered, but are partially ordered by set inclusion.
A subject with categories x and y may observe an object with category
x or categories x and y, but not an object with categories y and z.
The combination of strictly ordered classifications and partially
ordered category sets gives a security level that is partially
ordered. Thus it is meaningful to say that.one security level is
greater than, less than, equal to, or isolated from another security
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level. (Two security levels are isolated from each other if one is
neither greater than, less than, or equal to the other.)

Finally, the set {I3indicates how the objects are hierarchically ?<A/A¥ {"
organized in a directory-~tree structure.

The system satisfies the basic military security reguirements if
all triples in b (subject, object, access mode) are such that the
security level of the subject 1s greater than or equal to the

security level of the object. Igg\gézic rules of the model allow for
changes to b. If a subject wishes to add an object to its portion of

b in some mode, it invokes the model rule that governs the particular
state change. The algorithm of the rule consults f and M in
determining whether or not the state change will be permitted, and
adds the new triple to b, if the change is permitted. The model
assumes that subjects can and will access objects as permitted by b.
There are no security constraints on the removal of triples from b.

Potential Compromise

In addition to preventing explicit security compromises, the
model also prevents pctential security compromises. Potential
compromise is a meaningful situation within a computer system but it
has no analogy in the external "people/paper" system. If an
individual has a secret clearance he may read documents classified
secret, but ne may also write documents classified confidential. By
virtue of his clearance he is trusted not to include secret
information in the confidential document, in the same sense that he
is trusted not to disclose secret information in any other
unauthorized manner. When this individual is using a computer system
the situation changes, because programs that he has little knowledge
of will be executing on his behalf. For example, he may invoke a
compiler to translate a PL/I program intec machine language. One
could assume that the compiler performs the required language
translation and nothing else, but in building a secure computer
system we cannot assume that a program behaves properly (with respect
to security requirements). Rather, unless a program is proven to
behave in a certain fashion as described by a mathematical model or
formal specification, we cannot make any statements about its
behavior and must make the assumption that the program attempts to
violate security regulations. If in fact the program does act in a
malicious manner, then we say that it contains a "Trojan horse™"
[Branstad]. Continuing with our compiler example, in addition to
doing the translation, the compiler may copy some of the invoking
user’s secret information into an unclassified file. At a later
time, an uncleared user may read the unclassified file, thus gaining
access to secret information. The compiler had access to the secret
information because it was running on behalf of a user cleared to

18



secret. It acted the way it did because the compiler writer wanted
to penetrate the systen.

We can now restate the problem of potential compromise in terms
of the model. We say that the potential for a security compromise
exists if, for example, a subject simultaneously has read access to a
secret object and write access to an unclassified object. The
potential for compromise is realized if two events occur: 1) t?i/%»
subject, either inadvertently or deliberately, reads secret
information from the secret object and writes it into the
unclassified object, and 2) a second subject whose clearance level is
unclassified gains access to the unclassified object and reads the
secret information in it.

At least two ways of preventing this type of situation from
occurring are known. The first is to upgrade the classification of
the unclassified file to secret, which is known as establishing a
"high water" mark [Weissmanl]. The second way is to deny a subject
simultaneous write access to an unclassified file and read access to
a secret file and to prevent similar situations from occurring. This
second solution to the problem of preventing potentia§ security
compromises is defined as preserving the ¥-property. Jhe
Flrronerty reguires Ln t a51 Objects to"which a subient -hag-wurite
geoese nave tha same seeuwﬁtv Tever =znc chat all chjects. to which™is
REs Tead oo oSS Rave i S60uriev . 1evel . 1e5S than oP—egUal. Lo Lne. WhiLey
Bt Iy TETe T STNHCE Ta Subject will always have write access to
Some object if it is to perform a computation, we define the current
security level to be that level at which the subject wishes to have
write access. 1In determining whether or not to grant access to an
object, need-to-know is checked by consulting M, and then the N
security level of the object is compared to the subject’s current
security level to check that both the security and #¥-properties are
preserved.

It appears that in useful computer systems some subjects will
not be able to perform as required if the #*-property is applied to
them. For this reason the model introduoes the concept of trusted .
subject - .trustedssubiects do not have the ¥-Broperty applied K

SERen ™ 0uF trust TIH these subliests derives from-the-fact-that=ald
programsrihat “theyexecute are certified; to behaverin:a. mannewr
gonsistentswl th .security Feduirementss Thus, if a trusted subject
needs to invoke a compiler, then the entire compiler must be
certified to be free of any Trojan horses. The certification
requirement highlights the advantages of the ¥*-property. Since most
subjects will be untrusted there is no need to certify the programs

3

Pronounced '"star-property". The term is from [LaPadula & Belll].
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they execute. This situation is indeed fortunate because
certification of a complete operating system and user support
programs is far beyond current software technoloqy O?

Transition Rules 4&72‘%%2‘
The model provides rules that do things otker than change the

triples in b. HKules are provided for changing(M)and for creating and
gg;g&ingmgggigps. Since these rules give subjects a form of control
over objects, the model must have a mechanism to deal with control.

The mechanism used 1s to hierarchically orzanize the set of objects

into a directory tree. The use of this mechanism is not arbitrary -

it was chosen tec allow the application of security controls to every
object in a real computer system, rather than just the segments or
files. EVe”v c'ﬂ(“»'c<c¢ot fov'the rocf ob]QCDT‘AS”?ﬁ”ﬁbjéct‘thétﬁzs

FFECTLY Superior. torit“in the hierarchy: thiE b jsct caii~be cal leds
EREPAFEHT.  The number of cbjects that are dlroctly inferior to any
given object is arbltrary The ©W8d817s set. H.describes thg "1erarcE§

KR 6F‘ngec€é qUTEAnyY TRIveEn “instant LI a subject has write access to? A
'« "y Bome gbiect O, then it can crsate.new obigct§ inferior to 0 and it 3
*’1’5»«»’ ‘%©an chenrgs .?;,!1@,.,.@9995.§.£mv1lege_s,;.,‘fﬂczn_.ahl.l-ﬂ.,ot?J,e,__q;§_jlh__n,g,,e,mo.m.to 0.orh

24 idelete them; o -
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"““izﬁ Now that the form of control has been identified, the security f?A4
ﬁrwm " requirements for exercising control will be developed. Every object /
a«{/ has security attributes. These security attributes include the

PR
ecurlty level (classification ng cguegogy,set) the colum in M (/kgyw?ﬁ“ﬁﬁ»x/
the access pernlsslon57 an&ythe aturlbute that indicates

not the object exists.®If a subject has contro}
TR

&\over an
The

/{ﬁ//‘ “ whether

QA iy

can, in gehe?a S ecermine if thedsi ' "&”“”Eburred they have
w(Lnienpn_eflve) read access to the attributes, /If one subject has
4lwrite access to an object’s aﬁtrlbuf@?}and another subject has read Qf&ﬁ

] then informatlion can bé passed beftween subjects via these )4zﬂw/ﬁ%
attributes. The model must insure that this passage of information A w0 et

ff1~«¢-idoes not violate security requirements. | e /QJAy

The approach taken to this problem employs th¥ structure of L ﬁU@wﬂ/Aﬁ“
e 0 hleragghy_/ The attributes of an object are objectsN\themselves, ard CA o,
\ gu“ access 1s contrclled to these "attribute! objects in \the same manner Poee o

that cess to "ordinary" data objects is controlled. \ More

i
s

R \object creation tilme, whereas the access permission attviputes can be
modified any time af%er the object has been created.
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QM (ﬁ\?\}
gxb.@&-‘fipe01f1cally, the attributes of an object are kept in the object’s / /nf%’*(““
{@J&““ parent directory, and the security level of these attributes is the = jhyiavs
same as[ﬁaf)securff? leveTwftire gITeetory. Thus if ;? ‘
L1 .
L Secret oBject immedldTELly inferior Lo a confldentlal Jecvff hen thé s b ks
wt O confidential object is the secret obJect s parent director nd the hanwwﬁ“~¢b

N'QGE“ .security level of the secret object’s attrlbutes confidential. s nesd
. The security requlrements snould be clear. chanaes
Lo (writes) the attributes of some object than tg sub je ust Amj e
. currently have write access to the object s parent and if & rule)” _
ARG reads the attributes of an object (as the rules that add triples
é).\)\\ do) then the subject must have read access to the object’s parent.(AMAﬂﬁgﬁ/a
Vw\ﬂ° Since fthe *—propezézjis applied when access to directories is
& requested, the reading and writing of attributes cannot be used to
jé pass information from a high security level to a low security level.
o Thus the hierarchy allows the same mechanisms to protect both the / -
information content of objects and the attributes of objects. LSan;/fg/ﬁ

e

At the level of the model the only attributes that an object has
are secUFity ALtributes: IA tHE Process Sf designifig & s88urity
“Kernel an interpretation of the object abstraction must be made.
This interpretation will create additional attributes, and access to

) these new attributes cannot necessarily be controlled in the same way/ -~
7 as access to the security attributes is. We will deal with this '
’ problem of controlling access to non-security attributes in later
sections.
A few last points will be made to complete the discussion c¢f the |
hierarchy. If a confidential object is inferior to a secret object (p//*‘*f’/w)/)

571{/‘ then a subject cleared to confldentlgi—zgq‘HEVE? access the

g,/’// confidential obde 51n§Vd§ne subject can never have read access to
the secret object. To a d situations like this the concept of
"ocompatibility" 1s introduced. A higrirchy-is-ecompatible 1f security
18VElsaresnonsdecneasing aax-onesmovessdown the hierarchy  from-the’
beuE i.e., the security level of an object in the hierarchy must

always be greauer than ¢r equal to tﬁé securlty level of 1ts Qarent

) éﬁ“htf, the securlty 1evel of the subJect, and whether
or not it 1s truste d

R

;‘yﬁ,i% Zzb({,g}‘ é[’ CHtts é{/‘{//‘c /U Z(’bl{h (ﬁ:\f‘/
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\\\\\\kbase of the reference monitor must correspond to the model’s data

Relation to Reference Monitor

Now that an overview of the model has been given, the
relaticnships among the reference monitor concept, the model, the
security kernel, and hardware access controls will be discussed. The
reference monitor is an abstraction of the (hardware and software)
mechanisms that mediate all attempts by subjects to access objects.

The decision to permit or deny cess 1s a function of the reference
monitor’s internal data base. gg;»the system is to be at all dynamlqlgwﬁupa/
then this data base must be mo iable. The model is an ot et

interpretation of the reference monitor abstraction, and describes
the behavior of a secure system in terms of a four component data
base (b, 1, f, and H) and rules of operation. These rules specify
how the data base may be changed; they represent an "authorize"
operation. It is assumed that the access relationships specified by
b can and will occur - the "access'" operation is implicit. Clearly
the relationship(between the reference monitor and the model is that:
1) the reference monitor can only allow subjects to access objects as
permitted by its representation of the model’s set b; and 2) the data

- base and can only change as permitted by the model’s rules. f
-

. . 4
The reference monitor of a physical ccmputer system is reallzch

by a combination of hardware and software; the portion requlred in
software depends on the capabilities and limitations of the hardware,
For example, one might expect that the hardware architecture would
permit direct access to objects in all desired modes and that the
hardware access controls would constrain accesse’gfo those allowed by
b. The hardware access controls’ data structure (descriptors) would
be a representation of b, and the_kernel would simply be a
realization of the model rules.| In general, however, the situation
is not this simple. There may be objects to which the{ hardware
"~ cannot properly control ac cesgﬁ and there may b% alternative
representations of the same security state? EithHér one of these 7
situations calls for a kernel function thHat does not change the &
j  security state.ﬁ%ln the former case there would be one or more {
’functions o0 permit interpretive access to an object; in the latter®
bthere would be functions FoF ChangIfg the representation of the ' /g

™.

gsecurlty state w1tho%? changing THAETTTU I state.

An example based on Multies should clarify this point. If
several objects were located in the same segment, then the Multies
/ | hardware access controls, which operate on a per segment basis, could
/ not be used to control access to these objects, for they could not
i permit a subject to access one object in a segment without accessing
all of the objects in the segment. This situation requires functions
o allow subjects 1nterprﬁt1ve access to this type of object In
addition, functionssthat*hove” séjnents~between-ma1n memory and
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aegondary -storage "do not- ailow objects  to-be-accessed or ghange tiye
security. state, but.these functions must be in the kernsgl-becausg
dhey change the representation of the. security-state-and-this,
Lepresentation must always-be consistent withTthe durrent security
statej Thus the functions of the security kernel fall into three
classes that correspond to the fundamental operations of "authorize",
"access™, and "null": 1) f Qg&kpns that correspond to the rules of
the model, thus changing the secur1@@ state; 2) functions that
implement a part of the rgference monitor by allowing interpretive
access to objects as penmlﬁ%%gfby the current security state, thus
complementing the hardware access controls; and 3) functions that
change the representation of the current security statesJ nuﬁ&}

HARDWARE REQUIREMENTS

In this subsection we brief%y discuss hardware architecture
requirements for secure sSystems. While every computer scientist
knows that any computation that can be performed can be done on a
Turing machine, Turing machines are used only for pedagogical
purposes. The primitiveness of Turing machines makes the
accomplishment of even the simplest computations a very complex task,
Thus, more advanced architectures have been developed to fa0111tate
the use of computers for deoing productive work.

In light of the above argument it should be clear thalt there are
no absolute hardware requirements for secure computer systems - any
hardware 1s theoretically acceptable. Given the current state of
technology, however, certain hardware features are essential if we
are to build secure systems. These essential features simplify the
software portion of the reference monitor. Simplification-ofy
;Software<at the éxpense ofadditiondl hardware is necessary beCause
producing provably correct.software i a major technical "problem ind
gomputer socu"wty.‘ There are twg basic hardware features. that aré
Lssential, e 4;

_The fifst of- ‘these features 18 Support For A ssgmented memory
uhere»aﬂcess to- seaments is- throusgh unforgeable ‘segment deseriptors/
fhat in¢lude.an access.control fieldd The arguments supporting this
feature as essential to security are similar to the arguments for a
segmented memory given in the subsection on Multiecs. Segmentation
allows all information in the system to be stored in one type of
object - the segment. Having to support only a single object type
simplifies the kernel. The descriptor driven addressing that is part

5A more complete treatment of hardware considerations is given in
[Smith].
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of segmentation allows the basic reference monitor function of
mediating all accesses to objects to be performed by hardware, thus
helping to minimize the impact of security controls on efficiency.

T Gther-essential hardvare feature is nilfifle sxecubion
&ggg§;n§;(or,stapgs“grmmodes)ﬁ This feature is used in most
contemporary systems to protect operating systems from applications
programs. In a secure syétem it will be used to protect the kernel
from the rest of the software in the machine. Strictly speaking only
two execution domains are necessary - one for the kernel and the
other for everything else - but in practice it will still be
desirable to continue to protect the operating system from 6
applications software so tlireg domaing (or more) will: beluseful.

The kernel design presented in this report is for the PDP-11/45,
The 11/45 has an optional memory management unit (MMU) that checks
all references to memory and recognizes three access modes -
write/read/execute access, read/execute access, and no access. The
MMU is an adequate hardware base for bullding a segmented memory
system. The MMU in the 11/45 also implements three domains of
execution - kernel, supervisor, and user, Thus the PDP-11/45 can be
used as the hardware base of a secure system.

Before leaving this subsection on hardware requirements it is
worth mentioning that the I/0 architecture can be important. I/0 is
the subject of the next subsection.

INPUT/OQUTPUT

Input/output operations are a critical aspect of secure computer
systems because they are the interface between two distinct security
enforcement systems. On one side are the internal logical security
controls of a computer system that associate security attributes with
the information in the system, and on the other side is the external
"people/paper" system that employs physical separation and document
markings. Clearly, a primary requirement for I/0 in a secure )
computer system is that the security attributés of information are
correctly transferred as information moves between the internal and
external environments. This subsection will briefly review some of
the issues involved in secure I/0. A more complete treatment of
these issues and solutions to various I/0 related problems is given
in [Burke] and [Mogilensky].

6Multiple domains can be implemented in software on a machine with
two hardware domains. An example is the original implementation of
Multics on the GE 645 [Organick].
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&ﬁhasic:reeatremenbvfevvsecure'ccmvui%nmsystersmiﬁ”thabn
Leneralzsecurityemarking-policysfor elassified I/0"MaterinY "ber
asbablished? Security markings are indications that are placed
directly on, attached to, or included with classified material. The
purposes of a marking policy are to satisfy the security regulations
that require that all classified information have an indication of
its actual classification, and to insure that the security attributes
of classified data are accurately maintained for all I/0 transfers.
One aspect of a marking policy is a labeline policy - labels are
security markings that are generated by the computer system itself
(as opposed to markings that are pre-printed on forms used by the

computer system). In developing a marking policy it is important to
\j:F consider the difference between unilevel and multilevel I/0, whether

I/0 material can or cannot be removed from the computer system, and
| the extent to which the I/0 data is human-legible.

Although a computer system may be operating in a multilevel
:L . security mode, some or all of the I/0 devices may be operating in a
@V unilevel mode. An I/0 device is unilevel if it only processes
4

information at a single security level. The level at whieh the
device operates can be changed by a security reconfiguration. This
reconfiguration can be as simple as changing the forms with
pre-printed security markings that a line printer uses.

<~
7.
[CETAS]

T8 device EENHaNd e "data 4t more than one security ~tevel}
a githout human intervention, then the device is cperating in g
¢ multilevel mode...-In-this mode it will-be-necessary.for.the ccaguter
system Lo generatesecurity tabelss

I/0 material that can be removed from the computer system
includes such things as printed output and magnetic tapes; CRT
4, (cathode ray tube display) output and dabaoéravellno between nodes in
a network cannot be removed from the system. In addition, the
hunan-legibility of I/0 material can vary. Printed and CRT output is
directly human legible, magnetic tape and network messages are not.
~— 1In [Mogilensky] a general security marking policy is developed.

It is not sufficient simply to have a marking policy; the policy
must also be effectively applied to the actual computer system. In
order to satisfy security requirements for 1/0, [Burke] considers
three major types of I/0 function: 1) authentication; 2) controlled
attachment; and 3) controlled operation. Authentication establishes
the identity of the user or I/0 medium at the I/0 device. Once
authentication has been performed, the internal security controls
know the security attributes of the I/0 device. Attachment is the
(usually software) connection of the device.to some process in the
computer system. Finally, controlled operation is the mechanism that
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enforces the allowed attachments and insures that security labels, if
they are being generated, are valid.

From a hardware point of view, we can see that most current
architectures, which either give a process access to all 1/0 devices
or to no I/0 devices, make the implementation of controlled
attachment and controlled operation difficult. In this environment
only certified interpretive software can perform physical I/0
operations.

A desirable I/0 architecture is one where the hardware controls
access to I/0 devices on a per device basis. With this architecture
controlled attachment involves changing the hardware access controls’
data base. If a device is operating unilevel (meaning trusted
security labels are not required), controlled operation is enforced
by the.hardware and uncertified software can perform the physical
I/0. This mode of operaticn is desirable because the I/0 subsystems
of modern operating systems are often large and complex.

The PDP-11/45 has a desirable I/0 architecture for unilevel
devices that do not have direct access to memory (non-DMA devices).
I/0, for these non-DMA devices, is performed by reading and writing
specific main memory locations that act as device control and data
registers. To the extent that these device registers can be isolated
in individual segments and a set of registers controls a single
device, the MMU controls access to I/0 devices on a per device basis.
Unfortunately, DMA (direct memory access) devices bypass the MMU when
they access main memory. THEST Ferrifigd softivare=must=check«the
ggijﬁitymof*anyjmemthS?Eferéﬁ65§;%;DMA;déﬁiéé?ﬁiliibééfﬁbﬁiﬁefdﬁé
agh, On the 11/45, this checking can be
relatively straightforward, because each 1I/0 operation is
individually initiated by the CPU.
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SECTION III

DESIGN CONCEPT

INTRODUCTION

This section presents an overview of the design of the security
kernel. The first subsection introduces the concept of levels of
abstraction [Dijkstra (1)] which has heavily influenced the design.
The remaining subsections present the major levels of the design.

LEVELS OF ABSTRACTION

Abstraction is a way of avoiding complexity and a mental tool by
means of which a finite piece of reasoning can cover a myriad of
cases [Dijkstra (2)]. The purpose of abstracting is not to be vague,
but to create a semantic level in which one can be absolutely
precise. Dijkstra’s levels of abstraction have been demonstrated to
be a powerful design methodology for complex systems, most notably
Dijkstra’s "THE" system and the Venus Operating System [Liskov]. 1In
general, the use of levels of abstraction leads to a better design
with greater clarity and fewer errors. A level is defined not only
by the abstraction that it supports (for example, a segmented virtual
memory) but also by the resources employed to realize that
abstraction. Lower levels (closer to the machine) are not aware of
the abstractions or resources of higher levels; higher levels may
. apply the resources of lower levels only by appealing to the
functions of the lower levels. This pair of restrictions reduces the
number of interactions among parts of a system and makes them more
explicit.

Each level of abstraction creates a virtual machine environment.
Programs above some level do not need to know how the virtual machine
of that level is implemented. For example, if a level of abstraction
creates sequential processes and multiplexes one or more hardware
processors among them, then at higher levels the number of physical
processors in the system is not important.

By the rules of levels of abstraction, calls to a procedure at a
different level must always be made in the downward direction, and
the corresponding return in the upward direction. For maximum
clarity, downward calls should be to the next lower level, but there
will always be cases where calls that skip over one or more levels
can be justified. Returns are always to the calling program, except
in the event of a severe error where several of the calling
procedures may be skipped over by the return. Figure 2a shows the
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structure of a system where most calls are to functions of the next
lower level, but the level 1 function x is called from levels 2, 3,
and 4.

When a ring Niierarchical domain of execution)/structure is
added to the systenm;simpli-ed i Aa ¥ing each ring
consist of contiguous levels. Thus the kernel, which must be the
innermost ring (ring 0), should consist of the level of abstraction
that implements the reference monitor concept and the supporting
levels beneath that level. In our example system, the boundary
between ring 0 and ring 1 may come between level 2 and level 3 as
shown in Figure 2b. Folleowing the policy of making a ring consist of
contiguous levels, all cross-ring calls are automatically to an inner
ring and this is the type of ring crossing call that is supported by
the PDP-11/45 hardware.

It is possible, however, that function x has no security
implications, so it can be removed from the kernel as shown in Figure
2c. Now, however, calls by level 2 functions to functicn x (level 1)
are an outward ring crossing. Unfortunately, this type of a
procedure call is not supported by the 11/45 hardware (or other
computers with a hardware ring mechanism), so if it is to be used at
all, it must be implemented with certified software. A case where
this calling structure might occur is with the scheduler of a-
multiprogramming system. The scheduler may appear at a low level of
abstraction, but if we make a distinction between the scheduler -
code that implements the policy that selects the next process to run -
and the process multiplexor - code that implements the mechanism that
binds a process to the hardware, - then it can probably be proved
that the correctness of the scheduler is not necessary for security.
Thus, we would want to remove it from the kernel, in spite of the
fact that it may be called from the kernel.

This example illustrates an apparent conflict between the goals
of overall system clarity and a small and simple kernel. One could
argue that one of these goals, or the use of levels of abstraction
with its requirement of strict hierarchical layering, or the use of
protection rings causes the conflict. A machine that provided the
more general form of non-hierarchical protection domains would solve
this problem by allowineg an internal partitioning of the kernel.
Domain machines, however, are not currently available. Since we are
forced to use a ring machine and we believe that the levels of
abstraction design methodology will facilitate certification of the
kernel, our only choice is to compromise one or both of the design
goals of overall system clarity and a small simple kernel. This
issue will be discussed further as design details are presented.
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LEVELS OF THE KERNEL

In designing the security kernel, levels of abstraction have
been used in the translation of the abstract elements of the
mathematical model to tangible elements of a secure computer system.
The first steps taken were to make an interpretation of the model
elements (i.e., objects are virtual memory segments and subjects are
sequential processes) and to provide at some level cof abstraction a
set of functions that controls access to these elements. Thus the
abstraction created by this level is that of a secure computer
system. It must be emphasized that what this secure system level of
abstraction does is to effect the implementation of the reference
monitor, thus insuring that the system is always in a secure state.

The specific design structure chosen for the actual
implementation of the interpreted elements is done by lower levels of
abstraction, as shown by Figure 3. While the software at these
levels is not cognizant of specific security requirements, it is part
of the kernel because the correct operation of the secure systenm
level functions depends upon the correctness of lower levels., We
choose to place the segmented virtual memory level above the proces
level because segments can be shared by processes, and because we
want to be able to start a new process running when the current
process must wait for a segment to be swapped into main memory. The
PDP-11/45 hardware provides a form of main memory segmentation that
is used in the implementation of the process abstraction.

It should be clear that the boundary of the kernel belongs
immediately above the secure system level of abstraction. Software
outside of this perimeter can execute the unprivileged hardware
1nstructlons and invoke the funcgmpnswgngy&dei_by the secure SY:

el with arbitrary arguments. Since the unpr1v1kezed rachihe
fanstructlons cannot put the system into an unsecure state and the
/ secure system functions make no assumptions about the legality of /
'Nggggg32E;HEE£§§;£2613§§TTﬁﬁ?¥%mﬁ?ity”ﬁf“théwsy&Mﬂlgs indepsrdent
Nof what e scftware dbove the secure system level of abstraction
does or does not do. Thus the implementation of the security level
of abstraction and the implementation of the lower, supporting
levels, gives us a complete security kernel.

&l

While the initial presentation of the kernel’s levels of
abstraction will be made from the bottom up, it should not be
inferred that the kernel was designed this way. Rather, the design
was constrained at the top by the mathematical model and at the
bottom by the characteristics of the PDP-11/45. The bottom hardware
constraint was somewhat more rigid than the model constraint because
the abstract elements can be interpreted in-a variety of ways. Since
all design decisions must be in harmony with both constraints, the
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design technique was "middle out" - up towards the model and down
towards the 11/45., The choice of a bottom up presentation is
somewhat arbitrary and was made because we feel it is easier to build
on concepts that are well understood.

LEVEL 0 - THE HARDWARE

The PDP-11 is an advanced family of 16 bit mini to medium sized
computers with a powerful instruction set, hardware-managed stacks
that facilitate procedure nesting and the coding of reentrant
procedures, and a set of general purpose registers that can be used
as accunulators and/or index registers. An opticnal feature of the
PDP-11/45 that makes it a suitable base for a secure system is the
memory management unit (MifU) and its associated three domains of
execution - kernel, supervisor, and user. Although the memory
management unit is described as a general purpose memory managenent
device [Digitall] and one might hope to implement a Multics-like
two-dimensional virtual memory with demand paging, it appears that
the MMU is most reasonably used to divide main memory into logical
address spaces with associated access controls.

The key to understanding the MMU is the dynemic address
translation process it performs (illustrated in Figure 4). Every
time an effective address is generated during instruction execution,
it is treated as a 16 bit virtual address and translated to an 18 bit
physical address before the reference to main memory is made. The
translation is controlled by the contents of a set of eight
segmentation registers. Each segmentation register specifies the
base and limit addresses for an area of main memory, and access
control information. Recognized modes of access we will initially
use include null access, read access, and write access. A 16 bit
effective address is treated as a two dimensional virtual address by
having the high order 3 bits select one of the eight segmentation
registers and the remaining 13 bits be a displacement into the area
of main memory addressed by the selected segmentation register. . The
MMU acts as a hardware reference monitor and generates a fault when
the displacement is too large or access is attempted in a mode that
is not permitted.
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Figure 4. Dynamic Address Translation
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In the PDP-11/45, there are three sets ?f segmentation
registers, one for each domain of execution. The current domain
of execution has associated with it one of the three sets of
segmentation registers which is selected before the remaining part of
the dynamic address translation process occurs. Provision for
multiple register sets is part of the hardware implementation of
multiple execution domains and allows a process to be given a
di fferent address space and/or the same address space with different
access rights depending on the current domain of execution.

Several characteristics of the MMU have a limiting effect on the
kernel’s functionality. Since there is only one level of address
translation (the segmentation registers are addressed directly and
then one add overation is performed), the MMU can be used to provide
a segmented memory or a paged menory but not both. Because
segmentation 1s vital to ocur design of a secure system we must have
non-paged segments.

In Multies, the occurrence of a fault while referencing a
virtual memory segment can signal one of at least two different cases -
an attempt was made to access a segment (or that part of a segment)
that was not in main memory or an attempt was made to access a
segment in a prohibited manner. 1In the former case tne hardware
provides the Multics supervisor with sufficient information to allow
corrective action and successful re-execution of the faulting
instruction. The latter case indicates an access violation and is
handled appropriately. The PDP-11/45"s MMU provides only limited
information when a fault occurs. This lack of information makes it
difficult to distinguish between the missing segment/page fault and
access violation cases, and also to resolve missing segment/page
faults with "small and simple" software., The impact of this MMU
characteristic on the design will be dealt with in the section that
discusses the segmented virtual memory level of abstraction.

7Actually, the MMU has two sets of segmentation registers for each
domain of execution. The hardware uses the Instruction (I) Space
registers for all memory references that involve instruction fetches,
index words, absolute addresses, and immediate operands. The Data
(D) Space registers are used for all other references. Lancuage
Processors must be aware of the difference between I and D Space and
generate code appropriately - program constants that are not
immediate operands cannot be in the same segment with program ccde.
Since the language processors used in the initial implementation of
the 11/45 kernel are not aware of I and D Space, the D Space
segmentation registers are disabled and all address translations use
I Space registers.
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One other aspect of the MMU is worth mentioning at this time.
Since the segmentation registers are directly addressed and not
accessed indirectly via a base register, the processor state consists
of a large number of registers. Saving and restoring the processor
state 1s quite time consuming because all of the registers must be
saved/restored one at a time - the PDP-11/45 has no block move
instruction. While performance characteristics are an important but
secondary consideration in this prototype development, the cost of
context switching could have a severe impact on a secure production
system built on the 11/45,

ction af Ievel 0"is & processor-with a sedmented main’
& ic reszcurce ussd in creating this abstraction is the
(MMU hardware, butl there is also some: software in the implementationy

There is a rable that indicates -how main memory is segmented and-a
functxon that.uses informationiin thisitable-tonconsiructe-and load,,
,segment de seripLorsy

Fo oo i

fiemory. The ba

LEVEL 1 - SEQUENTIAL PROCESSES

Level 1 creates the process abstraction. We use the "standard"
(and somewhat vague) definition of process - a process is a procedure
in execution. The design supports a fixed number of processes; gggnJﬁﬂﬁféf
runs on a virtual machine and consists of an address space and
control information about the process., At level 1 it is sufficient
“t0 know that the address space is defined by the control information, (
part of which is the contents of the seementation registers. Level 1
software has the responsibility for allocating the processor to one
of the processes whose dynamic progress is permissible.

At a given time, a process is in one of several possible
execution states [Saltzer (1)]. Figure 5 shows the relationships
among the various execution states and the actions that move a
process from one state to another. In the inactive state a process
does not have an address space and cannot run. A& process. Raironly.che
ferrad=out=ofn(andeal somintolatheingetive” st:te"byﬂa speciag
EXasULivE  processithat Isinever in the™ ihactive-stape. At the time
that it moves a process out of the inactive state, the executive nmust
establish the initial address space of the process. The purpose of
the inactive state is to create a mechanism for minimizing the
resources required to support a process that is not currently needed
(perhaps because less than the maximum number of users are currently
signed onto the system), but is one of a fixed number of processes
defined by the implementation. '

AW ESYiver pvoce§8“1s either-blocked..or unblockedusinabhs
£16cked-state; 4 “process - is waitine for the_ occurrence-of, SongLevent.
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An unblocked process is either in the running state or ready state.
Thewrunning-statd $imply siknifies fHatlIhe processihasifhe-LRUV

&liecated .to-it7 Above level 1 the running and ready states are

logically equivalent. In the ready state a process is ready to run
(its dynamic progress is permissible) but must wait for the CPU to be
allocated to it. Processes enter the ready state from the blocked
state when the event for which they were waiting occurs. Iransition

SE=processes-between the.ready and .running-states«is-contrelled by a

simple.schedudingspoliey. internal to.level 1,

The hardware resources of this level are the CPU and a real-time )
clock. A data base is employed to contain state information about (glzﬁ’BMff
the processes and to help manage them. This state information J(:
includes a definition of each process’s address space, an indication v
of its execution state, and a specification of the user associated\ Q:L” v
with the process and his security attributes. No interpretation of
these security attributes is made at this level (the operation of
level 1 is independent of their value), rather, space is set aside in
level 1°s data base for security attributes as a convenience for
higher levels.

Several different types of functions are provided by level 1.
Two sets of functions are provided for the synchronization of
processes - Dijkstra’s P and V functions (explained in Appendix I)
and message send and receive for interprocess communication. In the
level 2 subsection we will explain how P and V are used to handle I/0
interrupts. More detail on these synchronization functions and the
rationale for providing two sets of funections where one might suffice
is given in the next section.

Fevel 1 implements & §itiple scheduling policy < the highest,

priority process that is ready to run pas the CPU-alliccated. to.its

To allow a more sophisticated schedulineg policy to be implemented
outside of the kernel a function can be provided to dynamically
change process priorities. A discussion of the issues involved is
provided in the next section.

Finally, as online users log on and off the system (and as batch

* jobs are initialed and terminated) it is necessary to provide them

with processes and then to terminate these processes. Two functions -
activate process and deactivate process - are provided for this
purpose.

Level 1 creates a multiprogramming environment which effectively
implements the co-existing Qggiipts that are a major element of the

model. 5
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The second level of abstraction creates a segmented virtual
memory, building on the segmented main memory provided by level 0
{(the hardware). Segments are the primary storage entities of the
system and will be the basic object to which access is controlled by
the security level of abspraction. As mentioned in the subsection Onb“~af;w¢kﬁ\
level 0, the characteristics of the MMU limit the flexibility of theﬂﬂkﬂv\wdﬁwﬁé’

LEVEL 2 - SEGMENTED VIRTUAL® MEMORY

segment abstraction created at this level. In particular, one wouldtuwjﬂﬁ —od
. . - . . pect

like (as Multics does) to implement variable sized segments Kney?

consisting of fixed sized pages. The use of paging facilitates the Aeke.

dynamic growth of segments, permits only part of a segment to be

swapped into main memory, and vastly simplifies the allocation of

both primary and secondary memory. Unfortunately, the

characteristics of the MMU force us to implement unpaged seaments. P

/ To simplify the design we have implemented fixed sized segments - N oy
f that is, when a segment is created a permanent size fo is’““”@hﬁk u\i/-’(dguf
\ spe01f1ed _and resources are allocated approprlatelx///gglﬁhly a(\/ %aﬂ/ﬂw‘ i

51ngle size were provided the resulting system would be difficult™ o \@qﬂf.

use, especially when the small number of segmentation registers (8 5M”%
per domain) is considered. A small segment size would severely limit
the amount of virtual memory that a process could directly address at
any given instant; a large segment size would tend to waste space.

Thus the design provides for fixed sized segments available in a \1
variety of sizes.  The actual number of sizes will be an bﬁo
implementation decision subject to hardware constraints - sizes must \%

be multiples of 64 bytes up to 8K bytes maximum. Since even the VO

<

largest segment may be small for some appllcatlons_jré antlclpate the ¢ﬁ
q”?eatlon of a flle abstraction above the kernel. This abstraction
? f will allow several segments to be treated as a single entity and
; permit subsections of a file (segments) to be individually swapped in
and out of main memory. [ -

nd out ) me e et gy
The lack of adequate hardware to support a demand ~

paging/segmentation environment further affects the design at this

level. The virtual memory provided by this level can best be

described as a "non-random access" virtual memory. Users of this

level cannot arbitarily access segments in their address space N -

without first indicating an intention to perform this access. This éﬁﬂk v

intention is indicated by asking level 2 to load a segmentation wﬁﬁf” ‘

register with a descriptor for a segment before any instructions ﬂﬁgﬁ2€>

referencing that segment are executed. It is sufficient for level 2

to "lock" all segments for which descriptors exist into main memory 5k%u3»uf’%L
to guarantee that missing segment faults do not occur. Level 2 z nvv%pww*“b
considers any fault generated by the MMU to be an access violation

and simply passes the fault on upward; it does not attempt to take

any corrective action. IEg_1mQlgmQnLéLlQQ_Qﬁ;lglsl_g_g9§£§§gggg§‘29

swapping or overlaying, rather than demand paging. It should be
~—— e ——— ——
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noted that level 2 still implements a one level virtual memory
because: 1) segments are the only type of storage entity, and 2) as
different segment descriptors are loaded into the segmentation P

registers the address space of a process can be greater than the size V/"
of main memory.

Segments have attributes - information that describes the
characteristics of a segment. From the mathematical model we know
that at level 3 segments will have security attributes; at level 2
they have implementation attributes. Impl tion attributes
nclude a segment’s size and disk address The attrlbutes of a
segmen fe contained T e segment’s parent directory. Ay“#
At level 2 space is provided in dlrectory entries for security
attributes but the operation of this level is independent of the
values of security attributes. Since directories are themselves , EV
segrnents with attributes residing in other directories, the total A~
structure is a directory hierarchy in the form of a tree. The [
attributes of the root segment of this tree are fixed by the de31vn%

and implementation.

All segments in the hierarchy areé;fthep~d}peetgpy~segments;@t)

data segments. (Segments containing executable code are considered

I data seguments by level 2.) Although level 2 doces not enforce access
g control to segments in general, it cannot permit software above it to
Pdﬂ write directly into directory segments, because the correct operation

\} - of level 2 requires the integrity of the (implementation) attributes
3 of segments. Functions at this level provide users with an
#f’ 4 L”thLengggE&xg directory write capability. The security requirements
N enforced at the security level will further restrict access to
- ¥/ Y@rectories because of the nature of some of the segment attributes.
axf ) This point is discussed in the Data Structures subsection of the next
section,

As previously mentioned, some locations in the PDP-11/45"s main
memory are 1/0 device control registers. The main memory segments
Ci? that "cover" these locations are permanently bound to data segments
O in the virtual memory. ._Thuz, the abilitv.ftoluse an -I/0 devieéiid
Eontrolled by the ability.t o access.the. associated segneny.

A 5 7facilitatel segment sharing,['Yevel 5 assbeTatas arsenaphore |,
" H1TH each segment -and requires write .access:to:the segment-in-ordery
(\\ £0..P-and.V on the semaphorey The I/0 segment semaphores have a

special use - the kernel translates I/0 interrupts into V’'s on the 4}/
appropriate semaphores. Thus, when a process wishes to wait for an ﬁm&L(
interrupt frem an I/0 device, it PSS on the 1/0 segment semaphore, ﬂVf
T(presumably) blocking itself. When the interrupt occurs, a V is

performed and the process becomes unblocked. The kernel is only

concerned with controlling access to the I/0 segments and semaphores,

39



<1

~

AN

not with the correct use necessary to assure proper synchronization.

Level 2 1mplements a segmented virtual memory by bullding upon

: | level 0° egmented main memory,/u31ng secondary steorage devices for h
M/ * ) segment swapping/ and employing a data base to indicate the state of}mﬁww it s \
- X

the virtual memory. The data base consists of the-direstory—~ Mﬁéb \ ;
-segments, tables for managing the allocation of Secondary storage| %

and the A~ %ive-Sggmant Table (AST LT The “ESTY 8 40We cHanT S that AL><1. raad
éaejl;uaurﬁ Lhe. snaring- of“Seonent s TN HE T wénory - if two diffepent ) vl =
processes Wish to access a segment they both access the same physfical
segment and not two different copies. Any segment that is in the ’
address space of one or more processes or is "wired down"

(permanently swapped into main memory) is active - it has an enfry in
the AST. L= ?etiv”'SeQﬁﬁﬁﬁwﬁabbﬂmeﬁf?yﬂfAS$E@&&€mtulRSf$h9"g§gmnﬁiuS
pérmanenﬁ'aﬁkrlhutesﬁ— copied from the directory - as well as
additiaqnal attributes associated with the fact that the segment is
active. These additional attributes include a list of the processes
that have the segment in their address space and the main memory
address of the segment if it is currently swapped in.

Gy

Segments in the hierarchy can be uniquely identified in a
variety of ways. If a segment is active, identifying its entry in
the AST (aste#) specifies the segment. If a segment is not active
but its parent is, then the aste# of the parent directory and the
identification of the entry within the directory that contains the
segment 's attributes (aste#, entry#) specifies the segment. A
generalization of the (aste#, entry#) identification method is the
complete pathname - a specification of all directory entries,
beginning with the root, that identify the segment. Finally, each
segment has a unique identifer - its disk address. Within the
security kernel the primary segment identification techniques are the
fjaste# and the (aste#, entry#).

g/yelma\gggyides functions for creatinv and deleting segments,
adding and removing segments from a process s address space, and
“¢reating and destroying segment descriptors., The segments created at

this level are the basic interpretation of the objects of the

mathematical model. Although segment descriptors permit access
control to segments, the only access control policy enforced at this
level is the requirement for interpretive directory writes.
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LEVEL 3 - SECURITY

The software above level 2 sees a virtual machine with a
segmented virtual memory (that provides for access control if
desired) and the multiprozramming of sequential processes. Thus, the
major elements of the mathematical model of secure computer systems
(sub jects, objects and access control) have been realized. Given the
environment assumed by the model, the implementation of security by
following the rules of the model is straightforward.

Unlike the lower levels, level 3 has no hardware resources or
data bases of its own. Level 3 makes a correspondence betwesen the
subjects and objects of the model and the abstractions implemented by
levels 1 and 2, associates security attributes with these lower level
abstractions, and controls access to the lower level functions that
operate on these abstractions based on the rules of the model. Each d,odvnt
model rule has two parts - the first part consists of security checks V"”
to determine if the requested STATZ change can be permitted; if it .
can, the second part of the rule indicates how the state change 1is ud“ ijﬁ::ﬂr
be made. In the kernel level 3 functions perform Security checking m
and then direct levels 1 and 2 to perform state changes if security xﬁ;u*”l
requirements are satisfied. )

interpretatien—of _subjects, and segments as the basic interpretation
of objects, In addition, semaphores and interprocess communication
messages are also objec ather an ing 1ts own data structures
for representing Lhé del's data base (b, M, f, H), level 3 uses the
data structures of levels 1 and 2 for associating security attributes
with processes and segments. In addition to holding a segment’s
implementation attributes, directory entries contain the segment ‘s
security level - half of f - and access control lists - M. The
(aste#, entry#) method of identifying segments is a representation of
H. The data structures used by level 1 to support processes include
a spe01flcatlon of each process’s current address space (the segments
fﬂfﬁLijﬁExzﬁuiizuLgurzgnLly access and the permitted modes of
access) - and an identification of the user
g5sociated with the process together with the user:§,sgeu9%%y
attributes - the other half of f.

As previously mentioned, the kernel uses processes as the basic 5%

Now that the model has been implemented all remaining scftware
in the system can be uncertified - contain bugs or malicious
penetration attempts - without a threat of security cocmpromise if two
conditions are satisfied. The kernel must be protected and access to
its functions controlled. These conditions are met by preventing
uncertified software from gaining write access to the kernel segments
and by having only the kernel execute in kernel domain.

41



In the next section we will repeat the process of describing the
kernel, but this time more details and motivation will be provided.
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SECTION IV

DESIGN DETAILS

INTRODUCTION

In this section the design is again presented, but more detail
is given. The first subsection discusses the uncertified software
environment, the second describes the data structures used by the
kernel, and the remaining subsections give a formal specification of
the kernel functions.

UNCERTIFIED SOFTWARE ENVIRONMENT

The kernel software and PDP-11/45 (with Memory Management Unit)
create a virtual machine environment for processes consisting of
uncertified programs. The virtual machine is similar to a real
PDP-11 (not 11/45) in that it has the general purpose registers and
instruction set of the PDP-11., The virtual machine has, however, a
much different memory structure - a non-random access segmented
virtual memory tnat is shared with other virtual machines. The
kernel provides the virtual machine with functions for operating on
the virtual memory, and for communicating and synchronizing with
other virtual machines. Programs executing in the virtual machine
can execute any unprivileged PDP-11/45 machine instructicn or invoke
any kernel function, although in either case the desired operation
can be aborted (by the MMU or the kernel) to prevent a security
compromise from occurring.

The segmented virtual memory is organized into a tree-like
directory hierarchy. We.¢an think-ofrthe setroirall segmentsHinithen

and a securlty policy, most users of the system will not be able to
access all of the segments in SS. The Subset Lhatlaluserwmay; access

gitlobenmcaliedsawvirtugl-space - (VS} When a user onto the y
system he has a virtual machine Tif%entiesIIy, a process) execute on ~6

o
% his behalf. This proceéss will have an address space of segments gz;JzJ
veonstrained in size by certain design and implementation parameters. v

K&

SR\
Vg\

hesworkinesspecer (WS anmit 35
Always-a.subset -of ‘theuser’s VSy { WS corresponds to the model’s b.
Ideally, wé “would like to permlt a process to directly access all
segments in its WS, but because of the small number of descriptors
provided by the 11/45 (eight per domain), this approach would
severely constrain the size of WS. It would probably be necessary
for a process frequently to move a segment out of its WS to make room
for a new segment, and then shortly thereafter move the old segment
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back into the WS. Because of the security checking involved - moving
a VS segment into WS changes b ~ this approach could add considerable
overhead to the computation being performed. To avoid this problem
it was decided not to limit the size of WS by the number of
descriptors available and to add another space - accg¢ssispacembASl -\\
£nat réPrécents the se-nznis that a pro&8¥8 an directly-address,
pecause“it;has”deseriptors,for~themf’”?3”is§'of_bQQrse,;consp-a&g@d
by “YWe-number of hardware descriptors-available, and-it is a subset
Jof wS. "Now a process will remove a segment from AS to make room for
another, rather than removing a segment from WS. The justification
for this approach is that the cost of moving a segment into AS is
less than the cost of moving a segment into a combined WS/AS, becaus
changing AS does not change the security state. Figure 6 shows the
relationships among S35, VS, WS, and AS.

éif’;f
ity éoﬁl

The burden of managing WS and AS, and dealing with constraints, ﬁ4&¢&§e
both security and implementation, imposed by the kernel, falls :
clearly on uncertified software. This does not mean that a user
writing applications software must be familiar with all of the
kernel’s idiosyncrosies, for one.of the functions of an operating
system might be to make the environment created by the kernel more
palatable to the user. Before presenting the specification of the
kernel functions, the data structures employed by the kernel will be
described.

KERNEL DATA STRUCTURES

In discussing the data structures of the kernel we have a
chicken and the egg problem - understanding the design of the data
structures requires understanding the functions that use them and
vice versa. We choose to deal with the data structures first because
their description is more compact than the functions’ description.

We will start with the structures used to implement the segmented
virtual memory, then discuss the process structures, and conclude
with the main memory structures.

Directories

A directory is a segment that consists of entries. Each
directory entry is either unused or contains the attributes of sonme
other segment. A directory entry (see Table I ~ the numbers in
parenthesis after each field name are the size of the field in bits
for the initial kernel implementation) has a fixed part and a
variable part - field names for the fixed part begin with "DIR ", for
the variable part with "ACL_".
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Figure 6. Spaces
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Table I

Format of a Directory entry (fixed part)

and an Access Control List (ACL) element (variable part)

a Directory entry is accessed by (aste#, entry#):

DIR_TYPE(1)
DIR_STATUS(1)
DIR_CLASS(4)
DIR_CAT(16)
DIR_SIZE(B)
DIR_DISK(24)
DIR_ACL_HEAD(8)

DIR_XXX(aste#, entry#)

DIRECTORY or DATA

UNINITIALIZED or INITIALIZED
classification

category set

size in blocks

disk address of the seenment

head of the ACL (or 0 if list is empty)

an ACL element is accessed by (aste#, acle#): ACL_XXX(aste#, acle#)

ACL_USER(14)
ACL_PROJECT(8)
ACL_MODE(2)
ACL_CHAIN(8)

user-id or ALL_USERS

project-id or ALL_PROJECTS

mode of access - WRITE, KEAD, or NO access
acle# of next ACL in the chain or 0

the head of the free ACL element chain is accessed
by ACL_CHAIN(aste#, 0)
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The field DIR_TYPE sptcifies the type attribute of the segment.
Its value is either DIRECTORY or DATA. All segments—arerinitialized”

before they agre:first accessed. Data segments are initialized to all

zeros, and the initialization of directory segments will be explalned
1atér. The attribute DIR_STATUS indicates whether or not a segment
has been initialized. Its value is either UNINITIALIZED or
INITIALIZED. DIR_CLASS is part of the security level attribute - the
classification. DIR_CAT is the rest of the security level attribute =~
the category set. DIR_SIZE is the size of the segment. The tiU;
fequires all segments tolbe i multiple of 64 bytes in size, but in

the initial implementation the size of a segment

is a multiple of 256

bytes. If the value of DIR_SIZE is zero, the directory entry is not
being used and the values of all other fields are undefined.
DIR_DISK is the disk address of the segment. DIR_ACL_HEAD is the
head of the chain of ACL (access control list) elements fer the
segment, - the ACL is the variable part of a directory entry. If

there are no ACL elements then DIR_ACL_HEAD is zero. A

it rre e

Tha decéss eontrol "11st is an open-énded I1st 6 Tiames O

OPPmltLLG to access a segmenty- it corresponds t
matrix 14 and implements need-to-know protection.

a column of the
Users are

qsersy

~

identified with a two part name. The first part (user-id) uniquely VA
identifies each user. The second part (project-id)} partitions users
into groups called projects. The use of a two part name facilitates
granting access to groups of users when all of the members are not

known or the membership is dynamically varying.

Whenever a user is on the system the state information of his
process includes his user-id and the project-id of the project he is

currently working under. (A user may be allowed
system under one of several different projects.)
element includes a two part name but either part

to log onto the
Similarly, an ACL
may be replaced by a

special flag that indicates "don’'t care". The "don't care" flag is

represented by the id ALL USERS or ALL_PROJECTS.

Thus the ACL

elements (SMITH, DMS), (SMITH, ALL_PROJECTS), (ALL_USERS, DMS), and
(ALL_USERS, ALL_PROJECTS), respectively, permit the user named SMITH
to access the segment when he is working under the DMS project,
permit SMITH access independent of the project he is working under,

permit access to all members of the DMS project,
access to all users of the system.

In addition to a name, each ACL element has

access - no access, read access, or write access.

access mode with the ACL element rather than the

8The 11/45 ACL mechanism is ocuite similar to-the

mechanism as described in [Saltzer (2)].
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allows different users to have different access rights. The use of
the "don’'t care" flag makes it possible for more than one element in
an ACL chain to apply to a user - in this case the first element in
the chain that applies determines the permitted access mode. ACL
aglBmént 8. areTAlWa s o rdsred Aronmedtsspsci fioutoeleasty: speelflg,
thus elements with a specific user-id and project-id come first, an
(ALL_USERS, ALL PROJECTS) element can only be last, and elements with
a specific user and ALL_PROJECTS come before an ALL_USERS,xspecific
project element. Thus the following chain is possible: (SMITH, DMS,
NO), (JONES, DMS, WRITE), (ALL USERS, DMS, READ). It indicates that
all members of the DMS project have read/execute access to the
segment except for SMITH who has no access and JONES who has
write/read/execute access.

We can now define the ACL element fields. -ACL_MODE is the mode
of access associated with tne element, ACL_USER is the user-id or
ALL_USEFS, ACL_PROJECT is the project-id or ALL_PROJECTS, and
ACL,_CHAIN is the link to the next element in the chain or zero if
this is the end of the chain. 1In the initial implementation a
, directory segment has 63 usable entries (numbered 1 to 63) plus a
\\f header entry (entry# 0) and 127 ACL elements that are shared among
QV‘ 1all entries. The sharing mechanism employs a chain of free ACL
R elements - the head of this free chain is ACL CHAIN(O) Thus a7
Y CUTEEERFY 1 inlializ8d- By Tnarking 3T TS entries Es Cfreecand
placing all:fhe ACL element s SH-ERE Fresselat, .
O)L&s‘ o ey { ‘
All segment att"ibute§dexoept for DIR_STATUS and DIR_DISK are
specified by users with write access to the directory and therefore _4
have the security level of the parent directory, but the values of [ bt 4N*’ﬁ_£”
~™, \ DIR_STATUS and DIR_DISK are a function of system-wide activity.” In Corovpe il X2/
O the case of DIR STATUS it can be changed. to JINITIALIZED by any
N process that has access to the segment,.so this.aftribute must have a | }ﬁ“/ﬁﬁﬁ .

//// SEEUTTEY TevVel of "system high', 5

A complete explanation of the _E}yf Lug”
nature of the DIR~D&§n attribute—is—pestpaned until we discuss the {Qj
functions_that" create and delete segments, but the point is that our

| view of ‘?ectory Serment s must be modifi€d. Directories will be %@ g///)ﬂfn
W

consigfred to be "composite™ objects. Most of the data in a
dipgetory will be at the security level of the dlrectory but some c
11 be at a higher level. The format of the directory is defined
PWithin the Seourity perimeter so there is no problem in determining
the security level of a particular data item. Since the segment is

9"System high" is a security level that consists of the highest
classification in the system and the union of all special access
categories. Thus, with respect to the security condition and the
¥_.property constraint, a system high subject may gain read access to
all information in a system (subject only to the access matrix M).
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the smallest object to which access is controlled by the MMU, we / §L4 o
cannot permit uncertified software direct read access to directory /i;ﬁf?
segments. Thus if uncertified software is to have read access to a t
directory it must be via kernel functions that do the reading -

interpretively and are cognizant of the nature of directories.

Active Sezment Table

The Active Segment Table (AST, see Table II) is a system-wide
table that facilitates the main memory sharing of segments among
processes. Every segment that is in the working space (WS) of one or
more processes or is wired down has an entry in the AST - the segment
Car-betaEntITied 5Y 1ts aste# (AST entry#). Like a directory entry,
an ASTE is ccmposed of a number of fields. AST_TYPE, AST_STATUS,

AST _CLASS, AST_CAT, AST_SIZE, and AST _DISK correspond to the
similaprly named fields in a directory entry. At the time that a
segment is activated these fields in the ASTE are_set by.copying from
the directory entry. Since an active segment may be in the WS or
more than one prcecess, we may want to know which processes have it in
their WS. AST_CPL (connected process list) tells us this (read
access is implied) and AST WAL (write access list) indicates which
processes have write access as well. 1In the initial implementation’
AST CPL and AST_WAL are bit maps - if bit n of AST_CPL is 1 then
process# n is on the CPL. Bit 0 of AST_CPL indicates whether or not
the segment is wired down.

Vs

When a process removes a segnmnent from its WS, AST_CPL may become
zero. This event means that the segment can be deactivated, making
the ASTE free. Rather than deactivate as soon as possible, we choose
to deactivate as late as possible - when we need the ASTE to activate
another segment. Segments that can be deactivated (as indicated by a
zero AST_CPL) are kept on a chain running through AST AGE_CHAIN.
AST_AGE indicates whether or not a segment is on the age chain. The
rationale for this delayed deactivation is discussed when the
functions that move segments into and out of a process’s WS are
described.

A process can ask for a descriptor for a segment in its WS -
thus moving the segment into 1ts access space (AS) and locking the
segment into main memory. AST ADR is the main memory address of the
segment if i% is swapped in, AST_ADR will be zero if the segment is

0 . g .
swapped out. Since the (beginning) main memory address of a
segment will always be on a 256 byte boundary, AST_ADR need not

10The main memory beginning at address zero is used for the

internal kernel data base, and thus zero is never a legal address for
a user segment.
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Table II

Format of an Active Segment Table (AST) entry

an AST entry is accessed by astei:

AST_TYPE(1)

AST _STATUS(1)
AST CLASS(4)

AST _CAT(16)

AST SIZE(8)

AST DISK(24)
AST_CPL(16)

AST WAL(16)
AST_AGE_CHAIN(16)
AST _AGE(1)

AST ADK(16)
AST DES_COUNT(16)
AST_SWAP_CHAIN(16)
AST LOCK(1)

AST_CHAIN(16)

AST_XXX(aste#)

DIRECTORY or DATA

UNINITIALIZED or INITIALIZED

classification

category set

size in blocks

disk address

connected process’ list

write access list '

chain of segments eligible for deactivation
UNAGED -~ segment is nct on the age chain
AGED -~ segment is on the age chain

main memory address of segment

number of descriptors for segment

chain of segments eligible to be swapped out
LOCKED - segment is not on the swap chain
UNLOCKED - segment is on the swap chain

used by HASH function and for free ASTE chain

the head of chains are accessed by AST_XXX(0)

Table III

Format of the Process Table (PT)

the PT is accessed by process#: PT_XXX(process#)

PT_FLAGS(2)
PT_LINK(6)
PT_PS_ADR(16)

PT_IPC_QUEUE_HEAD(8)

READY, BLOCKED, or INACTIVE

chain of processes blocked on a semaphore
main memory address (block#) of the PS
head of the IPC queue
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include the low order (all zero) 8 bits of the address. It is not
always sufficient to know that a segment is in main memory, as there
are times when the number of descriptors that exist for a segment
must be known - AST_DES_COUNT (descriptor count) tells us this
information.

When a process removes a segment from its AS, AST_DES_COUNT may
go to zero. This event means that the segment has become unlocked
and can be removed from main memory. As with the deactivation case,
we choose to postpone this removal as long as possible. Active
segments that are eligible to be swapped out are kept on a chain
running through the AST_SWAP_CHAIN field. AST LOCK indicates whether
or not a segment is on the swap chain.

The last field in the AST is AST_CHAIN. There is a function
whose input is the disk address of a segment and whose output is the.
aste# of the segment if it is active or zero otherwise. This
function (HASH) uses the AST_CHAIN field. This field is also used to
chain together ASTE s that are free.

The initial implementation provides 256 ASTE s numbered 0 to
255. aste# 0 is a header - the AST_AGE_CHAIN, AST_SWAP_CHAIN, and
AST CHAIN (for free ASTE s) chains begin in aste# 0.

Process Table

The Process Table (PT) is one of the two basic data structures

used By I8¥sI—T-in creating the process abstractions The PT has an

entry for each process, and each entry consists of several fields
(see Table I1I).

PT_FLAGS indicates the execution state of a process - its value
is READY, BLOCKED, or INACTIVE. When several processes are blocked
on the same semaphore, the processes are chained together through the
PT_LINK field. PT_PS_ADR is the address of a main memory segment
(the process segment) that contains additional information about the
process. It will be described shortly. PT_IPC_QUEUE_HEAD is the
beginning of a chain of interprocess communication messages sent to
the process. 1Its value can indicate one of three possible states:
1) there are messages that have been sent and not yet read by the
process, 2) there are no messages that have been sent to the process
and not yet read, and 3) the process has become blocked because it
wants to read another message and none is available.

In the initial implementation the PT will also have an area for
saving hardware registers relevant to execution in the kernel domain
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when the process does not have the processor allocated to it. Since j ,
this area is not relevant to subsequent design details it is not
shown in Table III.

Process Segments

The second basic data structure used by level 1 is the Process
Segment (PS) - there is a process segment (main, not virtual, memory
segment) for each process. Table IV shows the fields of a process
segment.

PS_CURRENT_PROCESS is the number of the process associated with
the PS. PS_PRCCESS_MASK and PS_PROCESS _NOTMASK are used in accessing
AST CPL and AST _WAL. MASK is all zero except for bit n (where n is TN
the process number), NOTMASK is all ones except for a zero at bitn. / -
PS_USER_ID and PS_PROJECT_ID identify the user (subject) associated / k> o
with the process. PS_CUR_CLASS (current classification) and Kjwfﬁ”
PS_CUR_CAT (current category set) define the current security level ‘
of the process. PS_TYPE indicates whether or not the process is a
trusted subject. :

PS_MEM_QUOTA is the amount of main memory allocated to the
process for its AS but not currently being used. PS_IPC_QUOTA is the
number of interprocess comnrunication objects currently available to

the user for receiving messages from other processes. PS_DISK_QUOTA /

is the disk space allocated to the user of the process but not yet

used. ' /ﬁ )#4
T;VE({}’

The remainder of the PS is dedicated to arrays used for deflnlng
the process’s address space. PS SDR (segmentation descriptor <
reglster) and PS SAR (segmentatlon address reglsper) are two arrays
i 1 SU; main, 8 'in user
domain)” thaf areavailablé. THe third array, PS_SEG, 18 used for
\mappfﬁ§“§égment'numbero (seg# s - process local segment names) into
aste#’s (system wide segment names). &hﬂnaa—procass ‘Was: the%ke,n$$?
mEVETassesnent= 3Rt 0“1 EE WS ~the~kernel. .returns a segi. hhlch;phe ' k
@rocss rsubsequently-.uses-to-identify *he segnm nenf. The segment “"has *U
an aste# because it must be active, but the aste# cannot be returned [juwr
_Lo the user because its value is a functlon of system wide activity,-.
maklng__t necessary Lo ClassifTy aster s at system hieh. Thus, PS_SEG
-5 just a mechanism for mapping S€g¥ S into aste# s. PS_SEG is
provided by level 1 to level 2 as a convenience, as active segments
are not meaningful at level 1 - its operation is independent of the
contents of PS_SEG. Each element of PS_SEG _INUSE, the fourth and
final array, indicates whether or not the corresponding element in
PS_SEG is currently in use.

(P o

.
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Memory Block Table

Jie MeEmcry Bloek Table (MBI zisralevel=0 strugbure:usedabes
indicmterthe State .0f i main memory: A block is the smallest size
segment - the MMU supports 64 byte blocks but the initial
implementation uses 256 byte blocks. Contiguous blocks can be
concatenated to form main memory segments of any multiple block size.

e

ATiEinimemory "EEEMENT IS 81 thERires op a8 A ed  depending -on
whetheporhot. a-virtual- menory*segnent~1s+bound*t&<-1¥. There is an
entry in the UBT for each block (see Table V) consisting of several
fields. If a block is the first block in a segment MBT_FLAGS is
either FREE or ALLOCATED, otherwise it is CONCATENATED. The rest of
the fields are not meaningful for CONCATENATED blocks. MBT_SIZE is
the number of blocks in the segment. If a block is FREE, MBT_CHAIN
is the blocki# of the next segment in the free chain or zero if this
is the end of the chain. (A block# is the address of the first byte
in a block with the 8 low order 0 bits removed.) If a block is
ALLOCATED, MBT_ASTE is the aste# of the virtual memory segment bound
to it. MBT_CHANGE indicates if the segment has been modified. This
information can be obtained from hardware conditions - a bit in each .~
segmentation register indicates if the segment "described" by the
register has been stored into (via an access through that
segmentation register).

SPECIFICATION OF THE KERNEL

THELEa1 B eerEiTicationairsstorprove L gt the sbeHavior~or "z
System corresponds to the behavior of a:model ¥ The . mddel~in tubn
é@jgglbé proved to exhidbit a certain desired.behavior Zlin.our.casd
that the.abstract-system-remains.in. a-secure:statei The final
representation of the system’s security kernel will be as binary ones
and zeros in the computer’s memory. Intermediate representations of
the security kernel will be used to bridge the vast gap between the
abstract model and the binary ones and zer?q of executable code, thus
aiding the task of proving correspondence. One form of
intermediate representation is the higher level language program
listings of the kernel functions. This representation, however, will
contain many details that are specific to particular implementation
decisions and to the language used. What is needed is another
representation that describes the design of the kernel in a manner
that is independent of implementation and language considerations.

We call this representation the design specification and its purpose
is to bridge the gap between the model and implementation
representations. The form of the design specification used here is

HOur certification methodology is discussed ié [Bell & Burkel].
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Table IV

Format of a Process Segment (PS)
Process Segments are accessed by process#: PS_XXX(process#)

PS_CURRENT_PROCESS(8) process#

PS_PROCESS_MASK(16) bit mask

PS_PROCESS NOTMASK(16) bit mask

PS_USER_ID(14) user identification

PS_PROJECT_ID(8) project identification

PS_TYPE(1) TRUSTED or UNTRUSTED

PS_CUR_CLASS(4) current classification

PS_CUR_CAT(16) current category set

PS_MEM_QUOTA(8) nnused main memory quota
PS_DISK_QUOTA(16) unused disk space quota
PS_IPC_QUOTA(S8) unused ipc element quota >
PS_SDR(16 x 16 array) save area for segmentation registers
PS_SAR(16 x 16 array) save area for segmentation registers\V/ 7

PS_SEG(32 x 15 array) definition of process’s address space (WS)Y °
PS_SEG_INUSE(32 x 1 array) TRUE or FALSE

Table V
Format of the Memory Block Table (MBT)

the MBT is accessed by block#: MBT XXX(block#)

MBT_FLAGS(2) FREE, ALLOCATED, or CONCATENATED

MBT_SIZE(8) size of the area in blocks

MBT_CHAIN(14) chain of FREE blocks

MBT_ASTE#(13) ‘aste# of the virtual memory segment
in the block

MBT_CHANGE(1) CHANGED or UNCHANGED

53



vV = NT s

N VT =T AT 47V S o

A5
(S
Ogarak s Qe (

derived from a 'form suggested in [Parnas] and used in [Price].
Figure 7 shows the validation chain between the various
representations.

A "Parnas" specification consists of two distinct types of
functions: O-functions and V-functions. Q;Eynctions (operate) are {
functions that cause the state of the system to change. V-functions
{value) return the valUES BT STAte variables,) Their only effect is
the passage © me. e specification of each function includes:
1) the name of the functionj 2) a range for possible values of the
function, if i1t is a V-function; 3) an indication of the initial
value, possibly undefined, for V-functions; U) a list of parameters
and their domain; and 5) an indication of the effect of the function
on the values of other functions, for O-functions.

The effect section of each function consists of specification
statements. These statements denote that upon ccmpletion of the
function certain predicates will be true. The ordering of the
specification statements is not significant and some of the
predicates are conditional. References to V-functions enclosed in
single quotes () refer to the value of the V-functiocn at the time of
call of the O-function; references not enclosed in quotes refer to
the value of the V-function immediately after completion of the
defined O-function.

Parnas” intention for specification is to give an external view
of functions. All of the information needed Qorrectly\tojuse
functions and to implement them must be given, and nothing nmore.
Also, specifications.must be suffieiently-formal so that theirw
éomo?ekenasc ﬂﬁﬂSlsteﬂcy and. other desirable "POGEPtlefﬁ\ln cur.. caQGV~;}
éorrebtness)_t:ﬂ ‘be- determined. /ThlS “lTatter reoulremont seems t Pty
rule out the use 6 RAtuUral language specificatiocns. Nevertneless,
without prose descriptions of the intended interpretation,

\gggglflcatlons can be bopelessly confu31ng ‘ »yl‘rw_wwﬁfffﬂ*-

Although it consists of 0 and V functions, the kernel
specification that follows is not a Parnas specification since much
more than the minimum information needed to use or implement the
kernel is given. Also, the ordering of the effect of O-functions is
significant. The mechanisms that support the design are included in
the specification because their correctness must be proven. To make
this additional information more comprehensible to the reader, the
specification is structured in much the same way that software is
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structured by nested procedures -~ a function is defined in terms of
othqufunctions, which in turn are defined with more functions,
ete.

Specification Conventions

A number of conventions are used in the kernel specification to
enhance its clarity and reduce its bulk. One convention is to use
the data structures defined in the previous subsection. The term
"DIR_DISK(aste#, entry#)", for example, appears in a number of
predicates in the specifications of various functions. A
specification of a V-function DIR_DISK might be:

Function: DIR_DISK
possible values: a disk address
Parameters: DIR_DISK(aste#, entry#)

Since the value of DIR DISK is set in some functions and used in
others, the body of the DIR_DISK specification is empty. Given the
definition of the data structures, we do not feel that the

specifications of the V-functions that correspond to the data B
structure elements are necessary for the purposes of this paper.

A . -

12The initial work in certifying the kernel indicates that the e
nesting of O-functions hinders the proof process. This probleﬂffé
being corrected by replacing each "call" of an O-function with the
body of the called O-~function. The copying works becaqse'the
specification contains no recursive O-function callsé& Recursion in
the V-function definitions is being eliminated by the use of
~quantifiers. A revised specification for the kernel will be

" puiblished with the proofs. ‘ 7

The use of a structured specification [Neumann, et al] allows
the description of hierarchical design mechanisms while avoiding *
nested O-functions. A complete specification is written for each
level, and then the V-functions at each level (except the lowest) are
?ﬂqﬁﬁigéed in terms of lower level V-functions. This V-function
mapping suggests certain implementation mechanisms, but these
mechanisms are not made explicit until O-functions are (abstractly)
implemented with lower level O~functions. Thus, when a high level
O-function changes the value of a V-function, a call to the lower ‘
level O-functions that maintain the corresponding lower level
V-functions is implied. The specification prover can ignore these 7
implicit calls because, as a specification, each level is logically
;ggg;g&awby itself. The imporgggxmﬁggggwgi;jhis discussion is that
#Br a givgﬁ“desfgnwbggéﬁ“ﬁﬂwtﬁé model there are many iiiiiiifz>

weorrect specifications. ...
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These V-function specifications can be easily generated if the proof
requires them.

Another convention is the use of mnemonic names for function
parameters and internal variables. Table VI shows the intended
interpretation of these names. TCP (The Current Process) is an
internal kernel variable that indicates which process is currently
bound to the CPU. It is part of the mechanism for implementing a
distributed kernel and prevents users of the kernel from forging
their identity.

Critical Sections

The specification assumes that the effect of O-functions is
instantaneous. In the initial implementation this assumption is
realized by making the entire kernel a single critical section. On
entry to the kernel a P is performed on a special semaphore (the
kernel semaphore), and the corresponding V is not executed until the
kernel function i1s complete, unless the function itself is a P on a
segment semaphore that causes the process to become blocked. In this
case the kernel semaphore must be released (by a V) before the
processor is deallocated from the blocked process and reallocated to
another process, or deadlock could result.

This approach to providing determinancy is used because its
correctness is obvious, and for single processor systems with one I/0
device supporting the virtual memory, it is reasonably efficient.

The only time that a blocked process has the kernel semaphore locked
"is when the kernel is waiting for internal (segment) I/0 that was
initiated on the process’s behalf to complete. This situation will
cause system inefficiency only if there are other processes blocked
waiting to get into the kernel and there are no ready processes. If
the device is fast (drum or fixed head disk), the inefficiency should
be minimal.

If the system has a slow virtual memory device (a moving head
disk, for example) and/or more than one virtual memory device, the -
single critical section approach may cause serious inefficiencies.
In the first case, the time that a blocked process has the kernel

semaphore locked will increase substantially; and in the second, it

will not be possible to run more than one device at a time. To avoid
these inefficiencies multiple critical sections that depend upon the
data observed and modified by the various kernel functions must be
introduced and represented in the specification.
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Table VI

Intended Interpretations

external kernel function parameters

seg#

entry#
class
cat

type
size
mode
user_id
project_id
regi
process#
block#

segment number of a segment in a process’s
address space (WS)

identification of an entry within a directory
a classification

a category set

DATA or DIRECTORY

size of a segment in blocks

WRITE, READ, or NO

user identification

project identification

identification of a segmentation register
identification of a process

main memory address of a segment

internal kernel "variables"

TCP
aste#
dastet

acle#
smfr#

ipce#
uid

the current process

pointer to an AST entry

aste# for a segment known to be a directory
pointer to an ACL element

peinter to a semaphore

pointer to an IPC element

unigque identifier - a disk address
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The Kernel Gate and Argument Passing

Figure 8 shows the specification of the function KERNEL. This
function is the sole user entry point (or =ate) into the kernel and
the functions that it directly invokes are the "user callable" kernel
functions. KERHNEL uses PCHECK (Figure 9) to verify that the
parameters given by the user are within the acceptable ranges.

KERNEL and PCHECK also check that the seg# parameter (if required)
specifies a segment that is currently in the process’s WS, and
translates the seg# into an aste#. The functions of the form
"XXX_PARM" used by PCHECK indicate the parameters required by each of
the user callable kernel functions.

Many of the kernel functions set the value of a per-process RC
(return code) object. The security attributes of the RC object are
egual to those of the process. 1In general, kernel functions set RC
to indicate whether or not they were called correctly. A few
functions use RC to return additional information to the user. Each
process can always observe its own (and only its) RC object.

In the implementation, reserved locations in the user’s stack
segment are used for argument passing. Before calling the kernel the
user process places the kernel parameters (includine the code for the
particular kernel function it wishes to invoke) in fixed locations in
its stack. On entry, the kernel moves the user’s stack segment into
its own address space, copies the parameters into its own private
(kernel) stack segment, and then performs the validity checking on
the parameters. The RC object is also implemented as a reserved
location in the user’s stack, thus making it available to the user
for inspection when the kernel returns.

The rest of the specification is given in the following
subsecticns.

DIRECTORY FUNCTIONS

A set of functions is provided for manipulating the attributes
of segments. These functions change the security state of the system
by creating and deleting segments and adding and deleting elements
to/from a secment’s access control list (ACL). The common security
requirement for all functions that modify segment attributes is that
the modifying process currently have write access to the.segment’s
parent directory. A function is also provided to set the RC object
equal to the attributes of a segment. -
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Function: KERNEL ) :
Parameters: KERNEL(function_code, seg#, entry#, class, cat, type,
size, mode, user_id, project_id, reg#, process#, block#)
Effect:
IF (FUNCTION_CODE_MIN < function_code < FUNCTION_CODE MAY) &
PCHECK(function_code, seg#, entry#, class, cat, type, size,
mode, user_id,. project_id, reg#, process#, block#);
THEN: Let aste# = PS_SEG(TCP, seg#);
CASE OF function_ccde:
: CREATE(TCP, aste#, entry#, class, cat, type, size);
: DELETE(TCP, aste#, entry#);
: GIVE(TCP, aste#, entry#, mode, user_id, project_id);
RESCIND(TCP, aste#, entry#, user_id, project_id);
: DIRREAD(TCP, aste#, entry#);
: GETW(TCP, aste#, entry#);
: GETR(TCP, aste#, entry#);
RELEASE(TCP, aste#, seg#);
ENABLE(TCP, aste#, reg#);
: DISABLE(TCP, regh);
KP(aste#);

WO OU WN -
e e

—r b
D e e
..

12: XV(aste#);
13: IPCRCV; :
14: IPCSEND(process#, message, USER_DOMAIN);
15: CONCAT(block#);
16: SPLIT(block#, size};
17: KSWAPOUT(block#);
END;
ELSE: RC(TCP) = NO;

END;

Figure 8. KERNEL Funcgtion
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Creation and Deletion of Segments

r
The CREATE function (Figure 10) creates a segment iaferior to a “7&LM Y
specified directory segment. The parameters of CREATE are the segt @\
of the intended parent, the entry# of a free directory entry in the tJ0 bimiﬂ) (
intended parent, and attributes for the segment to be created. These &
attributes are the security level (classification and category set), 1\[(
a type (DIRECTORY or DATA), and a size.

In addition to enforcing the security requirement that the
process currently have wWrite access to the intended parent segment,
CREATE also enforces the security requirement of compatibility and
implementation requirements. The implementation requirements are
that segments can only be created inferior to DIRECTORY segments,
that the specified entry# identify an available directory entry, that
the size is one of the permitted sizes, and finally that the process
has sufficient disk quota to allow disk space to be allocated to the
segment.

The motivation for most of the implementation requirements is
straightforward. The requirement that the user specify an available
directory entry is soumewhat arbitrary - it would be slightly more
complex for the kernel to search for a free entry. This approach
allows users to establish certain conventions for the use of
directory entries. | The decisiocn to provide fixed sized segments
has already been discussed.

The use of the disk quota mechanism insures us that the
inability of a process to create a segment because of a lack of disk
space is striectly a function of that process’s behavior, and not the
behavior of some other process. If the quota mechanism were not used
all processes would have disk space allocated to them from a common
pool, and an uncontrolled communication path would exist between
processes. One process could use up all disk space by creating
segments and then modulate the (imaginary) bit that indicates whether
or not the disk is full by deleting and recreating a segment.

Another process (at a lower security level) could read this bit by
attempting to create a segment and then seeing if the operation was
successful. In this design the success or failure of CREATE is
indicated by the value of the RC object, but removing RC from the
specification is not sufficient to hide the effect of CREATE from the
user. The user can determine if the segment was actually created by

13For' example, the segment at entry# 1 might always contain the
symbolic names of the other segments inferior to the directory, and
the segment at entry# 2 might be an overflow directory. The file
system currently being implemented uses conventions similar to these.
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Function: PCHECK
possible values: TRUE or FALSE
Parameters: PCHECK(function_code, seg#, entry#, class, cat, type,
size, mode, user_id, project_id, reg#, process#, block#)
Value: ‘
IF (not SEG#_PARM(function_code) |
((SEG#_MIN < seg# < SEG#_MAX) & PS_SEG_INUSE(TCP, seg#))) &
(not ENTRY# PARM(function_code) |
(ENTRY# MIN < entry# < ENTRY# MAX)) &
(not CLASS_PARM(function_code) |
(CLASS_MIN < class < CLASS MAX)) &
(not CAT_PARM(function_code) |
(cat = CATEGORY_SET)) &
(not TYPE_PARM(function_code) | '
((type = DIRECTORY) | (type = DATA))) &
(not” SIZE_PARM(function_code) |
(SIZE_MIN < size < SIZE_MAX)) &
(not MODE_PARM(function_code) |
((mode = WRITE) | (mode = READ) | (mode = NO))) &
(not USER_ID_PARM(function_code) |
(USER_ID MIN < user_id < USER_ID MAX)) &
(not PROJECT_ID PARM(function_code) |
(PROJECT_ID MIN < project_id < PROJECT_ID MAX)) &
(not REG#_PARM(function_cocde) |
(REG#_MIN < reg# < REG# MAX)) &
(not PROCESS#_PARM(function_code) |
(PROCESS#_MIN < process# < PROCESS#_MAX)) &
(not BLOCK# PARM(function_code) |
(BLOCK# MIN < block# < BLOCK# MAX));
THEN: TRUE;
ELSE: FALSE;
END;

Figure 9. PCHECK Function
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Function: CREATE

Parameters: CREATE(process#, aste#, entry#, class, cat, type, size)
Effect:

IF not AST WAL(aste#, process#) |

(class < AST_CLASS(aste#)) |

(cat 2 AST CAT(aste#)) |

(AST _TYPE(aste#) # DIRECTORY) |

(‘DIR_SIZE’ (aste#, entry#) # 0) |

(size ¢ SIZE_SET) |

((type = DIRECTORY) & (size # DIRECTORY_SIZE)) !

(size > “PS_DISK_QUOTA (process#, size));

THEN: RC(processft) = NO;

ELSE: DIR_TYPE(aste#, entry#) = type;
DIR_STATUS(aste#, entry#) = UNINITIALIZED;
DIR_CLASS(aste#, entry#) = class;
DIR_CAT(aste#, entry#) = cat;

DIR_SIZE(aste#, entry#) = size;

DISK_ALLOC(size);

DIR_DISK(aste#, entry#) = NEXT_DISK_ADDRESS;

DIR_ACL_HEAD(aste#, entry#) = 0;

PS_DISK_QUOTA(process#, size) =
“PS_DISK_QUOTA (process#, size) - size;

ANCESTOR(NEXT DISK_ADDRESS, AST_DISK(aste#)) = TRUE;

(¥uid) (ANCESTOR(AST_DISK(aste#), uid));
ANCESTOR(NEXT DISK_ADDRESS, uid) = TRUE;

END;

UID SIZE(NEXT_DISK_ADDRESS) = size;

RC{process#) = YES;

END;

Function: DISK_ALLOC

Parameters: DISK_ALLOC(size)

Effect:

(3k) (("BIT_MAP (size, k) = 0) &
(BIT_MAP(size, k) = 1) &
(NEXT_DISK_ADDRESS = BASE(size) + k¥size));

Function: ANCESTOR

possible values: TRUE or FALSE
initial value: FALSE
Parameters: ANCESTOR(uid1, uid?2)

Function: UID_SIZE
possible values: size
Parameters: UID_SIZE(uid)

Figure 10. CREATE, DISK ALLOC, ANCESTOR and UID_SIZE Functions
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trying to read and write it.

The communication path just described is based on what we call a
system-wide variable. A system-wide variable can occur any time
physical resources must De shared among processes. In this case the
quota mechanism eliminates the communication path - its effect is to
partitioquthe physical disk into a virtual disk for each
process. It is necessary, of course, for the sum of the virtual
disks to be less than or equal to the physical disk. It is
interesting to note that while the quota mechanism is necessary for
security reasons, one would want something like it even if security
were not required. The ability of one user to monopolize disk space
at the expense of others is not desirable in any environment.

The effect of CREATE if all requirements are satisfied is to
create. a segment by pulting attributes into the directory entry.
Most of the attributes are directly specified by the user. The
status of the segment is set to UNINITIALIZED, the ACL is set to
empty, and space on the disk is allocated.

The effect statements in CREATE that set the value of the
V-function’s ANCESTOR and UID_SIZE require careful explanation.
Briefly, these V-functions are a specification mechanism that
"remember" the shape of the tree and the size of each segment.
Although this information is embedded in the directory structure, we
will see that having it in this form simplifies the specification of
the DELETE function,

The two arguments to ANCESTOR are the unique identifiers (disk
addresses) of two segments. ANCESTOR is true if the second segment
is an ancestor of the first. The ancestors of a segment are its
parent directory, its parent’s parent, and so forth. Thus, the root
is an ancestor of every segment in the tree (except itself).
UID_SIZE remembers the size of a segment by uid. For completeness,
Figure 10 gives specifications of ANCESTOR and UID_SIZE. The bodies
of their specifications are empty because their values are set
directly by O-functions. ’

The effect of DISK_ALLOC is to allocate space on the disk as
segments are created and to set the value of NEXT_DISK_ADDRESS to the
address of the space allocated. The disk is partitioned into a
region for each segment size, and each region is represented by a bit
string. There is one bit for each disk area that can be assigned to
a segment. The bit indicates if the area is free or assigned.

i .
! Actually, a disk quota per security level is sufficient, and this
result generalizes for all system wide variables.
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DISK_ALLOC scans the appropriate bit string looking for a bit
indicating a free area, sets the bit to indicate an assigned area,
and translates the bit address to a disk address. The guota
mechanism guarantees that DISK_ALLOC will succeed in finding a free
bit. If each bit string is partitioned into sections for each
process based on the quotas, then the values returned by DISK_ALLOC
are a function of each process’s behavior, but if the bit strings are
not divided into sections then each value returned by DISK_ALLOC is a
function of the behavior of all processes. If the latter case holds
then the security level of DIR DISK in each directory entry is
"system high".

Now that the explanation of CREATE is complets we pause to make
an observation - the notion of levels of abstraction is missing from
the create specification. Levels of abstraction have not béen
abandoned, rather, the specification has collapsed the levels of
abstraction to make the specification more compact. Conceptually,
there is still a separation among the abstractions that create
processes, create segments, and enforce a security policy. Figure 11
shows an alternative specification of create. The function CREATE
enforces the security policy, and CREATE2 enforces implementation
constraints and creates the segments. Although it is passed the
security attributes of the segment to be created, the effect of
CREATE2 is independent of their value. For the remaining kernel
functions the levels of abstraction will not be made explicit; we
hope that the distinction between those parts of the specification
that enforce the security policy and those that do not will be
obvious to the reader.

Figures 12 and 13 give the specifications of the DELETE function
and its immediate support functions. The user identifies the segment
to be deleted by giving the seg# of its parent directory and the
entry# of the segment. The only requirements are that the user
currently have write access to the parent directory (security) and
the entry specified is not a free entry (implementation).

In deleting a segment several operations must be performed:
1) the entry must be cleaned up so it can be reused; 2) if the
segment is active it must be removed from the address space of all
processes that currently have access to it and be deactivated; 3) the
disk space allocated to the segment must be released; and U4) if the
segment is a directory all of the segments inferior to it must be
deleted. While the kernel would be simpler if only empty directory
(or data) segments were accepted by DELETE, this approach cannot be
employed because a user may be permitted to delete a directory but
not know if it is empty or not. Consider a secret directory inferior
to a confidential directory. If a confidential user has write access
to the confidential directory, he can delete the secret directory,
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Function: CREATE
Parameters: CREATE(process#, aste#, entry#, class, cat, type, size)
Effect:
If¥ not AST WAL(aste#, process#) |

(class < AST_CLASS(aste#))

(cat 2 AST CAT(aste#));

THEN: CREATE2(process#,- aste#, entry#, class, cat, type, size);
ELSE: RC(TCP) = NO; R0 = W Loy -
END;

Function: CREATEZ2 :

Parameters: CREATE2(process#, aste#, class, cat, type, size)
Effect:

IF (AST_TYPE(aste#) # DIRECTORY) |

( ‘DIR_SIZE (aste#, entry#) # 0) |

(size & SIZE_SET) |

({type = DIRECTORY) & (size # DIRECTORY_SIZE)) |

(size > “PS_DISK_QUOTA (process#, size));

THEN: RC(process#) = NO;

ELSE: DIR_TYPE(aste#, entry#) = type;
DIR_STATUS(aste#, entry#) = UNINITIALIZED;
DIR_CLASS(aste#, entry#) = class;
DIR_CAT{astci#, entry#) = cat;

DIR_SIZE(aste#, entry#) = size;
DISK_ALLOC(size);
DIR_DISK(aste#, entry#) = NEXT_DISK_ADDRESS;
DIR_ACL_HEAD(aste#, entry#) = 0;
PS_DISK_QUOTA(process#, size) =
"PS_DISK_QUOTA (process#, size) - size;

ANCESTOR(NEXT_DISK_ADDRESS, AST DISK(aste#)) = TRUE;
(¥uid) (ANCESTOR(AST_DISK(aste#), uid));

‘ ANCESTOR(NEXT_DISK_ADDRESS, uid) = TRUE;
END; ‘
UID SIZE(NEXT_DISK_ADDRESS) = size;
RC(process#) = YES;

END;

Figure 11, CREATE and CRFATE2 Functions
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Function: DELETE
Parameters: DELETE(process#, aste#, entry#)
Effect: :
IF not AST WAL(aste#, process#) |
(AST_TYPE(aste#) # DIRECTORY) |
( ‘DIR_SIZE (aste#, entry#) = 0);
THEN: RC(process#) = NO;
ELSE: Let uid = DIR_DISK(aste#, entry#);
IF ‘DIR_ACL_HEAD (aste#, entry#) # 0;
THEN: Let acle# =
FINDEND(aste#, ‘DIR_ACL_HEAD (aste#, entry#);
ACL_CHAIN(aste#, acle#) = “ACL_CHAIN'(aste#, 0);
ACL_CHAIN(aste#, 0) = °DIR_ACL_HEAD'(aste#, entry#);
END; '
DIR_SIZE(aste#, entry#) = 0;
DELETESEG (uid);
IF DIR_TYPE(aste#, entry#) = DIRECTORY;
THEN: (¥duid)( ANCESTOR(duid, uid));
DELETESEG(duid);
END;
RC(process#) = YES;
END;

Figure 12, DELETE Function
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Function: DELETESEG
Parameters: DELETESEG(uid)
Effect:
Let aste# = “HASH'(uid);
IF aste# £ 0;
THEN:
(¥process#) (PROCESS#_MIN < process# < PROCESS#_MAX);
IF (PT_FLAGS(process#) # INACTIVE) &
"AST_CPL’(aste#, process#);
THEN:
(¥seg#) (SEG#_MIN < seg# < SEG#_MAX);
IF ('PS_SEG (process#, seg#) = astef#t);
THEN: RELEASE(process#, aste#, seg#);

END;
END;
END;
END;
DEACTIVATE(uid);

END;

DISK_FREE(uid, UID_SIZE(uid));

(¥puid) ("ANCESTOR " (uid, puid));
ANCESTOR(uid, puid) = FALSE;

END;

Function: DISK_FREE

Parameters: DISK_FREE(disk_address, size)
Effect:

Let k = ((disk_address - BASE(size))/size);
BIT MAP(size, k) = 0;

Figure 13, DELETESEG and DISK FREE Functions
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but by virtue of the relative security levels he may not know what is
in the secret directory, and the success or failure of a delete
conditioned on directory empty would tell him.

Operation 1) consists of removing all of the ACL elements from
the entry and putting them on the parent directory’s free ACL element
chain, and marking the entry free by setting DIR_SIZE to 0. This
operation is performed in DELETE; 2) and 3) are done in DELETESEG.
DELETE also determines if the segment being deleted is a directory,
and if so, determines all of its inferiors with the ANCESTOR function
and invokes DELETESEG for each one. 1In deleting an inferior it is
not necessary to clean up its entry (operation 1), because its parent
is always being deleted.

The ANCESTOR function is a mechanism that allows the
specification to easily identify all of the segments in a sub-tree.
The implementation does not need the ANCESTOR function (or the
UID_SIZE function) because it can find all of the segments in a
sub-tree by performing a tree-walk.

DISK_FREE, the inverse of DISK_ALLOC, is passed the disk address
of a segment and the size of the segment. It translates the disk
address into a bit address and sets the bit in the appropriate bit
string to indicate that the disk area previously allocated to the
segment is now free. Note that the user’s disk quota is not credited
in the delete function. When a user deletes a sub-hierarchy he
cannot be credited with all of the disk space freed because he may
not be entitled to know the size of the sub-hierarchy. At least two
implementation schemes are possible: 1) as a segment is deleted the
quota of the user that created the segment can be credited; or
2) periodically, the entire hierarchy can be inspected and the quotas
of users can be adjusted to reflect any deletions that have cccurred
during the previous period. In either case, we would want a segment
attribute to identify the user who created the segment.

Giving and Rescinding Access

Functions are provided for giving and rescinding access
permissions (modifying M). Actually, these functions’ names are
deceptive. The GIVE function adds an ACL element to a segment’s ACL
chain and RESCIND removes an ACL element. - Since an ACL element can
contain the NO access mode, the "GIVE" function can remove access
rights from a user.

The GIVE function (Figure 14) adds an ACL element (mode,
user_id, project_id) to the directory entry (seg#, entry#) of some
segment. It requires that the user currently have write access to
the directory, that the entry is not free, that an ACL element with
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Function: GIVE
Parameters: GIVE(process#, aste#, entry#, mode, user_id, project_id)
Effect:
IF not AST WAL(aste#, process#) |
(AST_TYPE(aste#) # DIRECTORY) |
(DIR_SIZE(aste#, entry#) = 0) |
DUPACL(aste#, 'DIR_ACL_HEAD (aste#, entry#), user_id, project_id) |
(ACL_CHAIN  (asteff, 0) = 0);
THEN: RC(process#) = NO;
ELSE: Let acle# = “ACL_CHAIN (aste#, 0);

END;

ACL_CHAIN(aste#, 0) = “ACL_CHAIN (aste#, acle#);
Let position = FACLPOS(astef, 'DIR_ACL_HEAD (aste#, entry#),
user_id, project_id);
IF position = 0;
THEN: ACL_CHAIN(aste#, acle#) =
‘DIR_ACL_HEAD'(aste#, entry#);
DIR_ACL_HEAD(aste#, entry#) = acle#;
ELSE: ACL_CHAIN(aste#, acle#) = “ACL_CHAIN (aste#, position);
ACL_CHAIN(aste#, position) = acle#;
END;
ACL_USER(aste#, acle#) = user_id;
ACL_PROJECT(asteff, acle#) = project_id;
ACL_MODE(aste#, acle#) = node;
SOADD(aste#, entry#);
RC(process#) = YES;

Figure 14. GIVE Function
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the same (user_id, project_id) is not already on the ACL (this check
is performed by DUPACL), and that there is a free ACL element to use
for this request. If all constraints are satisfied then the effect
is to allocate a free ACL element, find the correct position for it
in the ACL chain, put it there, fill it in as specified by the user,
and invoke SOADD. The function of SOADD will be explained shortly.

The specifications of DUPACL and FACLPOS are given later in this
subsection. FACLPOS finds the correct position for a new ACL element
by using the rules discussed in the subsection on data structures -
ACL elements with a more specific (user_id, project_id) go before ACL
elements with a more general (user_id, project_id).

The RESCIHND function (Figure 15) is the inverse of give - it
removes an ACL element from the ACL of a directory entry. FERescind
requires that the user currently have write access to the directory,
that the specified entry is in use, and that the specified ACL
element is currently on the ACL. The function’s effect is to remove
the ACL element from the entry’s ACL, add it to the directory’s free
ACL element chain, and invoke SOADD. FINDACLE returns the acle# of
an ACL element, and FINDPACLE returns the acle# of the previous ACL
element. These functions will be specified shortly.

Directory Support Functions

There are a number of functions to support the manipulation of
ACL chains. Figure 16 gives the specifications of DUPACL and
FACLP0OS. DUPACL indicates whether or not a given ACL element
(independent of the mode) is on an ACL chain. FACLPOS finds the
correct place in an ACL chain to place a new element based on rules
previously discussed. It employs FINDEND to find the last ACL
element in a chain, and FINDUSER to find the last ACL element in a
chain that does not have a user_id of ALL_USERS. Figure 17 gives the
specifications of FINDEND and FINDUSEk, as well as FINDACLE and
FINDPACLE. FINDACLE finds the acle# of a specified ACL element, and
FINDPACLE the previous acle# in the chain.

The specification cf SOADD (search out and destroy descriptors)
is given in Figure 18. Whenever the ACL of a segment changes it is
necessary to insure that any process that has the segment in its WS
still has access rights. 1If in fact a process has lost its access
rights because of the changed ACL, the segment must be removed from
its WS. SOADD performs this function.

If the segment is not active it cannot be in the WS of any
process. Otherwise, for each process on the segment’s connected
process list SOADD determines the process’s mode of access,
re-searches the ACL using DSEAKCH, and if the search fails removes
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Function:

.

RESCIND

Parameters: RESCIND(process#, aste#, entry#, user_id, project_id)

Effect:
IF not AST WAL(aste#, process#) |

t

(AST_TYPE(aste#) # DIRECTORY) |
(DIR_SIZE(aste#, entry#) = 0) |
not DUPACL(aste#, ‘DIR_ACL_HEAD (aste#, entry#), user_id,

project_id);

THEN: RC(process#) = NO;
ELSE: Let acle# = FINDACLE(aste#, ‘DIR_ACL HEAD (aste#, entry#),

END;

user_id, project_id); '

IF acle# = “DIR_ACL_HEAD (aste#, entry#);

THEN: DIR_ACL_HEAD(aste#, entry#) =
"ACL_CHAIN'(aste#, acle#);
ELSE: Let pacle# = FINDPACLE(aste#,
‘DIR_ACL_HEAD  (aste#, entry#), acle#);
ACL_CHAIN(aste#, pacle#) = “ACL_CHAIN (aste#, acle#);

END;
ACL_CHAIN(aste#, acle#) = “ACL_CHAIN'(aste#, 0);
ACL_CHAIN(aste#, 0) = acle#;

SOADD(aste#, entry#); '

RC(process#) = YES;

Figure 15. RESCIND Function
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Function: DUPACL
possible values: TRUE or FALSE
Parameters: DUPACL(aste#, acle#, user_id, project_id);
Value:

IF acle# = 0;
THEN: FALSE;
ELSE: .

IF (ACL_USER(aste#, acle#) = user_id) &
(ACL_PROJECT(aste#, acle#) = project_id);
THEN: TRUE;
ELSE: DUPACL(aste#, ACL_CHAIN(aste#, acle#), user_id,
project_id);
END;
END;

Function: FACLPOS
possible values: acle# or O
Parameters: FACLPOS(aste#, acle#, user_id, project_id)
Value:
IF acleft = 0;
- THEN: 0;
ELSE:
IF (user_id = ALL USERS) &
(project_id = ALL_PROJECTS);
THEN: FINDEND(aste#, acle#);
ELSE:
IF (user_id = ALL_USERS) |
(project_id = ALL_PROJECTS);

THEN:
IF ACL_USEk(asteff, acle#) = ALL_USERS;
THEN: 0;
ELSE: FINDUSER(aste#, acle#);
END;
ELSE: 0;
END;

END;
END;

Figure 16. DUPACL and FACLPOS Functions
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Ffunction: FINDEND

possible values: acle#

Parameters: FINDEND(aste#, acle#)

Value:

IF ACL_CHAIN(aste#, acle#) # 0;
THEN: FINDEND(aste#, ACL_CHAIN(aste#, acle#));
ELSE: aclei#; .

END;

Function: FINDUSER

possible values: acle#

Parameters: FINDUSER(aste#, acle#);

Value:

IF (ACL_CHAIN(aste#, acle#) = 0) |
(ACL_USER(aste#, ACL_CHAIN(aste#, acle#)) = ALL_USERS);
THEN: aclei#;
ELSE: FINDUSER(aste#, ACL_CHAIN(aste#, acle#));

END;

Function: FINDACLE
possible values: acle#
Parameters: FINDACLE(aste#, acle#, user_id, project_id)
Value:
IF (ACL_USER(aste#, acle#) = user_id) &
(ACL_PROJECT(aste#, acle#) = project_id);
THEN: acle#;
ELSE: FINDACLE(aste#, ACL_CHAIN(aste#, acle#), user_id,
project_id);
END;

Function: FINDPACLE
possible values: acle#
Parameters: FINDPACLE(aste#, vacle#, aclef)
Value:
IF ACL_CHAIN(aste#, vacle#) = acle;

THEN: vaclet; :

ELSE: FINDPACLE(aste#, ACL_CHAIN(aste#, vacle#,), acle#);
END; .

Figure 17. FINDEND, FINDUSER, FINDACLE, and FINDPACLE Functions
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Function: SOADD '
Parameters: SOADD(daste#, entry#)
Effect:
Let aste# = “HASH (DIR_DISK(daste#, entryi));
IF aste# # 0;
THEN:

(¥process#) (PROCESS#- MIN < process# < PROCESS# MAX);
IF PT_FLAGS(process#) # INACTIVE) &
‘AST_CPL’(aste#, processi#);
THEN:
IF “AST WAL (aste#, process#);
THEN: Let mode = WRITE;
ELSE: Let mode = READ;
END;
IF not DSEARCH{process#, daste#,
DIR_ACL_HEAD(daste#, entiry#), mode);
THEN: '
(¥seg#) (SEG#_MIN < seg# < SEG# _MAX);
IF (°PS_SEG’(process#, seg#) = astef);
THEN: RELEASE(process#, aste#, segi#);
END;
END;
END; -

END;
END;

Figure 18. SOADD Function
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the segment from the process’s WS with RELEASE. The specifications
of DSEARCH and RELEASE are in the next subsection.

The process is not given any explicit notification when the
kernel removes a segment from its address space. The process will
receive an error message the next time it tries to access the segment
or use its seg# for the segment as an argument to a kernel function.
Since the kernel does not "remember" that SOADD performed the
removal, the error message will not, in general, be sufficient to
determine the underlying cause of the error message. That is, the
error message alone will nol enable the user to distinguish between
the case where some other user removed him from a segment’s ACL and
the case where there is a bug in his program. It seems likely that
. human intervention will be necessary when a process has a segment
removed from its address space by some other process.

Reading Directories

Since directeries are composite objects - they contain data at
di fferent security levels including system high - users cannot have
direct read access to directories. A function, DIRREAD (see Figure
19) is provided to allow users to read the data in directories that
is at the security level of the directory. This function is an
example of a function that gives a2 process interpretive read access
to an object that is already in its address space as defined by the
current security state. DIRREAD verifies that the user currently has
read access to the directory and then stores into the RC object the
values of the type, security level, and size fields of the specified
directory entry.

ACCESSING SEGMENTS

Functions are provided for moving sszments into and out of a
process’s WS - the design’s interpretation of the model’s set b, and
a process’s AS. The functions that change a process’s WS change the
state of the system with respect to security (and thus correspond to
model rules), whereas the functions that change AS are only changing
the representation of the current security state. There are also
internal kernel functions to support the implementation of WS and AS.

Getting and Releasing Access

External kernel functions are provided for getting and releasing
access to segments - these functions move segments into and out of
WS. Although a process can directly address (with machine
instructions) only those segments in its WS that are also in its AS
because of hardware segmentation register constraints, WS is defined
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Function: DIRREAD
Parameters: DIRREAD(process#, aste#, entry#)
_Effect:
IF (AST_TYPE(aste#) = DIRECTORY) &
(DIR_SIZE(aste#, entry#) # 0);
THEN: RC(process#) = DIR_TYPE(aste#, entry#),
DIR_CLASS(aste#, entry#),
DIR_CAT(aste#, entry#),
DIR_SIZE(aste#, entry#);
ELSE: RC(process#) = NO;
END;

Figure 19. DIRREAD Function

78



(for security purposes) to be the address space of a process.

The security requirements that must be satisfied before a
process can get access to a segment are: 1) the process must
currently have read (or write) access to the segment’s parent
directory; 2) the process must be on the ACL of the segment in the
desired rmode; 3) the security condition must be satisfied - the
security level of the process must be greater than or equal to the
security level of the segment; and 4) the ¥*-property condition must
be satisfied - untrusted processes can only have write access to
segments at a single security level and read access to segments whose
security level is less than or equal to the write access security
level. (The write access level is the current security level.)
Figure 20 shows the two functions for getting access - GETW (get
write) and GETR (get read). Both of these functions require that the
user identify the segment he wishes to access by giving the seg# of
the parent directory and the entry# into the parent of the entry for
the segment. This method of identifiecation is sufficient to enforce
security requirement 1). The ACL is searched by DSEARCH. 1In GETW a
destinction is made between trusted and untrusted processes because
the ¥-property is not imposed upon trusted processes. For untrusted
processes it is sufficient to enforce the ¥-property - it is a
stronger condition than the security condition. No distinction is
made between trusted and untrusted processes by GETR because, for
read access, the security condition and ¥*-property condition are
equivalent. If 21l security requirements are satisfied GETW and GETR
invoke CONNECT which makes implementation checks and moves the
segment into the process’s WS.

The RELEASE function (Figure 21) removes a segment from a
process’s WS. There are no constraints other than the requirement
that the seg# parameter be valid. A segment cannot be removed from
WS if it is in AS. Given that RELEASE must check to see if the
segment is in the process’s AS, it is just as easy for RELEASE to
remove the segment from AS (with DISABLE) as it is to refuse the WS
removal. The removal from WS is performed by disconnecting the
process from the segment’s ASTE. If after the disconnection there
are no other processes connected to the ASTE, thnen the segment is
marked as eligible for deactivation by AGE.

The DSEARCH function searches an ACL chain looking for an ACL
element that applies to the invoking process - an ACL element with a
user-id equal to the process’s user-id or ALL_USERS and a project-id
equal to the process’s project-id or ALL_PROJECTS. 1If an ACL element
is found the mode field is checked. A mode of WRITE is required by
GETW; a mode of WRITE or READ is sufficient for GETR.
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Function: GETY :

Parameters: GETW(process#, aste#, entry#)

Ef fect:

IF (AST_TYPE(aste#) # DIRECTORY) |
(DIR_SIZE(aste#, entry#) = 0) |

not DSEARCH(process#, aste#, DIR_ACL_HEAD(aste#, entry#), WRITE);

THEN: RC(process#) = NO;

ELSE:
IF PS_TYPE(process#) = TRUSTED;
THEN:
IF (PS_CUR_CLASS(process#) < DIR_CLASS(aste#, entry#))
(PS_CUR_CAT(process#) Z DIR_CAT(aste#, entry#));
THEN: RC(process#) = NO;
ELSE: CONNECT(process#, aste#, entry#, WRITE);
. END;
ELSE:
IF (PS_CUR_CLASS(process#) # DIR_CLASS(aste#, entry#))
(PS_CUR_CAT(process#) # DIR_CAT(aste#, entry#));
THEN: RC(process#) = NO;
ELSE: CONNECT(process#, aste#, entry#, WRITE);
END; ’
- END;
END;

Function: GETR

Parameters: GETR(process#, aste# , entry#)

Effect:

IF (AST_TYPE(aste#) # DIRECTORY) |
(DIR_SIZE(aste#, entry#) = 0) |
not DSEARCH(process#, aste#, DIR_ACL_HEAD(aste#, entry#), READ)
(PS_CUR_CLASS(process#) < DIR_CLASS(aste#, entry#)) |
(PS_CUR_CAT(process#) & DIR_CAT(aste#, entry#));
THEN: RC(process#) = NO;
ELSE: CONNECT(process#, aste#, entry#, READ);

END;

Figure 20. GETW and GEIR Functions
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Function: RELEASE
Parameters: RELEASE(process#, aste#, seg#)
Effect:
Let block# = “AST_ADR (aste#);
IF (block# £ 0);
THEN: -
(¥reg#) (REG#_MIN < reg# < REG#_MAX) &
IF ('PS_SAR’(process#, reg#) = block#);
THEN: DISABLE(process#, reg#);

END;
END;
END;
AST CPL(aste#, process#) = FALSE;
AST WAL(aste#, process#) = FALSE;

IF not (3i)((PROCESS#_MIN < i < PROCESS# MAX) &
(AST_CPL(aste#, i) = TRUE));
THEN: AGE(astet);
END;
PS_SEG(process#, seg#) = "PS_SEG (process#, 0);
PS_SEG(process#, 0) = seg#;
PS_SEG_INUSE(process#, seg#) = FALSE;

Function: DSEARCH
possible values: TRUE or FALSE
Parameters: DSEARCH(process#, aste#, acle#, mode)
Value:
IF acle# £ 0; ©
THEN:
IF ((ACL_USER(aste#, acle#) = ALL_USERS) |
(ACL_USER(aste#, alce#) = PS_USER_ID(process#)) &
( (ACL_PROJECT(aste#, acle#) = ALL_PROJECTS) |
(ACL_PROJECT(aste#, acle#) = PS_PROJECT_ID(process#));
THEN:
IF ACL_MODE(aste#, acle#) = NO;
THEN: FALSE;
ELSE:
IF (mode = WRITE) &
(ACL_MODE(aste#, acle#) # WRITE);
THEN: FALSE;
ELSE: TRUE;
END;
END;
ELSE: DSEARCH(process#, aste#, ACL_CHAIN(aste#, acle#),
mode) ;
END;
ELSE: FALSE;
END;

Figure 21. RELEASE and DSEARCH Functions
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WS Support Functions

The get and release functions invoke internal functions that
support the concepts of connection, activation, deactivation, and
eligible for deactivation. Figure 22 shows the specification of the
CONNECT function, All segments that are in the WS of one or more
processes are active; each process that has a segment in its WS is
connected to the segment. "~ The implementation constraints enforced by
CONNECT are that the process must have a fr?g seg# and the process
cannot already be connected to the segment. If the segment is
not active it must be activated, and if it is active but eligible for
deactivation it must be made ineligible. The actual connection 1is
made by adding the process to the CPL (connected process list) in the
ASTE and, if the process is gaining write access, the WAL (write
access list) also. If the connection is successful, CONNECT sets the
RC object to the value of the seg# by which the process can
subseq&ently refer to the segment. ’

Figure 23 gives the specification of the ACTIVATE and DEACTIVATE
functions. The parameters of ACTIVATE identify the segnent to be
activated - the aste# of the parent directory and the entry# of the
segment 's entry in the directory. To activate a segment, a free ASTE
nust be found. A chain of free ASTE s begins at AST_CHAIN(0), but
this chain may be empty. If this is the case, then an ASTE to be
made free is chosen (by NEXTASTE), and the freeing is effected by
deactivating the segment using the ASTE. We must insure that a free
ASTE can always be obtained, since otherwise ACTIVATE would fail
making CONNECT fail. Ultimately GETW or GETR could fail for reasons
that are not necessarily a function of the behavior of the process
invoking the external kernel function - another instance of the
system wide variable problem. Since the ability of a process to
deplete the ASTE resource is constrained by the size of its WS, we
can guarantee that a free ASTE can always be obtained by making the
number of ASTE’s at least equal to the sum of all WS’'s plus the
number of ASTE’s needed internally by the kernel. If an active
. segment is not in the WS of any process (or wired down) then it is
eligible for deactivation. The actual activation is straightforward -
the directory entry except for the ACL is copied into the ASTE and
other fields in the ASTE are initialized. The segment is known not
to be in main memory, not to have any segment descriptors pointing to
it, and not to be in the WS of any process.

15This latter restriction prevents a process from having two
different seg#’s for a segment. It is enforced to simplify the
RELEASE function.
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Function:
Parameters: CONNECT(process#, dastef, entry#, mode)
Effect: ‘
IF “PS_SEG’(process#, 0) = 0;

THEN: RC(process#) = NO;

ELSE: Let flag = "HASH  (DIR_DISK(daste#, entry#));
IF (flag # 0) &

‘AST_CPL’(flag, process#);

THEN: RC(process#) = NO;

ELSE:

END;

END;

CONNECT *

IF flag # 0;
THEN: Let aste# = flag;
IF “AST_AGE (aste#) = AGED;
THEN: UNAGE(aste#);
END;
ELSE: ACTIVATE(daste#, entry#);
Let aste# = HASH(DIR_DISK(daste#, entry#));
UNAGE (asteit) ;
END;
AST_CPL(aste#, process#) = TRUE;
IF mode = WRITE;
THEN: AST_WAL(aste#, process#) = TRUE;
END;
Let seg# = "PS_SEG (process#, 0);
PS_SEG(process#, 0) = “PS_SEG’(process#, seg#);
PS_SEG(process#, seg#) = aste#;
PS_SEG_INUSE(process#, seg#) = TRUE;
RC(process#) = YES, seg#;

Figure 22, CONNECT Function
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Function: ACTIVATE
Parameters: ACTIVATE(daste#, entry#)
Effect:
IF “AST_CHAIN'(0) = 0;
THEN: Let aste# = NEXTASTE( AST_AGE_CHAIN"(0));
DEACTIVATE(aste#);
ELSE: Let aste# = "AST CHAIN'(0);
AST _CHAIN(O) = “AST_CHAIN'(aste#);

END;

HASH(DIR_DISK(daste#, entry#)) = aste#;

AST_ADR(aste#) = 0;

AST_LOCK(aste#) = UNLOCKED;

AST_DES_COUNT(aste#) = 0;

(¥processi#) (PROCESS#_MIN < process# < PROCESS# _MAX);
AST _CPL(aste#, process#) = FALSE;
AST .WAL(aste#, process#) = FALSE;

END;

AST_TYPE(aste#) = DIR_TYPE(daste#, entry#);

AST _STATUS(aste#) = 'DIR_STATUS'(daSte#, entry#);

AST_CLASS(aste#) = DIR_CLASS(daste#, entry#);

AST _CAT(aste#) = DIR_CAT(daste#, entry#);

AST DISK(aste#) = DIR_DISK(daste#, entry#);

AST_SIZE(aste#) = DIR_SIZE(daste#, entry#);

IF “DIR_STATUS’(daste#, entry#) = UNINITIALIZED;
THEN: DIR_STATUS(daste#, entry#) = INITIALIZED;

END;

AGE(aste#);

Function: DEACTIVATE
Parameters: DEACTIVATE(aste#)
Effect:
UNAGE(astef);
IF 'AST_STATUS'(aste#) = UNINITIALIZED;
THEN: SWAPIN(aste#);
SWAPQUT (aste#);
ELSE:
IF “AST _ADR (aste#) # 0;
THEN: SWAPOUT(aste#);
END;
END;
HASH(AST DISK(aste#)) = 0;
AST CHAIN(aste#) = “AST_CHAIN"(0);
AST_CHAIN(C) = aste#;

Figure 23, ACTIVATE and DEACTIVE Functions
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The design is structured so that once a segment is activated,
the ASTE contains all of the information necessary to swap the
segment into and out of main memory and deactivate it - no more
references to the parent directory are required. To preserve this
structure it is necessary to set DIR_STATUS to INITIALIZED if it is
UNINITIALIZED, even though the segment is not initialized at activate
time. We must, of course, insure that the segment is initialized
before it is deactivated.

ACTIVATE invokes AGE to mark the segment eligible for
deactivation. It does this because at activate time no processes are
put on the CPL and it is not known if any will be -~ ACTIVATE is
invoked by DELETEDIR as well as CONNECT. Finally, there is a
function HASH whose input is the disk address (a unique identifier)
of a segment and whose output is the aste# of the segment, if it is
active, otherwise 0. HASH uses a hashing function and a hash table,
and resolves hashing collisions by running chains through the AST.
ACTIVATE must update HASH's data base.

The DEACTIVATE function is much simpler than ACTIVATE. It
removes the segment from the list of segments eligible for
deactivation, causes the segment to be initialized if it is
UNINITIALIZED, swaps it out of main memory if it is in, updates
HASH s data base, and adds the ASTE to the list of free ASTE’s.

The kernel maintains a list of active segments eligible for
deactivation by running a chain through the AST_AGE_CHAIN field of
the AST. The head of the chain is the segment that most recently
became eligible for deactivation, the tail is the segment that has
been eligible the longest. In addition to HASH, Figure 24 gives
specifications for the four functions that deal with this chain, AGE,
UNAGE, FINDUNAGE, and NEXTASTE. (The body of HASH s specification is
empty because its value is always set by ACTIVATE and DEACTIVATE.)
AGE adds a segment to the head, UNAGE removes a segment from the
chain, FINDUNAGE finds the segment’s position in the chain for UNAGE,
and NEXTASTE returns the aste# of the segment at the tail. NEXTASTE
implements a policy that does not have to be in the kernel - when a
segment has to be deactivated to make an ASTE available, the segment
that has been eligible for deactivation longest is chosen. The
design is done this way because the policy seems reasonable, the
distinction between segments eligible for deactivation and those that
are not must be maintained within the kernel, and to have a mechanism
that permitted uncertified software to implement an alternative
policy would add more complexity and overhead than it saved.

We conclude the treatment of WS functions with a few remarks on.

why we choose to postpone deactivation until the last possible
moment, rather then doing it as soon as possible. Given the
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Function: HASH

possible values: aste# or O
initial value: O

Parameters: HASH(disk_address)

Function: AGE

Paramteters: AGE(aste#)

Effect:

AST_AGE_CHAIN(aste#) = “AST_AGE_CHAIN’(0);
AST AGE_CHAIN(0)= astef;

AST_AGE(aste#) = AGED;

Function: UNAGE

Parameters: UHAGE(aste#)

Effect:

Let vaste# = 'FINDUNAGE (0, aste#);

AST _AGE_CHAIN(vaste#) = “AST_AGE_CHAIN(aste#);
AST_AGE(aste#) = UNAGED;

Function: FINDUNAGE
possible values: aste#
Parameters: FINDUNAGE(vaste#, aste#)
Value:
IF AST_AGE_CHAIN(vasteff) = aste#; .
THEN: aste#;
ELSE: FINDUNAGE(AST AGE_CHAIN(vaste#), astef);
END;

Function: NEXTASTE
posssible values: aste#
Parameters: NEXTASTE(aste#)
Value:
IF AST_AGE CHAIN(aste#) = 0;
" THEN: aste#;
_ "ELSE: NEXTASTE(AST_AGE_CHAIN(aste#));
END;

Figure 24. HASH, AGE, UNAGE, FINDUNAGE and NEXTASTE Functions
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requirement on the number of ASTE’s, it should be clear that as soon
as processes start to share segments - the CPL of an ASTE contains
more than one process - there will be more ASTE s than are needed.
(The requirement for ASTE’s assumes the worst case - absolutely no
segment sharing.) The strategy of AGEing rather than DEACTIVATing is
intended to take advantage of these surplus ASTE’s. It is much more
efficient to AGE and then UNAGE than it is to DEACTIVATE and
ACTIVATE. The assumption’is that there will be segments eligible for
deactivation that are moved back into a process’s WS before they are
actually deactivated.

If the hardware had adequate support for segment and page
faults, then the requirement on the number of ASTE’s would go away.
In the extreme case of little or no segment sharing, it would be
possible to deactivate a segment out from under a process by setting
a segment fault. Even in this environment, however, it would still
be desirable to postpone deactivation and to have sufficient ASTE’s
to make the postponement worthwhile.

Enabling and Disabling Access

Since the number of hardware descriptors available on the
PDP-11/45 prevents a process from having a descriptor for each
segment in its WS (and thus directly accessing it), external kernel
functions are provided for managing the allocation of descriptors.
The ENABLE function (Figure 25) moves a segment in a process’s WS
into its AS, allocating a descriptor to the sezment. The parameters
of the ENABLE function are the seg# of the segment and the reg# of
the segmentation register to use. Since moving a segment into AS
only changes the representation of the current security state and not
the state itself, all of the constraints imposed by ENABLE are
implementation and consistency constraints. ENABLE requires that the
seg# parameter be valid, that the specified segmentation register be
free, and that the process have sufficient main memory quota. The
main memory guota supports a mechanism similar to that used for
controlling disk space allocation. Main memory is effectively
partitioned into areas for each process. This mechanism is required
because if a descriptor exists for a segment, that segment is locked
into main memory - missing segment/page faults are not suppoerted.
The inability of a process to enable access to a segment must be due
strictly1go its own behavior and not the behavior of some other
process.

16As with the disk quota, a per-security-level main memory quota is
sufficient for security.
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Function: ENABLE

Parameters: ENABLE(process#, aste#, reg#)

Effect:

Let size = AST_SIZE(aste#);

IF (“PS_SAR (process#, reg#) # 0) |
((AST_WIRED_DOWN(aste#) = OFF) & (size > 'PS_MEM_QUOTA (process#));
THEN: RC(process#) = NO;

ELSE:

IF “AST_ADR(aste#) = 0;

THEN: SWAPIN(aste#);
END;
IF 'AST_LOCK'(aste#) = UNLOCKED;

THEN: LOCK(aste#);
END;
IF AST _TYPE(aste#) = DIRECTORY;

THEN: Let mode = NO;

ELSE: :

IF AST_WAL(aste#, process#) = TRUE;
THEN: Let mode = WRITE;
ELSE: Let mode = READ;
END; :

END;
LSD(process#, AST_ADR(aste#), reg#, mode);
IF AST WIRED DOWN(aste#) = OFF;

THEN: PS_MEM _QUOTA(process#) = “PS_MEM_QUOTA (process#) -

AST SIZE(aste#);
END;
AST DES_COUNT(aste#) = “AST_DES_COUNT’(aste#) + 1;
RC{(process#) = YES
END;

Function: LSD

Parameters: LSD(process#, block#; reg#; mode)
Effect:

PS_SAR(process#, reg#) = block#;
PS_SDR(process#, reg#) = MBT_SIZE(block#), mode;

Figure 25. ENABLE and LSD Functions
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Before a descriptor can actually be constructed, the segment
must be swapped into main memory, if it is not in already, and the
mode of access that the user has requested must be determined.
Enabling access to directories is allowed, but the resulting
descriptor will not actually allow access - the effect is simply to
lock the directory into main memory. The actual construction of
segment descriptors and the storing of them into descriptor registers
is performed by LSD (Load Segment Descriptor). ENABLE concludes by
debiting the main memory quota of the process and incrementing the
descriptor count for the segment.

The DISABLE function (Figure 26) is the inverse of the ENABLE
function - it removes a segment from AS and makes a segmentation
register free by destroying the descriptor in it. DISABLE’s only
parameter is the reg# of the segmentation register and its only
requirement is that the register actually contain a descriptor. The
aste# of the segment is determined, the change bit in the descriptor
register is "remembered", the descriptor is destroyed, the segment’s
descriptor count is decremented, and the process’s memory quota is
credited. If the segment’s descriptor count goes to zero, the
segment is marked as eligible for being swapped out of main memory.

AS Support Functions

There are several internal functions that support the
implementation of AS. Figure 27 shows the specification of the
SWAPIN and SWAPOUT functions. SWAPIN swaps the segment specified by
the aste# parameter into main memory. First, SWAPIN finds an area of
memory of the correct size and removes it from the free chain. Then,
depending on whether or not the segment must be initialized, it
either initializes the segment or reads it in off the disk and waits
for the disk I/0 to complete. Finally, SWAPIN updates the AST and
MBT and invokes UNLOCK to put the segment on the SWAP_CHAIN.

SWAPOUT removes a segment from main memory. The segment need
not be written back to the disk unless it has changed since it was
swapped in - MBT_CHANGE indicates whether or not this is the case.
The segment is removed from the SWAP_CHAIN, and the memory it
formerly occupied is put on the free memory chain.

Figure 28 gives the specifications of INITSEG, DISKIO, and the
two functions that manipulate the SWAP_CHAIN. Directories are
initialized by marking all entries as free and putting all of the ACL
elements on the free ACL chain. Data segments are initialized to all
zero. DISKIO simply initiates a disk I/0 operation.

The SWAP_CHAIN contains all segments that are in main memory but
are eligible to be swapped out because there are no segment
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Function: DISABLE
Parameters: DISABLE(process#, reg#)
Effect:
IF “PS_SAR’(process#, reg#) # 0;
THEN: Let block# = "PS_SAR’(process#, reg#);
Let aste# = MBT_ASTE(blocki);
MBT_CHANGE(block#) = 'MBT_CHANGE (block#) |
“PS_SDR_CHANGE(process#, reg#);
PS SAR(procesqﬁ, reg#) = 0;
PS_SDR(process#, reg#) = 0;
AST_DES_COUNT(aste#) = ‘AST DES_COUNT (aste#) - 1;
IF (AST_DES_COUNT(aste#) = 0) &
(AST_WIRED DOWN(aste#) = OFF);
THEN: UNLOCK(aste#);
END;
IF AST_WIRED DOWN(aste#) = OFF;
THEN: PS_MEM_QUOTA(process#) = “PS_MEM_QUOTA (process#)
AST_SIZE(aste#);
END;
END;

Figure 26. DISABLE Function
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Function: SWAPIN

Parameters: SWAPIN(aste#)

Effect:

Let size = AST _SIZE(aste#); ,

Let block# = FINDFREE( 'MBT_CHAIN"(0), size);
. ALLOCMEM( "MBT_CHAIN’(0), block#);

IF “AST_STATUS (aste#) = UNINITIALIZED;

THEN: INITSEG(aste#, block#);
AST_STATUS(aste#) = INITIALIZED:
MBT_CHANGE(block#) = CHANGED;

ELSE: DISKIO(aste#, block#, DISK_READ);
MBT_CHANGE(block#) = UNCHANGED;
P(DISK_SEMAPHORE);

END;

AST_ADR(aste#) = block#;
MBT_ASTE(blcck#) = aste#;
UNLOCK(aste#);

Function: SWAPOUT

Parameters: SWAPOUT(aste#)

Effect:

Let block# = 'AST_ADR'(aSte#);

LOCK(aste#);

AST ADR(aste#) = 0;

IF MBT_CHANGE(block#) = CHANGED;
THEN: DISKIO(aste#, block#, DISK_WRITE);
P(DISK_SEMAPHORE);

END;

FREEMEM( "MBT_CHAIN"(0), block#);

Figure 27. SWAPIN and SWAPOUT Functions
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Function: INITSEG
Parameters: INITSEG(aste#, block#)

Effect:
IF AST_TYPE(aste#) = DIRECTORY;
THEN:
(¥i) (ENTRY#_MIN < i < ENTRY#_MAX);
DIR_SIZE(aste#, i) = 0;
END;
(¥3) (ACLE#_MIN < j < ACLE# MAX);
ACL_CHAIN(aste#, j) = (j+1) MODULO (ACLE#_MAX+1);
END; .
ELSE: segment_contents = O;
END;

Function: DISKIO

Parameters: DISKIO(aste#, block#, command)
Effect:

DISK_ADR = AST DISK(aste#);

DISK_COUNT = AST_SIZE(aste#);

MEM_ADR = blockf#;

DISK_COMMAND = command, ENABLE_INTERRUPTS;

Function: LOCK

Parameters: LCOCK(aste#)

Effect: v

Let vasteff = 'FINDLOCK (0, aste#);

AST SWAP_CHAIN(vaste#) = “AST _SWAP_CHAIN (aste#);
AST_LOCK(aste#) = LOCKED;

Function: FINDLOCK
possible values: aste#
Parameters: FINDLOCK(vaste#, aste#)
Value:
IF AST_SWAP_CHAIN(vaste#) = aste#;
THEN: vaste#; :
ELSE: FINDLOCK(AST_SWAP_CHAIN(vaste#), aste#); -
END;

Function: UNLOCK

Parameters: UNLOCK(aste#)

Effect:

AST_SWAP_CHAIN(aste#) = “AST_SWAP_CHAIN’(0);
AST_SWAP_CHAIN(OQ) = aste#;

AST_LOCK(aste#) = UNLOCKED;

Figure 28, INITSEG, DISKIO, LOCK, FINDLOCK and UNLOCK Functions
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descriptors for them. The design postpones the removal of a segment
from main memory for as long as possible, for reasons that are
similar to the deactivation postponement. A process may DISABLE
access to a segment, thus making it eligible toc be swapped out,
simply because it has run out of descriptor registers and wants to
ENABLE access tc some other segment. If all processes are not using
their full memory quota or there is some in-core sharing of segments,
then it may be possible to swap the second segment into main memory
without removing the first. We choose not to swap out the first
segment because the process may choose to reENABLE access to it, thus
requiring its presence in main memory. The three functions that dea
with the SWAP_CHAIN are LOCK (into main memory), FINDLOCK and UNLOCK.
LOCK removes a segment from the chain, using FINDLOCK to find the
segment 's position in the chain, and UNLOCK adds a segment to it.

The final set of AS functions deals with the allocation and
deallocation of main memory segments to virtual memory segments.
Figure 29 gives the specifications of FINDFREE, ALLOCMEM, and
FREEMEM. Free memory areas are on a chain ordered by block#. A free
memory area is characterized by its block# - the address of its first
byte - and its size. ALLOCMEM removes a free memory area from this
chain and FREEMEM adds an area to it. FINDFREE searches the free
chain looking for an area of a given size. If one is found, its
block# is returned, otherwise, we have a problem. Assuming that the
main memory quota mechanism is correct, then a free memory area of
the desired size can be constructed by some combinaticn of the
following: 1) concatenating adjacent free areas; 2) splitting a free
area into two free areas; 3) removing segments on the SWAP_CHAIN from
main memory; and 4) compacting fragmented free areas. Determining
the appropriate course of action requires a policy that does not
belong in the kernel. Rather, the kernel designs assumes the
existence of a process whose function is to keep the free memory
chain in "good shape" - sufficient free areas of the right sizes. To
perform this task the kernel provides it with functions that perform
the three operations just described. These functions are discussed
in a later subsection. While we expect that this process will be
correctly implemented and be able to keep ahead of the kernel, the
kernel must be prepared to deal with FINDFREE's failure to find a
free area.

When FINDFREE fails the kernel can do one of twe things: 1) it
can explicitly cause the memory management process to run and only
permit its three memory structuring kernel functions (that do not
affect the current security state) to be invoked; or 2) it can
deallocate the CPU from the current process, allocate the CPU to any
other process ready to run (but somehow indicate that the memory
management process should run), and allow all kernel functions to be
invoked. 1If course 1) is chosen, then the original process can be

93



Function: FINDFREE
possible values: block#
Parameters: FINDFREE(block#, size)
Value:
IF block# = END_BLOCK#;
THEN: RESTART;
ELSE: :
IF MBT_SIZE(block#) = size;
THEN: block#;
ELSE: FINDFREE(MBT_CHAIN(block#, size));
END;
END;

Function: ALLOCMEM
Parameters: ALLOCMEM(vblock#, block#)
Effect:
IF ‘MBT_CHAIN (vblock#) = block#; _
THEN: MBT_CHAIN(vblock#) = MBT_CHAIN(block#);
MBT_FLAGS(block#) = ALLOCATED;
ELSE: ALLOCMEM( "MBT_CHAIN'(vblock#), block#);
END; '

Functiorni: FREEMEM

Parameters: FREEMEM(vblock#, block#)

Effect:

IF “MBT_CHAIN (vblock#) > block#;
THEN: MBT_CHAIN(block#) = "MBT_CHAIN’(vblock#);
MBT_CHAIN(vblock#) = block#;
MBT_FLAGS(block#) = FREE;
MBT_ASTE(block#) = 03

ELSE: FREEMEM( 'MBT_CHAIN’(vblock#), block#);

END; '

Figure 29, FINDFREE, ALLOCMEM and FREEMEM Functions

~
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restarted at the point where FINDFREE was invoked, because the
security state of the system has not changed. Course 2) is more
flexible but it requires that we prove that the system is in a secure
state at the point where FINDFREE fails. Also, the process must be
restarted at the point where the external kernel function was
invoked, because the security state of the system may have changed,
thus invalidating security checks made before the original FINDFREE
failure. ’

PROCESS COOPERATION

Mechanisms are provided to allow the sequential processes that
coexist in the physical computer system to cocoperate. These
mechanisms are used within the kernel to insure its correct
operation, and the kernel provides external functions that allow
these mechanisms to be used in an arbitrary manner, subject only to
security constraints. Two mechanisms are provided - a
synchronization mechanism that employs semaphores and the P and V
operations, and an interprocess communication (IPC) mechanism. The
functions for these mechanisms do not change the security state of
the system. They provide interpretive access to objects as permitted
by the current state and, since they can cause the execution state of
a process to change, they modify the representation of the current
state.

P and V

P and V are synchronization primitives that operate on
semaphores. They are the basic synchronization primitives used
within the kernel, and an explanation of them is given in Appendix I.
In the specification, synchronization with the disk during segment
swapping is achieved by performing a P on the disk semaphore. When
the disk operation completes, the interrupt handler does a V on the
di sk semaphore.

To allow users to synchronize with each other the kernel
associates a semaphore with each segment in the virtual memory.
Processes that have write access to a seguent may P and V on the
associated semaphore. Write access is required because both P and V
modify the semaphore, and the execution state of a process may change
as a result of the P or V. It is assumed that users will use P’s and
V’'s to coordinate the modification of shared segments and to
synchronize with their terminal I/0. The user may P on the 1/0
segment associated with his terminal. An interrupt from the terminal
will cause the V. Whether or not the appropriate conventions are
followed to insure the cooperation desired by users, is, of course,
no concern of the kernel.
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The specification of the P function is given in Figure 30. P
decrements the semaphore counter and, if the result is negative, it
blocks the prccess and adds it to the queue of processes blocked on
the semaphore. PSWAP is invoked when a process becomes blocked in
order to allocate the CPU to some other process.

The function of PSWAP is to deallocate the CPU from the current
process and reallccate it to some other process. This other process
must be in the READY state. It is possible, that when PSWAP first
looks, it cannot find a READY process. In this case, it waits for an
I/0 interrupt (which always results in a V on a I1I/0 segment
semaphore), and then looks again. At the level of the specification,
it is sufficient to change the value of TCP to any process that is
READY. At the implementation level, more work may be required
depending upon specific hardware characteristics. On the PDP-11/45
it is necessary to unload registers associated with the execution of
the current process and reload them for the new process. This
save/restore operation must, of course, be done correctly to insure
security. The specification assumes that the contents of the
hardware descriptor registers are equal to PS_SDR and PS_SAR for the
current process.

If more than one process is READY, PSWAP must have some
algorithm for selecting a particular process to run. This topic is
discussed in the subsection on policy functions. For the time being
we assume that PSWAP has some way of selecting a new process to run.

The V function (Figure 31) is the inverse of P. It increments
the counter of a semaphore, and if the result is non-positive, makes
a process that was blocked on the semaphore ready. If more than one
process is blocked on the semaphore, VEND finds the process that has
been blocked the longest, and VUNCHAIN removes it from the queue.
PSWAP is invoked because a process that was blocked is now ready and
PSWAP may want to allocate the CPU to it.

Interprocess Communication

Although the P and V primitives are probably sufficient for
implementing any desired form of process synchronization, another
mechanism, interprocess communication (IPC), is provided. The
utility of IPC is that it allows the transfer of data between
processes, and the receiving process is provided with the
identification of the sending process.

Figure 32 shows the specification of IPCSEND, the first half of

an IPC sequence. The security requirement for IPC is that a process
can only send a message to another process at an equal or higher
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Function: XP

Parameters: XP(aste#)

Effect:

IF AST _WAL(aste#, TCP);
THEN: P(astef);
ELSE: RC(TCP) = NO;

END;

Function: P

Parameters: P(smfr#)

Effect:

SMFR_COUNT(smfr#) = “SMFR_COUNT (smfr#) - 1;
IF SHFR_COUNT(smfr#) < 0;
THEN: PT_FLAGS(TCP) = BLOCKED;
PT_LINK(TCP) = “SMFR_POINTER (smfr#);
SMFR_POINTER(smfr#) = TCP;

PSWAP;
END;
RC(TCP) = YES;

Function: PSWAP

Parameters: PSWAP

Effect:
IF (Eprocess#)

THEN: TCP =

ELSE: WAIT;
PSWAP;
END;

(PT_FLAGS(process#) = READY);
processi#;

Figure 30. KP, P and PSWAP Functions
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Function: KV
Parameters: KV(aste#)
Effect:

IF AST WAL(aste#, TCP);
THEN: V(aste#);
ELSE: RC(TCP) = NO;

END;

Function: V
Parameters: V(snfr#)
Effect:
SMFR_COUNT(smfr#) = “SMFR_COUNT (smfr#) + 1;
IF SMFR_COUNT(smfr#) <= 0;
THEN:
IF SMFR_COUNT(smfr#) = 0;
THEN: Let process# = “SMFR_POINTER (smfr#);
SMFR_POINTER(smfr#) = 0;
ELSE: Let process# = VEND;
VUNCHAIN( "SMFR_POINTER  (smfr#));
END;
PT_FLAGS(process#) = READY;
P3SWAP;
END;
RC(TCP) = YES;

Function: VEND
possible values: process#
Parameters: VEND(process#)
Value:
IF “PT_LINK (process#) = 0;

THEN: processi;

ELSE: VEND( “PT_LINK (process#));
END;

Function: VUNCHAIN
Parame ters: VUNCHAIN(process#)
Effect:
IF "PT_LINK ( PT_LINK (process#)) = 0;
THEN: PT_LINK(process#) = 0;
ELSE: VUNCHAIN( PT_LINK (process#));
END;

Figure 31. KV, V, VEND and VUNCHAIN Functions
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Function: IPCSEND
Parameters: IPCSEND(process#, message, domain)
Effect:
IF (PT_FLAGS(process#) # INACTIVE) &
( ((PS_CUR_CLASS(process#) > PS_CUR_CLASS(TCP)) &
(PS_CUR_CAT(process#) = PS_CUR_CAT(TCP))) |
(PT_TYPE(TCP) = TRUSTED)) &
(“PT_IPC_QUOTA (process#) # 0);
THEN: Let ipceff = “IPC_LINK (0);
IPC_LINK(O) = “IPC_LINK (ipce#);
IPC_LINK(ipce#) = 0;
IPC_PROCESS(ipce#) = TCP;
IPC_DOMAIN(ipce#) = domain;
IPC_DATA(ipce#) = message;
IF “PT_IPC_QUEUE_HEAD(process#) = 0;
THEN: PT_IPC_QUEUE_HEAD(process#) = ipcef;
ELSE: Let elpce# =
FINDIPCEND( "PT_IPC_QUEUE_HEAD (process#));
IPC_LINK(eipcet#) = ipcef;
END;
PT_IPC_QUOTA(process#) = “PT_IPC_QUOTA (process#) - 1;
IF “PT_IPC_WAIT (process#) = ON;
THEN: PT_IPC_WAIT(process#) = OFF;
PT_FLAGS(process#) = READY;
PSWAP;
END;
END;

Function: FINDIPCEND
possible values: ipce#
Parameters: FINDIPCEND(ipce#)
Value:
IF IPC_LINK(ipce#) = 0;
THEN: ipcet#;
ELSE: FINDIPCEND(IPC_LINK(ipce#));
END;

Figure 32. IPCSEND and FINDIPCEND Functions
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security level, unless the éending process is a trusted subject. 1In
this case there are no security requirements. The object in an IPC
sequence is an IPC element. The basic functions of IPCSEND is to
allocate an IPC element from the free pool, fill it in with the data
being transferred and sending process identification, and add it
(using FINDIPCEND) to the queue of elements waiting to be received by
the receiving process. The process identification includes a domain
indicator to allow the receiving process to distinguish between
messages originating in the kernel domain of some other process and
messages originating in the user domains.

On the receiving side there are two cases: 1) the receiving
process 1s blocked because it is waiting for a message and until this
IPCSEND there were none available; and 2) the receiving process is
not waiting for a message. For case 1) the receiving process becomes
ready and PSWAP is invoked to allow the CPU to be reallocated to it,
if that action is dictated by PSWAP s CPU allocation policy.

Since IPC elements are a finite, shared resource, it seems
reasonable to control allocation of them with a quota mechanism.
Intuitively, one might think that the quota would be imposed on the
sending process in an IPC sequence. When a process sent a message,
its quota would be debited; when a message was received and the IPC
element was returned to the free pool, the sending process’s quota
would be credited. The problem with this approach is that an action
by the receiving process, which may be at a higher security level
than the sending process, modifies the quota of the sending process.
The sending process could determine if its quota had gone to zero by
trying to send another message to a second process at the same
security level and observing a segment shared with this second
process to see if the message 13 actually sent. Without giving all
of the details, we hope that the reader can see that this quota
implementation would not be secure, because a higher level process
could "signal" a lower level process.

An alternative quota implementation is to debit the quota of the
receiving process when some other process sends it a message, and
credit the receiving process when it actually receives the message.
As the specification shows, this is the method used in the 11/45
design. If the IPC quota of some process has gone to zero then no
other process can send it any messages. This is not a security
problem, because a process can only determine if its IPCSEND was
successful or not if it is sending to a process at the same security
level. ’

The second half of an IPC sequence occurs when a process invokes
IPCRCV (IPC receive, see Figure 33). Again there are two cases: 1)
there are one or more messages waiting for the process; and 2) there
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Function: IPCRCV
Parameters: IPCRCV
Effect:
IF “PT_IPC_QUEUE HEAD'(TCP) = 0;
THEN: PT_IPC_WAIT(TCP) = ON;
PT_FLAGS(TCP) = BLOCKED;
PSWAP ; .
IPCRCVZ;
ELSE: IPCUNQUEUE;
END;

Function: IPCUNQUEUE

Parameters; IPCUNQUEUE

Effect:

Let ipce# = “PT_IPC_QUEUE_HEAD’(TCP);

PT_IPC-QUEUE_HEAD(TCP) = "IPC_LINK'(ipce#);

RC(TCP) = IPC_PROCESS(ipce#), IPC_DOMAIN(ipce#), IPC_DATA(ipce#);
- IPC_LINK(ipce#) = "IPC_LINK'(0);

IPC_LINK(O) = ipcet#;

PT_IPC_QUOTA(TCP) = “PT_IPC_QUOTA (TCP) + 1;

Function: IPCRCV2

Parameters: IPCRCV2

Effect:

IF “PT_IPC_QUEUE_HEAD (TCP) # 0;
THEN: IPCUNQUEUE;

END;

Figure 33. IPCRCV, IPCUNQUEUE and IPCRCV2 Functions
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are no messages waiting for the process. In case 1) IPCUNQUEUE
unqueues the IPC element that has been queued the longest, moves its
contents to the process’s RC object, returns the IPC element to the
free pool, and credits the process’s quota. In case 2) the process
becomes blocked until a message is received. At that time IPCRCVZ2 is
invoked to receive the message.

POLICY FUNCTIONS

In any system it is desirable to separate policy and mechanism.
This is particularly true in secure systems, where the size and
complexity of the kernel must be minimized. The kernel must contain
the mechanisms for implementing the elements of the system and the
security policy for controlling access to these elements. Aayspodicy
Brat dfTiuences the dllocation of physical résources nead not, and,
Shouldrnobyebe in the-kernel,  The actual allocation of resources. .

fusgrbesperformed by L€ kernelin a secure.and correct.manneri For
these reasons it is necessary to have external kernel functions that
communicate policy decisions made outside the kernel to the
implementation mechanisms within the kernel. The effect of all of
these functions is to simply change the representation of the current
security state.

Memory Control

The 11/45 kernel design views main memory as a series of fixed
sized blocks. The size of a block must be a multiple of the minimum
segment size supported by the 11/45°s MMU (64 bytes). The initial
implementation uses 256 byte blocks. Adjacent blocks can be combined
into main memory segments. Characteristics of a main memory segment
include: 1) the address of its first block; 2) its size; and 3) the
virtual memory segment bound to it, if any. The first block of a
main memory segment is either FREE or ALLOCATED, all other blocks are
CONCATENATED. ’

The kernel design assumes the existence of a memory control
function with the task of keeping the free memory chain in "good
shape" - sufficient free main memory segments of different sizes so
that the FINDFREE subfunction of SWAPIN always succeeds. In order
for the memory control function to operate prcoperly it must be able
to observe the state of main memory, decide how it should be changed,
if at all, and communicate its_ decision to the kernel. To make the
necessary observations it must have read access to the MBT (Memory
Block Table) and AST. These tables have a security level of system
high, because they contain system-wide information on the mapping of
virtual resources into physical resources. Therefore, the memory
control function cannot be distributed among all process - it must be
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isolated in a process at a system-high security level. There is no
need for this process to be trusted, tecause the kernel doces not
depend on its correct operation, and this process can only
communicate with other system-high processes. If the process does
not operate properly the system may fail, bult there will be no
security compromise.

Figure 34 shows the functions that the memory control process
can use to communicate its policy decisions to the kernel. One of
these functions, KSWAPOUT, directs the kernel to swap a segment out
of main memory. Before invoking SWAPOUT the kernel insures that the
specified segment is eligible to be swapped out. Note that the
kernel does not check the identity of the process that invokes
KSWAPQUT. The only security requirement is that the data base that
must be observed in order to make intelligent use of the memory
control functions has a security level of system high. Since the
kernel makes no assumptions about the correct use of the menmory
control functions, there is no need for it to check the invoking
process’s identity. For practical reasons the operating system may
choose to prevent user processes from using these functions,

It may not be necessary to swap a2 segment out of main memory to
make room for another - changing the size of free main memory
segments may be sufficient. CONCAT and SPLIT are two functions for
performing this operation. The parameter of CONCAT is the block{# of
a main memory segment. The kernel requires that this segment be free
and that the next segment in the free chain be adjacent to it. The
two segments are then concatenated into a single free segnent. The
parameters of SPLIT are a block# and size. The kernel requires that
the block# identify a free main memory segment whose size is greater
than the size parameter. It then splits the segment into two
segments; the size of the first is equal to the size parameter.

In any system where memory is dynamically allocated to and
deallocated from different sized elements, fragmentation can be a
problem [Knuth]. During kernel operation, it is possible that there
may be enough free memory for a segment that must be swapped ‘in but
there is no combination of KSWAPOUTs, CONCATs, and SPLITs that can
form a free main memory segment of the proper size. The problem can
only be solved by reallocating virtual memory segments to main memory
segments. Virtual memory segments, locked in or not, can be moved
from one area of main memory to another because the memory management
unit prevents the use of physical addresses. In fact, the only
places that physical addresses need occur are in the AST and sezment
descriptors. Thus a function could be provided to physically move a
segment from one area of main memory to another and make the
necessary corrections to stored addresses. A specification for this
function is not given because it may not be necessary for all systems

i
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Function: KSWAPOUT

Parameters: KSWAPOUT(block#)

Effect: A

IF (MBT_FLAGS(block#) = ALLOCATED) &
(AST_LOCX(MBT_ASTE(block#)) = UNLOCKED);
THEN: SWAPOUT(MBT_ASTE(block#));

END; '

Function: CONCAT
Parameters: CONCAT(block#)
Effect: :
Let next_block# = MBT_CHAIN(block#);
IF (MBT_FLAGS(blcck#) = FREE) &
( ‘MBT_SIZE’(block#) + block# = next_block#);
THEN: MBT_SIZE(block) = "MBT_SIZE'(block#) +
{BT_SIZE(next_block#);
MBT_CHAIN(block#) = MBT_CHAIN(next_block#);
MBT_FLAGS(next_block#) = CONCATENATED;
END;

Function: SPLIT _ :
Parameters: SPLIT(block#, size)
Effect: .

IF MBT_FLAGS(block#) = FREE) &

(MBT_SIZE(block#) > size);

THEN: Let new_block# = block# + size;
MBT_FLAGS(new_block#) = FREE;
MBT_SIZE(new_block#) = "MBT_SIZE (block#) - size;
MBT_SIZE(block#) = size;
MBT_CHAIN(new_block#) = “MBT_CHAIN’(block#);
MBT_CHAIN(block) = new_block#;

END;

Figure 34. KSWAPOUT, CONCAT and SPLIT Functions

104



to be built on\}he PDP-11/45 kernel.

Before going on to process control it should be noted that the
need for the memory control functions and software to use them is a
result of implementing multiple sizes of unpaged segments. If all
segrments were a single size or composed of fixed sized pages
(assuming hardware support for segmentation and paging), then memory
allocation would be much simpler.

Process Control “

#Bince durdefinition Gf g security-compromise-doegrnotiinciude \)
genial of servicey-it-is-not nedessarv-for-the pregsss scheiuling \
poliey to be.implemented.within the kerneiy Scheduling decisions canl)
be made outside of the kernel and the results communicated to PSWAP,
the process multiplexor, by suitable external kernel functions. The
actual mechanisms used are somewhat arbitrary and should depend upon

specific system requirements.

As an example, let us postulate that PSWAP implements a policy
of allocating the CPU to the ready process with the highest priority,
and within groups of processes with equal priorities the CPU is
multiplexed in a round-robin fashion. This policy seems simple
enough to justify implementation within the kernel - a dozen higher
level language statements should be sufficient. To meet systenm
requirements it may be necessary to dynamically adjust process .
priorities. Thiz reguirémsdnt can-be met by havine the kernel assu@e
fHe"ekistence of 2-scheduler and-providing it with a. function Lof
®hange--process prioritigs.i

There are at least two ways to implement a scheduler: 1) the
scheduler can be distributed among all processes; or 2) it can be
isolated in a process of its own. If it is distributed, then the
scheduler can make decisions about a process’s priority based only
upon that process’s behavior. If the process is in a highly
interactive phase, the scheduler may choose to give it a high
priority, and if it is compute bound (doing a large compilation, for
example) it may have a low priority. If scheduling decisions are to
be based on the relative behavior of all processes, then the
scheduler must be isolated in a single process, because the
information it must observe is at system high. This scheduler would
insure that it 1s scheduled with a certain frequency, and each time
it ran it would observe recent system behavior and adjust priorities
appropriately. It is also possible to include time-slicing in this
approach. The scheduler indicates to the kernel what processes are
to be eligible for time slicing and the appropriate time quantums.
The actual management of the interval {imer-would be by PSWAP.
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The point of this discussion is to show that since our
definition of security does not have any implications on scheduling
policy, scheduling can be done in a variety of ways. By selecting
appropriate kernel functions it is possible to separate the process
multiplexing mechanism from scheduling policy.

INPUT/OUTPUT

Up to this point the design details include no explicit
provision for I/0. The reason for this apparent om}ision is that I/0
can be entirely transparent to the security kernel. If we
postulate a system where all devices operate in a unilevel mode and
the attachment of I/0 devices to processes is performed at system
initialization, then there is nothing more to do. Since the MMU will
enforce the controlled access to the 1/0 devices, and the unilevel
operation does not require computer generated security labels, all of
the 1I/0 can be performed entirely by uncertified software.

If requirements demand a more flexible system environment, then
it may be necessary to introduce additional kernel functions. For
example, if we wish to multiplex the line printer among different
security levels but retain unilevel printer operation, it will be
necessary to perform a security reconfiguration on the printer each
time a level change is desired. Externally, this reconfiguration may
just be a change of the printer forms. Internally, it will be
necessary to change the security level of the segment that contzins
the printer’s control registers to reflect the security
reconfiguration. The kernel can provide a function to change the
security level of a segment, and it can insure that changes are only
made that keep the system in a secure state (in terms of triples in
b, the *-property, and the compatibility requirement), but the kernel
cannot determine if the change of security level is "appropriate'.
Thus the kernel must restrict the use of this change function to
trusted processes, and trusted processes that use it must be
certified to use it correctly - for example, to assure that the
change of security level of the printer control segment is
coordinated with the change of forms.

If we wish to avoid reconfigurations and operate the printer in
a nmultilevel mode, then it will be necessary to run the printer with

17By I1/0 we really mean external 1/0 - the transfer of information
into and out of the computer system. Internal I/0 is used in
implementing the virtual memory and is completely controlled by the
security kernel. Also, we are only allcwing non-DMA devices to be
used for external I1/0.
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a certified process. Since only the printer process knows the
security attributes of the information that it is printing, this
process must produce security labels on the documents it prints. The
process must be certified to produce correct labels that cannot be
altered or "spoofed" by uncertified software.

THe requirements for terminals are similar, “Tf“a ferminal is to
be used-at different levels, then, when 2 user spécifies the security
Yevel at which he wishes to operate, there must be a mechanism to?
guarantee that he is talking to certified software, and not tos

tincertified software spcofing certified software.  One way BB
" implement such a mechanism 18 t6 use terminals that senerate a unique

interrupt when they are powsred on, and to vector this interrupt into
thexkernel. Thus, if the user turns the terminal on before logging
Inywe can guaranteethat he is.talking:to-a-certified loggers

SUMMARY

In this section we have presented the kernel primitives that
will support a static system. In a static system all software
configuration decisions, including the security level of shared 1/0
devices (printers, card readers, etc.), and non-shared devices
(terminals), and the binding of users to processes, are made at
system initialization. The kernel, of course, depends upon the
initial state of the system being secure. Although initialization is
beyond the scope of this paper, secure initializaticn simply requires
that all of the triples in the initial b are correct with respect to .
the security condition and the ¥-property, and that the initial
hierarchy is compatible. User requirements will determine what the
actual initial state of a particular system is,

In most systems a static software configuration will not be
acceptable - at a minimum it will be necessary to permit users to log
on and off the system. This feature must be supported by kernel
primitives that bind/unbind users to/from processes. This action
includes the initialization of processes - an operation whose
security requirements are similiar to system initialization. Thus, a
complete kernel design specification for a dynamic system will
include functions for initializing and terminating user processes.
The actual initial state of a user process will probably depend upon
the requirements of the specific system.
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SECTION V

SUMMARY

In this paper we have presented the design of a secure system
kernel for the PDP-11/45. The kernel design is based on a
general-purpose mathematical model of secure computer systems. This
section summarizes the accomplishments and limitations of the design
to date.

DESIGN LIMITATIONS

Although the design is based on a proven model of security, we
have not yet proved that the design corresponds to the model. Thus,
there may be errors in the design. A methodology for proving that
the design and implementation representations of a kernel correspond
to the model has been developed [Bell and Burkel. This methodology
has been applied to part of this kernel design, and the results
demonstrate the validity of the proof approach and the correctness of
the relevant parts of the design. Ve are confident that any errors
in the design are not fundamental problems and can be easily
corrected.

There is one aspect of the model, however, that in extreme cases
could be viewed as a fundamental problem. The model is based on an
asynchronous view of computaticon. Thus it is possible for programs
executing outside of the security kernel to influence the response
time that other programs see, and to use this ability to mecdulate
response time to send "Morse code" [Lampson]. We feel that the
presence of this uncontrolled communication channel is an intrinsic
problem, but not a serious one because: 1) the kernel can reduce the
bandwidth of the channel to any desired value by adding noise;

2) the use of this channel to pass information at one security level
to a lower level requires cooperating processes at both levels that
are able to synchronize with each other; and 3) if we have solved all
other problems we have made a great deal of progress in computer
security.

The treatment of hardware in tnis paper has been limited to a
discussion of characteristics that the kernel depends on. Two other
aspects of hardware are important - its correctness and the
possibility of component failure. By correctness we mean the
correspondence of the actual hardware to a formal specification that
describes its behavior. The part of the hardware that the kernel
depends on, access controls and many instructions, must be correct.
An error in the hardware will have the same effect as an error in the

108



.

Function: COHNKECT
Parameters: CONHECT(process#, daste#, entry#, mode)
Effect:

IF “PS_SEG (process#, 0) = 0;

THEH:
ELSE:
IF

END;

RC(process#) = NO;
Let
(flag # 0) &

o n

flag = "HASH (DIR_DISK(daste#, entry#));

‘AST _CPL"(flag, process#);
THEN: EC(process#) = NO;
ELSE: ‘

END;

IF flag 4 0;
THEN: Let aste# = flag;

IF “AST_AGE (aste#) = AGED;

THEN: UNAGE(asteft);

END;
ELSE: ACTIVATE(daste#, entry#);

Let aste# = HASH(DIR_DISK(daste#, entry#));

UNAGE (aste#);
END;
AST_CpPL(aste#, process#) = TRUE;
IF mode = WRITE;

THEN: AST_WAL(aste#, process#) = TRUE;
END;
Let seg# = "PS_SEG (process#, 0);
PS_SEG(process#, 0) = "PS_SEG (process#, seg#);
PS_SEG(process#, seg#) = aste#;
PS_SEG_INUSE(process#, seg#) = TRUE;
RC(process#) = YES, seg#;

Figure 22, CONNECT Function
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software security controls - it will allow repeated and undetectable
penetration of the system. Component failure, on the other hand, is
a probabilistic event. The probability that component failure will
allow a security compromise can be reduced by adding redundzancy, but
never eliminated. The impact of component fallure on conputer
security should be addressed by future research.

One final comment on hardware: the design considers only single
CPU (central processing unit) systems. Support for multiple CPU’s
‘would add complexity to level 1, but could be accomplished with
existing mechanisms (P and V primitives).

ACCOMPLISHMENTS

The principal achievement of this work is a feasible design for
computer systems that can be proven to implement an abstract model of
the Department of Defense Security Policy. The model and design
provide a high degree of confinement of the actions of arbitrary
(uncertified) programs.. Included in the design is a clean handling
of user I/0. Although the features provided by the design are in
some sense arbitrary (for example, another desizn might do without
the IPC objects), the security controls are in no way ad hoc - they
can be proven effective in a rigorous, mathematical manner.

In summary, this paper demonstrates the soundness of the
security kernel approach to solving the computer security problem by
presenting a prototype kernel design. The work ahead includes
designing a kernel for a large scale system with specific
requirements in such a way that the impact of the kernel on
efficiency is acceptable, and finding new hardware architectures that
facilitate secure system development.

Dyplte S

W. Lee Schiller
Intelligence and
Information Systems
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* APPENDIX I

SYNCHRONIZING PRIMITIVES

The systems to be built on the PDP-11/45 will be composed of
parallel sequential processes, and consequently, primitives for
synchronization are required. The primitives we have chosen are
Dijkstra’s P and V operations. This appendix provides background for
understanding them. (Some of this material has been taken from
[Dijkstra (1)] and [Horning & Randell]).

The P and V primitives operate on special purpose integer
variables called "semaphores". Semaphores are usually initialized
with the value 0 or 1. A P operation decreases the value of a
semaphore by 1. If the resulting value of the semaphore is
non-negative, the process performing the P can continue; if, however,
the resulting value is negative the process becomes blocked and is
placed on a queue associated with the semaphore. Until further
notice in the form of a V operation on the same semaphore by some
other process, the dynamic progress of the first process is not
logically permissible and a processor will not be allocated to it.

& V operation increases the value of a semaphore by 1. If the
resulting value of the semaphore is positive, the V has no further
effect; if, however, the resulting value is non-positive, one of the
processes on the semaphore’s waiting queue is removed - its dynamic
progress is again logically permissible and a processor may be
allocated to it.

Several observations can be made from these definitions. If a
semaphore value is non-positive its absolute value equals the number
of processes on its waiting queue. P and V operations nust be
"indivisible actions" -~ they cannot occur "simultaneously" in
parallel processes. When a V causes a process to be remcoved from a
semaphore’s waiting queue it is undefined - logically immaterial -
which process (if more than one is waiting) is actually removed. (In
the 11/45 kernel implementation the process waiting the longest will
be removed.) Finally, a consequence of the P and V synchronization
mechanism is that a process whose dynamic progress is permissible can
only lose that status by actually progressing - by performing a P.

Semaphores can be used in two different ways. The first is
mutual exclusion - the protection of a critical section of program
code or data - and it requires a semaphore, initialized to 1, for
each critical section. If all processes precede entry to a critical
section with a P on that section’s semaphore, and perform the
corresponding V on exit, them it can easily be shown that two or more
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processes can never be in the critical section simultanecusly. The
second use of semaphores is to synchronize "producer-consumer"
relationships among processes. When a consumer requires a resource
it performs a P; the corresponding V is performed by a producer when
it makes a resource available. The correct initialization of the
semaphore (usually to 0) insures that the consumers do not get ahead
of the producers. It should be pointed out that although the use of
'P’s and V's fagilitates the demonstration of correctness, their use
does not guarantee correctness. The appropriate conventions for
using the system’s semaphores must be established, and these
conventions must be followed by the cooperating sequential processes.
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