
MITRE Technical Report

MTR-2934

The Oesign and Specification

of a Security Herne! for the POP-11/45

W.L. Schiller

March 1975

CONTRACT SPONSOR ESD' .
C.ONTRACT NO. . F19628'i'5'C-0001 ,i ··.

· PROJECT NO. 5728
DEPT. '073

';··

Appro:o~ed for. public release;
distri,butiQn ul)limited.,-JFORO, MASSACHUSETTS ... ; ­

ABSTRACT

This paper presents the design of a kernel for certifiably
secure computer systems bein~ built on the Digital Equipment
Corporation PDP-11/45. The design applies a ~eneral purpose
mathematical model of secure computer systems to an off-the-shelf
computer. An overview of 'the model is given. The paper includes a
specification of the design that will be the basis for a ri~orous
proof of the correspondence between the model and the design. This
design and implementation has demonstrated the technical feasibility
of the security kernel approach for designing secure computer
systems.

This work was carried out by The MITRE Corporation under contract
to the United States Air Force Electronic Systems Division, Contract
Fl9628-75-C-0001.

I .

iii

PREFACE

The security kernel design given in this paper is a major
revision of a kernel desi~n described in [Schiller]. In the original
design a distinction was made between the information and control
structures of a computer system, and the access controls dictated by
our mathematical rnodel of secure computer systems were only applied
to the information structure. To protect the control structure we
stated that "it is the responsibility of the system designer to
systematically determine all possible channels throu~h the control
structure ... (and prevent) the associated state variable from
being controlled and/or observed". After that design was published
it became obvious that the approach to protectinrr the control
structure was not adequate. The systematic determination of channels
was equivalent to havin~ a QOdel that protected the control
structure.

Consequently, refinements were added to the model to allow the
same mechanisms to protect both the information and control structure
objects of a system. The basic technique used is to organize all of
the data objects in the system into a tree-like hierarchy, and to
assign each data and control object explicit security attributes.
The major difference between the revised desiP-n given in this paper
and the original desi~n is the incorporation of the model
refinements. In addition, this paper benefits from an additional
year's study and understanding of the computer security problem.
Familiarity with the original design is not required.

1

..
ACKNOHLEDGEHENTS

Many individuals have contributed to the ideas in this paper. I
would like to give special thanks to Ed Burke, Steve Lipner and Roger
Schell for many helpful discussions over the past two years. Jon
Millen contributed to the form and content of the specification. And
finally, I am indebted to Betty Aprile for spendin~ ~any hours with a
recalcitrant comp~ter system to help produce this paper.

2

TABLE OF CONTENTS

LIST OF ILLUSTRATIONS 5

LIST OF TABLES 6

SECTION I . BACKGROUND 7

INTRODUCTION 7

THE PROBLEH OF CQ}fPUTER SECURITY 7

BASIC CONCEPTS 8

SUMMARY 9

SECTION II TECHNICAL APPROACH 11

INTRODUCT:::ON 11

OBJECTIVES 11

RELATION TO MULTICS 12

THE HATHEHATICAL MODEL 16

State of the System 17

Potential Compromise 18

Transition Rules 20

Relation to Reference Monitor 22

HARDWARE REQUIREHENTS 23

INPUT/OUTPUT 24

SECTION III DESIGN CONCEPT 27

INTRODUCTION 27

LEVELS OF ABSTRACTION 27

LEVELS OF THE KERNEL 30

LEVEL 0 - THE HARDWARE 32

LEVEL 1 - SEQUENTIAL PROCESSES 35

LEVEL 2 - SEGHENTED VIRTUAL 1-fEMORY 38

LEVEL 3 - SECURITY 41

SECTION IV DESIGN DETAILS 43

INTRODUCTION 43

UNCERTIFIED SOFTWARE ENVIRONHENT 43

KERNEL DATA STRUCTURES 44

Directories 44

Active Segment Table 49

Process Table 51

Process Segments 52

Memory Block Table 54

SPECIFICATION OF THE KERNEL 54

Specification Conventions 57

Critical Sections 58

The Kernel Gate and Argument Passing 60

3

Page
60
63
70
72
77
77
77
82
87
89
95
95
97

102
102
105
106
107

108
108
109

110

112

115

SECTION V

APPENDIX I

BIBLIOGRAPHY

DISTRIBUTION LIST

TABLE OF CONTENTS (Concluded)

DIRECTORY FUNCTIONS
Creation and Deletion of Segments
Giving and Rescinding Access
Directory Support Functions
Reading Directories

ACCESSING SEGMENTS

Getting and Releasing Access

WS Support Functions

Enabling and Disabling Access

AS Support Functions

PROCESS COOPERATION

P and V

Interprocess Communication

POLICY FUNCTIONS

Memory Control

Process Control

INPUT/OUTPUT

SUMMARY

SUMMARY
DESIGN LIMITATIONS
ACCOMPLISHMENTS

SYNCHRONIZING PRIMITIVES

4

LIST OF ILLUSTRATIONS

Figure Number 	 Page

1 A Simple Hierarchy 15

2a Levels of Abstraction 28

2b Levels of Abstraction and Rings 28

2c Outward Ring Crossing 28

3 Kernel Structure 30

4 Dynamic Address Translation 33

5 Process Execution States 36

6 Spaces 45

7 The Validation Chain 56

8 KERNEL Function 61

9 PCHECK Function 62

10. 	 CREATE, DISK_ALLOC, ANCESTOR and

UID SIZE Functions 64

11 CREATE and CREATE2 Functions 67

12 DELETE Function 68

13 DELETESEG and DISK FREE Functions 69

14 GIVE Function 71

15 RESCIND Function 73

16 DUPACL and FACLPOS Functions 74

17 FINDEND, FINDUSER, FINDACLE, and

FINDPACLE Functions 75

18 SOADD Function 76

19 DIRREAD Function 78

20 GETW and GETR Functions 80

21 RELEASE and DSEARCH Functions 81

22 CONNECT Function 83

23 ACTIVATE and DEACTIVE Functions 84

24 HASH, AGE, UNAGE, FINDUNAGE and

NEXTASTE Functions 86

25 ENABLE and LSD Functions 88

26 DISABLE Function 90

27 SWAPIN and SVJAPOUT Functions 91

28 INITSEG, DISKIO, LOCK, FINDLOCK and

UNLOCK Functions 92

29 FINDFREE, ALLOCMEM and FREfu~1 Functions 94

30 KP, P and PSWAP Functions 97

31 KV, V, VEND and VUNCHAIN Functions 98

32 IPSCEND and FINDIPCEND Functions 99

33 IPCRCV, IPCUNQUEUE and IPCRCV2 Functions 101

34 KSWAPOUT, CONCAT and SPLIT Functions 104

5

LIST OF TABLES

Table Number

I Format of a Directory entry and an

Access Control List element 46

II .Format of an Active Segement Table entry .so

III Format of the Process Table 50

IV Format of a Process Segment 53

v Format of the Hemory Block Table 53

VI Intended Interpretations 59

6

SECTION I

BACKGROUND

INTRODUCTION

The PDP-1 1/45 Secure ~ystem Design is intended to provide a
design, based on a general purpose mathematical model of secure
computer systems, for building secure systems on the Digital
Equipment Corporation PDP-1 1/45, an off-the-shelf computer. The
primary goal of the design is to bridge the gap between the abstract
secure system defined by the model and the elements of
state-of-the-art hardware and software systems. A secondary goal is
to develop a design that applies to specific systems to be
implemented on the PDP-11/45. The approach taken has been to apply
the model, which is completely ~eneral in its nature, to a design
that will support non-trivial systems with security requirements.
The model is applied to the PDP-11/45 hardware which is sufficient to
support the model and secure systems, but not as complex as other
available hardware. The technical issues of special interest are the
mathematical modeling of secure systems, the secure system software
design, and the impact of hardware on the desi~n. This report
presents the design and discusses the decisions made in ~enerating
the design. This section provides background for understanding the
general problem area and the approach taken in attacking it. (Some
of the material in this section has been taken from [ESD] and
[Lipner].)

THE PROBLEM OF CONPUTER SECURITY

As larger, more powerful computers are employed for Air Force
information systems, the desirability of operating in a "multi-level
security" mode increases. A computer operating in such a mode
performs simultaneous processing of data havin~ different levels of
classification and provides simultaneous (typically on-line) support
to users with differing clearance levels. This mode of operation is
desirable because it is often impractical to clear all system users
for the highest level of data, or to separate the processing of
different levels by time of day. The most severe multilevel security
problem is presented by an "open" system - one in which uncleared
users have access to a computer that is processin~ classified data.
As recently as 1970 experts in the field felt that the provision of
security for a general purpose computer system operating in an open
environment was beyond the state-of-the-art.

7

The primary problem of computer security is that of
certification: how can one assert that a system provides adequate
security for a given application. The problems of certification
range from specification through the production of correct hardware
and software to testing. Previous work in this area has convinced us
that security cannot be "added onto" existing computer systems.
Current systems (IBM's OS/360/370 and Honeywell's GCOS, for example)
are notoriously easy to penetrate. Attempts to "repair" contemporary
systems are expen~ive and increase the malicious user's cost to
penetrate by a negligible amount. The selective rei~plementation of
contemporary systems would cost even more and would at best serve to
increase the cost of penetration [Anderson]. The only feasible
approach to providin~ security (and therefore completely blockin~
penetration attempts) is to consider the problem of security and
certification throughout the Hhole sys tern development process - from
specification to design, implementation, and testing.

BASIC CONCEPTS

The ESD computer security panel [Anderson] identified the
concepts of a reference monitor and security kernel as fundamental to
a secure computer system. The reference monitor is that portion of a
computer's hardHare and software Hhich enforces the authorized access
relationships betHeen subjects and objects. Subjects are system
entities such as a user or a process that can access system
resources, and objects are system entities such as data, programs,
and peripheral devices that can be accessed by subjects. The
security kernel for a specific computer is the softHare portion of
the reference monitor and access control mechanisms. The reference
monitor must meet three essential design requirements:

First, the reference monitor must be tamperproof. It is obvious
that if the reference monitor can be tampered Hith, its ability to
protect programs and data can be destroyed. In the most elegant
case, the reference monitor can protect itself with the same
mechanisms it uses to protect other information.

Second, the reference monitor must be invoked on every attempt
to access information. This requirement does not mean that the LOAD
and STORE instructions of a user's process must be executed
interpretively by kernel software with extensive checks. Rather,
every reference must be checked by either software or hard•rare that
is provided with sufficient information to make the correct decision
on granting or denyin~ access.

Finally, the reference monitor must be sub-ject to certification.
"Subject to certification" implies that the reference monitor's

8

correctness must be provable in a rigorous manner using a
mathematical model as the basis for the criteria to be met.

In addition to meeting the above requirements, a reference
monitor must also implement a well defined set of access control
rules. In the case of a secure computer system for military use,
these rules are defined by ~ilitary security regulations. Basically,
they require that a user be cleared to the proper level, have any
formally defined special access permissions (categories) that may be
required, and have a "need-to-know" before he is allowed to access
information.

The approach to obtaining a secure system involves first
defining the security requirements, and then creating a conceptual
design that can be shown to provide the required protection (i.e., a
model): The model formally defines an ideal system (in our case one
that complies with military security requirements), and provides a
basis for testing a subsequent implementation. Once a reference
monitor that meets the requirements previously described has been
implemented, ccmputer security has been achieved. Of the software in
the system, only the kernel (the software portion of the reference
monitor) need be correct. The access controls and all of the other
features of the hardware on which the kernel depends must be correct.
The operating system proper and/or applications software can contain
inadvertently introduced bugs or maliciously planted trap doors
without compromising security.

sum.1ARY

In this section we have presented the problem of computer
security and an outline of an approach for solving it. The remainder
of the report will present a design for a kernel which will serve as
the basis for secure systems to be built on the PDP-1 1/45. The first
application of the 11/45 kernel will be to support a file system for
a multilevel data base.

9

SECTION II

TECHNICAL APPROACH

INTRODUCTION

This section presents the technical approach to designing a
security kernel for the PDP-1 1/45. The subsections discuss the
objectives of the design effort, how the design relates to the desi~n
of the Multics system, the mathematical model that is the basis for
the design, hardware requirements for secure systems, and finally,
some of the special problems presented by I/0 (input/output
processing) in a secure system.

OBJECTIVES

A lon~ ranr,e goal of our work in the area of computer security
is to solve the complete security problem. We would like to build a
completely general (i.e., ucomputer utility") system that can be
certified (proven) secure. This work includes developing
mathematical models of secure computer systems to serve as a basis
for subsequent designs, and identifyin~ appropriate ch2racteristics
that the supporting hardware should have.

As a subgoal we want to build a prototype secure system to
verify our ideas about computer security and apply them to perform
useful work in the near term. This prototype system will not have
all of the capabilities of a general purpose system and will be built
on hardware that is less complex than the hardware reauired to
support a computer utility. The advantages of building a prototype
are: 1) it presents a problem of reduced complexity and therefore
increases the likelihood of success in the near term, and 2) the cost
of implementing a prototype system in terms of time, manpower, and
equipment is much less than that of a general system. Althou~h the
initial system to be built on the 11/45 will be of limited generality
in its functional characteristics, the mechanisms for achievin~
security will be based on completely general principles. Much that
is learned will be applicable to the solution of the ?eneral computer
security problem. Not only will the prototype development
investigate problem areas related to the security of ~eneral purpose
systems, but the resulting kernel design should be applicable to mini
and medium sized computer systems with a need for multilevel
security.

11

RELATION TO MULTICS

While most contemporary general purpose systems have notoriously
ineffective security controls, there is one system, tvlultics
[Organick], that is far superior with respect to security controls.
This superiority is no accident - protection of user information was
a key design goal from the_inception of the Multics effort. Multics
has, however, been penetrated [Karger and Schell]. One could argue
that the lack of security in Multics is due to the design methodology ­
its design is not based on a model of secure systems and no attempt
has yet been made to certify the Multics security controls.
Nevertheless, Multics is the prime system that a prospective secure
system designer can look to for positive guidance. Since the
structure of Multics has influenced the PDP-1 1/45 kernel and our
mathematical model of secure computer systems, a brief overview of it
is given here. The material that follmvs is taken from [Bensoussan,
Clingen, and Daley].

The key feature of !1ultics is its virtual memory. t1ultics uses J~J~~ ·}
segmentation to satisfy two design goals: 1) to allow all on-line./ i)Jf
information stored in the system to be directly addressable by a
processor and hence ~vailable for direct reference by any
computation; 2) to control access, at each reference, to all on-line
information. The basic advantage of direct addressabili ty is that
the copying of data is no longer mandatory. Many users can share a
single copy of a compiler or other system procedure, and users need
not have an I/0 system read portions of data files into main memory
and then write the data back out.

If all information in the system may be directly addressable,
then there is an obvious need to control access to this information
both for the self-protection of a computation from its own mistakes,
and for the mutual protection of users sharing the system from each
other. n·e-::t,€6 hniq1fE!"''Tor · ;:ichiP.'vi i'i!f-~orofecFron':CTs···lc\ 'ccrmoa-rtmen taJ. i ze
gJ)-·j,nfo-tma.tion into seg:e1ents,- &t)d'_ t2 ~ ~!S ~:)ciafe With ·each· se~:ment ;~·,.
.ffe~ of access at tributes" fer e2ch 'user· '>lho r.i'3_'y":2.::ice.ss:~·ffie:-:se·~ment'.
-Seg.ne:nts .· rii"e' diJ:'eQtlY ad'dressaole ··and ~the:access at·tri:tra·t:e·s are
gl:ieckeo:;oy::the.'.hard~t<~Fr>e.:.·up·on::.-eacfl'::seginef~t2r::?.t!rr.~ns~~J~.Y:.~..(;lll..Y..:J.lser:.\

In nonsegmented systems, the use of core images makes it nearly
impossible to control shared information in core. Even if the
nontrival problem of addressing the shared information in core were
solved, access to this information could not be controlled without
additional hardware assistance. The different parts from which the
core image is synthesized are indistinguishable in the core ima~e;
they have lost their identity and thereby lost all their attributes,
such as length, access ri~h ts, and name. Thus, n::msegm~J:D::¢.i1~::!12rdJfg·f~
ts''~:i1~'ae'Q"t1are:·ya.r::-'con.tr.oi fe-ct ·'s~fia:rrn P:~:Tn~ :'c~or;e-~-,memo r.Y:: · · ____,

12

http:ae'Q"t1are:�ya.r::-'con.tr.oi

In segmented systems, hardware segmentation can be used to

divide a core image into several parts - segments. Each segment is

addressed through a segment descriptor containin~ the segment's

attributes; if these attributes include access at each reference,

then the hardware can control access to the information in the

segment at each reference.

If the number of segments that a user wishes to reference
exceeds the number of se~ment descriptors available to him, then
segmentation loses some of its effectiveness. The user may be forced
to call the supervisor to free se~ment descriptors so that they can
be reused to access other segments. This form of user controlled
segment descriptor allocation can require a significant amount of
pre-planning by the user. Alternatively, the user can choose to
collect.the information fro~ several different se~ments into a single
segment. This approach is a form of buffering - it requires that
information be copied and lose its original identity. Multics avoids
these problems by providin~ a number of segment descriptors
sufficiently large to allow, in most cases, a segment descriptor for
each segment required for a computation. The Multics supervisor also
automatically associates a descriptor with a se~ment when the segment
is first referenced by a computation. Thus, Multics users need not
concern themselves with the allocation and deallocation of segment
descriptors, nor need they resort to buffering information.

In a system where the maximum size of any segment is small
compared to the size of main memory, it is possible to move complete
segments into and out of main memory. If, in this type of system,
different segments can have different current sizes, then the
allocation of main memory to segments can be a difficult problem.
Furthermore, if, as is the case with Multics, segments can become
suf~ciently large so that only a few can be entirely main memory
resident at any one time, then memory allocation is made even more
difficult.

The allocation of main memory is vastly simplified by dividing
segments into equal-size parts called pages ..~!location of ~pa6~~tq
<a··· ser:'tE£0~11S.C.:made'"on··cr·per-page· bas_.:i:_.~,.--~0\L?.lJ __ page_;:;_ar.e the ..same'

f'size! In addition to.. simpli fyiru~--allocation, paging also permits
large segments to be handled with no problems because only those
pages of a segment that are currently being referenced need be in
main memory.

An address space in Multics is the set of segments that a
process can reference with a segment number - the set of se~ments for
which a process has descriptors. .I.n~.Z,'iJI~r,:alJ~:~-~.9_Qn::p.roces~ h§I:;>~~
LirJ.j;.ttt;tE!;c;a.9-si.r&ii~..i!SiQ~. A key aspect of t-lultics is that its supervisor

13

http:bas_.:i:_.~,.--~0\L?.lJ

does not operate in a dedicated process or address space. Instead,

the supervisor is "distributed" - its procedure and data segrJents are

shared arnon~ all Multics processes. The execution of the supervisor

in the address space of each process facilitates communication

between user procedures and supervisor procedures and the

simultaneous execution, by several processes, of supervisory

functions. Since supervisor segments are in the address space of

each process, they must be"protected from user programs. This

protection is achieved by havin~ the supervisory and user procedures

execute in sepa~ate domains (in Multics, protection rings).

The name of a segment and its other attributes (length, memory
address, list of users allowed to access the segment, time of
creation, etc.) are kept in an entry in a cataloR"ue. In Multics,
this catalogue is implemented with several segments of a special type ­
directqry - organized into a tree structure. The name of a segment
is a list of subnames that reflect the position of the segment in the
tree. The base directory of the tree is called the ROOT, and
subnames are separated by ">". Figure 1 shows a possible directory
hierarchy.

Comparing the Multics supervisor and the PDP-1 1/45 security

kernel is somewhat like comparing apples and oranges. Multics is a

prototype computer utility that provides a variety of user-oriented

services. It is supported by a powerful and complex multiprocessor;

it has been operational since 1969; consists of about 300,000 lines

of source code [Organick]; and it is part of the product line of a

major computer system vendor (Honeywell Information Systems). The

11/45 kernel simply provides security controls for a reasonably

complex general purpose environment, but it does not support

user-oriented features. The 11/45 kernel is built on a

straightforward, medium-sized computer. The initial implementation,

which contains about 900 lines of source code, has only been

operalional since mid-1974, and it has not yet performed any useful

work. It might be appropriate to compare the Hultics kernel with

the 11/45 kernel, or a general purpose operating system built on the

11/45 kernel with the complete Multics supervisor, but in both cases

the first item in the comparison does not currently exist.

Nevertheless, it is interestin~ to make some comparisons between

Multics and the 11/45 kernel.

!h'e'"":ta.siC'"~'tmir·~.:axres"'"·oeE\-ie'en:~'~1<JiiTcs'::r~ri?"~f'he:':::1:tlfi5~'i~e.r:.~:~e~
rt1:l.af.:~~they both. implement ~.,one:. :Level ;·-segmented virtual. memory· ~~T t:h··~q
L~i.r:.e.c..to..ry hi~t.?X~)1Y.;::·q,ng~J)o-J;h.:o9~~~-t.rJb.uta ..the superv1sqr/.kerJ"i~1::·.?9t£~J?

1A simple file system to run on the 11/45 kernel is currently being

implemented.

14

ROOT

ROOT >E > G

c

G

0 Squares are Directory Segments

0 Circles are Data Segments

Figure 1. A Simple Hierarchy

15

~Jr?s.h,1P.E.9&5~H>>-Tn··rn~,:~~~:~~.:11· 2
The supporting mechanisms are similar

to the extent that they can be, but differences in the supporting
hardware have an impact in this area. The basic difference is that
the 11/45 kernel implements a set of primitives that allow algorithms
to operate within the virtual memory environment, whereas Multics
provides much more than a set of primitives. While protection of
information was a primary desi~n goal from the inception of the
Multics effort, and an atte6pt was made to isolate the protection
mechanisms from the rest of the supervisor by having them execute in
the most privileged domain (ring 0), the Hultics system has been
penetrated - the Multics protection mechanisms are not effective . .
[Karger and Schell]. This lack of effectiveness may be due to two ~\Y- ;~<1"~(\·.1
causes: 1) rim~ 0 is rather large (about 60,000 lines of source code , ·; . · ,.

[Sal tzer (2)]) and extremely complex; and 2) the protection ,., , \ ·

mechanisms are not based on a model - there was no criteria for Hhatc., . {y. ·. \'

belonged in ring 0 and what did not. Thus the fundamental difference·

between the 11/45 kernel and Multics is that the 11/45 kernel is

based on a model of security and Multics is not. The use of a model

makes it possible to precisely define what compromises the 11/45

kernel and to rigorously prove assertions about its behavior.

THE MATHEMATICAL NODEL

One of the key aspects of the security kernel design is that it

is based on a mathematical model of secure computer systems ([Bell

and LaPadula], [LaPadula and Bell], and [Bell]). T:".0-rtev~J9'PP:er.:t,.i,.G:~.t1

i1 h:e mode I ·';!;§f.-a:,z£ea.c.t·ion::-..to."''t.h.e,.,·iria<i€ou.acV<·~or:.::coh''£empo rary. :sys.tern6.

fU.tl:.cut_ :Uodels :for<iiulda.nce.. ;··:{'Ts'tem "·desigrt~rs:·ar.e.Jq~Q~!:L·.::..tt9;.";~PP:.~X;::;:~

b_?c security-related' technicues· throu.'!hout- the desir;n. -and1

~r~;plc:~ent.ation .of 8 .system.. Designers use t_heir intuition·~t9'

£~.e.t.crmine the meth~~~- of ~~ould:..be nemitrators 'ancf'attemnt to bl~~~

tli_(_;i:·.L.J.ppropriately .. :Bot.'' iust ··as ·testinp; can -only indicate the'

_pr:';sc:nce.; ,and not the absence, of bU<ZS in··software~ ., C'?ne'frationl

~-t tcu;pts .can OD ly demonstrate 'that,.-•a:;:::sys.t.em .i:S'c.nOD'"'S€CUr.e;::onot. that;.

[:L·t. is. secure. Consequently, certification of.. systems· desiJ;Sned on th~.,

Q.§?.iS Of. intuition and ad hoc techniques,' and 'tested ~:to the point 0~
11_J]}§JJC.cess.f'ut· .penetration· at teniP:ts·,'·'T_l't';)lGt;,:,;.te:c.hni.cal1yu;.~.Ustifi~JP... ·'

The model, in contrast, ri~orously and precisely defines the

notions of "security'' and "compromise", and identifies elements that

correspond to those in real systems. The model is a finite state

2c1early, these concepts were not developed independently by both

systems. The 11/45 kernel desi~n evolved towards the Multics design

as the utility of its structure as a framework for protection

mechanisms became apparent.

16

http:that,.-�a:;:::sys.t.em
http:T:".0-rtev~J9'PP:er.:t,.i,.G:~.t1

machine model and gives a set of rules of operation for making state
transitions. If the system is initialized to a secure state (and
again, the notion of secure state is rigorously defined), then the
rules of operation guarantee that all subsequent states are secure.
These rules can be transfor~ed into algorithms suitable for
implementation on a digital computer.

Two of the basic elements of the model are subjects and objects.
Subjects are active system entities such as users or processes that
can access system resources, and objects are passive system entities
such as data and program segments, and peripheral devices, that can
be accessed by subjects. The model defines types of access that a
subject may have to an object. These access types include read-only
access, append access, execute access, and write/read access. For
the 11/45 kernel, only read/execute access (abbreviated read access)
and wrtte/read/execute access (write access) are used in accessing
segments. ,J1_,;.6.!i!'::l::~e~:orrly,;:3!£i£.~~~,JllOcd~~sr..used,~d::na±n~r-.oceS&::~
onflifiuiil'C..at.:.t:Otii. '-·· ··-···-··

State of the System

The state of the system with respect to se~rity is represented
by four sets - b, t1, f, and H [Bell]. The set 1:) indicates the
current access relationshi~ between all subjects and objects - that
is, for each subject b identifies the objects that the subject can
currently access and it also indicates the permitted mode of access.
Thus b is a set of triples of the form (subject identifier, object
identifier, access mode). ,..J.JJ.n 1 1.._.1 'e._'

----o:-:ci£1. A'fi'.Jr'~~h~r)
~corresponds to an access matrix and is used by the moae~,

implement "need-to-know" security. Elements of 11 are accessed by
subject identifier and object identifier, and each element of M
indicates in what mode, if any, the specified subject may access the
specified object. Thus, M represents the potential access of
subjects to objects. ~~~

~_.....----...,..__
The set ~J]gives the security level of all subjects and objects

in the system. A security level is composed of two parts - a
classification (or clearance) and special access categories.
Classifications are strictly ordered - a subject cleared to secret
may access unclassified, confidential and secret objects. Categories
are not strictly ordered, but are partially ordered by set inclusion.
A subject with categories x and y may observe an object with category
x or categories x and y, but not an object with categories y and z.
The combination of strictly ordered classifications and partially
ordered category sets ~ives a security level that is partially
ordered. Thus it is meanin~ful to say that. one security level is
greater than, less than, equal to, or isolated from another security

17

level. (Two security levels are isolated from each other if one is
neither greater than, less than, or equal to the other.)

Finally, the set IT;Dindicates how the objects are hierarchically) t AJA- /,
organized in a directory-tree structure. ~

The system satisfies the basic military security requirements if
all triples in b (subject, object, access mode) are such that the
security level of the subject is greater than or equal to the
security level of the object. The basic rules of the model allow for
changes to b. If a subject wishes to add an object to its portion o]·
b in some mode, it invokes the model rule that ~overns the particular
state change. The algorithm of the rule consults f and H in
determining whether or not the state chan~e will be permitted, and
adds the new triple to b, if the' change is permitted. The model
assumes that subjects can and will access objects as permitted by b.
There are no security constraints on the removal of triples from b.

Potential Compromise

In addition to preventing explicit security compromises, the
model also prevents potential security compromises. Potential
compromise is a meaningful situation within a computer system but it
has no analogy in the external "people/paper" system. If an
individual has a secret clearance he may read documents classified
secret, but he may also write documents classified confidential. By
virtue of his clearance he is trusted not to include secret
information in the confidential document, in the same sense that he
is trusted not to disclose secret information in any other
unauthorized manner. When this individual is using a computer system
the situation changes, because programs that he has little knowledge
of will be executing on his behalf. For example, he may invoke a
compiler to translate a PL/I program into machine language. One
could assume that the compiler performs the required language
translation and nothing else, but in buildin~ a secure computer
system we cannot assume that a pro~ram behaves properly (with respect
to security requirements). Rather, unless a program is proven to
behave in a certain fashion as described by a mathematical model or
formal specification, we cannot make any statements about its
behavior and must make the assumption that the program attempts to
violate security regulations. If in fact the program does act in a
malicious manner, then we say that it contains a "Trojan horse"
[Branstad]. Continuing with our compiler example, in addition to
doing the translation, the compiler may copy some of the invoking
user's secret information into an unclassified file. At a later
time, an uncleared user may read the unclassified file, thus gaining
access to secret information. The compiler had access to the secret
information because it was running on behalf of a user cleared to

18

the compiler

/~

/
secret. It acted the way it did because
to penetrate the system.

We can now restate the problem of potential compromise in terms

of the model. We say that the potential for a security compromise

exists if, for example, a subject simultaneously has read access to a

secret object and write access to an unclassified object. The ,_

potential for compromise is realized if two events occur: 1) the/?)'

subject, either inadvertently or deliberately, reads secret ,~

information from the secret object and writes it into the

unclassified object, and 2) a second subject whose clearance level is

unclassified ~ains access to the unclassified object and reads the

secret inforr1a tion in it.

At least two ways of preventing this type of situation from

occurring are known. The first is to up~rade the classification of

the unclassified file to secret, which is known as establishing a

"high water" mark [Weissman]. The second way is to deny a subject

simultaneous write access to an unclassified file and read access to

a secret file and to prevent similar situations from occurring. This

second solution to the problem of preventing potentia~ security

compromises is defined as preservinR: the *-property. .Th:i

~:.:;::·.r~?er~:: r. :c; t:ir·e·3 tJ!~;;l,l '60Jects. to· which. e sutYjOl'>t h"S ":He ..

l ac~;;;.:.,~ ;,c.,e ·~:Je same secL.rity level c;_h3 that ~ll obJects to ~vhlch ·1t

has read access hav:e.. a securrtv ,:fevel.laas· than··or·-eoua1.. to ·Jhe....write.~

f!eed!'Lt~--ltlve!l.;"" Slnce a suoje~£ will always have ~rlte ·~cc.ess to

•some 	object if"it is to perform a computation, we define the current

security level to be that level at which the subject wishes to have
 1

write access. In determining: whether or not to grant access to a~..
!'I'

object, need-to-knoH is checked by consulting H, and then the (,;,'(

security level of the object is compared to the subject's current

security level to check that both the security and *-properties are

preserved.

It appears that in useful computer systems some subjects will

not be abl~ to perform as required if the *-property is applied to

them. For this reason the model introduces the concept of trusted

subject - .t !'USt.e:d;;.Sub]ect~s-~ao~JiOt::.have~:-tne~·*:..or·ap·erVra·pp1ied.':U) CJI I'

l '

I

.:r~ne:n·r~'::;tri.lF ·tru3t ··r£1 these •.stib~jects··aerives~ :from ,t,he·o:f.act.· :that,~l.'i.

prcgrams:::'th2t ·-they".:exec u te are-·cert i fie_ct t;.P.~...behaye ::...in..-~ a.< ~.wa rm.en"

g_Qusistent.'<>wi th seC.i.irity.·:r.ea·\Ut:'ementsj• Thus, if a trusted subject

needs to invoke a compiler, then the entire compiler must be

certified to be free of any Trojan horses. The certification

requirement highHghts the advantages of the *-property. Since most

subjects will be untrusted there is no need to certify the programs

3Pronounced "star-property". The term is from [LaPadula & Bell].

19

!/i 4/;!

/'\~.Jn ,.1
/ .

they execute. This situation is indeed fortunate because
certification of a complete operating- system and user sup·port

()
,

programs is far beyond current software technolo::~ [6 1 , .' 17_':(
Transition Rules t~../.t- A

~tv · ' ·-e.r~1
The model provides rules that do things ot er than chan~e t~

triples in b. ftules are provided for changing l'1 and for creating and
~t~. Since these rules ~ive subjects a form of control
over objects, the model must have a mechanism to deal with control.
The mechanism used is to hierarchically organize the set of objects
into a directory tree. The use of this mechanism is not arbitrary ­
it was chosen to allow the application of security controls to every
object in a real computer system, rather than just the segments or
files. S"ve-~y- d~j,,~t except- fot~·~·ffii:(root ··ooJect··:-·n-a~"~r'P"Ob:Ject 'thatt~:t»

-cr:r:r>ecfl.y·s·uperior.to:·it'"tn· t:h·8-"'i1:fe'r'~rc-hy.y.::fi1I's··..,..ab--ject,~<i'iLbe·cal1ed"
€::fre.::'p'iiFeh~. The number of objects that are directly inferior to an

1
y

given object is arbitrary. 1:·"2~-~-Q'del'~ :seLH;.describes 'tne hierardnJ
'-""' ~r~·_nD.Ject's~"at:"an'Y''iUVel'i· ~instant ..;~:· __ rf a subject has \n·ite access toJ ~~:~

/"; \,~;,..,: C'.ri'<:o ~ 0 t1-,~;r, 't-·"·-~!T!'~o·' o• b-''-16..-.tC,' • f'cr' '- O .,,d·:·•·t bJ.S -,_)i ~'-:···- ·-'..1_:-C':' ' 'L•ct. J.~---c~··. --.-ac~,.n~wo ~·-'-~~ ln.~.lOr'. LJO c.1 J.·~> ..!:)

r ..~'· •tcan ch.?n2'e :~11@:~?,.9.~~$§. J?r;-vlleges-" . .LQr.calJ,c.O:b Je~t_s ·.rn_:(eJ::.:LOr-" to 0 or·''
p_,(/ lde.lete .~t.r.!..~,!l}~. ..·. ·. -­

·,c__."/ Nmv that the for:n of control has been identified, the security f JA
"\\\¢ requirements for exercising control Hill be developed. -Aze£1:.•.obje~t (...!vr

1

l(~~ has security attributes. These security attributes include the 1)

)' ·lj:;. ecurity level (classification f[£,d _;p.ctegp!By, set), the column in i'1 ~~t~1,,t {l~f'((it.>1 ~~~ gi · the access pernissions1'an~tneNattfibute that indicates
\l whether . not the object exists. ~~~~-~j-~~~-~----~~~..?'?!1_t~.?~ over an

~~~:!:~~~~tt~~ :~~~set;eb:f:;~; -~~ei_~--~~~~bu_t;~~~W- - -~---"1.:~4/t~ 
can, in genera , oetermine if th <t st e chancr_e ccurred, they have • --n,.r~b 

. Ci.n.te.c.p.r:,.e~ read access !.£.~the at tributes~ If one subject has )-(J Y::4..~ 
-~ite accessto an objec-ts at~and another sub'ect has red (.j<t..~~.r-'-.......... 
acce then inTonnation~·passed between subjects via these A ,;r!.eN.tJ'ti 

A attributes. The model must insure that this assage of information · "u_,~,"'<,, 
/' , _ges not violate security requirement~J ~ !aolv ;;~X...... 

. ~ i·t -~~c~.q 
~ vO~iJA The approach taken to this problem employs th structure of _t~_ s-v~olc!..­
!:f' r hie~!:'.,9.~) ,The attributes of ~an object are obiect..~. themselves, arlc! L-,~Jfr. /c~e, 

,tYtiJ)I.t\ (aCCess 1s controlled to these "attribute" objects in he same manner! ""[1-,_f.t "}""0 7~at cess to "ordinary" data objects is controlled. t1ore _j ~ ict ~:'e.~ :" 

.--......-:.,,._,._ 

\( 4The value oft e security level attribute can only best at 
\\object creation tr. e, whereas the access perm.ission attri_~~~~~~- can be 

modified any time a er the object has been created. --............ 

~t~~~·~::_\ b~ (. . {~''f ~"-· ..~~ .· ~t;/1~1 • -- f1{~t Ity_,_,ts .. ''" F / '··.·.rr: 
~ ~.-{"\/"' (J a - ,, ... ' rl IAJ'J'I I R 

mailto:11@:~?,.9


/ _~;,__xs. 

/or not it is trusteql.. 
\_,_-­ ...~.~,~.,--..··"' .. ~···" 

I 
. ':~~VI\ 

(~f.n:\J.;__.}l) ~ 


\ lY rvY 	 j?lfl-, j.
~;%:.('~specifically, the attributes of an object are kept in the object's · 

i 

111 ft;;rf;l/.~ 
1~,~j~~,./"' parent directory, and the security level of these attributes is the . obll}dV.J' 
• same as e security level Of tUe dif'Mtor'9'· Ifius if >'i.{.t~~,)f.,Y,r · ~ 

~) bv, , ~~~~~dent. ial o~r;:~t1 ~e~~~~ object~~n~~~=~~i~~r:~~~~x~~e~h~e. ~se t~e1	 he'-~~~~ 
'"' l ,\'•'' 	 f<A</1 • I\ \.,.vv .2~rity level of t_Q_E;?__s_~cr:g_.~~bject 's attributes_· _ con_Li_d..e.ntiaL ~~·~ 

11 	
The security requirements should··-be-·clear:-rr a, rule ,"changes 
(Hrites) the at.tributes or· some object then the ·ing su~b·e.ust h~~.J .~ 
currently have write access to the object's parentF and if a rule ' / 
reads the attributes of an object (as the rules that add trip-es o b ) 
do) then the sub ·ect must have read access to the object's parent. ( J;vu.-elf,/ 
Since he *-property is applied when access to directories is 
requested, the rea 1n~ and writing of attributes cannot be used to 
pass infort:1a tion from a high security level to a low security level. 
Thus the hierarchy allows the same mechanisms to protect both the ~ •M 

info rma tion~~:_~-~~:·=-~~~·--~E .. ?b)~g~ ~~an~L!J1~...ll1.U~~~-~~/(·J~ td- At the level of the model the only attributes that an object has 

are s ~c t.rf i ty at ErfDt.!tes:--Intne~'pfocessor·creSTfnln~C~~c·"secur1T~F··~~-· 


I 

~nTer'PretaiTOO" of the object abstraction must be made. 

This interpret~tion will create addi~ional attributes,.and access to~ ~ 

these new attr1butes cannot necessar1ly be controlled 1n the same wa .· 


7 	 as access to the security attributes is. He will deal Hith this · 
problem of controlling access to non-security attributes in later 
sections. · 

A few last points will be made to co~plete the discussion of the , ,,/) 
hierarchy. If a confidential object is inferior to a secret object ( l>tJ.AeffiY/j 
then a subject cleared to confidential can never access the 
confidential objec~ si~e,the subject can never have read access to1
the secret object.'~ ~ aV~id situations like this the concept of 
"cpr.Jpatibility" is introduced ...~~-_.h.Ler•ar-chy.. is compatible if security 
,i evel.S~::.:ru:eC::.trOfi.""OErOiT!easing-,aa•~'moveB::;:a-m-m the...."lierarchy ·from' t he-1 

~oo~, i.e., the security level of an object in the hierarch must 
ah;ays be grea ..er an or equal o e securit level its arent. 

e - --~---~ - -..- - ·- 1s g1ve n 

I 
' write access 

. 
to the root at initialization depends on the particular 

require~s, the security level of the subject, and whether 

1nce o as no oarent its se~urit· rib tes are ·• 
_tr=CP1e1f~-giVin~··alrs1IDJ-e't!t~:n:rt·;·least;. .r'e'a:IT-~.§'9.§:~§. £-o_;,th~;Y.oot:_-mus'f~:~e": 

1 . in b.. a t ...friitlali zanon/· 

21 




Relation to Reference Monitor 

Now that an overview of the model has been given, the 
relationships amon~ the reference monitor concept, the model, the 
security kernel, and hardware access controls will be discussed. The 
reference monitor is an abstraction of the (hardware and software) 
mechanisms that mediate all attempts by subjects to access objects. 
The decision to permit oc deny cess is a function of the reference/ ~;'-'- , Lt" 
monitor's internal data base. the s stem is to b~_!~on<:Ll=9J..!2.§r:!~~~ 
then this data base must be mo iabl€. The model is an '-''__,_..J. 

interpretation of the reference monitor abstraction, and describes 
the behavior of a secure system in terms of a four component data 
base (b, ~' f, and H) and rules of operation. These rules specify 
how the data base may be changed; they represent an "authorize" 
operation. It is assumed that the access relationships specified by 
b can and will occur - the "access" operation is implicit. Clearly 
the relationship(between the reference monitor and the model is that: 
1) the reference'monitor can only allow subjects to access objects as 
permitted by its representation of the model's set b; and 2) the data 
base of the reference m_onitor' must correspond to the model's data 
base and can only change as permitted by the model's rules. [{~/·-~----·~ 

..------------ ········ .. - ... .... ... ·········· ····-· -----------------=" 	 //- .--~;)' ·' '.;_"j' 
The reference monitor of a physical compute~ system is ~~alized :~ 

by a combination of hardware and software; the portion required in ·-· 
software depends on the capabilities and limitations of the hardware. 
For example, one might expect that the hardware architecture would 
permit direct access to objects in all desired modes and that the 
hardware access controls would constrain accesses~to those allowed by 
b. The hardware access controls' data structure (descriptors) would 

be a representation of b, and the.kernel would simply be a 

realization of the model rules. e-rn general, however, the situation 

is not this simple. There may _oe objects to whis_h. th0..?I'Ji:!iare 


, 	 · cannot properly control acces~ and there may b( alternative 
1 

~-
1 

1 

ftr representations of the same security state) Either one of these 7. 
situations calls for a kernel function mat does not change the j t"· 


.. security state.~In the former case there would be one or more . · 

functions '~~it ~terpretive access to an o9ject; in the latter) 


'~there would be f~l,ions for cfian1nng t:fie repreE~!l:~.0:-~1-~C?E!._of the J 

~ secu,rity state wi tho;rt'-changin~ tne actuaT state.I -------~ 

An example based on Multics should clarify this point. If 

several objects were located in the same segment, then the Multics 


. ~ardware access controls, which operate on a per segment basis, could 

( not be used to control access to these objects, for they could not 


{'..'¥'..
'•) 	 permit a subject to access one object in a segment without accessing 

all of the objects in the segment. This situation requires functions 
o allow subjects interpretive access to thi-s type of object. In 


addition, runct:±-~ns•;...tnat-""-fuove~:-·se~Se'rltS:~:;:f5ehre·en-~~m,d.'ii'j.me'mory·-arid' 


22 



' ~~Qondary -s~orage do not allaH objects to be acce.~sed or. chan~e-_tlre 
~'-ecurity_ state, but these functions must be in: the ke.rnel-becaus~ 

~tJI.eY. change the reprcse.ntation of the security ·state -and- ttl~~ 
t.f_~pre~~nJa tion rm.lst_ alvmys... be consiStent W'i th-::-the-'.(Jurl'ent ·securit,:p 
s:tata• Thus the functions of the security kernel fall into three 
classes that correspond to the fundamental operations of "authorize", 
"access", and "null": 1) ftP~l~~¥that correspond to the rules of 
the model, thus changing t'h-e secur1£\ state; 2) functions that 
implement a part of the r,~fere[lce monitor by allowing interpretive 
access to objects as per~~~by the current security state, thus 
complementing the hardware access controls; and 3) functions that 
change the representation of the current security state~.J /t<Ldt) 

HARDWARE REQUIREJ·1ENTS 

In this subsection we brief5y discuss hardware architecture 
requirements for secure systems. While every computer scientist 
knows that any computation that can be performed can be done on a 
Turing machine, Turing machines are used only for pedagogical 
purposes. The primitiveness of Turing machines makes the 
accomplishment of even the simplest computations a very complex task. 
Thus, more advanced architectures have been developed to facilitate 
the use of computers for doin~ productive work. 

In light of the above argument it should be clear that there are 
no absolute hardware requirements for secure computer systems - any 
hardware is theoretically acceptable. Given the current state of 
technology, however, certain hardware features are essential if we 
are to build secure systems. These essential features simplify the 
software portion of the reference monitor. Simplification- OfJ 

i;"l.9ftware, at· the-· expense-~of':"addi tional·.-·hardware is necessary becaUi:fe' 
.producing provably corr.ect·,..softi·Ia!'e Ts".'::l major technical problem inl 
,£_~puter security.• .! There are tJ:g___ b.~sic hard__?I§.rSi_,f_~.a.tures .that.ar.e 

&;§§antial •...•, .. ~.. :! ·--- ·-· ~---· 
".---~ •••·•· •"'" -··--- •• - •• , .................. ..,.... ---...-,......,....., ........-- _., __,.,..,,~~---~--·-··.··-·- ··--- _,.,.__,..••. - - . - . . ..• ·- ',#'


The. first of· t::ese features is suooort for· .i·segmehted fifemor?-y 
whe·r~~access to sec;•-cents is throu.zh unf~rgec:ble .?egr~~nt....o~.SPript.orsl 
&h§!LJ.nclude. an. access contr.ol field/ The ar&tuments supporting this 
feature as essential to security are similar to the arguments for a 
segmented memory given in the subsection on Multics. Segmentation 
allows all information in the system to be stored in one type of 
object - the segment. Having to support only a single object type 
si~plifies the kernel. The descriptor driven addressing that is part 

5A more complete treatment of hardware considerations is given in 

[Smith]. 


23 

http:contr.ol
http:throu.zh


of segmentation allows the basic reference monitor function of 

mediating all accesses to objects to be performed by hardware, thus 

helping to minimize the impact of security controls on efficiency. 


ITt:e.-_-o·t~-~r>--·e·ssent ia l 'hard~~~~.!"!r.~:f.§R:~.g:rE?::·t~L.Jtlb!-:t"..taple.::·exec'U.t::ton 
,&tgng.:;jJ1;? (cr. ;;; ta,t_e_s _o.r mo.das.Y. This feature is used in most 
contemporary systems to protect operating systems from applications 
programs. In a secure syitem it will be used to protect the kernel 
from the rest of the software in the machine. Strictly speaking only 
two execution domains are necessary - one for the kernel and the 
other for everything else - but in practice it will still be 
desi:abl~ to continue to p~_o.te~~ __the ?.P.e~a_ting sys~em from 6 a ppll.ca t1ons sof tHare so tllp_e.s _Qf!mS'!tU.~?:.J.Qr rn9.r~J. Jl.J.:..l._J;::;Q'§..:!J..s_e.f.u:l. 

The kernel design presented in this report is for the PDP-1 1/45. 
The 11/45 has an optional memory management unit (MMU) that checks 
all references to memory and recognizes three access modes ­
write/read/execute access, read/execute access, and no access. The 
MMU is an adequate hardware base for building a segmented memory 
system. The MMU in the 11/45 also implements three domains of 
execution - kernel, supervisor, and user. Thus the PDP-1 1/45 can be 
used as the hardware base of a secure system. 

Before leaving this subsection on hardware requirements it is 
worth mentioning that the I/0 architecture can be important. I/0 is 
the subject of the next subsection. 

INPUT/OUTPUT 

Input/output operations are a critical aspect of secure computer 
systems because they are the interface between two distinct security 
enforcement systems. On one side are the internal logical security 
controls of a computer system that associate security attributes with 
the information in the system, and on the other side is the external 
"people/paper" system that employs physical separation and document 
markings. Clearly, a primary requirement for I/0 in a secure ­
computer system is that the security attributes of information are 
correctly transferred as information moves between the internal and 
external environ~ents. This subsection will briefly review some of 
the issues involved in secure I/0. A more complete treat~ent of 
these issues and solutions to various I/0 ~elated problems is given 
in [Burke] and [Mogilensky]. 

6Multiple domains can be implemented in software on a machine with 
two hardware domains. An example is the original implementation of 
Multics on the GE 645 [Organick]. 

24 


http:Qf!mS'!tU.~?:.J.Qr


..Ac~i-c~~-r.equtre.menbc.fot':"~s:ecune~·.crol!J11u t·e !" · s ymems""'i·s·,,t ha·b.:?:& 
.g~,nerah,siecur ity:.~-ma-rking--·poHcy.ii~fo r,:~'c1·a·s"sffi ea"T/O"''tna teri~1-""b-e?' 
.e.:~tab<Hshed-/ Security markings are indications that are placed 
directly on, attached ta, or included with classified material. The 
purposes of a marking policy are to satisfy the security regulations 
that require that all classified infor~ation have an indication of 
its actual classification; and to insure that the security attributes 
of classified data are accurately maintained for all I/0 transfers. 
One aspect of a marking policy is a labeling policy - labels are 
security markinR;s that are J:<:enerated by the co~puteP system itself 
(as opposed to markings that are pre-printed on forms used by the 
computer system). In developing a marking policy it is imoortant to 
consider the difference between unilevel and multilevel I/0, whether) 	 ( I/0 material can or cannot be removed from the computer system, and 

1 the e~tent to which the I/0 data is human-legible. 

Although a computer system may be operating in a multilevel 
security mode, some or all of the I/0 devices may be operating in a 
unilevel mode. An I/0 device is unilevel if it only processes 
information at a single security level. The level at which the 
device operates can be changed by a security reconfiguration. This 
reconfiguration can be as simple as changing the forms with 
pre-printed security T.arkings that a line printer uses. 

ll'~a--:-aevfc€ ·carr·-tra:rral'e:'~data:~at'''nibT'e" than. one"·se-curi ty "lev~) 
<~ ~-thout human intervention, then the de':tce is cperatinv, in ~ 

~ o.mVltllevel mode ..~-In-this mode it will---be-necessary for.the comt:n.H;e).J 
~Y.§.t~m.....tQ~:g~ru~:rgte::.:.."§e.Cllc:t.:t.r~lqQ.el.s..\ 

I/0 material that can be removed from the computer system 
includes such things as printed output and magnetic tapes; CRT 

4 	 (cathode ray tube display) output and data ot'raveling between nodes in 
a network cannot be removed from the system. In addition, the 
human-legibility of I/0 material can vary. Printed and CRT output is 
directly human legible, magnetic tape and network messa~es are not. 

'-------	 In [r1ogilensky] a general security marking policy is developed. · 

It is not sufficient simply to have a marking policy; the policy 
must also be effectively applied to the actual computer system. In 
order to satisfy security requirements for I/0, [Burke] considers 
three ~jar types of I/0 function: 1) authentication; 2) controlled 
attachment; and 3) controlled operation. Authentication establishes 
the identity of the user or I/0 medium at the I/0 device. Once 
authentication has been performed, the internal security controls 
know the security attributes of the I/0 device. Attachment is the 
(usually software) connection of the device.to some process in the 
computer systen. Finally, controlled operation is the mechanism that 

25 

http:device.to


enforces the allowed attachments and insures that security labels, if 
they are bein~ generated, are valid. 

From a hardware point of view, we can see that most current 
architectures, which either give a process access to all I/0 devices 
or to no I/0 devices, make the implementation of controlled 
attachment and controlled operation difficult. In this environment 
only certified interpretive software can perform physical I/O 
operations. 

A desirable I/0 architecture is one where the hardware controls 
access to I/0 devices on a per device basis. With this architecture 
controlled attachment involves changing the hardware access controls' 
data base. If a device is operating unilevel (meaning trusted 
.security labels are not required), controlled operation is enforced 
by the.hardware and uncertified software can perform the physical 
I/0. This mode of operaticn is desirable because the I/0 subsystems 
of modern operating systems are often large and complex. 

The PDP-11/45 has a desirable I/0 architecture for unilevel 
devices that do not have direct access to memory (non-DMA devices). 
I/0, for these non-DMA devices, is performed by reading and writing 
specific main memory locations that act as device control and data 
registers. To the exter.t that these device registers can be isolated 
in individual segments and a set of registers controls a single 
device, the MMU controls access to I/0 devices on a per device basis. 
Unfortunately, DMA (direct memory access) devices bypass the MMU when 
they access main memory. ·T?f'i:fs:;."·~:r.e'f'-t'cf-r:r-~d :'soJ~t~;are·:mus·tP"'ehe·ck:.-the 

~a-lidt ty···of ··an~r.Jo-~rno·ry.):',~ferencEf~_::_,~..~DHA~'re.liice~:-w:.rrl:.~·rienrorfii'::.t.·erore 
~~~l::t,_J/..0 .. 9P~ati.on.~is .. ini.tiatect'. On the 11/45, this checkinf!: can be 
relatively straightforward, because each I/0 operation is
individually initiated by the CPU.

26

SECTION III

DESIGN CONCEPT

INTRODUCTION

This section presents· an overview of the design of the security
kernel. The first subsection introduces the concept of levels of
abstraction [Dijkstra (1)] which has heavily influenced the design.
The remaining subsections present the major levels of the design.

LEVELS OF ABSTRACTION

Abstraction is a way of avoiding complexity and a mental tool by
means of which a finite piece of reasoning can cover a myriad of
cases [Dijkstra (2)]. The purpose of abstractin~ is not to be vague,
but to create a semantic level in which one can be absolutely
precise. Dijkstra's levels of abstraction have been demonstrated to
be a powerful design methodolo~y for complex systems, most notably
Dijkstra's "THE" system and the Venus Operating System [Liskov]. In
general, the use of levels of abstraction leads to a better de~ign
with greater clarity and feHer errors. A. level is defined not only
by the abstraction that it supports (for example, a segmented virtual
memory) but also by the resources employed to realize that
abstraction. Lower levels (closer to the machine) are not aware of
the abstractions or resources of higher levels; higher levels may
apply the resources of lower levels only by appealing to the
functions of the lower levels. This pair of restrictions reduces the
number of interactions among parts of a system and makes them more
explicit.

Each level of abstraction creates a virtual machine environment.
Programs above some level do not need to know how the virtual machine
of that level is implemented. For example, if a level of abstr~ction
creates sequential processes and multiplexes one or more hardware
processors among them, then at higher levels the number of physical
processors in the system is not important.

By the rules of levels of abstraction, calls to a procedure at a
different level must always be made in the downward direction, and
the corresponding return in the upward direction. For maximum
clarity, downward calls should be to the next lower level, but there
will always be cases where calls that skip over one or more levels
can be justified. Returns are always to the calling pro~ram, except
in the event of a severe error where several of the calling
procedures may be skipped over by the return. Figure 2a shows the

27

'
level 4

level 3

level 2

level 1 Function x

Figure 2a. Levels of Abstraction

level 4

level 3

level 2

ring 1

ring 0

Function x

l?fo:ure 2b. Levels of' P..'bstraction anrl 0 in3s

level 1

level 4

level 3

level 2

level 1
Function x

ring 1

ring 0

Figure 2c. Outward Ring Crossing

28

..
structure of a system where most calls are to functions of the next
lowe!' level, but the level 1 function x is called from levels 2, 3,
and 4.

When a ring ierarchical
added to the system~,-s±rn~~~~~~~~~~-~~~~
consist of contiguous levels. Thus the kernel, which must be the
innermost ring (ring 0), should consist of the level of abstraction
that implements the reference monitor concept and the supporting
levels beneath that level. In our example system, the boundary
between ring 0 and ring 1 may come between level 2 and level 3 as

/
/

shown in Figure 2b. Follmving the policy of makin12; a ring consist of
contiguous levels, all cross-ring calls are automatically to an inner
ring and this is the type of ring crossing call that is supported by
the PDP-1 1/45 hardware.

It is possible, however, that function x has no security
implications, so it can be removed from the kernel as shown in Figure
2c. Now, however, calls by level 2 functions to function x (level 1)
are an outward ring crossing. Unfortunately, this type of a
procedure call is not supported by the 11/45 hardware (or other
computers with a hardware rin~ mechanism), so if it is to be used at
all, it must be implemented with certified software. A case where
this calling structure might occur is with the scheduler of a·
multiprogramming system. The scheduler may appear at a low level of
abstraction, but if we make a distinction between the scheduler -
code that implements the policy that selects the next process to run -
and the process multiplexor - code that implements the mechanism that
binds a process to the hardware, - then it can probably be proved
that the correctness of the scheduler is not necessary for security.
Thus, we would want to remove it from the kernel, in spite of the
fact that it may be called from the kernel.

This example illustrates an apparent conflict between the ~oals
of overall system clarity and a small and simple kernel. One could
argue that one of these goals, or the use of levels of abstraction
with its requirement of strict hierarchical layering, or the use of
protection rings causes the conflict. A machine that provided the
more general form of non-hierarchical protection domains would solve
this problem by allowing an internal partitioning of the kernel.
Domain machines, however, are not currently available. Since we are
forced to use a ring machine and we believe that the levels of
abstraction design methodology will facilitate certification of the

' kernel, our only choice is to compromise one or both of the design
goals of overall system clarity and a small simple kernel. This
issue will be discussed further as design details are presented.

29

LEVELS OF THE KERNEL

In designing the security kernel, levels of abstraction have
been used in the translation of the abstract elements of the
mathematical model to tangible elements of a secure computer system.
The first steps taken were to make an interpretation of the model
elements (i.e., objects are virtual memory segments and subjects are
sequential processes) and to provide at some level of abstraction a
set of functions that controls access to these elements. Thus the
abstraction created by this level is that of a secure com~uter
system. It must be emphasized that what this secure system level of
abstraction does is to effect the implementation of the reference
monitor, thus insuring that the system is always in a secure state.

The specific design structure chosen for the actual
implem~ntation of the interpreted elements is done by lower levels of
abstraction, as shovm by Figur·e 3. While the software at these
levels is not cognizant of specific security requirements, it is part
of the kernel because the correct operation of the secure system
level functions depends upon the correctness of lower levels. We
choose to place the segmented virtual memory level above the proces
level because segments can be shared by processes, and because we
want to be able to start a new process running when the current
process must wait for a segment to be swapped into main memory. The
PDP-1 1/45 hardware provides a form of main memory segmentation that
is used in the implementation of the process abstraction.

It should be clear that the boundary of the kernel belongs
immediately above the secure system level of abstraction. Software
outside of this perimeter can execute the unprivileged hardware
instructions and invoke mthe func~~.~o.vj,GJ.ed..~y the -:._~c-~--~)::0."'
~el with arbitrary arguments. Since the unpriVlit:g-eo machine
4nstructions cannot put the system into an unsecure state and the·.

secure system functions make no assumptions about the legality of .

arguments passed to the, , t e a-trr'i't;r"<"crt'-·ehe~·-S<y,s.t~m j,.,§,..A,n'Ci-e1)er1(fent

~9f w at a ove the secure system level of abstraction
d·oes or does not do. Thus the implementation of the security level
of abstraction and the implementation of the lower, supporting
levels, gives us a complete security kernel.

While the initial presentation of the kernel's levels of
abstraction will be made from the bottom up, it should not be
inferred that the kernel was designed this way. Rather, the design
was constrained at the top by the mathematical model and at the
bottom by the characteristics of the PDP-1 1/45. The bottom hardware
constraint was somewhat more rigid than the model constraint because
the abstract elements can be interpreted in a variety of ways. Since
all design decisions must be in harmony with both constraints, the

30

http:func~~.~o.vj,GJ.ed

Uncertified Softv1are
(OS and Applications)

Security

Perimeter

Secure System Abstraction

!
Segmented Virtual
Hemory Abstraction

Sequential Process Abstraction

PDP-11/45
(with segmented main memory)

Figure 3. Kernel Structure

31

design technique was "middle out" - up towards the model and down
towards the 11/45. The choice of a bottom up presentation is
somewhat arbitrary and was made because we feel it is easier to build
on concepts that are well understood.

LEVEL 0 - THE HARDWARE

The PDP-1 1 is an advanced family of 16 bit mini to medium sized
computers with a powerful instruction set, hardware-managed stacks
that facilitate procedure nesting and the coding of reentrant
procedures, and a set of general purpose registers that can be used
as accumulators and/or index re?isters. An optional feature of the
PDP-1 1/45 that makes it a suitable base for a secure system is the
memory management unit (Mi1U) and its associated three domains of
execution - kernel, supervisor, and user. Although the memory
management unit is described as a ~eneral purpose memory management
device [Digital] and one might hope to implement a Multics-like
two-dimensional virtual memory with demand paging, it appears that
the MMU is most reasonably used to divide main memory into logical
address spaces with associated access controls.

The key to understandin~ the MMU is the dynamic address
translation process it performs (illustrated in Figure 4). Every
time an effective address is generated during instruction execution,
it is treated as a 16 bit virtual address and translated to an 18 bit
physical address before the reference to main memory is made. The
translation is controlled by the contents of a set of eight
segmentation reg,isters. Each se~mentation register specifies the
base and limit addresses for an area of main memory, and access
control information. Recognized modes of access we will initially
use include null access, read access, and write access. A 16 bit
effective address is treated as a two dimensional virtual address by
having the high order 3 bits select one of the eight segmentation
registers and the remaining 13 bits be a displacement into the area
of main memory addressed by the selected segmentation register. The
~1U acts as a hardware reference monitor and generates a fault when
the displacement is too large or access is attempted in a mode that
is not permitted.

32

16 bit virtual address
15 13 12 0

ASF Displacement Field

15 13 12

Block \-lord

0

Full

Adder

17

Physical Block Number

17 0

Physical Address

Figure 4. Dynamic Address Translation

33

0

In the PDP-1 1/45, there are three sets 9f segmentation
registers, one for each domain of execution. The current domain
of execution has associated with it one of the three sets of
segmentation registers which is selected before the remaining part of
the dynamic address translation process occurs. Provision for
multiple register sets is part of the hardware implementation of
multiple execution domains and allows a process to be given a
different address space and/or the same address space with different
access rights depending on the current domain of execution.

Several characteristics of the t1HU have a limiting effect on the
kernel's functionality. Since there is only one level of address
translation (the segmentation registers are addressed directly and
then one add operation is performed), the MMU can be used to provide
a segmented memory or a paged memory but not both. Because
segmentation is vital to our design of a secure system we must have
non-paged segments.

In Multics, the occurrence of a fault while referencing a
virtual memory segment can signal one of at least two different cases ­
an attempt was made to access a segment (or that part of a segment)
that was not in main memory or an attempt was made to access a
segment in a prohibited manner. In the former case the hardware
provides the tlultics supervisor with sufficient information to allaH
corrective action and successful re-execution of the faulting
instruction. The latter case indicates an access violation and is
handled appropriately. The PDP-11/45's Mtv!U provides only limited
information Hhen a fault occurs. This lack of information makes it
difficult to distinguish betHeen the missing segment/page fault and
access violation cases, and also to resolve missing segment/page
faults with "small and simple" software. The impact of this MMU
characteristic on the design will be dealt with in the section that
discusses the segmented virtual memory level of abstraction.

7Actually, the MMU has tHo sets of segmentation registers for each
domain of execution. The hardware uses the Instruction (I) Space
registers for all memory references that involve instruction fetches,
index words, absolute addresses, and immediate operands. The Data
(D) Space registers are used for all other references. Language
Processors must be aware of the difference between I and D Space and
generate code appropriately - program constants that are not
immediate operands cannot be in the same segment with program code.
Since the language processors used in the initial implementation of
the 11/45 kernel are not aware of I and D Space, the D Space
segmentation registers are disabled and all address translations use

Space registers.

34

I

One other aspect of the MMU is worth mentionin~ at this time.

Since the segmentation registers are directly addressed and not

accessed indirectly via a base register, the processor state consists

of a large number of registers. Saving and restoring the processor

state is quite time consumin~ because all of the registers must be

saved/restored one at a time - the PDP-1 1/45 has no block move

instruction. While performance characteristics are an important but

secondary consideration in this prototype development, the cost of

context switching could have a severe impact on a secure production

system built on the 11/45.

!ffi:$ ·abstrac{tiOn .-f~f-'level Q 'Ts·· t.i.' ·proc'2ssor--wi·th ·a. seg·mented mairf"
memory. T~l':? basic r'e3o:w·2e used in creatin<:>:: this abstraction is the·

J1HU __ har'dW&.l'e, but there is also.sor.1e software in tl1e implementationi/
:There is _a_. _::.a.bl? th::>t indicates how· main memory is segmented anrl .:a
j't?n?t ion. that ~-uses information _in_~thi.s. :.table:.. t,();;·S.9Q::?t_r;~9-~'':_~l1~..--~~:::~,~
~segment_st ~ ;;;_criPf,,o rs}
~~...,,..,_....---~--

LEVEL 1 - SEQUENTIAL PROCESSES

Level 1 creates the process abstraction. We use the "standard"
(and somewhat vague) definition of process - a process is a procedure
in execution. The design supports a fixed number of processes; each fw~
runs on a virtual machine and consists of an address space and
control information about the process~ At level 1 it is sufficient /
~o know that the address space is defined by the control information,
part of which is the contents of the se~mentation registers. Level 1 ~
software has the responsibility for allocating the processor to one
of the processes whose dynamic progress is permissible.

At a given time, a process is in one of several possible
execution states [Saltzer (1)]. Figure 5 shov;s the relationships
among the various execution states and the actions that move a
process froQ one state to another. In the inactive state a process
does not have an address space and cannot run. ,B;·--proc~l?-.~-;:..ca:n::o~ly:.tre
tirO'V'etl'"'Out··,.of'·!:-{and<-'also~:'into.}:::±.he~;ina€H've· ·state~~by:_:J'J, sp~<;i:~
<'eX:St!U:t:i've-:·pr·oces·s-;:·that·:~rs:.:.'neve·r-=.:rn·_~the":'Thacti v~;·p~<9-e. At the time
that it moves a process out of the inactive state, the executive must
establish the initial address space of the process. The purpose of
the inactive state is to create a mechanism for minimizing the
resources required to support a process that is not currently needed
(perhaps because less than the maximum number of users are currently
signed onto the system), but is one of a fixed number of processes
defined by the implementation. ·

rn·ac-t-fve::::p:r;oces·s---is··-ei t her. blocked---or.,.unb . .l-,9~.J..),~_g.,...,""l.n_,..,t.he

-6I8(rt(ed··s tate/ :~.:process is Hai tiiu:r~for. 1:he__o.ucur-~enQe-.g£..,J%EN~~S:.?&1·

35

http:also.sor.1e

Active

Running

Unblocked

end of
time slice.

scheduled

-----~an event

Ready Blocked

event occurrence

By
Supervisorw

0'\ Inactive

Figure 5. Process Execution States

I

An unblocked process is either in the runnin~ state or ready state.
:JJ:le;;-.r.un nin g :state :·.simpty:.::s.D;nifies""J;nat.::~:the..pt"·.O.ces.S:-haS:.:the;;;eplfJ
:a~l.ncated .to.,.itl Above level 1 the running and ready states are
logically equivalent. In the ready state a process is ready to run
(its dynamic progress is permissible) but must wait for the CPU to be
allocated to it. Processes enter the ready state from the blocked
state when the event for which they Here Haiting occurs. Ir..ansiti.o:n

.9-.t:;!!':Pr:09-e::;ses -be.tvzeen. the ...read;.: ~nd .running ..s tate_s,:;-j.:_S:-,~ontrc~.l.~~;~~Y,.·ii
§1;rt.PJ..e..: .sGnedu-U.r~::;:POl:i9-.Y..J~!-er.p~1-,:tc:,~.e_:~~~;::}1 - · ·'" · ·· ·

The hardHare resources of this level are the CPU and a real-time)
clock. A data base is employed to contain state information about (bl"u~
the processes and to help manage them. This state infomation 11> o\,
includes a definition of each process's address space, an indication~~'
of its execution state, and a specification of the user associated) ~ ~
with the process and his security attributes. No interpretation of
these security attributes is made at this level (the operation of
level 1 is independent of their value), rather, space is set aside in
level 1's data base for security attributes as a convenience for
higher levels.

Several different types of functions are provided by level 1.
Two sets of functions are provided for the synchronization of
processes - Dijkstra's P and V functions (explained in Appendix I)
and message send and receive for interprocess communication. In the
level 2 subsection we ivill explain hmv P and V are used to handle I/0
interrupts. More detail on these synchronization functions and the
rationale for providing two sets of functions where one might suffice
is given in the next section.

tevcl ·r··imprements a :sitnpl~·scheduling policy'_.::~·-_tt'ltL.highest;
:E.r.~g.r:tty .process that is ·r"eaqy,,to.rtm _h?,s..t.h_~· CPU- alloc;?ted.,tocitJ.
To allow a more sophisticated scheduling policy to be implemented

• outside of the kernel a function can be provided to dynamically\'
~-.. change process priorities. A discussion of the issues involved is

~~ provided in the next section.

1

(1'-,~ ' ..., Finally, as online users log on and off the sys tern (and as batch
\~0 ~·jobs are initialed and terminated) it is necessary to provide them

'\t ~ with processes and then to terminate these processes. Two functions­r ~~ activate process and deactivate process - are provided for this
':\.•"' purpose.

Level 1 creates a multiprogramming environment which effectively
~ -~' implements the co-existing subjects that are a major element of the

model. ~

1~?

37

http:JJ:le;;-.r.un

LEVEL 2 - SEGHENTED VIRTUAL' MEMORY

The second level of abstraction creates a segmented virtual
memory, building on the segmented main memory provided by level 0
(the hardware). Se~ments are the primary storage entities of the
system and will be the basic object to which access is controlled by
the security level of abstraction. As mentioned in the subsection on {;A-t ~~

level 0, the characteristics of the Mr1U limit the flexibility of the L • • .o.X\- ; _;;.
segment abstraction created at this level. In particular, one would~·~~~
like (as Hultics does) to implement variable sized segments ~ ~ fL

consistinrs of fixed sized pages. The use of pa!!ing facilitates thehJ ~ ·
dynamic growth of segments, permits only part of a segment to be
swapped into main memory, and vastly simplifies the allocation of
both primary and secondary memory. Unfortunately, the
characteristics of the MHU force us to implement unpa12:ed segments.

!·ra-si~pli fy The design w: have implemented fixed. sized s:gm:nts -: .--· , ·J L1!f.tU'{I.J

1 that 1s, when a segment 1s created a permanent size ~-~~--~_., AJ ti(;:U.(:
\~?ified and resources are allocated aQJ?ropria~ rr only a ("-- ?:;· '(ffJ

c

1ro~ ·
7

single size wet'e provided the resultin_g- system would be difficuit-'1o
)

-\i __,_,! '

use, especially when the small number of segmentation registers (8 (________________

per domain) is considered. A small se~ment size would severely limit

the amount of virtual memory that a process could directly address at

any given instant; a large segment size would tend to waste space.

Thus the design provides for fixed sized segments available in a \~

variety of sizes. The actual number of sizes will be an ~ (

implementation decision subject to hardware constraints - sizes must y

be multiples of 64 bytes up to 8K bytes maximum. Sinc_e_~y~n__t_h~--- \~

la_!.'~~§_t_ segment may be small for some applications ,)we anticipate the v\& ~

(c:reation of a file abstraction above the kernel. This abstraction
I - ­will allow several segments to be treated as a single entity and

permit subsections of a file (segments) to be individually swapped in ·
and out of main memory. ___) ·
-------------------- -------- ~~~ <,~

The lack of adequate hardware to support a demand ~

paging/segmentation environment further affects the design at this

level. The virtual memory provided by this level can best be

described as a "non-random access" virtual memory. Users of thi~

level cannot arbitarily access segments in their address space

without first indicating an intention to perform this access. This

intention is indicated by asking level 2 to load a segmentation

register with a descriptor for a segment before any instructions

referencing that segment are executed. It is sufficient for level

to "lock" all segments for which descriptors exist into main memor

to guarantee that missing segment faults do not occur. Level 2

considers any fault generated by the MMU to be an access violation

and simply passes the fault on upward; it does not attempt to take

any corrective action. Jhe implementation of·level 2 corresponds to

swapping or overlaying, rather than demand paging. It should be

38

/~7 £/'L~JLffA'YI-(~

fu. ~~·~· ~ 2._ !ji-(

noted that level 2 still implements a one level virtual memory

because: 1) segments are the only type of storage entity, and 2) as

different segment descriptors are loaded into the segmentation -~·

registers the address space of a process can be greater than the size '....t/

of main memory.

Segments have attributes - information that describes the
characteristics of a segment. From the mathematical model we know
that at level 3 segments will have security,attributes; at level 2
they have implementation attributes. Impl tion attributes
include a se ment's size disk address. The attributes of a
segmen re contained I e segment's parent directory. ,.(1/4
At level 2 space is provided

~

in directory entries for security
attributes but the operation of this level is independent of the
values of security attributes. Since directories are themselves Iv~
segments with attributes residing in other directories, the total /~
structure is a directory hierarchy in the form of a tree. The l
attributes of the root segment of this tree are fixed by the design'\
and imolementation. 1

• ,______t?_______

I,
All segments in the hierarchy are ~tn-er>--dir-Be--t.G-r-¥-=-~

data segments. (Segments containing executable code are considered
C data seP;!nents by level 2.) Although level 2 does not enforce access

. a? control to segments in general, it cannot permit software above it to
..-'-'/'1 write directly into directory sAgments, because the correct operation
\, , of level 2 requires the integrity of the (implementation) attributes
~, of segments. Functions at this level provide users with an

0j'J 1>/Jf oretive directory write capability. The security requirements
~ \ enforced at the security level will further restrict access to
~ ~~ectories because of the nature of some of the segment attributes.

\ Y ' This point is discussed in the Data Structures subsection of the next
V section.

As previously mentioned, some locations in the PDP-11/45's main
memory are I/0 device control registers. The main memory segments f
that "cover" these locations are permanently bound to data segments
in the virtual memory. .Thus, __the ··aoi1fty .f.o ::use:. an'":.:'I)i_f:(fevi:ce.::::i;{?

~tl!P;:~;:;::i:::ea:::~~:~t!:;;;;::;~;~~:.~:::::;;:::~::~~~phor'<f ~
~l:'tli. each s~g~ent "cL requires vri_t~-c~qq~~!?.~ :..t.9 ~~kt~~;~ggmel).k:l,.(L;Qf..S).eor;, J

~C:O-P.--and V o.n. ,tbe.semaphore:.t The I/0 segment semaphores nave a

special use - the kernel translates I/0 interrupts into V's on the t-f'r1/ L---­

appropriate se1naphores. Thus, \;/hen a process wishes to wait for~ hfo~';Juvt-L

!nterru t frc;n an I/0 device, it P s on the I/0 segment semaphore, f w

(presumably blocking Itself. When the int~rrupt occurs, a V is ·

performed and the process becomes unblocked. The kernel is only

concerned with controlling access to the I/0 segments and semaphores,

--~---·----------

39

not with the correct use necessary to assure proper synchronization.

Level 2 implements a segmented virtual memory by building upon
\ level 0, e mented main memory' /using secondary storage devices for r

J..!l~j segment swapping and employing a data base to indicate the state of~\ v;(.rA \
·· the virtual memory. The data base consists of the~ \(:i.e, yp~ \' ,

'1 ~. tables for managing: the allocation of secondary storage . ~\)

1 	 ~:~i~~~~~s·~~~~:s!~:;~~·-~!~:~!~:.~ 1~STr~:i~~~~~~3~~t;~~:m~ci·;n-;::,j~,~e entt~ 2 nuJ
proce'sses wish to access a se~ment they both access the same phys ·cal ..,
segment and not two different copies. Any segment that is in the 1

address space of one or more processes or is "wired down"
(permanently swapped into main memory) is active - it has an entry in
the AST.. A'tf.':'~~t·i:vE(~se'.~~ab:l-e,...-ent't"'Y"""fAB1ltt:<-).><teem,t;aoi·n:s,-.,,til~z.S.t.El,g.IDe.n.t....::.s
fJe"t>mahenP;':ilt:'t"rib'ut"es:#'- copied from the directory - as weli-as
additional attributes associated with the fact that the segment is
active. These additional attributes include a list of the processes
that have the segment in their address space and the main memory
address of the segment if it is currently swapped in.

Segments in the hierarchy can be uniquely identified in a

variety of ways. If a segment is active, identifying its entry in

the AST (aste#) specifies the segment. If a segment is not active

but its parent is, then the aste# of the parent directory and the
identification of the entry within the directory that contains the
segment's attributes (aste#, entry#) specifies the segment. A
generalization of the (asten, entry#) identification method is the
complete pathname - a specification of all directory entries,
beginning with the root, that identify the segment. Finally, each
segment has a unique identifer - its disk address. Within the
security kernel the primary segment identification techniques are the
aste# and the (aste#, entry#).

L~~ides functions for creating and deleting segments,
adding and removing segments from a process s address space, and
creating and destroying segment descriptors./ The segments created_ at
this level are the basic interpretation of the objects of the
mathematical model. Although segment descriptors permit access

l; 	 control to segments, the only access control policy enforced at
level is the requirement for interpretive directory writes.

40

LEVEL 3 - SECURITY

The software above level 2 sees a virtual machine with a

segmented virtual memory (that pt~ovides for access control if

desired) and the multiprogramming of sequential processes. Thus, the

major elements of the mathematical model of secure computer systems

(subjects, objects and access control) have been realized. Given the

environment assumed by the model, the implementation of security by

following the rules of the model is straightforward.

Unlike the lower levels, level 3 has no hardware resources or

data bases of its own. Level 3 makes a correspondence between the
 !;!
subjects and objects of the model and the abstractions implemented by
levels 1 and 2, associates security attributes with these lower level
abstractions, and controls access to the lower level functions th t
operate on these abstractions based on the rules of the model. Each lo~v~
model rule has two parts - the first part consists of security check~, ~v~
:to determine if the requeste!f:;uate cnange can be permitted; if it , ~ --~1-t>
can, the second Q_art of the rule indicates how the state change is t6"" ~fi
be made. 1n the kernel level 3 functions perform security checkirllf ~~.
~then direct levels 1 and 2 to perform state changes if security 1 fF~-
requirements are satisfied. ­

As previously mentioned, the kernel uses processes as the basic

interpretation of S!lb jects, and segments as the basic interpretation Jr

~f objects. In addition, semaphores and interprocess commun~cation ~
messages are also objec a er an 1ng ~ s own ata structures
for representing e Hel's data base (b, M, f, H), level 3 uses the
data structures of levels 1 and 2 for associating security attributes
\vi th processes and segments. In addition to holding a segment's
implementation attributes, directory entries contain the segment's
security level - half of f :-and access control lists - M. The
(aste#, entry#) method of identifying se~ments is a representation of
H. The data structures used by level 1 to support processes include
a specification of each process's current address space (the segments
that a process can C.J.U:I'~ntly access and the perm~of
accesS) - the rJodel, S~ and an identification Of the user
associated with the process together with the user~y
attributes - the other half of f.
----------------~----------------

Now that the model has been implemented all remaining scftware

in the system can be uncertified - contain bugs or malicious

penetration attempts- without a threat of security compromise if two

conditions are satisfied. The kernel must be protected and access to

its functions controlled. These conditions are met by preventing

uncertified software from ~aining write access to the kernel segments

and by having only the kernel execute in keinel domain.

41

'
In the next section we will repeat the process of describing the
kernel, but this time more details and motivation will be provided.

42

..
SECTION IV

DESIGN DETAILS

INTRODUCTION

In this section the design is a~ain presented, but more detail
is given. The first subsection discusses the uncertified software
environment, the second describes the data structures used by the
kernel, and the remaining subsections give a formal specification of
the kernel functions.

UNCERTIFIED SOFTWARE ENVIRONMENT

The kernel software and PDP-11/45 (with Memory Management Unit)
create a virtual machine environment for processes consisting of
uncertified programs. The virtual machine is similar to a real
PDP-1 1 (not 11/45) in that it has the general purpose registers and
instruction set of the PDP-11. The virtual machine has, however, a
much different memory structure - a non-random access seqmented
virtual memory that is shared with other virtual machines. The
kernel provides the virtual machine with functions for operating on
the virtual memory, and for communicating and synchronizing with
other virtual machines. Programs executing in the virtual machine
can execute any unprivileged PDP-11/45 machine instruction or invoke
any kernel function, alt hou'Sh in either case the desired operation
can be aborted (by the MMU or the kernel) to prevent a security
compromise from occurring.

~.~r..arc:hy-;::g_s·:~the.~.systemdi rec~:~Ys~{~~~;~~Y~i r~~~~a~e~~~~ki-:f~~~~-;~;~"'~~~t".s;~~=~~~~lTO'tM~
·.spacj:!_JSS_I. By Vlrtue of secur1ty attnbut:: '\

and a security policy, most users of the system will not be able to
access all of the seP-"ments in ss. T.l:JsL13Ub.st:t.--:t..rtat:·:~r~·us:err.:nna.y~,:.acc~~9

kii.l.J:~P&::~--._call.ect"a:.c··.v ~!:S~1d&l.J..:~;R~S.5";,~"~..cv.s);. When a user onto the
system he has a virtual machine-·Trtr~~·n·trC'<f'ttY, a process~ execute on

"' his behalf. Thisproc-es5wi l have an address space o segments1

\·constrained in size by certain design and implementation parameters.
~.~ ~-c M£_---..-_c·a.ll...u:e::··pr.-o.ce.ss·s_·.:ad.·d_-_res_s_·--spac~~~~~~- w.sJ~':anct.:::-it-:.:is.

\J . · .:; : . .?.Jways -a;· su.?.~-e~.?L~h~~:;:\1:3~r;'~- Y~1 '![§ corresponds to the model's ~.:
~ ' l' Ideally' He would like to perrni t a process to directly acce§s ali
t t\ ~ segments in its HS, but because of the small number of descriptors
' ~~, provided by the 11/45 (eight per domain), this approach would

severely constrain the size of viS. It would probably be necessary
S \ for a process frequently to move a segment out of its WS to make room
~~~ for a new segment, and then shortly thereafter move the old segment 

~ 43 

V 



relationships among SS, VS, WS, and AS. ~;f 

The burden of managing WS and AS, and dealing with constraints, 
both security and implementation, imposed by the kernel, falls 

back into the WS. Because of the security checking involved - moving 
a VS segment into WS changes b - this approach could add considerable 
overhead to the computation being performed. To avoid this problem 
it was decided not to limit the size of WS by the number of 
descriptors available and to add another space - .acce-;;-;s"·.spaQ&.:t~:A£..1.- \ 

1£hit 't"'ep't'e:Sents the g.-o-··:::-:. ~S "that a pr;6e·e...~J''3:'7:)'a'n dir'ectly -addt::e§-,~7 
f:l·2C.'"~i.lse .. it, has .descriptcr'3- for--them.' ---~s-·Ts; of__CO\ll"Se, _con~"tl~<k~.P~D. 
b•; "1-':e- number of har<,J,y;eire .deScriptors-available, ar:d ·it i$ _a ~.11I!.set 

f_o~ ·~s:---'Now~·a 'i)r,-oc-ess will remove a segment from AS to make room fop 
another, rather than removin~ a segment from WS. The justification 
for this approach is that the cost of moving a segment into AS is 
less than the cost of moving a segment into a combined WS/AS, becaus 
changing AS does not change the security state. Figure 6 shows the 

clearly on uncertified software. This does not mean that a user 
writing applications software must be familiar with all of the 
kernel's idiosyncrasies, for one.of the functions of an operating 
system might be to make the environment created by the kernel more 
palatable to the user. Before presentin~ the specification of the 
kernel functions, the data structures employed by the kernel will be 
described. 

KERNEL DATA STRUCTURES 

In discussing the data structures of the kernel we have a 
chicken and the egg problem - understanding the design of the data 
structures requires understanding the functions that use them and 
vice versa. We choose to deal with the data structures first because 
their description is more compact than the functions' description. 
We will start with the structures used to implement the segmented 
virtual memory, then discuss the process structures, and conclude 
with the main memory structures. 

Directories 

A directory is a segment that consists of entries. Each 
directory entry is either unused or contains the attributes of some 
other segment. A directory entry (see Table I - the numbers in 
parenthesis after each field name are the size of the field in bits 
for the initial kernel implementation) has a fixed part and a 
variable part - field names for the fixed part begin with "DIR_", for 
the variable part with "ACL_". 

44 

~-t' 

IJiu.~ L~.L 
.?-
Crrn v ,9 Ct--tJ 

N~S~ 

crJ~-~) 




(SS) 
system-wide 

Virtual Space 
per•user 

per-process 

GETI7/GETR 

RELEASE 

Access 
Space (AS) 

System Space 

DELETE· 

GIVE 

RESCIND 

Figure 6. Spaces 

45 



Table I 

Format of a Directory entry (fixed part) 

and an Access Control List (ACL) element (variable part) 

a Directory entry is accessed by (aste#, entry#): 
DIR_XXX(aste#, entry#) 

DIR_TYPE( 1) DIRECTORY or DATA 
DIR_STATUS( 1) UNINITIALIZED or INITIALIZED 
DIR_CLASS(4) classification 
DIR_CAT(16) category set 
DIR_SIZE(8) size in blocks 
DIR_DISK ( 24) disk address of the segment 
DIR_ACL_HEAD(8) head of the ACL (or 0 if list is empty) 

an ACL element is accessed by (aste#, acle#): ACL_XXX(aste#, acle#) 

ACL_USER( 14) user-id or ALL_USERS 
ACL_PROJECT(8) project-id or ALL_PROJECTS 
ACL_HODE(2) mode of access - WRITE, READ, or NO access 
ACL_CHAIN(8) acle# of next ACL in the chain or 0 

the head of the free ACL element chain is accessed 
by ACL_CHAIN(aste#, 0) 

46 




\} \\_, 
v 

v 

\ 

I<)/') I.v'\. '" ' 
', \'-N\ \ 

\ 
\j '\. " - '~ .51\, 

The field DIR_TYPE sp~cifies the type attribute of the segment. 
Its value is either DIRECTORY or DATA. .U:l...~e.gJll~-~ts:~~z::.e,.::~j,Ji.;i.'.tlaliiedJ 
~~~£~~,_,~l:te.Y: .. ~CtLfirst · aoces_~_g(j.'. _Data segment,~-~L..~ni~~-~a~iz:_~-~..<?. all 
zeros, and the initialization of directory segments will be explained
J:.:ater::'. The attribute DIR_STATUS indicates whether or not a segment
has been initialized. Its value is either UNINITIALIZED or
INITIALIZED. DIR_CLASS is part of the security level attribute - the
classification. DIR_CAT is the rest of the security level attribute ­
the category set. DIR_SIZE is the size of the seg;ment. The.~.i-iHU,

f~\;iJt'$3. a:u·:segments ..tO.:.:be:.a mtiltipl~ of.64.bytes in size/ but in
the initial implementation the size of a segment is a uultiple of 256
bytes. If the value of DIR_SIZE is zero, the directory entry is not
being used and the values of all other fields are undefined.
DIR_DISK is the disk address of the segment. DIR_ACL_HEAD is the
head of the chain of ACL (access control list) elements for the
segment.- the ACL is the variable part of a directory entry. If
there are no ACL elements then DIR ACL HEAD is zero. n

!h~"-acces·~s'"coirtr'ol··lrsf.·ls" an~l2.e.~:::€a1a:Ej·a~·1rst:·.-:'.ornames~:O~f~:7

Ll?.~~rmi tted to access a segment)- it corresponds tg a column of the
matrix 11 and implements need-to-know protection. Users are ~~
identified with a tHo part name. The first part (user-id) uniquely ~j)fi'y
identifies each user. The second part (project-id) partitions user's Y
into groups called projects. The use of a two part name facili ta:Jes//)
granting access to ~roups of users when all of the members are not ~­
known or the membership is dynamically varyin~.

Whenever a user is on the system the state information of his

process includes his user-id and the project-id of the project he is

currently working under. (A user may be allowed to lo~ onto the

system under one of several different projects.) Similarly, an ACL

element includes a two part name but either part may be replaced by a

special flag that indicates "don't care". The "don't care" fla~ is

represented by the id ALL__USERS or ALL_PROJECTS. Thus the ACL

elements (Sl1ITH, Dr-1S), (StHTH, ALL_PROJECTS), (ALL_USERS, DHS), and

(ALL_USERS, ALL_PROJECTS), respectively, permit the user named SrHTH

to access the se~ment when he is working under the DMS project,

permit S~1ITH access independent of the project he is working under,

permit access to all members of the DMS project, and finally permit

access to all users of the system.

In addition to a name, each ACL element has a permitted mode of

access - no access, read access, or write access. Associating the

access mode with the ACL element rather than the segment itself

8The 11/45 ACL mechanism is ouite similar to·the Multics ACL
mechanism as described in [Saltzer (2)].

47

allows different users to have different access rights. The use of

the "don't care" flag makes it possible for more than one element in

an ACL chain to apply to a user - in this case the first element in

the chain that applies determines the permitted access mode. ~~U

E!l:Bi'iie'rit s'' a'iie::a::rw.a:ys·~:o t!debl~d: ;-'ff'·OlTJ""'1lmS>'t"~s·pec-i f.i·~~e'"-·1eask· 'spec i f i c;,

thus elements with a specific user-id and project-id come ·rl.r's'f, an

(ALL_USERS, ALL_PROJECTS) element can only be last, and elements with

a specific user and ALL_PROJECTS come before an ALL_USERS,·specific

project element. Thus the following chain is possible: (SMITH, DMS,

NO), (JONES, DMS, WRITE), (ALL_USERS, DHS, READ). It indicates that

all members of the D~~ project have read/execute access to the

segment except for SHITH who has no access and JONES who has

write/read/execute access.

We can now define the ACL element fields. -ACL_HODE is the mode

of access associated Hi th t~1e element, ACL_USER is the user-id or

ALL_USE.RS, ACL_PROJECT is the project-id or ALL_PROJECTS, and

ACL_CHAIN is the link to the next element in the chain or zero if

this is the end of the chain. In the initial implementation a

directory segment has 63 usable entries ~numbered 1 to 63) plus a

~ 1 header entry (entry# 0) and 127 ACL elements that are shared among

~:..:· ·(~~~~i;:~:i_~h_~:~:~_ :~1_:~~{;_.€-~~;:~:i~~~:tJ~~~~~---~-~i~(~r-~:!:~;::~
\ P-la.cing .~lL.t.he.;..AC.L; ~e1€ments·':orf'"tne''·Zf'ro"e'e'~h~t±n'.

of~· d. I•k-vh y··j
All segment attributesAexcept for 6rR_STATUS and DIR_DISK are

specified by users with write access to the directory and therefore __ •
! have the security level ~f··me···-pafeni-<lir-ectOr.:Y) but the values of 1 u,.._, Lw... ~'L DIR_STATUS and DIR_DISK a·re a function of system.. -wide activity..~~~ 4-h-•-t"'·"""~.;t::,~, /

(' t_Ee case of DIR_STATUS it can be c.banged ..to UilTIA~I~ED. bY, en~
\.. process that has access to the se,;rraen · ..aJ;,J;,rJbute,..!)l~~t ha~ , ;.1' r/ ~\l.t '

eve o 'sys em · 11 A complete explanation of the ~ ~~\'":v
nature o the D_JB.:":P±&rrttriAAb·ut·e--i-s-r>~d until we discuss the ~"~"..)

/ {- functions tha~e and delete segm:?;~~t the point is that our '
110 view of Uectory seg-rnen1smust""l5~-mn-di-Hea. Directories will be fl& t/ /(;!uc1

W l cons red to be "composite" objects. Host of the data in a ?
di~ ctory will bel!- tl1e""sec~.:~J.:L~~~J,...,~e

11 be at a ig -er ~'~The format of the directory is de!'Tii"ed

within the secur1. y penmeter so there is no problem in determining

the security level of a particular data item. Since the segment is

9usystem high" is a security level that consists of the highest

classification in the system and the union of all special access

categories. Thus, with respect to the security condition and the

*-property constraint, a system high subject may gain read access to

all information in a system (subject only to the access matrix M).

48

http:lL.t.he.;..AC
http:ALL_USE.RS

/"',.'

the smallest object to which access is controlled by the MMU, we ~~ ,•'.---~-y)
cannot permit uncertified software direct read access to directory r

segments. Thus if uncertified software is to have read access to a
directory it must be via kernel functions that do the reading ~
interpretively and are cognizant of the nature of directories.

Active Segment Table

The Active Segment Table (AST, see Table II) is a system-wide
table that fac~litates the main memory sharin~ of segments among
processes. Every segment that is in the working space (WS) of one or
more processes or is wired down has·-·anen-tryin-The''A'sT--·~..t'he~..se"g.ment
~m-rne<:ns-:r-rts"'ast-e7tTA'sr"'·en1ry?TT:-"~-Tilre·--a:···=d i rectory en try,
an ASTE is composed of a number of fields. AST_TYPE, AST_STATUS, /
AST_CLASS, AST_CAT, AST_SIZE, and AST_DISK correspond to the
similarly named fields in a directory entry. At the time that a
segment is activated these fields in the ASTE are~Q~~ing from
~ctory entry~ Since an active se~ment may be in the WS or
more than one process, we may want to know which processes have it in
their WS. AST_CPL (connected process list) tells us this (read
access is implied) and AST_HAL (write access list) indicates which
processes have write access as well. In the initial implementation
AST_CPL and AST_WAL are bit maps - if bit n of AST_CPL is 1 then
process# n is on the CPL. Bit 0 of AST_CPL indicates whether or not
the segment is wired down.

'tlhen a process removes a segment from its HS, AST_CPL may become

zero. This event means that the segment can be deactivated, making

the ASTE free. Rather than deactivate as soon as possible, we choose

to deactivate as late as possible - when we need the ASTE to activate

another segment. Segments that can be deactivated (as indicated by a

zero AST_CPL) are kept on a chain running through AST_AGE_CHAIN.

AST_AGE indicates whether or not a segment is on the age chain. The

rationale for this delayed deactivation is discussed when the

functions that move segments into and out of a process's WS are

described.

thus ~o~~~.E£~~e~c:.:~g~~-~r£~·~r6·-~~·~·~·~%~;;~~~-~;~~-!"~[!·~~~d i~o! ~~n:st ~e

segment into main memory. AST_ADR is the main memory address of the

segment if ir is swapped in, AST_ADR will be zero if the segment is
0swapped out. Since the (beginning) main memory address of a

segment will always be on a 256 byte boundary, AST_ADR need not

10The maln. memory b · . t address zero ls. used f or theglnnlng a e

internal kernel data base, and thus zero is never a legal address for

a user segment.

49

Table II

Format of an Active Segment Table (AST) entry

an AST entry is accessed by aste#: AST_XXX(aste#)

AST_TYPE(1) DIRECTORY or DATA
AST_STATUS(1) UNINITIALIZED or INITIALIZED
AST_CLASS(4) classification
AST_CAT(16) cater:<ory set
AST_SIZE(8) size in blocks
AST_DISK(24) disk address
AST_CPL(16) connected process list
AST HAL(16) write access list
AST=AGE_CHAIN(16) chain of segments eligible for deactivation
AST_A'GE(1) UNAGED - segment is not on the age chain

AGED - segment is on the age chain
AST_ADR(16) main memory address of segment
AST_DES_COUNT(16) number of descriptors for se~ment
AST_SWAP_CHAIN(16) chain of se~ments eligible to be swapped out
AST_LOCK (1) LOCKED - segment is not on the swap chain

UNLOCKED - segment is on the sHap chain
AST_CHAIN(16) used by HASH function and for free ASTE chain

the head of chains are accessed by AST_XXX(O)

Table III

Format of the Process Table (PT)

the PT is accessed by process#: PT_XXX(process#)

PT_FLAGS(2) READY, BLOCKED, or INACTIVE
PT_LINK(6) chain of processes blocked on a semaphore
PT_PS_ADR(16) main memory address (block#) of the PS
PT_IPC_QUEUE_HEAD(8) head of the IPC queue

50

include the low order (all zero) 8 bits of the address. It is not
always sufficient to know that a segment is in main memory, as there
are times when the nunber of descriptors that exist for a se~ment
must be known - AST_DES_COUNT (descriptor count) tells us this
information.

When a process removes a segment from its AS, AST_DES_COUNT may
go to zero. This event means that the segment has become unlocked
and can be removed from main memory. As with the deactivation case,
we choose to postpone this removal as long as possible. Active
segments that are eligible to be swapped out are kept on a chain
running through the AST_SHAP_CHAIN field. AST_LOCK indicates whether
or not a segment is on the swap chain.

The last field in the AST is AST_CHAIN. There is a function
whose ~nput is the disk address of a segment and whose output is the
aste# of the segment if it is active or zero otherwise. This
function (HASH) uses the AST CHAIN field. This field is also used to
chain together ASTE's that a;e free.

The initial implementation provides 256 ASTE's numbered 0 to
255. aste# 0 is a header - the AST_AGE_CHAIN, ~ST_SWAP_CHAIN, and
AST_CHAIN (for free ASTE's) chains begin in aste11 0.

Process Table

The Process one of the two basic data struct
used The PT has
entry for each process, and
(see Table III).

PT_FLAGS indicates the execution state of a process - its value
is READY, BLOCKED, or INACTIVE. When·several processes are blocked
on the same semaphore, the processes are chained together through the
PT_LINK field. PT_PS_ADR is the address of a main memory segment
(the process segment) that contains additional information about the
process. It will be described shortly. PT_IPC_QUEUE_HEAD is the
beginning of a chain of interprocess communication messages sent to
the process. Its value can indicate one of three possible states:
1) there are messa~es that have been sent and not yet read by the
process, 2) there are no messages that have been sent to the process
and not yet read, and 3) the process has become blocked because it
wants to read another message and none is available.

In the initial implementation the PT wi~l also have an area for
saving hardware registers relevant to exeQution in the kernel domain

51

I
')

when the process does not have the processor allocated to it. Since
this area is not relevant to subsequent design details it is not
shown in Table III.

Process Segments

The second basic data structure used by level 1 is the Process J

Segment (PS) - there is a process segment (main, not virtual, memory

segment) for each process. Table IV shows the fields of a process .

segment.

PS_CURRENT_PROCESS is the number of the process associated with

the PS. PS_PROCESS_MASK and PS_PROCESS_NOTMASK are used in accessing

AST_CPL and AST_VlAL. HASK is all zero except for bit n (;.;here n is /

the process number), NOTMASK is all ones except for a zero at bit n. / - _

PS_USE~_ID and PS_PROJECT_ID identify the user (subject) associated)/ '}?
7
' "/'

with the process. PS CUR CLASS (current classification) and \----;.r

PS_CUR_CAT (current categ;-ry set) define the current security level ···-""

of the process. PS_TYPE indicates whether or not the process is a

trusted subject.

PS_HEt1_QUOTA is the amount of main memory allocated to the

process for its AS but not currently being used. PS_IPC_QUOTA is the

number of interprocess communication objects currently available to
 7the user for receiving messages from other processes. PS_DISK_QUOTA

is the disk space allocated to the user of the process but not yet

used. J; <' I ·
!()· ···ic~ .

;<[/L.,e_.tl.
The remainder of the PS is dedicated to arrays used for defining

the process's address space. PS SDR (segmentation descP~pt_or

register) and PS_SAR (segmentation address regisferT-~are' t·w~·arrays

that hold tne-·ns-·cre·sc·rrptor·s··T~Tn~siiper.visor·· do-rna in, -8 .in user

Ctoi'!'rarrn-·rnat'"'Eir·e·~availaoTe': ' Tl:fe''"third array' p§' SEG~ Ts used'""for
~tlla.'"p1Ji~--segm€§"nt'numbers "(segil 's - process loca 1 ;egment names) into

aste# 's (system Hide segment names). Hhen~a- pr.oce~s·e·h·as ::thJ;;·,~Ke.~.a~l~
!lf&V~~.;:a:;:S:~gmimt:'";int:o'·:1.·ts-··Hs·;--t-he--ker:l1!?J;c~returns a 9..~gtt...t:;.l)ic~-~-kt,l~~ . .;_,, 0 (~,.....
lff.t':~c/\ies:s::~uq~~q._klgntJ.y.~uses -to identify the s_e~r:_:~Q..\i. The segment has I v vt·t/
an aste# because it must be active, but the aste# cannot be returned, ~S .In ?

to the user because its value is a function of system wide activi ~-
makin it necessary to c assl y a s a sys em high. Thus, PS_SEG

s just a mechanlsm s lnto aste#'s. PS_SEG is
provided by level 1 to level 2 as a convenience, as active segments
are not meaningful at level 1 - its operation is independent of the
contents of PS_SEG. Each element of PS_SEG_INUSE, the fourth and
final array, indicates whether or not the corresponding element in
PS_SEG is currently in use.

52

http:L.,e_.tl

Memory Block Table

tif...Jf.Qleiiiory ·B l oc"K·:Tab·le-)l'1.F;l.I·t:::t~zg:;;.te:V~~~\·Q;~:s 1::1.":U.9.t·~n:-..~:.::\J.~t;,9._:;:tJib
~ca:.te.::~h.e.~$.t.at.e _g_L,ma,in. m~mory;t A block is the smallest size
segment - the Ml-iU suppol'ts 64 byte blocks but the initial
implementation uses 256 byte blocks. Contiguous blocks can be
concatenated to form main memory se~ments of any multiple block size.
A:::mainL.memoriy'·s~e·gm~n't~:::.rs.~·eitJier..£·~f.i'!ee:,:oi''-'a1:1.:0c'at·e'd:<ct-epe:nutng ··?Jl
wh:ethep.:.,or..;;,no.t ... a---v:icr.huai.,memo:r•y1"segment'·Tt:f·~~-b:.ouncF'·to;:·it!. There is an
entry in the MBT for each block (see Table V) consisting of several
fields. If a block is the first block in a segr.1ent HBT_FLAGS is
either FREE or ALLOCATED, otherwise it is CONCATENATED. The rest of
the fields are not meaningful for CONCATENATED blocks. MBT_SIZE is
the number of blocks in the segment. If a block is FREE, r·lBT_CHAIN
is the block# of the next segment in the free chain or zero if this
is the .end of the chain. (A blockil is the address of the first byte
in a block with the 8 low order 0 bits removed.) If a block is
ALLOCATED, HBT_ASTE is the astefl of the virtual memory segment bound
to it. MBT_CHANGE indicates if the segment has been modified. This
information can be obtained from hardHare conditions - a bit in each ~----­
segmentation register indicates if the segment "described" by the
register has been stored into (via an access through that
segmentation re~ister).

SPECIFICATION OF THE KERNEL

f:'1~a:gb'i3,1~"::'6C ¢'E!ftifi.c!a tTo:nr:;±'s.•:A;n:zpr-ove'"'t'fi;=ft?'· t'h e- :·betf<~fY.i'br·"::o f ~<l

§.'ys·te::: · ;:;or:respc_nds to the beh:<vi or. oL.a m6(lel":'~':'~-The.:~mO'deF1 n'bim
e._i:ist be pr-oved to exh::.bi t a cer·tain desired:behavio~~.:~::_~io~:...Our.-.ca~
~h£,t.....t...'le-ab.s.r.ract .. systemremains in. a--secur-ec.&Eate:~ The final
representation of the system's security kernel will be as binary ones
and zeros in the computer's memory. Intermediate representations of
the security kernel will be used to bridge the vast ~ap between the
abstract ~odel and the binary ones and zer91 of executable code, thus
aiding the task of proving correspondence. One form of
intermediate representation is the higher level language program
listings of the kernel functions. This representation, however, will
contain many details that are specific to particular implementation
decisions and to the language used. What is needed is another
representation that describes the design of the kernel in a manner
that is independent of implementation and language considerations.
We call this representation the design specification and its purpose
is to bridge the gap between the model and implementation
representations. The form of the design specification used here is

11 our certification methodology is discussed in [Bell & Burke].

54

http:exh::.bi

Table IV

Format of a Process Segment (PS)

Process Segments are accessed by process#: PS_XXX(process#)

PS_CURRENT_PROCESS(8) .process#
PS_PROCESS_MASK(16) bit mask
PS_PROCESS_NOTHASK (16) bit mask
PS_USER_ID(14) user identification
PS_PROJECT_ID(8) project identification
PS_TYPE (1) TRUSTED Ot' UNTRUSTED
PS_CUR_CLASS(4) current classification
PS CUR CAT(16) current category set
PS=HEN=QUOTA(8) unused main memory quota
PS_D1SK_QUOTA(16) unused disk space quota
PS IPC QUOTA(8) unused ipc element quota J

PS=SDRC16 x 16 array) save area for segmentation registers
PS_SAR(16 x 16 array) save area for segmentation registersvl
PS_SEG(32 x 15 array) definition of process's address space (VIS)/·
PS_S_EG_INUSE(32 x 1 array) TRUE or FALSE

Table V

Format of the Memory Block Table (HBT)

the HBT is accessed by block#: MBT_XXX(blockfl)

MBT_FLAGS (2) FREE, ALLOCATED, or CONCATENATED
MBT_SIZE(8) size of the area in blocks
HBT_CHAIN(14) chain of FREE blocks
HBT_ASTE# (13) aste# of the virtual memory segment

in the block
MBT_CHANGE(1) CHANGED or UNCHANGED

53

1

rv"'
'{\-. (VV\.~t

derived from a 'form suggested in [Parnas] and used in [Price].
Figure 7 shows the validation chain between the various
representations.

A "Parnas" specification consists of tHo distinct types of

functions: 0-functions and V-functions. 0-functions (operate) are

functions that_~_the state of ~s~em to ~h~ng~. V-functions

(value) ~turn· the va!UeS:~lfafe vari?~helr only effect is

the passage of time. The specification of each function includes:

1) the name of the function; 2) a range for possible values of the

function, if it is a V-function; 3) an indication of the initial

value, possibly undefined, for V-functions; 4) a list of parameters

and their domain; and 5) an indication of the effect of the function

on the values of other functions, for 0-functions.

The effect section of each function consists of specification

statements. These statements denote that upon completion of the

function certain predicates Hill be true. The ordering of the

specification statements is not significant and some of the

predicates are conditional. References to V-functions enclosed in

single quotes (') refer to the value of the V-function at the ti~e of

call of the 0-function; references not enclosed i~ quotes refer to

the value of the V-function immediately after completion of the

defined 0-function.

Parnas' intention for specification is to ~ive an external view
of functions. All of the information needed ~~juse
functions and to implement them must be given, and nothin~ more.
Also, s pecific?tions.. must be sUfficiently form.?J.. so. that their':7

~cmpleteness ,- con.sistency and otryer desirable. pro~_eEF-~.e)~"J.h!},;.. our__ ,caseJ",)l
-c·orrectness) -:?;:'be--determined. }This ·latter requirement seems t-··'---·

•' ,,, .. ' ··-_.. .. . -~--~- .~-·-··-· ••._,_, ~-...-<4..___, ~..--·

rule out the-u·i:5e--~6T-"naETffal language specifications. Nevertheless,

without prose descriptions of the intended interpretation,

~ifica t':_i0[1__§__ ~an__~£1.9J>~.l~ssly confusing. ~

----~~-~----·-· ·-·-·-,·----------··--··--'""""'"".. ···-------·-··­

Although it consists of 0 and V functions, the kernel

specification that follows is not a Parnas specification since much

more than the minimum information needed to use or implement the

kernel is given. Also, the ordering of the effect of 0-functions is

significant. The mechanisms that support the design are included in

the specification because their correctness must be proven. To make

this additional information more comprehensible to the reader, the

specification is structured in much the same way that software is

55

,

Mathematical
VI Model0\

Formal

Specification

Algorithmic

Representation

Useable
"Machine"

Figure 7. The Validation Chain

structured by nested procedures - a function is defined in terms of
othe1 functions, which in turn are defined with more functions,

2etc.

Specification Conventions

A number of conventions are used in the kernel specification to

enhance its clarity and reduce its bulk. One convention is to use

the data structures defined in the previous subsection. The term

"DIR_DISK(aste#, entry#)", for example, appears in a number of

predicates in the specifications of various functions. A

specification of a V-function DIR_DISK might be:

Function: DIR_DISK

possible values: a disk address

Parameters: DIR_DISK(aste#, entry#)

Since the value of DIR_DISK is set in some functions and used in
others, the body of the DIR_DISK specification is empty. Given the
definition of the data structures, we do not feel that the
specifications of the V-functions that correspond to the data
structure elements are necessary for the purposes of this paBer. .. . ,

pA- \'­

12The initial work in certifying the kernel indicates that ~ne _/_,/­
o'"

nesting of 0-functions hinders the proof process. This proble~is
being corrected by replacing each "call" of an 0-function v;it:tf the
body of the called 0-function. The copying works becau~e the
specification contains no recursive 0-function callsk-"Recursion in
the V-function definitions is being eliminated by the use of
~uantifiers. A revised specification for the kernel will be
..... _ -------- .. -- I
published with the proofs. 7

The use of a structured specification [Neumann, et al] allows

the description of hierarchical design mechanisms while avoiding l

nested 0-functions. A complete specification is written for each

___le~ and then the _Y-:functions at each level (except the lowest) are

expressed in terms of lower level V-fUilQ_tion_;s. This V-function

mapping suggests certain implementa-t.":C;-n mechanisms, but these

mechanisms are not made explicit until 0-functions are (abstractly)

implemented with lower level 0-functions. Thus, when a high level

0-function changes the value of a V-function, a call to the lower

level 0-functions that maintain the corresponding lower level

V-functions is implied. The specification prover can ig:nore these ?J

implicit calls because, as a specification, each level is logically'

cQID~by its~lf. The impo_r_~J,....P-2l!l~_his discussion is that

. ~ror a giv~rgn~ha.~~n-·tne model there are many pos~
~z.:-rec__!:._§.Q..~C..lfl.ca..t.l-Gn-s ·---------------------------------~

. ! \.. \ . -< ··o'
r) ~ , " <1£:-vv:t,_ >.s-" "\:::'~ 0 57
!, ;}.,.-".:'-- \\

These V-function specifications can be easily generated if the proof
requires them.

Another convention is the use of mnemonic names for function
parameters and internal variables. Table VI shows the intended
interpretation of these names. TCP (The Current Process) is an
internal kernel variable that indicates which process is currently
bound to the CPU. It is part of the mechanism for implementing a
distributed kernel and prevents users of the kernel from forging
their identity.

Critical Sections

The specification assumes that the effect of a-functions is
instantaneous. In the initial implementation this assumption is
realiz~d by making the entire kernel a single critical section. On
entry to the kernel a p--:cs--perfotni.ed on a special semaphore (the
kernel semaphore), and the corresponding Vis not executed until the
kernel function is complete, unless the function itself is a P on a
segment semaphore that causes the process to become blocked. In this
case the kernel semaphore must be released (by a V) before the
processor is deallocated from the blocked process and reallocated to
another process, or deadlock could result.

This approach to providing determinancy is used because its
correctness is obvious, and for sin~le processor systems with one I/0
device supporting the virtual memory, it is reasonably efficient.
The only time that a blocked process has the kernel semaphore locked
is when the kernel is waiting for internal (segment) I/0 that was
initiated on the process's behalf to complete. This situation will
cause system inefficiency only if there are other processes blocked
waiting to get into the kernel and there are no ready processes. If
the device is fast (drum or fixed head disk), the inefficiency should
be minimal.

If the system has a slow virtual memory device (a moving head
disk, for example) and/or more than one virtual memory device, the·
single critical section approach may cause serious inefficiencies.
In the first case, the time that a blocked process has the kernel
semaphore locked will increase substantially; and in the second, it
will not be possible to run more than one device at a time. To avoid
these inefficiencies multiple critical sections that depend upon the
data observed and modified by the various kernel functions must be
introduced and represented in the specification.

f.
d'

58

http:p--:cs--perfotni.ed

..

Table VI

Intended Interpretations

external kernel function parameters

seg# 	 segment number of a se~~ent in a process's
address space (WS)

entry# 	 identification of an entry within a directory
class 	 a classification
cat a category set
type DATA or DIRECTORY
size size of a segment in blocks
mode 	 WRITE, READ, or NO
user_id user identification
proj"ect_id project identification
rer:r.tf identification of a segmentation register
process# identification of a process
block# 	 main memory address of a segment

internal kernel "variables"

TCP 	 the current process
aste/t 	 pointer to an AST entry
daste# 	 aste# for a segment known to be a directory
acle# 	 pointer to an ACL element
smfr/1 	 pointer to a semaphore
i pc e# 	 pointer to an IPC element
uid 	 unique identifier - a disk address

59

http:rer:r.tf

The Kernel Gate and Argument Passing

Figure 8 shows the specification of the function KERNEL. This
function is the sole user entry point (or gate) into the kernel and
the functions that it directly invokes are the "user callable" kernel
functions. KERNEL uses PCHECK (Figure 9) to verify that the
parameters given by the user are within the acceptable ran~es.
KERNEL and PCHECK also check that the seg# parameter (if required)
specifies a segment that is currently in the process's WS, and
translates the seg# into an aste#. The functions of the form
"XXX_PARM" used by PCHECK indicate the parameters required by each of
the user callable kernel functions.

Many of the kernel functions set the value of a per-process RC
(return code) object. The security attributes of the RC object are
equal tp those of the process. In general, kernel functions set RC
to indicate whether or not they were called correctly. A few
functions use RC to return additional information to the user. Each
process can always observe its own (and only its) RC object.

In the implementation, reserved locations in the user's stack
segment are used for argument passing. Before calling the kernel the
user process places the kernel parameters (including the code for the
particular kernel function it wishes to invoke) in fixed locations in
its stack. On entry, the kernel moves the user's stack segment into
its own address space, copies the parameters into its own private
(kernel) stack segment, and then performs the validity checkin~ on
the parameters. The RC object is also implemented as a reserved
location in the user's stack, thus making it available to the user
for inspection when the kernel returns.

The rest of the specification is given in the following
subsections.

DIRECTORY FUNCTIONS

A set of functions is provided for manipulating the attributes
of segments. These functions change the security state of the system
by creating and deleting segments and adding and deletin~ elements
to/from a se~ment's access control list (ACL). The common security
requirement for all functions that modify segment attributes is that
the modifying process currently have write access to the.segment's
parent directory. A function is also provided to set the RC object
equal to the attributes of a segment.

60

Function: KERNEL

Parameters: KERNEL(function_code, s"eg#, entry#, class, cat, type,

size, mode, user_id, project_id, reg#, process#, block#)
Effect:
IF (FUNCTION_CODE_MIN s_ function_code ~ FUNCTION_CODE_MAX) &

PCHECK(function_code, seg#, entry#, class, cat, type, size,
mode, user_id,. project_id, reg#, process#, block#);

THEN: Let aste# = PS_SEG(TCP, seg#);
CASE OF function_code:

1: CREATE(TCP, aste#, entry#, class, cat, type, size);
2: DELETE(TCP, aste#, entry#);
3: GIVE(TCP, aste#, entry#, mode, user_id, project_id);
4: RESCIND(TCP, aste#, entry#, user_id, project_id);
5: DIRREAD(TCP, aste#, entry#);
6: GETW(TCP, aste#, entry#);
7: GETR(TCP, aste#, entry#);
8: RELEASE(TCP, aste#, seg#);
9: ENABLE(TCP, aste#, reg#);
10: DISABLE(TCP, reg#);
11: KP(asteff);
12: KV(aste#);
13: IPCRCV;
14: IPCSEi~D(process#, message, USER_DOMAIN);
15: CONCAT(block#);
16: SPLIT(block#, size);
17: KSWAPOUT(block#);

END;

ELSE: RC(TCP) = NO;

END;

Figure 8. KERNEL FunGtion

61

I

Creation and Deletion of Segments

The CREATE function (Figure 10) creates a se~ment inferior to a
specified directory segment. The parameters of CREATE are the seg#
of the intended parent, the entry# of a free directory entry in the
intended parent, and attributes for the segment to be created. These
attributes are the security level (classification and category set),
a type (DIRECTORY or DATA), and a size.

In addition to enforcing the security requirement that the
process currently have write access to the intended parent segment,
CREATE also enforces the security requirement of compatlbili ty and
implementation requirements. The implementation requirements are
that segments can only be created inferior to DIRECTORY segments,
that the specified entry# identify an available directory entry, that
the size is one of the permitted sizes, and finally that the process
has sufficient disk quota to allow disk space to be allocated to the
segment.

The motivation for most of the implementation requirenJents is
straightforward. The requirement that the user specify an available
directory entry is somewhat arbitrary - it would be slightly more
complex for the kernel to search for a free entry. This approach
allows users to establish certain conventions for the use of
directory entries. 13 The decision to provide fixed sized segments
has already been discussed.

The use of the disk quota mechanism insures us that the
inability of a process to create a segment because of a lack of disk
space is strictly a function of that process's behavior, and not the
behavior of some other process. If the quota mechanism were not used
all processes would have disk space allocated to them from a common
pool, and an uncontrolled communication path would exist between
processes. One process could use up all disk space by creatin~
segments and then modulate the (ima~Zinary) bit that indicates whether
or not the disk is full by deleting and recreating a segment.
Another process (at a lower security level) could read this bit by
attempting to create a segment and then seeing if the operation was
successful. In this design the success or failure of CREATE is
indicated by the value of the RC object, but removing RC from the
specification is not sufficient to hide the effect of CREATE from the
user. The user can determine if the segment was actually created by

13For example, the segment at entry/! 1 might alHays contain the
symbolic names of the other segments inferior to the directory, and
the segment at entry# 2 might be an overflow directory. The file
system currently being implemented uses conventions similar to these.

r

;r~ ~

1;!9- bl a«to
~~

OL~

1l(r

63

Function: PCHECK
possible values: TRUE or FALSE
Parameters: PCHECK(function_code, seg/1, entry#, class, cat, type,

size, mode, user_id, project_id, regll, process#, block#)
Value:
IF (not SEG#_PARH(function_code) l

((SEG#_MIN ~ seg/1 ~ SEG#_MAX) & PS_SEG_INUSE(TCP, seg#))) &
(not ENTRY/f_PARM(function_code) l

(ENTRYff_t1IN ~ entry# ~ ENTRYII_MAX)) &
(not CLASS_PA Ri1(function_code) l

(CLASS_HIN ~ class ~ CLASS_HAX)) &
(not CAT_PARi'·1(function_code) i

(catS:. CATEGORY_SET)) &
(not TY PE_PA Rt1(function_code) :

((type = DIRECTORY) l (type = DATA))) &
(not· SIZE_PARt1(function_code) i

(SIZE_HIN ~ size ~ SIZE_MAX)) &
(not MODE_PARH(function_code) :

((mode= WRITE) i (mode= READ) l (mode= NO))) &
(not USER_ID_PARM(function_code) l

(USER_ID_MIN ~ user_id ~ USER_ID_MAX)) &
(not PROJECT_ID_PARtv!(function_code) l

(PROJECT_ID_(.1IN ~ project_id ~ PROJECT_ID_HAX)) &
(not REG#_PARH(function_code) l

(REG#_MIN ~reg#~ REGII_MAX)) &
(not PROCESSII_PARM(function_code) l

(PROCESS#_MIN S process# ~ PROCESSfi_MAX)) &
(not BLOCK/I_PARM(function_code) l

(BLOCK/I_MIN ~block#~ BLOCK/I_MAX));

THEN: TRUE;

ELSE: FALSE;

END;

Figure 9. PCHECK Function

62

Function: CREATE

Parameters: CREATE(process#, aste#, entry#, class, cat, type, size)

Effect:

IF not AST_WAL(aste#, process#) l

(class< AST CLASS(aste#)) l

(oat.:/?- AST_CAT(aste/J)) l

(AST TYPE(aste#) i DIRECTORY) l

('DIR_SIZE'(aste#, entry#) i 0)

(size (SIZE_SET) l

((type= DIRECTORY) & (size i DIRECTORY_SIZE))

(size> 'Ps_DISK_QUOTA'(process#, size));

THEN: RC(process#) = NO;

ELSE: DIR_TYPE(aste#, entry#) = type;

DIR_STATUS(aste#, entry#) = UNINITIALIZED;

DIR_CLASS(aste#, entry#) = class;

DIR_CAT(aste#, entry/f) = cat;

DIR_SIZE(aste#, entry#) = size;

DISK_ALLOC(size);

DIR_DISK(aste#, entry#) = NEXT_DISK_ADDRESS;

DIR_ACL_HEAD(aste#, entry#) = 0;

PS_DISK_QUOTA(process#, size) =

'ps_DISK_QUOTA'(process#, size) - size;
ANCESTOR(NEXT_DISK_ADDRESS, AST_DISK(aste#)) =TRUE;
(Vuid)(ANCESTOR(AST_DISK(aste#), uid));

ANCESTOR(NEXT_DISK_ADDRESS, uid) = TRUE;

END;

UID_SIZE(NEXT_DISK_ADDRESS) = size;

RC(process#) = YES;

END;

Function: DISK_ALLOC

Parameters: DISK_ALLOC(size)

Effect:

C3·k)(('BIT_MAP'(size, k) = 0) &

(BIT_NAP(size, k) = 1) &

(NEXT_DISK_ADDRESS = BASE(size) + k*size));

Function: ANCESTOR
possible values: TRUE or FALSE
initial value: FALSE
Parameters: ANCESTOR(uid1, uid2)

Function: UID_SIZE
possible values: size
Parameters: UID_SIZE(uid)

Figure 10. CREATE, DIS~ALLOC, ANCESTOR and UID SIZE Functions

64

trying to read and write it.

The communication path just described is based on what we call a
system-wide variable. A system-wide variable can occur any time
physical resources must be shared among processes. In this case the
quota mechanism eliminates the communication path - its effect is to
partitio9 the physical disk into a virtual disk for each4process. It is necessary, of course, for the sum of the virtual
disks to be less than or equal to the physical disk. It is
interesting to note that while the quota mechanism is necessary for
security reasons, one would want something like it even if security
were not required. The ability of one user to monopolize disk space
at the expense of others is not desirable in any environment.

The effect of CREATE if all requirements are satisfied is to
create.a segment by putting attributes into the directory entry.
Most of the attributes are directly specified by the user. The
status of the segment is set to UNINITIALIZED, the ACL is set to
empty, and space on the disk is allocated.

The effect statements in CREATE that set the value of the
V-function's ANCESTOR and UID_SIZE require careful explanation.
Briefly, these V-functions are a specification mechanism that
"remember" the shape of the tree and the size of each segr.ient.
Although this information is embedded in the directory structure, we
will see that having it in this form simplifies the specification of
the DELETE function.

The two arguments to ANCESTOR are the unique identifiers (disk
addresses) of two segments. ANCESTOR is true if the second segment
is an ancestor of the first. The ancestors of a segment are its
parent directory, its parent's parent, and so forth. Thus, the root
is an ancestor of every se~ment in the tree (except itself).
UID_SIZE remembers the size of a segment by uid. For comi)leteness,
Figure 10 gives specifications of ANCESTOR and UID_SIZE. The bodies
of their specifications are empty because their values are set
directly by 0-functions.

The effect of DISK_ALLOC is to allocate space on the disk as
segments are created and to set the value of NEXT_DISK_ADDRESS to the
address of the space allocated. The disk is partitioned into a
region for each segment size, and each region is represented by a bit
string. There is one bit for each disk area that can be assigned to
a segment. The bit indicates if the area is free or assigned.

Actually, a disk quota per security level is sufficient, and this
result generalizes for all system wide variables.

65

14

DISK_ALLOC scans the appro{1riate bit string looking for a bit
indicating a free area, sets the bit to indicate an assigned area,
and translates the bit address to a disk address. The quota
mechanism guarantees that DISK_ALLOC will succeed in finding a free
bit. If each bit string is partitioned into sections for each
process based on the quotas, then the values returned by DISK_ALLOC
are a function of each process's behavior, but if the bit strings are
not divided into sections then each value returned by DISK_ALLOC is a
function of the behavior of all processes. If the latter case holds
then the security level of DIR_DISK in each directory entry is
"system high".

Now that the explanation of CREATE is complete we pause to make
an observation - the notion of levels of abstraction is missing from
the create specification. Levels of abstraction have not been
abandoned, rather, the specification has collapsed the levels of
abstraction to make the specification more compact. Conceptually,
there is still a separation among the abstractions that create
processes, create segments, and enforce a security policy. Figure 11
shows an alternative specification of create. The function CREATE
enforces the security policy, and CREATE2 enforces implementation
constraints and creates the se~ments. Although it is passed the
security attributes of the segment to be created, the effect of
CREATE2 is independent of their value. For the renainin~ kernel.
functions the levels of abstraction will not be made explicit; we
hope that the distinction between those parts of the specification
that enforce the security policy and those that do not will be
obvious to the reader.

Figures 12 and 13 give the specifications of the DELETE function
and its immediate support functions. The user identifies the segment
to be deleted by giving the seg# of its parent directory and the
entry# of the segment. The only requirements are that the user
currently have write access to the parent directory (security) and
the entry specified is not a free entry (implementation).

In deleting a se~ment several operations must be performed:
1) the entry must be cleaned up so it can be reused; 2) if the
segment is active it must be removed from the address space of all
processes that currently have access to it and be deactivated; 3) the
disk space allocated to the segment must be released; and 4) if the
segment is a directory all of the se~ments inferior to it must be
deleted. While the kernel would be simpler if only empty directory
(or data) segments were accepted by DELETE, this approach cannot be
employed because a user may be ~ermitted to delete a directory but
not know if it is empty or not. Consider a secret directory inferior
to a confidential directory. If a confidential user has write access
to the confidential directory, he can delete the secret directory,

66

Function: CREATE

Parameters: CREATE(process#, aste#, entry#, class, cat, type, size)

Effect:

IF not AST_HAL(aste#, process#)

(class < AST CLASS(aste#)) i

(cat.;/: AST_CAT(astefl));

THEN: CREATE2(process#,-aste#, entry#, class, cat, type, size);

ELSE: RC(TCP) = NO; ,e.t-:. u.,~~\ ~-

END;

Function: CREATE2

Parameters: CREATE2(process#, aste#, class, cat, type, size)

Effect:

IF (AST_TYPE(aste/t) ~ DIRECTORY) l

('DIR_SIZE' (aste#, entr:;fl) i 0)

(size (SIZE_SET) I

((type= DIRECTORY) & (size i DIRECTORY_SIZE))

(size> 'PS_DISK_QUOTA'(process#, size));

THEN: RC(process#) = NO;

ELSE: DIR_TYPE(aste#, entry#) = type;

DIR_STATUS(aste#, entry#) = UNINITIALIZED;

DIR_CLASS(aste#, entry#) = class;

DIR_CAT(astc~, e~try#) = cat;

DIR_SIZE(aste#, entry#) = size;

DISK_ALLOC(size);

DIR_DISK (asteif, entry/f) :: NEXT_DISK_ADDRESS;

DIR_ACL_HEAD(aste#, entry#) = 0;

PS_DISK_QUOTA(process#, size) =

'PS_DISK_QUOTA'(process#, size) - size;
ANCESTOR(NEXT_DISK_ADDRESS, AST_DISK(aste#)) =TRUE;
(¥uid)(ANCESTOR(AST_DISK(aste#), uid));

ANCESTOR(NEXT_DISK_ADDRESS, uid) = TRUE;

END;

UID_SIZE(NEXT_DISK_ADDRESS) = size;

RC(process#) = YES;

END;

Figure 11. CREATE and CRFATE2 Functions

67

Function: DELETE

Parameters: DELETE(process#, aste#, entry#)

Effect:

IF not AST_WAL(aste#, process#) l

(AST TYPE(aste#) i DIRECTORY) l

('DIR_SIZE'(aste#, entry#) = 0);

THEN: RC(process#) = NO;

ELSE: Let uid = DIR_DISK(aste#, entry#);

IF 'DIR_ACL_HEAD'(aste#, entry#) i 0;

THEN: Let acle# =

FINDEND(aste#, 'DIR_ACL_HEAD'(aste#, entry#);
ACL_CHAIN(aste#, acle#) = 'ACL_CHAIN'(aste#, 0);
ACL_CHAIN(aste#, 0) = 'DIR_ACL_HEAD'(aste#, entry#);

END;

DIR_SIZE(aste#, entry#) = 0;

DELETESEG(uid);

IF DIR_TYPE(aste#, entry#) = DIRECTORY;

THEN: (¥duid)('ANCESTOR'(duid, uid));
DELETESEG(duid);

END;

RC(process#) = YES;

END;

Figure 12. DELETE Function

68

Function: DELETESEG

Parameters: DELETESEG(uid)

Effect:

Let aste# = 'HASH'(uid);

IF as tell i 0;

THEN:
(¥process#) (PROCESS#_MIN .5_ process# .5_ PROCESS#_MAX);

IF 	 (PT_FLAGS(process#) i INACTIVE) &
'AST_CPL'(aste#, process#);
THEN:

(V:seg#)(SEG#_MIN .5_ seg# .5_ SEG#_MAX);
IF ('Ps_SEG'(process#, seg#) =aste#);

THEN: RELEASE(process#, aste#, seg#);
END;

END;
END;

END;

DEACTIVATE(uid);

END;

DISK_FREE(uid, UID_SIZE(uid));

(Vpuid)('ANCESTOR'(uid, puid));

ANCESTOR(uid, puid) = FALSE;
END;

Function: DISK_FREE

Parameters: DISK_FREE(disk_address, size)

Effect:

Let k = ((disk_address- BASE(size))/size);

BIT_MAP(size, k) = 0;

Figure 13. DELETESEG and DISK FREE Functions

69

but by virtue of the relative security levels he may not know what is
in the secret directory, and the success or failure of a delete
conditioned on directory empty would tell him.

Operation 1) consists of removing all of the ACL elements from
the entry and putting them on the parent directory's free ACL element
chain, and marking the entry free by setting DIR_SIZE to 0. This
operation is performed in DELETE; 2) and 3) are done in DELETESEG.
DELETE also determines if the segment being deleted is a directory,
and if so, determines all of its inferiors with the ANCESTOR function
and invokes DELETESEG for each one. In deleting an inferior it is
not necessary to clean up its entry (operation 1), because its parent
is always being deleted.

The ANCESTOR function is a mechanism that allows the
specification to easily identify all of the segments in a sub-tree.
The implementation does not need the ANCESTOR function (or the
UID_SIZE function) because it can find all of the segments in a
sub-tree by performing a tree-walk.

DISK_FREE, the inve.rse of DISK_ALLOC, is passed the disk addt~ess
of a segment and the size of the segment. It translates the disk
address into a bit address and sets the bit in the appropriate bit
string to indicate that the disk area previously allocated to the
se~ment is now free. Note that the user's disk quota is not credited
in the delete function. When a user deletes a sub-hierarchy he
cannot be credited with all of the disk space freed because he may
not be entitled to know the size of the sub-hierarchy. At least two
implementation schemes are possible: 1) as a segment is deleted the
quota of the user that created the segment can be credited; or
2) periodically, the entire hierarchy can be inspected and the quotas
of users can be adjusted to reflect any deletions that have occurred
during the previous period. In either case, we would want a segment
attribute to identify the user who created the segment.

Giving and Rescinding Access

Functions are provided for glVlng and rescinding access
permissions (modifying M). Actually, these functions' names are
deQeptive. The GIVE function adds an ACL element to a segment's ACL
chain and RESCIND removes an ACL element. Since an ACL element can
contain the NO access mode, the "GIVE'' function can remove access
rights from a user.

The GIVE function (Fi~ure 14) adds an ACL element (mode,
user_id, project_id) to the directory entry (se~#, entry#) of some
segment. It requires that the user currently have write access to
the directory, that the entry is not free, that an ACL element with

70

Function: GIVE

Parameters: GIVE(process#, aste#, entry#, mode, user_id, project_id)

Effect:

IF not AST_WAL(aste#, process#) :

(AST_TYPE(aste#) i DIRECTORY) l

(DIR_SIZE(aste#, entry#) = 0) l

DUPACL(aste#, 'DIR_ACL_HEAD'(aste#, entry#), user_id, project_id)

('ACL_CHAIN'(astefl, 0) = 0);

THEN: RC(process#) = NO;

ELSE: Let acle# = 'ACL_CHAIN'(aste#, 0);

ACL_CHAIN(aste#, 0) = 'ACL_CHAIN'(aste#, acle#);
Let position= FACLPOS(aste#, 'DIR_ACL_HEAD'(aste#, entry#),

user_id, project_id);
IF position = 0;

THEN: ACL_CHAIN(aste#, acle#) =
'DIR_ACL_HEAD'(aste#, entry#);

DIR_ACL_HEAD(aste#, entry#) = aclef.!;
ELSE: ACL_CHAIN(aste#, aclefl) = 'ACL_CHAIN.(aste#, position);

ACL_CHAIN(aste#, position) = acle#;

END;

ACL_USER(aste#, aclefl) = user_id;

ACL_PROJECT(aste#, acle#) = project_id;

ACL_MODE(astetfo, acle/f) =mode;

SOADD(aste#, entry#);

RC(process#) = YES;

END;

Figure 14. GIVE Function

71

the same (user_id, project_id) is not already on the ACL (this check
is performed by DUPACL), and that there is a free ACL ele~ent to use
for this request. If all constraints are satisfied then the effect
is to allocate a free ACL element, find the correct position for it
in the ACL chain, put it there, fill it in as specified by the user,
and invoke SOADD. The function of SOADD will be explained shortly.

The specifications of DUPACL and FACLPOS are given later in this
subsection. FA6LPOS finds the correct position for a new ACL element
by using the rules discussed in the subsection on data str~.:ctures ­
ACL elements v1ith a more specific (user_id, project_id) go before ACL
elements with a more general (user_id, project_id).

The RESCIND function (Figure 15) is the inverse of give - it
removes an ACL element from the ACL of a directory entry. Rescind
requires that the user currently have write access to the directory,
that the specified entry is in use, and that the specified ACL
element is currently on the ACL. The function's effect is to remove
the ACL element fro~ the entry's ACL, add it to the directory's free
ACL element chain, and invoke SOADD. FINDACLE returns the acle# of
an ACL element, and fiNDPACLE returns the acle# of the previous ACL
element. These functions will be specified shortly.

Directory Suooort Functions

There are a nu~ber of functions to support the nanipulation of
ACL chains. rigure 16 ?ives the specifications of DUPACL and
FACLPOS. DUPACL indicates whether or not a given ACL element
(independent of the mode) is on an ACL chain. FACLPOS finds the
correct place in an ACL chain to place a new element based on rules
previously discussed. It employs FI!JDEND to find the last ACL
element in a chain, and fiNDUSER to find the last ACL element in a
chain that does not have a user_id of ALL_USERS. Figure 17 gives the
specifications of FINDEND and FINDUSER, as well as FINDACLE and
FINDPACLE. FINDACLE finds the acle# of a specified ACL element, and
FINDPACLE the previous acle# in the chain.

The specification of SOADD (search out and destroy de5criptors)
is given in Figure 18. whenever the ACL of a segment chan~es it is
necessary to insure that any process that has the segment in its WS
still has access rights. If in fact a process has lost its access
rights because of the changed ACL, the segment must be removed from
its WS. SOADD performs this function.

If the segment is not active it cannot be in the WS of any
process. Otherwise, for each process on the segment's connected
process list SOADD determines the process's ·mode of access,
re-searches the ACL using DSEARCH, and if the search fails removes

72

..

Function: RESCIND

Parameters: RESCIND(process/1, astefl, entry#, user_id, project_id)

Effect:

IF not AST_WAL(aste#, process#) l

(AST_TYPE(aste/1) i DIRECTORY) l

(DIR_SIZE(aste/1, entry#) = 0) l

not DUPACL(aste/1, 'DIR_ACL_HEAD' (as tell, entry#), user_id,

project_id);
THEN: RC(process#) = NO;
ELSE: Let acle# = FINDACLE(asteff, 'DIR_ACL_HEAD'(aste#, entry#),

user_id, project_id); '

IF acle# = 'DIR_ACL_HEAD'(aste#, entry#);

THEN: DIR_ACL_HEAD(aste#, entry#) =

'ACL_CHAIN' (as tefft, acleft);

ELSE: Let pacle# ~ FINDPACLE(aste#,

'DIR_ACL_HEAD'(aste#, entry#), acle#);

ACL_CHAIN(aste#, pacle#) = 'ACL_CHAIN'(aste#, acle#);
END;
ACL_CHAIN(astefl, acle#) = 'ACL_CHAIN'(aste#, 0);
ACL_CHAIN(aste#, 0) =acle/fo;
SOADD(aste#, entry#);·
RC(process#) = YES;

END;

Figure 15. RESCIND Function

73

Function: DUPACL

possible values: TRUE or FALSE

Parameters: DUPACL(aste#, acle#, user_id, project_id);

Value:

IF acle# = 0;

THEN: FALSE;

ELSE:

IF 	 (ACL_USER(aste#, acle#) = user_id) &
(ACL_PROJECT(aste#, acle#) = project_id);
THEN: TRUE;
ELSE: DUPACL(aste#, ACL_CHAIN(aste#, acle#), user_id,

project_id);
END;

END;

Function: FACLPOS

possible values: acle# or 0

Parameters: FACLPOS(aste#, acle#, user_id, project_id)

Value:

IF acle/f = 0;

THEN: 0;

ELSE:

IF 	 (user id = ALL_USERS) &

(project_id = ALL_PROJECTS);

THEN: FINDEND(aste#, acle#);

ELSE:

IF 	 (user_id = ALL_USERS) :
(project_id = ALL_PROJECTS);
THEN:

IF 	 ACL_USER(aste#, acle#) = ALL_USERS;
THEN: 0;
ELSE: FINDUSER(aste#, acle#);

END;

ELSE: 0;

END;

END;

END;

Figure 16. DUPACL and FACLPOS .Functions

74

Function: FINDEND

possible values: acle#

Parameters: FINDEND(aste#, acle#)

Value:

IF ACL_CHAIN(aste#, acle#) i 0;

THEN: FINDEND(aste#, ACL_CHAIN(aste#, acle#));
ELSE: ac lei!;

END;

Function: FINDUSER

possible values: acle#

Parameters: FINDUSER(aste#, aclel!);

Value:

IF (ACL_CHAIN(aste#, acleff) = 0) l

(ACL_USER(aste#, ACL_CHAIN(aste#, acle#)) = ALL_USERS);

THEN: aclelf;

ELSE: FINDUSER(aste#, ACL_CHAIN(aste#, acle#));

END;

Function: FINDACLE

possible values: acle#

Parameters: FINDACLE(aste#, acle#, user_id, project_id)

Value:

IF (ACL_USER(aste#, acle#) = user_id) &

(ACL_PROJECT(aste#, acle#) = project_id);

THEN: acle#;

ELSE: FINDACLE(aste#, ACL_CHAIN(aste#, acle#), user_id,

project_id);
END;

Function: FINDPACLE

possible values: acle#

Parameters: FINDPACLE(aste#, vacle#, acle#)

Value:

IF ACL_CHAIN(aste#, vacle#) = acle;

THEN: vacle#;
ELSE: FINDPACLE(aste#, ACL_CHAIN(aste#, vacle#,), acle#);

END;

Figure 17. FINDEND, FI1~USER, FI1~ACLE, and FINDPACLE Functions

75

Function: SOADD

Parameters: SOADD(daste#, entry#)

Effect:

Let aste# = 'HASH' (DIR_DISK(daste#, entry#));

IF aste# i 0;

THEN:
(¥process#) (PROCESSff..:J1IN ~ process# ~ PROCESSfl_t1AX);

IF 	 PT FLAGS(process#) ~ INACTIVE) &

'AST_CPL'(aste#, process#);

THEN:

IF 	 'AST_WAL'(aste#, process#);
THEN: Let mode = WRITE;
ELSE: Let mode = READ;

END;
IF not DSEAF.CH(process#, daste#,

DIR_ACL_HEAD(daste#, entry#), mode);
THEN:

('J.I.segfl) (SEG#_HIN ~ segff ~ SEGff_MAX);
IF ('PS_SEG'(process#, seg#) = aste#);

THEN: RELEASE(process#, aste#, seg#);
END;

END;
END;

END;
END;

END;

Figure 18. SOADD Function

76

the segment from the process's WS with RELEASE. The specifications
of DSEARCH and RELEASE are in the next subsection.

The process is not given any explicit notification when the
kernel removes a segment from its address space. The process will
receive an error messa~e the next time it tries to access the se~ment
or use its seg# for the segment as an argument to a kernel function.
Since the kernel does not "remember 11 that SOADD performed the
removal 1 the error message Hill not 1 in general, be SUfficient to
determine the underlyin~ cause of the error message. That is, the
error messaGe alone will not enable the user to distin~uish between
the case where some other user removed him from a segment's ACL and
the case where there is a bug in his program. It seems likely that
hlllnan intervention 1vill be necessary when a process has a segment
removed from its address space by some other process.

Reading Directories

Since directories are composite objects - they contain data at
different security levels including system high - users cannot have
direct read access to directories. A function, DIRREAD (see Figure
19) is provided to allow users to read the data in directories that
is at the security level of the directory. This function is an
example of a function that gives a process interpretive read access
to an object that is already in its address space as defined by the
current security state. DIRREAD verifies that the user currently has
read access to the directory and then stores into the RC object the
values of the type, security level, and size fields of the specified
directory entry.

ACCESSING SEG!-1ENTS

Functions are provided for moving segments into and out of a
process's WS - the design's interpretation of the model's set b, and
a process's AS. The functions that chan~e a process's WS change the
state of the system with respect to security (and thus correspond to
model rules), whereas the functions that change AS are only changing
the representation of the current security state. There are also
internal kernel functions to support the implementation of WS and AS.

Getting and Releasing Access

External kernel functions are provided for gettin~ and releasing
access to segments - these functions move segments into and out of
WS. Although a process can .directly address (with machine
instructions) only those se~ments in its WS that are also in its AS
because of hardware segmentation register constraints, WS is defined

77

Function: DIRREAD
Parameters: DIRREAD(process#, aste#, entry#)

. Effect:
IF 	 (AST_TYPE(aste#) = DIRECTORY) &

(DIR_SIZE(aste#, entry#) f 0);
THEN: RC(process#) = DIR_TYPE(aste#, entry#),

DIR_CLASS(aste#, entry#),
DIR_CAT(aste#, entry#),
DIR_SIZE(aste#, entry#);

ELSE: RC(process#) = NO;

END;

Figure 19. DIRREAD Function

78

(for security purposes) to be the address space of a process.

The security requirements that must be satisfied before a
process can get access to a segment are: 1) the process must
currently have read (or write) access to the segment's parent
directory; 2) the process must be on the ACL of the se~ment in the
desired mode; 3) the security condition must be satisfied - the
security level of the process must be greater than or equal to the
security level of the segment; and 4) the *-property condition must
be satisfied - untrusted processes can only have write access to
segments at a single security level and read access to segments whose
security level is less than or equal to the write access security
level. (The write access level is the current security level.)
Figure 20 shows the two functions for getting access - GETW (get
write) and GETR (get r·ead). Both of these functions require that the
user identify the segment he wishes to access by giving the segff of
the parent directory and the entry# into the parent of the entry for
the segment. This method of identification is sufficient to enforce
security requirement 1). The ACL is searched by DSEARCH. In GETH a
destination is made between trusted and untrusted processes because
the *-property is not imposed upon trusted processes. For untrusted
processes it is sufficient to enforce the *-property - it is a
stronger condition than the security condition. No distinction is
made between trusted ar.d untrusted processes by GETR because, for
read access, the security condition and *-property condition are
equivalent. If all security requirements are satisfied GETH and GETR
invoke CONNECT which makes implementation checks and moves the
segment into the process's WS.

The RELEASE function (Figure 21) removes a segment from a
process's WS. There are no constraints other than the requirement
that the seg# parameter be valid. A segment cannot be removed from
WS if it is in AS. Given that RELEASE must check to see if the
segment is in the process's AS, it is just as easy for ·RELEASE to
remove the segment from AS (with DISABLE) as it is to refuse the WS
removal. The removal from \vS is performed by disconnecting the
process from the segment's ASTE. If after the disconnection there
are no other processes connected to the ASTE, then the segment is
marked as eligible for deactivation by AGE.

The DSEARCH function searches an ACL chain looking for an ACL
element that applies to the invoking process - an ACL element with a
user-id equal to the process's user-id or ALL_USERS and a project-id
equal to the process's project-id or ALL_PROJECTS. If an ACL element
is found the mode field is checked. A mode of WRITE is required by
GETW; a mode of lvRITE or READ is sufficient for GETR.

79

'Function: GETH

Parameters: GETH(processlf, astelf, entry#)

Effect:

IF (AST_TYPE(aste#) i DIRECTORY) l

(DIR_SIZE(aste#, entry#) = O) l

not DSEARCH(processlf, astelf, DIR_ACL_HEAD(astelf, entPytf) , \>/RITE);

THEN: RC(processlf) = NO;

ELSE:

IF 	 PS_TYPE(processlf) = TRUSTED;

THEN:

IF 	 (PS_CUR_CLASS(processlf) < DIR_CLASS(aste#, entry#))
(PS_CUR_CAT(processlf) i DIR_CAT(aste#, entry#));
THEN: RC(process#) = NO;
ELSE: CONNECT(process#, aste#, entry#, WRITE);

END;

ELSE:

IF 	 (PS_CUR_CLASS(process#) i DIR_CLASS(astelf, entry#))
(PS_CUR_CAT(processtf) i DIR_CAT(aste#, entry#));
THEN: RC(processlf) = NO;
ELSE: CONNECT(processlf, astelf, entry#, HRITE);

END;
END;

END;

Function: GETR

Parameters: GETR(processlf, aste# , entry#)

Effect:

IF (AST_TYPE(aste#) i DIRECTORY)

(DIR_SIZE(astelf, entry#) = 0) l

not DSEARCH(process/1, aste#, DIR_ACL_HEAD(aste/1, entry#), READ)

(PS_CUR_CLASS(process/F). < DIR_CLASS(astell, entry/f))

(PS_CUR_CAT(processtf) -~ DIR_CAT(astell, entry#));

THEN: RC(process/1) = NO;

ELSE: CONNECT(process#, aste#, entryll, READ);

END;

Figure 20. GETil and GETR Functions

80

Function: RELEASE

Parameters: RELEASE(process#, aste#, seg#)

Effect:

Let block# = 'AST_ADR' (aste#);

IF (block# i 0);

THEN:

(¥reg#)(REG#_MIN i reg# i REG#_MAX) &

IF ('PS_SAR'(processtJ, reg#) =block#);

THEN: DISABLE(process#, reg#);

END;

END;

END;
AST_CPL(aste#, process#) = FALSE;
AST_HAL(asteif, process/f) = FALSE;
IF not (3i)((PROCESS#_MIN iii PROCESS#_MAX) &

(~ST_CPL(aste#, i) =TRUE));
THEN: AGE(aste#);

END;
PS_SEG(process#, segff) = 'ps_SEG'(processlf, 0);
PS_SEG(process#, 0) = seglf;
PS_SEG_INUSE(process#, segff) = FALSE;

Function: DSEARCH

possible values: TRUE or FALSE

Parameters: DSEARCH(process#, astelf, acle#, mode)

Value:

IF acle# ~ 0; ~

THEN:
IF 	 ((ACL_USER(aste#, acle#) = ALL_USERS) I

(ACL_USER(astet!, alee#) = PS_USER_ID(process#)) &
((ACL_PROJECT(aste#, acle#) = ALL_PROJECTS) l
(ACL_PROJECT(aste#, acle#) = PS_PROJECT_ID(processtf));
THEN:

IF 	 ACL_MODE(aste#, acle#) = NO;
THEN: FALSE;
ELSE:

IF 	 (mode = WRITE) &
(ACL_MODE(aste#, acle#) i WRITE);
THEN: FALSE;
ELSE: TRUE;

END;
END;

ELSE: DSEARCH(processtf, astetf, ACL_CHAIN(aste#, acletf),
mode);

END;
ELSE: FALSE;

END;
Figure 21. RELEASE and DSEARCH Functions

81

HS Support Functions

The get and release functions invoke internal functions that
support the concepts of connection, activation, deactivation, and
eligible for deac,tiva tion. Figure 22 shows the specification of the
CONNECT function. All seaments that are in the WS of one or more
processes are active; each process that has a segment in its WS is
connected to the segment. ·The implementation constraints enforced by
CONNECT are that the process must have a frTS seg# and the process
cannot already be connected to the se~ment. If the segment is
not active it must be activated, and if it is active but eligible for
deactivation it must be made ineligible. The actual connection is
made by adding the process to the CPL (connected process list) in the
ASTE and, if the process is gaining Hri te access, the WAL (Hr ite
access list) also. If the connection is successful, CONNECT sets the
RC object to the value of the seg# by which the process can
subsequently refer to the segment.

Figure 23 gives the specification of the ACTIVATE and DEACTIVATE
functions. The parameters of ACTIVATE identify the segment to be
activated - the aste# of the parent directory and the entry# of the
segment's entry in the directory. To activate a segment, a free ASTE
must be found. A chain of free ASTE's begins at P.ST_CHAIN(O), but
this chain may be empty. If this is the case, then an ASTE to be
made free is chosen (by NEXTASTE), and the freein~ is effected by
deactivating the se~ment using the AST£. We must insure that a free
ASTE can always be obtained, since otherHise ACTIVATE would fail
making CONNECT fail. Ultimately GETH or GETR caul d fail for reasons
that are not necessarily a function of the behavior of the process
invoking the external kernel function - another instance of the
system wide variable problem. Since the ability of a process to
deplete the ASTE resource is constrained by the size of its WS, we
can guarantee that a free ASTE can always be obtained by making the
number of ASTE's at least equal to the sum of all WS's plus the
number of ASTE's needed internally by the kernel. If an active
segment is not in the WS of any process (or wired down) then it is.
eligible for deactivation. The actual activation is straightforward ­
the directory entry except for the ACL is copied into the ASTE and
other fields in the ASTE are initialized. The segment is known not
to be in main memory, not to have any segment descriptors pointing to
it, and not to be in theWS of any process.

15This latter restriction prevents a process from having two
different seg#'s for a segment. It is enforced to simplify the
RELEASE function.

82

Function: CONNECT

Parameters: CONNECT(process#, daste#, entry#, mode)

Effect:

IF 'ps_SEG'(process#, 0) = 0;

THEN: RC(process#) = NO;

ELSE: Let flag= 'HASH'(DIR_DISK(daste#, entry#));

IF 	 (flag i 0) &

'AST_CPL'(flag, process/f);

THEN: RC(process#) = NO;

ELSE:

IF flag i 0;
THEN: Let aste# = flag;

IF 'AST_AGE'(aste#) = AGED;
THEN: UNAGE(aste#);

END;
ELSE: ACTIVATE(daste#, entry#);

Let aste# = HASH(DIR_DISK(daste#, entry/f));
UNAGE (as tell);

END;

AST_CPL(aste#, process#) = TRUE;

IF mode = HRITE;

THEN: AST_WAL(aste#, ppocesslt) =TRUE;
END;
Let seg# = 'PS_SEG'(process#, 0);
PS_SEG(process#, 0) = 'PS_SEG'(process#, seg#);
PS_SEG(process#, seg#) = aste#;
PS_SEG_INUSE(process#, seg#) = TRUE;
RC(process#) = YES, seg#;

END;
END;

Figure 22. CONNECT Function

83

Function: ACTIVATE

Parameters: ACTIVATE(daste#, entry#)

Effect:

IF 'AST_CHAIN'(O) = 0;

THEN: Let aste# = NEXTASTE('AST_AGE_CHAIN'(O));
DEACTIVATE(aste#);

ELSE: Let aste# = 'AST CHAIN'(O);
AST_CHAIN(.O) = 'AS(~CHAIN'(aste#);

END;
HASH(DIR_DISK(daste#, entry#)) = aste#;
AST_ADR(aste#) = 0;
AST_LOCK(aste#) = UNLOCKED;
AST_DES_COUNT(aste#) = 0;
(~process#) (PROCESS#_MIN ~process# i PROCESS#_MAX);

AST_CPL(aste#, process#) = FALSE;
AST~WAL(aste#, process#) = FALSE;

END;
AST_TYPE(aste#) = DIR_TYPE(daste#, entry#);
AST_STATUS(aste#) = 'DIR_STATUS'(daste#, entry#);
AST_CLASS(aste#) = DIR_CLASS(daste#, entry#);
AST_CAT(aste#) = DIR_CAT(daste#, entry#);
AST_DISK(aste#) = DIR_DISK(daste#, entry#);
AST_SIZE(astefi) = DIR_SIZE(daste#, entryil);
IF 'DIR_STATUS'(daste#, entry#) = UNINITIALIZED;

THEN: DIR_STATUS(daste#, entry#) = INITIALIZED;
END;
AGE (aste/J) ;

Function: DEACTIVATE

Parameters: DEACTIVATE(aste#)

Effect:

UNAGE (as tell) ;

IF 'AST_STATUS'(aste#) = UNINITIALIZED;

THEN: SWAPIN(aste#);

SWAPOUT(aste/f);

ELSE:

IF 'AST_ADR'(aste#) ~ 0;

THEN: SWAPOUT(aste#);

END;

END;
HASH(AST_DISK(aste#)) = 0;
AST_CHAIN(aste#) = 'AST_CHAIN'(O);
AST_CHAIN(O) = aste#;

Figure 23, ACTIVATE and DEACTIVE Functions

84

' The design is structured so that once a segment is activated,
the ASTE contains all of the information necessary to s\.;ap the
segment into and out of main memory and deactivate it - no more
references to the parent directory are required. To preserve this
structure it is necessary to set DIR_STATUS to INITIALIZED if it is
UNINITIALIZED, even though the segment is not initialized at activate
time. We must, of course, insure that the segment is initialized
before it is deactivated.

ACTIVATE invokes AGE to mark the segment eligible for
deactivation. It does this because at activate time no processes are
put on the CPL and it is not known if any will be - ACTIVATE is
invoked by DELETEDIR as well as CONNECT. Finally, there is a
function HASH whose input is the disk address (a unique identifier)
of a segment and whose output is the aste# of the segment, if it is
active, otherwise 0. HASH uses a hashing function and a hash table,
and reiolves hashing collisions by running chains through the AST.
ACTIVATE must update HASH's data base.

The DEACTIVATE function is much simpler than ACTIVATE. It
removes the segment from the list of segments eligible for
deactivation, causes the segment to be initialized if it is
UNINITIALIZED, swaps it out of main memory if it is in, updates
HASH's data base, and adds the ASTE to the list of free ASTE's~

The kernel maintains a list of active segments eligible for
deactivation by running a chain through the AST_AGE_CHAIN field of
the AST. The head of the chain is the segment that most recently
became eligible for deactivation, the tail is the segment that has
been eligible the longest. In addition to HASH, Figure 24 gives
specifications for the four functions that deal with this chain, AGE,
UNAGE, Fir~DUNAGE, and NEXTASTE. (The body of HASH's specification is
empty because its value is always set by ACTIVATE and DEACTIVATE.)
AGE adds a segment to the head, UNAGE removes a segment from the
chain, FI~DUNAGE finds the segment's position in the chain for UNAGE,
and NEXTASTE returns the aste# of the segment at the tail. NEXTASTE
implements a policy that does not have to be in the kernel - when a
segment has to be deactivated to make an ASTE available, the segment
that has been eligible for deactivation longest is chosen. The
design is done this way because the policy seems reasonable, the
distinction between segments eligible for deactivation and those that
are not must be maintained within the kernel, and to have a mechanism
that permitted uncertified software to implement an alternative
policy would add more complexity and overhead than it saved.

We conclude the treatment of WS functions with a few remarks on
why we choose to postpone deactivation until the last possible
moment, rather then doing it as soon as possible. Given the

85

Function: HASH

possible values: aste# or 0

initial value: 0

Parameters: HASH(disk_address)

Function: AGE

Paramteters: AGE(aste#)

Effect:

AST_AGE_CHAIN(asteft) = 'AST_AGE_CHAIN'(O);

AST_AGE_CHAIN(O)= aste#;

AST_AGE(aste#) = AGED;

Function: UN AGE

Parameters: UNAGE(aste#)

Effect:

Let vasteff = 'FINDUNAGE'(O, asteff);

AST_AGE_CHAIN(vaste#) = 'AST_AGE_CHAIN'(aste#);

AST_AGE(aste#) = UNAGED;

Function: FINDUNAGE

possible values: aste#

Parameters: FINDUNAGE(vaste#, aste#)

Value:

IF AST_AGE_CHAIN(vaste#) = aste#;

THEN: aste#;
ELSE: FINDUNAGE(AST_AGE_CHAIN(vastefl), aste#);

END;

Function: NEXTASTE

posssible values: aste#

Parameters: NEXTASTE(aste#)

Value:

IF AST_AGE_CHAIN(aste#) = 0;

. THEN: asteii';
ELSE: NEXTASTE (AST_AGE_CHAIN(astetl));

END;

Figure 24. lli\SH, AGE, UNAGE, FINDUNAGE and NEXTASTE Functions

86

requirement on the number of ASTE's, it should be clear that as soon
as processes start to share segments - the CPL of an ASTE contains
more than one process - there will be more ASTE's than are needed.
(The requirement for ASTE's assumes the worst case - absolutely no
segment sharing.) The strate~y of AGEing rather than DEACTIVATing is
intended to take advantage of these surplus ASTE's. It is much more
efficient to AGE and then UNAGE than it is to DEACTIVATE and
ACTIVATE. The assumption·is that there will be segments eligible for
deactivation that are moved back into a process's WS before they are
actually deactivated.

If the hardware had adequate support for segment and page
faults, then the requirement on the number of ASTE's would go away.
In the extreme case of little or no segment sharing, it would be
possible to deactivate a segment out from under a process by settin~
a seg~ent fault. Even in this environment, however, it would still
be desirable to postpone deactivation and to have sufficient ASTE's
to make the postponement worthwhile.

Enabling and Disabling Access

Since the number of hardware descriptors available on the
PDP-11/45 prevents a process from having a descriptor for each
segment in its WS (and thus directly accessing it), external kernel
functions are provided for managing the allocation of descriptors.
The ENABLE function (Figure 25) moves a segment in a process's WS
into its AS, allocating a descriptor to the segment. The parameters
of the ENABLE function are the segif of the segment and the regfl of
the segmentation register to use. Since moving a segment into AS
only changes the representation of the current security state and not
the state itself, all of the constraints imposed by ENABLE are
implementation· and consistency constraints. ENABLE requires that the
seg# parameter be valid, that the specified segmentation register be
free, and that the process have sufficient main memory quota. The
main memory quota supports a mechanism similar to that used for
controlling disk space allocation. Main memory is effectively
partitioned into areas for• each process. This mechanism is required
because if a descriptor exists for a segment, that segment is locked
into main memory - missing segment/page faults are not supported.
The inability of a process to enable access to a segment must be due
strictly 6o its own behavior and not the behavior of some other

1process.

16As with the disk quota, a per-security-level main memory quota is
sufficient for security.

87

Function: ENABLE

Parameters: ENABLE(process#, aste#, reg#)

Effect:

Let size= AST_SIZE(aste#);

IF ('PS_SAR'(process#, reg#) i 0)

((AST_WIRED_DOWN(aste#) =OFF) & (size> 'PS_MEM_QUOTA'(process#));

THEN: RC(process#) = NO;

ELSE:

IF 	 'AST_ADR'(aste#) = 0;
THEN: SWAPIN(aste#);

END;

IF 'AST_LOCK'(aste#) = UNLOCKED;

THEN: LOCK(aste#);

END;

IF AST_TYPE(aste#) = DIRECTORY;

THEN: Let mode = NO;

ELSE:

IF 	 AST_WAL(aste#, process#) =TRUE;
THEN: Let mode = WRITE;
ELSE: Let mode = READ;

END;

END;

LSD(process#, AST_ADR(aste#), reg#, mode);

IF AST_WIRED_DOWN (aste/f) = OFF;

THEN: PS_MEM_QUOTA(process#) = 'PS_MEM_QUOTA'(process#) ­
AST_SIZE Caste/f);

END;

AST_DES_COUNT(aste#) = 'AST DES_COUNT'(aste#) + 1;

RC(process#) = YES

END;

Function: LSD

Parameters: LSD(process#, block#; reg#; mode)

Effect:

PS_SAR(process#, reg#) = block#;

PS_SDR(process#, reg#) = MBT_SIZE(block#), mode;

Figure 25. ENABLE and LSD Functions

88

Before a descriptor can actually be constructed, the se~ment
must be swapped into main memory, if it is not in already, and the
mode of access that the user has requested must be determined.
Enabling access to directories is allowed, but the resulting
descriptor will not actually allow access - the effect is simply to
lock the directory into main memory. The actual construction of
segment descriptors and the storing of them into descriptor registers
is performed by LSD (Load ~egment Descriptor). ENABLE concludes by
debiting the main memory quota of the process and incrementing the
descriptor count for the segment.

The DISABLE function (Figure 26) is the inverse of the ENABLE
function - it removes a segment from AS and makes a segmentation
register free by destroying the descriptor in it. DISABLE's only
parameter is the reg# of the segmentation register and its only
requirement is that the register actually contain a descriptor. The
aste# of the segment is determined, the change bit in the descriptor
register is "remembered", the descriptor is destroyed, the segment's
descriptor count is decremented, and the process's memory quota is
credited. If the segment's descriptor count goes to zero, the
segment is marked as eligible for being swapped out of main memory.

AS Support Functions

There are several internal functions that support the
implementation of AS. Figure 27 shows the specification of the
SWAP IN and SWAPOUT functions. SWAP IN swaps the segment specified by
the aste# parameter into main memory. First, SWAPIN finds an area of
memory of the correct size and removes it from the free chain. Then,
depending on whether or not the segment must be initialized, it
either initializes the segment or reads it in off the disk and waits
for the disk I/0 to complete. Finally, S\olAPIN updates the AST and
MBT and invokes UNLOCK to put the segment on the SWAP_CHAIN.

SWAPOUT removes a segment from main memory. The segment need
not be written back to the disk unless it has changed since it w.as
swapped in - t1BT_CHANGE indicates whether or not this is the case.
The segment is removed from the SHAP_CHAIN, and the memory it
formerly occupied is put on the free memory chain.

Figure 28 gives the specifications of INITSEG, DISKIO, and the
two functions that manipulate the SHAP_CHAIN. Directories are
initialized by marking all entries as free and putting all of the ACL
elements on the free ACL chain. Data segments are initialized to all
zero. DISKIO simply initiates a disk I/0 operation.

The SWAP_CHAIN contains all segments that are in main memory but
are eligible to be swapped out because there are no segment

89

Function: DISABLE

Parameters: DISABLE(process#, reg#)

Effect:

IF 'PS_SAR'(process#, reg#) f. 0;

THEN: Let block#= 'ps_SAR'(process#, reg#);

Let aste# = HBT_ASTE(block/1);

MBT CHANGE(block#) = 'MET CHANGE'(block#)

7PS_SDR~CHANGE(process#, reg#);
PS_SAR(process#, reg#) = 0;
PS_SDR(process#, reg#) = 0;
AST_DES_COUNT(aste#) = 'AST_DES_COUNT'(aste#) - 1;
IF (AST_DES_COUNT(aste#) = 0) &

(AST_WIRED_DOWN(aste/1) = OFF);
THEN: UNLOCK(aste#);

END;

IF AST_WIRED_DmVN(aste/1) = OFF;

THEN: PS_MEf'1_QUOTA (process!!) = 'PS_MEM_QUOTA ' (process#) +
AST_SIZE(aste#);

END;
END;

Figure 26. DISABLE Function

90

Function: StlAPIN
Parameters: SWAPIN(aste#)
Effect:
Let size= AST_SIZE(aste#);
Let block# = FINDFREE('t-1BT_CHAIN' (0), size);
ALLOCMEM ('MBT_CHAI N' (0) , block#) ;
IF 'AST_STATUS' (as tell) = UNINITIALIZED;

THEN: INITSEG(aste#, block#);
AST_STATUS(aste#) = INITIALIZED:
MBT_CHANGE(blockfl) = CHANGED;

ELSE: DISKIO(aste#, block#, DISK_READ);
MBT_CHANGE (block/f) = UNCHANGED;
P(DISK_SEHAPHORE);

END;
AST_ADR(aste#) = block#;
MBT_ASTE(block#) = aste#;
UNLOCK(astefl);

Function: SHAPOUT
Parameters: SWAPOUT(aste#)
Effect:
Let block#= 'AST_ADR'(aste#);
LOCK(astefl);
AST_ADR(aste#) = 0;
IF 	!1BT_CHANGE(blockf/) = CHANGED;

THEN: DISKIO(aste#, block#, DISK_WRITE);
P(DISK_SEt1APHORE);

END;
F REEMEM ('t·1BT_CHAI N' (0) , blockif) i

Figure 27. SWAPIN and SWAPOUT Functions

91

'
Function: INITSEG

Parameters: INITSEG(aste#, block#)

Effect:

IF AST_TYPE(aste#) = DIRECTORY;

THEN:

(¥i)(ENTRY#_MIN iii ENTRY#_MAX);

DIR_SIZE(aste#, i) = 0;

END;

(¥j)(ACLE#_MIN i j ~ ACLE#_MAX);

ACL_CHAIN(astefl, j) = (j+1) MODULO (ACLE#_!vlAX+1);
EHD;

ELSE: segment_contents = 0;
END;

Function: DISKIO

Parameters: DISKIO(aste#, block#, command)

Effect:

DISK_ADR = AST_DISK(aste#);

DISK_COUNT = AST_SIZE(aste#);

MEM_ADR = blockff;

DISK_Cm1!1AND = command, ENABLE_INTERRUPTS;

Function: LOCK

Parameters: LOCK(aste#)

Effect:

Let vaste# = 'FINDLOCK'(O, aste#);

AST_SHAP_CHAIN(vastefl) = 'AST_SWAP_CHAIN'(aste#);

AST_LOCK(aste#) = LOCKED;

Function: FINDLOCK

possible values: aste#

Parameters: FINDLOCK(vaste#, aste#)

Value:

IF AST_SviAP_CHAIN(vastefl) = aste#;

THEN: vastefl;
ELSE: FINDLOCK(AST_SWAP_CHAIN(vaste#), aste#);

END;

Function: UNLOCK

Parameters: UNLOCK(aste#)

Effect:

AST_SWAP_CHAIH(asteff) = 'AST_SWAP_CHAIN'(O);

AST_SWAP_CHAIN(O) = aste#;

AST_LOCK(astefl) = UNLOCKED;

Figure 28. INITSEG, DISKIO, LOCK, FINDLOCK and UNLOCK Functions

92

descriptors for them. The design postpones the removal of a segment
from main memory for as long as possible, for reasons that are
similar to the deactivation postponement. A process may DISABLE
access to a segment, thus making it eligible to be swapped out,
simply because it has run out of descriptor registers and wants to
ENABLE access to some other segment. If all processes are not using
their full memory quota or there is some in-core sharing of segments,
then it may be possible to swap the second segment into main memory
without removing the first. We choose not to swap out the first
segment because the process may choose to reENABLE access to it, thus
requiring its presence in main memory. The three functions that deal
with the SWAP_CHAIN are LOCK (into main memory), FINDLOCK and UNLOCK.
LOCK removes a segment from the chain, using FINDLOCK to find the
segment's position in the chain, and UNLOCK adds a segment to it.

Toe final set of AS functions deals with the allocation and
deallocation of main memory segments to virtual memory segments.
Figure 29 gives the specifications of FINDFREE, ALLOCHEt-1, and
FREEMEM. Free memory areas are on a chain ordered by block#. A free
memory area is characterized by its block# - the address of its first
byte -and its size. ALLOCMEM removes a free memory area from this
chain and FREEMEM adds an area to it. FINDFREE searches the free
chain looking for an area of a given size. If one is found, its
block# is returned, otherwise, we have a problem. Assuming that the
main memory quota mechanism is correct 1 then a free memory area of
the desired size can be constructed by some combination of the
following: 1) concatenating adjacent free areas; 2) splitting a free
area into two free areas; 3) removing segments on the SWAP_CHAIN from
main memory; and 4) compacting fragmented free areas. Determining
the appropriate course of action requires a policy that does not
belong in the kernel. Rather, the kernel designs assumes the
existence of a process \·;hose function is to keep the free memory
chain in "good shape" - sufficient free areas of the right sizes. To
perfonn this task the kernel provides it with functions that perform
the three operations just described. These functions are discussed
in a later subsection. While we expect that this process will be
correctly implemented and be able to keep ahead of the kernel, the
kernel must be prepared to deal with FINDFREE's failure to find a
free area.

When FINDFREE fails the kernel can do one of two things: 1) it
can explicitly cause the memory management process to run and only
permit its three memory struct4ring kernel functions (that do not
affect the current security state) to be invoked; or 2) it can
deallocate the CPU from the current proces~, allocate the CPU to any
other process ready to run (but somehow indicate that the memory
management process should run), and allow all kernel functions to be
invoked. If course 1) is chosen, then the original process c~n be

93

Function: FINDFREE

possible values: block#

Parameters: FINDFREE(block#, size)

Value:

IF blockft = END_BLOCK#;

THEN: RESTART;

ELSE:

IF 	MBT_SIZE(block#) = size;
THEN: block#;
ELSE: Fll~DFREE(i-1BT_CHAIN(block#, size));

END;
END;

Function: ALLOCMEM

Parameters: ALLOCMEM(vblock#, block#)

Effect:

IF 't-iBT_CHAIN' (vblocklf) = blockft;

THEN: i·1BT_CHAIN(vblockff) = MBT_CHAIN(block#);
HBT_FLAGS(blockff) = ALLOCATED;

ELSE: ALLOCt1EM('r-1BT_CHAIN' (vblock#), block#);
END;

Function: FREEMEM

Parameters: FREEMEM(vblockf.!, block#)

Effect:

IF 't·1BT_CHAIN' (vblockfl) > blockft;

THEN: HBT_CHAIN(blockff) = 'NBT_CHAIN' (vblockff);
MBT_CHAIN(vblock#) = block#;
MBT_FLAGS(blockfl) = FREE;
!vlBT_ASTE(blockft) = 0;

ELSE: FREE~lEM('MBT_CHAIN' (vblockff), blockfl);
END;

Figure 29, FINDFREE, ALLOCME11 and FREEMEM Functions

94

' restarted at the point where FINDFREE was invoked, because the
security state of the system has not changed. Course 2) is more
flexible but it requires that we prove that the system is in a secure
state at the point where FINDFREE fails. Also, the process ~ust be
restarted at the point where the external kernel function Has
invoked, because the security state of the system may have changed,
thus invalidating security checks made before the original FINDFREE
failure.

PROCESS COOPERATION

Mechanisms are provided to allow the sequential processes that
coexist in the physical computer system to cooperate. These
mechanisms are used within the kernel to insure its correct
operat~on, and the kernel provides external functions that allaH
these mechanisms to be used in an arbitrary manner, subject only to
security constraints. Two mechanisms are provided - a
synchronization mechanism that employs semaphores and the P and V
operations, and an interprocess communication (IPC) mechanism. The
functions for these mechanisms do not change the security state of
the system. They provide interpretive access to objects as permitted
by the current state and, since they can cause the execution state of
ti process to change, they modify the representation of the current
state.

P and V

P and V are synchronization primitives that operate on
semaphores. They are the basic synchronization primitives used
within the kernel, and an explanation of them is given in Appendix I.
In the specification, synchronization with the disk during segment
Sl-lapping is achieved by performing a P on the disk semaphore. When
the disk operation completes, the interrupt handler does a V on the
disk semaphore.

To allow users to synchronize with each other the kernel
associates a semaphore with each segment in the virtual memory.
Processes that have write access to a segment may P and V on the
associated semaphore. Write access is required because both P and V
modify the semaphore, and the execution state of a process may change
as a result of the P or V. It is assumed that users will use P's and
V's to coordinate the modification of shared segments and to
synchronize with their terminal I/0. The user may P on the I/0
segment associated with his terminal. An interrupt from the terminal
will cause the V. Whether or not the appropriate conventions are
followed to insure the cooperation desired by users, is, of course,
no concern of the kernel.

95

The specification of the P function is given in Figure 30. P
decrements the semaphore counter and, if the result is negative, it
blocks the process and adds it to the queue of processes blocked on
the semaphore. PSWAP is invoked when a process becomes blocked in
order to allocate the CPU to some other process.

The function of PSWAP.is to deallocate the CPU from the current
process and reall~cate it to some other process. This other process
must be in the READY state. It is possible, that when PSWAP first
looks, it cannot find a READY process. In this case, it waits for an
I/0 interrupt (which always results in a V on a I/0 segment
semaphore), and then looks again. At the level of the specification,
it is sufficient to change the value of TCP to any process that is
READY. At the implementation level, more work may be required
depending upon specific hardware characteristics. On the PDP-11/45
it is necessary to unload registers associated with the execution of
the current process and reload them for the new process. This
save/restore operation must, of course, be done correctly to insure
security. The specification assumes that the contents of the
hardware descriptor registers ar•e equal to PS_SDR and PS_SAR for the
current process.

If more than one process is READY, PSWAP must have some
algorithm for selecting a particular process to run. This topic is
discussed in the subsection on policy functions. For the time being
we assume that PSWAP has some way of selecting a new process to run.

The V function (Figure 31) is the inverse of P. It increments
the counter of a semaphore, and if the result is non-positive, makes
a process that was blocked on the semaphore ready. If more than one
process is blocked on the semaphore, VEND finds the process that has
been blocked the longest, and VUNCHAIN removes it from the queue.
PSWAP is invoked because a process that was blocked is now ready and
PSHAP may want to allocate the CPU to it.

Internrocess Communication

Although the P and V primitives are probably sufficient for
implementing any desired form of process synchronization, another
mechanism, interprocess communication (IPC), is provided. The
utility of IPC is that it allows the transfer of data between
processes, and the receiving pr.ocess is provided with the
identification of the sending process.

Figure 32 shows the specification of IPCSEND, the first half of
an IPC sequence. The security requirement for IPC is that a process
can only send a messa~e to another process at an equal or higher

96

http:PSWAP.is

Function: KP

Parameters: KP(aste#)

Effect:

IF AST_WAL(asteU, TCP);

THEN: P(astefl);
ELSE: RC(TCP) = NO;

END;

?'unction: P

Parameters: P(smfr#)

Effect:

St,lFR_COUNT(smft'#) = 'SMFR_COUNT'(smfr#)- 1;

IF S1FR_COUNT(smf'r1J) < 0;

THEN: PT_FLAGS(TCP) = BLOCKED;
PT_LINK(TCP) = 'SHFR_POINTER'(smfrfl);
St·1FR_POINTER (smfrit) = TCP;
PSWAP;

END;

RC(TCP) = YES;

Function: PSHAP

Parameters: PSWAP

Effect:

IF (:}processif) (PT_FLAGS (process#) = READY);

THEN: TCP = process#;
ELSE: WAIT;

PSHAP;
END;

Figure 30. KP, P and PSHAP Functions

97

Function: KV

Parameters: KV(aste#)

Effect:

IF AST_WAL(aste#, TCP);

THEN: V(asteil);
ELSE: RC(TCP) = NO;

END;

Function: V

Parameters: V(smfr#)

Effect:

SHFR_COUNT(smfrff) = 'S~1FR_COUNT'(srnfr/f) + 1;

IF Sr1FR_COUNT(smfr#) <= 0;

THEN:
IF Si1FR_COUNT(smfrfl) = 0;

THEN: Let process# = 'S~'!FR_POINTER' (smfr#);
St>!FR_POINTER(smfrfl) = 0;

ELSE: Let process# = VEND;
VUNCHAIN('S~·1FR_POINTER'(smfr/l));

END;
PT_FLAGS(processtf) = READY;
PSvi AP;

END;
RC(TCP) = YES;

Function: VEND

possible values: process#

Parameters: VEND(process#)

Value:

IF 'PT_LINK'(process#) = 0;

THEN: processtf;
ELSE: VEND('PT_LINK' (process/f));

END;

Function: VUNCHAIN

Parameters: VUNCHAIN(process#)

Effect:

IF 'PT_LINK' ('PT_LINK' (process/f)) = 0;

THEN: PT_LINK(process#) = 0;
ELSE: VU!JCHA IN ('PT_LINK' (process/f));

END;

Figure 31. KV, V, VEND and VUNCR~IN Functions

98

Function: IPCSEND

Parameters: IPCSEND(process#, message, domain)

Effect:

IF (PT_FLAGS(process#) ~ INACTIVE) &

(((PS_CUR_CLASS(process#) L PS_CUR_CLASS(TCP)) &

(PS_CUR_CAT(process#) ;2 PS_CUR_CAT(TCP)))

(PT_TYPE(TCP) =TRUSTED)) &

('PT_IPC_QUGTA' (process#) i. 0);

THEN: Let ipce# = 'IPC_LINK'(O);

IPC_LINK(O) = 'IPC_LINK'(ipce#);

IPC_LINK(ipce#) = 0;

IPC_PROCESS(ipce#) = TCP;

IPC_DOlvlAIN(ipceil) = domain;

IPC_DATA(ipce#) = message;

IF 'PT_IPC_QUEUE_HEAD'(process#) = 0;

THEN: PT_IPC_QUEUE__HEAD(processif) = ipce/1;
ELSE: Let eipce# =

FINDIPCEND('PT_IPC_QUEUE_HEAD'(process#));
IPC_LINK(eipcetf) = ipce/F;

END;
PT_IPC_QUOTA (process//) = 'PT_IPC_QUOTA' (process/f.) - 1 ;
IF 'PT_IPC_HAIT'(process#) = ON;

THEN: PT_IPC_HAIT(processff) = OFF;
PT_FLAGS(process#) = READY;
PSHAP;

END;
END;

Function: FINDIPCEND

possible values: ipce#

Parameters: FINDIPCEND(ipce#)

Value:

IF IPC_LINK(ipce#) = 0;

THEN: i pee#;
ELSE: FINDIPCEND(IPC_LINK(ipce#));

END;

Figure 32. IPCSEND and FlliDIPCEND Functions

99

security level, unless the sending process is a trusted subject. In
this case there are no security requirements. The object in an IPC
sequence is an IPC element. The basic functions of IPCSEND is to
allocate an IPC element from the free pool, fill it in with the data
being transferred and sending process identification, and add it
(using FINDIPCEND) to the queue of elements waiting to be received by
the receiving process. The process identification includes a domain
indicator to allow the receiving process to distinguish between
messages originating in the kernel domain of some other process and
messages originating in the user domains.

On the receiving side there are two cases: 1) the receiving
process is blocked because it is waiting for a messa~e and until this
IPCSEND there were none available; and 2) the receiving process is
not waiting for a message. For case 1) the receiving process becomes
ready and PSWAP is invoked to allow the CPU to be reallocated to it,
if tha£ action is dictated by PSWAP's CPU allocation policy.

Since IPC elements are a finite, shared resource, it seems
reasonable to control allocation of them with a quota mechanism.
Intuitively, one might think that the quota would be imposed on the
sending process in an IPC sequence. When a process sent a message,
its quota would be debited; when a message was received and the IPC
element was returned to the free pool, the sending process's quota
would be credited. The problem with this approach is that an action
by the receiving process, which may be at a higher security level
than the sending process, modifies the quota of the sending process.
The sending process could determine if its quota had gone to zero by
trying to send another message to a second process at the same
security level and observing a segment shared with this second
process to see if the message is actually sent. Without giving all
of the details, we hope that the reader can see that this quota
implementation would not be secure, because a high~r level process
could "signal 11 a lower level process.

An alternative quota implementation is to debit the quota of the
receiving process when some other process sends it a message, and
credit the receiving process when it actually receives the message.
As the specification shows, this is the method used in the 11/45
design. If the IPC quota of some process has gone to zero then no
other process can send it any messages. This is not a security
problem, because a process can only determine if its IPCSEND was
successful or not if it is sending to a process at the same security
level.

The second half of an IPC sequence occurs when a process invokes
IPCRCV (IPC receive, see E"igure 33). Again there are two cases: 1)
there are one or more messages waiting for the pr.ocess; and 2) there

100

Function: IPCRCV
Parameters: IPCRCV
Effect:
IF 'PT IPC QUEUE HEAD'(TCP) = 0;

THEN: PT_IPC_WAIT(TCP) = ON;
PT_FLAGS(TCP) = BLOCKED;
PSWAP;
IPCRCV2;

ELSE: IPCUNQUEUE;
END;

Function: IPCUNQUEUE

Parameters: IPCUNQUEUE

Effect:

Let ipcef! = 'PT_IPC_QUEUE_tlEAD' (TCP);

PT_IPC~QUEUE_HEAD(TCP) = 'IPC_LINK'(ipce#);

RC(TCP) = IPC_PROCESS(ipce#), IPC_DOMAIN(ipce#), IPC_DATA(ipce#);

IPC_LINK(ipce#) = 'IPC_LINK'(O);

IPC_LINK(O) = ipce#;

PT_IPC_QUOTA(TCP) = 'PT_IPC_QUOTA'(TCP) + 1;

Function: IPCRCV2

Parameters: IPCRCV2

Effect:

IF 'PT_IPC_QUEUE_HEAD'(TCP) ~ 0;

THEN: IPCUNQUEUE;
END;

Figure 33. IPCRCV, IPCUNQU1~E and IPCRCV2 Functions

101

are no messages waiting for the process. In case 1) IPCUNQUEUE
unqueues the IPC element that has been queued the longest, moves its
contents to the process's RC object, returns the IPC element to the
free pool, and credits the process's quota. In case 2) the process
becomes blocked until a messa~e is received. At that time IPCRCV2 is
invoked to receive the message.

POLICY FUNCTIONS

In any system it is desirable to separate policy and mechanism.
This is particularly true in secure systems, where the size and
complexity of the kernel must be minimized. The kernel must contain
the mechanisms for implementinF, the elements of the system and the
security policy for controlling access to these elements. P,_ny:;:;p<:'f'l,'i~:y

f,fra."t~:i:f)TTuerices' fFre:··a1loc2:tion,·qr-physical. resources heed not, ·_?n,ck
§hourd:;::n_oj:;-,-~.be. in __ t,he -kernel. Tp_e actual allocation of resources.~.

. '··-- ¥>f•~

~crst;:q;r~.perf:o-Pmed ... by. tne ·J::;;::pl'_Ye~t~h'1.~i~,d~~-G.11X':...e~_an_d cg('r_qqJ..,:nanneJ::'t For
these reasons it is necessary to have external kernel functions that
communicate policy decisions made outside the kernel to the
implementation mechanisms within the kernel. The effect of all of
these functions is to simply change the representation of the current
security state.

Memory Control

The 11/45 kernel design views main memory as a series of fixed
sized blocks. The size of a block must be a multiple of the minimum
segment size supported by the 11/45's MMU (64 bytes). The initial
implementation uses 256 byte blocks. Adjacent blocks can be combined
into main memory segments. Characteristics of a main memory segment
include: 1) the address of its first block; 2) its size; and 3) the
virtual memory segment bound to it, if any. The first block crf a
main memory segment is either FREE or ALLOCATED, all other blocks are
CONCATENATED.

The kernel design assumes the existence of a memory control
function with the task of keeping the free memory chain in "~ood
shape" - sufficient free main r:1emory segments of different sizes so
that the FINDFREE subfunction of SWAPIN always succeeds. In order
for the memory control function to operate properly it must be able
to observe the state of main memory, decide how it should be changed,
if at all, and communicate its.decision to the kernel. To make the
necessary observations it must have read access to the MBT (Memory
Block Table) and AST. These tables have a security level of system
high, because they contain system-wide information on the mapping of
virtual resources into physical resources. ·Therefore, the memory
control function cannot be distributed among all process - it must be

102

http:hourd:;::n_oj:;-,-~.be

isolated in a process at a system-high security level. There is no
need for this process to be trusted, because the kernel does not
depend on its correct operation, and this process can only
communicate with other system-high processes. If the process does
not operate properly the system may fail, but there will be no
security compromise.

Figure 34 shows the functions that the memory control process
can use to communicate its policy decisions to the kernel. One of
these functions, KSWAPOUT, directs the kernel to swap a segment out
of :nain memory. Before invoking SHAPOUT the kernel insures that the
specified segment is eligible to be swapped out. Note that the
kernel does not check the identity of the process that invokes
KSWAPOUT. The only security requirement is that the data base that
must be observed in order to make intelligent use of the memory
con~rol functions has a security level of system high. Since the
kernel makes no assumptions about the correct use of the ~e~ory
control functions, there is no need for it to check the invokin~
process's identity. For practical reasons the operating system may
choose to prevent user processes from using these functions.

It may not be necessary to swap a segment out of main memory to
make room for another - changing the size of free main me~ory
segments may be sufficient. CONCAT and SPLIT are two functions for
performing this operation. The parameter of CONCAT is the blockf.! of
a rr.ain memory segment. The kernel requires that this segment be free
and that the next segment in the free chain be adjacent to it. The
two segments are then concatenated into a single free seg~ent. The
parameters of SPLIT are a block# and size. The kernel requires that
the blockf/ identify a free main memory segment whose size is greater
than the size parameter. It then splits the segment into two
segments; the size of the first is equal to the size parameter.

In any system where memory is dynamically allocated to and
deallocated from different sized elements, fragmentation can be a
problem [Knuth]. During kernel operation, it is possible that there
may be enough free memory for a segment that must be svrapped ·in but
there is no combination of KSWAPOUTs, CONCATs, and SPLITs that can
form a free main memory segment of the proper size. The problem can
only be solved by reallocating virtual memory segments to main memory
segments. Virtual memory segments, locked in or not·, can be moved
from one area of main memory to another because the memory ~anagement
unit prevents the use of physical addresses. In fact, the only
places that physical addresses need occur are in the AST and se~ment
descriptors. Thus a function could be provided to physically move a
segment from one area of main memory to another and make the
necessary corrections to stored addresses. A specification for this
function is not given because it may not be necessary for all systems

103

Function: KSWAPOUT
Parameters: KSHAPOUT(block/1)
Effect:
IF (~!BT_FLAGS(blockft) = ALLOCATED) &

(AST_LOCK(~1BT_ASTE(block#)) = UNLOCKED);
THEN: SWAPOUT(t-JBT_ASTE(blockft));

END;

Function: CONCAT
Parameters: CONCAT(block#)
Effect:
Let next_blockff = t1BT_CHAIN(block/f);
IF (t·lBT_FLAGS(blockii) = FREE) &

('HET_SIZE' (block#) + block# = next_block/f);
THEN: HBT_SIZE(block) = 't1BT_SIZE'(blockff) +

i·IBT_SIZE (next_block#);
MBT_CHAIN(block#) = l1BT_CHAIN(next_blockff);
t·1BT_FLAGS(next_blockfl) = CONCATENATED;

END;

Function: SPLIT
Parameters: SPLIT(block#, size)
Effect:
IF t1BT_FLAGS(blockft) = FREE) &

(HBT_SIZE (b lock/t) > size);
THEN: Let new_block# = block# + size;

MBT_FLAGS(new_block#) = FREE;
MBT_SIZE(new_blockft) = 'HBT_SIZE'(block#) - size;
MBT_SIZE(block#) = size;
HBT_CHAIN(neH_blockft) = 'HBT_CHAIN' (block#);
HBT_CHAIN(block) = neH_block#;

END;

Figure 34. KSWAPOUT, CONCAT and SPtiT Functions

104

to be built on the PDP-11/45 kernel.
\

Before going on to process control it should be noted that the
need for the memory control functions and software to use the~ is a
result of implementing multiple sizes of unpaged segments. If all
segments were a single size or composed of fixed sized pages
(assuming hardware support for segmentation and paging), then memory
allocation would be much simpler.

Process Control '

t7·'§1Hce~·crur::aef-i.r1ftf'O-ri-~o:f'--a-'"5Bcuri t y" ~ompr.omi s e-- ;j_o_e.~'-l10.t7 i ncl.ud1e~\
a'eni:ll of service,...,.,-it-o·is-not necessary-for-,the prcc-sss sche:::uli:1g \
pbliey to be ...im.plemented .. Hithin the ke~ne.l,;? Schedulinf; decisions can 1

be made outside of the kernel and the results communicated to PSI-lAP, '
the process multiplexor, by suitable external kernel functions. The
actual mechanisms used are somewhat arbitrary and should depend upon
specific system requirements.

As an example, let us postulate that PSWAP implements a policy
of allocating the CPU to the ready process with the highest priority,
and within groups of processes with equal priorities the CPU is
multiplexed in a round-robin fashion. This policy seems simple
enou~1 to justify implementation within the kernel - a dozen higher
level language statements should be sufficient. To meet system
requirements it may be necessary to dynamically adjust process ~

priorities. Thl:: reqti.f're!rie nt can-·be met by havi r:<:; the !.-:erne l ass:;}pe
&ne·~:exi ste-nc-e _of a':scheduler and--providi!ig it with a function to'
""ange..,proces_~.J~T.t9)'-:;i,.~i.I1.$_,J

There are at least two ways to implement a scheduler: 1) the
scheduler can be distributed among all processes; or 2) it can be
isolated in a process of its own. If it is distributed, then the
scheduler can make decisions about a process's priority based only
upon that process's behavior. If the process is in a highly
interactive phase, the scheduler may choose to give it a high
priority, and if it is compute bound (doing a large compilation, for
example) it may have a low priority. If scheduling decisions are to
be based on the relative behavior of all processes, then the
scheduler must be isolated in a sin~le process, because the
information it must observe is at system high. This scheduler would
insure that it is scheduled with a certain frequency, and each time
it ran it would observe recent.system behavior and adjust priorities
appropriately. It is also possible to include time-slicin~ in this
approach. The scheduler indicates to the kernel what processes are
to be eligible for time slicing and the appropriate time quantums.
The actual management of the interval timer-would be by PSYAP.

105

http:e--;j_o_e.~'-l10.t7

The point of this discussion is to show that since our
definition of security does not have any i~plications on scheduling
policy, scheduling can be done in a variety of ways. By selecting
appropriate kernel functions it is possible to separate the process
multiplexing mechanism from scheduling policy.

INPUT /OUTPUT

Up to this point the design details include no explicit
provision for I/0. The reason for this apparent om+fsion is that I/0
can be entirely transparent to the security kernel. If we
postulate a system where all devices operate in a unilevel mode and
the attachment of I/0 devices to processes is performed at system
initialization, then there is nothing more to do. Since the MMU will
enforce the controlled access to the I/0 devices, and the unilevel
operation does not require computer generated security labels, all of
the I/0 can "be performed entirely by uncertified software.

If requirements de~and a more flexible system environment, then
it may be necessary to introduce additional kernel functions. For
example, if we wish to multiplex the line printer among different
security levels but retain unilevel printer operation, it will be
necessary to perform a security reconfiguration on the printer each
time a level change is desired. Externally, this reconfiguration may
just be a change of the printer forms. Internally, it will be
necessary to change the security level of the segment that contains
the printer's control registers to reflect the security
reconfiguration. The kernel can provide a function to change the
security level of a segment, and it can insure that changes are only
made that keep the system in a secure state (in terms of triples in
b, the *-property, and the compatibility requirement), but the kernel
cannot determine if"the change of security level is "appropriate".
Thus the kernel must restrict the use of this change function to
trusted processes, and trusted processes that use it must be
certified to use it correctly - for example, to assure that the
change of security level of the printer control segment is
coordinated with the change of forms.

If we wish to avoid reconfi~urations and operate the printer in
a multilevel mode, then it will be necessary to run the printer with

17 By I/0 we really mean external I/0- the transfer of information
into and out of the computer system. Internal I/0 is used in
implementing the virtual memory and is completely controlled by the
security kernel. A.lso, He are only alloHing non-D11A devices to be
used for external I/0.

106

a certified process. Since only the printer process knows the
security attributes of the information that it is printing, this
process must produce security labels on the documents it prints. The
process must be certified to produce correct labels that cannot be
altered or "spoofed" by uncertified software.

fne--~ requirements ··ror te·~~in~ls--~r;"~·i;i-i-~r~:-·:_:_iF,';::re-rmfnaY':13''~lo
b_e used at different levels, then, Hh9n !'l user specifies the security
level 2.t \>lhich he Hisi1es to operate, there must be a inechanisin to"''
guarantee that he is talking to certified software,-~nd not tw
6n':!ertified software spoofinr; certified:softHat·e. Oneway t'C
i~plement such a ~echanism is to use terminals that ~enerate a uniqve
fnterrupt Hhen they are po;:'9red on, "lnd to vectot~ this in~:'jt'rupt i.nto
t;he·"·kernel. Thus·, .i.f _the user tut·ns the terminal on before l(Jgginvr
~n;:rrwe. can gua.rantee_~j:,hat, l!_!?.,.:;i,:~;;,,t.i~tlk.~_ng,_~Q:,a --c~_r_t;i(i,e9 J.og-~et;'t

SUHHARY

In this section we have presented the kernel primitives that
will support a static system. In a static system all software
configuration decisions, including the security level of shared I/0
devices (printers, card readers, etc.), and non-shared devices
(terminals), and the binding of users to processes, are made at
system initialization. The kernel, of course, depends upon the
initial state of the system being secure. Although initialization is
beyond the scope of this paper, secure initialization simply requires
that all of the triples in the initial b are correct with respect to
the security condition and the *-property, and that the initial
hierarchy is compatible. User requirements will determine what the
actual initial state of a particular system is.

In most systems a static software configuration Hill not be
acceptable - at a minimum it will be necessary to permit users to log
on and off the system. This feature must be supported by kernel
primitives that bind/unbind users to/from processes. This action
includes the initialization of processes - an operation whose
security requirements are similiar to system initialization. Thus, a
ccmplete kernel design specification for a dynamic system Hill
include functions for initializing and terminating user processes.
The actual initial state of a user process will probably depend upon
the requirements of the specific system.

107

SECTIOi~ V

SUMHARY

In this paper we have presented the design of a secure system
kernel for the PDP-1 1/45. The kernel design is based on a
general-purpose'mathematical model of secure computer systems. Yhis
section summarizes the accomplishments and limitations of the design
to date.

DESIGN LIMITATIONS

Although the design is based on a proven model of security, He
have not yet proved that the design corresponds to the model. Thus,
there may be errors in the design. A methodology for proving that
the design and implementation representations of a kernel correspond
to the model has been developed [Bell and Burke]. This methodology
has been applied to part of this kernel design, and the results
demonstrate the validity of the proof approach and the correctness of
the relevant parts of the design. We are confident that any errors
in the design are not fundamental problems and can be easily
corrected.

There is one aspect of the model, however, that in extreme cases
could be viewed as a fundamental problem. The model is based on an
asynchronous view of computation. Thus it is possible for programs
executing outside of the security kernel to influence the response
time thai other programs see, and to use this ability to modulate
response time to send "Morse code" [Lampson]. vJe feel that the
presence of this uncontrolled communication channel is an intrinsic
problem, but not a serious one because: 1) the kernel can reduce the
bandwidth of the channel to any desired value by adding noise;
2) the use of this channel to pass information at one security level
to a lower level requires cooperating processes at both levels that
are able to synchronize with each other; and 3) if we have solved all
other problems we have made a great deal of progress in computer
security.

The treatment of hardware in this paper has been limited to a
discussion of characteristics that the kernel depends on. Two other
aspects of hardware are important - its correctness and the
possibility of component failure. By correctness we mean the
correspondence of the actual hardware to a formal specification that
describes its behavior. The part of the hardware that the kernel
depends on, access controls and many instructions, must be correct.
An error in the hardware will have the same effect as an error in the

10~

Function: CONNS8T '

Parameters: CON~ECT(processC, daste#, entry#, mode)

Effect:

IF 'ps_sEG'(prG(:essif, 0) = 0;

THEN: RC(process#) = NO;

ELSE: Let f12,g = 'HASH'(DIR_DISK(daste#, entry/f));

IF 	 (flag J 0) &

'AST_CP L' (flag, process#);

THEN: fC(process#) = NO;

ELSE:

IF f'lag I. 0;
THEN: Let aste# = flag;

IF 'AST_AGE' (astet.f) = AGED;
THEN: UNAGE(aste#);

END;
ELSE: ACTIVATE(daste#, entry#);

Let asteit = HASH(DIR_DISK(daste/1, entryil));
UNAGE(astefl);

END;

AST_CPL(astefl, process#) = TRUE;

IF mode = HRITE;

THEN: AST_WAL(asteil, process/f) = TRUE;
END;
Let seg# = 'PS_SEG'(process#, 0);
PS_StG(process#, 0) = 'ps_SEG'(process#, segil);
PS_SEG(process#, seg#) = aste#;
PS__SEG_INUSE(processi}, segfl) = TRUE;
RC(process#) = YES, seg#;

END;
END;

Figure 22. CONNECT Function

83

software security controls - it will allow repeated and undetectable
penetration of the system. Component failure, on the other hand, is
a probabilistic event. The probability that component failure will
allow a security compromise can be reduced by adding redundancy, but
never eliminated. The impact of component failure on computer
security should be addressed by future research.

One final comment on hardware: the design considers only sin~le
CPU (central processing unit) systems. Support for multiple CPU's
would add complexity to level 1' but could be accomplished with
existing mechanisms (P and V primitives).

ACCOHPLISHHENTS

The principal achievement of this work is a feasible design for
computer systems that can be proven to implement an abstract model of
the Department of Defense Security Policy. The model and desi~n
provide a high degree of confinement of the actions of arbitrary
(uncertified) programs. Included in the design is a clean handling
of user I/0. Althou~h the features provided by the design are in
some sense arbitrary (for example, another desi~n misht do without
the IPC objects), the security controls are in no way ad hoc- they
can be proven effective in a rigorous, mathematical manner.

In summary, this paper demonstrates the soundness of the
security kernel approach to solving the computer security problem by
presenting a prototype kernel design. The work ahead includes
designing a kernel for a large scale system with specific
requirements in such a way that the impact of the kernel on
efficiency is acceptable, and finding new hardware architectures that
facilitate secure system development.

~£?;~~;....;;u.~
W. Lee Schiller
Intelligence and
Information Systems

109

' APPENDIX I

SYNCHRONIZING PRIMITIVES

The systems to be built on the PDP-1 1/45 will be composed of
parallel sequential processes, and consequently, primitives for·
synchronization are requi~ed. The primitives we have chosen are
Dijkstra's P and V operations. This appendix provides back~round for
understanding them. (Some of this material has been taken from
[Dijkstra (1)] and [Horning & Randell]).

The P and V primitives operate on special purpose inte~er
variables called "semaphores". Semaphores are usually initialized
with the value 0 or 1. A P operation decreases the value of a
semaph~re by 1. If the resulting value of the semaphore is
non-nep::ative, the process performing the P can continue; if, hoHever,
the resulting value is negative the process becomes blocked and is
placed on a queue associated with the semaphore. Until further
notice in the form of a V operation on the same semaphore by some
other process, the dynamic progress of the first process is not
logically permissible and a processor will not be allocated to it.

A V operation increases the value of a semaphore by 1. If .the
resulting value of the semaphore is positive, the V has no further
effect; if, however, the resulting value is non-positive, one of the
processes on the semaphore's waiting queue is removed - its dynamic
progress is again logically permissible and a processor may be
allocated to it.

Several observations can be made from these definitions. If a
semaphore value is non-positive its absolute value equals the number
of processes on its waiting queue. P and V operations must be
"indivisible actions" - they cannot occur "simultaneously" in
parallel processes. When a V causes a process to be removed from a
semaphore's waiting queue it is undefined - logically immaterial ­
which process (if more than one is waiting) is actually removed. (In
the 11/45 kernel implementation the process waiting the longest will
be removed.) Finally, a consequence of the P and V synchronization
mechanism is that a process whose dynamic progress is permissible can
only lose that status by actually progressing - by performing a P.

Semaphores can be used in.two different ways. The first is
mutual exclusion - the protection of a critical section of program
code or data- and it requires a semap~ore, initialized to 1, for
each critical section. If all processes precede entry to a critical
section with a P on that section's semaphore, and perform the
corresponding V on exit, them it can easily be shown that two or more

110

processes can never be in the critical section simultaneously. The
second use of semaphores is to synchronize "producer-consumer"
relationships among processes. When a consumer requires a resource
it performs a P; the corresponding V is performed by a producer when
it makes a resource available. The correct iriitialization of the
semaphore (usually to 0) insures that the consumers do not ~et ahead
of the producers. It should be pointed out that although the use of
?'s and V's faqilitates the demonstration of correctness, their use
does not guarantee correctness. The appropriate conventions for
using the system's semaphores must be established, and these
conventions must be followed by the cooperating sequential processes.

111

' BIBLIOGRAPHY

ANDERSON, J. P., Computer Security Technology Planning Study,
ESD-TR-73-51, Volume I, October, 1972.

BELL, D. E. , Secure Comouter Svstems: A Refinement of the
Nathematical Model, ESD-TR-73-278, Volume III, MITRE Corporation,
June, 1974.

BELL, D. E. & BURKE, E. L., A_ Software Validation Techniaue for r
Certification, Part 1: The Hethodology, ~lTR-29 32, ~UTRE Corporation,
l~ovember, 1974.

BELL, D. E. & LAPADULA, L. J., Secure Computer Systems: Mathematical
Foundations, ESD-TH-73-276, Volume I, MITRE Corporation, November,
1973.

BENSOUSSAN, A., CLINGEN, C. T., & DALEY, H. C., "The r1ultics Virtual
i'1emory: Concepts and Design," Communications of the ACH, Volume 15,
Number 5, May, 1972, 308-318.

BRAHSTAD, D., "Privacy and Protection in Operating Systems,"
Computer, Volume 6, Number 1, January, 1973, 43-47.

BURKE, E. L., Concept of Operation for Handling I/0 in ~ Secure
Computer at the Air Force Data Services Center (AFDSC),
ESD-TR-74-113, i''!IlRE Corporation, April, 1974.

DIGITAL, ,PDP-11 I 45 Processor Handbook, Digital Equipment Corporation,
1973.

DIJKSTRA(1), E. W., "The Structure of the "THE" ~1ultiprogramming
System," Communications of the ACM, Volume 11, Number 5, !'1ay, 1968,
341-346.

DIJKSTRA(2), E. W., "The Humble Programmer," Communi cations of the
AC~l, Volume 15, Number 10, October, 1972, b59-b66.

ESD, Computer Security Development Summary, MCI-74-1, Directorate of
Information Systems Technology, Electronic Systems Division,
December, 197 3.

hORNING, J. J., & RANDELL, B., "Process Structuring," Computing
Surveys, Volume 5, Number 1, March, 1973, 5-30.

112

KARGER, 2Lt. P. A., & SCHELL, Major R. R., Multics Security
Evaluation: Vulnerability Analysis, ESD-TR-74-193, Volume II,
Electronic Systems Division, June, 1974.

KNUTH, D. E., The Art of Computer Programming, Volume I: Fundamental
Algorith~s, Reading, class.: Addison-Wesly, 1969, 435-451.

LAMPSON, B. W., "A Note on the Confinement Problem," Com~unications
of the ACt1, Voiume 16, Number 10, October, 1973, 613-·615.

LAPADULA, L. J., & BELL, D. E., Secure Computer Systems: A
Mathematical Model, ESD-TR-73-278, Volume II, MITRE Corporation,
November, 1973.

LIPNER, S. B., Comouter Security Research! Develooment Reauirements,
HTP-142, r'i!TRE Corporation, February, 1973.

LISKOV, B. H., "The Design of the Venus Operating System,"
Cor.1munications of the AGl, Volume 15, Number 3, Harch, 1972, 144-149.

I·10GILENSKY, J. , A General Security t'larking Policy for Classified
Computer Input/Output Material, private communication, April, 1974.

NEUt1ANN, P. G., FABRY, R. S., LEVITT, K. N., ROBINSON, L., & ·,1ENSLEY,
J. H., "On the Design of a Provably Secure Operating System,"
International Workshop on Protection in Operating Syste~s, IRIA,
Rocquencourt, France, August, 1974, 161-175.

OBGANICK, E. I., The Hultics Syste~: An Exanination of its
Structure, Cambridge, Mass.: MIT Press, 1972.

PARNAS, D. L., "A Technique for Software Module Specification Hi th
Examples," Communications .9f the ACH, Volume 15, Nur:1ber 5, tlay, 1972,
330-336.

PRICE, \~. R., Implications of.§!. Virtual l·1emory f'lechanism for
Implementing Protection in.§!. Family of Ooerating Svstems, Ph.D.
Thesis, Carnegie-Mellon University, June, 1973.

SALTZER(1), J. H., Traffic Control in~ Multiolexed Comouter System,
MAC-TR-30 (Thesis), Project MAC, July, 1966.

SALTZER(2), J. H., "Protection and the Control of Information in
Hultics," Communications of the ACM, Volume 17, Number 7, July, 1974,
388-402.

113

SCHILLER, W. L., Design of£ Security Kernel for the PDP-11/45,
ESD-TR-7 3-294, HI THE Corporation, December, 19 73.

Sl'HTH, L., Architectures for Secure Computer Systems, ESD-TR-75-51,
MITRE Corporation, April, 1975.

WEIS~MN, c., "Security Controls in the ADEPT-50 Time-Sharing
System, 11 AFIPS Proceedings FJCC, 1969, 119-133.

114

DISTRIBUTION LIST

EXTER.J.'l'ALINTERNAL

HeadquartersD-70
Electronic Systems Divisionw. s. Attridge
Hanscom Air Force BaseJ. J. Croke
Bedford, Massachusetts 01731J. i-l. Shay

MCITD-72
Col. F. EmmaL. J. LaPadula
Lt. Col. R. Park
Maj. T. BaileyD-73
Maj. L. Nobles. R. Ames, Jr.
11aj. R. SchellN. H. Anschuetz
!Lt. P. KargerD. E. ·Bell
lLt. W. PriceE. H. Bensley
2Lt. \-1. AustellE. J. Bertrand

K. J. Bib a
R. H. Bullen, Jr.
E. L. Burke (10)

c. Engelman
H. Gasser
s. H. Goheen
s. R. Harper
J. F. Jacobs
E. L. Lafferty (2)
J. A. Larkins
s. B. Lipner (20)
J. L. Hack
D. L. Hartell
J. K. Millen
G. H. Nibaldi
R. D. Rhode
J. M. Schacht
H. L. Schiller (10)
H. s. Stone
D. F. Stork
B. N. Wagner
J. c. c. White (10)
R. c. Yens

D-75
R. S. Gardella

115

