

Archived NIST Technical Series Publication

The attached publication has been archived (withdrawn), and is provided solely for historical purposes.

It may have been superseded by another publication (indicated below).

Archived Publication

Series/Number: Special Publication 800-90A

Title:

Recommendation for Random Number Generation Using Deterministic
Random Bit Generators

Publication Date(s): January 2012

Withdrawal Date: June 2015

Withdrawal Note: NIST Released Special Publication (SP) 800-90A Revision 1,
Recommendation for Random Number Generation Using Deterministic
Random Bit Generators
June 25, 2015

NIST announces the completion of Revision 1 of NIST Special Publication
(SP) 800-90A, Recommendation for Random Number Generation Using
Deterministic Random Bit Generators. This Recommendation specifies
mechanisms for the generation of random bits using deterministic
methods. In this revision, the specification of the Dual_EC_DRBG has been
removed. The remaining DRBGs (i.e., Hash_DRBG, HMAC_DRBG and
CTR_DRBG) are recommended for use. Other changes included in this
revision are listed in an appendix.

Superseding Publication(s)

The attached publication has been superseded by the following publication(s):

Series/Number: Special Publication 800-90A Revision 1

Title:

Recommendation for Random Number Generation Using Deterministic
Random Bit Generators

Author(s):

Elaine Barker

John Kelsey

Publication Date(s): June 2015

URL/DOI: Direct Link:
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf

DOI: http://dx.doi.org/10.6028/NIST.SP.800-90Ar1

Date updated: May 18, 2016

http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
http://dx.doi.org/10.6028/NIST.SP.800-90Ar1

NIST SP 800-90A January 2012

ii

NIST Special Publication 800-90A

Recommendation for Random Number
Generation Using Deterministic

Random Bit Generators

Elaine Barker and John Kelsey

Computer Security Division

Information Technology Laboratory

C O M P U T E R S E C U R I T Y

January 2012

U.S. Department of Commerce
John Bryson, Secretary

National Institute of Standards and Technology

Patrick Gallagher, Director Under Secretary

of Commerce for Standards and Technology

NIST SP 800-90A January 2012

iii

 Abstract

This Recommendation specifies mechanisms for the generation of random bits using

deterministic methods. The methods provided are based on either hash functions, block

cipher algorithms or number theoretic problems.

KEY WORDS: deterministic random bit generator (DRBG); entropy; hash function;

random number generator

NIST SP 800-90A January 2012

iv

Acknowledgements

The National Institute of Standards and Technology (NIST) gratefully acknowledges and

appreciates contributions by Mike Boyle and Mary Baish from NSA for assistance in the

development of this Recommendation. NIST also thanks the many contributions by the

public and private sectors.

NIST SP 800-90A January 2012

v

Table of Contents

1 Authority ... 1

2 Introduction .. 2

3 Scope .. 3

4 Terms and Definitions ... 4

5 Symbols and Abbreviated Terms ... 10

6 Document Organization ... 12

7 Functional Model of a DRBG ... 13

7.1 Entropy Input .. 13

7.2 Other Inputs .. 14

7.3 The Internal State ... 14

7.4 The DRBG Mechanism Functions .. 14

8. DRBG Mechanism Concepts and General Requirements 16

8.1 DRBG Mechanism Functions .. 16

8.2 DRBG Instantiations .. 16

8.3 Internal States .. 16

8.4 Security Strengths Supported by an Instantiation ... 17

8.5 DRBG Mechanism Boundaries ... 18

8.6 Seeds ... 19

8.6.1 Seed Construction for Instantiation .. 20

8.6.2 Seed Construction for Reseeding .. 20

8.6.3 Entropy Requirements for the Entropy Input ... 21

8.6.4 Seed Length ... 21

8.6.5 Source of Entropy Input .. 21

8.6.6 Entropy Input and Seed Privacy .. 21

8.6.7 Nonce .. 22

8.6.8 Reseeding ... 22

8.6.9 Seed Use ... 23

8.6.10 Entropy Input and Seed Separation .. 23

8.7 Other Input to the DRBG Mechanism .. 23

8.7.1 Personalization String ... 23

NIST SP 800-90A January 2012

vi

8.7.2 Additional Input ... 24

8.8 Prediction Resistance and Backtracking Resistance .. 24

9 DRBG Mechanism Functions .. 26

9.1 Instantiating a DRBG ... 27

9.2 Reseeding a DRBG Instantiation .. 30

9.3 Generating Pseudorandom Bits Using a DRBG ... 32

9.3.1 The Generate Function .. 33

9.3.2 Reseeding at the End of the Seedlife .. 35

9.3.3 Handling Prediction Resistance Requests ... 36

9.4 Removing a DRBG Instantiation ... 36

10 DRBG Algorithm Specifications ... 38

10.1 DRBG Mechanisms Based on Hash Functions... 38

10.1.1 Hash_DRBG ... 39

10.1.1.1 Hash_DRBG Internal State .. 39

10.1.1.2 Instantiation of Hash_DRBG .. 40

10.1.1.3 Reseeding a Hash_DRBG Instantiation 41

10.1.1.4 Generating Pseudorandom Bits Using Hash_DRBG 42

10.1.2 HMAC_DRBG ... 44

10.1.2.1 HMAC_DRBG Internal State .. 44

10.1.2.2 The HMAC_DRBG Update Function (Update) 45

10.1.2.3 Instantiation of HMAC_DRBG .. 46

10.1.2.4 Reseeding an HMAC_DRBG Instantiation 47

10.1.2.5 Generating Pseudorandom Bits Using HMAC_DRBG 47

10.2 DRBG Mechanisms Based on Block Ciphers ... 49

10.2.1 CTR_DRBG .. 49

10.2.1.1 CTR_DRBG Internal State ... 51

10.2.1.2 The Update Function (CTR_DRBG_Update) 52

10.2.1.3 Instantiation of CTR_DRBG .. 53

10.2.1.4 Reseeding a CTR_DRBG Instantiation .. 55

10.2.1.5 Generating Pseudorandom Bits Using CTR_DRBG................... 56

10.3 DRBG Mechanisms Based on Number Theoretic Problems 60

10.3.1 Dual Elliptic Curve Deterministic RBG (Dual_EC_DRBG) 60

NIST SP 800-90A January 2012

vii

10.3.1.1 Dual_EC_DRBG Internal State.. 62

10.3.1.2 Instantiation of Dual_EC_DRBG... 62

10.3.1.3 Reseeding of a Dual_EC_DRBG Instantiation 64

10.3.1.4 Generating Pseudorandom Bits Using Dual_EC_DRBG 64

10.4 Auxiliary Functions ... 67

10.4.1 Derivation Function Using a Hash Function (Hash_df) 67

10.4.2 Derivation Function Using a Block Cipher Algorithm
(Block_Cipher_df) ... 68

10.4.3 BCC Function ... 70

11 Assurance ... 72

11.1 Minimal Documentation Requirements .. 72

11.2 Implementation Validation Testing ... 73

11.3 Health Testing 73

11.3.1 Known Answer Testing .. 73

11.3.2 Testing the Instantiate Function .. 74

11.3.3 Testing the Generate Function .. 74

11.3.4 Testing the Reseed Function ... 75

11.3.5 Testing the Uninstantiate Function ... 75

11.3.6 Error Handling ... 75

11.3.6.1 Errors Encountered During Normal Operation 75

11.3.6.2 Errors Encountered During Health Testing 76

Appendix A: (Normative) Application-Specific Constants 77

A.1 Constants for the Dual_EC_DRBG ... 77

A.1.1 Curve P-256 ... 77

A.1.2 Curve P-384 ... 78

A.1.3 Curve P-521 ... 78

A.2 Using Alternative Points in the Dual_EC_DRBG .. 79

A.2.1 Generating Alternative P, Q ... 79

A.2.2 Additional Self-testing Required for Alternative P, Q 80

Appendix B: (Normative) Conversion and Auxilliary Routines 81

B.1 Bitstring to an Integer .. 81

B.2 Integer to a Bitstring .. 81

NIST SP 800-90A January 2012

viii

B.3 Integer to an Byte String ... 81

B.4 Byte String to an Integer ... 82

B.5 Converting Random Numbers from/to Random Bits ... 82

B.5.1 Converting Random Bits into a Random Number 82

B.5.1.1 The Simple Discard Method ... 83

B.5.1.2 The Complex Discard Method ... 83

B.5.1.3 The Simple Modular Method .. 84

B.5.1.4 The Complex Modular Method ... 84

B.5.2 Converting a Random Number into Random Bits 85

B.5.2.1 The No Skew (Variable Length Extraction) Method 85

B.5.2.2 The Negligible Skew (Fixed Length Extraction) Method 86

Appendix C: (Informative) Security Considerations when Extracting Bits
in the Dual_EC_DRBG ... 88

C.1 Potential Bias Due to Modular Arithmetic for Curves Over Fp 88

C.2 Adjusting for the missing bit(s) of entropy in the x coordinates. 88

Appendix D: (Informative) Example Pseudocode for Each DRBG
Mechanism ... 92

D.1 Hash_DRBG Example .. 92

D.1.1 Instantiation of Hash_DRBG .. 93

D.1.2 Reseeding a Hash_DRBG Instantiation .. 95

D.1.3 Generating Pseudorandom Bits Using Hash_DRBG 96

D.2 HMAC_DRBG Example .. 98

D.2.1 Instantiation of HMAC_DRBG .. 98

D.2.2 Generating Pseudorandom Bits Using HMAC_DRBG 100

D.3 CTR_DRBG Example Using a Derivation Function .. 101

D.3.1 The CTR_DRBG_Update Function .. 102

D.3.2 Instantiation of CTR_DRBG Using a Derivation Function 103

D.3.3 Reseeding a CTR_DRBG Instantiation Using a Derivation Function 104

D.3.4 Generating Pseudorandom Bits Using CTR_DRBG 106

D.4 CTR_DRBG Example Without a Derivation Function ... 108

D.4.1 The CTR_DRBG_Update Function .. 108

D.4.2 Instantiation of CTR_DRBG Without a Derivation Function 108

NIST SP 800-90A January 2012

ix

D.4.3 Reseeding a CTR_DRBG Instantiation Without a Derivation Function ... 109

D.4.4 Generating Pseudorandom Bits Using CTR_DRBG 109

D.5 Dual_EC_DRBG Example .. 109

D.5.1 Instantiation of Dual_EC_DRBG .. 110

D.5.2 Generating Pseudorandom Bits Using Dual_EC_DRBG 112

Appendix E: (Informative) DRBG Mechanism Selection 114

E.1 Hash_DRBG .. 114

E.2 HMAC_DRBG .. 115

E.3 CTR_DRBG ... 116

E.4 DRBGs Based on Hard Problems ... 117

E.5 Summary for DRBG Selection .. 118

Appendix F : (Informative) Conformance to “Non-testable” Requirements . 120

Appendix G : (Informative) References ... 123

Appendix H : (Informative) Revisions .. 124

Appendix G: (Informative) References .. 123

Appendix H: (Informative) Revisions ... 124

NIST SP 800-90A January 2012

1

Random Number Generation Using

Deterministic Random Bit Generators

1 Authority

This publication has been developed by the National Institute of Standards and Technology

(NIST) in furtherance of its statutory responsibilities under the Federal Information

Security Management Act (FISMA) of 2002, Public Law 107-347.

NIST is responsible for developing standards and guidelines, including minimum

requirements, for providing adequate information security for all agency operations and

assets, but such standards and guidelines shall not apply to national security systems.

This recommendation has been prepared for use by Federal agencies. It may be used by

nongovernmental organizations on a voluntary basis and is not subject to copyright.

(Attribution would be appreciated by NIST.)

Nothing in this Recommendation should be taken to contradict standards and guidelines

made mandatory and binding on federal agencies by the Secretary of Commerce under

statutory authority. Nor should this Recommendation be interpreted as altering or

superseding the existing authorities of the Secretary of Commerce, Director of the OMB, or

any other federal official.

Conformance testing for implementations of this Recommendation will be conducted

within the framework of the Cryptographic Module Validation Program (CMVP) and the

Cryptographic Algorithm Validation Program(CAVP). The requirements of this

Recommendation are indicated by the word “shall.” Some of these requirements may be

out-of-scope for CMVP or CAVP validation testing, and thus are the responsibility of

entities using, implementing, installing or configuring applications that incorporate this

Recommendation.

NIST SP 800-90A January 2012

2

2 Introduction

This Recommendation specifies techniques for the generation of random bits that may then be

used directly or converted to random numbers when random values are required by

applications using cryptography.

There are two fundamentally different strategies for generating random bits. One strategy is to

produce bits non-deterministically, where every bit of output is based on a physical process

that is unpredictable; this class of random bit generators (RBGs) is commonly known as non-

deterministic random bit generators (NRBGs)1. The other strategy is to compute bits

deterministically using an algorithm; this class of RBGs is known as Deterministic Random

Bit Generators (DRBGs)2.

A DRBG is based on a DRBG mechanism as specified in this Recommendation and

includes a source of entropy input. A DRBG mechanism uses an algorithm (i.e., a DRBG

algorithm) that produces a sequence of bits from an initial value that is determined by a

seed that is determined from the entropy input. Once the seed is provided and the initial

value is determined, the DRBG is said to be instantiated and may be used to produce

output. Because of the deterministic nature of the process, a DRBG is said to produce

pseudorandom bits, rather than random bits. The seed used to instantiate the DRBG must

contain sufficient entropy to provide an assurance of randomness. If the seed is kept secret,

and the algorithm is well designed, the bits output by the DRBG will be unpredictable, up

to the instantiated security strength of the DRBG.

The security provided by an RBG that uses a DRBG mechanism is a system

implementation issue; both the DRBG mechanism and its source of entropy input must be

considered when determining whether the RBG is appropriate for use by consuming

applications.

1 NRBGs have also been called True Random Number (or Bit) Generators or Hardware Random Number

Generators.

2 DRBGS have also been called Pseudorandom Bit Generators.

NIST SP 800-90A January 2012

3

3 Scope

This Recommendation includes:

1. Requirements for the use of DRBG mechanisms,

2. Specifications for DRBG mechanisms that use hash functions, block ciphers and

number theoretic problems,

3. Implementation issues, and

4. Assurance considerations.

This Recommendation specifies several diverse DRBG mechanisms, all of which provided

acceptable security when this Recommendation was published. However, in the event that

new attacks are found on a particular class of DRBG mechanisms, a diversity of approved

mechanisms will allow a timely transition to a different class of DRBG mechanism.

Random number generation does not require interoperability between two entities, e.g.,

communicating entities may use different DRBG mechanisms without affecting their ability

to communicate. Therefore, an entity may choose a single, appropriate DRBG mechanism

for their consuming applications; see Annex G for a discussion of DRBG mechanism

selection.

The precise structure, design and development of a random bit generator is outside the

scope of this document.

NIST Special Publication (SP) 800-90B [SP 800-90B] provides guidance on designing and

validating entropy sources. SP 800-90C [SP 800-90C] provides guidance on the

construction of an RBG from a source of entropy input and an approved DRBG

mechanism from this document (i.e., SP 800-90A).

NIST SP 800-90A January 2012

4

4 Terms and Definitions

Algorithm A clearly specified mathematical process for computation; a

set of rules that, if followed, will give a prescribed result.

Approved FIPS-approved, NIST-Recommended and/or validated by the

Cryptographic Algorithm Validation Program (CAVP).

Approved entropy source An entropy source that has been validated as conforming to

SP 800-90B.

Backtracking Resistance Backtracking resistance is provided relative to time T if there

is assurance that an adversary who has knowledge of the

internal state of the DRBG at some time subsequent to time T

would be unable to distinguish between observations of ideal

random bitstrings and (previously unseen) bitstrings that were

output by the DRBG prior to time T. The complementary

assurance is called Prediction Resistance.

Biased A value that is chosen from a sample space is said to be biased

if one value is more likely to be chosen than another value.

Contrast with unbiased.

Bitstring A bitstring is an ordered sequence of 0’s and 1’s. The leftmost

bit is the most significant bit of the string and is the newest bit

generated. The rightmost bit is the least significant bit of the

string.

Bitwise Exclusive-Or An operation on two bitstrings of equal length that combines

corresponding bits of each bitstring using an exclusive-or

operation.

Block Cipher A symmetric key cryptographic algorithm that transforms a

block of information at a time using a cryptographic key. For

a block cipher algorithm, the length of the input block is the

same as the length of the output block.

Consuming Application The application (including middleware) that uses random

numbers or bits obtained from an approved random bit

generator.

Cryptographic Key (Key) A parameter that determines the operation of a cryptographic

function such as:

1. The transformation from plaintext to ciphertext and

vice versa,

2. The generation of keying material,

NIST SP 800-90A January 2012

5

3. A digital signature computation or verification.

Deterministic Algorithm An algorithm that, given the same inputs, always produces the

same outputs.

Deterministic Random

Bit Generator (DRBG)

An RBG that includes a DRBG mechanism and (at least

initially) has access to a source of entropy input. The DRBG

produces a sequence of bits from a secret initial value called a

seed, along with other possible inputs. A DRBG is often

called a Pseudorandom Number (or Bit) Generator.

DRBG Mechanism The portion of an RBG that includes the functions necessary

to instantiate and uninstantiate the RBG, generate

pseudorandom bits, (optionally) reseed the RBG and test the

health of the the DRBG mechanism.

DRBG Mechanism

Boundary

A conceptual boundary that is used to explain the operations

of a DRBG mechanism and its interaction with and relation to

other processes.

Entropy A measure of the disorder, randomness or variability in a

closed system. Min-entropy is the measure used in this

Recommendation.

Entropy Input An input bitstring that provides an assessed minimum amount

of unpredictability for a DRBG mechanism. (See min-

entropy.)

Entropy Source A process or mechanism that produces unpredictable digital

data. See SP 800-90B. Contrast with the Source of Entropy

Input.

Equivalent Process Two processes are equivalent if, when the same values are

input to each process, the same output is produced.

Exclusive-or A mathematical operation; the symbol , defined as:

0 0 = 0

0 1 = 1

1 0 = 1

1 1 = 0.

Equivalent to binary addition without carry.

Fresh Entropy A bitstring output from a source of entropy input for which

there is a negligible probability that it has been previously

output by the source and a negligible probability that the

bitstring has been previously used by the DRBG.

NIST SP 800-90A January 2012

6

Full Entropy For the purposes of this Recommendation, an n-bit string is

said to have full entropy if that bitstring is estimated to contain

at least (1)n bits of entropy, where 0 2
-64

. A source of

full-entropy bitstrings serves as a practical approximation to a

source of ideal random bitstrings of the same length (see ideal

random sequence).

Hash Function A (mathematical) function that maps values from a large

(possibly very large) domain into a smaller range. The

function satisfies the following properties:

1. (One-way) It is computationally infeasible to find any

input that maps to any pre-specified output;

2. (Collision free) It is computationally infeasible to find

any two distinct inputs that map to the same output.

Health Testing Testing within an implementation immediately prior to or

during normal operation to determine that the implementation

continues to perform as implemented and as validated

Ideal Random Bitstring See Ideal Random Sequence.

Ideal Random Sequence Each bit of an ideal random sequence is unpredictable and

unbiased, with a value that is independent of the values of the

other bits in the sequence. Prior to the observation of the

sequence, the value of each bit is equally likely to be 0 or 1,

and, the probability that a particular bit will have a particular

value is unaffected by knowledge of the values of any or all of

the other bits. An ideal random sequence of n bits contains n

bits of entropy.

Implementation An implementation of an RBG is a cryptographic device or

portion of a cryptographic device that is the physical

embodiment of the RBG design, for example, some code

running on a computing platform.

Implementation Testing

for Validation

Testing by an independent and accredited party to ensure that

an implemention of this Recommendation conforms to the

specifications of this Recommendation.

Instantiation of an RBG An instantiation of an RBG is a specific, logically

independent, initialized RBG. One instantiation is

distinguished from another by a “handle” (e.g., an identifying

number).

Internal State The collection of stored information about a DRBG

instantiation. This can include both secret and non-secret

NIST SP 800-90A January 2012

7

information.

Key See Cryptographic Key.

Min-entropy The min-entropy (in bits) of a random variable X is the largest

value m having the property that each observation of X

provides at least m bits of information (i.e., the min-entropy of

X is the greatest lower bound for the information content of

potential observations of X). The min-entropy of a random

variable is a lower bound on its entropy. The precise

formulation for min-entropy is (log2 max pi) for a discrete

distribution having probabilities p1,…, pn. Min-entropy is

often used as a worst-case measure of the unpredictability of a

random variable. Also see SP 800-90B.

Non-Deterministic

Random Bit Generator

(Non-deterministic RBG)

(NRBG)

An RBG that (when working properly) produces outputs that

have full entropy. Contrast with a DRBG. Other names for

non-deterministic RBGs are True Random Number (or Bit)

Generators and, simply, Random Number (or Bit) Generators.

Nonce A time-varying value that has at most a negligible chance of

repeating, e.g., a random value that is generated anew for each

use, a timestamp, a sequence number, or some combination of

these.

Personalization String An optional string of bits that is combined with a secret

entropy input and (possibly) a nonce to produce a seed.

Prediction Resistance Prediction resistance is provided relative to time T if there is

assurance that an adversary who has knowledge of the internal

state of the DRBG at some time prior to T would be unable to

distinguish between observations of ideal random bitstrings

and bitstrings output by the DRBG at or subsequent to time T.

The complementary assurance is called Backtracking

Resistance.

Pseudorandom A process (or data produced by a process) is said to be

pseudorandom when the outcome is deterministic, yet also

effectively random, as long as the internal action of the

process is hidden from observation. For cryptographic

purposes, “effectively” means “within the limits of the

intended cryptographic strength.”

Pseudorandom Number

Generator

See Deterministic Random Bit Generator.

Public Key In an asymmetric (public) key cryptosystem, that key of an

NIST SP 800-90A January 2012

8

entity’s key pair that is publicly known.

Public Key Pair In an asymmetric (public) key cryptosystem, the public key

and associated private key.

Random Number For the purposes of this Recommendation, a value in a set that

has an equal probability of being selected from the total

population of possibilities and, hence, is unpredictable. A

random number is an instance of an unbiased random variable,

that is, the output produced by a uniformly distributed random

process.

Random Bit Generator

(RBG)

A device or algorithm that outputs a sequence of binary bits

that appears to be statistically independent and unbiased. An

RBG is either a DRBG or an NRBG.

Reseed To acquire additional bits that will affect the internal state of

the DRBG mechanism.

Secure Channel A path for transferring data between two entities or

components that ensures confidentiality, integrity and replay

protection, as well as mutual authentication between the

entities or components. The secure channel may be provided

using cryptographic, physical or procedural methods, or a

combination thereof.

Security Strength A number associated with the amount of work (that is, the

number of operations of some sort) that is required to break a

cryptographic algorithm or system in some way. In this

Recommendation, the security strength is specified in bits and

is a specific value from the set {112, 128, 192, 256}. If the

security strength associated with an algorithm or system is S

bits, then it is expected that (roughly) 2
S
 basic operations are

required to break it.

Seed Noun : A string of bits that is used as input to a DRBG

mechanism. The seed will determine a portion of the internal

state of the DRBG, and its entropy must be sufficient to

support the security strength of the DRBG.

Verb : To acquire bits with sufficient entropy for the desired

security strength. These bits will be used as input to a DRBG

mechanism to determine a portion of the initial internal state.

Also see reseed.

Seedlife The length of the seed period.

Seed Period The period of time between instantiating or reseeding a DRBG

NIST SP 800-90A January 2012

9

with one seed and reseeding that DRBG with another seed.

Sequence An ordered set of quantities.

Shall Used to indicate a requirement of this Recommendation.

Should Used to indicate a highly desirable feature for a DRBG

mechanism that is not necessarily required by this

Recommendation.

Source of Entropy Input

(SEI)

A component of a DRBG that outputs bitstrings that can be

used as entropy input by a DRBG mechanism. An SEI may be

an approved entropy source, an approved RBG employing

an approved entropy source to obtain entropy input for its

DRBG mechanism, or a nested chain of approved RBGs

whose initial member employs an approved entropy source to

obtain entropy input for its DRBG mechanism.

String See Bitstring.

Unbiased A value that is chosen from a sample space is said to be

unbiased if all potential values have the same probability of

being chosen. Contrast with biased.

Unpredictable In the context of random bit generation, an output bit is

unpredictable if an adversary has only a negligible advantage

(that is, essentially not much better than chance) in predicting

it correctly.

Working State A subset of the internal state that is used by a DRBG

mechanism to produce pseudorandom bits at a given point in

time. The working state (and thus, the internal state) is

updated to the next state prior to producing another string of

pseudorandom bits.

NIST SP 800-90A January 2012

10

5 Symbols and Abbreviated Terms

The following abbreviations are used in this Recommendation:

Abbreviation Meaning

AES Advanced Encryption Standard, as specified in [FIPS197].

DRBG Deterministic Random Bit Generator.

ECDLP Elliptic Curve Discrete Logarithm Problem.

FIPS Federal Information Processing Standard.

HMAC Keyed-Hash Message Authentication Code, as specified in [FIP198].

NIST National Institute of Standards and Technology

NRBG Non-deterministic Random Bit Generator.

RBG Random Bit Generator.

SP NIST Special Publication

TDEA Triple Data Encryption Algorithm, as specified in [SP800-67].

The following symbols are used in this Recommendation:

Symbol Meaning

+ Addition

X Ceiling: the smallest integer X. For example, = 5, and 5.5 = 6.

X Floor: The largest integer less than or equal to X. For example, 5 = 5, and

5.3 = 5.

X Y Bitwise exclusive-or (also bitwise addition modulo 2) of two bitstrings X and

Y of the same length.

X || Y Concatenation of two strings X and Y. X and Y are either both bitstrings, or

both byte strings.

gcd (x, y) The greatest common divisor of the integers x and y.

len (a) The length in bits of string a.

x mod n The unique remainder r (where 0 r n-1) when integer x is divided by n. For

example, 23 mod 7 = 2.

Used in a figure to illustrate a "switch" between sources of input.

{a1, ...ai} The internal state of the DRBG at a point in time. The types and number of the

ai depends on the specific DRBG mechanism.

5

NIST SP 800-90A January 2012

11

Symbol Meaning

0xab Hexadecimal notation that is used to define a byte (i.e., 8 bits) of information,

where a and b each specify 4 bits of information and have values from the

range {0, 1, 2,…F}. For example, 0xc6 is used to represent 11000110, where c

is 1100, and 6 is 0110.

0
x
 A string of x zero bits.

NIST SP 800-90A January 2012

12

6 Document Organization

This Recommendation is organized as follows:

 Section 7 provides a functional model for a DRBG that uses a DRBG mechanism

and discusses the major components of the DRBG mechanim.

 Section 8 provides concepts and general requirements for the implementation and

use of a DRBG mechanism.

 Section 9 specifies the functions of a DRBG mechanism that are introduced in

Section 8. These functions use the DRBG algorithms specified in Section 10.

 Section 10 specifies approved DRBG algorithms. Algorithms have been specified

that are based on the hash functions specified in [FIPS 180], block cipher algorithms

specified in [FIPS197] and [SP 800-67] (AES and TDEA, respectively), and a

number theoretic problem that is expressed in elliptic curve technology.

 Section 11 addresses assurance issues for DRBG mechanisms, including

documentation requirements, implementation validation and health testing,

This Recommendation also includes the following appendices:

 Appendix A specifies additional information that is specific to the DRBG

mechanism based on elliptic curves.

 Appendix B provides conversion routines.

 Appendix C discusses security considerations when extracting bits using the DRBG

mechanism based on elliptic curves.

 Appendix D provides example pseudocode for each DRBG mechanism. Examples

of the values computed for the DRBGs using each approved cryptographic

algorithm and key size are available at

http://csrc.nist.gov/groups/ST/toolkit/examples.html under the entries for SP 800-

90A.

 Appendix E provides a discussion on DRBG mechanism selection.

 Appendix F provides a list of shall statements that are contained in this document

that are not validatable using NIST’s validation programs. Rather, these

requirements are the responsibility of entities using, implementing, installing or

configuring applications or protocols that incorporate this Recommendation.

 Appendix G provides references.

 Appendix H provides a list of modifications to SP 800-90A since it was first

published.

http://csrc.nist.gov/groups/ST/toolkit/examples.html

NIST SP 800-90A January 2012

13

7 Functional Model of a DRBG

Figure 1 provides a functional model of a DRBG (i.e., one type of RBG). A DRBG uses a

DRBG mechanism and a source of entropy input, and may, depending on the

implementation of the DRBG mechanism, include a nonce source. The components of this

model are discussed in the following subsections.

7.1 Entropy Input

The entropy input is provided to a DRBG mechanism for the seed (see Section 8.6). The

entropy input and the seed shall be kept secret. The secrecy of this information provides the

basis for the security of the DRBG. At a minimum, the entropy input shall provide the

amount of entropy requested by the DRBG mechanism. Appropriate sources for the entropy

input are discussed in Section 8.6.5.

Ideally, the entropy input will have full entropy; however, the DRBG mechanisms have

been specified to allow for some bias in the entropy input by allowing the length of the

entropy input to be longer than the required amount of entropy (expressed in bits). The

entropy input can be defined to be a variable length (within limits), as well as fixed length.

Figure 1: DRBG Functional Model

NIST SP 800-90A January 2012

14

In all cases, the DRBG mechanism expects that when entropy input is requested, the

returned bitstring will contain at least the requested amount of entropy. Additional entropy

beyond the amount requested is not required, but is desirable.

7.2 Other Inputs

Other information may be obtained by a DRBG mechanism as input. This information may

or may not be required to be kept secret by a consuming application; however, the security

of the DRBG itself does not rely on the secrecy of this information. The information should

be checked for validity when possible; for example, if time is used as an input, the format

and reasonableness of the time could be checked.

During DRBG instantiation, a nonce may be required, and if used, it is combined with the

entropy input to create the initial DRBG seed. The nonce and its use are discussed in

Sections 8.6.1 and 8.6.7.

This Recommendation strongly advises the insertion of a personalization string during

DRBG instantiation; when used, the personalization string is combined with the entropy

input bits and possibly a nonce to create the initial DRBG seed. The personalization string

shall be unique for all instantiations of the same DRBG mechanism type (e.g., all

instantiations of HMAC_DRBG). See Section 8.7.1 for additional discussion on

personalization strings.

Additional input may also be provided during reseeding and when pseudorandom bits are

requested. See Section 8.7.2 for a discussion of this input.

7.3 The Internal State

The internal state is the memory of the DRBG and consists of all of the parameters,

variables and other stored values that the DRBG mechanism uses or acts upon. The internal

state contains both administrative data (e.g., the security strength) and data that is acted

upon and/or modified during the generation of pseudorandom bits (i.e., the working state).

7.4 The DRBG Mechanism Functions

The DRBG mechanism functions handle the DRBG’s internal state. The DRBG

mechanisms in this Recommendation have five separate functions:

1. The instantiate function acquires entropy input and may combine it with a nonce

and a personalization string to create a seed from which the initial internal state is

created.

2. The generate function generates pseudorandom bits upon request, using the current

internal state, and generates a new internal state for the next request.

3. The reseed function acquires new entropy input and combines it with the current

internal state and any additional input that is provided to create a new seed and a

new internal state.

NIST SP 800-90A January 2012

15

4. The uninstantiate function zeroizes (i.e., erases) the internal state.

5. The health test function determines that the DRBG mechanism continues to function

correctly.

NIST SP 800-90A, Rev 1 January 2012

16

8. DRBG Mechanism Concepts and General Requirements

8.1 DRBG Mechanism Functions

A DRBG mechanism requires instantiate, uninstantiate, generate, and health testing

functions. A DRBG mechanism may also include a reseed function. A DRBG shall be

instantiated prior to the generation of output by the DRBG. These functions are specified

in Section 9.

8.2 DRBG Instantiations

A DRBG may be used to obtain

pseudorandom bits for different

purposes (e.g., DSA private keys

and AES keys) and may be

separately instantiated for each

purpose, thus effectively creating

two DRBGs.

A DRBG is instantiated using a seed

and may be reseeded; when

reseeded, the seed shall be different

than the seed used for instantiation.

Each seed defines a seed period for

the DRBG instantiation; an

instantiation consists of one or more

seed periods that begin when a new

seed is acquired (see Figure 2).

8.3 Internal States

During instantiation, an initial internal state is derived from the seed. The internal state for

an instantiation includes:

1. The working state:

a. One or more values that are derived from the seed and become part of the

internal state; these values shall remain secret, and

b. A count of the number of requests or blocks produced since the instantiation

was seeded or reseeded.

2. Administrative information (e.g., security strength and prediction resistance flag).

The internal state shall be protected at least as well as the intended use of the

pseudorandom output bits requested by the consuming application. A DRBG mechanism

implementation may be designed to handle multiple instantiations. Each DRBG

Figure 2: DRBG Instantiation

NIST SP 800-90A, Rev 1 January 2012

17

instantiation shall have its own internal state. The internal state for one DRBG

instantiation shall not be used as the internal state for a different instantiation.

A DRBG transitions between internal states when the generator is requested to provide

new pseudorandom bits. A DRBG may also be implemented to transition in response to

internal or external events (e.g., system interrupts) or to transition continuously (e.g.,

whenever time is available to run the generator).

8.4 Security Strengths Supported by an Instantiation

The DRBG mechanisms specified in this Recommendation support four security strengths:

112, 128, 192 or 256 bits. The security strength for the instantiation is requested during

DRBG instantiation, and the instantiate function obtains the appropriate amount of entropy

for the requested security strength. Any security strength may be requested (up to a

maximum of 256 bits), but the DRBG will only be instantiated to one of the four security

strengths above, depending on the DRBG implementation. A requested security strength

that is below the 112-bit security strength or is between two of the four security strengths

will be instantiated to the next highest strength (e.g., a requested security strength of 80

bits will result in an instantiation at the 112-bit security strength).

The actual security strength supported by a given instantiation depends on the DRBG

implementation and on the amount of entropy provided to the instantiate function. Note

that the security strength actually supported by a particular instantiation could be less than

the maximum security strength possible for that DRBG implementation (see Table 1). For

example, a DRBG that is designed to support a maximum security strength of 256 bits

could, instead, be instantiated to support only a 128-bit security strength if the additional

security provided by the 256-bit security strength is not required (i.e., by requesting only

128 bits of entropy during instantiation, rather than 256 bits of entropy).

Table 1: Possible Instantiated Security Strengths

Maximum Designed

Security Strength

112 128 192 256

Possible Instantiated

Security Strengths

112 112, 128 112, 128, 192 112, 128, 192,

256

Following instantiation, requests can be made to the generate function of that instantiation

for pseudorandom bits. For each generate request, the security strength to be provided for

the bits is requested. Any security strength can be requested during a call to the generate

function, up to the security strength of the instantiation, e.g., an instantiation could be

instantiated at the 128-bit security strength, but a request for pseudorandom bits could

indicate that a lesser security strength is actually required for the bits to be generated. The

generate function checks that the requested security strength does not exceed the security

strength for the instantiation. Assuming that the request is valid, the requested number of

bits is returned.

NIST SP 800-90A, Rev 1 January 2012

18

When an instantiation is used for multiple purposes, the minimum entropy requirement for

each purpose must be considered. The DRBG needs to be instantiated for the highest

security strength required. For example, if one purpose requires a security strength of 112

bits, and another purpose requires a security strength of 256 bits, then the DRBG needs to

be instantiated to support the 256-bit security strength.

8.5 DRBG Mechanism Boundaries

As a convenience, this Recommendation uses the notion of a “DRBG mechanism

boundary” to explain the operations of a DRBG mechanism and its interaction with and

relation to other processes; a DRBG mechanism boundary contains all DRBG mechanism

functions and internal states required for a DRBG. Data enters a DRBG mechanism

boundary via the DRBG’s public interfaces, which are made available to consuming

applications.

Within a DRBG mechanism boundary,

1. The DRBG internal state and the operation of the DRBG mechanism functions

shall only be affected according to the DRBG mechanism specification.

2. The DRBG internal state shall exist solely within the DRBG mechanism boundary.

The internal state shall not be accessible by non-DRBG functions or other

instantiations of that or other DRBGs.

3. Information about secret parts of the DRBG internal state and intermediate values

in computations involving these secret parts shall not affect any information that

leaves the DRBG mechanism boundary, except as specified for the DRBG

pseudorandom bit outputs.

Each DRBG mechanism includes one or more

cryptographic primitives (e.g., a hash function

or block cipher algortihm). Other applications

may use the same cryptographic primitive, but

the DRBG’s internal state and the DRBG

mechanism functions shall not be affected by

these other applications.

A DRBG mechanism’s functions may be

contained within a single device, or may be

distributed across multiple devices (see

Figures 3 and 4). Figure 3 depicts a DRBG for

which all functions are contained within the

same device. Figure 4 provides an example of

DRBG mechanism functions that are

distributed across multiple devices. In this

latter case, each device has a DRBG

mechanism sub-boundary that contains the

DRBG mechanism functions implemented on

DRBG Mechanism Boundary

Entropy

Input

States

Instantiate

Reseed

Instantiation

Request Bits

Test

Function

Uninstantiate

DRBG
Uninstantiate

Function

Test

DRBG

Generate

Function

Reseed

Function

Instantiate

Function

Figure 3: DRBG Mechanism Functions
within a Single Device

NIST SP 800-90A, Rev 1 January 2012

19

that device. The boundary around the entire DRBG mechanism shall include the

aggregation of sub-boundaries providing the DRBG mechanism functionality. The use of

distributed DRBG mechanism functions may be convenient for restricted environments

(e.g., smart card applications) in which the primary use of the DRBG does not require

repeated use of the instantiate or reseed functions.

Each DRBG mechanism boundary or sub-boundary shall contain a test function to test the

“health” of other DRBG mechanism functions within that boundary. In addition, each

boundary or sub-boundary shall contain an uninstantiate function in order to perform

and/or react to health testing.

When DRBG mechanism functions are distributed, a secure channel shall be used to

protect the confidentiality and integrity of the internal state or parts of the internal state that

are transferred between the distributed DRBG mechanism sub-boundaries. The security

provided by the secure channel shall be consistent with the security required by the

consuming application.

8.6 Seeds

When a DRBG is used to generate pseudorandom bits, a seed shall be acquired prior to the

generation of output bits by the DRBG. The seed is used to instantiate the DRBG and

determine the initial internal state that is used when calling the DRBG to obtain the first

output bits.

Reseeding is a means of restoring the secrecy of the output of the DRBG if a seed or the

internal state becomes known. Periodic reseeding is a good way of addressing the threat of

either the DRBG seed, entropy input or working state being compromised over time. In

some implementations (e.g., smartcards), an adequate reseeding process may not be

possible. In these cases, the best policy might be to replace the DRBG, obtaining a new

seed in the process (e.g., obtain a new smart card).

Figure 4: Distributed DRBG Mechanism Functions

NIST SP 800-90A, Rev 1 January 2012

20

The seed and its use by a DRBG mechanism shall be generated and handled as specified in

the following subsections.

8.6.1 Seed Construction for Instantiation

Figure 5 depicts the seed construction

process for instantiation. The seed

material used to determine a seed for

instantiation consists of entropy input,

a nonce and an optional

personalization string. Entropy input

shall always be used in the

construction of a seed; requirements

for the entropy input are discussed in

Section 8.6.3. Except for the case

noted below, a nonce shall be used;

requirements for the nonce are

discussed in Section 8.6.7. A

personalization string should also be

used; requirements for the

personalization string are discussed in Section 8.7.1.

Depending on the DRBG mechanism and the source of the entropy input, a derivation

function may be required to derive a seed from the seed material. However, in certain

circumstances, the DRBG mechanism based on block cipher algorithms (see Section 10.2)

may be implemented without a derivation function. When implemented in this manner, a

(separate) nonce (as shown in Figure 5) is not used. Note, however, that the personalization

string could contain a nonce, if desired.

8.6.2 Seed Construction for Reseeding

Figure 6 depicts the seed construction

process for reseeding an instantiation. The

seed material for reseeding consists of a

value that is carried in the internal state3,

new entropy input and, optionally,

additional input. The internal state value

and the entropy input are required;

requirements for the entropy input are

discussed in Section 8.6.3. Requirements

for the additional input are discussed in

Section 8.7.2. As in Section 8.6.1, a

derivation function may be required for

3 See each DRBG mechanism specification for the value that is used.

 Seed

Entropy
Input

Nonce
(Optional)

Personalization
String

Opt.
df

Figure 5: Seed Construction for Instantiation

Entropy
Input

(Optional)
Additional

Input

Opt.
df

Seed

Internal State
Value

Figure 6: Seed Construction for Reseeding

NIST SP 800-90A, Rev 1 January 2012

21

reseeding. See Section 8.6.1 for further guidance.

8.6.3 Entropy Requirements for the Entropy Input

The entropy input shall have entropy that is equal to or greater than the security strength of

the instantiation. Additional entropy may be provided in the nonce or the optional

personalization string during instantiation, or in the additional input during reseeding and

generation, but this is not required. The use of more entropy than the minimum value will

offer a security “cushion”. This may be useful if the assessment of the entropy provided in the

entropy input is incorrect. Having more entropy than the assessed amount is acceptable;

having less entropy than the assessed amount could be fatal to security. The presence of more

entropy than is required, especially during the instantiatiation, will provide a higher level of

assurance than the minimum required entropy.

8.6.4 Seed Length

The minimum length of the seed depends on the DRBG mechanism and the security

strength required by the consuming application. See Section 10.

8.6.5 Source of Entropy Input

The source of the entropy input (SEI) shall be either:

1. An approved entropy source,

2. An approved NRBG (note that an NRBG includes an entropy source), or

3. An approved DRBG, thus forming a chain of at least two DRBGs; the initial

DRBG in the chain shall be seeded by an approved NRBG or an approved

entropy source. A DRBG instantiation may seed or reseed another DRBG

instantiation, but shall not reseed itself.

In cases 1 and 2, the SEI provides fresh entropy bits upon request. In case 3, the SEI can

provide fresh entropy bits only if it has access to an entropy source or NRBG at the time of

the request; otherwise, the entropy input provided by the SEI has a maximum security

strength that is (at most) the security strength of the DRBG serving as the SEI. Further

discussion about entropy and entropy sources is provided in [SP 800-90B]; further

discussion on RBG construction and SEIs is provided in [SP 800-90C].

8.6.6 Entropy Input and Seed Privacy

The entropy input and the resulting seed shall be handled in a manner that is consistent

with the security required for the data protected by the consuming application. For

example, if the DRBG is used to generate keys, then the entropy inputs and seeds used to

generate the keys shall (at a minimum) be protected as well as the keys.

NIST SP 800-90A, Rev 1 January 2012

22

8.6.7 Nonce

A nonce may be required in the construction of a seed during instantation in order to

provide a security cushion to block certain attacks. The nonce shall be either:

a. A value with at least (1/2 security_strength) bits of entropy,

b. A value that is expected to repeat no more often than a (1/2 security_strength)-bit

random string would be expected to repeat.

For case a, the nonce may be acquired from the same source and at the same time as the

entropy input. In this case, the seed could be considered to be constructed from an “extra

strong” entropy input and the optional personalization string, where the entropy for the

entropy input is equal to or greater than (3/2 security_strength) bits.

The nonce provides greater assurance that the DRBG provides security_strength bits of

security to the consuming application. When a DRBG is instantiated many times without a

nonce, a compromise may become more likely. In some consuming applications, a single

DRBG compromise may reveal long-term secrets (e.g., a compromise of the DSA per-

message secret may reveal the signing key).

8.6.8 Reseeding

Generating too many outputs from a seed (and other input information) may provide

sufficient information for successfully predicting future outputs (see Section 8.8). Periodic

reseeding will reduce security risks, reducing the likelihood of a compromise of the data

that is protected by cryptographic mechanisms that use the DRBG.

Seeds shall have a finite seedlife (i.e., the number of blocks or outputs that are produced

during a seed period); the maximum seedlife is dependent on the DRBG mechanism used.

Reseeding is accomplished by 1) an explicit reseeding of the DRBG by the consuming

application, or 2) by the generate function when prediction resistance is requested (see

Section 8.8).

Reseeding of the DRBG shall be performed in accordance with the specification for the

given DRBG mechanism. The DRBG reseed specifications within this Recommendation

are designed to produce a new seed that is determined by both the old seed and newly

obtained entropy input that will support the desired security strength.

An alternative to reseeding is to create an entirely new instantiation. However, reseeding is

preferred over creating a new instantiation. If a DRBG instantiation was initially seeded

with sufficient entropy, and the source of entropy input subsequently fails without being

detected, then a new instantiation using the same (failed) source of entropy input would not

have sufficient entropy to operate securely. However, if there is an undetected failure in the

source of entropy input of an already properly seeded DRBG instantiation, the DRBG

instantiation will still retain any previous entropy when the reseed operation fails to

introduce new entropy.

NIST SP 800-90A, Rev 1 January 2012

23

8.6.9 Seed Use

The seed that is used to initialize one instantiation of a DRBG shall not be intentionally

used to reseed the same instantiation or used as the seed for another DRBG instantiation.

In addition, a DRBG shall not reseed itself. Note that a DRBG does not provide output

until a seed is available, and the internal state has been initialized (see Section 10).

8.6.10 Entropy Input and Seed Separation

The seed used by a DRBG and the entropy input used to create that seed shall not

intentionally be used for other purposes (e.g., domain parameter or prime number

generation).

8.7 Other Input to the DRBG Mechanism

Other input may be provided during DRBG instantiation, pseudorandom bit generation and

reseeding. This input may contain entropy, but this is not required. During instantiation, a

personalization string may be provided and combined with entropy input and a nonce to

derive a seed (see Section 8.6.1). When pseudorandom bits are requested and when

reseeding is performed, additional input may be provided (see Section 8.7.2).

Depending on the method for acquiring the input, the exact value of the input may or may

not be known to the user or consuming application. For example, the input could be

derived directly from values entered by the user or consuming application, or the input

could be derived from information introduced by the user or consuming application (e.g.,

from timing statistics based on key strokes), or the input could be the output of another

RBG.

8.7.1 Personalization String

During instantiation, a personalization string should be used to derive the seed (see

Section 8.6.1). The intent of a personalization string is to differentiate this DRBG

instantiation from all other instantiations that might ever be created. The personalization

string should be set to some bitstring that is as unique as possible, and may include secret

information. Secret information should not be used in the personalization string if it

requires a level of protection that is greater than the intended security strength of the

DRBG instantiation. Good choices for the personalization string contents include:

 Device serial numbers,

 Public keys,

 User identification,

 Per-module or per-device values,

 Timestamps,

 Network addresses,

 Special key values for this specific

DRBG instantiation,

 Application identifiers,

 Protocol version identifiers,

 Random numbers,

 Nonces,

 Seedfiles.

NIST SP 800-90A, Rev 1 January 2012

24

8.7.2 Additional Input

During each request for bits from a DRBG and during reseeding, the insertion of additional

input is allowed. This input is optional, and the ability to enter additional input may or may

not be included in an implementation. Additional input may be either secret or publicly

known; its value is arbitrary, although its length may be restricted, depending on the

implementation and the DRBG mechanism. The use of additional input may be a means of

providing more entropy for the DRBG internal state that will increase assurance that the

entropy requirements are met. If the additional input is kept secret and has sufficient

entropy, the input can provide more assurance when recovering from the compromise of

the entropy input, the seed or one or more DRBG internal states.

8.8 Prediction Resistance and Backtracking Resistance

Figure 7 depicts the sequence of DRBG internal states that result from a given seed. Some

subset of bits from each internal state are used to generate pseudorandom bits upon request

by a user. The following discussions will use the figure to explain backtracking and

prediction resistance.

Suppose that a compromise occurs at Statex, where Statex contains both secret and non-

secret information.

Backtracking Resistance: Backtracking resistance is provided relative to time T if there is

assurance that an adversary who has knowledge of the internal state of the DRBG at some

time subsequent to time T would be unable to distinguish between observations of ideal

random bitstrings and (previously unseen) bitstrings that were output by the DRBG prior to

time T. This assumes that the adversary is incapable of performing the work required to

negate the claimed security strength of the DRBG. Backtracking resistance means that a

compromise of the DRBG internal state has no effect on the security of prior outputs. That

is, an adversary who is given access to all of the prior output sequence cannot distinguish it

from random output with less work than is associated with the security strength of the

instantiation; if the adversary knows only part of the prior output, he cannot determine any

bit of that prior output sequence that he has not already seen.

For example, suppose that an adversary knows Statex. Backtracking resistance means that:

a. The output bits from State1 to Statex-1 cannot be distinguished from random output.

Figure 7: Sequence of DRBG States

NIST SP 800-90A, Rev 1 January 2012

25

b. The prior internal state values themselves (State1 to Statex-1) cannot be recovered,

given knowledge of the secret information in Statex.

Backtracking resistance can be provided by ensuring that the DRBG generate algorithm is

a one-way function. All DRBG mechanisms in this Recommendation have been designed

to provide backtracking resistance.

 Prediction Resistance: Prediction resistance means that a compromise of the DRBG

internal state has no effect on the security of future DRBG outputs. That is, an adversary

who is given access to all of the output sequence after the compromise cannot distinguish it

from random output with less work than is associated with the security strength of the

instantiation; if the adversary knows only part of the future output sequence, he cannot

predict any bit of that future output sequence that he has not already known.

For example, suppose that an adversary knows Statex: Prediction resistance means that:

a. The output bits from Statex+1 and forward cannot be distinguished from an ideal

random bitstring by the adversary.

b. The future internal state values themselves (Statex+1 and forward) cannot be

predicted, given knowledge of Statex.

Prediction resistance is provided relative to time T if there is assurance that an adversary

with knowledge of the state of the RBG at some time(s) prior to T (but incapable of

performing work that matches the claimed security strength of the RBG) would be unable

to distinguish between a observations of ideal random bitstrings and (previously unseen)

bitstrings output by the RBG at or subsequent to time T. In particular, an RBG whose

design allows the adversary to step forward from the initially compromised RBG state(s) to

obtain knowledge of subsequent RBG states and the corresponding outputs (including the

RBG state and output at time T) would not provide prediction resistance relative to time T.

Prediction resistance can be provided only by ensuring that a DRBG is effectively reseeded

with fresh entropy between DRBG requests. That is, an amount of entropy that is

sufficient to support the security strength of the DRBG being reseeded (i.e., an amount that

is at least equal to the security strength) must be provided to the DRBG in a way that

ensures that knowledge of the current DRBG internal state does not allow an adversary any

useful knowledge about future DRBG internal states or outputs. Prediction resistance can

be provided when the source of entropy input is or has access to an entropy source or an

NRBG (see Section 8.6.5).

For example, suppose that an adversary knows internal statex-2 (see Figure 7). If the

adversary also knows the DRBG mechanism used, he then has enough information to

compute statex-1 and statex. If prediction is then requested for the next bits that are to be

output from the DRBG, new entropy bits will be inserted into the DRBG instantiation that

will create a "barrier" between statex and statex+1, i.e., the adversary will not be able

compute statex+1, simply by knowing statex – the work required will be greatly increased

by the entropy inserted during the prediction request.

NIST SP 800-90A, Rev 1 January 2012

26

9 DRBG Mechanism Functions

Except for the health test function, which is discussed in Section 11.3, the functions of the

DRBG mechanisms in this Recommendation are specified as an algorithm and an

“envelope” of pseudocode around that algorithm. The pseudocode in the envelopes

(provided in this section) checks the input parameters, obtains input not provided via the

input parameters, accesses the appropriate DRBG algorithm and handles the internal state.

A function need not be implemented using such envelopes, but the function shall have

equivalent functionality.

During instantiation and reseeding (see Sections 9.1 and 9.2), entropy input is acquired for

constructing a seed as discussed in Sections 8.6.1 and 8.6.2. In the specifications of this

Recommendation, a Get_entropy_input pseudo-function is used for this purpose. The

entropy input shall not be provided by a consuming application as an input parameter in an

instantiate or reseed request. The Get_entropy_input function is fully specified in [SP

800-90C] for various RBG constructions; however, in general, the function has the

following meaning:

Get_entropy_input: A function that is used to obtain entropy input. The function call

is:

(status, entropy_input) = Get_entropy_input (min_entropy, min_ length,

max_ length, prediction_resistance_request),

which requests a string of bits (entropy_input) with at least min_entropy bits of

entropy. The length for the string shall be equal to or greater than min_length bits, and

less than or equal to max_length bits. The prediction_resistance_request parameter

indicates whether or not prediction resistance is to be provided during the request (i.e.,

whether fresh entropy is required4). A status code is also returned from the function.

Note that an implementation may choose to define this functionality differently by

omitting some of the parameters; for example, for many of the DRBG mechanisms,

min_length = min_entropy for the Get_entropy_input function, in which case, the second

parameter could be omitted.

In the pseudocode in this section, two classes of error codes are returned: ERROR_FLAG

and CATASTROPHIC_ERROR_FLAG. These error codes are discussed in Section

11.3.6.

Comments are often included in the pseudocode in this Recommendation. A comment

placed on a line that includes pseudocode applies to that line; a comment placed on a line

containing no pseudocode applies to one or more lines of pseudocode immediately below

that comment.

4 Entropy input may be obtained from an entropy source or an NRBG, both of which provide fresh entropy.

Entropy input could also be obtained from a DRBG that may or may not have access to an entropy source or

NRBG. The request for prediction resistance rules out the use of a DRBG that does not have access to either

an entropy source or NRBG.

NIST SP 800-90A, Rev 1 January 2012

27

9.1 Instantiating a DRBG

A DRBG shall be instantiated prior to the generation of pseudorandom bits. The instantiate

function:

1. Checks the validity of the input parameters,

2. Determines the security strength for the DRBG instantiation,

3. Determines any DRBG mechanism-specific parameters (e.g., elliptic curve domain

parameters),

4. Obtains entropy input with entropy sufficient to support the security strength,

5. Obtains the nonce (if required),

6. Determines the initial internal state using the instantiate algorithm,

7. If an implemention supports multiple simultaneous instantiations of the same

DRBG, a state_handle for the internal state is returned to the consuming

application (see below).

Let working_state be the working state for the particular DRBG mechanism (e.g.,

HMAC_DRBG), and let min_length, max_ length, and

highest_supported_security_strength be defined for each DRBG mechanism (see Section

10). Let Instantiate_algorithm be a call to the appropriate instantiate algorithm for the

DRBG mechanism (see Section 10).

The following or an equivalent process shall be used to instantiate a DRBG.

Instantiate_function (requested_instantiation_security_strength,

prediction_resistance_flag, personalization_string):

1. requested_instantiation_security_strength: A requested security strength for the

instantiation. Implementations that support only one security strength do not

require this parameter; however, any consuming application using that

implementation must be aware of the security strength that is supported.

2. prediction_resistance_flag: Indicates whether or not prediction resistance may be

required by the consuming application during one or more requests for

pseudorandom bits. Implementations that always provide or do not support

prediction resistance do not require this parameter, since the intent is implicitly

known. However, the user of a consuming application must determine whether or

not prediction resistance may be required by the consuming application before

electing to use such an implementation. If the prediction_resistance_flag is not

needed (i.e., because prediction resistance is always performed or is not supported),

then the prediction_resistance_flag input parameter and instantiate process step 2

are omitted, and the prediction_resistance_flag is omitted from the internal state in

step 11 of the instantiate process. In addition, step 6 can be modified to not perform

a check for the prediction_resistance_flag when the flag is not used in an

implementation; in this case, the Get_entropy_input call need not include the

prediction_resistance_request parameter.

NIST SP 800-90A, Rev 1 January 2012

28

3. personalization_string: An optional input that provides personalization information

(see Sections 8.6.1 and 8.7.1). The maximum length of the personalization string

(max_personalization_string_length) is implementation dependent, but shall be

less than or equal to the maximum length specified for the given DRBG mechanism

(see Section 10). If the input of a personalization string is not supported, then the

personalization_string input parameter and step 3 of the instantiate process are

omitted, and instantiate process step 9 is modified to omit the personalization

string.

Required information not provided by the consuming application during

instantiation (This information shall not be provided by the consuming application as an

input parameter during the instantiate request):

1. entropy_input: Input bits containing entropy. The maximum length of the

entropy_input is implementation dependent, but shall be less than or equal to the

specified maximum length for the selected DRBG mechanism (see Section 10).

2. nonce: A nonce as specified in Section 8.6.7. Note that if a random value is used as

the nonce, the entropy_input and nonce could be acquired using a single

Get_entropy_input call (see step 6 of the instantiate process); in this case, the first

parameter of the Get_entropy_input call is adjusted to include the entropy for the

nonce (i.e., the security_strength is increased by at least ½ security_strength, and

min-length is increased to accommodate the length of the nonce), instantiate

process step 8 is omitted, and the nonce is omitted from the parameter list in

instantiate process step 9.

Note that in some cases, a nonce will not be used by a DRBG mechanism; in this

case, step 8 is omitted, and the nonce is omitted from the parameter list in

instantiate process step 9.

Output to a consuming application after instantiation:

1. status: The status returned from the instantiate function. The status will indicate

SUCCESS or an ERROR (i.e., either ERROR_FLAG or

CATASTROPHIC_ERROR_FLAG). If an ERROR is indicated, either no

state_handle or an invalid state_handle shall be returned. A consuming application

should check the status to determine that the DRBG has been correctly

instantiated.

2. state_handle: Used to identify the internal state for this instantiation in subsequent

calls to the generate, reseed, uninstantiate and test functions.

If a state handle is not required for an implementation because the implementation

does not support multiple simultaneous instantiations, a state_handle need not be

returned. In this case, instantiate process step 10 is omitted, process step 11 is

revised to save the only internal state, and process step 12 is altered to omit the

state_handle.

NIST SP 800-90A, Rev 1 January 2012

29

Information retained within the DRBG mechanism boundary after instantiation:

The internal state for the DRBG, including the working_state and administrative

information (see Sections 8.3 and 10 for definitions of the working_state and

administrative information).

Instantiate Process:

Comment: Check the validity of the input

parameters.

1. If requested_instantiation_security_strength >

highest_supported_security_strength, then return an ERROR_FLAG.

2. If prediction_resistance_flag is set, and prediction resistance is not supported, then

return an ERROR_FLAG.

3. If the length of the personalization_string > max_personalization_string_length,

return an ERROR_FLAG.

4. Set security_strength to the lowest security strength greater than or equal to

requested_instantiation_security_strength from the set {112, 128, 192, 256}.

5. Null step. Comment: This is intended to replace a step

from the previous version without changing

the step numbers.5

Comment: Obtain the entropy input.

6. (status, entropy_input) = Get_entropy_input (security_strength, min_length,

max_length, prediction_resistance_request).

7. If an ERROR is returned in step 6, return a CATASTROPHIC_ERROR_FLAG.

8. Obtain a nonce. Comment: This step shall include any

appropriate checks on the acceptability of the

nonce. See Section 8.6.7.

Comment: Call the appropriate instantiate

algorithm in Section 10 to obtain values for

the initial working_state.

9. initial_working_state = Instantiate_algorithm (entropy_input, nonce,

personalization_string, security_strength).

10. Get a state_handle for a currently empty internal state. If an empty internal state

cannot be found, return an ERROR_FLAG.

5 This step was originally used for selecting a curve when the Dual_EC_DRBG was implemented. However,

this task is more appropriately done by the Dual_EC_DRBG’s Instantiate_algorithm, after which the

parameters for the internal state are returned to the Instantiate_function. This change is not intended to

invalidate implementations, but to provide an equivalent process.

NIST SP 800-90A, Rev 1 January 2012

30

11. Set the internal state for the new instantiation (e.g., as indicated by state_handle) to

the initial values for the internal state (i.e., set the working_state to the values

returned as initial_working_state in step 9 and any other values required for the

working_state (see Section 10), and set the administrative information to the

appropriate values (e.g., the values of security_strength and the

prediction_resistance_flag).

12. Return SUCCESS and state_handle.

9.2 Reseeding a DRBG Instantiation

The reseeding of an instantiation is not required, but is recommended whenever a

comsuming application and implementation are able to perform this process. Reseeding

will insert additional entropy input into the generation of pseudorandom bits. Reseeding

may be:

 explicitly requested by a consuming application,

 performed when prediction resistance is requested by a consuming application,

 triggered by the generate function when a predetermined number of pseudorandom

outputs have been produced or a predetermined number of generate requests have

been made (i.e., at the end of the seedlife), or

 triggered by external events (e.g., whenever sufficient entropy is available).

If a reseed capability is not supported, a new DRBG instantiation may be created (see

Section 9.1).

The reseed function:

1. Checks the validity of the input parameters,

2. Obtains entropy input from a source that supports the security strength of the

DRBG, and

3. Using the reseed algorithm, combines the current working state with the new

entropy input and any additional input to determine the new working state.

Let working_state be the working state for the particular DRBG instantiation (e.g.,

HMAC_DRBG) , let min_length and max_ length be defined for each DRBG mechanism,

and let Reseed_algorithm be a call to the appropriate reseed algorithm for the DRBG

mechanism (see Section 10).

The following or an equivalent process shall be used to reseed the DRBG instantiation.

Reseed_function (state_handle, prediction_resistance_request, additional_input):

1) state_handle: A pointer or index that indicates the internal state to be reseeded. If a

state handle is not used by an implementation because the implemention does not

support multiple simultaneous instantiations, a state_handle is not provided as

input. Since there is only a single internal state in this case, reseed process step 1

NIST SP 800-90A, Rev 1 January 2012

31

obtains the contents of the internal state, and process step 6 replaces the

working_state of this internal state.

2) prediction_resistance_request: Indicates whether or not prediction resistance is to

be provided during the request (i.e., whether or not fresh entropy bits are required)6.

DRBGs that are implemented to always support prediction resistance or to never

support prediction resistance do not require this parameter. However, when

prediction resistance is not supported, the user of a consuming application must

determine whether or not prediction resistance may be required by the application

before electing to use such a DRBG implementation.

If prediction resistance is not supported, then the prediction_resistance_request

input parameter and step 2 of the reseed process is omitted, and reseed process step

4 is modified to omit the prediction_resistance_request parameter.

If prediction resistance is always performed, then the prediction_resistance_request

input parameter and reseed process step 2 may be omitted, and reseed process step

4 is replaced by:

(status, entropy_input) = Get_entropy_input (security_strength, min_length,

max_length)

3) additional_input: An optional input. The maximum length of the additional_input

(max_additional_input_length) is implementation dependent, but shall be less than

or equal to the maximum value specified for the given DRBG mechanism (see

Section 10). If the input by a consuming application of additional_input is not

supported, then the input parameter and step 2 of the reseed process are omitted,

and step 5 of the reseed process is modified to remove the additional_input from

the parameter list.

Required information not provided by the consuming application during reseeding

(This information shall not be provided by the consuming application as an input

parameter during the reseed request):

1. entropy_input: Input bits containing entropy. This input shall not be provided by

the DRBG instantiation being reseeded. The maximum length of the entropy_input

is implementation dependent, but shall be less than or equal to the specified

maximum length for the selected DRBG mechanism (see Section 10).

2. Internal state values required by the DRBG for the working_state and

administrative information, as appropriate.

Output to a consuming application after reseeding:

1. status: The status returned from the function. The status will indicate SUCCESS or

an ERROR.

6 A DRBG may be reseeded by an entropy source or an NRBG, both of which provide fresh entropy. A

DRBG could also be reseeded by a DRBG that may or may not have access to an entropy source or NRBG.

The request for prediction resistance during reseeding rules out the use of a DRBG that does not have access

to either an entropy source or NRBG. See [SP 800-90C] for further discussion.

NIST SP 800-90A, Rev 1 January 2012

32

Information retained within the DRBG mechanism boundary after reseeding:

Replaced internal state values (i.e., the working_state).

Reseed Process:

Comment: Get the current internal state and

check the input parameters.

1. Using state_handle, obtain the current internal state. If state_handle indicates an

invalid or unused internal state, return an ERROR_FLAG.

2. If prediction_resistance_request is set, and prediction_resistance_flag is not set,

then return an ERROR_FLAG.

3. If the length of the additional_input > max_additional_input_length, return an

ERROR_FLAG.

Comment: Obtain the entropy input.

4. (status, entropy_input) = Get_entropy_input (security_strength, min_length,

max_length, prediction_resistance_request).

5. If an ERROR is returned in step 4, return a CATASTROPHIC_ERROR_FLAG.

Comment: Get the new working_state using

the appropriate reseed algorithm in Section

10.

6. new_working_state = Reseed_algorithm (working_state, entropy_input,

additional_input).

7. Replace the working_state in the internal state for the DRBG instantiation (e.g., as

indicated by state_handle) with the values of new_working_state obtained in step

6.

8. Return SUCCESS.

9.3 Generating Pseudorandom Bits Using a DRBG

This function is used to generate pseudorandom bits after instantiation or reseeding. The

generate function:

1. Checks the validity of the input parameters.

2. Calls the reseed function to obtain sufficient entropy if the instantiation needs

additional entropy because the end of the seedlife has been reached or prediction

resistance is required; see Sections 9.3.2 and 9.3.3 for more information on

reseeding at the end of the seedlife and on handling prediction resistance requests.

3. Generates the requested pseudorandom bits using the generate algorithm.

4. Updates the working state.

NIST SP 800-90A, Rev 1 January 2012

33

5. Returns the requested pseudorandom bits to the consuming application.

9.3.1 The Generate Function

Let outlen be the length of the output block of the cryptographic primitive (see Section 10).

Let Generate_algorithm be a call to the appropriate generate algorithm for the DRBG

mechanism (see Section 10), and let Reseed_function be a call to the reseed function in

Section 9.2.

The following or an equivalent process shall be used to generate pseudorandom bits.

Generate_function (state_handle, requested_number_of_bits,

requested_security_strength, prediction_resistance_request, additional_input):

1. state_handle: A pointer or index that indicates the internal state to be used. If a

state handle is not used by an implementation because the implemention does not

support multiple simultaneous instantiations, a state_handle is not provided as

input. The state_handle is then omitted from the input parameter list in process step

7.1, generate process steps 1 and 7.3 are used to obtain the contents of the internal

state, and process step 10 replaces the working_state of this internal state.

2. requested_number_of_bits: The number of pseudorandom bits to be returned from

the generate function. The max_number_of_bits_per_request is implementation

dependent, but shall be less than or equal to the value provided in Section 10 for a

specific DRBG mechanism.

3. requested_security_strength: The security strength to be associated with the

requested pseudorandom bits. DRBG implementations that support only one

security strength do not require this parameter; however, any consuming

application using that DRBG implementation must be aware of the supported

security strength.

4. prediction_resistance_request: Indicates whether or not prediction resistance is to

be provided during the request. DRBGs that are implemented to always provide

prediction resistance or that do not support prediction resistance do not require this

parameter. However, when prediction resistance is not supported, the user of a

consuming application must determine whether or not prediction resistance may be

required by the application before electing to use such a DRBG implementation.

If prediction resistance is not supported, then the prediction_resistance_request

input parameter and steps 5 and 9.2 of the generate process are omitted, and

generate process steps 7 and 7.1 are modified to omit the check for the

prediction_resistance_request term.

If prediction resistance is always performed, then the prediction_resistance_request

input parameter and generate process steps 5 and 9.2 may be omitted, and generate

process steps 7 and 8 may be replaced by:

status = Reseed_function (state_handle, additional_input).

If status indicates an ERROR, then return status.

NIST SP 800-90A, Rev 1 January 2012

34

Using state_handle, obtain the new internal state.

(status, pseudorandom_bits, new_working_state) = Generate_algorithm

(working_state, requested_number_of_bits).

Note that if the input of additional_input is not supported, then the additional_input

parameter in the Reseed_function call above may be omitted.

5. additional_input: An optional input. The maximum length of the additional_input

(max_additional_input_length) is implementation dependent, but shall be less than

or equal to the specified maximum length for the selected DRBG mechanism (see

Section 10). If the input of additional_input is not supported, then the input

parameter, generate process steps 4 and 7.4, and the additional_input input

parameter in generate process steps 7.1 and 8 are omitted.

Required information not provided by the consuming application during generation:

1. Internal state values required for the working_state and administrative information,

as appropriate.

Output to a consuming application after generation:

1. status: The status returned from the generate function. The status will indicate

SUCCESS or an ERROR.

2. pseudorandom_bits: The pseudorandom bits that were requested.

Information retained within the DRBG mechanism boundary after generation:

Replaced internal state values (i.e., the new working_state).

Generate Process:

Comment: Get the internal state and check the

input parameters.

1. Using state_handle, obtain the current internal state for the instantiation. If

state_handle indicates an invalid or unused internal state, then return an

ERROR_FLAG.

2. If requested_number_of_bits > max_number_of_bits_per_request, then return an

ERROR_FLAG.

3. If requested_security_strength > the security_strength indicated in the internal

state, then return an ERROR_FLAG.

4. If the length of the additional_input > max_additional_input_length, then return an

ERROR_FLAG.

5. If prediction_resistance_request is set, and prediction_resistance_flag is not set,

then return an ERROR_FLAG.

6. Clear the reseed_required_flag. Comment: See Section 9.3.2 for discussion.

Comment: Reseed if necessary (see Section

9.2).

NIST SP 800-90A, Rev 1 January 2012

35

7. If reseed_required_flag is set, or if prediction_resistance_request is set, then

7.1 status = Reseed_function (state_handle, prediction_resistance_request,

additional_input).

7.2 If status indicates an ERROR, then return status.

7.3 Using state_handle, obtain the new internal state.

7.4 additional_input = the Null string.

7.5 Clear the reseed_required_flag.

Comment: Request the generation of

pseudorandom_bits using the appropriate

generate algorithm in Section 10.

8. (status, pseudorandom_bits, new_working_state) = Generate_algorithm

(working_state, requested_number_of_bits, additional_input).

9. If status indicates that a reseed is required before the requested bits can be

generated, then

9.1 Set the reseed_required_flag.

9.2 If the prediction_resistance_flag is set, then set the prediction_resistance

request indication.

9.3 Go to step 7.

10. Replace the old working_state in the internal state of the DRBG instantiation (e.g.,

as indicated by state_handle) with the values of new_working_state.

11. Return SUCCESS and pseudorandom_bits.

Implementation notes:

If a reseed capability is not supported, or a reseed is not desired, then generate process

steps 6 and 7 are removed; and generate process step 9 is replaced by:

9. If status indicates that a reseed is required before the requested bits can be

generated, then

9.1 status = Uninstantiate_function (state_handle).

9.2 Return an indication that the DRBG instantiation can no longer be used.

9.3.2 Reseeding at the End of the Seedlife

When pseudorandom bits are requested by a consuming application, the generate function

checks whether or not a reseed is required by comparing the counter within the internal

state (see Section 8.3) against a predetermined reseed interval for the DRBG

implementation. This is specified in the generate process (see Section 9.3.1) as follows:

a. Step 6 clears the reseed_required_flag.

NIST SP 800-90A, Rev 1 January 2012

36

b. Step 7 checks the value of the reseed_required_flag. At this time, the

reseed_required_flag is clear, so step 7 is skipped unless prediction resistance was

requested by the consuming application. For the purposes of this explanation,

assume that prediction resistance was not requested.

c. Step 8 calls the Generate_algorithm, which checks whether a reseed is required. If

it is required, an appropriate status is returned.

d. Step 9 checks the status returned by the Generate_algorithm. If the status does

not indicate that a reseed is required, the generate process continues with step 10.

e. However, if the status indicates that a reseed is required, then the

reseed_required_flag is set, the prediction_resistance_request indicator is set if the

instantiation is capable of performing prediction resistance, and processing

continues by going back to step 7 (see steps 9.1 9.3). This is intended to obtain

fresh entropy for reseeding at the end of the reseed interval whenever access to

fresh entropy is available (see the concept of Live Entropy sources in [SP 800-

90C]).

f. The substeps in step 7 are executed. The reseed function is called; any

additional_input provided by the consuming application in the generate request is

used during reseeding. The new values of the internal state are acquired, any

additional_input provided by the consuming application in the generate request is

replaced by a Null string, and the reseed_required_flag is cleared.

g. The generate algorithm is called (again) in step 8, the check of the returned status is

made in step 9, and (presumably) step 10 is then executed.

9.3.3 Handling Prediction Resistance Requests

When pseudorandom bits are requested by a consuming application with prediction

resistance, the generate function specified in Section 9.3.1 checks that the instantiation

allows prediction resistance requests (see step 5 of the generate process); clears the

reseed_required_flag (even though the flag won’t be used in this case); executes the

substeps of generate process step 7, resulting in a reseed, a new internal state for the

instantiation, and setting the additional input to a Null value; obtains pseudorandom bits

(see generate process step 8); passes through generate process step 9, since another reseed

will not be required; and continues with generate process step 10.

9.4 Removing a DRBG Instantiation

The internal state for an instantiation may need to be “released” by erasing (i.e., zeroizing)

the contents of the internal state. The uninstantiate function:

1. Checks the input parameter for validity, and

2. Empties the internal state.

The following or an equivalent process shall be used to remove (i.e., uninstantiate) a

DRBG instantiation:

NIST SP 800-90A, Rev 1 January 2012

37

Uninstantiate_function (state_handle) :

1. state_handle: A pointer or index that indicates the internal state to be “released”. If

a state handle is not used by an implementation because the implemention does not

support multiple simultaneous instantiations, a state_handle is not provided as

input. In this case, process step 1 is omitted, and process step 2 erases the internal

state.

Output to a consuming application after uninstantiation:

1. status: The status returned from the function. The status will indicate SUCCESS or

ERROR_FLAG.

Information retained within the DRBG mechanism boundary after uninstantiation:

An empty internal state.

Uninstantiate Process:

1. If state_handle indicates an invalid state, then return an ERROR_FLAG.

2. Erase the contents of the internal state indicated by state_handle.

3. Return SUCCESS.

NIST SP 800-90A, Rev 1 Hash_DRBG January 2012

38

10 DRBG Algorithm Specifications

Several DRBG mechanisms are specified in this Recommendation. The selection of a

DRBG mechanism depends on several factors, including the security strength to be

supported and what cryptographic primitives are available. An analysis of the consuming

application’s requirements for random numbers should be conducted in order to select an

appropriate DRBG mechanism. Conversion specifications required for the DRBG

mechanism implementations (e.g., between integers and bitstrings) are provided in

Appendix B. Pseudocode examples for each DRBG mechanism are provided in Appendix

D. A detailed discussion on DRBG mechanism selection is provided in Appendix E.

10.1 DRBG Mechanisms Based on Hash Functions

A DRBG mechanism may be based on a hash function that is non-invertible or one-way.

The hash-based DRBG mechanisms specified in this Recommendation have been designed

to use any approved hash function and may be used by consuming applications requiring

various security strengths, providing that the appropriate hash function is used and

sufficient entropy is obtained for the seed.

The following are provided as DRBG mechanisms based on hash functions:

1. The Hash_DRBG specified in Section 10.1.1.

2. The HMAC_DRBG specified in Section 10.1.2.

The maximum security strength that can be supported by each DRBG based on a hash

function is the security strength of the hash function used; the security strengths for the

hash functions when used for random number generation are provided in [SP 800-57].

However, this Recommendation supports only four security strengths: 112, 128, 192, and

256 bits. Table 2 specifies the values that shall be used for the function envelopes and

DRBG algorithm for each approved hash function.

Table 2: Definitions for Hash-Based DRBG Mechanisms

 SHA-1 SHA-224

and

SHA-

512/224

SHA-256

and

SHA-

512/256

SHA-384 SHA-512

Supported security strengths See [SP 800-57]

highest_supported_security_strength See [SP 800-57]

Output Block Length (outlen) 160 224 256 384 512

Required minimum entropy for

instantiate and reseed

security_strength

Minimum entropy input length

(min_length)

security_strength

NIST SP 800-90A, Rev 1 Hash_DRBG January 2012

39

 SHA-1 SHA-224

and

SHA-

512/224

SHA-256

and

SHA-

512/256

SHA-384 SHA-512

Maximum entropy input length

(max_ length)

 235 bits

Seed length (seedlen) for

Hash_DRBG

440 440 440 888 888

Maximum personalization string

length

(max_personalization_string_length)

 235 bits

Maximum additional_input length

(max_additional_input_length)
 235 bits

max_number_of_bits_per_request 219 bits

Number of requests between

reseeds (reseed_interval)
 248

Note that since SHA-224 is based on SHA-256, there is no efficiency benefit when using

SHA-224, rather than SHA-256. Also note that since SHA-384, SHA-512/224 and SHA-

512/256 are based on SHA-512, there is no efficiency benefit for using these three SHA

mechanisms, rather than using SHA-512. However, efficiency is just one factor to consider

when selecting the appropriate hash function to use as part of a DRBG mechanism.

10.1.1 Hash_DRBG

Figure 8 presents the normal operation of the Hash_DRBG generate algorithm. The

Hash_DRBG requires the use of a hash function during the instantiate, reseed and

generate functions; the same hash function shall be used throughout a Hash_DRBG

instantiation. Hash_DRBG uses the derivation function specified in Section 10.4.1 during

instantiation and reseeding. The hash function to be used shall meet or exceed the desired

security strength of the consuming application.

10.1.1.1 Hash_DRBG Internal State

The internal_state for Hash_DRBG consists of:

1. The working_state:

a. A value (V) of seedlen bits that is updated during each call to the DRBG.

b. A constant C of seedlen bits that depends on the seed.

c. A counter (reseed_counter) that indicates the number of requests for

pseudorandom bits since new entropy_input was obtained during instantiation

or reseeding.

NIST SP 800-90A, Rev 1 Hash_DRBG January 2012

40

2. Administrative information:

a. The security_strength of the

DRBG instantiation.

b. A prediction_resistance_flag that

indicates whether or not a

prediction resistance capability is

available for the DRBG

instantiation.

The values of V and C are the critical values

of the internal state upon which the security

of this DRBG mechanism depends (i.e., V

and C are the “secret values” of the internal

state).

10.1.1.2 Instantiation of Hash_DRBG

Notes for the instantiate function specified in

Section 9.1:

The instantiation of Hash_DRBG

requires a call to the

Instantiate_function specified in

Section 9.1. Process step 9 of that

function calls the instantiate algorithm in

this section.

The values of

highest_supported_security_strength and

min_length are provided in Table 2 of

Section 10.1. The contents of the internal

state are provided in Section 10.1.1.1.

The instantiate algorithm:

Let Hash_df be the hash derivation function specified in Section 10.4.1 using the

selected hash function. The output block length (outlen), seed length (seedlen) and

appropriate security_strengths for the implemented hash function are provided in Table

2 of Section 10.1.

The following process or its equivalent shall be used as the instantiate algorithm for

this DRBG mechanism (see step 9 of the instantiate process in Section 9.1).

Hash_DRBG_Instantiate_algorithm (entropy_input, nonce, personalization_string,

security_strength):

1. entropy_input: The string of bits obtained from the source of entropy input.

2. nonce: A string of bits as specified in Section 8.6.7.

Figure 8: Hash_DRBG

V C

reseed

counter

(Opt.)

additional

input

Hash

Function

+
If additional

input Null
+ +

+1

Pseudorandom BitsHash

Function

+ Counter

(From 1)

Iterate to obtain

enough bits

Hash

Function

+ Counter

(From 1)

Iterate to obtain

enough bits V reseed

counter

C ctr

C

V

||
additional

input
V ||0x02 ||

additional

input
V ||0x02

V

Hash

Function

0x03 || V

+

NIST SP 800-90A, Rev 1 Hash_DRBG January 2012

41

3. personalization_string: The personalization string received from the consuming

application. Note that the length of the personalization_string may be zero.

4. security_strength: The security strength for the instantiation. This parameter is

optional for Hash_DRBG, since it is not used.

Output:

1. initial_working_state: The inital values for V, C, and reseed_counter (see

Section 10.1.1.1).

Hash_DRBG Instantiate Process:

1. seed_material = entropy_input || nonce || personalization_string.

2. seed = Hash_df (seed_material, seedlen).

3. V = seed.

4. C = Hash_df ((0x00 || V), seedlen). Comment: Preceed V with a byte of

zeros.

5. reseed_counter = 1.

6. Return V, C, and reseed_counter as the initial_working_state.

10.1.1.3 Reseeding a Hash_DRBG Instantiation

Notes for the reseed function specified in Section 9.2:

The reseeding of a Hash_DRBG instantiation requires a call to the Reseed_function.

Process step 6 of that function calls the reseed algorithm specified in this section. The

values for min_length are provided in Table 2 of Section 10.1.

The reseed algorithm:

Let Hash_df be the hash derivation function specified in Section 10.4.1 using the

selected hash function. The value for seedlen is provided in Table 2 of Section 10.1.

The following process or its equivalent shall be used as the reseed algorithm for this

DRBG mechanism (see step 6 of the reseed process in Section 9.2):

Hash_DRBG_Reseed_algorithm (working_state, entropy_input, additional_input):

1. working_state: The current values for V, C, and reseed_counter (see Section

10.1.1.1).

2. entropy_input: The string of bits obtained from the source of entropy input.

3. additional_input: The additional input string received from the consuming

application. Note that the length of the additional_input string may be zero.

Output:

1. new_working_state: The new values for V, C, and reseed counter.

NIST SP 800-90A, Rev 1 Hash_DRBG January 2012

42

Hash_DRBG Reseed Process:

1. seed_material = 0x01 || V || entropy_input || additional_input.

2. seed = Hash_df (seed_material, seedlen).

3. V = seed.

4. C = Hash_df ((0x00 || V), seedlen). Comment: Preceed with a byte of all

zeros.

5. reseed_counter = 1.

6. Return V, C, and reseed_counter for the new_working_state.

10.1.1.4 Generating Pseudorandom Bits Using Hash_DRBG

Notes for the generate function specified in Section 9.3:

The generation of pseudorandom bits using a Hash_DRBG instantiation requires a call

to the generate function. Process step 8 of that function calls the generate algorithm

specified in this section. The values for max_number_of_bits_per_request and outlen

are provided in Table 2 of Section 10.1.

The generate algorithm:

Let Hash be the selected hash function. The seed length (seedlen) and the maximum

interval between reseeding (reseed_interval) are provided in Table 2 of Section 10.1.

Note that for this DRBG mechanism, the reseed counter is used to update the value of

V, as well as to count the number of generation requests.

The following process or its equivalent shall be used as the generate algorithm for this

DRBG mechanism (see step 8 of the generate process in Section 9.3):

Hash_DRBG_Generate_algorithm (working_state, requested_number_of_bits,

additional_input):

1. working_state: The current values for V, C, and reseed_counter (see Section

10.1.1.1).

2. requested_number_of_bits: The number of pseudorandom bits to be returned to

the generate function.

3. additional_input: The additional input string received from the consuming

application. Note that the length of the additional_input string may be zero.

Output:

1. status: The status returned from the function. The status will indicate

SUCCESS, or indicate that a reseed is required before the requested

pseudorandom bits can be generated.

2. returned_bits: The pseudorandom bits to be returned to the generate function.

3. new_working_state: The new values for V, C, and reseed_counter.

NIST SP 800-90A, Rev 1 Hash_DRBG January 2012

43

Hash_DRBG Generate Process:

1. If reseed_counter > reseed_interval, then return an indication that a reseed is

required.

2. If (additional_input Null), then do

2.1 w = Hash (0x02 || V || additional_input).

2.2 V = (V + w) mod 2
seedlen

.

3. (returned_bits) = Hashgen (requested_number_of_bits, V).

4. H = Hash (0x03 || V).

5. V = (V + H + C + reseed_counter) mod 2
seedlen

.

6. reseed_counter = reseed_counter + 1.

7. Return SUCCESS, returned_bits, and the new values of V, C, and

reseed_counter for the new_working_state.

Hashgen (requested_number_of_bits, V):

Input:

1. requested_no_of_bits: The number of bits to be returned.

2. V: The current value of V.

Output:

 1. returned_bits: The generated bits to be returned to the generate function.

Hashgen Process:

1. .

2. data = V.

3. W = the Null string.

4. For i = 1 to m

4.1 wi = Hash (data).

4.2 W = W || wi.

4.3 data = (data + 1) mod 2
seedlen

.

5. returned_bits = Leftmost (requested_no_of_bits) bits of W.

6. Return returned_bits.

NIST SP 800-90A, Rev 1 HMAC_DRBG January 2012

44

10.1.2 HMAC_DRBG

HMAC_DRBG uses multiple occurrences of an approved keyed hash function, which is

based on an approved hash function. This DRBG mechanism uses the

HMAC_DRBG_Update function specified in Section 10.1.2.2 and the HMAC function

within the HMAC_DRBG_Update function as the derivation function during instantiation

and reseeding. The same hash function

shall be used throughout an

HMAC_DRBG instantiation. The hash

function used shall meet or exceed the

security requirements of the consuming

application.

Figure 9 depicts the HMAC_DRBG in

three stages. HMAC_DRBG is specified

using an internal function

(HMAC_DRBG_Update). This function

is called during the HMAC_DRBG

instantiate, generate and reseed algorithms

to adjust the internal state when new

entropy or additional input is provided, as

well as to update the internal state after

pseudorandom bits are generated. The

operations in the top portion of the figure

are only performed if the additional input

is not null. Figure 10 depicts the

HMAC_DRBG_Update function.

10.1.2.1 HMAC_DRBG Internal
State

The internal state for HMAC_DRBG

consists of:

1. The working_state:

a. The value V of outlen bits,

which is updated each time

another outlen bits of output

are produced (where outlen is

specified in Table 2 of Section

10.1).

b. The outlen-bit Key, which is

updated at least once each time

that the DRBG mechanism

generates pseudorandom bits.

(Opt) additional input

If Null

UPDATE

Key V
reseed

counter
...

State

Key V
reseed

counter
...

State

HMAC

V

Iterate

Bi

Pseudorandom bits

...B0 || ... || Bi-1

UPDATEKey V reseed

counter
...

State

+ 1

additional input

V Key

Figure 9: HMAC_DRBG Generate Function

NIST SP 800-90A, Rev 1 HMAC_DRBG January 2012

45

c. A counter (reseed_counter) that indicates the number of requests for

pseudorandom bits since instantiation or reseeding.

2. Administrative information:

a. The security_strength of the

DRBG instantiation.

b. A prediction_resistance_flag

that indicates whether or not a

prediction resistance capability

is required for the DRBG

instantiation.

The value of V and Key are the critical

values of the internal state upon which the

security of this DRBG mechanism

depends (i.e., V and Key are the “secret

values” of the internal state).

10.1.2.2 The HMAC_DRBG
Update Function
(Update)

The HMAC_DRBG_Update function

updates the internal state of

HMAC_DRBG using the provided_data.

Note that for this DRBG mechanism, the

HMAC_DRBG_Update function also

serves as a derivation function for the

instantiate and reseed functions.

Let HMAC be the keyed hash function specified in [FIPS 198] using the hash function

selected for the DRBG mechanism from Table 2 in Section 10.1.

The following or an equivalent process shall be used as the HMAC_DRBG_Update

function.

HMAC_DRBG_Update (provided_data, K, V):

1. provided_data: The data to be used.

2. K: The current value of Key.

3. V: The current value of V.

Output:

1. K: The new value for Key.

2. V: The new value for V.

HMAC_DRBG Update Process:

Figure 10: HMAC_DRBG_Update Function

NIST SP 800-90A, Rev 1 HMAC_DRBG January 2012

46

1. K = HMAC (K, V || 0x00 || provided_data).

2. V = HMAC (K, V).

3. If (provided_data = Null), then return K and V.

4. K = HMAC (K, V || 0x01 || provided_data).

5. V = HMAC (K, V).

6. Return K and V.

10.1.2.3 Instantiation of HMAC_DRBG

Notes for the instantiate function specified in Section 9.1:

The instantiation of HMAC_DRBG requires a call to the Instantiate_function

specified in Section 9.1. Process step 9 of that function calls the instantiate algorithm

specified in this section. The values of highest_supported_security_strength and min

_length are provided in Table 2 of Section 10.1. The contents of the internal state are

provided in Section 10.1.2.1.

The instantiate algorithm:

Let HMAC_DRBG_Update be the function specified in Section 10.1.2.2. The output

block length (outlen) is provided in Table 2 of Section 10.1.

The following process or its equivalent shall be used as the instantiate algorithm for

this DRBG mechanism (see step 9 of the instantiate process in Section 9.1):

HMAC_DRBG_Instantiate_algorithm (entropy_input, nonce,

personalization_string, security_strength):

1. entropy_input: The string of bits obtained from the source of entropy input.

2. nonce: A string of bits as specified in Section 8.6.7.

3. personalization_string: The personalization string received from the consuming

application. Note that the length of the personalization_string may be zero.

4. security_strength: The security strength for the instantiation. This parameter is

optional for HMAC_DRBG, since it is not used.

Output:

1. initial_working_state: The inital values for V, Key and reseed_counter (see

Section 10.1.2.1).

HMAC_DRBG Instantiate Process:

1. seed_material = entropy_input || nonce || personalization_string.

2. Key = 0x00 00...00. Comment: outlen bits.

3. V = 0x01 01...01. Comment: outlen bits.

Comment: Update Key and V.

NIST SP 800-90A, Rev 1 HMAC_DRBG January 2012

47

4. (Key, V) = HMAC_DRBG_Update (seed_material, Key, V).

5. reseed_counter = 1.

6. Return V, Key and reseed_counter as the initial_working_state.

10.1.2.4 Reseeding an HMAC_DRBG Instantiation

Notes for the reseed function specified in Section 9.2:

The reseeding of an HMAC_DRBG instantiation requires a call to the

Reseed_function specified in Section 9.2. Process step 6 of that function calls the

reseed algorithm specified in this section. The values for min_length are provided in

Table 2 of Section 10.1.

The reseed algorithm:

Let HMAC_DRBG_Update be the function specified in Section 10.1.2.2. The

following process or its equivalent shall be used as the reseed algorithm for this DRBG

mechanism (see step 6 of the reseed process in Section 9.2):

HMAC_DRBG_Reseed_algorithm (working_state, entropy_input, additional_input):

1. working_state: The current values for V, Key and reseed_counter (see Section

10.1.2.1).

2. entropy_input: The string of bits obtained from the source of entropy input.

3. additional_input: The additional input string received from the consuming

application. Note that the length of the additional_input string may be zero.

Output:

1. new_working_state: The new values for V, Key and reseed_counter.

HMAC_DRBG Reseed Process:

1. seed_material = entropy_input || additional_input.

2. (Key, V) = HMAC_DRBG_Update (seed_material, Key, V).

3. reseed_counter = 1.

4. Return V, Key and reseed_counter as the new_working_state.

10.1.2.5 Generating Pseudorandom Bits Using HMAC_DRBG

Notes for the generate function specified in Section 9.3:

The generation of pseudorandom bits using an HMAC_DRBG instantiation requires a

call to the Generate_function specified in Section 9.3. Process step 8 of that function

calls the generate algorithm specified in this section. The values for

max_number_of_bits_per_request and outlen are provided in Table 2 of Section 10.1.

The generate algorithm :

NIST SP 800-90A, Rev 1 HMAC_DRBG January 2012

48

Let HMAC be the keyed hash function specified in [FIPS 198] using the hash function

selected for the DRBG mechanism. The value for reseed_interval is defined in Table 2

of Section 10.1.

The following process or its equivalent shall be used as the generate algorithm for this

DRBG mechanism (see step 8 of the generate process in Section 9.3):

HMAC_DRBG_Generate_algorithm (working_state, requested_number_of_bits,

additional_input):

1. working_state: The current values for V, Key and reseed_counter (see Section

10.1.2.1).

2. requested_number_of_bits: The number of pseudorandom bits to be returned to

the generate function.

3. additional_input: The additional input string received from the consuming

application. Note that the length of the additional_input string may be zero.

Output:

1. status: The status returned from the function. The status will indicate

SUCCESS, or indicate that a reseed is required before the requested

pseudorandom bits can be generated.

2. returned_bits: The pseudorandom bits to be returned to the generate function.

3. new_working_state: The new values for V, Key and reseed_counter.

HMAC_DRBG Generate Process:

1. If reseed_counter > reseed_interval, then return an indication that a reseed is

required.

2. If additional_input Null, then (Key, V) =

HMAC_DRBG_Update (additional_input, Key, V).

3. temp = Null.

4. While (len (temp) < requested_number_of_bits) do:

4.1 V = HMAC (Key, V).

4.2 temp = temp || V.

5. returned_bits = Leftmost requested_number_of_bits of temp.

6. (Key, V) = HMAC_DRBG_Update (additional_input, Key, V).

7. reseed_counter = reseed_counter + 1.

8. Return SUCCESS, returned_bits, and the new values of Key, V and

reseed_counter as the new_working_state).

NIST SP 800-90A, Rev 1 CTR_DRBG January 2012

49

10.2 DRBG Mechanisms Based on Block Ciphers

A block cipher DRBG is based on a block cipher

algorithm. The block cipher DRBG mechanism

specified in this Recommendation has been

designed to use any approved block cipher

algorithm and may be used by consuming

applications requiring various security strengths,

providing that the appropriate block cipher

algorithm and key length are used, and sufficient

entropy is obtained for the seed.

The maximum security strength that can be

supported by each DRBG based on a block

cipher is the security strength of the block cipher

and key size used; the security strengths for the

block ciphers and key sizes are provided in [SP

800-57].

10.2.1 CTR_DRBG

CTR_DRBG uses an approved block cipher

algorithm in the counter mode as specified in

[SP 800-38A]. The same block cipher algorithm

and key length shall be used for all block cipher

operations of this DRBG. The block cipher

algorithm and key length shall meet or exceed

the security requirements of the consuming

application.

CTR_DRBG is specified using an internal function (CTR_DRBG_Update). Figure 11

depicts the CTR_DRBG_Update function. This function is called by the instantiate,

generate and reseed algorithms to adjust the internal state when new entropy or additional

input is provided, as well as to update the internal state after pseudorandom bits are

generated. Figure 12 depicts the CTR_DRBG in three stages. The operations in the top

portion of the figure are only performed if the additional input is not null.

Table 3 specifies the values that shall be used for the function envelopes and

CTR_DRBG mechanism.

Table 3: Definitions for the CTR_DRBG

 3 Key

TDEA

AES-128 AES-192 AES-256

Supported security strengths See [SP 800-57]

Figure 11: CTR_DRBG Update Function

NIST SP 800-90A, Rev 1 CTR_DRBG January 2012

50

 3 Key

TDEA

AES-128 AES-192 AES-256

highest_supported_security_strength See [SP 800-57]

Output block length (outlen) 64 128 128 128

Key length (keylen) 168 128 192 256

Required minimum entropy for

instantiate and reseed

security_strength

Seed length (seedlen = outlen + keylen) 232 256 320 384

If a derivation function is used:

Minimum entropy input length

(min _length)

security_strength

Maximum entropy input length

(max _length)
 2

35
 bits

Maximum personalization string

length

(max_personalization_string_length)

 2
35

 bits

Maximum additional_input length

(max_additional_input_length)
 2

35
 bits

If a derivation function is not used:

Minimum entropy input length

(min _length = outlen + keylen)

seedlen

Maximum entropy input length

(max _length) (outlen + keylen)

seedlen

Maximum personalization string

length

(max_personalization_string_length)

seedlen

Maximum additional_input length

(max_additional_input_length)
seedlen

max_number_of_bits_per_request 2
13

 2
19

Number of requests between reseeds

(reseed_interval)
 2

32
 2

48

NIST SP 800-90A, Rev 1 CTR_DRBG January 2012

51

The CTR_ DRBG may be

implemented to use the block

cipher derivation function

specified in Section 10.4.2

during instantiation and

reseeding. However, the

DRBG mechanism is specified

to allow an implementation

tradeoff with respect to the use

of this derivation function. The

use of the derivation function is

optional if either an approved

RBG or an entropy source

provide full entropy output

when entropy input is requested

by the DRBG mechanism.

Otherwise, the derivation

functon shall be used. Table 3

provides the lengths required

for the entropy_input,

personalization_string and

additional_input for each case.

When using TDEA as the

selected block cipher

algorithm, the keys shall be

handled as 64-bit blocks

containing 56 bits of key and 8

bits of parity as specified for

the TDEA engine specified in

[SP 800-67].

10.2.1.1 CTR_DRBG
Internal State

The internal state for the

CTR_DRBG consists of:

1. The working_state:

a. The value V of

outlen bits, which is

updated each time another outlen bits of output are produced.

Key V
reseed

counter
...

State

Block

Encrypt

Iterate

Bi

Pseudorandom bits

...B0 || ... || Bi-1

+

1

Figure 12: CTR-DRBG

NIST SP 800-90A, Rev 1 CTR_DRBG January 2012

52

b. The keylen-bit Key, which is updated whenever a predetermined number of

output blocks are generated.

c. A counter (reseed_counter) that indicates the number of requests for

pseudorandom bits since instantiation or reseeding.

2. Administrative information:

a. The security_strength of the DRBG instantiation.

b. A prediction_resistance_flag that indicates whether or not a prediction

resistance capability is required for the DRBG instantiation.

The values of V and Key are the critical values of the internal state upon which the

security of this DRBG mechanism depends (i.e., V and Key are the “secret values” of the

internal state).

10.2.1.2 The Update Function (CTR_DRBG_Update)

The CTR_DRBG_Update function updates the internal state of the CTR_DRBG using

the provided_data. The values for outlen, keylen and seedlen are provided in Table 3 of

Section 10.2.1. The block cipher operation in step 2.2 of the CTR_DRBG_UPDATE

process uses the selected block cipher algorithm (also see Section 10.4). Note: the

meaning of Block_Encrypt is discussed in Section 10.4.3.

The following or an equivalent process shall be used as the CTR_DRBG_Update

function.

CTR_DRBG_Update (provided_data, Key, V):

1. provided_data: The data to be used. This must be exactly seedlen bits in

length; this length is guaranteed by the construction of the provided_data in

the instantiate, reseed and generate functions.

2. Key: The current value of Key.

3. V: The current value of V.

Output:

1. K: The new value for Key.

2. V: The new value for V.

CTR_DRBG_Update Process:

1. temp = Null.

2. While (len (temp) < seedlen) do

2.1 V = (V + 1) mod 2
outlen

.

2.2 output_block = Block_Encrypt (Key, V).

2.3 temp = temp || ouput_block.

NIST SP 800-90A, Rev 1 CTR_DRBG January 2012

53

3. temp = Leftmost seedlen bits of temp.

4 temp = temp provided_data.

5. Key = Leftmost keylen bits of temp.

6. V = Rightmost outlen bits of temp.

7. Return the new values of Key and V.

10.2.1.3 Instantiation of CTR_DRBG

Notes for the instantiate function specified in Section 9.1:

The instantiation of CTR_DRBG requires a call to the Instantiate_function

specified in Section 9.1. Process step 9 of that function calls the instantiate algorithm

specified in this section. The values of highest_supported_security_strength and min

_length are provided in Table 3 of Section 10.2.1. The contents of the internal state

are provided in Section 10.2.1.1.

The instantiate algorithm:

For this DRBG mechanism, there are two cases for processing. In each case, let

CTR_DRBG_Update be the function specified in Section 10.2.1.2. The output block

length (outlen), key length (keylen), seed length (seedlen) and security_strengths for

the block cipher algorithms are provided in Table 3 of Section 10.2.1.

10.2.1.3.1 Instantiation When Full Entropy Input is Available, and a
Derivation Function is Not Used

The following process or its equivalent shall be used as the instantiate algorithm for this

DRBG mechanism:

CTR_DRBG_Instantiate_algorithm (entropy_input, personalization_string,

security_strength):

1. entropy_input: The string of bits obtained from the source of entropy input.

2. personalization_string: The personalization string received from the

consuming application. Note that the length of the personalization_string may

be zero.

3. security_strength: The security strength for the instantiation. This parameter is

optional for CTR_DRBG.

Output:

1. initial_working_state: The inital values for V, Key, and reseed_counter (see

Section 10.2.1.1).

CTR_DRBG Instantiate Process:

1. temp = len (personalization_string).

NIST SP 800-90A, Rev 1 CTR_DRBG January 2012

54

Comment: Ensure that the length of the

personalization_string is exactly seedlen

bits. The maximum length was checked in

Section 9.1, processing step 3, using Table 3

to define the maximum length.

2. If (temp < seedlen), then personalization_string = personalization_string ||

0
seedlen - temp

.

3. seed_material = entropy_input personalization_string.

4. Key = 0
keylen

. Comment: keylen bits of zeros.

5. V = 0
outlen

. Comment: outlen bits of zeros.

6. (Key, V) = CTR_DRBG_Update (seed_material, Key, V).

7. reseed_counter = 1.

8. Return V, Key, and reseed_counter as the initial_working_state.

10.2.1.3.2 Instantiation When a Derivation Function is Used

Let Block_Cipher_df be the derivation function specified in Section 10.4.2 using the

chosen block cipher algorithm and key size.

The following process or its equivalent shall be used as the instantiate algorithm for this

DRBG mechanism:

CTR_DRBG_Instantiate_algorithm (entropy_input, nonce, personalization_string,

security_strength):

1. entropy_input: The string of bits obtained from the source of entropy input.

2. nonce: A string of bits as specified in Section 8.6.7.

3. personalization_string: The personalization string received from the

consuming application. Note that the length of the personalization_string may

be zero.

4. security_strength: The security strength for the instantiation. This parameter is

optional for CTR_DRBG, since it is not used.

Output:

1. initial_working_state: The inital values for V, Key, and reseed_counter (see

Section 10.2.1.1).

CTR_DRBG Instantiate Process:

1. seed_material = entropy_input || nonce || personalization_string.

Comment: Ensure that the length of the

seed_material is exactly seedlen bits.

NIST SP 800-90A, Rev 1 CTR_DRBG January 2012

55

2. seed_material = Block_Cipher_df (seed_material, seedlen).

3. Key = 0
keylen

. Comment: keylen bits of zeros.

4. V = 0
outlen

. Comment: outlen bits of zeros.

5. (Key, V) = CTR_DRBG_Update (seed_material, Key, V).

6. reseed_counter = 1.

7. Return V, Key, and reseed_counter as the initial_working_state.

10.2.1.4 Reseeding a CTR_DRBG Instantiation

Notes for the reseed function specified in Section 9.2:

The reseeding of a CTR_DRBG instantiation requires a call to the Reseed_function

specified in Section 9.2. Process step 6 of that function calls the reseed algorithm

specified in this section. The values for min _length are provided in Table 3 of

Section 10.2.1.

The reseed algorithm:

For this DRBG mechanism, there are two cases for processing. In each case, let

CTR_DRBG_Update be the function specified in Section 10.2.1.2. The seed

length (seedlen) is provided in Table 3 of Section 10.2.1.

10.2.1.4.1 Reseeding When Full Entropy Input is Available, and a
Derivation Function is Not Used

The following process or its equivalent shall be used as the reseed algorithm for this

DRBG mechanism (see step 6 of the reseed process in Section 9.2):

CTR_DRBG_Reseed_algorithm (working_state, entropy_input, additional_input):

1. working_state: The current values for V, Key and reseed_counter (see Section

10.2.1.1).

2. entropy_input: The string of bits obtained from the source of entropy input.

3. additional_input: The additional input string received from the consuming

application. Note that the length of the additional_input string may be zero.

Output:

1. new_working_state: The new values for V, Key, and reseed_counter.

CTR_DRBG Reseed Process:

1. temp = len (additional_input).

Comment: Ensure that the length of the

additional_input is exactly seedlen bits. The

maximum length was checked in Section

NIST SP 800-90A, Rev 1 CTR_DRBG January 2012

56

9.2, processing step 2, using Table 3 to

define the maximum length.

2. If (temp < seedlen), then additional_input = additional_input || 0
seedlen - temp

.

3. seed_material = entropy_input additional_input.

4. (Key, V) = CTR_DRBG_Update (seed_material, Key, V).

5. reseed_counter = 1.

6. Return V, Key and reseed_counter as the new_working_state.

10.2.1.4.2 Reseeding When a Derivation Function is Used

Let Block_Cipher_df be the derivation function specified in Section 10.4.2 using the

chosen block cipher algorithm and key size.

The following process or its equivalent shall be used as the reseed algorithm for this

DRBG mechanism (see reseed process step 6 of Section 9.2):

CTR_DRBG_Reseed_algorithm (working_state, entropy_input, additional_input)

1. working_state: The current values for V, Key and reseed_counter (see Section

10.2.1.1).

2. entropy_input: The string of bits obtained from the source of entropy input.

3. additional_input: The additional input string received from the consuming

application. Note that the length of the additional_input string may be zero.

Output:

1. new_working_state: The new values for V, Key, and reseed_counter.

CTR_DRBG Reseed Process:

1. seed_material = entropy_input || additional_input.

Comment: Ensure that the length of the

seed_material is exactly seedlen bits.

2. seed_material = Block_Cipher_df (seed_material, seedlen).

3. (Key, V) = CTR_DRBG_Update (seed_material, Key, V).

4. reseed_counter = 1.

5. Return V, Key, and reseed_counter as the new_working_state.

10.2.1.5 Generating Pseudorandom Bits Using CTR_DRBG

Notes for the generate function specified in Section 9.3:

NIST SP 800-90A, Rev 1 CTR_DRBG January 2012

57

The generation of pseudorandom bits using a CTR_DRBG instantiation requires a

call to the Generate_function specified in Section 9.3. Process step 8 of that function

calls the generate algorithm specified in this section. The values for

max_number_of_bits_per_request and max_additional_input_length, and outlen are

provided in Table 3 of Section 10.2.1. If the derivation function is not used, then the

maximum allowed length of additional_input = seedlen.

For this DRBG mechanism, there are two cases for the processing. For each case, let

CTR_DRBG_Update be the function specified in Section 10.2.1.2, and let

Block_Encrypt be the function specified in Section 10.4.3. The seed length (seedlen)

and the value of reseed_interval are provided in Table 3 of Section 10.2.1.

10.2.1.5.1 Generating Pseudorandom Bits When a Derivation Function is
Not Used for the DRBG Implementation

The following process or its equivalent shall be used as the generate algorithm for this

DRBG mechanism (see step 8 of the generate process in Section 9.3.3):

CTR_DRBG_Generate_algorithm (working_state, requested_number_of_bits,

additional_input):

1. working_state: The current values for V, Key, and reseed_counter (see Section

10.2.1.1).

2. requested_number_of_bits: The number of pseudorandom bits to be returned

to the generate function.

3. additional_input: The additional input string received from the consuming

application. Note that the length of the additional_input string may be zero.

Output:

1. status: The status returned from the function. The status will indicate

SUCCESS, or indicate that a reseed is required before the requested

pseudorandom bits can be generated.

2. returned_bits: The pseudorandom bits returned to the generate function.

3. working_state: The new values for V, Key, and reseed_counter.

CTR_DRBG Generate Process:

1. If reseed_counter > reseed_interval, then return an indication that a reseed is

required.

2. If (additional_input Null), then

Comment: Ensure that the length of the

additional_input is exactly seedlen bits. The

maximum length was checked in Section

9.3.3, processing step 4, using Table 3 to

NIST SP 800-90A, Rev 1 CTR_DRBG January 2012

58

define the maximum length. If the length of

the additional input is < seedlen, pad with

zero bits.

2.1 temp = len (additional_input).

2.2 If (temp < seedlen), then

additional_input = additional_input || 0
seedlen - temp

.

2.3 (Key, V) = CTR_DRBG_Update (additional_input, Key, V).

Else additional_input = 0
seedlen

.

3. temp = Null.

4. While (len (temp) < requested_number_of_bits) do:

4.1 V = (V + 1) mod 2
outlen

.

4.2 output_block = Block_Encrypt (Key, V).

4.3 temp = temp || output_block.

5. returned_bits = Leftmost requested_number_of_bits of temp.

Comment: Update for backtracking

resistance.

6. (Key, V) = CTR_DRBG_Update (additional_input, Key, V).

7. reseed_counter = reseed_counter + 1.

8. Return SUCCESS and returned_bits; also return Key, V, and reseed_counter

as the new_working_state.

10.2.1.5.2 Generating Pseudorandom Bits When a Derivation Function is
Used for the DRBG Implementation

The Block_Cipher_df is specified in Section 10.4.2 and shall be implemented using the

chosen block cipher algorithm and key size.

The following process or its equivalent shall be used as the generate algorithm for this

DRBG mechanism (see step 8 of the generate process in Section 9.3.3):

CTR_DRBG_Generate_algorithm (working_state, requested_number_of_bits,

additional_input):

1. working_state: The current values for V, Key, and reseed_counter (see Section

10.2.1.1).

2. requested_number_of_bits: The number of pseudorandom bits to be returned

to the generate function.

3. additional_input: The additional input string received from the consuming

application. Note that the length of the additional_input string may be zero.

NIST SP 800-90A, Rev 1 CTR_DRBG January 2012

59

Output:

1. status: The status returned from the function. The status will indicate

SUCCESS, or indicate that a reseed is required before the requested

pseudorandom bits can be generated.

2. returned_bits: The pseudorandom bits returned to the generate function.

3. working_state: The new values for V, Key, and reseed_counter.

CTR_DRBG Generate Process:

1. If reseed_counter > reseed_interval, then return an indication that a reseed is

required.

2. If (additional_input Null), then

2.1 additional_input = Block_Cipher_df (additional_input, seedlen).

2.2 (Key, V) = CTR_DRBG_Update (additional_input, Key, V).

Else additional_input = 0
seedlen

.

3. temp = Null.

4. While (len (temp) < requested_number_of_bits) do:

4.1 V = (V + 1) mod 2
outlen

.

4.2 output_block = Block_Encrypt (Key, V).

4.3 temp = temp || output_block.

5. returned_bits = Leftmost requested_number_of_bits of temp.

Comment: Update for backtracking

resistance.

6. (Key, V) = CTR_DRBG_Update (additional_input, Key, V).

7. reseed_counter = reseed_counter + 1.

8. Return SUCCESS and returned_bits; also return Key, V, and reseed_counter

as the new_working_state.

NIST SP 800-90A, Rev 1 Dual_EC_DRBG January 2012

60

10.3 DRBG Mechanisms Based on Number Theoretic Problems

A DRBG can be designed to take advantage of number theoretic problems (e.g., the

discrete logarithm problem). If done correctly, such a generator’s properties of randomness

and/or unpredictability will be assured by the difficulty of finding a solution to that

problem. This section specifies a DRBG mechanism that is based on the elliptic curve

discrete logarithm problem.

10.3.1 Dual Elliptic Curve Deterministic RBG (Dual_EC_DRBG)

Dual_EC_DRBG is based on the following hard problem, sometimes known as the

“elliptic curve discrete logarithm problem” (ECDLP): given points P and Q on an elliptic

curve of order n, find a such that Q aP.

Dual_EC_DRBG uses an initial seed that is 2 * security_strength bits in length to initiate

the generation of outlen-bit pseudorandom strings by performing scalar multiplications on

two points in an elliptic curve group, where the curve is defined over a field approximately

2
m
 in size. For all the NIST curves given in this Recommendation, m is at least twice the

security_strength, and never less than 256. Throughout this DRBG mechanism

specification, m will be referred to as seedlen; the term “seedlen” is appropriate because

the internal state of Dual_EC_DRBG is used as a “seed” for the random block it produces.

Figure 13 depicts the Dual_EC_DRBG.

The instantiation of this DRBG mechanism requires the selection of an appropriate elliptic

curve and curve points specified in Appendix A.1 for the desired security strength. The

seed used to determine the initial value (s) of the DRBG mechanism shall have at least

security_strength bits of entropy. Further requirements for the seed are provided in Section

8.6. This DRBG mechanism uses the derivation function specified in Section 10.4.1 during

instantiation and reseeding.

The maximum security strength that can be supported by the Dual_EC_DRBG is the

security strength of the curve used; the security strengths for the curves are provided in [SP

800-57].

seed

0

Instant. or

reseed only

+

(x (t*P)) (x (s*Q))
t

P Q

s r

If additional input = Null

Extract

Bits

Pseudorandom

Bits

[Optional]

additional input

Figure 13: Dual_EC_DRBG

NIST SP 800-90A, Rev 1 Dual_EC_DRBG January 2012

61

Backtracking resistance is inherent in the algorithm, even if the internal state is

compromised. As shown in Figure 14, Dual_EC_DRBG generates a seedlen-bit number

for each step i 1, 2, 3, …, as follows:

 si = (x(si 1 P))

 ri (x(si Q)).

Each arrow in the figure represents an Elliptic Curve

scalar multiplication operation, followed by the

extraction of the x coordinate for the resulting point

and for the random output ri, followed by truncation to

produce the output. Following a line in the direction of

the arrow is the normal operation; inverting the

direction implies the ability to solve the ECDLP for

that specific curve. An adversary’s ability to invert an

arrow in the figure implies that the adversary has solved the ECDLP for that specific

elliptic curve. Backtracking resistance is built into the design, as knowledge of s1 does not

allow an adversary to determine s0 (and so forth) unless the adversary is able to solve the

ECDLP for that specific curve. In addition, knowledge of r1 does not allow an adversary

to determine s1 (and so forth) unless the adversary is able to solve the ECDLP for that

specific curve.

Table 4 specifies the values that shall be used for the envelope and algorithm for each

curve. Complete specifications for each curve are provided in Appendix A.1.

Table 4: Definitions for the Dual_EC_DRBG

 P-256 P-384 P-521

Supported security strengths See [SP 800-57]

Size of the base field (in bits),

referenced throughout as seedlen

256 384 521

highest_supported_

security_strength

See [SP 800-57]

Output block length (max_outlen =

largest multiple of 8 less than (size

of the base field) - (13 + log2 (the

cofactor))

240 368 504

Required minimum entropy for

instantiate and reseed

security_strength

Minimum entropy input length

(min_length)

security_strength

Maximum entropy input length

(max _length)

 213 bits

Maximum personalization string

length

(max_personalization_string_length)

 213 bits

S0
S1 S2

R1
R2

Figure 14: Dual_EC_DRBG
Backtracking Resistance

NIST SP 800-90A, Rev 1 Dual_EC_DRBG January 2012

62

 P-256 P-384 P-521

Maximum additional input length

(max_additional_input_length)
 213 bits

Length of the initial seed 2 security_strength

Appropriate hash functions SHA-1, SHA-

224, SHA-

512/224, SHA-

256, SHA-

512/256, SHA-

384, SHA-512

SHA-224, SHA-

512/224, SHA-256,

SHA-512/256,

SHA-384, SHA-512

SHA-256,

SHA-512/256,

SHA-384,

SHA-512

max_number_of_bits_per_request max_outlen reseed_interval

Number of blocks between

reseeding (reseed_interval)
 232 blocks

10.3.1.1 Dual_EC_DRBG Internal State

The internal state for Dual_EC_DRBG consists of:

1. The working_state:

a. A value (s) that determines the current position on the curve.

b. The elliptic curve domain parameters (seedlen, p, a, b, n), where seedlen is the

length of the seed, p is the prime that defines the base field Fp, a and b are two

field elements that define the equation of the curve, and n is the order of the

point G. If only one curve will be used by an implementation, these parameters

need not be present in the working_state.

c. Two points P and Q on the curve (see Appendix A) will be used. If only one

curve will be used by an implementation, these points need not be present in the

working_state.

d. A counter (reseed_counter) that indicates the number of blocks of random data

produced by the Dual_EC_DRBG since the initial seeding or the previous

reseeding.

2. Administrative information:

a. The security_strength provided by the DRBG instantiation,

b. A prediction_resistance_flag that indicates whether prediction resistance is

required by the DRBG instantiation.

The value of s is the critical value of the internal state upon which the security of this

DRBG mechanism depends (i.e., s is the “secret value” of the internal state).

10.3.1.2 Instantiation of Dual_EC_DRBG

Notes for the instantiate function specified in Section 9.1:

NIST SP 800-90A, Rev 1 Dual_EC_DRBG January 2012

63

The instantiation of Dual_EC_DRBG requires a call to the instantiate function

specified in Section 9.1. Process step 9 of that function calls the instantiate algorithm in

this section.

When selecting the curve in step 4 below, it is recommended that the default values be

used for P and Q as given in Appendix A.1. However, an implementation may use

different pairs of points, provided that they are verifiably random, as evidenced by the

use of the procedure specified in Appendix A.2.1 and the self-test procedure described

in Appendix A.2.2.

The values for highest_supported_security_strength and min_length are determined by

the selected curve (see Table 4 in Section 10.3.1).

The instantiate algorithm :

Let Hash_df be the hash derivation function specified in Section 10.4.1 using an

appropriate hash function from Table 4 in Section 10.3.1. Let seedlen be the

appropriate value from Table 4.

The following process or its equivalent shall be used as the instantiate algorithm for

this DRBG mechanism (see step 9 of the instantiate process in Section 9.1):

Dual_EC_DRBG_Instantiate_algorithm (entropy_input, nonce,

personalization_string, security_strength):

1. entropy_input: The string of bits obtained from the source of entropy input.

2. nonce: A string of bits as specified in Section 8.6.7.

3. personalization_string: The personalization string received from the consuming

application. Note that the length of the personalization string may be zero.

4. security_strength: The security strength for the instantiation. This parameter is

required for Dual_EC_DRBG.

Output:

1. s, seedlen, p, a, b, n, P, Q, and a reseed_counter for the initial_working_state.

Dual_EC_DRBG Instantiate Process:

1. seed_material = entropy_input || nonce || personalization_string.

Comment: Use a hash function to ensure that

the entropy is distributed throughout the bits,

and s is m (i.e., seedlen) bits in length.

2. s = Hash_df (seed_material, seedlen).

3. reseed_counter = 0.

4. Using the security_strength and Table 4 in Section 10.3.1, select the smallest

available curve that has a security strength security_strength. The values for

seedlen, p, a, b, n, P, Q are determined by the curve.

NIST SP 800-90A, Rev 1 Dual_EC_DRBG January 2012

64

5. Return s, seedlen, p, a, b, n, P, Q, and a reseed_counter for the

initial_working_state.

10.3.1.3 Reseeding of a Dual_EC_DRBG Instantiation

Notes for the reseed function specified in Section 9.2:

The reseed of Dual_EC_DRBG requires a call to the reseed function specified in

Section 9.2. Process step 6 of that function calls the reseed algorithm in this section.

The values for min _length are provided in Table 4 of Section 10.3. 1.

The reseed algorithm :

Let Hash_df be the hash derivation function specified in Section 10.4.1 using an

appropriate hash function from Table 4 in Section 10.3. 1.

The following process or its equivalent shall be used to reseed the Dual_EC_DRBG

process after it has been instantiated (see step 6 of the reseed process in Section 9.2):

Dual_EC_DRBG_Reseed_algorithm (working_state, entropy_input,

additional_input):

1. working_state: The current values for s, seedlen, p, a, b, n, P, Q, and a

reseed_counter (see Section 10.3.1.1).

2. entropy_input: The string of bits obtained from the source of entropy input.

3. additional_input: The additional input string received from the consuming

application. Note that the length of the additional_input string may be zero.

Output:

1. s, seedlen, p, a, b, n, P, Q, and a reseed_counter for the new_working_state.

Dual_EC_DRBG Reseed Process:

Comment: pad8 returns a copy of s padded

on the right with binary 0’s, if necessary, to a

multiple of 8.

1. seed_material = pad8 (s) || entropy_input || additional_input.

2. s = Hash_df (seed_material, seedlen).

3. reseed_counter = 0.

4. Return s, seedlen, p, a, b, n, P, Q, and a reseed_counter for the

new_working_state.

10.3.1.4 Generating Pseudorandom Bits Using Dual_EC_DRBG

Notes for the generate function specified in Section 9.3:

The generation of pseudorandom bits using a Dual_EC_DRBG instantiation requires a

call to the generate function. Process step 8 of that function calls the generate algorithm

NIST SP 800-90A, Rev 1 Dual_EC_DRBG January 2012

65

specified in this section. The values for max_number_of_bits_per_request and

max_outlen are provided in Table 4 of Section 10.3.1. outlen is the number of

pseudorandom bits taken from each x-coordinate as the Dual_EC_DRBG steps. For

performance reasons, the value of outlen should be set to the maximum value as

provided in Table 4. If the value of outlen provided in Table 4 is not used, then outlen

shall be set to any multiple of eight bits less than or equal to max_outlen. The bits that

become the Dual_EC_DRBG output are always the rightmost bits, i.e., the least

significant bits of the x-coordinates. Appendix E.2 contains additional information

regarding the statistical and distributional implications related to the truncation of the

x-coordinates.

The generate algorithm:

Let Hash_df be the hash derivation function specified in Section 10.4.1 using an

appropriate hash function from Table 4 in Section 10.3.1. The value of reseed_interval

is also provided in Table 4.

The following are used by the generate algorithm:

a. pad8 (bitstring) returns a copy of the bitstring padded on the right with binary

0’s, if necessary, to a multiple of 8.

b. Truncate (bitstring, in_len, out_len) inputs a bitstring of in_len bits, returning

a string consisting of the leftmost out_len bits of bitstring. If in_len < out_len,

the bitstring is padded on the right with (out_len - in_len) zeroes, and the result

is returned.

c. x(A) is the x-coordinate of the point A on the curve, given in affine coordinates.

An implementation may choose to represent points internally using other

coordinate systems; for instance, when efficiency is a primary concern. In this

case, a point shall be translated back to affine coordinates before x() is applied.

d. (x) maps field elements to non-negative integers, taking the bit vector

representation of a field element and interpreting it as the binary expansion of

an integer.

The precise definition of (x) used in steps 6 and 7 of the generate process

below depends on the field representation of the curve points. In keeping with

the convention of [FIPS 186], the following elements will be associated with

each other (note that, in this case, m denotes the size of the base field):

 B: cm-1 cm-2 ... c1 c0 , a bitstring, with cm-1 being leftmost

 Z: cm-12
m-1

 + . . . + c22
2
 + c12

1
 + c0 Z ;

 Fa: cm-12
m-1

 + . . . + c22
2
 + c12

1
 + c0 mod p Fp;

Thus, any field element x of the form Fa will be converted to the integer Z or

bitstring B, and vice versa, as appropriate.

e. * is the symbol representing scalar multiplication of a point on the curve.

NIST SP 800-90A, Rev 1 Dual_EC_DRBG January 2012

66

The following process or its equivalent shall be used to generate pseudorandom bits

(see step 8 of the generate process in Section 9.3):

Dual_EC_DRBG_Generate_algorithm (working_state, requested_number_of_bits,

additional_input):

1. working_state: The current values for s, seedlen, p, a, b, n, P, Q, and a

reseed_counter (see Section 10.3.1.1).

2. requested_number_of_bits: The number of pseudorandom bits to be returned to

the generate function.

3. additional_input: The additional input string received from the consuming

application. If the input of additional_input is not supported by an

implementation, then step 2 of the generate process becomes:

additional_input = 0.

Alternatively, generate steps 2 and 9 are omitted, the additional_input term is

omitted from step 5, and the “go to step 5” in step 12 is to the step that now sets

t = s.

Output:

1. status: The status returned from the function. The status will indicate

SUCCESS, or an indication that a reseed is required before the requested

pseudorandom bits can be generated.

2. returned_bits: The pseudorandom bits to be returned to the generate function.

3. s, seedlen, p, a, b, n, P, Q, and a reseed_counter for the new_working_state.

Dual_EC_DRBG Generate Process:

Comment: Check whether a reseed is

required.

1. If > reseed_interval, then return

an indication that a reseed is required.

Comment: If additional_input is Null, set to

seedlen zeroes; otherwise, Hash_df to

seedlen bits.

2. If (additional_input_string = Null), then additional_input = 0

Else additional_input = Hash_df (pad8 (additional_input_string), seedlen).

Comment: Produce requested_no_of_bits,

outlen bits at a time:

3. temp = the Null string.

4 i = 0.

NIST SP 800-90A, Rev 1 Dual_EC_DRBG January 2012

67

5. t = s additional_input. Comment: t is to be interpreted as a seedlen-

bit unsigned integer. To be precise, t should

be reduced mod n; the operation * will effect

this.

6. s = (x(t P)). Comment: s is a seedlen-bit number. Note

that the conversion of (x) is discussed in

item d above; this also applies to step 7.

7. r (x(s Q)). Comment: r is a seedlen-bit number.

8. temp = temp || (rightmost outlen bits of r).

9. additional_input=0 Comment: seedlen zeroes;

additional_input_string is added only on the

first iteration.

10. reseed_counter = reseed_counter + 1.

11. i = i + 1.

12. If (len (temp) < requested_number_of_bits), then go to step 5.

13 returned_bits = Truncate (temp, i outlen, requested_number_of_bits).

14. s = (x(s P)).

15. Return SUCCESS, returned_bits, and s, seedlen, p, a, b, n, P, Q, and a

reseed_counter for the new_working_state.

10.4 Auxiliary Functions

Derivation functions are internal functions that are used during DRBG instantiation and

reseeding to either derive internal state values or to distribute entropy throughout a

bitstring. Two methods are provided. One method is based on hash functions (see Section

10.4.1), and the other method is based on block cipher algorithms (see 10.4.2). The block

cipher derivation function specified in Section 10.4.2 uses a Block_Cipher_Hash function

that is specified in Section 10.4.3.

The presence of these derivation functions in this Recommendation does not implicitly

approve these functions for any other application.

10.4.1 Derivation Function Using a Hash Function (Hash_df)

This derivation function is used by the Hash_DRBG and Dual_EC_DRBG specified

Section 10.1.1 and 10.3.1, respectively. The hash-based derivation function hashes an input

string and returns the requested number of bits. Let Hash be the hash function used by the

DRBG mechanism, and let outlen be its output length.

The following or an equivalent process shall be used to derive the requested number of

bits.

NIST SP 800-90A, Rev 1 Dual_EC_DRBG January 2012

68

Hash_df (input_string, no_of_bits_to_return):

1. input_string: The string to be hashed.

2. no_of_bits_to_return: The number of bits to be returned by Hash_df. The

maximum length (max_number_of_bits) is implementation dependent, but shall be

less than or equal to (255 outlen). no_of_bits_to_return is represented as a 32-bit

integer.

Output:

1. status: The status returned from Hash_df. The status will indicate SUCCESS or

ERROR_FLAG.

2. requested_bits : The result of performing the Hash_df.

Hash_df Process:

1. temp = the Null string.

2. .

3. counter = an 8-bit binary value representing the integer "1".

4. For i = 1 to len do

Comment : In step 4.1, no_of_bits_to_return

is used as a 32-bit string.

4.1 temp = temp || Hash (counter || no_of_bits_to_return || input_string).

4.2 counter = counter + 1.

5. requested_bits = Leftmost (no_of_bits_to_return) of temp.

6. Return SUCCESS and requested_bits.

10.4.2 Derivation Function Using a Block Cipher Algorithm
(Block_Cipher_df)

This derivation function is used by the CTR_DRBG that is specified in Section 10.2. Let

BCC be the function specified in Section 10.4.3. Let outlen be its output block length,

which is a multiple of 8 bits for the approved block cipher algorithms, and let keylen be

the key length.

The following or an equivalent process shall be used to derive the requested number of

bits.

Block_Cipher_df (input_string, no_of_bits_to_return):

1. input_string: The string to be operated on. This string shall be a multiple of 8 bits.

2. no_of_bits_to_return: The number of bits to be returned by Block_Cipher_df. The

maximum length (max_number_of_bits) is 512 bits for the currently approved

block cipher algorithms.

NIST SP 800-90A, Rev 1 Dual_EC_DRBG January 2012

69

Output:

1. status: The status returned from Block_Cipher_df. The status will indicate

SUCCESS or ERROR_FLAG.

2. requested_bits : The result of performing the Block_Cipher_df.

Block_Cipher_df Process:

1. If (number_of_bits_to_return > max_number_of_bits), then return an

ERROR_FLAG.

2. L = len (input_string)/8. Comment: L is the bitstring represention of

the integer resulting from len (input_string)/8.

L shall be represented as a 32-bit integer.

3. N = number_of_bits_to_return/8. Comment : N is the bitstring represention of

the integer resulting from

number_of_bits_to_return/8. N shall be

represented as a 32-bit integer.

Comment: Prepend the string length and the

requested length of the output to the

input_string.

4. S = L || N || input_string || 0x80.

Comment : Pad S with zeros, if necessary.

5. While (len (S) mod outlen) 0, S = S || 0x00.

Comment : Compute the starting value.

6. temp = the Null string.

7. i = 0. Comment : i shall be represented as a 32-bit

integer, i.e., len (i) = 32.

8. K = Leftmost keylen bits of 0x00010203...1D1E1F.

9. While len (temp) < keylen + outlen, do

9.1 IV = i || 0
outlen - len (i)

. Comment: The 32-bit integer represenation of

i is padded with zeros to outlen bits.

9.2 temp = temp || BCC (K, (IV || S)).

9.3 i = i + 1.

Comment: Compute the requested number of

bits.

10. K = Leftmost keylen bits of temp.

11. X = Next outlen bits of temp.

12. temp = the Null string.

NIST SP 800-90A, Rev 1 Dual_EC_DRBG January 2012

70

13. While len (temp) < number_of_bits_to_return, do

13.1 X = Block_Encrypt (K, X).

13.2 temp = temp || X.

14. requested_bits = Leftmost number_of_bits_to_return of temp.

15. Return SUCCESS and requested_bits.

10.4.3 BCC Function

Block_Encrypt is used for convenience in the specification of the BCC function. This

function is not specifically defined in this Recommendation, but has the following

meaning:

Block_Encrypt: A basic encryption operation that uses the selected block cipher

algorithm. The function call is:

output_block = Block_Encrypt (Key, input_block)

For TDEA, the basic encryption operation is called the forward cipher operation (see

[SP 800-67]); for AES, the basic encryption operation is called the cipher operation

(see [FIPS 197]). The basic encryption operation is equivalent to an encryption

operation on a single block of data using the ECB mode.

For the BCC function, let outlen be the length of the output block of the block cipher

algorithm to be used.

The following or an equivalent process shall be used to derive the requested number of

bits.

BCC (Key, data):

1. Key: The key to be used for the block cipher operation.

2. data: The data to be operated upon. Note that the length of data must be a multiple

of outlen. This is guaranteed by Block_Cipher_df process steps 4 and 8.1 in

Section 10.4.2.

Output:

1. output_block: The result to be returned from the BCC operation.

BCC Process:

1. chaining_value = 0
outlen

. Comment: Set the first chaining value to outlen zeros.

2. n = len (data)/outlen.

3. Starting with the leftmost bits of data, split the data into n blocks of outlen bits

each, forming block1 to blockn.

4. For i = 1 to n do

4.1 input_block = chaining_value blocki .

NIST SP 800-90A, Rev 1 Dual_EC_DRBG January 2012

71

4.2 chaining_value = Block_Encrypt (Key, input_block).

5. output_block = chaining_value.

6. Return output_block.

NIST SP 800-90A, Rev 1 January 2012

72

11 Assurance

A user of a DRBG for cryptographic purposes requires assurance that the generator

actually produces (pseudo) random and unpredictable bits. The user needs assurance that

the design of the generator, its implementation and its use to support cryptographic

services are adequate to protect the user's information. In addition, the user requires

assurance that the generator continues to operate correctly.

The design of each DRBG mechanism in this Recommendation has received an evaluation

of its security properties prior to its selection for inclusion in this Recommendation.

An implementation shall be validated for conformance to this Recommendation by a

NVLAP-accredited laboratory (see Section 11.2). Such validations provide a higher level

of assurance that the DRBG mechanism is correctly implemented. Validation testing for

DRBG mechanisms consists of testing whether or not the DRBG mechanism produces the

expected result, given a specific set of input parameters (e.g., entropy input).

Health tests on the DRBG mechanism shall be implemented within a DRBG mechanism

boundary or sub-boundary in order to determine that the process continues to operate as

designed and implemented. See Section 11.3 for further information.

A cryptographic module containing a DRBG mechanism shall be validated (see [FIPS

140]). The consuming application or cryptographic service that uses a DRBG mechanism

should also be validated and periodically tested for continued correct operation. However,

this level of testing is outside the scope of this Recommendation.

Note that any entropy input used for testing (either for validation testing or health testing)

may be publicly known. Therefore, entropy input used for testing shall not knowingly be

used for normal operational use.

11.1 Minimal Documentation Requirements

A set of documentation shall be developed that will provide assurance to users and

validators that the DRBG mechanisms in this Recommendation have been implemented

properly. Much of this documentation may be placed in a user’s manual. This

documentation shall consist of the following as a minimum:

 Document the method for obtaining entropy input.

 Document how the implementation has been designed to permit implementation

validation and health testing.

 Document the type of DRBG mechanism (e.g., CTR_DRBG, Dual_EC_DRBG),

and the cryptographic primitives used (e.g., AES-128, SHA-256).

 Document the security strengths supported by the implementation.

 Document features supported by the implemention (e.g., prediction resistance, the

available elliptic curves, etc.).

NIST SP 800-90A, Rev 1 January 2012

73

 If DRBG mechanism functions are distributed, specify the mechanisms that are

used to protect the confidentiality and integrity of the internal state or parts of the

internal state that are transferred between the distributed DRBG mechanism sub-

boundaries (i.e., provide documentation about the secure channel).

 In the case of the CTR_DRBG, indicate whether a derivation function is provided.

If a derivation function is not used, document that the implementation can only be

used when full entropy input is available.

 Document any support functions other than health testing.

 Document the periodic intervals at which health testing is performed for the

generate function and provide a justification for the selected intervals (see Section

11.3.3).

 Document how the integrity of the health tests will be determined subsequent to

implementation validation testing.

11.2 Implementation Validation Testing

A DRBG mechanism shall be tested for conformance to this Recommendation. A DRBG

mechanism shall be designed to be tested to ensure that the product is correctly

implemented. A testing interface shall be available for this purpose in order to allow the

insertion of input and the extraction of output for testing.

Implementations to be validated shall include the following:

 Documentation specified in Section 11.1.

 Any documentation or results required in derived test requirements.

11.3 Health Testing

A DRBG implementation shall perform self-tests to obtain assurance that the DRBG

continues to operate as designed and implemented (health testing). The testing function(s)

within a DRBG mechanism boundary (or sub-boundary) shall test each DRBG mechanism

function within that boundary (or sub-boundary), with the possible exception of the test

function itself. Note that testing may require the creation and use of one or more

instantiations for testing purposes only. A DRBG implementation may optionally perform

other self-tests for DRBG functionality in addition to the tests specified in this

Recommendation.

All data output from the DRBG mechanism boundary (or sub-boundary) shall be inhibited

while these tests are performed. The results from known-answer-tests (see Section 11.3.1)

shall not be output as random bits during normal operation.

11.3.1 Known Answer Testing

Known-answer testing shall be conducted as specified below. A known-answer test

involves operating the DRBG mechanism with data for which the correct output is already

NIST SP 800-90A, Rev 1 January 2012

74

known, and determining if the calculated output equals the expected output (the known

answer). The test fails if the calculated output does not equal the known answer. In this

case, the DRBG mechanism shall enter an error state and output an error indicator (see

Section 11.3.6).

Generalized known-answer testing is specified in Sections 11.3.2 to 11.3.5. Testing shall

be performed on all implemented DRBG mechanism functions, with the possible exception

of the test function itself. Documentation shall be provided that addresses the continued

integrity of the health tests (see Section 11.1).

11.3.2 Testing the Instantiate Function

Known-answer tests on the instantiate function shall be performed prior to creating each

operational instantiation. However, if several instantiations are performed in quick

succession using the same security_strength and prediction_resistance_flag parameters,

then the testing may be reduced to testing only prior to creating the first operational

instantiation using that parameter set until such time as the succession of instantiations that

use the same security_strength and prediction_resistance_flag parameters is completed.

Thereafter, other instantiations shall be tested as specified above.

The security_strength and prediction_resistance_flag to be used in the operational

invocation shall be used during the test. Representative fixed values and lengths of the

entropy_input, nonce and personalization_string (if supported) shall be used; the value of

the entropy_input used during testing shall not be intentionally reused during normal

operations (either by the instantiate or the reseed functions). Error handling shall also be

tested, including whether or not the instantiate function handles an error from the source of

entropy input correctly.

If the values used during the test produce the expected results, and errors are handled

correctly, then the instantiate function may be used to instantiate using the tested values of

security_strength and the prediction_resistance_flag.

An implementation should provide a capability to test the instantiate function on demand.

11.3.3 Testing the Generate Function

Known-answer tests shall be performed on the generate function before the first use of the

function in an implementation for operational purposes (i.e., the first use ever) and at

reasonable intervals defined by the implementer. The implementer shall document the

intervals and provide a justification for the selected intervals.

The known-answer tests shall be performed for each implemented security_strength.

Representative fixed values and lengths for the requested_number_of_bits and

additional_input (if supported) and the working state of the internal state value (see

Sections 8.3 and 10) shall be used. If prediction resistance is supported, then each

combination of the security_strength, prediction_resistance_request and

prediction_resistance_flag shall be tested. The error handling for each input parameter

shall also be tested, and testing shall include setting the reseed_counter to meet or exceed

NIST SP 800-90A, Rev 1 January 2012

75

the reseed_interval in order to check that the implementation is reseeded or that the DRBG

is uninstantiated, as appropriate (see Section 9.3.1).

If the values used during the test produce the expected results, and errors are handled

correctly, then the generate function may be used during normal operations.

Bits generated during health testing shall not be output as pseudorandom bits.

An implementation should provide a capability to test the generate function on demand.

11.3.4 Testing the Reseed Function

A known-answer test of the reseed function shall use the security_strength in the internal

state of the (testing) instantiation to be reseeded. Representative values of the

entropy_input and additional_input (if supported) and the working state of the internal

state value shall be used (see Sections 8.3 and 10). Error handling shall also be tested,

including an error in obtaining the entropy_input (e.g., the entropy_input source is broken).

If the values used during the test produce the expected results, and errors are handled

correctly, then the reseed function may be used to reseed the instantiation.

Self-testing shall be performed as follows:

1. When prediction resistance is supported in an implementation, the reseed function

shall be tested whenever the generate function is tested (see above).

2. When prediction resistance is not supported in an implementation, the reseed

function shall be tested whenever the reseed function is invoked and before the

reseed is performed on the operational instantiation.

An implementation should provide a capability to test the reseed function on demand.

11.3.5 Testing the Uninstantiate Function

The uninstantiate function shall be tested whenever other functions are tested. Testing

shall demonstrate that error handling is performed correctly, and the internal state has been

zeroized.

11.3.6 Error Handling

The expected errors are indicated for each DRBG mechanism function (see Sections 9.1 -

9.4) and for the derivation functions in Section 10.4. The error handling routines should

indicate the type of error.

11.3.6.1 Errors Encountered During Normal Operation

Many errors that occur during normal operation may be caused by a consuming

application’s improper DRBG request; these errors are indicated by “ERROR_FLAG” in

the pseudocode. In these cases, the consuming application user is responsible for

correcting the request within the limits of the user’s organizational security policy. For

example, if a failure indicating an invalid, requested security strength is returned, a security

NIST SP 800-90A, Rev 1 January 2012

76

strength higher than the DRBG or the DRBG instantiation can support has been requested.

The user may reduce the requested security strength if the organization’s security policy

allows the information to be protected using a lower security strength, or the user shall use

an appropriately instantiated DRBG.

Catastrophic errors (i.e., those errors indicated by the

CATASTROPHIC_ERROR_FLAG in the pseudocode) detected during normal

operation shall be treated in the same manner as an error detected during health testing

(see Section 11.3.6.2).

11.3.6.2 Errors Encountered During Health Testing

Errors detected during health testing shall be perceived as catastrophic DRBG failures.

When a DRBG fails a health test or a catastrophic error is detected during normal

operation, the DRBG shall enter an error state and output an error indicator. The DRBG

shall not perform any instantiate, generate or reseed operations while in the error state, and

pseudorandom bits shall not be output when an error state exists. When in an error state,

user intervention (e.g., power cycling of the DRBG) shall be required to exit the error

state, and the DRBG shall be re-instantiated before the DRBG can be used to produce

pseudorandom bits. Examples of such errors include:

 A test deliberately inserts an error, and the error is not detected, or

 An incorrect result is returned from the instantiate, reseed or generate function than

was expected.

NIST SP 800-90A, Rev 1 January 2012

77

Appendix A: (Normative) Application-Specific Constants

A.1 Constants for the Dual_EC_DRBG

The Dual_EC_DRBG requires the specifications of an elliptic curve and two points on the

elliptic curve. One of the following NIST approved curves with associated points shall be

used in applications requiring certification under [FIPS 140]. More details about these

curves may be found in [FIPS 186]. If alternative points are desired, they shall be

generated as specified in Appendix A.2.

Each of following curves is given by the equation:

y
2
 = x

3
- 3x + b (mod p)

Notation:

p - Order of the field Fp , given in decimal

n - Order of the Elliptic Curve Group, in decimal .

a – (-3) in the above equation

b - Coefficient above

The x and y coordinates of the base point, i.e., generator G, are the same as for the point P.

A.1.1 Curve P-256

p = 11579208921035624876269744694940757353008614\

3415290314195533631308867097853951

n = 11579208921035624876269744694940757352999695\

5224135760342422259061068512044369

b = 5ac635d8 aa3a93e7 b3ebbd55 769886bc 651d06b0 cc53b0f6 3bce3c3e
27d2604b

Px = 6b17d1f2 e12c4247 f8bce6e5 63a440f2 77037d81 2deb33a0
f4a13945 d898c296

Py = 4fe342e2 fe1a7f9b 8ee7eb4a 7c0f9e16 2bce3357 6b315ece
cbb64068 37bf51f5

Qx = c97445f4 5cdef9f0 d3e05e1e 585fc297 235b82b5 be8ff3ef
ca67c598 52018192

Qy = b28ef557 ba31dfcb dd21ac46 e2a91e3c 304f44cb 87058ada
2cb81515 1e610046

NIST SP 800-90A, Rev 1 January 2012

78

A.1.2 Curve P-384

p = 39402006196394479212279040100143613805079739\

27046544666794829340424572177149687032904726\

6088258938001861606973112319

n = 39402006196394479212279040100143613805079739\

27046544666794690527962765939911326356939895\

6308152294913554433653942643

b = b3312fa7 e23ee7e4 988e056b e3f82d19 181d9c6e fe814112 0314088f
5013875a c656398d 8a2ed19d 2a85c8ed d3ec2aef

Px = aa87ca22 be8b0537 8eb1c71e f320ad74 6e1d3b62 8ba79b98
59f741e0 82542a38 5502f25d bf55296c 3a545e38 72760ab7

Py = 3617de4a 96262c6f 5d9e98bf 9292dc29 f8f41dbd 289a147c
e9da3113 b5f0b8c0 0a60b1ce 1d7e819d 7a431d7c 90ea0e5f

Qx = 8e722de3 125bddb0 5580164b fe20b8b4 32216a62 926c5750
2ceede31 c47816ed d1e89769 124179d0 b6951064 28815065

Qy = 023b1660 dd701d08 39fd45ee c36f9ee7 b32e13b3 15dc0261

0aa1b636 e346df67 1f790f84 c5e09b05 674dbb7e 45c803dd

A.1.3 Curve P-521

p = 68647976601306097149819007990813932172694353\

00143305409394463459185543183397656052122559\

64066145455497729631139148085803712198799971\

6643812574028291115057151

n = 68647976601306097149819007990813932172694353\

00143305409394463459185543183397655394245057\

74633321719753296399637136332111386476861244\

0380340372808892707005449

b = 051953eb 9618e1c9 a1f929a2 1a0b6854 0eea2da7 25b99b31 5f3b8b48
9918ef10 9e156193 951ec7e9 37b1652c 0bd3bb1b f073573d f883d2c3

4f1ef451 fd46b503 f00

Px = c6858e06 b70404e9 cd9e3ecb 662395b4 429c6481 39053fb5
21f828af 606b4d3d baa14b5e 77efe759 28fe1dc1 27a2ffa8

de3348b3 c1856a42 9bf97e7e 31c2e5bd 66

Py = 11839296 a789a3bc 0045c8a5 fb42c7d1 bd998f54 449579b4
46817afb d17273e6 62c97ee7 2995ef42 640c550b 9013fad0

761353c7 086a272c 24088be9 4769fd16 650

NIST SP 800-90A, Rev 1 January 2012

79

Qx = 1b9fa3e5 18d683c6 b6576369 4ac8efba ec6fab44 f2276171
a4272650 7dd08add 4c3b3f4c 1ebc5b12 22ddba07 7f722943

b24c3edf a0f85fe2 4d0c8c01 591f0be6 f63

Qy = 1f3bdba5 85295d9a 1110d1df 1f9430ef 8442c501 8976ff34

37ef91b8 1dc0b813 2c8d5c39 c32d0e00 4a3092b7 d327c0e7

a4d26d2c 7b69b58f 90666529 11e45777 9de

A.2 Using Alternative Points in the Dual_EC_DRBG

The security of Dual_EC_DRBG requires that the points P and Q be properly generated.

To avoid using potentially weak points, the points specified in Appendix A.1 should be

used. However, an implementation may use different pairs of points, provided that they are

verifiably random, as evidenced by the use of the procedure specified in Appendix A.2.1

below, and the self-test procedure in Appendix A.2.2. An implementation that uses

alternative points generated by this approved method shall have them “hard-wired” into

its source code, or hardware, as appropriate, and loaded into the working_state at

instantiation. To conform to this Recommendation, alternatively generated points shall use

the procedure given in Appendix A.2.1, and verify their generation using Appendix A.2.2.

A.2.1 Generating Alternative P, Q

The curve shall be one of the NIST curves from [FIPS 186] that is specified in Appendix

A.1 of this Recommendation, and shall be appropriate for the desired security_strength, as

specified in Table 4 in Section 10.3.1.

The points P and Q shall be valid base points for the selected elliptic curve that are

generated to be verifiably random using the procedure specified in [X9.62]. The following

input is required for each point:

An elliptic curve E = (Fp, a, b), cofactor h, prime n, a bitstring

domain_parameter_seed7, and hash function Hash(). The definition of these

parameters is provided in Appendix A.1 of this Recommendation. The

domain_parameter_seed shall be different for each point, and the minimum length m

of each domain_parameter_seed shall conform to Section 10.3.1, Table 4, under “Seed

length”. The bit length of the domain_parameter_seed may be larger than m. The hash

function for generating P and Q shall be SHA-512 in all cases.

The domain_parameter_seed shall be different for each point P and Q. A domain

parameter seed shall not be the seed used to instantiate a DRBG. The domain parameter

seed is an arbitrary value that may, for example, be determined from the output of a

DRBG.

If the output from the generation procedure in [X9.62] is “failure”, a different

domain_parameter_seed shall be used for the point being generated.

7 Called a SEED in ANS X9.62.

NIST SP 800-90A, Rev 1 January 2012

80

Otherwise, the output point from the generate procedure in [X9.62] shall be used.

A.2.2 Additional Self-testing Required for Alternative P, Q

To insure that the points P and Q have been generated appropriately, additional self-test

procedures shall be performed whenever the instantiate function is invoked. Section 11.3.1

specifies that known-answer tests on the instantiate function be performed prior to creating

an operational instantiation. As part of these tests, an implementation of the generation

procedure in [X9.62] shall be called for each point (i.e., P and Q) with the appropriate

domain_parameter_seed value that was used to generate that point. The point returned

shall be compared with the corresponding stored value of the point. If the generated value

does not match the stored value, the implementation shall halt with an error condition.

NIST SP 800-90A, Rev 1 January 2012

81

Appendix B: (Normative) Conversion and Auxilliary Routines

B.1 Bitstring to an Integer

Bitstring_to_integer (b1, b2,…, bn):

1. b1, b2,…, bn The bitstring to be converted.

Output:

1. x The requested integer representation of the bitstring.

Process:

1. Let (b1, b2,…, bn) be the bits of b from leftmost to rightmost.

2. .

3. Return x.

In this Recommendation, the binary length of an integer x is defined as the smallest integer

n satisfying x < 2
n
.

B.2 Integer to a Bitstring

Integer_to_bitstring (x):

1. x The non-negative integer to be converted.

Output:

1. b1, b2, ..., bn The bitstring representation of the integer x.

Process:

1. Let (b1, b2, ..., bn) represent the bitstring, where b1 = 0 or 1, and b1 is the most

significant bit, while bn is the least significant bit.

2. For any integer n that satisfies x < 2n, the bits bi shall satisfy:

.

3. Return b1, b2, ..., bn.

In this Recommendation, the binary length of the integer x is defined as the smallest

integer n that satisfies x < 2n.

B.3 Integer to an Byte String

Integer_to_byte_string (x):

NIST SP 800-90A, Rev 1 January 2012

82

1. A non-negative integer x, and the intended length n of the byte string satisfying

 2
8n

 > x.

Output:

1. A byte string O of length n bytes.

Process:

1. Let O1, O2,…, On be the bytes of O from leftmost to rightmost.

2. The bytes of O shall satisfy:

x = 2
8(n-i)

Oi

for i = 1 to n.

3. Return O.

B.4 Byte String to an Integer

Byte_string_to_integer (O):

1. A byte string O of length n bytes.

Output:

1. A non-negative integer x.

Process:

1. Let O1, O2, …, On be the bytes of O from leftmost to rightmost.

2. x is defined as follows:

 x = 2
8(n-i)

Oi

for i = 1 to n.

3. Return x.

B.5 Converting Random Numbers from/to Random Bits

The random values required for cryptographic applications are generally of two types:

either a random bitstring of a specified length, or a random integer in a specified interval.

In some cases, a DRBG may return a random number in a specified interval that needs to

be converted into random bits; in other cases, a DRBG returns a random bitstring that

needs to be converted to a random number in a specific range.

B.5.1 Converting Random Bits into a Random Number

In some cryptographic applications sequences of random numbers are required (a0, a1,

a2,…) where:

NIST SP 800-90A, Rev 1 January 2012

83

i) Each integer ai satisfies 0 ai r-1, for some positive integer r (the range of the

random numbers);

ii) The equation ai = s holds, with probability almost exactly 1/r, for any i 0 and for

any s (0 s r-1);

iii) Each value ai is statistically independent of any set of values aj (j i).

Four techniques are specified for generating sequences of random numbers from sequences

of random bits.

If the range of the number required is a ai b rather than 0 ai r-1, then a random

number in the desired range can be obtained by computing ai + a, where ai is a random

number in the range 0 ai b-a (that is, when r = b-a+1).

B.5.1.1 The Simple Discard Method

Let m be the number of bits needed to represent the value (r–1). The following method

may be used to generate the random number a:

1. Use the random bit generator to generate a sequence of m random bits, (b0, b1, …,

bm-1).

2. Let c 2i

i 0

m 1

bi.

3. If c < r then put a = c, else discard c and go to Step 1.

This method produces a random number a with no skew (no bias). A possible

disadvantage of this method, in general, is that the time needed to generate such a random

a is not a fixed length of time because of the conditional loop.

The ratio r/2
m
 is a measure of the efficiency of the technique, and this ratio will always

satisfy 0.5 < r/2
m
 1. If r/2

m
 is close to 1, then the above method is simple and efficient.

However, if r/2
m
 is close to 0.5, then the simple discard method is less efficient, and the

more complex method below is recommended.

B.5.1.2 The Complex Discard Method

Choose a small positive integer t (the number of same-size random number outputs

desired), and then let m be the number of bits in (r
t
 –1). This method may be used to

generate a sequence of t random numbers (a0, a1, … , at-1):

1. Use the random bit generator to generate a sequence of m random bits, (b0, b1, …,

bm-1).

2. Let c 2i

i 0

m 1

bi .

3. If c < r
t
 , then

NIST SP 800-90A, Rev 1 January 2012

84

let (a0, a1, …, at-1) be the unique sequence of values satisfying 0 ai r -1 such

that c ri

i 0

t 1

ai.

else discard c and go to Step 1.

This method produces random numbers (a0, a1, … , at-1) with no skew. A possible

disadvantage of this method, in general, is that the time needed to generate these numbers

is not a fixed length of time because of the conditional loop. The complex discard method

may have better overall performance than the simple discard method if many random

numbers are needed.

The ratio r
t
/2

m
 is a measure of the efficiency of the technique, and this ratio will always

satisfy 0.5 < r
t
/2

m
 1. Hence, given r, it is recommended to choose t so that t is the

smallest value such that r
t
/2

m
 is close to 1. For example, if r = 3, then choosing t = 3

means that m = 5 (as r
t
 is 27) and r

t
/m = 27/32 0.84, and choosing t = 5 means that m = 8

(as r
t
 is 243) and r

t
/m = 243/256 0.95. The complex discard method coincides with the

simple discard method when t = 1.

B.5.1.3 The Simple Modular Method

Let m be the number of bits needed to represent the value (r–1), and let s be a security

parameter. The following method may be used to generate one random number a:

1. Use the random bit generator to generate a sequence of m+s random bits, (b0, b1,

…, bm+s-1).

2. Let .

3. Let a=c mod r.

The simple modular method can be coded to take constant time. This method produces a

random value with a negligible skew, that is, the probability that ai=w for any particular

value of w (0 w r-1) is not exactly 1/r. However, for a large enough value of s, the

difference between the probability that ai=w for any particular value of w and 1/r is

negligible. The value of s shall be greater than or equal to 64.

B.5.1.4 The Complex Modular Method

Choose a small positive integer t (the number of same-size random number outputs

desired) and a security parameter s; let m be the number of bits in (r
t
 –1). The following

method may be used to generate a sequence of t random numbers (a0, a1, …, at-1):

1. Use the random bit generator to generate a sequence of m+s random bits, (b0, b1,

…, bm+s-1).

2. Let 2ibi
i 0

m s 1

 mod r
t
.

1

0

2
sm

i
i

ibc

NIST SP 800-90A, Rev 1 January 2012

85

3. Let (a0, a1, …, at-1) be the unique sequence of values satisfying 0 ai r-1 such

that .

The complex modular method may have better overall performance than the simple

modular method if many random numbers are needed. This method produces a random

value with a negligible skew; that is, the probability that ai=w for any particular value of w

(0 w r-1) is not exactly 1/r. However, for a large enough value of s, the difference

between the probability that ai=w for any particular value of w and 1/r is negligible. The

value of s shall be greater than or equal to 64. The complex modular method coincides

with the simple modular method when t=1.

B.5.2 Converting a Random Number into Random Bits

B.5.2.1 The No Skew (Variable Length Extraction) Method

This is a method of extracting random unbiased bits from a random number modulo a

number n. First, a toy example is provided in order to explain how the method works, and

then pseudocode is given.

For the toy example, the insight is to look at the modulus n and the random number r as

bits, from left to right, and to partition the possible values of r into disjoint sets based on

the largest number of random bits that might be extracted. As a small example, if n = 11,

then the binary representation of n is b’1011’, and the possible values of r (in binary) are

as follows:

0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001, 1010.

Let the leftmost bit be considered as the bit 4, and the rightmost bit be considered as the bit

1.

1. As the 4th bit of n is b‛1’, look at the 4th bit of r.

2. If the 4th bit of r is b‘0’, then the remaining 3 bits can be extracted as unbiased

random bits. This forms a class of [0000, 0001, 0010, 0011, 0100, 0101, 0110,

0111] and maps each respective element into the 3-bit sequences [000, 001, 010,

011, 100, 0101, 110, 111], each of which is unbiased, and the process is completed

3. If the 4th bit of r is b‛1’, then r falls into the remainder [1000, 1001, 1010], and the

process needs to continue with step 4 in order to extract unbiased bits.

4. As the 3rd bit of n is b‘0’, the 3rd bit of r is always b‛0’ in the class determined in

step 3; therefore the 3rd bit of r is already known to be biased, so the analysis

moves to the next bit (step 5).

5. The 2nd bit of n is b‘1’, so this forms a subclass [1000, 1001], from which one random

unbiased bit can be extracted, namely the 1st bit.

The remaining value of 1010 cannot be used to extract random bits. However,

obtaining this value is not usual. For this tiny example: 8/11 of the time, 3 unbiased

random bits can be extracted; 2/11 of the time, 1 unbiased bit can be extracted; and

1

0

t

i
i

iarc

NIST SP 800-90A, Rev 1 January 2012

86

1/11, no unbiased bits can be extracted. As can be seen, it is not known ahead of time

how many unbiased bits will be able to be extracted, although the average will be

known.

Let both the modulus n and the random r values have m bits. This means that the m
th

 bit of

n = b‘1’, although m
th

bit of r may be either b‘1’ or b‘0’.

1. j = 0.

2. Do i = m to 1 by –1

Comment: if the i
th

 bit of n = b‘0’, or the i
th

bit of r = b‘1’, then this is a skew situation;

the routine cannot extract i-1 unbiased bits, so

the index is shifted right to check next bit

2.1 If ((the i
th

 bit of n = b‘0’) or (the i
th

 bit of r = b‘1’)), then go to step 2.5.

2.2 j = i-1.

2.3 output = the j
th

 bit of r.

2.4 i = 1 Comment: all unbiased bits possible

have been extracted, so exit .

2.5 Continue

The extraction takes a variable amount of time, but this varying amount of time does not

leak any information to a potential adversary that can be used to attack the method.

B.5.2.2 The Negligible Skew (Fixed Length Extraction) Method

A possible disadvantage of the No Skew (Variable Length Extraction) Method of

Appendix B.5.2.1 is that it takes a variable amount of time to extract a variable number of

random bits. To address this concern and to simplify the extraction method, the following

method is specified that extracts a fixed number of random bits with a negligible skew.

This method exploits the fact that the modulus n is known before the extraction occurs.

1. Examine the modulus considered as a binary number from left to right, and

determine the index bit such that there are at least 16 b‘1’ bits to the left. Call this

bit i.

2. Extract random bits from the random number r by truncating on the left up to bit i.

This is the output = r(i,1).

This method is especially appropriate when the high order bits of the modulus are all set to

b‘1’ for efficiency reasons, as is the case with the NIST elliptic curves over prime fields.

This method is acceptable for elliptic curves, based on the following analysis. When

considering the no skew method, once the random bits are extracted, it is obvious that less

than the full number of random bits can be extracted, and the extraction result will still be

random. The truncation of more bits than necessary is acceptable. What about truncation

of too few bits? For a random number, the no skew extraction process would continue

NIST SP 800-90A, Rev 1 January 2012

87

only if the 16 bits of r corresponding to the b‘1’ bits in n are all zero. For a random

number, this occurs about once every 2
16

 times. As the modulus is at least 160 bits, this

means that 144 bits with a skew are extracted in this case. On average, once every

9,437,184 output bits (or more), there will be a 144-bit substring somewhere in that total

that has a skew, which will have the leftmost bit or bits tending to a binary zero bit or bits.

This skew could be as little as one bit. However, an adversary will not know exactly

where this skewed substring occurs. The 9,437,184 total output bits will still be

overwhelmingly likely to be within the statistical variation of a random bitstring; that is,

the statistical variation almost certainly will be much greater than this negligible skew.

NIST SP 800-90A, Rev 1 January 2012

88

Appendix C: (Informative) Security Considerations when
Extracting Bits in the Dual_EC_DRBG

C.1 Potential Bias Due to Modular Arithmetic for Curves Over Fp

Given an integer x in the range 0 to 2
N
-1, where N is any positive integer, the r

th
 bit of x

depends solely upon whether is odd or even. Exactly ½ of the integers in this range

have the property that their r
th

 bit is 0. But if x is restricted to FP, i.e., to the range 0 to p-1,

this statement is no longer true.

By excluding the k = 2
N
 – p values p, p+1, ..., 2

N
 –1 from the set of all integers in , the

ratio of ones to zeroes in the r
th

 bit is altered from 2
N-1

 / 2
N-1

 to a value that can be no

smaller than (2
N-1

 – k)/ 2
N-1

. For all the primes p used in this Recommendation, k/2
N-1

 is

smaller than 2
-31

. Thus, the ratio of ones to zeroes in any bit is within at least 2
-31

 of 1.0.

To detect this small difference from random, a sample of at least 2
64

 outputs is required

before the observed distribution of 1’s and 0’s is more than one standard deviation away

from flat random. This effect is dominated by the bias addressed below in Appendix C.2.

C.2 Adjusting for the Missing Bit(s) of Entropy in the x Coordinates.

In a truly random sequence, it should not be possible to predict any bits from previously

observed bits. With the Dual_EC_DRBG, the full output block of bits produced by the

algorithm is “missing” some entropy. Fortunately, by discarding some of the bits, those

bits remaining can be made to have nearly “full strength”, in the sense that the entropy that

they are missing is negligibly small.

To illustrate what can happen, suppose that the curve P-256 is selected, and that all 256

bits produced were output by the generator, i.e. that outlen = 256 also. Suppose also that

255 of these bits are published, and the 256-th bit is kept “secret”. About ½ the time, the

unpublished bit could easily be determined from the other 255 bits. Similarly, if 254 of the

bits are published, about ¼ of the time the other two bits could be predicted. This is a

simple consequence of the fact that only about 1/2 of all 2
m
 bitstrings of length m occur in

the list of all x coordinates of curve points.

The "abouts" in the preceding example can be made more precise, taking into account the

difference between 2
m
 and p, and the actual number of points on the curve (which is

always within 2 * p
½
 of p). For the curves in this Recommendation, these differences do

not matter at the scale of the results, so they will be ignored. This allows the heuristics

given here to work for any curve with "about" (2
m
)/f points, where f = 1 is the curve's

cofactor. For all the curves in this Recommendation, the cofactor f = 1.

The basic assumption needed is that the approximately (2
m
)/(2f) x coordinates that do occur

are "uniformly distributed": a randomly selected m-bit pattern has a probability 1/2f of

being an x coordinate. The assumption allows a straightforward calculation, albeit

r

x

2

NZ
2

NIST SP 800-90A, Rev 1 January 2012

89

approximate, for the entropy in the rightmost (least significant) m-d bits of

Dual_EC_DRBG output, with d << m.

The formula is

, where E is the entropy.

For each 0 ≤ j ≤ 2
d
, the term in braces represents the approximate number of bitstrings b of

length (m-d) such that there are exactly j points whose x-coordinates have their (m-d) least

significant bits equal to b; z = (2f-1)/2f is the probability that any particular string occurs

in an x coordinate; pj = (j*2f)/2
m
 is the probability that a member of the j-th category

occurs. Note that the j=0 category contributes nothing to the entropy (randomness).

The values of E for d up to 16 are:

log2(f): 0 d: 0 entropy: 255.00000000 m-d: 256

log2(f): 0 d: 1 entropy: 254.50000000 m-d: 255

log2(f): 0 d: 2 entropy: 253.78063906 m-d: 254

log2(f): 0 d: 3 entropy: 252.90244224 m-d: 253

log2(f): 0 d: 4 entropy: 251.95336161 m-d: 252

log2(f): 0 d: 5 entropy: 250.97708960 m-d: 251

log2(f): 0 d: 6 entropy: 249.98863897 m-d: 250

log2(f): 0 d: 7 entropy: 248.99434222 m-d: 249

log2(f): 0 d: 8 entropy: 247.99717670 m-d: 248

log2(f): 0 d: 9 entropy: 246.99858974 m-d: 247

log2(f): 0 d: 10 entropy: 245.99929521 m-d: 246

log2(f): 0 d: 11 entropy: 244.99964769 m-d: 245

log2(f): 0 d: 12 entropy: 243.99982387 m-d: 244

log2(f): 0 d: 13 entropy: 242.99991194 m-d: 243

log2(f): 0 d: 14 entropy: 241.99995597 m-d: 242

log2(f): 0 d: 15 entropy: 240.99997800 m-d: 241

log2(f): 0 d: 16 entropy: 239.99998900 m-d: 240

The analysis above uses Shannon entropy. However for this Recommendation, min-

entropy is a more appropriate measure of randomness than Shannon entropy. If the

analysis above is repeated for min-entropy, then one finds that about one bit of min-

entropy is missing for most values of d < m/2. The main reason for this is that the case of j

= 2
d
 is expected to occur, provided that d < m/2. Therefore, the maximum probability for a

particular bit string of length m-d is p2d = 2
d+1-m

, which gives a min-entropy of m-d-1. An

adversary attempting to guess the value of the bitstring of length m-d, would choose a

NIST SP 800-90A, Rev 1 January 2012

90

string such that j = 2
d
. On the other hand, generally speaking, the security strength

associated with an m-bit elliptic curve is only m/2 bits, which implies that only m/2 bits of

min-entropy are required. Therefore, the loss of a single bit of min-entropy may be

deemed acceptable here because the min-entropy would still be well over what is needed.

Observations:

a) The table starts where it should, at one missing bit;

b) The missing entropy rapidly decreases;

c) For the curves in this Recommendation, d=13 leaves one bit of information in every

10,000 (m-13)-bit outputs (i.e., one bit of entropy is missing in a collection of

10,000 outputs).

Based on these calculations, for the mod p curves, it is recommended that an

implementation shall remove at least the leftmost (most significant) 13 bits of every m-bit

output.

For ease of implementation, the value of d should be adjusted upward, if necessary, until

the number of bits remaining, m-d= outlen, is a multiple of eight. By this rule, the

recommended number of bits discarded from each x-coordinate will be either 16 or 17. As

noted in Section 10.3.1.4, an implementation may truncate additional bits from each x-

coordinate, provided that the number retained is a multiple of eight.

Because only half of all values in [0, 1, ..., p-1] are valid x-coordinates on an elliptic curve

defined over Fp, it is clear that full x-coordinates should not be used as pseudorandom bits.

The solution to this problem is to truncate these x-coordinates by removing the high order

16 or 17 bits. The entropy loss associated with such truncation amounts has been

demonstrated to be minimal (see the above chart).

One might wonder if it would be desirable to truncate more than this amount. The obvious

drawback to such an approach is that increasing the truncation amount hinders the

performance. However, there is an additional reason that argues against increasing the

truncation. Consider the case where the low s bits of each x-coordinate are kept. Given

some subinterval I of length 2
s
 contained in [0, p), and letting N(I) denote the number of x-

coordinates in I, recent results on the distribution of x-coordinates in [0, p) provide the

following bound:

N(I)

(p/2)

2s

p
<
k*log2 p

p
,

where k is some constant derived from the asymptotic estimates given in [Shparlinski].

For the case of P-521, this is roughly equivalent to:

N(I) 2(s 1) < k *2
277

,

where the constant k is independent of the value of s. For s < 2
277

, this inequality is weak

and provides very little support for the notion that these truncated x-coordinates are

uniformly distributed. On the other hand, the larger the value of s, the sharper this

NIST SP 800-90A, Rev 1 January 2012

91

inequality becomes, providing stronger evidence that the associated truncated x-

coordinates are uniformly distributed. Therefore, by keeping truncation to an acceptable

minimum, the performance is increased, and certain guarantees can be made about the

uniform distribution of the resulting truncated quantities. Further discussion of the

uniformity of the truncated x-coordinates is found in [Gurel], where the form of the prime

defining the field is also taken into account.

NIST SP 800-90A, Rev 1 January 2012

92

Appendix D: (Informative) Example Pseudocode for Each DRBG
Mechanism

The internal states in these examples are considered to be an array of states, identified by

state_handle. A particular state is addressed as internal_state (state_handle), where the

value of state_handle begins at 0 and ends at n-1, and n is the number of internal states

provided by an implementation. A particular element in the internal state is addressed by

internal_state (state_handle).element. In an empty internal state, all bitstrings are set to

Null, and all integers are set to 0.

For each example in this appendix, arbitary values have been selected that are consistent

with the allowed values for each DRBG mechanism, as specified in the appropriate table in

Section 10.

The pseudocode in this appendix does not include the necessary conversions (e.g., integer

to bitstring) for an implementation. When conversions are required, they shall be

accomplished as specified in Appendix B.

The following routine is defined for these pseudocode examples:

Find_state_space (): A function that finds an unused internal state. The function

returns a status (either “Success” or a message indicating that an unused internal state

is not available) and, if status = “Success”, a state_handle that points to an available

internal_state in the array of internal states. If status “Success”, an invalid

state_handle is returned.

When the uninstantantiate function is invoked in the following examples, the function

specified in Section 9.4 is called.

D.1 Hash_DRBG Example

This example of Hash_DRBG uses the SHA-1 hash function, and prediction resistance is

supported. Both a personalization string and additional input are supported. A 32-bit

incrementing counter is used as the nonce for instantiation (instantiation_nonce); the nonce

is initialized when the DRBG is instantiated (e.g., by a call to the clock or by setting it to a

fixed value) and is incremented for each instantiation.

A total of ten internal states are provided (i.e., ten instantiations may be handled

simultaneously).

For this implementation, the functions and algorithms are “inline”, i.e., the algorithms are

not called as separate routines from the function envelopes. Also, the Get_entropy_input

function uses only three input parameters, since the first two parameters (as specified in

Section 9) have the same value.

The internal state contains values for V, C, reseed_counter, security_strength and

prediction_resistance_flag, where V and C are bitstrings, and reseed_counter,

security_strength and the prediction_resistance_flag are integers. A requested prediction

resistance capability is indicated when prediction_resistance_flag = 1.

NIST SP 800-90A, Rev 1 January 2012

93

In accordance with Table 2 in Section 10.1, the 112- and 128-bit security strengths may be

instantiated. Using SHA-1, the following definitions are applicable for the instantiate,

generate and reseed functions and algorithms:

1. highest_supported_security_strength = 128.

2. Output block length (outlen) = 160 bits.

3. Required minimum entropy for instantiation and reseed = security_strength.

4. Seed length (seedlen) = 440 bits.

5. Maximum number of bits per request (max_number_of_bits_per_request) = 5000

bits.

6. Reseed interval (reseed_interval) = 100,000 requests.

7. Maximum length of the personalization string (max_personalization_string_length)

= 512 bits.

8. Maximum length of additional_input (max_additional_input_string_length) = 512

bits.

9. Maximum length of entropy input (max _length) = 1000 bits.

D.1.1 Instantiation of Hash_DRBG

This implementation will return a text message and an invalid state handle (1) when an

error is encountered. Note that the value of instantiation_nonce is an internal value that is

always available to the instantiate function.

Note that this implementation does not check the prediction_resistance_flag, since the

implementation has been designed to support prediction resistance. However, if a

consuming application actually wants prediction resistance, the implementation expects

that prediction_resistance_flag = 1 during instantiation; this will be used in the generate

function in Appendix D.1.3.

Hash_DRBG_Instantiate_function:

Input: integer (requested_instantiation_security_strength, prediction_resistance_flag),

bitstring personalization_string.

Output: string status, integer state_handle.

Process:

Comment: Check the input parameters.

1. If (requested_instantiation_security_strength > 128), then Return (“Invalid

requested_instantiation_security_strength”, 1).

2. If (len (personalization_string) > 512), then Return (“Personalization_string

too long”, 1).

NIST SP 800-90A, Rev 1 January 2012

94

Comment: Set the security_strength to one of

the valid security strengths.

3. If (requested_instantiation_security_strength 112), then security_strength =

112

Else security_strength = 128.

Comment: Get the entropy_input.

4. (status, entropy_input) = Get_entropy_input (security_strength, 1000,

prediction_resistance_request).

5. If (status “Success”), then Return (“Catastrophic failure of the entropy_input

source:” || status, 1).

Comment: Increment the nonce; actual coding

must ensure that it wraps when the storage

limit is reached.

6. instantiation_nonce = instantiation_nonce + 1.

Comment: The instantiate algorithm is

provided in steps 7-11.

7. seed_material = entropy_input || instantiation_nonce || personalization_string.

8. seed = Hash_df (seed_material, 440).

9. V = seed.

10. C = Hash_df ((0x00 || V), 440).

11. reseed_counter = 1.

Comment: Find an unused internal

state.

12. (status, state_handle) = Find_state_space ().

13. If (status “Success”), then Return (status, 1).

14. Save the internal state.

14.1 internal_state (state_handle).V = V.

14.2 internal_state (state_handle).C = C.

14.3 internal_state (state_handle).reseed_counter = reseed_counter.

14.4 internal_state (state_handle). security_strength = security_strength.

14.5 internal_state (state_handle).prediction_resistance_flag =

prediction_resistance_flag.

15. Return (“Success”, state_handle).

NIST SP 800-90A, Rev 1 January 2012

95

D.1.2 Reseeding a Hash_DRBG Instantiation

The implementation is designed to return a text message as the status when an error is

encountered.

Hash_DRBG_Reseed_function:

Input: integer state_handle, integer prediction_resistance_request, bitstring

additional_input.

Output: string status.

Process:

Comment: Check the validity of the

state_handle.

1. If ((state_handle < 0) or (state_handle > 9) or (internal_state (state_handle) =

{Null, Null, 0, 0, 0})), then Return (“State not available for the state_handle”).

Comment: Get the internal state values

needed to determine the new internal state.

2. Get the appropriate internal_state values.

 V = internal_state(state_handle).V.

 security_strength = internal_state(state_handle).security_strength.

Check the length of the additional_input.

3. If (len (additional_input) > 512), then Return (“additional_input too long”).

Comment: Get the entropy_input.

4. (status, entropy_input) = Get_entropy_input (security_strength, 1000,

prediction_resistance_request).

5. If (status “Success”), then Return (“Catastrophic failure of the entropy_input

source:” || status).

Comment: The reseed algorithm is provided

in steps 6-10.

6. seed_material = 0x01 || V || entropy_input || additional_input.

7. seed = Hash_df (seed_material, 440).

8. V = seed.

9. C = Hash_df ((0x00 || V), 440).

10. reseed_counter = 1.

Comment: Update the working_state portion

of the internal state.

11. Update the appropriate state values.

NIST SP 800-90A, Rev 1 January 2012

96

11.1 internal_state (state_handle).V = V.

11.2 internal_ state (state_handle).C = C.

11.3 internal_ state (state_handle).reseed_counter = reseed_counter.

12. Return (“Success”).

D.1.3 Generating Pseudorandom Bits Using Hash_DRBG

The implementation returns a Null string as the pseudorandom bits if an error has been

detected. Prediction resistance is requested when prediction_resistance_request = 1.

In this implementation, prediction resistance is requested by supplying

prediction_resistance_request = 1 when the Hash_DRBG function is invoked.

Hash_DRBG_Generate_function:

Input: integer (state_handle, requested_no_of bits, requested_security_strength,

prediction_resistance_request), bitstring additional_input.

Output: string status, bitstring pseudorandom_bits.

Process:

Comment: Check the validity of the

state_handle.

1. If ((state_handle < 0) or (state_handle > 9) or (state (state_handle) = {Null,

Null, 0, 0, 0})), then Return (“State not available for the state_handle”, Null).

2. Get the internal state values.

2.1 V = internal_state (state_handle).V.

2.2 C = internal_state (state_handle).C.

2.3 reseed_counter = internal_state (state_handle).reseed_counter.

2.4 security_strength = internal_state (state_handle).security_strength.

2.5 prediction_resistance_flag = internal_state

(state_handle).prediction_resistance_flag.

Comment: Check the validity of the other

input parameters.

3. If (requested_no_of_bits > 5000) then Return (“Too many bits requested”,

Null).

4. If (requested_security_strength > security_strength), then Return (“Invalid

requested_security_strength”, Null).

5. If (len (additional_input) > 512), then Return (“additional_input too long”,

Null).

6. If ((reseed_counter > 100,000) OR (prediction_resistance_request = 1)), then

NIST SP 800-90A, Rev 1 January 2012

97

6.1 status = Hash_DRBG_Reseed_ function (state_handle,

prediction_resistance_request, additional_input).

6.2 If (status “Success”), then Return (status, Null).

6.3 Get the new internal state values that have changed.

7.3.1 V = internal_state (state_handle).V.

7.3.2 C = internal_state (state_handle).C.

7.3.3 reseed_counter = internal_state (state_handle).reseed_counter.

6.4 additional_input = Null.

Comment: Steps 7-15 provide the rest of the

generate algorithm. Note that in this

implementation, the Hashgen routine is also

inline as steps 8-12.

7. If (additional_input Null), then do

7.1 w = Hash (0x02 || V || additional_input).

7.2 V = (V + w) mod 2
440

.

8. .

9. data = V.

10. W = the Null string.

11. For i = 1 to m

11.1 wi = Hash (data).

11.2 W = W || wi.

11.3 data = (data + 1) mod 2
440

.

12. pseudorandom_bits = Leftmost (requested_no_of_bits) bits of W.

13. H = Hash (0x03 || V).

14. V = (V + H + C + reseed_counter) mod 2
440

.

15. reseed_counter = reseed_counter + 1.

Comments: Update the working_state.

16. Update the changed values in the state.

16.1 internal_state (state_handle).V = V.

16.2 internal_state (state_handle).reseed_counter = reseed_counter.

 17. Return (“Success”, pseudorandom_bits).

NIST SP 800-90A, Rev 1 January 2012

98

D.2 HMAC_DRBG Example

This example of HMAC_DRBG uses the SHA-256 hash function. Reseeding and

prediction resistance are not supported. The nonce for instantiation consists of a random

value with security_strength/2 bits of entropy; the nonce is obtained by increasing the call

for entropy bits via the Get_entropy_input call by security_strength/2 bits (i.e., by adding

security_strength/2 bits to the security_strength value). The HMAC_DRBG_Update

function is specified in Section 10.1.2.2.

A personalization string is supported, but additional input is not. A total of three internal

states are provided. For this implementation, the functions and algorithms are written as

separate routines. Also, the Get_entropy_input function uses only two input parameters,

since the first two parameters (as specified in Section 9) have the same value, and

prediction resistance is not available.

The internal state contains the values for V, Key, reseed_counter, and security_strength,

where V and C are bitstrings, and reseed_counter and security_strength are integers.

In accordance with Table 2 in Section 10.1, security strengths of 112, 128, 192 and 256

bits may be instantiated. Using SHA-256, the following definitions are applicable for the

instantiate and generate functions and algorithms:

1. highest_supported_security_strength = 256.

2. Output block (outlen) = 256 bits.

3. Required minimum entropy for the entropy input at instantiation = 3/2

security_strength (this includes the entropy required for the nonce).

4. Seed length (seedlen) = 440 bits.

5. Maximum number of bits per request (max_number_of_bits_per_request) = 7500

bits.

6. Reseed_interval (reseed_ interval) = 10,000 requests.

7. Maximum length of the personalization string (max_personalization_string_length)

= 160 bits.

8. Maximum length of the entropy input (max _length) = 1000 bits.

D.2.1 Instantiation of HMAC_DRBG

This implementation will return a text message and an invalid state handle (1) when an error

is encountered.

HMAC_DRBG_Instantiate_function:

Input: integer (requested_instantiation_security_strength), bitstring

personalization_string.

Output: string status, integer state_handle.

Process:

NIST SP 800-90A, Rev 1 January 2012

99

Check the validity of the input parameters.

1. If (requested_instantiation_security_strength > 256), then Return (“Invalid

requested_instantiation_security_strength”, 1).

2. If (len (personalization_string) > 160), then Return (“Personalization_string

too long”, 1)

Comment: Set the security_strength to

one of the valid security strengths.

3. If (requested_security_strength 112), then security_strength = 112

Else (requested_ security_strength 128), then security_strength = 128

Else (requested_ security_strength 192), then security_strength = 192

Else security_strength = 256.

Comment: Get the entropy_input and

the nonce.

4. min_entropy = 1.5 security_strength.

5. (status, entropy_input) = Get_entropy_input (min_entropy, 1000).

6. If (status “Success”), then Return (“Catastrophic failure of the entropy

source:” || status, 1).

Comment: Invoke the instantiate algorithm.

Note that the entropy_input contains the

nonce.

7. (V, Key, reseed_counter) = HMAC_DRBG_Instantiate_algorithm

(entropy_input, personalization_string).

Comment: Find an unused internal state.

8. (status, state_handle) = Find_state_space ().

9. If (status “Success”), then Return (“No available state space:” || status, 1).

10. Save the initial state.

10.1 internal_state (state_handle).V = V.

10.2 internal_state (state_handle). Key = Key.

10.3 internal_state (state_handle). reseed_counter = reseed_counter.

 10.4 internal_state (state_handle).security_strength = security_strength.

11. Return (“Success” and state_handle).

HMAC_DRBG_Instantiate_algorithm (...):

Input: bitstring (entropy_input, personalization_string).

Output: bitstring (V, Key), integer reseed_counter.

NIST SP 800-90A, Rev 1 January 2012

100

Process:

1. seed_material = entropy_input || personalization_string.

2. Set Key to outlen bits of zeros.

3. Set V to outlen/8 bytes of 0x01.

4. (Key, V) = HMAC_DRBG_Update (seed_material, Key, V).

5. reseed_counter = 1.

6. Return (V, Key, reseed_counter).

D.2.2 Generating Pseudorandom Bits Using HMAC_DRBG

The implementation returns a Null string as the pseudorandom bits if an error has been

detected.

HMAC_DRBG_Generate_function:

Input: integer (state_handle, requested_no_of_bits, requested_security_strength).

Output: string (status), bitstring pseudorandom_bits.

Process:

Comment: Check for a valid state handle.

1. If ((state_handle < 0) or (state_handle > 2) or (internal_state (state_handle) =

{Null, Null, 0, 0}), then Return (“State not available for the indicated

state_handle”, Null).

2. Get the internal state.

2.1 V = internal_state (state_handle).V.

2.2 Key = internal_state (state_handle).Key.

2.3 security_strength = internal_state (state_handle).security_strength.

2.4 reseed_counter = internal_state (state_handle).reseed_counter.

Comment: Check the validity of the rest of

the input parameters.

3. If (requested_no_of_bits > 7500), then Return (“Too many bits requested”,

Null).

4. If (requested_security_strength > security_strength), then Return (“Invalid

requested_security_strength”, Null).

Comment: Invoke the generate algorithm.

5. (status, pseudorandom_bits, V, Key, reseed_counter) =

HMAC_DRBG_Generate_algorithm (V, Key, reseed_counter,

requested_number_of_bits).

NIST SP 800-90A, Rev 1 January 2012

101

6. If (status = “Reseed required”), then Return (“DRBG can no longer be used. A

new instantiation is required”, Null).

7. Update the changed state values.

7.1 internal_state (state_handle).V = V.

7.2 internal_state (state_handle).Key = Key.

7.3 internal_state (state_handle).reseed_counter = reseed_counter.

8. Return (“Success”, pseudorandom_bits).

HMAC_DRBG_Generate_algorithm:

Input: bitstring (V, Key), integer (reseed_counter, requested_number_of_bits).

Output: string status, bitstring (pseudorandom_bits, V, Key), integer reseed_counter.

Process:

1 If (reseed_counter 10,000), then Return (“Reseed required”, Null, V, Key,

reseed_counter).

2. temp = Null.

3 While (len (temp) < requested_no_of_bits) do:

3.1 V = HMAC (Key, V).

3.2 temp = temp || V.

4. pseudorandom_bits = Leftmost (requested_no_of_bits) of temp.

5. (Key, V) = HMAC_DRBG_Update (Null, Key, V).

6. reseed_counter = reseed_counter + 1.

7. Return (“Success”, pseudorandom_bits, V, Key, reseed_counter).

D.3 CTR_DRBG Example Using a Derivation Function

This example of CTR_DRBG uses AES-128. The reseed and prediction resistance

capabilities are supported, and prediction resistance is obtained during every

Get_entropy_input call and reseed request. Although the prediction_resistance_request

parameter in the Get_entropy_input and reseed request could be omitted, in this case,

they are shown in the pseudocode as a reminder that prediction_resistance will be

performed. A block cipher derivation function using AES-128 is used, and a

personalization string and additional input are supported. A total of five internal states are

available. For this implementation, the functions and algorithms are written as separate

routines. AES_ECB_Encrypt is the Block_Encrypt function (specified in Section 10.4.3)

that uses AES-128 in the ECB mode.

The nonce for instantiation (instantiation_nonce) consists of a 32-bit incrementing counter.

The nonce is initialized when the DRBG is instantiated (e.g., by a call to the clock or by

setting it to a fixed value) and is incremented for each instantiation.

NIST SP 800-90A, Rev 1 January 2012

102

The internal state contains the values for V, Key, reseed_counter, and security_strength,

where V and Key are bitstrings, and all other values are integers. Since prediction

resistance is known to be supported, there is no need for prediction_resistance_flag in the

internal state.

In accordance with Table 3 in Section 10.2.1, security strengths of 112 and 128 bits may be

supported. Using AES-128, the following definitions are applicable for the instantiate,

reseed and generate functions:

1. highest_supported_security_strength = 128.

2. Output block length (outlen) = 128 bits.

3. Key length (keylen) = 128 bits.

4. Required minimum entropy for the entropy input during instantiation and reseeding

= security_strength.

5. Minimum entropy input length (min _length) = security_strength bits.

6. Maximum entropy input length (max _length) = 1000 bits.

7. Maximum personalization string input length

(max_personalization_string_input_length) = 800 bits.

8. Maximum additional input length (max_additional_input_length) = 800 bits.

9. Seed length (seedlen) = 256 bits.

10. Maximum number of bits per request (max_number_of_bits_per_request) = 4000

bits.

11. Reseed interval (reseed_interval) = 100,000 requests.

D.3.1 The CTR_DRBG_Update Function

CTR_DRBG_Update:

Input: bitstring (provided_data, Key, V).

Output: bitstring (Key, V).

Process:

1. temp = Null.

2. While (len (temp) < 256) do

2.1 V = (V + 1) mod 2
128

.

2.2 output_block = AES_ECB_Encrypt (Key, V).

2.3 temp = temp || ouput_block.

3. temp = Leftmost 256 bits of temp.

4 temp = temp provided_data.

NIST SP 800-90A, Rev 1 January 2012

103

5. Key = Leftmost 128 bits of temp.

6. V = Rightmost 128 bits of temp.

7. Return (Key, V).

D.3.2 Instantiation of CTR_DRBG Using a Derivation Function

This implementation will return a text message and an invalid state handle (1) when an error

is encountered. Block_Cipher_df is the derivation function in Section 10.4.2, and uses AES-

128 in the ECB mode as the Block_Encrypt function.

Note that this implementation does not include the prediction_resistance_flag in the input

parameters, nor save it in the internal state, since prediction resistance is known to be

supported.

CTR_DRBG_Instantiate_function:

Input: integer (requested_instantiation_security_strength), bitstring

personalization_string.

Output: string status, integer state_handle.

Process:

Comment: Check the validity of the input

parameters.

1. If (requested_instantiation_security_strength > 128) then Return (“Invalid

requested_instantiation_security_strength”, 1).

2. If (len (personalization_string) > 800), then Return (“Personalization_string

too long”, 1).

3. If (requested_instantiation_security_strength 112), then security_strength =

112

Else security_strength = 128.

Comment: Get the entropy input.

4. (status, entropy_input) = Get_entropy_input (security_strength,

security_strength, 1000, prediction_resistance_request).

5. If (status “Success”), then Return (“Catastrophic failure of the entropy

source” || status, 1).

Comment: Increment the nonce; actual coding

must ensure that the nonce wraps when its

storage limit is reached, and that the counter

pertains to all instantiations, not just this one.

6. instantiation_nonce = instantiation_nonce + 1.

Comment: Invoke the instantiate algorithm.

NIST SP 800-90A, Rev 1 January 2012

104

7. (V, Key, reseed_counter) = CTR_DRBG_Instantiate_algorithm

(entropy_input, instantiation_nonce, personalization_string).

Comment: Find an available internal state and

save the initial values.

8. (status, state_handle) = Find_state_space ().

9. If (status “Success”), then Return (“No available state space:” || status, 1).

10. Save the internal state.

10.1 internal_state_ (state_handle).V = V.

10.2 internal_state_ (state_handle).Key = Key.

10.3 internal_state_ (state_handle).reseed_counter = reseed_counter.

10.4 internal_state_ (state_handle).security_strength = security_strength.

11. Return (“Success”, state_handle).

CTR_DRBG_Instantiate_algorithm:

Input: bitstring (entropy_input, nonce, personalization_string).

Output: bitstring (V, Key), integer (reseed_counter).

Process:

1. seed_material = entropy_input || nonce || personalization_string.

2. seed_material = Block_Cipher_df (seed_material, 256).

3. Key = 0
128

. Comment: 128 bits.

4. V = 0
128

. Comment: 128 bits.

5. (Key, V) = CTR_DRBG_Update (seed_material, Key, V).

6. reseed_counter = 1.

7. Return (V, Key, reseed_counter).

D.3.3 Reseeding a CTR_DRBG Instantiation Using a Derivation Function

The implementation is designed to return a text message as the status when an error is

encountered.

CTR_DRBG_Reseed_function:

Input: integer (state_handle), integer prediction_resistance_request, bitstring

additional_input.

Output: string status.

Process:

Comment: Check for the validity of

state_handle.

NIST SP 800-90A, Rev 1 January 2012

105

1. If ((state_handle < 0) or (state_handle > 4) or (internal_state (state_handle) =

{Null, Null, 0, 0}), then Return (“State not available for the indicated

state_handle”).

2. Get the internal state values.

2.1 V = internal_state (state_handle).V.

2.2 Key = internal_state (state_handle).Key.

2.3 security_strength = internal_state (state_handle).security_strength.

3. If (len (additional_input) > 800), then Return (“additional_input too long”).

4. (status, entropy_input) = Get_entropy_input (security_strength,

security_strength, 1000, prediction_resistance_request).

6. If (status “Success”), then Return (“Catastrophic failure of the entropy

source:” || status).

Comment: Invoke the reseed algorithm.

7. (V, Key, reseed_counter) = CTR_DRBG_Reseed_algorithm (V, Key,

reseed_counter, entropy_input, additional_input).

8. Save the internal state.

8.1 internal_state (state_handle). V = V.

8.2 internal_state (state_handle). Key = Key.

8.3 internal_state (state_handle). reseed_counter = reseed_counter.

8.4 internal_state (state_handle). security_strength = security_strength.

9. Return (“Success”).

CTR_DRBG_Reseed_algorithm:

Input: bitstring (V, Key), integer (reseed_counter), bitstring (entropy_input,

additional_input).

Output: bitstring (V, Key), integer (reseed_counter).

Process:

1. seed_material = entropy_input || additional_input.

2. seed_material = Block_Cipher_df (seed_material, 256).

3. (Key, V) = CTR_DRBG_Update (seed_material, Key, V).

4. reseed_counter = 1.

5. Return V, Key, reseed_counter).

NIST SP 800-90A, Rev 1 January 2012

106

D.3.4 Generating Pseudorandom Bits Using CTR_DRBG

The implementation returns a Null string as the pseudorandom bits if an error has been

detected.

CTR_DRBG_Generate_function:

Input: integer (state_handle, requested_no_of_bits, requested_security_strength,

prediction_resistance_request), bitstring additional_input.

Output: string status, bitstring pseudorandom_bits.

Process:

Comment: Check the validity of state_handle.

1. If ((state_handle < 0) or (state_handle > 4) or (internal_state (state_handle) =

{Null, Null, 0, 0}), then Return (“State not available for the indicated

state_handle”, Null).

2. Get the internal state.

2.1 V = internal_state (state_handle).V.

2.2 Key = internal_state (state_handle).Key.

2.3 security_strength = internal_state (state_handle).security_strength.

2.4 reseed_counter = internal_state (state_handle).reseed_counter.

Comment: Check the rest of the input

parameters.

3. If (requested_no_of_bits > 4000), then Return (“Too many bits requested”,

Null).

4. If (requested_security_strength > security_strength), then Return (“Invalid

requested_security_strength”, Null).

5. If (len (additional_input) > 800), then Return (“additional_input too long”,

Null).

6. reseed_required_flag = 0.

7. If ((reseed_required_flag = 1) OR (prediction_resistance_flag = 1)), then

7.1 status = CTR_DRBG_Reseed_function (state_handle,

prediction_resistance_request, additional_input).

7.2 If (status “Success”), then Return (status, Null).

7.3 Get the new working state values; the administrative information was not

affected.

7.3.1 V = internal_state (state_handle).V.

7.3.2 Key = internal_state (state_handle).Key.

NIST SP 800-90A, Rev 1 January 2012

107

7.3.3 reseed_counter = internal_state (state_handle).reseed_counter.

7.4 additional_input = Null.

7.5 reseed_required_flag = 0.

Comment: Generate bits using the generate

algorithm.

8. (status, pseudorandom_bits, V, Key, reseed_counter) =

CTR_DRBG_Generate_algorithm (V, Key, reseed_counter,

requested_number_of_bits, additional_input).

9. If (status = “Reseed required”), then

9.1 reseed_required_flag = 1.

9.2 Go to step 7.

10. Update the internal state.

10.1 internal_state (state_handle).V = V.

10.2 internal_state (state_handle).Key = Key.

10.3 internal_state (state_handle).reseed_counter = reseed_counter.

10.4 internal_state (state_handle).security_strength = security_strength.

11. Return (“Success”, pseudorandom_bits).

CTR_DRBG_Generate_algorithm:

Input: bitstring (V, Key), integer (reseed_counter, requested_number_of_bits)

bitstring additional_input.

Output: string status, bitstring (returned_bits, V, Key), integer reseed_counter.

Process:

1. If (reseed_counter > 100,000), then Return (“Reseed required”, Null, V,

Key, reseed_counter).

2. If (additional_input Null), then

2.1 additional_input = Block_Cipher_df (additional_input, 256).

2.2 (Key, V) = CTR_DRBG_Update (additional_input, Key, V).

Else additional_input = 0
256

.

3. temp = Null.

4. While (len (temp) < requested_number_of_bits) do:

4.1 V = (V + 1) mod 2
128

.

4.2 output_block = AES_ECB_Encrypt (Key, V).

4.3 temp = temp || ouput_block.

NIST SP 800-90A, Rev 1 January 2012

108

5. returned_bits = Leftmost (requested_number_of_bits) of temp.

6. (Key, V) = CTR_DRBG_Update (additional_input, Key, V)

7. reseed_counter = reseed_counter + 1.

8. Return (“Success”, returned_bits, V, Key, reseed_counter).

D.4 CTR_DRBG Example Without a Derivation Function

This example of CTR_DRBG is the same as the previous example except that a derivation

function is not used (i.e., full entropy is always available). As in Appendix D.3, the

CTR_DRBG uses AES-128. The reseed and prediction resistance capabilities are

available. Both a personalization string and additional input are supported. A total of five

internal states are available. For this implementation, the functions and algorithms are

written as separate routines. AES_ECB_Encrypt is the Block_Encrypt function

(specified in Section 10.4.3) that uses AES-128 in the ECB mode.

The nonce for instantiation (instantiation_nonce) consists of a 32-bit incrementing counter

that is the leftmost bits of the personalization string (Section 8.6.1 states that when a

derivation function is used, the nonce, if used, is contained in the personalization string).

The nonce is initialized when the DRBG is instantiated (e.g., by a call to the clock or by

setting it to a fixed value) and is incremented for each instantiation.

The internal state contains the values for V, Key, reseed_counter, and security_strength,

where V and Key are strings, and all other values are integers.Since prediction resistance is

known to be supported, there is no need for prediction_resistance_flag in the internal state.

In accordance with Table 3 in Section 10.2.1, security strengths of 112 and 128 bits may be

supported. The definitions are the same as those provided in Appendix D.3, except that to

be compliant with Table 3, the maximum size of the personalization_string is 224 bits in

order to accommodate the 32-bits of the instantiation_nonce (i.e., len

(instantiation_nonce) + len (personalization_string) must be seedlen, where seedlen =

256 bits). In addition, the maximum size of any additional_input is 256 bits (i.e., len

(additional_input seedlen)).

D.4.1 The CTR_DRBG_Update Function

The update function is the same as that provided in Appendix D.3.1.

D.4.2 Instantiation of CTR_DRBG Without a Derivation Function

The instantiate function (CTR_DRBG_Instantiate_function) is the same as that provided

in Appendix D.3.2, except for the following:

 Step 2 is replaced by:

If (len (personalization_string) > 224), then Return (“Personalization_string too

long”, 1).

 Step 6 is replaced by :

NIST SP 800-90A, Rev 1 January 2012

109

instantiation_nonce = instantiation_nonce + 1.

personalization_string = instantiation_nonce || personalization_string.

The instantiate algorithm (CTR_DRBG_Instantiate_algorithm) is the same as that

provided in Appendix D.3.2, except that steps 1 and 2 are replaced by:

temp = len (personalization_string).

If (temp < 256), then personalization_string = personalization_string || 0
256-temp

.

seed_material = entropy_input personalization_string.

D.4.3 Reseeding a CTR_DRBG Instantiation Without a Derivation
Function

The reseed function (CTR_DRBG_Reseed_function) is the same as that provided in

Appendix D.3.3, except that step 3 is replaced by:

If (len (additional_input) > 256), then Return (“additional_input too long”).

The reseed algorithm (CTR_DRBG_Reseed_algorithm) is the same as that provided in

Appendix D.3.3, except that steps 1 and 2 are replaced by:

temp = len (additional_input).

If (temp < 256), then additional_input = additional_input || 0
256-temp

.

seed_material = entropy_input additional_input.

D.4.4 Generating Pseudorandom Bits Using CTR_DRBG

The generate function (CTR_DRBG_Generate_function) is the same as that provided in

Appendix D.3.4, except that step 5 is replaced by :

If (len (additional_input) > 256), then Return (“additional_input too long”, Null).

The generate algorithm (CTR_DRBG_Generate_algorithm) is the same as that provided

in Appendix D.3.4, except that step 2.1 is replaced by:

temp = len (additional_input).

If (temp < 256), then additional_input = additional_input || 0
256-temp

.

D.5 Dual_EC_DRBG Example

This example of Dual_EC_DRBG allows a consuming application to instantiate using any

of the three prime curves. The elliptic curve to be used is selected during instantiation in

accordance with the following:

requested_instantiation_security_strength Elliptic Curve

≤ 112 P-256

113 – 128 P-256

NIST SP 800-90A, Rev 1 January 2012

110

129 – 192 P-384

193 – 256 P-521

The reseed and prediction resistance capabilities are not supported. Both a

personalization_string and an additional_input are allowed. A total of ten internal states

are provided. For this implementation, the algorithms are provided as inline code within

the functions.

The nonce for instantiation (instantiation_nonce) consists of a random value with

security_strength/2 bits of entropy; the nonce is obtained by a separate call to the

Get_entropy_input routine than that used to obtain the entropy input itself. Also, the

Get_entropy_input function uses only two input parameters, since the first two

parameters (the min_entropy and the min_length) have the same value.

In accordance with Table 4 in Section 10.3.1, security strengths of 112, 128, 192 and 256

bits may be supported. SHA-256 has been selected as the hash function. The following

definitions are applicable for the instantiate, reseed and generate functions:

1. highest_supported_security_strength = 256.

2. Output block length (outlen) = max_outlen. See Table 4.

3. Required minimum entropy for the entropy input at instantiation and reseed =

security_strength.

4. Maximum entropy input length (max _length) = 1000 bits.

5. Maximum personalization string length (max_personalization_string_length) = 800

bits.

6. Maximum additional input length (max_additional_input_length) = 800 bits.

7. Seed length (seedlen): = 2 security_strength.

8. Maximum number of bits per request (max_number_of_bits_per_request) = 1000

bits.

9. Reseed interval (reseed_interval) = 2
32

 blocks.

D.5.1 Instantiation of Dual_EC_DRBG

This implementation will return a text message and an invalid state handle (1) when an

ERROR is encountered. Hash_df is specified in Section 10.4.1.

Dual_EC_DRBG_Instantiate_function:

Input: integer (requested_instantiation_security_strength), bitstring

personalization_string.

Output: string status, integer state_handle.

Process:

NIST SP 800-90A, Rev 1 January 2012

111

Comment : Check the validity of the input

parameters.

1. If (requested_instantiation_security_strength > 256) then Return (“Invalid

requested_instantiation_security_strength”, 1).

2. If (len (personalization_string) > 800), then Return (“personalization_string

too long”, 1).

Comment : Select the prime field curve in

accordance with the

requested_instantiation_security_strength.

3. If requested_instantiation_security_strength 112), then

{security_strength = 112; seedlen = 224; outlen = 240}

Else if (requested_instantiation_security_strength 128), then

{security_strength = 128; seedlen = 256; outlen = 240}

Else if (requested_instantiation_security_strength 192), then

{security_strength = 192; seedlen = 384; outlen = 368}

Else {security_strength = 256; seedlen = 512; outlen = 504}.

Comment: Request entropy_input.

4. (status, entropy_input) = Get_entropy_input (security_strength, 1000).

5. If (status “Success”), then Return (“Catastrophic failure of the entropy_input

source:” || status, 1).

6. (status, instantiation_nonce) = Get_entropy_input (security_strength/2, 1000).

7. If (status “Success”), then Return (“Catastrophic failure of the random nonce

source:” || status, 1).

Comment: Perform the instantiate algorithm.

8. seed_material = entropy_input || instantiation_nonce || personalization_string.

9. s = Hash_df (seed_material, seedlen).

10. reseed_counter = 0.

11. Using the security_strength and the table in Appendix D.5, obtain the domain

parameters p, a, b, n, P, and Q from the appropriate elliptic curve.

Comment: Find an unused internal state and

save the initial values.

12. (status, state_handle) = Find_state_space ().

13. If (status “Success”), then Return (status, 1).

14. Save the internal state.

NIST SP 800-90A, Rev 1 January 2012

112

12.1 internal_state (state_handle).s = s.

14.2 internal_state (state_handle).seedlen = seedlen.

14.3 internal_state (state_handle).p = p.

14.4 internal_state (state_handle).a = a.

14.5 internal_state (state_handle).b = b.

14.6 internal_state (state_handle).n = n.

14.7 internal_state (state_handle).P = P.

14.8 internal_state (state_handle).Q = Q.

14.9 internal_state (state_handle).reseed_counter = reseed_counter.

14.10 internal_state (state_handle).security_strength = security_strength.

15. Return (“Success”, state_handle).

D.5.2 Generating Pseudorandom Bits Using Dual_EC_DRBG

The implemenation returns a Null string as the pseudorandom bits if an error is

encountered.

Dual_EC_DRBG_Generate_function:

Input: integer (state_handle, requested_security_strength, requested_no_of_bits),

bitstring additional_input.

Output: string status, bitstring pseudorandom_bits.

Process:

Comment: Check for an invalid state_handle.

1. If ((state_handle < 0) or (state_handle > 9) or (internal_state (state_handle) =

0)), then Return (“State not available for the state_handle”, Null).

2. Get the appropriate state values for the indicated state_handle.

2.1 s = internal_state (state_handle).s.

2.2 seedlen = internal_state (state_handle).seedlen.

2.3 P = internal_state (state_handle).P.

2.4 Q = internal_state (state_handle).Q.

2.5 security_strength = internal_state (state_handle).security_strength.

2.6 reseed_counter = internal_state (state_handle).reseed_counter.

Comment: Check the rest of the input

parameters.

NIST SP 800-90A, Rev 1 January 2012

113

3. If (requested_number_of_bits > 1000), then Return (“Too many bits

requested”, Null).

4. If (requested_security_strength > security_strength), then Return (“Invalid

requested_strength”, Null).

5. If (len (additional_input) > 800), then Return (“additional_input too long”,

Null).

Comment: Check whether a reseed is

required.

6. If (reseed_counter + > 2
32

), then Return

(“DRBG can no longer be used. A new instantiation is required “, Null).

Comment: Execute the generate algorithm.

7. If (additional_input = Null) then additional_input = 0

Comment: additional_input set to m zeroes.

Else additional_input = Hash_df (pad8 (additional_input), seedlen).

Comment: Produce requested_no_of_bits,

outlen bits at a time:

8. temp = the Null string.

9. i = 0.

10. t = s additional_input.

11. s = (x(t P)).

12. r (x(s Q)).

13. temp = temp || (rightmost outlen bits of r).

14. additional_input =0
seedlen

. Comment: seedlen zeroes; additional_input

is added only on the first iteration.

15. i = i + 1.

16. If (len (temp) < requested_no_of_bits), then go to step 10.

17. pseudorandom_bits = Truncate (temp, i outlen, requested_no_of_bits).

18. Update the changed value in the state.

18.1 internal_state.s = (x(s P)).

18.2 internal_state.reseed_counter = reseed_counter.

19. Return (“Success”, pseudorandom_bits).

NIST SP 800-90A, Rev 1 January 2012

114

Appendix E: (Informative) DRBG Mechanism Selection

Almost no application or system designer starts with the primary purpose of generating

good random bits. Instead, the designer typically starts with a goal that he wishes to

accomplish, then decides on cryptographic mechanisms, such as digital signatures or block

ciphers that can help him achieve that goal. Typically, as the requirements of those

cryptographic mechanisms are better understood, he learns that random bits will need to be

generated, and that this must be done with great care so that the cryptographic mechanisms

will not be weakened. At this point, there are three things that may guide the designer's

choice of a DRBG mechanism:

a. He may already have decided to include a set of cryptographic primitives as part of

his implementation. By choosing a DRBG mechanism based on one of these

primitives, he can minimize the cost of adding that DRBG mechanism. In

hardware, this translates to lower gate count, less power consumption, and less

hardware that must be protected against probing and power analysis. In software,

this translates to fewer lines of code to write, test, and validate.

For example, a module that generates RSA signatures has an available hash

function, so a hash-based DRBG mechanism (e.g., Hash_DRBG or

HMAC_DRBG) is a natural choice.

b. He may already have decided to trust a block cipher, hash function, keyed hash

function, etc., to have certain properties. By choosing a DRBG mechanism based

on similar properties, he can minimize the number of algorithms he has to trust.

For example, an AES-based DRBG mechanism (i.e., CTR_DRBG using AES)

might be a good choice when a module provides encryption with AES. Since the

security of the module is dependent on the strength of AES, the module's security is

not made dependent on any additional cryptographic primitives or assumptions.

c. Multiple cryptographic primitives may be available within the system or

consuming application, but there may be restrictions that need to be addressed (e.g.,

code size or performance requirements).

For example, a module with support for both hash functions and block ciphers

might use the CTR_DRBG if the ability to parallize the generation of random bits

is needed.

The DRBG mechanisms specified in this Recommendation have different performance

characteristics, implementation issues, and security assumptions.

E.1 Hash_DRBG

Hash_DRBG is based on the use of an approved hash function in a counter mode similar

to the counter mode specified in NIST [SP 800-38A]. For each generate request, the

current value of V (a secret value in the internal state) is used as the starting counter that is

iteratively changed to generate each successive outlen-bit block of requested output, where

outlen is the number of bits in the hash function output block. At the end of the generate

NIST SP 800-90A, Rev 1 January 2012

115

request, and before the pseudorandom output is returned to the consuming application, the

secret value V is updated in order to prevent backtracking.

Performance. The Generate function is parallelizable, since it uses the counter mode.

Within a generate request, each outlen-bit block of output requires one hash function

computation and several addition operations; an additional hash function computation is

required to provide the backtracking resistance. Hash_DRBG produces pseudorandom

output bits in about half the time required by HMAC_DRBG.

Security. Hash_DRBG’s security depends on the underlying hash function’s behavior

when processing a series of sequential input blocks. If the hash function is replaced by a

random oracle, Hash_DRBG is secure. It is difficult to relate the properties of the hash

function required by Hash_DRBG with common properties, such as collision resistance,

pre-image resistance, or pseudorandomness. There are known problems with

Hash_DRBG when the DRBG is instantiated with insufficient entropy for the requested

security strength, and then later provided with enough entropy to attain the amount of

entropy required for the security strength, via the inclusion of additional input during a

generate request. However, these problems do not affect the DRBG’s security when

Hash_DRBG is instantiated with the amount of entropy specified in this

Recommendation.

Constraints on Outputs. As shown in Table 2 of Section 10.1, for each hash function, up

to 2
48

 generate requests may be made, each of up to 2
19

 bits.

Resources. Hash_DRBG requires access to a hash function, and the ability to perform

addition with seedlen-bit integers. Hash_DRBG uses the hash-based derivation function

Hash_df (specified in Section 10.4.1) during instantiation and reseeding. Any

implementation requires the storage space required for the internal state (see Section

10.1.1.1).

Algorithm Choices. The choice of hash functions that may be used by Hash_DRBG is

discussed in Section 10.1.

E.2 HMAC_DRBG

HMAC_DRBG is built around the use of an approved hash function using the HMAC

construction. To generate pseudorandom bits from a secret key (Key) and a starting value

V, the HMAC_DRBG computes

 V = HMAC (Key, V).

At the end of a generation request, the HMAC_DRBG generates a new Key and V, each

requiring one HMAC computation.

Performance. HMAC_DRBG produces pseudorandom outputs considerably more

slowly than the underlying hash function processes inputs; for SHA-256, a long generate

request produces output bits at about 1/4 of the rate that the hash function can process

input bits. Each generate request also involves additional overhead equivalent to

processing 2048 extra bits with SHA-256. Note, however, that hash functions are typically

NIST SP 800-90A, Rev 1 January 2012

116

quite fast; few if any consuming applications are expected to need output bits faster than

HMAC_DRBG can provide them.

Security. The security of HMAC_DRBG is based on the assumption that an approved

hash function used in the HMAC construction is a pseudorandom function family.

Informally, this means that when an attacker does not know the key used, HMAC outputs

look random, even given knowledge and control over the inputs. In general, even

relatively weak hash functions seem to be quite strong when used in the HMAC

construction. On the other hand, there is not a reduction proof from the hash function’s

collision resistance properties to the security of the DRBG; the security of HMAC_DRBG

ultimately relies on the pseudorandomness properties of the underlying hash function. Note

that the pseudorandomness of HMAC is a widely used assumption in designs, and the

HMAC_DRBG requires far less demanding properties of the underlying hash function

than Hash_DRBG.

Constraints on Outputs. As shown in Table 2 of Section 10.1, for each hash function, up

to 2
48

 generate requests may be made, each of up to 2
19

 bits.

Resources. HMAC_DRBG requires access to a dedicated HMAC implementation for

optimal performance. However, a general-purpose hash function implementation can

always be used to implement HMAC. Any implementation requires the storage space

required for the internal state (see Section 10.1.2.1).

Algorithm Choices. The choice of hash functions that may be used by HMAC_DRBG is

discussed in Section 10.1.

E.3 CTR_DRBG

CTR_DRBG is based on using an approved block cipher algorithm in counter mode (see

[SP 800-38A]). At the present time, only three-key TDEA and AES are approved for use

by the Federal government for use in this DRBG mechanism. Pseudorandom outputs are

generated by encrypting successive values of a counter; after a generate request, a new key

and new starting counter value are generated.

Performance. For large generate requests, CTR_DRBG produces outputs at the same

speed as the underlying block cipher algorithm encrypts data. Furthermore, CTR_DRBG

is parallelizeable. At the end of each generate request, work equivalent to two, three or

four encryptions is performed, depending on the choice of underlying block cipher

algorithm, to generate new keys and counters for the next generate request.

Security. The security of CTR_DRBG is directly based on the security of the underlying

block cipher algorithm, in the sense that, as long as some limits on the total number of

outputs are observed, any attack on CTR_DRBG represents an attack on the underlying

block cipher algorithm.

Constraints on Outputs. As shown in Table 3 of Section 10.2.1, for each of the three

AES key sizes, up to 2
48

 generate requests may be made, each of up to 2
19

 bits, with a

negligible chance of any weakness that does not represent a weakness in AES. However,

NIST SP 800-90A, Rev 1 January 2012

117

the smaller block size of TDEA imposes more constraints: each generate request is limited

to 2
13

 bits, and at most, 2
32

 such requests may be made.

Resources. CTR_DRBG may be implemented with or without a derivation function.

When a derivation function is used, CTR_DRBG can process the personalization string

and any additional input in the same way as any other DRBG mechanism, but at a cost in

performance because of the use of the derivation function (as opposed to not using the

derivation function; see below). Such an implementation may be seeded by any approved

source of entropy input that may or may not provide full entropy.

When a derivation function is not used, CTR_DRBG is more efficient when the

personalization string and any additional input are provided, but is less flexible because the

lengths of the personalization string and additional input cannot exceed seedlen bits. Such

implementations must be seeded by a source of entropy input that provides full entropy

(e.g., an approved entropy source that has full entropy output or an approved NRBG).

CTR_DRBG requires access to a block cipher algorithm, including the ability to change

keys, and the storage space required for the internal state (see Section 10.2.1.1).

Algorithm Choices. The choice of block cipher algorithms and key sizes that may be

used by CTR_DRBG is discussed in Section 10.2.1.

E.4 Dual_EC_DRBG

The Dual_EC_DRBG generates pseudorandom outputs by extracting bits from elliptic

curve points. The secret, internal state of the DRBG is a value s that is the x-coordinate of

a point on an elliptic curve. Outputs are produced by first computing r to be the x-

coordinate of the point s*P, and then extracting low order bits from the x-coordinate of the

elliptic curve point r*Q.

Performance. Due to the elliptic curve arithmetic involved in this DRBG mechanism, this

algorithm generates pseudorandom bits more slowly than the other DRBG mechanisms in

this Recommendation. It should be noted, however, that the design of this algorithm

allows for certain performance-enhancing possibilities. First, note that the use of fixed

base points allows a substantial increase in the performance of this DRBG mechanism via

the use of tables. By storing multiples of the points P and Q, the elliptic curve

multiplication can be accomplished via point additions rather than multiplications, a much

less expensive operation. In more constrained environments where table storage is not an

option, the use of so-called Montgomery Coordinates of the form (X: Z) can be used as a

method to increase performance, since the y-coordinates of the computed points are not

required. Alternatively, Jacobian or Projective Coordinates of the form (X, Y, Z) can speed

up the elliptic curve multiplication operation. These have been shown to be competitive

with Montgomery for the NIST-recommended curves in [FIPS 186], and are

straightforward to implement.

A given implementation of this DRBG mechanism need not include all three of the

approved curves in Appendix A. Once the designer decides upon the strength required by

a given application, he can then choose to implement the single curve that most

NIST SP 800-90A, Rev 1 January 2012

118

appropriately meets this requirement. For a common level of optimization expended, the

higher-strength curves will be slower and tend toward less efficient use of output blocks.

To mitigate the latter, the designer should be aware that every distinct request for random

bits requires the computational expense of at least two elliptic curve point multiplications.

Applications requiring large blocks of random bits (such as IKE or SSL), can thus be

implemented most efficiently by first making a single call to the Dual_EC_DRBG for all

the required bits, and then appropriately partitioning these bits as required by the protocol.

For applications that already have hardware or software support for elliptic curve

arithmetic, this DRBG mechanism is a natural choice, as it allows the designer to utilize

existing capabilities to generate random bits.

Security. The security of Dual_EC_DRBG is based on the Elliptic Curve Discrete

Logarithm Problem that has no known attacks better than the meet-in-the-middle attacks.

For an elliptic curve defined over a field of size 2
m
, the work factor of these attacks is

approximately 2
m/2

, so that solving this problem is computationally infeasible for the

curves in this Recommendation. The Dual_EC_DRBG is the only DRBG mechanism in

this Recommendation whose security is related to a hard problem in number theory.

Constraints on Outputs. For any one of the three elliptic curves listed in Appendix A.1, a

particular instance of Dual_EC_DRBG may generate at most 2
32

 output blocks before

reseeding, where the size of the output blocks is discussed in Section 10.3.1.4. Since the

sequence of output blocks is expected to cycle in approximately sqrt(n) bits (where n is the

(prime) order of the particular elliptic curve being used), this is quite a conservative reseed

interval for any one of the three curves.

Resources. Any source of entropy input may be used with Dual_EC_DRBG, provided

that it is capable of generating at least min_entropy bits of entropy in a string of

max_length = 2
13

 bits. This DRBG mechanism also requires an appropriate hash function

(see Table 4) that is used exclusively for producing an appropriately sized initial state from

the entropy input at instantiation or reseeding. An implementation of this DRBG

mechanism must also have enough storage for the internal state (see 10.3.1.1). Some

optimizations require additional storage for moderate to large tables of pre-computed

values.

Algorithm Choices. The choice of appropriate elliptic curves and points used by

Dual_EC_DRBG is discussed in Appendix A.1.

E.5 Summary for DRBG Selection

Table E-1 provides a summary of the costs and constraints of the DRBG mechanisms in

this Recommendation.

Table E-1: DRBG Mechanism Summary

 Dominating Cost/Block Constraints (max.)

Hash_DRBG 2 hash function calls 2
48

 calls of 2
19

 bits

HMAC_DRBG 4 hash function calls 2
48

 calls of 2
19

 bits

NIST SP 800-90A, Rev 1 January 2012

119

CTR_DRBG (TDEA) 1 TDEA encrypt 2
32

 calls of 2
13

 bits

CTR_DRBG (AES) 1 AES encrypt 2
48

 calls of 2
19

 bits

Dual_EC_DRBG 2 EC points 2
32

 blocks

NIST SP 800-90A, Rev 1 January 2012

120

Appendix F : (Informative) Conformance to SP 800-90A
Requirements

Conformance to many of the requirements in this Recommendation are the responsibility

of entities using, installing or configuring applications or protocols that incorporate the

DRBG mechanisms in SP 800-90A, i.e., a given implementation may not have the means

of fulfilling these requirements. These requirements include the following:

Section 7.1:

The entropy input and the seed shall be kept secret.

At a minimum, the entropy input shall provide the amount of entropy requested by the

DRBG mechanism.

Section 7.2:

The personalization string shall be unique for all instantiations of the same DRBG

mechanism type (e.g., all instantiations of HMAC_DRBG).

Section 8.2:

A DRBG is instantiated using a seed and may be reseeded; when reseeded, the seed

shall be different than the seed used for instantiation.

Section 8.3:

The internal state for an instantiation includes: …One or more values that are derived

from the seed and become part of the internal state; these values shall remain secret.

The internal state shall be protected at least as well as the intended use of the

pseudorandom output bits requested by the consuming application.

Each DRBG instantiation shall have its own internal state.

The internal state for one DRBG instantiation shall not be used as the internal state for

a different instantiation.

Section 8.5:

Within a DRBG mechanism boundary,

1. The DRBG internal state and the operation of the DRBG mechanism functions

shall only be affected according to the DRBG mechanism specification.

2. The DRBG internal state shall exist solely within the DRBG mechanism boundary.

The internal state shall not be accessible by non-DRBG functions or other

instantiations of that or other DRBGs.

3. Information about secret parts of the DRBG internal state and intermediate values

in computations involving these secret parts shall not affect any information that

leaves the DRBG mechanism boundary, except as specified for the DRBG

pseudorandom bit outputs.

NIST SP 800-90A, Rev 1 January 2012

121

Other applications may use the same cryptographic primitive, but the DRBG’s internal

state and the DRBG mechanism functions shall not be affected by these other

applications.

The boundary around the entire DRBG mechanism shall include the aggregation of

sub-boundaries providing the DRBG mechanism functionality.

When DRBG mechanism functions are distributed, a secure channel shall be used to

protect the confidentiality and integrity of the internal state or parts of the internal state

that are transferred between the distributed DRBG mechanism sub-boundaries.

The security provided by the secure channel shall be consistent with the security

required by the consuming application.

Section 8.6.3:

The entropy input shall have entropy that is equal to or greater than the security

strength of the instantiation.

Section 8.6.5:

The source of the entropy input (SEI) shall be either:

1. An approved entropy source,

2. An approved NRBG (note that an NRBG includes an entropy source), or

3. An approved DRBG, thus forming a chain of at least two DRBGs; the initial

DRBG in the chain shall be seeded by an approved NRBG or an approved

entropy source.

A DRBG instantiation may seed or reseed another DRBG instantiation, but shall not

reseed itself.

Section 8.6.6:

The entropy input and the resulting seed shall be handled in a manner that is consistent

with the security required for the data protected by the consuming application. For

example, if the DRBG is used to generate keys, then the entropy inputs and seeds used

to generate the keys shall (at a minimum) be protected as well as the keys.

Section 8.6.7:

The nonce shall be either:

a. A value with at least (1/2 security_strength) bits of entropy,

b. A value that is expected to repeat no more often than a (1/2 security_strength)-

bit random string would be expected to repeat.

Section 8.6.9:

The seed that is used to initialize one instantiation of a DRBG shall not be

intentionally used to reseed the same instantiation or used as the seed for another

DRBG instantiation.

NIST SP 800-90A, Rev 1 January 2012

122

In addition, a DRBG shall not reseed itself.

Section 8.6.10:

The seed used by a DRBG and the entropy input used to create that seed shall not

intentionally be used for other purposes (e.g., domain parameter or prime number

generation).

Section 10.2.1:

The use of the derivation function is optional if either an approved RBG or an entropy

source provide full entropy output when entropy input is requested by the DRBG

mechanism. Otherwise, the derivation functon shall be used.

Section 11:

Therefore, entropy input used for testing shall not knowingly be used for normal

operational use.

NIST SP 800-90A, Rev 1 January 2012

123

Appendix G : (Informative) References

[FIPS 140] Federal Information Processing Standard 140-2, Security Requirements for

Cryptographic Modules, May 25, 2001.

[FIPS 180] Federal Information Processing Standard 180-4, Secure Hash Standard

(SHS), February 2011 Draft

[FIPS 186] Federal Information Processing Standard 186-3, Digital Signature Standard

(DSS), Draft March 2006.

[FIPS 197] Federal Information Processing Standard 197, Advanced Encryption

Standard (AES), November 2001.

[FIPS 198] Federal Information Processing Standard 198-1, Keyed-Hash Message

Authentication Code (HMAC), July 2008.

[SP 800-38A] National Institute of Standards and Technology Special Publication (SP)

800-38A, Recommendation for Block Cipher Modes of Operation - Methods

and Techniques, December 2001.

[SP 800-57] NIST Special Publication (SP) 800-57, Part 1, Recommendation for Key

Management: General, [August 2005].

[SP 800-67] NIST Special Publication (SP) 800-67, Recommendation for the Triple

Data Encryption Algorithm (TDEA) Block Cipher, May 2004.

[X9.62] American National Standard (ANS) X9.62-2005, Public Key Cryptography

for the Financial Services Industry - The Elliptic Curve Digital Signature

Algorithm (ECDSA).

[X9.63] American National Standard (ANS) X9.63-2001, Public Key Cryptography

for the Financial Services Industry - Key Agreement and Key Transport Using

Elliptic Key Cryptography.

[Gurel] Gurel, Nicholas, “Extracting Bits from Coordinates of a Point of an Elliptic

Curve”, Cryptology Eprint Archive: 2005/324.

[Shparlinski] E.E. Mahassni and I. Shparlinski, On the Uniformity of Distribution of

Congruential Generators over Elliptic Curves, preprint November 2000.

http://citeseer.ist.psu.edu/mahassni00uniformity.html .

http://citeseer.ist.psu.edu/mahassni00uniformity.html

NIST SP 800-90A, Rev 1 January 2012

124

Appendix H : (Informative) Revisions

This original version of this Recommendation was completed in June, 2006. In March 2007,

the following changes were made (note that the changes are indicated in italics):

1. Section 8.3, item 1.a originally stated the following:

“One or more values that are derived from the seed and become part of the

internal state; these values must usually remain secret”

The item now reads:

“One or more values that are derived from the seed and become part of the

internal state; these values should remain secret”.

2. In Section 8.4, the third sentence originally stated:

“Any security strength may be requested, but the DRBG will only be

instantiated to one of the four security strengths above, depending on the

DRBG implementation.”

The sentence now reads:

“Any security strength may be requested (up to a maximum of 256 bits), but the

DRBG will only be instantiated to one of the four security strengths above,

depending on the DRBG implementation.”

3. In Section 8.7.1, the list of examples of information that could appear in a

personalization string included privater keys, PINs and passwords. These items

were removed from the list, and seedfiles were added.

4. In Section 10.3.1.4, a step was inserted that will provide backtracking resistance

(step 14 of the pseudocode). The same change was made to the example in

Appendix D.5.3 (step 19.1). In addition, the two occurrences of block_counter (in

input 1 and processing step 1) were corrected to be reseed_counter.

This Recommendation was developed in concert with American National Standard (ANS)

X9.82, a multi-part standard on random number generation. Many of the DRBGs in this

Recommendation and the requirements for using and validating them are also provided in

ANS X9.82, Part 3. Other parts of that Standard discuss entropy sources and RBG

construction. During the development of the latter two documents, the need for additional

requirements and capabilities for DRBGs were identified. As a result, the following changes

were made to this Recommendation in August 2008 :

1. Definitions have been added in Section 4 for the following: approved entropy

source, DRBG mechanism, fresh entropy, ideal random bitstring, ideal random

sequence and secure channel. The following definitions have been modified:

backtracking resistance, deterministic random bit generator (DRBG), entropy,

entropy input, entropy source, full entropy, min-entropy, prediction resistance,

reseed, security strength, seed period and source of entropy input.

NIST SP 800-90A, Rev 1 January 2012

125

2. In Section 6, a link was provided to examples for the DRBGs specified in this

Recommendation.

3. In Section 7.2, paragraph 3. 2
nd

 sentence: The “should” has been changed to

“shall”, so that the sentence now reads:

The personalization string shall be unique for all instantiations of the same

DRBG mechanism type (e.g., HMAC_DRBG).

4. In Section 8.2, paragraph 2, additional text was added to the the first sentence,

which now reads:

A DRBG is instantiated using a seed and may be reseeded; when reseeded, the

seed shall be different than the seed used for instantiation.

5. In Section 8.5, Figure 4 has been updated, and the last paragraph has been revised

to discuss the use of a secure channel.

6. In Sections 8.6.5 and 8.6.9, statements were inserted that prohibit a DRBG

instantiation from reeeding itself.

7. References to “entropy input” have been removed from Section 8.6.9.

8. Section 8.8: An example was added to further clarify the meaning of prediction

resistance.

9. In Section 9, a prediction_resistance_request parameter has been added to the

Get_entropy_input call, along with a description of its purpose to the text

underneath the call.

10. In Section 9, a footnote was inserted to explain why a

prediction_resistance_requst parameter may be useful in the Get_entropy_input

call.

11. In Section 9.1, the following changes were made:

 The following sentence has been added to the description of the

prediction_resistance_flag:

In addition, step 6 can be modified to not perform a check for the

prediction_resistance_flag when the flag is not used in an implementation ; in

this case, the Get_entropy_input call need not include the

prediction_resistance_request parameter.

 The following requirement has been added to the Required information not

provided by the consuming application during instantiation.

This input shall not be provided by the consuming application as an input

parameter during the instantiate request.

 A prediction_resistance_request parameter has been added to the

Get_entropy_input call of step 6 of the Instantiate Process.

NIST SP 800-90A, Rev 1 January 2012

126

 Step 5 was originally intended for implementations of the Dual_EC_DRBG

to select an appropriate curve. This function is now performed by the

Dual_EC_DRBG’s Instantiate_algorithm. Changes were made to provide the

security strength to the Instantiate_algorithm. The Instantiate_algortihm for

each DRBG was changed to allow the input of the security strength.

12. In Section 9.2, the following changes have been made:

 A prediction_resistance_request parameter has been added to the

Reseed_function call.

 A description of the parameter has been added below the function call.

 A step was inserted that checked a request for prediction resistance (via the

prediction_resistance_request parameter) against the state of the

prediction_resistance_flag that may have been set during instantiation.

 A prediction_resistance_request parameter has been added to the

Get_entropy_input call of (newly numbered) step 4 of the Reseed Process.

 In the description of the entropy_input parameter, a restriction was added that

the entropy_input is not to be provided by the instantiation being reseeded. by

the DRBG instantiation being reseeded.

 A footnote was inserted to explain why the prediction_resistance_request

parameter might be useful.

13. In Section 9.3.1, the following changes were made:

 Text has been added to item to refer to the Reseed_function.

 A prediction_resistance_request parameter has been added to the

Get_entropy_input call of step 7.1 of the Generate Process.

 A substep was inserted in step 9 of the Generate Process to check the

prediction_resistance request against the state of the

prediction_resistance_flag.

14. In Section 9.3.2, step e, a phrase addressing the presence of the

prediction_resistance_request indicator was inserted.

15. In Sections 10.1 and 10.3.1, the new hash functions approved in FIPS 180-4 have

been added.

16. In Sections 10.1.2 (HMAC_DRBG) and 10.2.1 (CTR_DRBG), the update

functions have been renamed to reflect the DRBG with which they are associated

(i.e., renamed ro HMAC_DRBG_Update and CTR_DRBG_Update).

17. In Section 10.1.2.1, the last paragraph has been revised to indicate that only the

Key is considered to be a critical value.

NIST SP 800-90A, Rev 1 January 2012

127

18. In Sections 10.1.2.3, 10.2.1.3.1, 10.2.1.3.2 and 10.3.1.2, the description of the

personalization_string has been revised to indicate that the length the

personalization_string may be zero.

19. In Section 10.2.1.5, the following statement has been added to the first paragraph:

 If the derivation function is not used, then the maximum allowed length of

additional_input = seedlen.

20. In Section 10.3.1.2, the specification was changed to select an elliptic curve and

return the parameters of that curve to the Instantiate_function that called the

routine.

21. In the first paragraph of Appendix A.1, a statement has been added that if

alternative points are desired, they shall be generated as specified in Appendix

A.2.

22. The original Appendices C and D on entropy sources and RBG constructions,

respectively, have been removed and the topics will be discussed in SP 800-90B

and C

23. In Appendix C.2 (originally Appendix E.2), a paragraph has been inserted after

the table of E values that discusses the analysis associated with the table values.

24. The additional uses of the prediction_resistance_request parameter (as specified

in Section 9) have been added to the following appendices:

 D.1.1, step 4;

 D.1.2, Input and step 4;

 D.1.3, step 7.1;

 D.3.2, step 4;

 D.3.3, Input and step 4; and

 D.3.4, step 7.1.

25. The name of the update call has been changed in the following appendices:

 D.2.1, step 4;

 D.2.2, step 5;

 D.3.1, title; and

 D.4.1, title.

26. In Appendix D.3 (originally Appendix F.3), the first paragraph, which discusses

the example, has been modified to discuss the prediction_resistance_request

parameter in the Get_entropy_input call.

27. In Appendix D.5 (originally Appendix F.5), the description of the example in

paragraph 2 has been changed so that the example does not include prediction

resistance, and the definition for the reseed_interval has been removed from the

NIST SP 800-90A, Rev 1 January 2012

128

list. The Dual_EC_Instantiate_function has been modified to reflect the changes

made to the Instantiate_function and Instantiate_algorithm (see the last bullet of

modification 8 above). In addition, the pseudocode for the Reseed_function has

been removed, and steps in F.5.1 and F.5.2 that dealt with reseeding have been

removed.

