
ches Fri Apr 20 07:46:11 EDT 1990

The Design of a Secure Internet Gateway

Bill Cheswick
ches@research.att.com

AT&T Bell Laboratories

Murray Hill, New Jersey 07974

ABSTRACT

The Internet supports a vast and growing community of computers users around the world.
Unfortunately, this network can provide anonymous access to this community by the unscrupulous,
careless, or dangerous. On any given Internet there is a certain percentage of poorly-maintained
systems. AT&T has a large internal Internet that we wish to protect from outside attacks, while
providing useful services between the two.

This paper describes our Internet gateway. It is an application-level gateway that passes mail
and many of the common Internet services between our internal machines and the Internet. This is
accomplished without IP connectivity using a pair of machines: a trusted internal machine and an
untrusted external gateway. These are connected by a private link. The internal machine provides a
few carefully-guarded services to the external gateway. This configuration helps protect the internal
internet even if the external machine is fully compromised.

1. Introduction

The design of a Corporate gateway to the Inter
net must deal with the classical tradeoff between se
curity and convenience. Most institutions opt for con
venience and use a simple router between their inter
nal internets and the rest of the world. This is danger
ous. Strangers on the Internet can reach and test every
internal machine. With workstations sitting on many
desks, system administration is often decentralized and
neglected. Passwords are weak or missing. A profes
sor or researcher often may install the operating system
and forget it, leaving well-known security holes uncor
rected. For example, a sweep of 1,300 machines inside
Bell Labs around the time of the Internet Worm found
over 300 that had at least one of several known security
holes.

When we first obtained a connection to the
ARPAnet, Dave Presotto configured our gateway ma

 chine (named) as an application-level gateway.
For two years this machine was the sole official link to
the Internet for AT&T. Until its disconnection a little
while ago, this VAX 750 handled all the Internet mail

 traffic and other services for the company. had
Ethernet connections to both the inside and outside In
ternets, just like a router. It could also make and accept
calls on our corporate Datakit network.

Dave took a number of steps to make our gate
way more secure. He turned off IP forwarding in the
kernel so packets could not travel between the Inter-
nets. He installed a kernel modification that limited

 TCP connections from to the inside network to
smtp, uucp, named, and hostname ports. And he re
jected the sendmail mailer as too complicated and dan
gerous: the Upas[1] mailer was installed in its place.
We removed a number of non-essential daemons, in
cluding the finger server.

To give insiders access to the Internet, a gate ser
 vice was installed on . Insiders could call this

service and supply an Internet address. The gate con
nected to a socket of a remote Internet host and then
copied bytes between the two connections. It was easy
to provide atelnet, a version of telnet that used the gate
service. Aftp supplied FTP services: it was the stan
dard FTP modified so both the command and data con
nections were initiated from the inside. (The standard
ftp would have tried to make the data connection from
 to the inside, a connection prohibited by ’s
kernel.)

This configuration successfully resisted the Inter
net worm. We ran neither sendmail nor fingerd, the two
programs exploited by the worm.[2] The internal inter
net was spared the infection. (Actually, there was a sec

1

mailto:ches@research.att.com

ond, unguarded IP link to the Outside. We got lucky:
only a few machines at the other end knew of the link,
and their machines were shut down before the worm
could creep across.)

Had been infected, the worm could have
reached the inside machines. The initial smtp sendmail
connection was permitted, and the worm’s second con
nection would have been initiated from the inside target
machine into , the permitted direction.

2. The new gateway

All of ’s protection has, by design, left the
internal AT&T machines untested—a sort of crunchy
shell around a soft, chewy center. We run security scans
on internal machines and bother system administrators
when holes are found. Still, it would be nice to have
a gateway that is demonstrably secure to protect the in
ternal machines. For peace of mind, the gateway design
should not rely on vendors’ code more than absolutely
necessary. We would like the internal machines pro
tected even if an invader breaks into the gateway ma
chine, becomes root, and creates and runs a new kernel.

We had to replace . The VAX 750 ran with
typical load averages of seven to twelve jobs throughout
the day. When the load average hit about fifteen, the old
Datakit driver expired, wedging the Datakit ports and
requiring a reboot.

A new machine gave the opportunity for a clean
start. We could re-think the security arrangements to
improve on ’s shortcomings.

Our new gateway machine, named I N E T , is a
MIPS M/120 running System V with Berkeley enhance
ments. Various daemons and critical programs have
been obtained from other sources, checked, and in
stalled.

We store nothing vital or secret on I N E T , since we
assume that it may be defeated in unforeseen ways. It
does not currently run uucp—systems files and dialers
could fall into the wrong hands. There are few system
administration accounts, and user accounts are discour
aged.

s N E T is not used for other tasks. It is backed
up regularly, and scanned for unauthorized changes and
common system administration mistakes. Though we
don’t trust I N E T , we protect it as much as we can.

s N E T has a single Ethernet port which is con
nected to a router on JVNCnet, our external regional
network. It also has a connection to Datakit. We have
configured our Datakit controller to force all connec
tions from I N E T to a single internal machine, named to n R o n . can redial, or splice connections to other in
ternal machines. R o n provides a limited set of services

to I N E T for reaching internal machines. The list of ser
vices are:

1. connection to an approved machine’s smtp port,

2. connection to a login or trusted-login Datakit des
tination after passing a challenge-response test,
and

3. connection to a logging service.

The key to the arrangement is a restricted chan
nel from I N E T to to n . This private channel was easily
constructed using stock features of our research Datakit
controller. Other connection schemes could be imple
mented using a simple multiplexed protocol over some
back-to-back connection between the machines, or a
simple Ethernet would suffice. If the last approach is
used with TCP, the internal machine must supply dif
fering TCP services to its two Ethernet interfaces. (I
am not sure this is possible with standard TCP/IP im
plementations. It wouldn’t be too hard to modify inetd
to do this.)

These functions do not load the internal machine
too much; it could have other uses like uucp, mail, or
even normal user jobs. But the services it provides the
external machine are the key to security, and must be
protected well.

3. Outbound services

It is quite easy to implement most outbound sers
vices to the Internet. N E T has a small program, named
proxy (a descendant of ’s gate), that makes calls
to the Internet on behalf of an inside machine and re
lays bytes between the inside Datakit connection and
the outside Internet TCP connection. Proxy can also lis
ten to a non-privileged socket and report connections to
an inside process. Several outbound services are imple
mented using proxy, and more are easy to create. In all
cases, it appears to the remote Internet hosts that our
gateway machine is making the calls.

s N E T may be reached over the Datakit. But how
do internal machines reach I N E T over the Ethernet?
R o n responds to two IP addresses: its own, and an
internal IP address for I N E T . (Dave Presotto imple
mented this after a trivial change to the Tenth Edition
Research Unix connection server.[3]) Calls to certain
TCP ports on this internal IP address invoke dcon, a pro
gram that simply relays the bytes between the TCP port
and Datakit connections on I N E T .

I have replaced the old aftp and atelnet with ptel
net and pftp. They work in the same manner, but the

new routines call a portable implementation of ipcopen,
a piece of the connection server. Ipcopen hides the de
tails of a connection (TCP sockets or Datakit), simpli
fying the application program. For example:

ptelnet tcp!toucan

connects to machine T NTOCUTC on our internet, and

ptelnet proxy!ernie.berkeley.edu

C connects to E N I EE E E E EEL EY EDTU on the external In

ternet. proxy! is the default. The ipcopen implemen
tation is not flawless: some socket features such as out
of-band data and the urgent pointer are missing because
they are not supported by Datakit. Ptelnet was stripped
down to avoid these features.

Pftp provides FTP access in a similar manner. It
is an updated version of aftp from . The ipcopen
routines allow it to work over Datakit.

Outgoing mail is sent to I N E T via smtp over ei
ther Datakit or the internal Internet. It is stored and for
warded from there. Upas performs the mail gateway
functions.

4. Inbound services

We provide incoming login and mail service. For
incoming file transfer, I N E T provides an anonymous
FTP service.

We do not trust our passwords to the Internet:
it is too easy to eavesdrop or steal packets. See [4]
for a discussion of these security problems. Login ser
vice requires a hand-held authenticator (HHA). These
are calculator-sized devices that contain DES encryp
tion and a manually-loaded 64-bit key. They cost about
$50.

Inbound login service is provided through an auto nthentication manager on . A session is shown in
figure 1. To connect, the following sequence occurs:

• The Internet caller uses telnet to connect to EE
 E C HT T TT CCOC (a.k.a I N E T) via telnet. The
login name is guard.

•	 The guard login connects to the authentication to n manager on over the Datakit. It spends the
rest of the connection relaying bytes between the
two connections.

to n•	 The authentication manager on requests a lo
gin name.

•	 R o n sends a random challenge number, which
the caller supplies.

•	 The user enters the challenge into his HHA.

•	 The HHA encrypts the challenge using a pre-
loaded DES key, and displays the response.

•	 The user types the response. He has three tries to
answer a challenge correctly, and is disconnected
if he fails.

•	 The authorization manager prompts for a Datakit
destination.

•	 When the user enters the destination, the manager
sends a redial request to the Datakit controller
with the given destination and a service of ‘dcon’. to nFor machines that trust , the ‘dcon’ service
bypasses further logins and avoids further pass
words.

•	 The redial request transfers the call, switchingto n out of the connection. In non-Datakit imto nplementations, would probably have shuttle
bytes between the two connections.

Each user requires a DES key, and keys have
an expiration date. The keys are stored on a separate
passwd/key server machine connected to to n . The keys
in this machine may be changed or examined only from
its console.

Inbound mail is delivered directly to I N E T .
s N E T

checks the destination. If it is a trusted machine (i.e. its
smtp is trusted), a connection request is sent to to n . If
not, the mail is relayed through an accessible internal
machine. R o n will permit connections only to trusted
smtp implementations. The list is short because most
internal machines run sendmail.

5. Protecting INET

The preceding precautions might imply that we
expect our gateway to be compromised at some point.
In fact, we are taking great pains to protect the machine,
including the usual good system administration steps
needed to secure any

g N IIX system[5]: directory and file
permissions are checked, backups performed regularly,
etc.

We have taken some steps to avoid denial-of
service attacks. For example, the logs, the spool di
rectory, and the publically-accessible FTP directory are
each on separate file systems. If a stranger fills the pub
lic FTP directory, there is still room for the logs.

Here are some other steps taken:

http:proxy!ernie.berkeley.edu

$ telnet research.att.com

Trying...

Connected to research.att.com.

Escape character is ’^]’.

RISC/os (inet)

login: guard

RISC/os (UMIPS) 4.0 inet

Copyright 1986, MIPS Computer Systems

All Rights Reserved

Security Authentication check

login: ches

Enter response code for 90902479: 818b71fe

Destination please: coma

OKYou have mail.

coma=; date

Tue Nov 14 10:52:37 EST 1989

coma=;

Eof

Connection closed by foreign host.

$

Figure 1: A connection session through the guard.

•	 All the important executable files are periodically
checksummed and checked for changes.

•	 Most user accounts do not have passwords to be
checked. They obtain permission to login based
on the source of the call.

•	 Non-essential network daemons have been re
moved: we don’t need to trust them.

•	 Inetd(8) handles all network connections. Cer
tain modifications allow telnetd, smtpd, and ftpd
to run without special permissions:[5] inetd han
dles the privileged stuff.

•	 There is extensive logging of network activity, in
cluding connection and login attempts. A write-
only log server is planned that will keep a copy
of these logs off-machine and inaccessible to any
network.

•	 Since the network daemons are so important to
the security of the machine, we obtained the lat
est BSD versions and examined, modified, and in
stalled them.

6. Gateway alternatives

There are several much simpler alternatives for
an Internet gateway. The simplest is a router, which
just lets the packets through. Some routers, like Cisco’s,
provide packet filtering that can block various types of
access to an institution.

We did not choose the router. Though the filtering
is quite good, it’s not clear whether a clever worm could
get through the permitted ports. Can we trust the router?
If telnet access is allowed from the outside, inside ma
chines are exposed to password-guessing attacks. If tel
net access is not allowed, an alternative is needed any
way, requiring additional provisions. The router does
not provide logging to detect invasion attempts. And
mail gating must be provided by a machine somewhere:
it is unreasonable to expect each internal machine to be
configured to handle all the varieties of external mail
addressing.

Many Internet sites use a gateway machine like
a Sun. These machines forward IP packets in both
directions, and provide a mail gateway service. The
packet flow is still dangerous, though filtering is avail
able. Many internal machines may trust the gate ma
chine, leaving them further exposed if the gate machine

http:research.att.com
http:research.att.com

is compromised.

7.	 Performance

The mail throughput of the new gateway has been
gratifying, though a VAX 750 is an easy act to follow. In
many cases, we have had replies to cross-country mail
return in less than a minute. It sometimes seems that the
mail must have bounced.

s N E T has little else to do, and
a MIPS M/120 is a fast machine.

Pftp transfers are fastest over Datakit, since they to navoid the dcon gateway in . File transfers range to nfrom 17 to 44 Kb/sec. TCP transfers through run
at 9 to 16 Kb/sec. By comparison, ftp on I N E T runs
at about 60–90 Kb/sec. Clearly, security has its costs.
But these are top speeds. The limiting factor is often
the external net or host. In any case, several users have
expressed satisfaction about the throughput.

8.	 Conclusions

The new gateway achieves a useful balance of
utility and security. Most internal users seem to be
happy with pftp and ptelnet. Some have asked for talk,
resolver service and other UDP-based protocols. These
could be provided with non-proxy services on I N E T ac
cessible through Datakit.

to nThere are certainly limits to our security. If
and I N E T are subverted, the inside machines could be
attacked.

Insiders can easily import trouble such as Trojan
horses or programs infected with viruses. Our best de
fense is continued scanning of internal machines for se
curity holes in case such a program gets loose.

There is now a second AT&T internet gateway.
Its configuration is similar to I N E T ’s. These two front
doors provide reasonable security to an isolated internal
internet. But AT&T is a large company, so we keep a
constant watch to assure that no other links are made to
the external Internet. A locked front door is useless if
the back wall of the house is missing.

The incoming guarded telnet service is not per
fect. The remote telnet may be insecure, and the TCP
connection itself could be stolen after login is com
plete. Most internal AT&T machines do not accept
to n ’s judgement that the user is valid, and require their
own login passwords. These passwords travel over the
Internet in the clear.

Our solution does have some drawbacks. We rely
on two machines and Datakit to keep things working.
This yields three points of failure, while the simpler ap
proaches have (in some sense) only one point of failure.

The use of TCP-level gateways does lower throughput.
Though most users seem to be content with the pftp re
sponse, it would be nice to speed it up some.

This paper is not an invitation to come
test the security of our gateway. It is
management’s policy to call the authori
ties when intruders are detected.

9.	 Acknowledgements

Many people have contributed to the support of
these gateways. Steve Bellovin did most of the ini
tial work to get talking to the ARPAnet and
Datakit. Dave Presotto has supplied much of the soft
ware and most of the paranoia to provide a secure gate
way. Howard Trickey implemented earlier versions of
ptelnet and pftp. Dennis Ritchie has kept a watchful eye
and stepped in when things broke. Steve Bellovin and
others have provided numerous suggestions and warn
ings on various networking and security topics. Jim
McKie ported many useful Research Unix[6] functions
and the INCON Datakit driver to our MIPS computers,
making life much easier for me.

References

[1] David Presotto. Upas - a simpler approach
to network mail. USENIX Summer Confer
ence Proceedings, pps. 533–538, June 1985.

[2] Donn Seeley. A Tour of the Worm. USENIX
Winter Conference Proceedings, Jan. 1989.

[3] David Presotto and Dennis Ritchie. Inter-
process Communication in the Ninth Edition
UNIX System. Unix Programmer’s Manual,
Tenth Edition. A. G. Hume and M. D. McIl
roy, Editors. AT&T Bell Laboratories, Mur
ray Hill, NJ. 1990.

[4] Bellovin,	 S.M. Security Problems in the
TCP/IP Protocol Suite. Computer Commu
nications Review, Vol. 9, No. 2; April, 1989,
pps. 32–48.

[5] Dennis M. Ritchie. On the Security of UNIX.
Unix Programmer’s Manual, Tenth Edition.
A. G. Hume and M. D. McIlroy, Editors.
AT&T Bell Laboratories, Murray Hill, NJ.
1990.

[6] Unix Programmer’s Manual, Tenth Edition,
Volumes One and Two. A. G. Hume and M.
D. McIlroy, Editors. AT&T Bell Laborato
ries, Murray Hill, NJ. 1990.

