
Limitations of the Kerberos
 
Authentication System†
 

Steven M. Bellovin – AT&T Bell Laboratories
 
Michael Merritt – AT&T Bell Laboratories
 

ABSTRACT 

The Kerberos authentication system, a part of MIT’s Project Athena, has been 
adopted by other organizations. Despite Kerberos’s many strengths, it has a number of 
limitations and some weaknesses. Some are due to specifics of the MIT environment; 
others represent deficiencies in the protocol design. We discuss a number of such 
problems, and present solutions to some of them. We also demonstrate how special-
purpose cryptographic hardware may be needed in some cases. 

INTRODUCTION 

The Kerberos authentication system[Stei88, Mill87, 
Brya88] was introduced by MIT to meet the needs of 
Project Athena. It has since been adopted by a 
number of other organizations for their own pur
poses, and is being discussed as a possible standard. 
In our view, both these decisions may be premature. 
Kerberos has a number of limitations and 
weaknesses; a decision to adopt or reject it cannot 
properly be made without considering these issues. 
(A limitation is a feature that is not as general as one 
might like, while a weakness could be exploited by 
an attacker to defeat the authentication mechanism.) 
Some improvements can be made within the current 
design. Support for optional mechanisms would 
extend Kerberos’s applicability to environments radi
cally different from MIT. 

These problems fall into several categories. 
Some stem from the Project Athena environment. 
Kerberos was designed for that environment; if the 
basic assumptions differ, the authentication system 
may need to be changed as well. Other problems are 
simply deficiencies in the protocol design. Some of 
these are corrected in the proposed Version 5 of 
Kerberos,[Kohl89] but not all. Even the solved prob
lems merit discussion, since the code for Version 4 
has been widely disseminated. Finally, some prob
lems with Kerberos are not solvable without employ
ing special-purpose hardware, no matter what the 
design of the protocol. We will consider each of 
these areas in turn. 

We wish to stress that we are not suggesting 
that Kerberos is useless. Quite the contrary — an 
attacker capable of carrying out any of the attacks 
listed here could penetrate a typical network of UNIX 
systems far more easily. Adding Kerberos to a net
work will, under virtually all circumstances, 
significantly increase its security; our criticisms focus 

†A version of this paper was published in the October, 
1990 issue of Computer Communications Review. 

on the extent to which security is improved. Further, 
we recommend changes to the protocols that substan
tially increase security. 

Beyond its specific utility in production, Ker
beros serves a major function by focusing interest on 
practical solutions to the network authentication 
problem. The elegant protocol design and wide avai
lability of the code has galvanized a wide audience. 
Far from a condemnation, our critique is intended to 
contribute to an understanding of Kerberos’s proper
ties and to influence its evolution into a tool of 
greater power and utility. 

Several of the problems we point out are men
tioned in the original Kerberos paper or 
elsewhere.[Davi90] For some of these, we present pro
tocol improvements that solve, or at least ameliorate, 
the problem; for others, we place them squarely in 
the context of the intended Kerberos environment. 

Version 5, Draft 3 
Since this paper was written, a new draft of the 

Version 5 protocol has been released, and a final 
specification is promised.[Kohl90] Many of the prob
lems we discuss herein have been corrected. Others 
remain, and we have found a few new ones. The 
ultimate resolution of these issues is unclear as we 
go to press. Consequently, a brief analysis of 
Draft 3 is presented in an appendix, rather than in 
the main body of the document. 

Focus on Security 
Kerberos is a security system; thus, though we 

address issues of functionality and efficiency, our 
primary emphasis is on the security of Kerberos in a 
general environment. This means that security-
critical assumptions must be few in number and 
stated clearly. For the widest utility, the network 
must be considered as completely open. Specifically, 
the protocols should be secure even if the network is 

USENIX – Winter ’91 – Dallas, TX 1 



Kerberos Limitations Bellovin & Merritt 

under the complete control of an adversary.1 This 
means that defeating the protocol should require the 
adversary to invert the encryption algorithm or to 
subvert a principal specifically assumed to be 
trustworthy. Only such a strong design goal can jus
tify the expense of encryption. (No ‘‘steel doors in 
paper walls’’.) We believe that Kerberos can meet 
this ambitious goal with only minor modifications, 
retaining its essential character. 

Some of our suggestions bear a performance 
penalty; others complicate the design of suggested 
enhancements. As more organizations make use of 
Kerberos, pressures to enhance or augment its func
tionality and efficiency will increase. Security has 
real costs, and the benefits are intangible. There 
must be a continuing and explicit emphasis on secu
rity as the overriding requirement. 

Validation 
It is not sufficient to design and implement a 

security system. Such systems, though apparently 
adequate when designed, may have serious flaws. 
Consequently, systems must be subjected to the 
strongest scrutiny possible. A consequence of this is 
that they must be designed and implemented in a 
manner that facilitates such scrutiny. Kerberos has a 
number of problems in this area as well. 

WHAT’S A KERBEROS? 

Before discussing specific problem areas, it is 
helpful to review Kerberos Version 4. Kerberos is 
an authentication system; it provides evidence of a 
principal’s identity. A principal is generally either a 
user or a particular service on some machine. A 
principal consists of the three-tuple 

< primaryname, instance , realm >. 

If the principal is a user — a genuine person — the 
primary name is the login identifier, and the instance 
is either null or represents particular attributes of the 
user, i.e., root . For a service, the service name is 
used as the primary name and the machine name is 
used as the instance, i.e., rlogin.myhost . The 
realm is used to distinguish among different authen
tication domains; thus, there need not be one giant 
— and universally trusted — Kerberos database 
serving an entire company. 

1The Project Athena Technical Plan[Mill87, section 2] 

describes a simpler threat environment, where eavesdrop
ping and host impersonation are of primary concern. 
While this may be appropriate for MIT, it is by no means 
generally true. Consider, for example, a situation where 
general-purpose hosts also function as routers, and packet 
modification or deletion become significant concerns. 

Table 1: Notation 

c client principal 
s server principal 
tgs ticket-granting server 
K x private key of ‘‘x’’ 
K c,s session key for ‘‘c’’ and ‘‘s’’ 
{in f o }K x ‘‘in f o’’ encrypted in key K x 
{T c,s }K s Encrypted ticket for ‘‘c’’ to use ‘‘s’’ 
{A c }K c,s Encrypted authenticator for ‘‘c’’ to 

use ‘‘s’’ 
addr client’s IP address 

Kerberos principals may obtain tickets for ser
vices from a special server known as the ticket-
granting server, or TGS. A ticket contains assorted 
information identifying the principal, encrypted in 
the private key of the service. (Notation is summar
ized in Table 1.) 

{T c,s }K s = {s , c , addr , timestamp , li f etime , K c,s }K s 

Since only Kerberos and the service share the private 
key K s , the ticket is known to be authentic. The 
ticket contains a new private session key, K c,s , 
known to the client as well; this key may be used to 
encrypt transactions during the session.2 

To guard against replay attacks, all tickets 
presented are accompanied by an authenticator: 

{A c }K c,s = {c , addr , timestamp}K c,s 

This is a brief string encrypted in the session key 
and containing a timestamp; if the time does not 
match the current time within the (predetermined) 
clock skew limits, the request is assumed to be 
fraudulent. 

For services where the client needs bidirectional 
authentication, the server can reply with 

{timestamp + 1}K c,s 

This demonstrates that the server was able to read 
timestamp from the authenticator, and hence that it 
knew K c,s ; that in turn is only available in the ticket, 
which is encrypted in the server’s private key. 

Tickets are obtained from the TGS by sending 
a request 

s , {T c,tgs }K tgs , {A c }K c,tgs 

In other words, an ordinary ticket/authenticator pair 
is used; the ticket is known as the ticket-granting 

2Technically speaking, K c,s is a multi-session key, since 
it is used for all contacts with that server during the life of 
the ticket. 

2 USENIX – Winter ’91 – Dallas, TX 



Bellovin & Merritt Kerberos Limitations 

ticket. The TGS responds with a ticket for server s 
and a copy of K c,s , all encrypted with a private key 
shared by the TGS and the principal: 

{ {T c,s }K s ,K c,s }K c,tgs 

The session key K c,s is a newly-chosen random key. 

The key K c,tgs and the ticket-granting ticket 
itself, are obtained at session-start time. The client 
sends a message to Kerberos with a principal name; 
Kerberos responds with 

{K c,tgs ,{T c,tgs }K tgs }K c 

The client key K c is derived from a non-invertible 
transform of the user’s typed password. Thus, all 
privileges depend ultimately on this one key. 

Note that servers must possess private keys of 
their own, in order to decrypt tickets. These keys 
are stored in a secure location on the server’s 
machine. 

THE KERBEROS ENVIRONMENT 

The Project Athena computing environment 
consists of a large number of more or less 
anonymous workstations, and a smaller number of 
large autonomous server machines. The servers pro
vide volatile file storage, print spooling, mailboxes, 
and perhaps some computing power; the worksta
tions are used for most interaction and computing. 
Generally, they possess local disks, but these disks 
are effectively read-only; they contain no long-term 
user data. Furthermore, they are not physically 
secure; someone so inclined could remove, read, or 
alter any portion of the disk without hindrance. 

Within this environment the primary need is for 
user-to-server authentication. That is, when a user 
sits down at a workstation, that person needs access 
to private files residing on a server. The workstation 
itself has no such files, and hence has no need to 
contact the server or even to identify itself. 

This is in marked contrast to a typical UNIX 
system’s view of the world. Such systems do have 
an identity, and they do own files. Assorted network 
daemons transfer files in the background, clock dae
mons perform management functions, electronic mail 
and news arrives, etc. If such a machine relied on 
servers to store its files, it would have to assert, and 
possibly prove, an identity when talking to these 
servers. The Project Athena workstations are neither 
capable nor in need of such; they in effect function 
as very smart terminals with substantial local com
puting power, rather than as full computer systems.3 

What does this mean for Kerberos? Simply 
this: Kerberos is designed to authenticate the end-
user — the human being sitting at the keyboard — 
to some number of servers. It is not a peer-to-peer 
system; it is not intended to be used by one 

3We regard this as a feature, not a bug. 

computer’s daemons when contacting another com
puter. Attempting to use Kerberos in such a mode 
can cause trouble.4 

We make this statement for several reasons. 
First and foremost, typical computer systems do not 
have a secure key storage area. In Kerberos, a plain
text key must be used in the initial dialog to obtain a 
ticket-granting ticket. But storing plaintext keys in a 
machine is generally felt to be a bad idea;[Morr79] if a 
Kerberos key that a machine uses for itself is 
compromised, the intruder can likely impersonate 
any user on that computer, by impersonating requests 
vouched for by that machine (i.e., file mounts or 
cron jobs).5 Additionally, the session keys returned 
by the TGS cannot be stored securely; of necessity, 
they are stored in some area accessible to root . 
Thus, if the intruder can crack the protection 
mechanism on the local computer — or, perhaps 
more to the point, work around it for some limited 
purposes — all current session keys can be stolen. 
This is less serious than a breach of the primary Ker
beros key, of course, since session keys are limited 
in lifetime and scope; nevertheless, one does not 
wish these keys exposed. 

This points out a second flaw when multi-user 
computers employ Kerberos, either on their own 
behalf or for their users: the cached keys are acces
sible to attackers logged in at the same time. In a 
workstation environment, only the current user has 
access to system resources; there is little or no need 
even to enable remote login to that workstation. 
There are many reasons for this; a consequence, 
though, is that the intruder simply cannot approach 
the safe door to try to pick its lock.6 Only when the 
legitimate user leaves can the attacker attempt to find 
the keys. But the keys are no longer available; Ker
beros attempts to wipe out old keys at logoff time, 
leaving the attacker to sift through the debris. With 
a multi-user computer, on the other hand, an attacker 
has concurrent access to the keys if there are flaws in 
the host’s security. 

There are two other minor flaws in Kerberos 
directly attributable to the environment. First, there 
is some question about where keys should be cached. 
Since all of the Project Athena machines have local 
disks, the original code used /tmp . But this is 
highly insecure on diskless workstations, where 
/tmp exists on a file server; accordingly, a 
modification was made to store keys in shared 
memory. However, there is no guarantee that shared 
memory is not paged; if this entails network traffic, 

4More precisely, Kerberos is not a host-to-host protocol. 
In Version 5, it has been extended to support user-to-user 
authentication.[Davi90]

5Recall that we are assuming here that the machine — 
and hence its superuser — needs an identity of its own.

6On Project Athena machines, remote access to most 
workstations is in fact disabled. 

USENIX – Winter ’91 – Dallas, TX 3 



Kerberos Limitations Bellovin & Merritt 

an intruder can capture these keys. 

Finally, the Kerberos protocol binds tickets to 
IP addresses. Such usage is problematic on on 
multi-homed hosts (i.e., hosts with more than one IP 
address). Since workstations rarely have multiple 
addresses, this feature — intended to enhance secu
rity — was not a problem at MIT. Multi-user hosts 
often do have multiple addresses, however, and can
not live with this limitation. This problem has been 
fixed in Version 5. 

PROTOCOL WEAKNESSES 

Replay Attacks 
The Kerberos protocol is not as resistant to 

penetration as it should be. A number of weaknesses 
are apparent; the most serious is its use of an authen
ticator to prevent replay attacks. 

The authenticator relies on use of a timestamp 
to guard against reuse. This is problematic for 
several reasons. The claim is made that no replays 
are likely within the lifetime of the authenticator 
(typically five minutes). This is reinforced by the 
presence of the IP address in both the ticket and the 
authenticator. We are not persuaded by this logic. 
An intruder would not start by capturing a ticket and 
authenticator, and then develop the software to use 
them; rather, everything would be in place before the 
ticket-capture was attempted. Let us consider two 
examples. 

Some years ago, Morris described an attack 
based on the slow increment rate of the initial 
sequence number counter in some TCP 
implementations.[Morr85] He demonstrated that it was 
possible, under certain circumstances, to spoof one 
half of a preauthenticated TCP connection without 
ever seeing any responses from the targeted host. In 
a Kerberos environment, his attack would still work 
if accompanied by a stolen live authenticator, but not 
if a challenge/response protocol was used. Alterna
tively, an intruder may simply watch for a ‘‘mail
checking’’ session, wherein a user logs in briefly, 
reads a few messages, and logs out. A number of 
valuable tickets would be exposed by such a session, 
notably the one used to mount the user’s home direc
tory. Note that the lifetime of the authenticators — 
5 minutes — contributes considerably to this attack. 

Further, the proposed Version 5 of Kerberos 
anticipates alternative communication protocols in 
which such replays may be trivial to implement. If 
Kerberos is to be considered as a general-purpose 
utility, it must make few security-critical assump
tions about the underlying network, and those must 
be explicit. 

It has been suggested that the proper defense is 
for the server to store all live authenticators; thus, an 
attempt to reuse one can be detected.[Stei88] In fact, 
the original design of Kerberos required such 

caching, though this was never implemented. (While 
that is a feature of the implementation rather than of 
the protocol itself, a security feature is not very use
ful if it is too hard to implement.) 

For several reasons, we do not think that cach
ing solves the problem. First, on UNIX systems it is 
difficult for TCP-based[Post81] servers to store 
authenticators. Servers generally operate by forking 
a separate process to handle each incoming request. 
The child processes do not share any memory with 
the parent process, and thus have no convenient way 
to inform it — and hence any other child servers — 
of the value of the authenticator used. There are a 
number of obvious solutions — pipes, authenticator 
servers, shared memory segments and the like — but 
all are awkward, and some even raise authentication 
questions of their own. To date, we know of no 
multi-threaded server implementation which caches 
authenticators. 

UDP-based[Post80] query servers can store the 
authenticators more easily, as a single process gen
erally handles all incoming requests; however, they 
might have problems with legitimate retransmissions 
of the client’s request if the answer was lost. (UDP 
does not provide guaranteed delivery; thus, all 
retransmissions happen from application level, and 
are visible to the application.) Legitimate requests 
could be rejected, and a security alarm raised inap
propriately. One possible solution would be for the 
application to generate a new authenticator when 
retransmitting a request; were it not for the other 
weaknesses of the authenticator scheme, this would 
be acceptable. 

Secure Time Services 
As noted, authenticators rely on machines’ 

clocks being roughly synchronized. If a host can be 
misled about the correct time, a stale authenticator 
can be replayed without any trouble at all. Since 
some time synchronization protocols are 
unauthenticated,[Post83, Mill88] and hosts are still using 
these protocols despite the existence of better 
ones,[Mill89] such attacks are not difficult. 

The design philosophy of building an authenti
cation service on top of a secure time service is itself 
questionable. That is, it may not make sense to 
build an authentication system assuming an already-
authenticated underlying system. Furthermore, while 
spoofing an unauthenticated time service may be a 
difficult programming task, it is not cryptographi
cally difficult.7 Using time-based protocols in a 
secure fashion means thinking through all these 
issues carefully and making the appropriate 

7In some environments, programming is not even neces
sary. Low-powered fake WWV transmitters are not hard 
to build, and, if properly located, could easily block out 
the legitimate signal. 

4 USENIX – Winter ’91 – Dallas, TX 



Bellovin & Merritt Kerberos Limitations 

synchronization an explicit part of the protocol. As 
Kerberos is proposed for more varied environments, 
its dependence on a secure time service becomes 
more problematic and must be stressed. 

As an alternative, we propose the use of a 
challenge/response authentication mechanism. As is 
done today, the client would present a ticket, though 
without an authenticator. The server would respond 
with a nonce identifier encrypted with the session 
key K c,s; the client would respond with some func
tion of that identifier, thereby proving that it 
possesses the session key. 

Such an implementation is not without its costs, 
of course. An extra pair of messages must be 
exchanged each time a ticket is used, which rules out 
the possibility of authenticated datagrams. More 
seriously, all servers must then retain state to com
plete the authentication process. While not a prob
lem for TCP-based servers, this may require substan
tial modification to UDP-based query servers. (The 
complexity of managing outstanding challenges may 
be comparable to that needed to cache live authenti
cators — the trade-off is not between a stateful and a 
stateless protocol, but in managing two kinds of 
state.) 

There is a signficant philosophical difference 
between the two techniques, however. In the current 
Kerberos implementation, with its assumptions about 
the network environment, retained state is only 
necessary to enhance security. The 
challenge/response scheme, on the other hand, 
guarantees security in a more general environment, 
but requires retained state to function at all. 

Instead of substituting challenge/response 
throughout, a possible compromise is to extend the 
protocol with a challenge/response option. This 
option could be used, for example, to authenticate 
the user in the initial ticket-granting ticket exchange 
and to access a time service.8 Subsequent client-
server interactions could use the current time-based 
protocol. But synchronizing the servers remains a 
problem; not synchronizing them will lead to denial 
of service, and if they access the time service as a 
client, they must somehow obtain and store a ticket 
and key to authenticate it. (See above on storing 
keys in servers.) Given these complexities and pos
sible weaknesses, it would seem reasonable to allow 
any service to insist on the challenge/response 
option. 

Summarizing, we emphasize that the security of 
Kerberos depends critically on synchronized clocks. 
In essence, the Kerberos protocols involve mutual 
trust among four parties: the client, server, authenti
cation server and time server. 

8This was suggested to us by Clifford Neuman. 

Password-Guessing Attacks 
A second major class of attack on the Kerberos 

protocols involves an intruder recording login dialogs 
in order to mount a password-guessing assault. 
When a user requests T c,tgs (the ticket-granting 
ticket), the answer is returned encrypted with K c , a 
key derived by a publicly-known algorithm from the 
user’s password. A guess at the user’s password can 
be confirmed by calculating K c and using it to 
decrypt the recorded answer. An intruder who has 
recorded many such login dialogs has good odds of 
finding several new passwords; empirically, users do 
not pick good passwords unless forced to.[Morr79, 
Gram84, Stol88] 

We propose the use of exponential key 
exchange[Diff76] to provide an additional layer of 
encryption. Without describing the algorithm in 
detail, it involves the two parties exchanging 
numbers that each can use to compute a secret key. 
An outsider, not knowing how the numbers were cal
culated, cannot easily derive the key. 

Such a use of exponential key exchange would 
prevent a passive wiretapper from accumulating the 
network equivalent of /etc/passwd . While 
exponential key exchange is normally vulnerable to 
active wiretaps, such attacks are comparatively rare, 
especially if dedicated network routers are used. 

Apart from licensing issues — exponential key 
exchange is protected by a U.S. patent — using it 
has its costs. LaMacchia and Odlyzko[LaMa] have 
demonstrated that exchanging small numbers is quite 
insecure, while using large ones is expensive in com
putation time. Additionally, we have added extra 
messages to the login dialog, and imposed the 
requirement for considerable extra state in the server. 
Given the trend towards hiding even encrypted pass
words on UNIX systems, and given estimates that half 
of all logins at MIT are used within a two-week 
period, the investment may be justifiable. Perhaps 
the best solution is to support this feature as a 
domain-specific option. 

Even exponential key exchange will not prevent 
all password-guessing attacks. Depending on how 
carefully the Kerberos logs are analyzed, an intruder 
need not even eavesdrop. Requests for tickets are 
not themselves encrypted; an attacker could simply 
request ticket-granting tickets for many different 
users. An enhancement to the server, to limit the 
rate of requests from a single source, may be useful. 

Alternatively, some portion of the initial ticket 
request may be encrypted with K c , providing a 
minimal authentication of the user to Kerberos, such 
that true eavesdropping would be required to mount 
this attack. (As we are preparing this manuscript, 
just such a suggestion is being hotly debated on the 
Kerberos mailing list. We originally overlooked an 
alternative avenue for mounting a password-guessing 
attack. Clients may be treated as services, and 

USENIX – Winter ’91 – Dallas, TX 5 



Kerberos Limitations Bellovin & Merritt 

tickets to the client, encrypted by K c , may be 
obtained by any user. This capability has been sug
gested as the basis for user-to-user authentication and 
and enhanced mail services.[Salt90] But any such 
scheme would seem to require repeated re-entry of 
the user’s password, an inconvenience we suspect 
will not be tolerated. We would prefer to provide 
the same functionality by having clients register 
separate instances as services, with truly random 
keys. Keys could be supplied to the client by the 
keystore, described below.) 

An alternative approach is a protocol described 
by Lomas, Gong, Saltzer, and Needham.[Loma89] 
They present a dialog with a server that does not 
expose the user to password-guessing attacks. How
ever, their protocol relies on public-key cryptogra
phy, an approach explicitly rejected for Kerberos. 

Spoofing Login 
In a workstation environment, it is quite simple 

for an intruder to replace the login command with 
a version that records users’ passwords before 
employing them in the Kerberos dialog. Such an 
attack negates one of Kerberos’s primary advantages, 
that passwords are never transmitted in cleartext over 
a network. While this problem is not restricted to 
Kerberos environments, the Kerberos protocol makes 
it difficult to employ the standard countermeasure: 
one-time passwords. 

A typical one-time password scheme employs a 
secret key shared between a server and some device 
in the user’s possession. The server picks a random 
number and transmits it to the user. Both the server 
and the user (with the aid of the device) encrypt this 
number using the secret key; the result is transmitted 
back to the server. If the two computed values 
match, the user is assumed to possess the appropriate 
key. 

Kerberos makes no provision for such a 
challenge/response dialog at login time. The server’s 
response to the login request is always encrypted 
with K c , a key derived from the user’s password. 
Unless a ‘‘smart card’’ is employed that understands 
the entire Kerberos protocol, this precludes any use 
of one-time passwords. 

An alternative (first suggested to us by T.H. 
Foregger) requires that the server pick a random 
number R, and use K c to encrypt R. This value 
{R}K c , rather than K c , would be used to encrypt the 
server’s response. R would be transmitted in the 
clear to the user. If a hand-held authenticator was in 
use, the user would employ it to calculate {R}K c ; 
otherwise, the login program would do it automatic
ally. 

Several objections may be raised to this 
scheme. First, hand-held authenticators are often 
thought to be inconvenient. This is true; however, 

they offer a substantial increase in security in high-
threat environments. If they are not used, the cost of 
our scheme is quite low, simply one extra encryption 
on each end. 

A second, more cogent, objection is that if the 
client’s workstation cannot be trusted with a user’s 
password, it cannot be trusted with session keys pro
vided by Kerberos. This is, to some extent, a valid 
criticism, though we believe that compromise of the 
login password is much more serious than the cap
ture of a few limited-lifetime session keys. This 
problem cannot be solved without the use of 
special-purpose hardware, a subject we shall return 
to below. 

Finally, it has been pointed out that a user can 
always supply a known-clean boot device, or boot 
via the network. The former we regard as improb
able in practice unless removable media are 
employed; the latter is insecure because the boot pro
tocols are unauthenticated. 

Inter-Session Chosen Plaintext Attacks 
According to the description in the Version 5 
draft,[Kohl89] servers using the KRB_PRIV format are 
susceptible to a chosen plaintext attack. (A chosen-
plaintext attack is one where an attacker may choose 
all or part of the plaintext and, typically, use the 
resulting cipher text to attack the cipher. Here we 
use the cipher text to attack the protocol. Mail and 
file servers are examples of servers susceptible to 
such attacks.) Specifically, the encrypted portion of 
messages of this type have the form 

X = (DATA , timestamp + direction , hostaddress , PAD) 

Since cipher-block chaining[FIPS81, Davi89] has the 
property that prefixes of encryptions are encryptions 
of prefixes, if DATA has the form 

(AUTHENTICATOR , CHECKSUM , REMAINDER) 

then a prefix of the encryption of X with the session 
key is the encryption of 

(AUTHENTICATOR , CHECKSUM) , 

and can be used to spoof an entire session with the 
server. 

It may be argued that most servers are not sus
ceptible to chosen plaintext attacks. Given that there 
are easy counters to this attack, it seems foolish to 
advocate a general format for private servers that 
does not also protect against it. 

It should be noted that the simple attack above 
does not work against Kerberos Version 4, in which 
the encrypted portion of the KRB_PRIV message is 
of the form 

(length(DATA) , DATA , msectime, hostaddress , 
timestamp + direction , PAD) 

as the leading length(DATA) field disrupts the 
prefix-based attack. We leave it to the reader to 

6 USENIX – Winter ’91 – Dallas, TX 



Bellovin & Merritt Kerberos Limitations 

discover a more complicated chosen ciphertext attack 
against this format, even allowing for the fact that 
Version 4 uses the nonstandard PCBC mode of 
encryption. (Hint: assume the initial vector is fixed 
and public.) However, it is interesting to note that 
the order of concatenation of message fields can 
have security-critical implications. We return to this 
question in the later section on message encoding. 

Exposure of Session Keys 
The term ‘‘session key’’ is a misnomer in the Ker
beros protocol. This key is contained in the service 
ticket and is used in the multiple sessions between 
the client and server that use that ticket. Thus, it is 
more properly called a ‘‘multi-session key’’. Mak
ing this point explicit leads naturally to the sugges
tion that true session keys be negotiated as part of 
the Kerberos protocol. This limits the exposure to 
cryptanalysis[Kahn67, Beke82, Deav85] of the multi-
session key contained in the ticket, and precludes 
attacks which substitute messages from one session 
in another. (The chosen-plaintext attack of the previ
ous section is one such example.) The session key 
could be generated by the server or could be com
puted as a session-specific function of the multi-
session key. 

The Scope of Tickets 
Kerberos tickets are limited in both time and 

space. That is, tickets are usable only within the 
realm of the ticket-granting server, and only for a 
limited period of time. The first is necessary to the 
design of Kerberos; the TGS would not have any 
keys in common with servers in other realms. The 
latter is a security measure; the longer a ticket is in 
use, the greater the risk of it being stolen or 
compromised. 

A further restriction on tickets, in Version 4, is 
that they cannot be forwarded. A user may obtain 
tickets at login time, and use these to log in to some 
other host; however, it is not possible to obtain 
authenticated network services from that host unless 
a new ticket-granting ticket is obtained. And that in 
turn would require transmission of a password across 
the network, in violation of fundamental principles 
of Kerberos’s design.9 

Version 5 incorporates provisions for ticket-
forwarding; however, this introduces the problem of 
cascading trust. That is, a host A may be willing to 
trust credentials from host B, and B may be willing 
to trust host C, but A may not be willing to accept 
tickets originally created on host C, which A believes 
to be insecure. Kerberos has a flag bit to indicate 

9Actually, a special-purpose ticket-forwarder was built 
for Version 4. However, the implementation was of 
necessity awkward, and required participating hosts to run 
an additional server. 

that a ticket was forwarded, but does not include the 
original source. 

A second problem with forwarding is that the 
concept only makes sense if tickets include the net
work address of the principal. If the address is omit
ted — as is permitted in Version 5 — a ticket may 
be used from any host, without any further 
modifications to the protocol. All that is necessary 
to employ such a ticket is a secure mechanism for 
copying the multi-session key to the new host. But 
that can be accomplished by an encrypted file 
transfer mechanism layered on top of existing facil
ites; it does not require flag bits in the Kerberos 
header. 

Is it useful to include the network address in a 
ticket? We think not. Given our assumption that 
the network is under full control of the attacker, no 
extra security is gained by relying on the network 
address. In fact, the primary benefit of including it 
appears to be preventing immediate reuse of authen
ticators from a different host. 

Even with the protection provided by network 
addresses, replay attacks that involve faked addresses 
are easy; again, see [Morr85]. Furthermore, an 
attacker can always wait until the connection is set 
up and authenticated, and then take it over, thus 
obviating any security provided by the presence of 
the address. Given these problems, and the cascad
ing trust issue raised earlier, we suggest that ticket-
forwarding be deleted. 

A new inter-realm authentication mechanism is 
also introduced in Version 5. Briefly, if a user 
wishes to access a service in another realm, that user 
must first obtain a ticket-granting ticket for that 
realm. This is done by making the ticket-granting 
server in a realm the client of another realm’s TGS. 
It in turn may be a client of yet another realm’s 
TGS. A user’s ticket request is signed by each TGS 
and passed along; realms will normally be configured 
in a hierarchical fashion, though ‘‘tandem links’’ are 
permitted. 

Unfortunately, this scheme, while appearing to 
solve the problem, is deficient in several respects. 
First, and most serious, there is no discussion of how 
a TGS can determine which of its neighboring 
realms should be the next hop. Moving up the tree, 
towards the root, is an obvious answer for leaf 
nodes; however, each parent node would need com
plete knowledge of its entire subtree’s realms in 
order to determine how to pass the request down
wards. There are obvious analogies here to 
network-layer routing issues; note, though, that any 
‘‘realm routing protocol’’ must include strong 
authentication provisions. 

Another answer is to say that static tables 
should be used. This, too, has its security limita
tions: should realm administrators rely on electronic 
mail messages or telephone calls to set up their 

USENIX – Winter ’91 – Dallas, TX 7 



Kerberos Limitations Bellovin & Merritt 

routing tables? If such calls are not authenticated, 
the security risks are obvious; if they are, the secu
rity of a Kerberos realm is subordinated to the secu
rity of a totally different authentication system. 

There is also an evident link between inter-
realm authentication and the cascading-trust problem. 
Kerberos Version 5 attempts to solve this by includ
ing path information in the ticket request. However, 
in the absence of a global name space, it is not clear 
that this is useful. If a realm is not a neighbor, its 
name may not carry any global signficance, whether 
by malice or coincidence. Furthermore, to assess the 
validity of a request, a server needs global 
knowledge of the trustworthiness of all possible tran
sit realms. In a large internet, such knowledge is 
probably not possible. 

KERBEROS HARDWARE DESIGN CRITERIA 

A Host Encryption Unit 
One of the major reasons we question the suita

bility of Kerberos for multi-user hosts is the need for 
plaintext key storage. What if the host were 
equipped with an attached cryptographic unit? We 
consider the design parameters for such a box. 

The primary goal is to perform cryptographic 
operations without exposing any keys to comprom
ise. These operations must include validating tickets 
presented by remote users, creating requests for both 
ticket-granting tickets and application tickets, and 
encrypting and decrypting conversations. Conse
quently, there must be secure storage for an adequate 
number of keys, and the operating system must be 
able to select which key should be used for which 
function. 

The next question, of course, is how keys are 
entered into the secure storage area. If tickets are 
decrypted by the encryption box but transferred to 
the host’s memory for analysis, the embedded ses
sion key is exposed.10 Therefore, we conclude that 
the encryption box itself must understand the Ker
beros protocols; nothing less will guarantee the secu
rity of the stored keys. 

Entry of user keys is more problematic, since 
they must travel through the host. Unless user ter
minals are connected directly to the encryption unit, 
there is little choice. Storing them off the host, 
though, is a significant help, as the period of expo
sure is then minimized. Host-owned keys — service 
keys, or the keys that root would use to do NFS 
mounts — should be loaded via a Kerberos
authenticated service resident in the encryption unit. 

10This is not a hypothetical concern. A program to do 
just that (for conventional passwords) was posted to net-
news as long ago as 1984. It operated by reading 
/dev/kmem . The existence of this program was a princi
pal factor motivating the current restrictive permission set
tings on /dev/kmem . 

We shall return to this point below. 

We must now ensure that the protocol itself 
does not provide a mechanism to obtain keys. Look
ing at the message definitions, we see that only ses
sion keys are ever sent, and these are always sent 
encrypted. Furthermore, user machines never gen
erate any such messages; they merely forward them. 
Thus, the box need not have the ability to transmit a 
key, thereby providing us with a very high level of 
assurance that it will not do so. 

If an encryption box is used for the Kerberos 
server itself, the problem is somewhat more com
plex. There are two places where keys are transmit
ted. First, when a ticket is granted, the ticket itself 
contains a session key, and a copy of that session 
key is sent back encrypted in the client’s ticket-
granting session key. Second, during the initial dia
log with Kerberos, the ticket-granting session key 
must be sent out, encrypted in the client’s password 
key. Note, though, that permanent keys are never 
sent; again, this assures us that the encryption box 
will not give away keys. Furthermore, since these 
session keys are intended to be random, we can buy 
ourselves a great deal of security by including a 
hardware random number generator on-board. 

We are not too concerned about having to load 
client and server keys onto the board. This operation 
is done only by the Kerberos master server, for 
which strong physical security must be assumed in 
any event. It is possible that such an encryption unit 
can be made sufficiently tamper-resistant that even 
workstations can use them; certainly, there are com
mercial cryptographic devices that claim such 
strengths. 

One major objection to this entire scheme is 
that ultimately, the encryption box is controlled by 
the host computer. Thus, if root is compromised, 
the host could instruct the box to create bogus tick
ets. Such concerns are certainly valid. However, as 
noted above, we consider such temporary breaches of 
security to be far less serious than the compromise 
of a key. Furthermore, using a separate unit allows 
us to create untamperable logs, etc. 

It is also desirable to prevent misuse of keys. 
For example, we do not want the login key used to 
decrypt the arbitrary block of text that just happens 
to be the ticket-granting ticket. Accordingly, keys 
should be tagged with their purpose. A login key 
should be used only to decrypt the ticket-granting 
ticket; the key associated with it should be used only 
for obtaining service tickets, etc. Since the encryp
tion box is performing all of the key management, 
this is not a difficult problem. 

The Key Storage Unit 

8 USENIX – Winter ’91 – Dallas, TX 

http:exposed.10


Bellovin & Merritt Kerberos Limitations 

A variety of technologies may be used to 
implement encryption units, ranging from special 
boards to dedicated microcomputers connected to 
server hosts by physically-secure lines. If the latter 
is used, there is the temptation to use its disk storage 
to hold the service keys associated with the attached 
host, but we feel that that is inadvisable. Any media 
of that sort must be backed up, and the backups 
must be carefully guarded. Such a high degree of 
security may be impractical in some environments. 
Instead, we suggest that keys be kept in volatile 
memory, and downloaded from a secure keystore on 
request, via an encryption-protected channel. Thus, 
only one master key need be stored within the box; 
this key could either be in non-volatile storage, or be 
supplied by an operator when necessary. 

More generally, the keystore is a secure, reli
able repository for a limited amount of information. 
A client of the keystore could package arbitrary data 
to be retained by the keystore, and retrieved at a 
later date. This data — the service keys and tags, in 
the case of an encryption unit, or even a conven
tional Kerberos host — would be uninterpreted by 
the keystore. Storage and retrieval requests would 
be authenticated by Kerberos tickets, of course. 
Only encrypted transfer (KRB_PRIV) should be 
employed, as insurance against disclosure of such 
sensitive material. 

As noted, the same keystore protocol could be 
used to supply additional keys for new instances of 
the same client. For example, a user pat could have 
a separate instance pat.email, for receiving encrypted 
electronic mail. The key for that instance would be 
restricted to that user, of course. 

Generally, transactions with the keystore are 
initiated by the client. However, there is some ques
tion about how to create the additional user keys, as 
user workstations are not particularly good sources 
of random keys. The best alternative is to provide a 
(secure) random number service on the network. 
When a new client instance is added, this service 
would be consulted to generate the key; both Ker
beros and the keystore would be told about the key. 

SECURITY VALIDATION 

Is Kerberos correct? By that we are asking if 
there are bugs (or trapdoors!) in the design or 
implementation of Kerberos, bugs that could be used 
to penetrate a system that relies on Kerberos. Some 
would say that by making the code widely available, 
the implementors have enabled would-be penetrators 
to gain a detailed knowledge of the system, thereby 
simplifying their task considerably. We reject that 
notion. 

In the late nineteenth century, Kerckhoffs for
mulated the basic principal under which the security 
of cryptographic systems should be evaluated: all 
details of the system design should be assumed to be 

known by the adversary. Only cryptographic keys 
specifically assumed to be secret should be unavail
able to an attacker.[Kahn67, Kerc83] Given this basic 
premise, the security of a cryptographic system is 
evaluated based on concerted efforts at cryptanalysis. 

Kerberos is designed primarily as an authentica
tion system incorporating a traditional cryptosystem 
(the Data Encryption Standard) as a component. 
Never the less, the philosophy guiding Kerckhoffs’ 
evaluation criterion applies to the evaluation of the 
security of Kerberos. The details of Kerberos’s 
design and implementation must be assumed known 
to a prospective attacker, who may also be in league 
with some subset of servers, clients, and (in the case 
of hierarchically-configured realms) some authentica
tion servers. Kerberos is secure if and only if it can 
protect other clients and servers, beginning only with 
the premise that these client and server keys are 
secret, and that the encryption system is secure. 
Moreover, in the absence of a central, trusted ‘‘vali
dation authority’’, each prospective user of Kerberos 
is responsible for judging its security. Of course, a 
public discussion of system security and publication 
of security evaluations will facilitate such judge
ments. 

By describing the Kerberos design in publica
tions and making the source code publically avail
able, the Kerberos designers and implementors at 
Project Athena have made a commendable effort to 
encourage just such a public system validation. 
Obviously, this document is itself part of that pro
cess. However, the system design and its implemen
tation have undergone significant modification, in 
part as a consequence of this public discussion. We 
stress that each modification to the design and imple
mentation results in a new system whose security 
properties must be considered anew. (Examples of 
such modifications are the incorporation of 
hierarchically-organized servers and forwardable tick
ets in Version 5.) 

Hence, on-going modification of Kerberos 
makes it a moving target for security validation 
attempts. A detailed security analysis would thus be 
premature. However, the proposed changes to Ker
beros in the next few section are intended, not so 
much to defeat specific attacks, as to facilitate the 
validation process. In particular, these suggestions 
are intended to make Kerberos more modular, in 
design and implementation. Doing so should make 
the security consequences of modifications more 
apparant, and facilitate an incremental approach to 
Kerberos security validation. 

Message Encoding and Cut-and-Paste Attacks 
The most simple analysis of the security of the Ker
beros protocols should check that there is no possi
bility of ambiguity between messages sent in dif
ferent contexts. That is, a ticket should never be 

USENIX – Winter ’91 – Dallas, TX 9 



Kerberos Limitations 	 Bellovin & Merritt 

interpretable as an authenticator, or vice versa. Such 
an analysis depends on redundancy in the pre-
encryption binary encodings of each of the ticket and 
authenticator information. Currently, that analysis 
must be repeated with every modification to the pro
tocol. This repetitive and often intricate analysis 
would be unnecessary if standard encodings (such as 
ASN.1)[ASN1, BER] were used. These encodings 
should include the overall message type (such as 
KRB_TGS_REP or KRB_PRIV). Together with rea
sonable assumptions about the encryption layer (see 
the next section), such an encoding scheme would 
greatly simplify the protocol validation process, par
ticularly as the protocol is modified or extended. 

Some use of ASN.1 encodings has been 
adopted for other reasons in Version 5. We rein
force here that there are design principles other than 
standards compatibility that motivate such a change. 

The Encryption Layer 
Version 4 of Kerberos uses the nonstandard PCBC 
mode of encryption, propagating cipher block chain
ing, in which plaintext block i + 1 is exclusive-or’ed 
with both the plaintext and ciphertext of block i 
before encryption. This mode was observed to have 
poor propagation properties that permit message-
stream modification: specifically, if two blocks of 
ciphertext are interchanged, only the corresponding 
blocks are garbled on decryption. Version 5 replaces 
PCBC mode with the standard CBC mode, cipher 
block chaining, which exclusive-or’s just the cipher
text of block i with the plaintext of block i + 1 before 
encryption. A checksum — as of Draft 2, the exact 
form had not been determined — is used to detect 
message modification. In order to ensure that dupli
cate messages have different encryptions, random 
initial ‘‘confounders’’ are added to some message 
formats. In addition, Version 5 supports alternative 
encryption algorithms as options. 

Both the confounder and checksum mechanisms 
are meant to augment the security of CBC encryp
tion. They belong in a separate encryption layer, not 
at the level of the Kerberos protocols themselves. 
Further, the confounder mechanism should be 
replaced by using the standard initial vector mechan
ism of cipher-block chaining.[FIPS81, Davi89] 

To prevent message-stream modification during 
authenticated or private sessions, Version 5 uses a 
timestamp field to prevent entire encrypted messages 
from being replayed. This is another concern more 
properly delegated to the encryption layer, where 
chaining across the packets of the entire session is 
the more standard mechanism. (Such chaining 
avoids both the dependence on a clock and the need 
to cache recent timestamps.) 

Separating the Kerberos protocols from the 
details of encryption would facilitate both validation 
of the security of the Kerberos protocols, and 

implementations and validations involving alternative 
cryptosystems. Too much focus on mechanism, 
while endemic to cryptographic protocol design, 
leads away from the need to state the basic proper
ties required of the encryption layer. We would sug
gest the following adversarial analysis as the starting 
point for such a specification: allow an adversary to 
submit, one after the other, any number of messages 
for encryption under an unknown key K. The adver
sary also has the ability to take prefixes and suffixes 
of known messages, exclusive-or known messages, 
and encrypt or decrypt with known keys. At the end 
of this process, the adversary should not be able to 
produce any encrypted messages other than those 
specifically submitted for encryption. Such an 
analysis would preclude encryption schemes suscep
tible to simple chosen-plaintext attacks, as described 
in a previous section. 

Given the intractability of reasoning about 
DES, or of proving complexity properties of any 
cryptosystem with bounded key size, such analyses 
will be no guarantee of overall security. But they 
can be used to preclude the existence of trivial cut
and-paste attacks.[DeMi83, Moor88] 

RECOMMENDED CHANGES TO THE 
KERBEROS PROTOCOL 

Below, we list our recommended changes to the Ker
beros protocol. Our ranking is governed by our esti
mate of the likelihood and consequences of the 
attack, balanced against the difficulty of implement
ing the modification. 

a. A 	challenge/response protocol should be 
offered as an optional alternative to time-
based authentication. 

b. Use a standard message encoding, such 	as 
ASN.1, which includes identification of the 
message type within the encrypted data. 

c. Alter the basic login protocol to 	allow for 
handheld authenticators, in which {R}K C , for 
a random R, is used to encrypt the server’s 
reply to the user, in place of the key K C 
obtained from the user password. This allows 
the login procedure to prompt the user with R, 
who obtains {R}K C from the handheld device 
and returns that value instead of the password 
itself. 

d. Mechanisms such as random initial vectors (in 
place of confounders), block chaining and 
message authentication codes should be left to 
a separate encryption layer, whose 
information-hiding requirements are clearly 
explicated. Specific mechanisms based on 
DES should be validated and implemented. 

e. The client/server protocol should be modified 
so that the multi-session key is used to nego
tiate a true session key, which is then used to 
protect the remainder of the session. 

f. Support for special-purpose hardware should 

10 	USENIX – Winter ’91 – Dallas, TX 



Bellovin & Merritt 	 Kerberos Limitations 

be added, such as the keystore. More impor
tantly, future enhancements to the Kerberos 
protocol should be designed under the 
assumption that a host, particularly a multi
user host, may be using encryption and key-
storage hardware. 

g. To protect against trivial password-guessing 
attacks, the protocol should not distribute tick
ets for users (encrypted with the password-
based key), and the initial exchange should 
authenticate the user to the Kerberos server. 

h. Support 	for optional extensions should be 
included. In particular, an option to protect 
against password-guessing attacks via eaves
dropping may be a desirable feature. 

ACKNOWLEDGEMENTS 

We would like to thank D. Davis and T.H. 
Foregger for their comments on an early draft. We’d 
especially like to thank C. Neuman for his detailed 
reviews of many versions of the paper, and his wil
lingness to discuss the issues with us. W. Griffeth 
helped us with preparation of the appendix on 
Draft 3. Finally, we’d like to thank the Project 
Athena and Kerberos development staff for their ini
tial design and implementation of Kerberos, their 
solicitation of comments, and their responsiveness to 
our criticisms. 

APPENDIX: VERSION 5 DRAFT 3 

Draft 3 has gone a long way towards alleviating 
our concerns. Many problems have been fixed, and 
provisions have been made for compatible enhance
ments to resolve other outstanding issues. These are 
being refined in ongoing discussion. Still, some 
issues remain unresolved or unaddressed. In addi
tion, we raise new issues related to older areas of the 
specification. 

In a few places, we mention changes that may 
be made in future revisions of the specification; the 
reader is cautioned that these represent our under
standing, and only our understanding, of a continuing 
process. 

With one exception, this summary omits areas 
where the authors’ intent was clear or was clarified 
in private communications. That exception — a way 
to misuse weak checksums to subvert bidirectional 
authentication — we include to demonstrate the deli
cacy inherent in the design and specification of 
authentication protocols. 

Draft 3 and Our Recommended Changes 
We begin by reviewing our recommended changes in 
light of Draft 3 and subsequent discussions with its 
authors. 

a. The 	 KRB_AS_REQ/KRB_AS_REP and 
KRB_TGS_REQ/KRB_TGS_REP exchanges 
now provide challenge/response authentication 

of the server to the client via a nonce field, 
instead of depending on the workstation time. 
For application servers, the e − data field in 
the KRB_AP_ERR_METHOD error message 
can be used by the server to signal the client 
to use a challenge/response alternative to the 
time-based kerberos authentication. 

b. All encrypted data is labeled with the message 
type prior to encryption, via full integration of 
the ASN.1 standard. Although there were 
many reasons for this decision, we applaud its 
beneficial impact on security. 

c. An 	 optional padata field will probably be 
added to the KRB_AS_REP to allow for 
handheld authenticator protocol extensions. 

d. As discussed, mechanisms such as random ini
tial vectors (in place of confounders), block 
chaining and message authentication codes are 
now left to a separate encryption layer, with a 
much clearer discussion of requirements and 
of specific mechanisms based on DES. 

e. Optional fields will probably be added to the 
AP_REQ and AP_REP messages to support 
the negotiation of true session keys. 

f. Addition of optional fields (such as	 padata) 
should facilitate extensions that exploit 
special-purpose hardware. 

g. The initial exchange still does not authenticate 
the user to the Kerberos server. Thus, the 
Kerberos equivalent of /etc/passwd must 
be treated as public, and passwords must be 
chosen and administered with password-
guessing attacks in mind. However, the 
padata field facilitates optional implementa
tion of such preauthentication mechanisms. 

h. As 	above, several optional fields facilitate 
extensions such as exponential-key exchange 
to protect against password-guessing via 
eavesdropping. 

The following sections discuss some of the revisions 
in Draft 3 in more detail, and raise some new issues. 

Login Dialog 
The login dialog has been enhanced to include 

an additional authentication data field. This can be 
used to support hand-held authenticators, pre-
encryption of the original request, and future exten
sions. This is a significant enhancement, but we 
regret that support for hand-held authenticators and 
pre-encryption is not yet a part of the standard. 

In particular, the optional field in the request 
message can support some sort of pre-encryption. 
For example, the nonce field can be sent both in the 
clear and encrypted in the user’s login key, thereby 
demonstrating that the client is legitimate, and pre
cluding remote collection of tickets encrypted with 
the user’s key. As discussed in the main body of 
this paper, we feel such a mechanism should be 
mandatory, not optional. Password-cracking 

USENIX – Winter ’91 – Dallas, TX 11 



Kerberos Limitations Bellovin & Merritt 

programs require just this sort of data; there is no 
need to provide grist for their mill. 

As currently released, a challenge-response dia
log cannot be implemented by the Draft 3 reply for
mat. While the request message possesses the 
optional extra field, the reply does not, and hence 
cannot carry the encrypted key. Adding this field 
would also permit compatible support of exponential 
key exchange, wherein each party must send a ran
dom exponential. We understand that the optional 
field will probably be added to the reply. 

The Encryption and Checksum Layers 
There is now a separate, well-defined encryp

tion layer, with specified properties. Among these 
are that the encryption module be capable of detect
ing any tampering with the message. The only sup
ported method, in this version, is a CRC-32 check
sum sealed within the encrypted portion of the mes
sage. 

The encryption layer also reaps the benefit of 
the ASN.1 encoding. Since the encoding includes a 
length field, it is no longer possible for an attacker to 
truncate a message, and present the shortened form 
as a valid encrypted message. If a decision were 
ever made to replace ASN.1 (say, with something 
more efficient), this property would need to be 
preserved. 

The confounder has now been moved to the 
encryption layer, but there is still some confusion of 
function with the IV used by CBC-mode encryption. 
As commonly used, an IV is a confounder (see, for 
example, [Voyd83]); to hold it constant during a ses
sion negates its purpose and thus requires the addi
tional confounder. We suggest that the IV be used 
as intended, and be incremented or otherwise altered 
after each message. Initial values for it should be 
exchanged during (or derived from) the authentica
tion handshake. Apart from simplifying the 
definition of the encryption function, this scheme 
would also allow detection of message deletions by 
interested applications. 

It could be argued that requiring the IV to be 
handled at a higher layer violates the layering we 
have espoused. However, an IV is as much an attri
bute of a cryptosystem as is a key. It would be rea
sonable to encapsulate the definition of the IV into 
the definition of the key object passed down to the 
encryption layer. 

The properties required of checksums are not as 
well-defined. Three types are specified: CRC-32, 
MD4 and MD4 encrypted with DES.[Rive90] How
ever, no mention is made of their attributes, save that 
some are labeled ‘‘cryptographic’’. This is a crucial 
omission, as discussed below. A better classification 
is whether or not a checksum is ‘‘collision-proof’’, 
that is, whether or not an attacker can construct a 

new message with the same checksum. The CRC-32 
checksum is not collision-proof, while MD4 is 
believed to be. Note that encrypting a checksum 
provides very little protection; if the checksum is not 
collision-proof and the data is public, an adversary 
can compute the value and replace the data with 
another message with the same checksum value. 
(Several such attacks are indicated below.) 

Weak Checksums and Cut-and-Paste Attacks 
One of the major changes in Draft 3 was the 

removal of encryption protection from the additional 
tickets and authorization data that may be enclosed 
with certain requests. These fields are protected by a 
checksum sealed in the encrypted authenticator sent 
with the request. Assume that the checksum algo
rithm used is CRC-32. (This is permitted by a literal 
reading of Draft 3, though we have learned that this 
was not the intent of the authors.) With this 
assumption, the existence of the ENC-TKT-IN
SKEY option leads to a major security breach, and 
in particular to the complete negation of bidirectional 
authentication. 

As usual, the client, possessing a valid ticket-
granting ticket, sends off a request for a new ticket 
for some service S. The enemy intercepts this 
request and modifies it. First, the ENC-TKT-IN
SKEY bit is set. This specifies that the ticket, nor
mally encrypted in S’s key, should be encrypted in 
the session key of the enclosed ticket-granting ticket. 
Second, the attacker’s own ticket-granting ticket is 
enclosed. Obviously, the attacker knows its session 
key. Finally, the additional authorization data field 
is filled in with whatever information is needed to 
make the CRC match the original version. 

Consider what happens. The ticket-granting 
service, seeing a valid request, sends back a ticket. 
This ticket, encrypted in the enemy’s key, will not 
be intelligible to the real service, but of course, it 
will not get that far. The legitimate client cannot tell 
that the ticket is misencrypted; tickets are, almost by 
definition, encrypted in a key known only to the 
server and Kerberos. When the service is requested, 
the enemy intercepts the request and unseals the 
ticket. The client may request bidirectional authenti
cation; however, since the attacker has decrypted the 
ticket, the session key for that service request is 
available. Consequently, the bidirectional authentica
tion dialog may be spoofed without trouble. 

A number of different factors interacted to 
make this attack possible. One is obvious: the 
ticket request was protected by what turned out to be 
a weak checksum. If a collision-proof checksum 
were used, the attack would be infeasible; the enemy 
could not have generated the additional authorization 
data field necessary to make the new request’s 
checksum match the original. But there are 
subtleties here. First, if the additional tickets used 

12 USENIX – Winter ’91 – Dallas, TX 



Bellovin & Merritt Kerberos Limitations 

by ENC-TKT-IN-SKEY were encrypted (again), they 
would have been adequately protected by the very 
same CRC-32 checksum that was abused in the 
attack. However, because of the encryption, the 
enemy would be unable to either discern or match 
the checksum. In other words, the context is critical; 
merely refraining from re-encrypting some encrypted 
data, while using the same checksum to protect it, 
has led to a security breach. (Note: we have been 
told that the designers intended to require that the 
cname in the additional ticket match the name of the 
server for which the new ticket is being requested. 
This requirement would still permit the intended use 
of the option, but would foil the attack we describe. 
Apparently, the requirement was inadvertently omit
ted from Draft 3.) 

A similar attack may be possible using the 
REUSE-SKEY option. This option was designed for 
multicast key distribution; with a weak checksum, an 
attacker can abuse it to generate a service ticket 
whose key is known. The REUSE-SKEY option 
also permits a related, albeit less serious, attack. If 
two tickets, T1 and T2, share the same key, the 
attacker can intercept a request for one service, and 
redirect it to the other. Since the two tickets share 
the same key, the authenticator will be accepted. 
Just how damaging this possibility is depends on 
what sorts of services might want to share the same 
key. If, say, a file server and a backup server were 
invoked this way, an attacker might redirect some 
requests to destroy archival copies of files being 
edited. A solution to this particular attack is to 
include either the service name, a collision-proof 
checksum of the ticket, or both, in the authenticator. 
To be sure, Draft 3 explicitly warns against using 
tickets with DUPLICATE-SKEY set for authentica
tion. Servers that obey this restriction are not 
vulnerable to this attack. Also, we have been told 
that the REUSE-SKEY option will probably be omit
ted in future revisions of the protocol. 

A last attack of this sort can occur if the 
attacker substitutes a different ticket for the legiti
mate one in key distribution replies from Kerberos. 
The encrypted part of such a message does not con
tain any checksum to validate that the message was 
not tampered with in transit. While this appears to 
be more a denial-of-service attack than a penetration, 
it would be useful for the client to know this 
immediately. 

Two issues underly this list of potential attacks. 
As discussed, weak checksums (encrypted but not 
collision-proof, and over public data) allow an adver
sary to paste together legitimate-looking messages. 
Message integrity via strong checksums and/or 
encryption should be extended to as many protocol 
messages (and as many fields) as possible. 

Second, the REUSE-SKEY and ENC-TKT-IN
SKEY options ‘‘overload’’ the basic protocol, in that 
tickets may now share session keys or be encrypted 
in keys other than the service. It is possible that 
there are other ways an attack could exploit the 
ensuing ambiguities. These options are intended for 
very constrained uses, not general authentication; 
they should not be so intimately integrated into the 
basic authentication protocol. The same purposes 
would be served by adding separate message types 
that cannot be misinterpreted as tickets, and using 
keys that are derived from but are not identical to 
those used in the basic protocol. 

Even then, an analysis of the final standard is 
needed, to assure that a minor extension has not 
negated a security-critical assumption. (E.g., the 
basic Kerberos protocol assumes that no two tickets 
share a session key, and that tickets are always 
encrypted with the server’s key.) 

KRB_SAFE and KRB_PRIV Messages 
The KRB_SAFE and KRB_PRIV messages 

employ the session key distributed with the ticket for 
integrity-checking and privacy, respectively. Draft 3 
dictates that both use time-of-day values to guard 
against replay, which may be problematic. 
Currently, the resolution of the timestamp is limited 
to 1 millisecond, which is far too coarse for many 
applications. (This and other timestamps in the pro
tocol will probably be changed to microsecond reso
lution.) 

A second problem area is the need for a cache 
of recently-used timestamps. Obviously, if such 
messages are used for things like file system 
requests, the size of the cache could rapidly become 
unmanageable. Furthermore, if two authenticated or 
encrypted sessions run concurrently, the cache must 
be shared between them, or messages from one ses
sion can be replayed into the other. 

Both problems can be solved if the idea of a 
timestamp is abandoned in favor of sequence 
numbers. A random initial sequence number can be 
transmitted with the authenticator and/or in the 
KRB_AP_REP message; after each authenticated 
message is sent, it would, of course, be incremented. 
The cache is then a simple last-message counter. 
This mechanism also provides the ability to detect 
deleted messages, by watching for gaps in sequence 
number utilization. And, since each session would 
have its own initial sequence number, it would not 
be possible for an attacker to perform cross-stream 
replays, and concurrent access to a common cache is 
not necessary. (This advantage would be gained 
even with timestamps if true session keys were 
used.) It is likely that in a future revision, sequence 
numbers will be provided as an alternative to the use 
of timestamps. 

USENIX – Winter ’91 – Dallas, TX 13 



Kerberos Limitations 	 Bellovin & Merritt 

Authenticators 
Draft 3 still calls for the use of authenticators 

to guard against ticket replay. However, there is 
now a provision for the server to specify that addi
tional authentication is required, and an optional data 
field for this has been added to the KRB_ERROR 
reply message. This can be used to implement 
challenge/response schemes. 

The authenticator should have some other fields 
added to it, some of them optional. As noted earlier, 
it must contain a collision-proof checksum linking it 
to the ticket, and an optional initial sequence 
number. The latter would be used by any applica
tions that might wish to exchange encrypted or 
authenticated messages. 

The authenticator is also the right place to 
negotiate a true session key. We propose adding a 
new field for it to both the authenticator and the 
KRB_AP_REP message. The actual session key 
could be formed by an exclusive-or of the multises
sion key associated with the ticket, a randomly-
generated field in the authenticator, and a similar 
field in the reply message. Note that this retains a 
measure of compatibility with the current scheme: if 
the two optional fields are not present, the multi-
session key will be used as the actual session key. 

Negotiation of true session keys, initial 
sequence numbers, and confounders or IV’s could be 
combined in one standard mechanism, perhaps sub
sumed as encryption-specific subfields of the session 
key fields. 

Inter-Realm Authentication 
Inter-realm authentication is still problematic. 

Granted that static configuration files can tell a Ker
beros server who its parent is, and even the identities 
of all of its children, there is still no scalable 
mechanism to learn of grandchildren or more distant 
descendants. 

To be sure, it is apparently the intention of the 
authors that the Internet’s domain name space be 
used to denote realms, and — implicitly — the 
hierarchy of servers. It is far from clear to us that 
the two hierarchies coincide. Furthermore, such 
usage is not required. No alternative routing 
mechanism has been suggested. 

Additionally, there are several pieces of the 
protocol that are unclear or simply do not work with 
inter-realm tickets. For example, ENC-TKT-IN
SKEY and REUSE-KEY require the ticket-granting 
server to decrypt a ticket. It cannot do this if the 
ticket had been issued by another realm. Presum
ably, of course, the request could be sent to the other 
realm’s ticket-granting server, but it may not possess 
the necessary key to generate the new ticket. 

NEW RECOMMENDED CHANGES 

Below, we include a new list of recommended 
changes, beyond those we have indicated are likely 
to be adopted. The first two are repeated from our 
earlier list, and are now (or will be) implementable 
as options; we repeat them here to stress our belief 
that they should be a mandatory part of the protocol. 

a. Alter the basic login protocol to 	allow for 
challenge/response handheld authenticators. 

b. The initial exchange should authenticate the 
user to the Kerberos server, to complicate 
password-guessing attacks. 

c. Strong checksums, encryption, and additional 
fields should be used to assure integrity of the 
basic Kerberos messages. (For example, tick
ets should be tied more closely to the contexts 
in which they are used, by including service 
names in the ticket, and the encrypted part of 
KRB_AS_REP and KRB_TGS_REP should 
contain collision-proof checksums of the tick
ets.) 

d. Protocol 	extensions not related to basic 
authentication (the ENC-TKT-IN-SKEY and 
REUSE-SKEY options) should be omitted or 
use distinct message and ticket formats. 

References 

FIPS81. ‘‘DES Modes of Operation,’’ Federal 
Information Processing Standards Publication 
81 (December 1980). National Bureau of Stan
dards, U.S. Department of Commerce 

ASN1. ‘‘Information Processing Systems — Open 
Systems Interconnection — Specification of 
Abstract Syntax Notation One (ASN.1),’’ Inter
national Standard 8824 (1987). International 
Organization for Standardization and Interna
tional Electrotechnical Committee 

BER. ‘‘Information Processing Systems — Open 
Systems Interconnection — Specification of 
Basic Encoding Rules for Abstract Syntax 
Notation One (ASN.1),’’ International Standard 
8825 (1987). International Organization for 
Standardization and International Electrotechni
cal Committee 

Beke82. H. Beker and F. Piper, Cipher Systems, 
John Wiley & Sons (1982). 

Brya88. B. Bryant, Designing an Authentication 
System: A Dialogue in Four Scenes, Draft 
February 8, 1988. 

Davi89. D.W. Davies and W.L. Price, Security for 
Computer Networks, John Wiley & Sons 
(1989). Second Edition 

Davi90. D. Davis and R. Swick, Workstation Ser
vices and Kerberos Authentication at Project 
Athena, MIT Laboratory for Computer Science 
Technical Memorandum 424 (February 1990). 

Deav85. C.A. Deavours and L. Kruh, Machine 

14 	USENIX – Winter ’91 – Dallas, TX 



Bellovin & Merritt 	 Kerberos Limitations 

Cryptography and Modern Cryptanalysis, 
Artech House (1985). 

DeMi83. R. DeMillo and M. Merritt, ‘‘Protocols 
for Data Security,’’ Computer 16(2) pp. 39-50 
(February 1983). 

Diff76. W. Diffie and M.E. Hellman, ‘‘New Direc
tions in Cryptography,’’ IEEE Transactions on 
Information Theory 6 pp. 644-654 (November, 
1976). 

Gram84. F.T. Grampp and R.H. Morris, ‘‘Operat
ing System Security,’’ AT&T Bell Laboratories 
Technical Journal 63(8, Part 2) pp. 1649-1672 
A&T, (October, 1984). 

Kahn67. D. Kahn, Codebreakers: The Story of 
Secret Writing, Macmillan (1967). 

Kerc83. A. Kerckhoffs, La Cryptographie Mili
taire, Libraire Militaire de L. Baudoin & Cie., 
Paris (1883). 

Kohl89. J. Kohl, B. Clifford Neuman, and J. 
Steiner, The Kerberos Network Authentication 
Service, MIT Project Athena (November 6, 
1989). Version 5, Draft 2 

Kohl90. J. Kohl, B. Clifford Neuman, and J. 
Steiner, The Kerberos Network Authentication 
Service, MIT Project Athena (October 8, 1990). 
Version 5, Draft 3 

LaMa. B.A. LaMacchia and A.M. Odlyzko, Com
putation of Discrete Logarithms in Prime 
Fields, (Manuscript in preparation) 

Loma89. T.M.A. Lomas, L. Gong, J.H. Saltzer, 
and R.M. Needham, ‘‘Reducing Risks from 
Poorly Chosen Keys,’’ Operating Systems 
Review 23(5) pp. 14-18 ACM, (December 
1989). 

Mill87. S.P. Miller, B.C. Neuman, J.I. Schiller, 
and J.H. Saltzer, ‘‘Kerberos Authentication and 
Authorization System,’’ in Project Athena 
Technical Plan, (December 1987). Section 
E.2.1 

Mill88. D.L. Mills, ‘‘Network Time Protocol,’’ 
RFC 1059 (July 1988). 

Mill89. D.L. Mills, ‘‘Network Time Protocol,’’ 
RFC 1119 (September 1989). 

Moor88. J.H. Moore, ‘‘Protocol Failures in Cryp
tosystems,’’ Proc. IEEE 76(5) pp. 594-602 
(May 1988). 

Morr79. R. Morris and K. Thompson., ‘‘UNIX 
Password Security,’’ Communications of the 
ACM 22(11) p. 594 (November 1979). 

Morr85. R.T. Morris, ‘‘A Weakness in the 4.2BSD 
TCP/IP Software,’’ Computing Science Techni
cal Report No. 117, AT&T Bell Laboratories, 
Murray Hill, New Jersey (February 1985). 

Post80. 	 J.B. Postel, ‘‘User Datagram Protocol.,’’ 
RFC 768 (August 28, 1980). 

Post81. J.B. Postel, ‘‘Transmission Control Proto
col.,’’ RFC 793 (September 1981). 

Post83. J.B. Postel and K. Harrenstien, ‘‘Time Pro
tocol.,’’ RFC 868 (May 1983). 

Rive90. R.L. Rivest, ‘‘MD4 message digest algo
rithm,’’ RFC 1186 (October 1990). 

Salt90. J.H. Saltzer, private communication June 
19, 1990. 

Stei88. J. Steiner, C. Neuman, and J.I. Schiller, 
‘‘Kerberos: An Authentication Service for Open 
Network Systems,’’ in Proc. Winter USENIX 
Conference, , Dallas (1988). 

Stol88. C. Stoll, ‘‘Stalking the Wiley Hacker,’’ 
Communications of the ACM 31(5) p. 484 (May 
1988). 

Voyd83. V.L. Voydock and S.T. Kent, ‘‘Security 
Mechanisms in High-Level Network Proto
cols,’’ ACM Computer Surveys 15(2) pp. 135
171 (June, 1983). 

Steven M. Bellovin received a 
B.A. degree from Columbia 
University, and an M.S. and 
Ph.D. in Computer Science 
from the University of North 
Carolina at Chapel Hill. While 
a graduate student, he wrote the 
original version of pathalias 
and helped create netnews. 
However, the former is not an 
indictable offense, and the 
statute of limitations on the latter has expired. 
Nevertheless, he is still atoning for both actions. He 
has been at AT&T Bell Laboratories since 1982, 
where he does research in networks, security, and 
why the two don’t get along. He may be reached 
electronically as smb@ulysses.att.com; those 
who prefer to murder trees may send scraps of paper 
to Room 3C-536B, AT&T Bell Laboratories, 600 
Mountain Avenue, Murray Hill, NJ 07974, U.S.A. 

Michael Merritt received a B.S. 
from Yale University, and an 
M.S. and Ph.D. in Information 
and Computer Science from the 
Georgia Institute of Technol
ogy. His dissertation, "Crypto
graphic Protocols", developed 
techniques for exploring secu
rity properties of distributed 
algorithms. He has been at 
AT&T Bell Laboratories since 
1983, where he does research in distributed systems 
and security. His email address is 
mischu@research.att.com; paper to Room 
3D-458, AT&T Bell Laboratories, 600 Mountain 
Avenue, Murray Hill, NJ 07974, U.S.A. 

USENIX – Winter ’91 – Dallas, TX 15 

mailto:mischu@research.att.com
mailto:smb@ulysses.att.com


16 USENIX – Winter ’91 – Dallas, TX 


