
____________ 

Network (In)Security Through IP Packet Filtering 

D. Brent Chapman 

Great Circle Associates 

Brent@GreatCircle.COM
 
+1 415 962 0841
 

1057 West Dana Stree t
 
Mountain View, CA 94041
 

ABSTRACT 

Ever-increasing numbers of IP router products are offering packet filtering as a tool 
for improving network security. Used properly, packet filtering is a useful tool for 
the security-conscious network administrator, but its effective use requires a 
thorough understanding of its capabilities and weaknesses, and of the quirks of th e 
particular protocols that filters are being applied to. This paper examines the utility 
of IP packet filtering as a network security measure, briefly contrasts IP packe t 
filtering to alternative network security approaches such as application-level gate­
ways, describes what packet filters might examine in each packet, and describes the 
characteristics of common application protocols as they relate to packet filtering. 
The paper then identifies and examines problems common to many current packet 
filtering implementations, shows how these problems can easily undermine the net­
work administrator’s intents and lead to a false sense of security, and proposes solu ­
tions to these problems. Finally, the paper concludes that packet filtering is 
currently a viable network security mechanism, but that its utility could be greatly 
improved with the extensions proposed in the paper. 

1. Introduction 

This paper considers packet filtering as a mechanism for implementing network security 
policies. The consideration is from the point of view of a site or network administrator (wh o 
is interested in providing the best possible service to their users while maintaining adequate 
security of their site or network, and who often has an "us versus them" attitude with regard to 
external organizations), which is not necessarily the same point of view that a service provider 
or router vendor (who is interested in providing network services or products to customers ) 
might have. An assumption made throughout is that a site administrator is generally more 
interested in keeping outsiders out than in trying to police insiders, and that the goal is to keep 
outsiders from breaking in and insiders from accidentally exposing valuable data or services, 
not to prevent insiders from intentionally and maliciously subverting security measures. This 
paper does not consider military-grade "secure IP" implementations (those that implement the 
"IP security options" that may be specified in IP packet headers) and related issues; it is lim ­
ited to what is commonly available for sale to the general public. 

Packet filtering may be used as a mechanism to implement a wide variety of networ k 
security policies. The primary goal of these policies is generally to prevent unauthorized 

Published in Proceedings of the Third USENIX UNIX Security Symposium; Baltimore, MD; September, 1992. 

mailto:Brent@GreatCircle.COM


__________________ 

network access without hindering authorized network access; the definitions of "unauthorize d 
access" and "authorized access" vary widely from one organization to another. A secondary 
goal is often that the mechanisms be transparent in terms of performance, user awareness, an d 
application awareness of the security measures. Another secondary goal is often that the 
mechanisms used be simple to configure and maintain, thus increasing the likelihood that th e 
policy will be correctly and completely implemented; in the words of Bill Cheswick of AT&T 
Bell Laboratories, "Complex security isn’t". Packet filtering is a mechanism which can, to a 
greater or lesser extent, fulfill all these goals, but only through thorough understanding of its 
strengths and weaknesses and careful application of its capabilities. 

Several factors complicate implementation of these policies using packet filtering, includ­
ing asymmetric access requirements, differing requirements for various internal and externa l 
groups of machines, and the varying characteristics of the particular protocols, services, and 
implementations of these protocols and services that the filters are to be applied to. Asym­
metric access requirements usually arise when an organization desires that its internal systems 
have more access to external systems than vice versa. Differing requirements arise when an 
organization desires that some groups of machines have different network access privileges 
than other groups of machines (for instance, the organization may feel that a particular subne t 
is more secure than standard, and thus can safely take advantage of expanded network access, 
or they may feel that a particular subnet is especially valuable, and thus its exposure to the 
external network should be as limited as possible). Alternatively, an organization may desire 
to allow more or less network access to some specific group of external machines than to th e 
rest of the external world (for instance, a company might want to extend greater network 
access than usual to a key client with whom they are collaborating, and less network acces s 
than usual to a local university which is known to be the source of repeated cracker attacks). 
The characteristics of particular protocols, services, and implementations also greatly affect 
how effective filtering can be; this particular issue is discussed in detail below, in Section 3 
and Appendix A. 

Common alternatives to packet filtering for network security include securing each 
machine with network access and using application gateways. Allowing network access on a n 
all-or-nothing basis (a very coarse form of packet filtering) then attempting to secure each 
machine that has network access is generally impractical; few sites have the resources to secur e 
and then monitor every machine that needs even occasional network access. Application gate­
ways, such as those used by AT&T [Ches90], Digital Equipment Corporation [Ranum92], and 
several other organizations, are also often impractical because they require internal hosts to run 
modified (and often custom-written or otherwise not commonly available) versions of applica ­
tions (such as "ftp" and "telnet") in order to reach external hosts. If a suitably modified ver­
sion of an application is not available for a given internal host (a modified TELNET client fo r 
a personal computer, for instance), that internal host’s users are simply out of luck and are 
unable to reach the past the application gateway. 

2. How Packet Filtering Works 

2.1. What packet filters base their decisions o n 

Current IP packet filtering implementations all operate in the same basic fashion; they 
parse the headers of a packet and then apply rules from a simple rule base to determin e 
whether to route or drop† the packet. Generally, the header fields that are available to the filter 

†	 "Permit" and "deny" are used synonymously with "route" and "drop" throughout this paper. If a router decides to 
"permit" or "route" a packet, it is passed through to its destination as if filtering never occurred. If a router de ­
cides to "deny" or "drop" a packet, the packet is simply discarded, as if it never existed; depending on the filter­

- 2 ­



__________________ 

are packet type (TCP, UDP, etc.), source IP address, destination IP address, and destination 
TCP/UDP port. For some reason, the source TCP/UDP port is often not one of the availabl e 
fields; this is a significant deficiency discussed in detail in Section 4.2. 

In addition to the information contained in the headers, many filtering implementation s 
also allow the administrator to specify rules based on which router interface the packet is des­
tined to go out on, and some allow rules based on which interface the packet came in on . 
Being able to specify filters on both inbound and outbound† interfaces allows you significant 
control over where the router appears in the filtering scheme (whether it is "inside" or "out­
side" your packet filtering "fence"), and is very convenient (if not essential) for useful filtering 
on routers with more than two interfaces. If certain packets can be dropped using inboun d 
filters on a given interface, those packets don’t have to be mentioned in the outbound filters on 
all the other interfaces; this simplifies the filtering specifications. Further, some filters that a n 
administrator would like to be able to implement require knowledge of which interface a 
packet came in on; for instance, the administrator may wish to drop all packets coming 
inbound from the external interface that claim to be from an internal host, in order to guard 
against attacks from the outside world that use faked internal source addresses. 

Some routers with very rudimentary packet filtering capabilities don’t parse the headers, 
but instead require the administrator to specify byte ranges within the header to examine, and 
the patterns to look for in those ranges. This is almost useless, because it requires the adminis­
trator to have a very detailed understanding of the structure of an IP packet. It is totally 
unworkable for packets using IP option fields within the IP header, which cause the location of 
the beginning of the higher-level TCP or UDP headers to vary; this variation makes it very 
difficult for the administrator to find and examine the TCP or UDP port information. 

2.2. How packet filtering rules are specified 

Generally, the filtering rules are expressed as a table of conditions and actions that are 
applied in a certain order until a decision to route or drop the packet is reached. When a partic ­
ular packet meets all the conditions specified in a given row of the table, the action specified in 
that row (whether to route or drop the packet) is carried out; in some filtering implementation s 
[Mogul89], the action can also indicate whether or not to notify the sender that the packet has 
been dropped (through an ICMP message), and whether or not to log the packet and the action 
taken on it. Some systems apply the rules in the sequence specified by the administrator until 
they find a rule that applies [Mogul89][Cisco90], which determines whether to drop or route 
the packet. Others enforce a particular order of rule application based on the criteria in the 
rules, such as source and destination address, regardless of the order in which the rules wer e 
specified by the administrator. Some, for instance, apply filtering rules in the same order as 

ing implementation (and sometimes on the filtering specification), the router might send an ICMP message (usual­
ly "host unreachable") back to the source of a packet that is dropped, or it might simply pretend it never received 
the packet. 

†	 Throughout this paper, the terms "inbound" and "outbound" are usually used to refer to connections or packets 
from the point of view of the protected network as a whole, and sometimes used to refer to packets from the 
point of view of the filtering router (which is at the edge of the internal network, between the internal network 
and the external world), or to the router interfaces those packets will pass through. A packet might appear to b e 
"inbound" to the filtering router on its way to the external world, but that packet is "outbound" from the internal 
network as a whole. An "outbound connection" is a connection initiated from a client on an internal machine to a 
server on an external machine; note that while the connection as a whole is outbound, it includes both outbound 
packets (those from the internal client to the external server) and inbound packets (those from the external serve r 
back to the internal client). Similarly, an "inbound connection" is a connection initiated from a client on an exter­
nal machine to a server on an internal machine. The "inbound interface" for a packet is the interface on the filter ­
ing router that the packet appeared on, while the "outbound interface" is the interface the packet will go out on if 
it isn’t denied by the application of the filtering rules. 

- 3 ­



__________________ 

routing table entries; that is, they apply rules referring to more specific addresses (such as rule s 
pertaining to specific hosts) before rules with less specific addresses (such as rules pertaining 
to whole subnets and networks) [CHS91][Telebit92a]. The more complex the way in whic h 
the router reorders rules, the more difficult it is for the administrator to understand the rules 
and their application; routers which apply rules in the order specified by the administrator , 
without reordering the rules, are easier for an administrator to understand and configure, and 
therefore more likely to yield correct and complete filter sets. 

2.3. A packet filtering example 

For example, consider this scenario. The network administrator of a company with Class 
B network 123.45 wishes to disallow access from the Internet to his network in genera l 
(123.45.0.0/16)†. The administrator has a special subnet in his network (123.45.6.0/24) that is 
used in a collaborative project with a local university which has class B network 135.79; he 
wishes to permit access to the special subnet (123.45.6.0/24) from all subnets of the university 
(135.79.0.0/16). Finally, he wishes to deny access (except to the subnet that is open to th e 
whole university) from a specific subnet (135.79.99.0/24) at the university, because the subnet 
is known to be insecure and a haven for crackers. For simplicity, we will consider only pack-
ets flowing from the university to the corporation; symmetric rules (reversing the SrcAddr and 
DstAddr in each of the rules below) would need to be added to deal with packets from the cor ­
poration to the university. Rule C is the "default" rule, which specifies what happens if none 
of the other rules apply. 

Rule SrcAddr DstAddr Action 
A 135.79.0.0/16 123.45.6.0/24 permit 
B 135.79.99.0/24 123.45.0.0/16 deny 
C 0.0.0.0/0 0.0.0.0/0 deny 

Consider these "sample" packets, their desired treatment under the policy outlined above, 
and their treatment depending on whether the rules above are applied in order "ABC" or 
"BAC". 

Packet SrcAddr DstAddr Desired Action ABC action BAC action 
1 135.79.99.1 123.45.1.1 deny deny (B) deny (B) 
2 135.79.99.1 123.45.6.1 permit permit (A) deny (B) 
3 135.79.1.1 123.45.6.1 permit permit (A) )permit (A 
4 135.79.1.1 123.45.1.1 deny deny (C) deny (C) 

A router that applies the rules in the order ABC will achieve the desired results: packet s 
from the "hacker haven" subnet at the university to the company network in general (such as 
packet 1 above) will be denied (by rule B), packets from the university "hacker haven" subne t 
at the university to the company’s collaboration subnet (such as packet 2 above) will be 

†	 Throughout this paper, the syntax "a.b.c.d/y" denotes "the address a.b.c.d, with the top y bits significant for com­
parison". In other words, 123.45.0.0/16 means that the top 16 bits (123.45) are significant for comparisons to oth ­
er addresses. The address 123.45.6.7 thus matches 123.0.0.0/8, 123.45.0.0/16, and 123.45.6/24, but not 
123.45.99.0/24. A pattern with 0 significant bits (such as 0.0.0.0/0) matches any address, while a pattern with 32 
significant bits (such as 123.45.6.7/32) matches only that particular address (123.45.6.7). This syntax is a simpler 
form of expressing an address pattern than the traditional "address, wildcard mask" tuple, particularly when the 
boundary between the wildcarded and non-wildcarded bits doesn’t fall on an 8-bit boundary (for instance, on a 
Cisco router, the pattern 123.0.0.0/8 would be represented as "123.0.0.0 0.255.255.255", 123.45.6.0/24 would b e 
represented as "123.45.6.0 0.0.0.255", and 123.45.6.240/28 would be represented as "123.45.6.240 0.0.0.15"). 
This syntax was originated in the KA9Q networking package for PCs, and is used in the Telebit NetBlazer and 
other products. 

- 4 ­

http:0.0.0.15


permitted (by rule A), packets from the university’s general network to the company’s "open " 
subnet (such as packet 3 above) will be permitted (by rule A), and packets from the 
university’s general network to the company’s general network (such as packet 4 above) wil l 
be denied (by rule C). 

If, however, the router reorders the rules by sorting them into order by number of 
significant bits in the source address then number of significant bits in the destination address , 
the same set of rules will be applied in the order BAC. If the rules are applied in the order 
BAC, packet 2 will be denied, when we want it to be permitted. 

2.4. Packet filtering caveats 

2.4.1. Complexity of packet filtering specification s 

In fact, there’s a subtle error in this example that illustrates how difficult it is to correctly 
set up filters using such low-level specifications. Rule B above, which appears to restric t 
access from the "hacker haven" net, is actually superfluous and unnecessary, and is the cause 
of the incorrect denial of packet 2 if the rules are applied in the order BAC. If you remov e 
rule B, both types of routers (those that apply rules in the order specified, and those that 
reorder rules by number of significant bits in source or destination addresses) will process the 
rules in the order AC. When processed in that order, the result table becomes: 

Packet SrcAddr DstAddr Desired Action AC action 
1 135.79.99.1 123.45.1.1 deny deny (C) 
2 135.79.99.1 123.45.6.1 permit )permit (A 
3 135.79.1.1 123.45.6.1 permit permit (A) 
4 135.79.1.1 123.45.1.1 deny deny (C) 

There are two points here. First, correctly specifying filters is difficult. Second, reordering 
filtering rules makes correctly specifying filters even more difficult, by turning a filter set tha t 
works (even if it’s in fact overspecified) if evaluated in the order given into a filter set that 
doesn’t work. 

Even though the example presented above is a relatively simple application of packet 
filtering, most administrators will probably read through it several times before they feel they 
understand what is going on. Consider that the more difficult the rules are to comprehend, the 
less likely the rules will be correct and complete. The way in which filtering rules must b e 
specified and the order in which they are applied are key determinants of how useful and 
powerful a given router’s filtering capabilities are. Most implementations require the adminis ­
trator to specify filters in ways which make the filters easy for the router to parse and apply, 
but make them very difficult for the administrator to comprehend and consider. 

2.4.2. Reliance on accurate IP source addresses 

Most filtering implementations, of necessity, rely on the accuracy of IP source addresses 
to make filtering decisions. IP source addresses can easily be faked, however, as discussed in 
[Bellovin89], [Kent89], [Bellovin92a], and [Bellovin92b]. This is a particular case where 
being able to filter inbound packets is useful. If a packet that appears to be from one interna l 
machine to another internal machine comes in over the link from the outside world, you should 
be mighty suspicious. If your router can be told to drop such packets using inbound filters o n 
the external interface, your filtering specifications for internal interfaces can be made both 
much simpler and more secure. 

- 5 ­



2.4.3. Dangers of IP source routing 

Another IP feature ripe for potential abuse is IP source routing. Essentially, an IP packet 
with source routing information included tells routers how to route the packet, rather than let-
ting the routers decide for themselves. An attacker could use this to their advantage [Bello­
vin89]. Unless you have a specific need to allow packets with IP source routes between you r 
internal network and the outside world, it’s probably a good idea for your router to ignore IP 
source route instructions; whether source routing can be disabled, whether it is enabled or dis ­
abled by default, and how to disable it vary from vendor to vendor. 

2.4.4. Complications due to IP fragmentation 

Yet another complication to packet filtering is IP packet fragmentation. IP supports the 
notion that any router along a packet’s path may "fragment" that packet into several smalle r 
packets, to accommodate the limitations of underlying media, to be reassembled into the origi­
nal IP packet at the destination. For instance, an FDDI frame is much larger than an Etherne t 
frame; a router between an FDDI ring and an Ethernet may need to split an IP packet that fit 
in a single FDDI frame into multiple fragments that fit into the smaller Ethernet frames. The 
problem with this, from a packet filtering point of view, is that only the first of the IP frag­
ments has the higher-level protocol (TCP or UDP) headers from the original packet, which 
may be necessary to make a filtering decision concerning the fragment. Different filtering 
implementations take a variety of responses to this situation. Some apply filters only to th e 
first fragment (which contains the necessary higher-level protocol headers), and simply route 
the rest, on the assumption that if the first fragment is dropped by the filters, the rest of th e 
fragments can’t be reassembled into a full packet, and will cause no harm [CHS91]. Others 
keep a cache of recently-seen first fragments and the filtering decision that was reached, and 
look up non-first fragments in this cache in order to apply the same decision [Mogul89]. In 
particular, it is dangerous to suppress only the first fragment of outbound packets; you migh t 
be leaking valuable data in the non-first fragments that are routed on out. 

3. Filtering-Related Characteristics of Application Protocols 

Each application protocol has its own particular characteristics that relate to IP packet 
filtering, that may or may not differ from other protocols. Particular implementations of a 
given protocol also have their own characteristics that are not a result of the protocol per se, 
but a result of design decisions made by the implementors. Since these implementation charac­
teristics are not covered in the specification of the protocol (though they aren’t counter to the 
specification), they are likely to vary between different implementations of the same protocol , 
and might change even within a given implementation as that implementation evolves. These 
characteristics include what port a server uses, what port a client uses, whether the service i s 
typically offered over UDP or TCP or both, and so forth. An understanding of these charac­
teristics is essential for setting up effective filters to allow, disallow, or limit the use of these 
protocols. Appendix A discusses in detail the filtering-related characteristics of several com­
mon protocols. 

3.1. "Random" ports aren’t really random 

Although implementations of various protocols might appear to use a "random" ports for 
the client end and a well-known port for the server end, the ports chosen for the client end 
used are usually not totally random. While not explicitly supported by the RFCs, systems based 
on BSD UNIX usually reserve ports below 1024 for use by "privileged" processes, and allow 
only processes running as root to bind to those ports; conversely, non-privileged processes 
must use ports at or above 1024. Further, if a program doesn’t request a particular port, it i s 

- 6 ­



often simply assigned the port after the last one assigned; if the last port assigned was 5150 , 
the next one assigned will probably be 5151. 

3.2. Privileged versus non-privileged port s 

The distinction between "privileged" and "non-privileged" ports (those below 1024 and at 
or above 1024, respectively) is found throughout BSD-based systems (and other systems tha t 
draw from a BSD background; keep in mind that almost all UNIX IP networking, including 
SysV IP networking, draws heavily from the original BSD network implementation). This dis ­
tinction is not codified in the RFCs, and is therefore best regarded as a widely used conven­
tion, but not as a standard. Nonetheless, if you’re protecting UNIX systems, the convention 
can be a useful one. You can, for instance, generally forbid all inbound connections to ports 
below 1024, and then open up specific exceptions for specific services that you wish to enable 
the outside world to use, such as SMTP, TELNET, or FTP; to allow the "return" packets for 
connections to such services, you allow all packets to external destination ports at or above 
1024. 

While it would simplify filtering if all services were offered on ports below 1024 and all 
clients used ports at or above 1024, many vulnerable services (such as X, OpenWindows, and 
a number of database servers) use server ports at or above 1024, and several vulnerable clients 
(such as the Berkeley r* programs) use client ports below 1024. These should be carefully 
excepted from the "allow all packets to destination ports at or above 1024" type of rules that 
allow return packets for outbound services. 

4. Problems With Current Packet Filtering Implementations 

IP packet filtering, while a useful network security tool, is not a panacea, particularly i n 
the form in which it is currently implemented by many vendors. Problems with many current 
implementations include complexity of configuration and administration, omission of the source 
UDP/TCP port from the fields that filtering can be based on, unexpected interactions between 
"unrelated" parts of the filter rule set, cumbersome filter specifications forced by simpl e 
specification mechanisms, a lack of testing and debugging tools, and an inability to deal 
effectively with RPC-based protocols such as YP/NIS and NFS. 

4.1. Filters are difficult to configure 

The first problem with many current IP packet filtering implementations as network secu­
rity mechanisms is that the filtering is usually very difficult to configure, modify, maintain, and 
test, leaving the administrator with little confidence that the filters are correctly and completely 
specified. The simple syntax used in many filtering implementations makes life easy for th e 
router (it’s easy for the router to parse the filter specifications, and fast for the router to apply 
them), but difficult for the administrator (it’s like programming in assembly language). Instead 
of being able to use high-level language abstractions ("if this and that and not something-else 
then permit else deny"), the administrator is forced to produce a tabular representation of rules ; 
the desired behavior may or may not map well on to such a representation. 

Administrators often consider networking activity in terms of "connections", while packe t 
filtering, by definition, is concerned with the packets making up a connection. An administrator 
might think in terms of "an inbound SMTP connection", but this must be translated into a t 
least two filtering rules (one for the inbound packets from the client to the server, and one for 
the outbound packets from the server back to the client) in a table-driven filtering implementa ­
tion. The concept of a connection is applied even when considering a connectionless protocol 
such as UDP or ICMP; for instance, administrators speak of "NFS connections" and "DNS 
connections". This mismatch between the abstractions used by many administrators and the 

- 7 ­



mechanisms provided by many filtering implementations contributes to the difficulty of 
correctly and completely specifying packet filters. 

4.2. TCP and UDP source port are often omitted from filtering criteria 

Another problem is that current filtering implementations often omit the source UDP/TC P 
port from consideration in filtering rules, leading to common cases where it is impossible to 
allow both inbound and outbound traffic to a service without opening up gaping holes to othe r 
services. For instance, without being able to consider both the source and destination port 
numbers of a given packet, you can’t allow inbound SMTP connections to internal machines 
(for inbound email) and outbound SMTP connections to all external machines (so that you can 
send outbound mail) without ending up allowing all connections between internal and externa l 
machines where both ends of the connection are on ports at or above port 1024. To see this, 
imagine your router’s rule table has 6 variables for rules on a given interface: direction 
(whether the packet is inbound to or outbound from internal network), packet type (UDP or 
TCP), source address, destination address, destination port, and action (whether to drop or 
route the packet). You would need 5 rules in such a table to allow both inbound SMTP 
(where an external host connects to an internal host to send email) and outbound SMTP (wher e 
an internal host connects to any external host to send mail). The rules would look something 
like this: 

Rule Direction Type SrcAddr DstAddr DstPort Action 
A in TCP external internal 25 permit
 
B out TCP internal external >=1024 permit
 
C out TCP internal external 25 permit
 
D in TCP external internal >=1024 permit
 
E either any any any any deny
 

The default action (rule E), if none of the preceding rules apply, is to drop the packet. 

Rules A and B, together, allow the "inbound" SMTP connections; for inbound packets , 
the source address is an "external" address, the destination address is "internal", and the desti­
nation port is 25, while for outbound packets, the source address is "internal", the destination 
address is "external", and the destination port is at or above 1024. Rules C and D, together, 
similarly allow the "outgoing" SMTP connections. Consider, however, a TCP connection 
between an internal host and an external host where both ports used in the connection are 
above 1023. Incoming packets for such a connection will be passed by rule D. Outgoing 
packets for such a connection will be passed by rule B. The problem is that, while rules A 
and B together do what you want and rules C and D together do what you want, rules B an d 
D together allow all connections between internal and external hosts where both ends of the 
connection are on a port number above 1024. Current filter specification syntaxes are ripe with 
opportunities for such unexpected and undesired interactions. 

If source port could be examined in making the routing decisions, the rule table abov e 
would become: 

Rule Direction Type SrcAddr DstAddr SrcPort DstPort Action 
A in TCP external internal >=1024 25 permit 
B out TCP internal external 25 >=1024 permit 
C out TCP internal external >=1024 25 permit 
D in TCP external internal 25 >=1024 permit 
E either any any any any any deny 

- 8 ­



In this case, all the rules are firmly anchored to port 25 (the well-known port number for 
SMTP) at one end or the other, and you don’t have the problem of inadvertently allowing al l 
connections where both ports are at or above 1024. Consider again the example given above, 
a TCP connection between an internal and an external host where both ends of the connection 
were at or above 1024; such a connection doesn’t qualify with any of the above filtering rules, 
since in all of the above rules, one end of the connection has to be at port 25. 

4.3. Special handling of start-of-connection packets is impossible 

Note that the even the above filters with source port still don’t protect your servers livin g 
at or above port 1024 from an attack launched from port 25 on an external machine (which is 
certainly possible if the person making the attack controls the machine the attack is coming 
from); rules C and D will allow this. One way to defeat this type of attack is to suppress TCP 
start-of-connection packets (packets with the TCP "SYN" flag set) in rule C; at least one filte r 
implementation provides a mechanism for stating that rules apply only to packets in "esta­
blished" connections (those packets without the SYN bit set) [Cisco90]. 

Unfortunately, UDP sessions are "connectionless", so there is never a "start-of­
connection" packet that can be suppressed in a UDP session. A solution for UDP is often to 
disallow UDP entirely except for a specific exception for DNS. This exception for DNS can 
generally be made safely even with a filtering implementation that ignores source port, becaus e 
of a quirk in the most common DNS implementation. The quirk causes DNS server-to-server 
queries made over UDP to always use port 53 at both ends of the connection, rather than a 
random port at one end. Disallowing UDP except for DNS also allows you to avoid most of 
the problems with filtering RPC-based services (since most RPC services are UDP based) tha t 
are discussed in Section 4.6. 

4.4. Tabular filtering rule structures are too cumbersome 

While tabular rule structures such as those shown above are relatively easy and thu s 
efficient for the router to parse and apply, they rapidly become too cumbersome for the 
administrator to use to specify complex independent filtering requirements. Even simple appli ­
cations of these cumbersome syntaxes are difficult, and often have unintended and undesired 
side effects, as demonstrated in Section 4.2. 

4.5. Testing and monitoring filters is difficult 

With many router products, the beleagured administrator’s life is further complicated by a 
lack of built-in mechanisms to test the filter set or to monitor its performance in action. This 
makes it very difficult to debug and validate filtering rule sets, or to modify existing rule sets; 
the administrator always has to wonder if the filtering rules are really accomplishing what was 
intended, or if the rule set has some inadvertent hole in it that the administrator has somehow 
overlooked. 

4.6. RPC is very difficult to filter effectively 

Finally, RPC-based protocols offer a special challenge, since they don’t reliably appear 
on a given UDP or TCP port number. The only RPC-related service that is guaranteed to be a t 
a certain port is the "portmapper" service. Portmapper maps an RPC service number (which is 
a 32-bit number assigned by Sun Microsystems to each individual RPC service, including ser ­
vices created by users and other vendors) to the particular TCP or UDP port number (which 
are much smaller 16-bit numbers) that the service is currently using on the particular machin e 
being queried. When an RPC-based service starts up, it registers with the portmapper to 
announce what port it is living at; the portmapper then passes this info along to anyone who 

- 9 ­



requests it. 

The portmapper isn’t required in order to establish an RPC connection, except to deter­
mine exactly which port to establish the connection to; if you know (or can guess) which por t 
to establish the connection to, you can bypass the portmapper altogether. What port a given 
RPC protocol (such as YP/NIS, NFS, or any of a number of others) ends up using is random 
enough that the administrator can’t effectively specify filters for it (at least, not without risking 
the inadvertent filtering of something else that happened to end up on the same port th e 
administrator thought an RPC-based service might end up at), but not so random that an 
attacker can’t easily "guess" where a given protocol lives. Even if they can’t or don’t guess, a 
systematic search of the entire port number space for the RPC service they’re interested in 
attacking is not that difficult. Since RPC-based services might be on any port, the filterin g 
implementation has no sure way of recognizing what is and what isn’t RPC; as far as the 
router is concerned, it’s all just UDP or TCP traffic. 

Two fortuitous characteristics of most RPC-based services can be used to save us from 
this morass, however. First, most RPC-based services are offered as only on UDP ports; w e 
can simply drop UDP packets altogether except for DNS, as described above. Second, almost 
all of those that are offered on TCP ports use ports below 1024, which can be protected by an 
"deny all ports below 1024 except specific services like SMTP" type of filter, such as shown in 
the example in Section 4.2. 

5. Possible Solutions for Current Packet Filtering Problems 

5.1. Improve filter specification syntax 

The major improvement that could be made to many vendor packet filtering implementa­
tions would be to provide better filter specification mechanisms. The administrator should be 
able to specify rules in a form that makes sense to the administrator (such as a propositional 
logic syntax), not necessarily a form that is efficient for the router to process; the router can 
then convert the rules from the high-level form to a form amenable to efficient processing. 
One possibility might be the creation of a "filter compiler" that accepts filters in a high-level 
syntax that was convenient for the administrator, and emits a "compiled" filter list that is 
acceptable to the router. 

Addressing the conceptual mismatch between administrators, who think in terms of con­
nections, and routers, which operate in terms of the packets making up those connections, as 
discussed in Section 4.1, might also prove valuable. 

5.2. Make all relevant header fields available as filtering criteri a 

The administrator should be able to specify all relevant header fields, particularly includ­
ing TCP/UDP source port (which is currently often omitted from many filtering implementa ­
tions), as filter criteria. Until this key feature is provided, it will be difficult or impossible to 
effectively use filtering in certain common situations, as demonstrated in the example in Sec ­
tion 4.2. The administrator should also be able to specify whether a filter rule should apply 
only to established TCP connections. 

5.3. Allow inbound filters as well as outbound filters 

The administrator should be able to specify both inbound and outbound filters on eac h 
interface, rather than only outbound filters. This would allow the administrator to position the 
router either "inside" or "outside" the filtering "fence", as appropriate. It would also allow 
simpler specification of filters on routers with more than two interfaces by allowing some cases 
(such as a packet appearing from the outside world that purports to be both to and from 

- 10 ­



internal hosts) to be handled by the inbound set of filters on the external interface, rather tha n 
having to duplicate these special cases into the outbound filter set on each internal interface. 
The desired functionality may not even be possible with only outbound filters; the case of a 
fake internal-to-internal packet showing up on the external interface, as discussed in Section 
2.4.2, can’t be detected in an outbound filter set. 

5.4. Provide tools for developing, testing, and monitoring filters 

Better tools for developing, testing and validating rule sets, perhaps including test suite s 
and automatic test probe generators, would make a big difference in the usability of packet 
filtering mechanisms. Such an automated test system might well be a part of the "filter com­
piler" described in Section 5.1. 

5.5. Simplify specification of common filter s 

It would be useful if administrators could specify common filtering cases (for instance, 
"allow inbound SMTP to this single host") simply, without having to understand the details of 
the protocols or filtering mechanisms involved. 

6. Conclusions 

Packet filtering is currently a viable and valuable network security tool, but some simple 
vendor improvements could have a big impact. There are several critical deficiencies that seem 
to be common to many vendors, such as the inability to consider source TCP/UDP port in 
filters, that need to be addressed. Other improvements to filter specification mechanisms coul d 
greatly simplify the lives of network administrators trying to use packet filtering capabilities, 
and increase their confidence that their filters are doing what they think they are. 

7. Acknowledgements 

Thanks to Steve Bellovin and Bill Cheswick of AT&T Bell Laboratories for several 
lively and fruitful discussions of packet filtering as a network security tool; in particular, I’d 
like to thank Steve for providing me with prepublication copies of two of his IP security-
related papers and of his 1989 article on TCP/IP security problems. Thanks to Ed DeHart o f 
the Computer Emergency Response Team for strongly and repeatedly encouraging me to write 
this paper after listening to me moan about the issues discussed herein. Thanks to Elizabeth 
Zwicky of SRI International, Brian Lloyd of Lloyd & Associates, and Steve Bellovin of AT&T 
Bell Laboratories for reviewing drafts of this paper and providing valuable feedback and 
suggestions. 

8. References 

[Bellovin89] 
S. M. Bellovin, "Security Problems in the TCP/IP Protocol Suite"; Computer Communi­
cations Review, Volume 9, Number 2; April 1989; pp. 32-48. 

[Bellovin92a] 
Steven M. Bellovin, "Packets Found on an Internet"; in preparation; 1992. 

[Bellovin92b] 
Steven M. Bellovin, "There Be Dragons"; Proceedings of the Third USENIX UNIX Secu­
rity Symposium; Baltimore, MD; September, 1992. 

[Ches90] 
Bill Cheswick, "The Design of a Secure Internet Gateway"; Proceedings of the USENIX 
Summer 1990 Conference; Anaheim, CA; June 11-15, 1990; pp. 233-237. 

- 11 ­



[CHS91] 
Bruce Corbridge, Robert Henig, Charles Slater, "Packet Filtering in an IP Router"; 
Proceedings of the Fifth USENIX Large Installation and System Administration Confer-
ence (LISA V); San Diego, CA; October, 1992; pp. 227-232. 

[Cisco90] 
Cisco Systems (Menlo Park, CA); "Gateway System Manual; Software Release 8.2"; 
1990. 

[CMQ92] 
Smoot Carl-Mitchell and John S. Quarterman, "Building Internet Firewalls"; UnixWorld; 
February, 1992; pp 93-102. 

[Comer91] 
Douglas E. Comer, Internetworking with TCP/IP, Volume I; Second Edition, 1991; 
Prentice-Hall, Inc. 

[Kent89] 
Stephen Kent, "Comments on ’Security Problems in the TCP/IP Protocol Suite’"; Com­
puter Communications Review; July 1989. 

[Mogul89] 
Jeffrey C. Mogul, "Simple and Flexible Datagram Access Controls for UNIX-based Gate­
ways"; Proceedings of the USENIX Summer 1989 Conference; pp. 203-221. 

[Ranum92] 
Marcus J. Ranum, "A Network Firewall"; Proceedings of the World Conference on Sys­
tem Administration and Security; July 1992; Washington, D.C.; pp. 153-163. 

[RFC1058] 
C. Hedrick, "Routing Information Protocol", Request For Comments 1058; available from 
the DDN Network Information Center (NIC.DDN.MIL). 

[RFC1340] 
J. Reynolds and J. Postel, "Assigned Numbers", Request For Comments 1340; available 
from the DDN Network Information Center (NIC.DDN.MIL). 

[Telebit92a] 
Telebit Corporation (Sunnyvale, CA), "NetBlazer Command Reference"; 1992. 

[Telebit92b] 
Telebit Corporation (Sunnyvale, CA), "NetBlazer Version 1.4 Release Notes"; 1992. 

Appendix A — Filtering Characteristics of Common IP Protocols 

A.1. SMTP 

SMTP is provided as a TCP service with the server end of the connection at port 25 and 
the client end at a random port. 

A.2. TELNET 

TELNET is provided as a TCP service with the server end of the connection at port 23, 
and the client end at a random port. 

A.3. FTP 

FTP is slightly tricky, in that an FTP conversation actually involves two TCP connections 
in typical UNIX implementations: one for connection for commands, and one for data. The 
command connection is at port 21 on the server, and the data connection is at port 20 on the 

- 12 ­

http:NIC.DDN.MIL
http:NIC.DDN.MIL


server; both connections use random ports on the client side . 

A.4. NNTP 

NNTP is provided as a TCP service with the server end at port 119, and the client end at 
a random port. 

A.5. DNS 

DNS is provided as both a TCP and UDP service at port 53. The UDP service is usually 
used for client-to-server queries (the client end will be at a random port) and server-to-serve r 
proxy queries (where a server queries another server on behalf of a client), while the TCP ser­
vice is usually used for server-to-server bulk data transfers (typically zone transfers from pri ­
mary to secondary DNS servers for a given zone). 

One implementation characteristic of the most common DNS server implementation (the 
"BIND", or "Berkeley Internet Name Daemon," implementation) is that server-to-server proxy 
queries are made via UDP with both ends of the connection using port 53. Packet filtering 
specifications can take good advantage of this characteristic, since DNS is often the onl y 
UDP-based protocol that sites want to allow bidirectionally (i.e., allow both inbound and out­
bound) between their internal machines and the outside world. The fact that DNS uses port 53 
for both ends of such a connection, rather than port 53 for answering server end and a random 
port for the requesting server end, allows DNS to be bidirectionally enabled in filtering imple ­
mentations that examine only destination ports (not source ports) without running afoul of the 
"allowing any connection where both ends are above 1023" problem with allowing bidirec ­
tional services in such routers (see Section 4.2 for a detailed discussion of this problem). 

A.6. BSD r* services (rlogin, rsh, rcp, and rexec) 

The BSD r* services (rlogin, rsh, rcp, and rexec) are another tricky case because they use 
privileged ports (ports below 1024; see below for a discussion of "privileged" and "non ­
privileged" ports) for both the server (port 512 for rexec, 513 for rlogin, and 514 for rsh and 
rcp) and client (a random privileged port). A typical filtering set that allows outbound service s 
by allowing outbound packets to specific privileged ports and inbound packets to non-
privileged ports won’t allow any of these services, since their inbound packets will be coming 
to random privileged ports. If you then allow inbound packets to random privileged ports, 
you’ve just opened up all your own services on privileged ports to attacks from the outside 
world. One possible solution is to this quandry is to allow only packets from "established" 
connections inbound, if your filtering implementation has that capability (see Section 4.3). 

A.7. RIP 

RIP broadcasts between routers uses UDP port 520 as for both source and destination. A 
RIP query may use some other UDP port as their source port with 520 as the destination port ; 
replies to the query will use 520 as the source port and the query’s source port as the reply’s 
destination port [RFC1058]. 

A.8. RPC and RPC-based services (YP/NIS and NFS) 

RPC (Sun’s Remote Procedure Call mechanism, which is at the heart of a number o f 
other protocols, notably YP/NIS and NFS) is a real can of worms when it comes to packet 
filtering. The only ports a machine running RPC is certain to be using are UDP and TCP ports 
111, for the "portmapper" process which maps requests for specific RPC services to the partic­
ular ports (somewhat randomly determined) that they are running on at the moment on tha t 
particular machine. See the complete discussion of the problems with filtering RPC and RPC­

- 13 ­



_ _________________ 

based services in Section 4.6. 

A.9. Window systems 

Various window systems vary in what ports they use. X11, for instance, typically uses 
TCP port 6000 for the first display on a given machine, port 6001 for the second display (i f 
the machine has a second display), and so forth; to protect machines running X11 servers, you 
must filter ports 6000 through 6000+n, where n is the maximum number of X11 servers run ­
ning on any single machine behind your filtering screen. 

OpenWindows uses port 2000. 

A.10. ICMP 

ICMP is a protocol parallel to TCP and UDP, layered on top of IP, that is used to 
transmit control, information, and error messages between the IP software on different 
machines. Rather than having source or destination ports, ICMP packets simply have a "type" 
code that indicates the nature of the ICMP packets. Most packet filtering implementations can 
filter ICMP packets by type in the same way as they can filter TCP or UDP by port. Some of 
these ICMP packet types are informational in nature (such as messages that a packet failed to 
reach its destination because the destination is unreachable or because the packet traveled 
through too many routers enroute and timed out), and should almost certainly be permitte d 
through filters. Other ICMP packet types are useful for network management and debugging 
(such as "echo request" and "echo reply" messages), and should probably be permitted throug h 
filters. Still other ICMP packet types are instructions (such as "redirect") that probably should 
not be permitted through filters.† 

Common network management tools such as "ping" and "traceroute" depend on being 
able to send and receive ICMP messages. Ping works by sending ICMP echo request mes ­
sages, and listening for ICMP echo response messages. Traceroute works by generating UDP 
probe packets that are destined to a random UDP port, then listening for ICMP destinatio n 
unreachable messages sent in response to the probe packet. 

A.11. Other services 

Other network services, such as databases, license servers, print servers, "rlogin" and 
"rsh" servers, and so forth, all use TCP or UDP ports. In general, if these servers are intende d 
and required to run as "root", they use BSD privileged ports (ports below 1024), and if not, 
they use BSD unprivileged ports (ports at or above 1024), though this is not always true. If 
there’s a particular service that’s not discussed here that you’re interested in special-casing, you 
can often figure out what ports it uses by examining the RFCs describing the service, th e 
source code implementing the service, or (as a last resort) the output of "netstat -a" while the 
service is in use. 

†	 ICMP redirect messages should never need to pass through a filtering router, anyway, since they are only sup­
posed to be generated by the first router a packet reached after leaving its originating host; that router should be 
able send any necessary ICMP redirect back directly to the originating host, without having to send it through any 
other routers. An attempt to route an ICMP redirect message is a sign of either network misconfiguration, routin g 
software bugs, or malicious activity by someone probing for weaknesses. 

- 14 ­


