
The Cops Security Checker System�

Purdue University T echnical Report CSD-TR-993

Daniel Farmer

Computer Emergency Response Team

Software Engineering Institute

Carnegie Mellon University

Pittsburgh, PA 15213-3890

df@sei.cmu.edu

Eugene H. Spaford

Software Engineering Research Center

Department of Computer Sciences

Purdue University

West Lafayette, Indiana 47907-1398

spaf@cs.purdue.edu

January 22, 1994

Abstract

In the past several years, there have been a large number of pub-
lished works that have graphically described a wide variety of security

problems particular to Unix. Without fail, the same problems have

been discussed over and over again, describing the problems with SUID

(set user ID) programs, improper fle permissions, and bad passwords

(to name a few). There are two common characteristics to each o f

these problems: frst, they are usually simple to correct, if found; sec-
ond, they are fairly easy to detect.

Since almost all systems have fairly equivalent problems, it seems

appropriate to create a tool to detect potential security problems as

an aid to system administrators. This paper describes one such tool:

Cops. (Computerized Oracle and Password System) is a freely-available,

� This paper originally appeared in the proceedings of the Summer Usenix Conference,

1990, Anaheim CA.

1

mailto:spaf@cs.purdue.edu
mailto:df@sei.cmu.edu

1

reconfgurable set of programs and shell scripts that enable system ad-
ministrators to check for possible security holes in their systems.

This paper briefy describes the system. Included are the under-
lying design goals, the functions provided by the tool, possible ex-
tensions, and some experiences gained from its use. We also include

information on how to obtain a copy of the initial Cops release.

Introduction

The task of making a computer system secure is a difcult one. To make a

system secure means to protect the information from disclosure; protecting

it from alteration; preventing others from denying access to the machine, its

services, and its data; preventing degradation of services that are present;

protecting against unauthorized changes; and protecting against unautho-
rized access.

To a c hieve all these security goals in an actual, dynamic environment

such as that presented by most Unix

1 systems can be a ma jor challenge.

Practical concerns for fexibility and adaptability render most formal secu-
rity methods inapplicable, and the variability of system confguration and

system administrator training make "cookbook" methods too limited. Many

necessary security administration tasks can be enhanced through the use of

software and hardware mechanisms put in place to regulate and monitor ac-
cess by users and user programs. Those same mechanisms and procedures,

however, constrain the ability of users to share information and to cooper-
ate on pro jects. As such, most computer systems have a range of options

available to help secure the system. Choosing some options allows enhanced

sharing of information and resources, thus leading to a better collaborative

environment, where other settings restrict that access and can help make

the system more secure.

One of the tasks of a system and security administrator is to choose the

settings for a given system so that security is at an appropriate level|a level

that does not unduly discourage what sharing is necessary for tasks to be

accomplished, but that also gives a reasonable assurance of safety. This often

leads to problems when a system has a very wide range of possible settings,

and when system administrators lack sufcient training and experience to

know what appropriate settings are to be applied.

Ideally, there should be some kind of assistance for system administrators

1

Unix is a registered trademark of AT&T Technologies.

2

that guides them in the application of security measures appropriate for

their environment. Such a system needs to be confgurable so it provides

the appropriate level of assistance based on the perceived need for security

in that environment. That system should be comprehensive enough so that

an untrained or inexperienced administrator is able to derive a high degree

of confdence that all appropriate features and weaknesses are identifed and

addressed.

Unfortunately, such a tool may also present a danger to that same system

administrator. For instance, there could be a danger if the tool were to fall

into the hands of a potential attacker. The tool could be used to analyze the

target system or to provide clues for methods of attack. A second potential

danger is that the tool can be modifed by an unfriendly agent so that the

information it reports and the actions that it takes serve not to enhance

the security of the system, but to weaken it. A third possibility is that the

tool is not comprehensive enough, or that changes in system operation are

such that the tool does not expose the security f a ws made present b y those

changes; the security administrator, by relying on the tool, fails to be aware

of the new dangers to his or her system.

A good example of all three dangers might be the development and

use of a tool that examines passwords to see if they can be easily guessed

by an attacker. Such a tool might consist of a fast implementation of the

password encryption algorithm used on a particular machine. Provided with

this tool would be a dictionary of words that would be compared against

user passwords. Passwords that match a w ord in the dictionary would be

fagged as weak passwords.

Such a tool would enable a system administrator to notify users with

weak passwords that they should choose a password that is more difcult

for an attacker to guess. However, such a tool is a danger to the very same

system it is designed to protect should it fall into the hands of an attacker:

the tool could be used to very rapidly search through the dictionary in an

attempt to fnd a password that could be compromised.

A second potential danger is that an attacker with sufcient privilege

might alter the encryption algorithm or the internal workings of the program

such that it would appear to run correctly, but would fail to match certain

passwords or certain accounts. This would allow a determined attacker to

plant an account with a known simple password that would not be detected

by the program. Alternatively, an attacker might modify such a program to

send its output to not only the administrator, but to the attacker as well.

The third problem is that the system administrator may grow compla-

3

cent b y running this password tool if it continually reports that there are

no weak passwords found. The administrator may not make a n y efort to

enhance the quality or size of the dictionary, or to provide other tracking or

audit mechanisms to observe individuals who may be attempting to guess

passwords or break into accounts.

For all of these reasons, such a tool might be considered to lessen the

overall security of the system rather than to enhance it. That should not

prevent us from developing security tools, however. Instead, the challenge is

to build tools that enhance security without posing too great a threat when

employed by an enemy.

2 Design and Structure

2.1 Design

Although there is no reasonable way that all security problems can be solved

on any arbitrary system, administrators and systems programmers can be

assisted by a software security tool. Cops is an attempt to address as many

potential security problems as possible in an efcient, portable, and above

all, in a reliable and safe way. The main goal of Cops is one of prevention;

it tries to anticipate and eliminate security problems by detecting problems

and denying enemies an opportunity to compromise security in the frst

place.

The potential security hazards that Cops checks for were selected from

readings of a variety of security papers and books (see the references section

at the end of the paper), from interviews with experienced system adminis-
trators, and from reports of actual system breakins.

We applied the following important guiding principles to the design and

development o f Cops:

� Cops should be confgurable so that new tools could be added or the

existing tools altered to meet the security needs of the installation

on which it is run. Since Unix is so dynamic, it must be possible to

incorporate both new tools and methods in Cops as the need for them

becomes apparent.

� Cops should contain no tool that attempts to fx any security problems

that are discovered. Because Cops makes no modifcations to the

system, it is not required that it be run with any particular privilege,

and many of the tools can be run with privilege less than or equal

4

to that of a regular user. As a result, this lessens the temptation for

an intruder to modify the code in an attempt to make surreptitious

changes to the system.

�	 While Cops should notify the administrator that there may b e a w eak-
ness, it does not describe why this is a problem or how to exploit it.

Such descriptions should be found in alternative sources that are not

embedded in the program. Thus, a determined attacker might run

the program, might be able to read the output, but be unaware of a

method to exploit anything that Cops reports it has found.

� Cops should not include any tools whose use by determined attackers,

either standalone or as part of the Cops system, would give them a

signifcant advantage at fnding a way to break into the system beyond

what they might already have in their possession. Thus, a password

checking tool, as was previously described, is included, but the algo-
rithm utilized is simply what is already present in the system library

of the target system.

� Cops should consist of tools and methods that are simple to read,

understand, and to utilize. By creating the tools in such a manner,

any system administrator can read and understand the system. Not

only does this make it easier to modify the system for particular site

needs, but it allows reexamination of the code at any time to ensure

the absence of any T ro jan horse or logic bomb.

� The system should not require a security clearance, export license,

execution of a software license, or other restriction on use. For maxi-
mum efectiveness, the system should be widely circulated and freely

available. At the same time, users making site-specifc enhancements

or including proprietary code for local software should not be forced

to disclose their changes. Thus, Cops is built from new code without

licensing restrictions or onerous "copyleft," and bears no restriction

on distribution or use beyond preventing it from being sold as a com-
mercial product.

�	 Cops should be be written to be portable to as wide a variety o f Unix

systems as possible, with little or no modifcation.

In order to maximize portability, fexibility, and readability, the pro-
grams that make u p Cops are written as simple Bourne shell scripts using

5

common commands (awk, sed, etc.), and when necessary, small, heavily-
commented C programs.

2.2 Structure

Cops is structured as a dozen sub-programs invoked by a shell script. That

top-level script collects any output from the subprograms and either mails

the information to the local administrator or else logs it to a fle. A separate

program that checks for SUID fles is usually run independently because of

the amount of time required for it to search through the flesystems. All of

the tools except the SUID checker are not meant to be run as user root or

any other privileged account.

Please note that the descriptions of the tools provided here do not contain

any detailed explanation of why the tools check what they do. In most cases,

the reason is obvious to anyone familiar with Unix. In those cases where it is

not obvious, the bibliographic material at the end of this paper may provide

adequate explanations. We apologize if the reasons are not explained to

your satisfaction, but we do not wish to provide detailed information for

potential system crackers who might h a ve our system.

These are the individual the programs that comprise Cops:

dir.check, fle.chk These two programs check a list of directories and fles

(respectively) listed in a confguration fle to ensure that they are not

world-writable. Typically, the fles checked would include /etc/passwd,

/.profle, /etc/rc, and other key fles; directories might include /, /bin,

/usr/adm, /etc and other critical directories.

pass.chk This program searches for and detects poor password choices.

This includes passwords identical to the login or user name, some

common words, etc. This uses the standard library crypt routine,

although the system administrator can link in a faster version, if one

is available locally.

group.chk, passwd.chk These two tools check the password fle (/etc/passwd

and yppasswd output, if applicable) and group fle (/etc/group and yp-

group output, if applicable) for a variety of problems including blank

lines, null passwords, non-standard feld entries, non-root accounts

with uid=0, and other common problems.

cron.chk, rc.chk These programs ensure that none of the fles or programs

that are run by cron or that are referenced in the /etc/rc* fles are

6

world-writable. This protects against an attacker who might try to

modify any programs or data fles that are run with root privileges at

the time of system startup. These routines extract fle names from the

scripts and apply a check similar to that in fle.chk.

dev.chk checks /dev/kmem, /dev/mem, and fle systems listed in /etc/fstab

for world read/writability. This prevents would-be attackers from get-
ting around fle permissions and reading/writing directly from the de-
vice or system memory.

home.chk, user.chk These programs check each user's home directory

and initialization fles (.login, .cshrc, .profle, etc) for world writability.

root.chk This checks root startup fles (e.g., /.login, /.profle) for incorrect

umask settings and search paths containing the current directory. This

also examines /etc/hosts.equiv for too much accessibility, and a few

miscellaneous other tests that do not ft anywhere else.

suid.chk This program searches for changes in SUID fle status on a sys-
tem. It needs to be run as user root for best results. This is because

it needs to fnd all SUID fles on the machine, including those that are

in directories that are not generally accessible. It uses its previous run

as a reference for detecting new, deleted, or changed SUID fles.

kuang The U-Kuang expert system, originally written by Robert W. Bald-
win of MIT. This program checks to see if a given user (by default,

root) is compromisable, given that certain rules are true.

It is important to note once again that Cops does not attempt to correct

any potential security hazards that it fnds, but rather reports them to the

administrator. The rationale for this is that is that even though two sites

may h a ve the same underlying hardware and version of Unix, i t d o e s n o t

mean that the administrators of those sites will have the same security

concerns. What is standard policy at one site may b e a n u n thinkable risk at

another, depending upon the nature of the work being done, the information

stored on the computer, and the users of the system. It also means that the

Cops system does not need to be run as a privileged user, and it is less

likely to be booby-trapped by a v andal.

7

3 Usage

Installing and running Cops on a system usually takes less than an hour,

depending on the administrator's experience, the speed of the machine, and

what options are used. After the initial installation, Cops usually takes a

few minutes to run. This time is heavily dependent on processor speed, how

many password checking options are used, and how many accounts are on

the system.

The best way t o u s e Cops is to run it on a regular basis, via at or

cron. E v en though it may not fnd any problems immediately, the types of

problems and holes it can detect could occur at any later time.

Though Cops is publically accessible, it is a good idea to prevent others

from accessing the programs in the toolkit, as well as seeing any security

reports generated when it has been run. Even if you do not think of them

as important, someone else might use the information against your system.

Because Cops is confgurable, an intruder could easily change the paths and

fles that it checks, thus making any security c hecks misleading or worth-
less. You must also assume intruders will have access to the same toolkit,

and hence access to the same information on your security problems. Any

security decisions you make based on output from Cops should refect this.

When dealing with the security o f y our system, caution is never wasted.

4 Experience and Evaluation

This security system is not glamorous|it cannot draw a n y pictures, it con-
sists of a handful of simple shell scripts, it does not produce lengthy, detailed

reports, and it is likely to be of little interest to experienced security admin-
istrators who have already created their own security toolkits. On the other

hand, it has proven to be quite efective at pointing out potential security

problems on a wide variety of systems, and should prove to be fairly valuable

to the ma jority of system administrators who don't have the time to create

their own system. Some administrators of ma jor sites have informed us that

they are incorporating their old security c hecks into Cops to form a unifed

security system.

Cops has been in formal release for only a few months (as of January

1990). We h a ve received some feedback from sites using the system, includ-
ing academic, government and commercial sites. All of the comments about

the ease of use, the readability of the code, and the range of things checked

8

by the system have been quite positive. We h a ve also, unfortunately, had

a few reports that Cops may h a ve been used to aid in vandalizing systems

by exposing ways to break in. In one case, the vandal used Cops to fnd

a user directory with protection modes 777. In the other case, the vandal

used Cops to fnd a writable system directory. Note, however, that in both

of these cases, the same vulnerability could have easily been found without

Cops.

It is interesting to note that in the sites we h a ve tested, and from what

limited feedback w e received from people who have utilized it, over half

the systems had security problems that could compromise the root user.

Whether that can be generalized to a larger population of systems is un-
known; part of our ongoing research is to determine how vulnerable a typical

site may be. Even machines that have come straight from the vendor are

not immune from procedural security problems. Critical fles and directories

are often left world-writable, and confguration fles are shipped so that any

other machine hooked up to the same network can compromise the system.

It underscores this sad state of afairs when one vendor's operational manual

harshly criticizes the practice of placing the current directory in the search

path, and then in the next sentence states "Unfortunately, this safe path

isn't the default."

2

We plan on collecting further reports from users about their experiences

with Cops. W e w ould encourage readers of this paper who may use it to

inform us of the performance of the system, the nature of problems indicated

by the system, and of any suggestions for enhancing the system.

5 Future Work

From the beginning of this pro ject, there have been two k ey ideas that have

helped focus our attention and refne our design. First, there is simply no

reasonable way for us to write a security package that will perform every task

that we felt was necessary to create a truly satisfactory security package.

Second, if we w aited, no one else was going to write something like Cops

for us. Thus, we forged ahead with the design and construction of a solid,

basic security package that could be easily expanded. We h a ve tried to

stress certain important principles in the design of the system, so that the

2 We will not embarrass that one vendor by citing the source of the quote. At least

they noted the fact that such a path is a hazard; many v endors do not even provide that

much w arning.

9

expansion and evolution of Cops will continue to provide a workable tool.

Cops was written to be rewritten. Every part of the package is designed

to be replaced easily; every program has room for improvement. The frame-
work has room for many more checks. It seems remarkable that a system

as simple as this fnds so many f a ws in a typical installation! Nonetheless,

we h a ve thought o f a n umber of possible extensions and additions to the

system; these are described in the following sections.

5.1 Detecting known bugs

This is a very difcult area to consider, because there are an alarming num-
ber of sites (especially commercial ones) without the source code that is

necessary to fx bugs. Providing checks for known bugs might make Cops

more dangerous, thus violating our explicit design goals. At the same time,

checking for known bugs could be very useful to administrators at sites with

access to source code.

If we k eep in mind that Cops is intended as a system for regular use by a n

administrator, we conclude that checking for known bugs is not appropriate,

because such c hecks are ordinarily done once and not repeated. Thus, a

separate system for checking known bugs would be appropriate|a a system

that might be distributed in a more controlled manner. We are currently

considering diferent methods of distributing such a system.

5.2 Checksums and Signatures

Checksums and cryptographically-generated signatures could be an excel-
lent method of ensuring that important fles and programs have not been

compromised. Cops could be enhanced to regenerate these checksums and

compare them against existing references. To build this into Cops will

require some method of protecting both the checksum generator and the

stored checksums, however. It also poses the problem that system adminis-
trators might rely on this mechanism too much and fail to do other forms of

checking, especially in situations where new software is added to the system.

5.3 Detecting changes in important fles

There are some fles that should change infrequently or not at all. The fles

involved vary from site to site. Cops could easily be modifed to check

these fles and notify the system administrator of changes in contents or

10

modifcation times. Again, this presents problems with the protection of

the reference standard, and with possible complacency.

5.4 NFS and Yellow P ages

Many new vulnerabilities exist in networked environments because of these

services. Their recent development and deployment mean that there are

likely to be more vulnerabilities and bugs present than would be found in

more mature code. As weaknesses are reported, corresponding checks should

be added to the Cops code.

5.5 Include UUCP security c hecks

Because UUCP is very widely used, it is important to increase the numbe r

and sophistication of the checks performed on all the diferent v arieties of

UUCP. This includes checking the fles that limit what programs can be

remotely executed, the USERFILE and L.sys fles, and the protections on

directories.

5.6 Confguration fles

There are many problems that result from improper confguration fles.

These occur not only from having the fles open to modifcation, but because

of unexpected or misunderstood interactions of options. Having rule-based

programs, similar to kuang, which analyze these confguration fles would be

an ideal way to extend Cops.

5.7 Checking OS-specifc problems

There are a wide variety of problems that apply only to certain favors of

Unix. This includes not only the placement o f k ey fles, but also syntactical

and logical diferences in the way those systems operate. Examples include

such things as shadow password fles, diferent system logging procedures,

shared memory, and network connectivity. Ideally, the same set of tools

would be used on every system, and a confguration fle or script would

resolve a n y diferences.

11

6 Conclusions

Over the last 18 months since the Internet worm, perhaps the most strongly

voiced opinion from the Internet community has been "security through

secrecy does not work." Nonetheless, there is still an appalling lack of com-
munication about security. System breakers and troublemakers, on the other

hand, appear to encounter little difculty fnding the time, energy, and re-
sources necessary to break into systems and cause trouble. It is not that

they are particularly bright; indeed, examining the log of a typical breakin

shows that they follow the same methods that are publicized in the latest

computer security mailing lists, in widely publicized works on security, and

on various clandestine bulletin boards. The diference between them and

the system administrators on the Internet seems to be communication. It

is clear that the underground community h a s a w ell-established pipeline of

information that is relatively easy for them to tap. Many system adminis-
trators, however, have no access to an equivalent source of information, and

are thrust into their positions with little or no security experience. Cops

should be particularily helpful in these cases.

None of programs in Cops cover all of the possible areas where a system

can be harmed or compromised. It can, however, aid administrators in

locating some of the potential trouble spots. Cops is not meant t o b e a

panacea for all Unix security w oes, but an administrator who examines

the system and its documentation might reduce the danger to his or her

system. That is all that can ever be expected of any security tool in a real,

operational environment.

Future work on Cops will be done at the CERT, and work on related

tools and approaches will be done at Purdue. People are encouraged to

get a copy o f Cops and provide us with feedback and enhancements. We

expect that as time goes on, and as the awareness of security grows, Cops

and systems like it will be evolved through community efort. Increased

communication and awareness of the problems should not be limited to just

the crackers.

7 Acknowledgments

Thanks go to Robert Baldwin for allowing us to include his marvelous U-
Kuang system; to Donald Knuth for inspirational work on how not only

to write but to create a software system; to Jef Smith, Dan Trinkle, and

12

Steve Romig for making available their systems and expertise during the

development o f Cops; and fnally, our beta testers, without whom Cops

might never have been.

Getting Cops

Cops has been run successfully on a large number of computers, including

Unix bo xes from Sun, DEC, HP, IBM, AT&T, Sequent, Gould, NeXT, and

MIPS.

A copy o f Cops was posted to the comp.sources.unix newsgroup and thus

is available in the UUCP archives for that group, as well as via anonymous

ftp from a variety of sites (uunet.uu.net and j.cc.purdue.edu, for example.)

We regretfully cannot mail copies of Cops to sites, or make tapes, as we d o

not have the time or resources to handle such requests.

Biographies

Dan Farmer is a member of the CERT (Computer Emergency Response

Team) at the Software Engineering institute at Carnegie Mellon University.

He is currently designing a tool that will detect known bugs on a variety

of Unix systems, as well as continuing program development and design on

the Unix system.

Gene Spaford is an assistant professor at Purdue University in the De-
partment of Computer Sciences. He is actively involved with software en-
gineering research, including testing and debugging technology. He is also

actively involved in issues of computer security, computer crime, and pro-
fessional ethics. Spaf is coauthor of a recent book on computer viruses, is

in the process of coauthoring a book on Unix security to be published by

O'Reilly and Associates, and is well-known for his analysis of the Morris

Internet Worm. Besides being a part-time netgod, Gene is involved with

ACM, IEEE-CS, the Computer Security Institute, the Research Center on

Computers and Society, and (of course) Usenix.

References

1. Aho, Alfred V., Brian W. Kernighan, and Peter J. Weinberger,	 The

AWK Programming Language, Addison-Wesley Publishing Company,

1988.

13

http:j.cc.purdue.edu
http:uunet.uu.net

2. Authors, Various, Unix Security Mailing List/Security Digest, Decem-
ber 1984-present.

3. Baldwin, Robert W., Rule Based A nalysis of Computer Security, Mas-
sachusetts Institute of Technology, June 1987.

4. Grampp, F. T. and R. H. Morris, "Unix Operating System Security,"

AT&T Bell Laboratories Technical Journal, October 1984.

5. Kaplilow, Sharon A. and Mikhail Cherepov, "Quest|A Security Au-
diting Tool," AT&T Bell Laboratories Technical Journal, AT&T Bell

Laboratories Technical Journal, May/June 1988.

6. Smith, Kirk, "Tales of the Damned," Unix Review, February 1988.

7. Spaford, Eugene, Kathleen Heaphy and David Ferbrache, Computer

Viruses: Dealing with Electronic Vandalism and Programmed Threats,

ADPASO, 1989.

8. Spence, Bruce, "spy: A Unix File System Security Monitor," Proceed-

ings of the Large Installation Systems Administration III Workshop,

Usenix Association, September, 1988.

9. Thompson, Ken, "Refections on Trusting Trust," 27 (8), Communi-
cations of the ACM, August 1984.

10. Wood 	 , P atrick and Stephen Kochran, Unix System Security, Hayden

Books, 1986.

11. Wood , P atrick, "A Loss of Innocence," Unix Review, February 1988.

14

