
1 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 6, JUNE 2004 

Software Fault Interactions and
 
Implications for Software Testing
 

D. Richard Kuhn, Senior Member, IEEE,
 
Dolores R. Wallace, Member,
 
IEEE Computer Society, and 
  

Albert M. Gallo Jr.
 

Abstract—Exhaustive testing of computer software is intractable, but empirical 
studies of software failures suggest that testing can in some cases be effectively 
exhaustive. Data reported in this study and others show that software failures in a 
variety of domains were caused by combinations of relatively few conditions. 
These results have important implications for testing. If all faults in a system can 
be triggered by a combination of n or fewer parameters, then testing all n-tuples of 
parameters is effectively equivalent to exhaustive testing, if software behavior is 
not dependent on complex event sequences and variables have a small set of 
discrete values. 

Index Terms—Statistical methods, testing strategies, test design.

 

1 INTRODUCTION 

A software tester’s task is extremely difficult. Seeking to locate the 
maximum number of latent errors under generally immovable 
deadlines is daunting, to say the least. Consider, for example, a 
device that has 20 inputs, each having 10 possible values (or 
10 equivalence classes if the variables are continuous). This 
scenario yields a total of 1020 combinations of settings. Only a 
few hundred test cases can be built and executed under most 
budgets, yet this would cover less than a fraction of one percent 
(< 10-15) of the possible cases. 

Empirical research into quality and reliability, for at least some 
types of software, suggests that relatively few parameters are 
actually involved in triggering failures—a phenomenon that has 
significant implications for testing. This leads one to suspect: If we 
were able to know with certainty that all faults in a system are 
triggered by a combination of n or fewer parameters, then testing 
all n-tuples of parameters is effectively equivalent to exhaustive 
testing at least for variables with a small set of discrete values (or 
possibly using equivalence classes for continuous value variables). 
For variables with a continuous range of values, partition testing of 
all n-way combinations of equivalence classes might be considered 
pseudoexhaustive. 

In reality, of course, we can never know in advance what 
degree of interaction is required to trigger all faults in a system. A 
somewhat more practical alternative, however, may be to collect 
empirical data on faults that occur among similar systems in 
various application domains. For example, if a long history of 
failure data shows that a particular type of application has never 
required the interaction of more than four parameters to reveal a 
failure, then an appropriate testing goal for that class of 
applications might be to test all 5-way or fewer interactions. We 
will refer to the number of conditions required to trigger a failure 
as the failure-triggering fault interaction (FTFI) number. For example, 

. D.R. Kuhn is with the National Institute of Standards and Technology, 
Gaithersburg, MD. E-mail: kuhn@nist.gov. 

. D.R. Wallace and A.M. Gallo, Jr. are with NASA Goddard Space Flight 
Center, Greenbelt, MD. 
E-mail: dwallac@pop300.gsfc.nasa.gov, al.gallo@nasa.gov. 

Manuscript received 24 Sept. 2003; revised 18 Feb. 2004; accepted 15 Mar.
 
2004.
 
Recommended for acceptance by J. Offutt.
 
For information on obtaining reprints of this article, please send e-mail to:
 
tse@computer.org, and reference IEEECS Log Number TSE-0172-1003.
 

0098-5589/04/$20.00 © 2004 IEEE Published by the IEEE Computer Society 

if a microwave oven control module fails when power is set on 

“High” and time is set to 20 minutes, the FTFI number is 2. 

Combinatorial testing [1], [2] that exercised all 2-tuples of test data 

would have detected this failure. In this paper, we analyze the fault 

interactions of a large distributed system, compare the results with 

data reported for systems in other domains, and explore the 

implications of these results for software testing. 

2 RELATED WORK 

To our knowledge, only three studies prior to this one attempted to 

characterize fault interactions using empirical data. Nair et al. [3] 

described a case study of combinatorial testing for a small 

subsystem of a screen-based administrative database. The system 

was designed to present users with input screens, accept data, then 

process it and store it in a database. Size was not given, but similar 

systems normally range from a few hundred to a few thousand 

lines of code. This study was extremely limited in that only one 

screen of a subsystem with two known faults was involved, but 

pairwise testing was sufficient to detect both faults. 
Wallace and Kuhn [4] reviewed 15 years of medical device 

recall data gathered by the US Food and Drug Administration 

(FDA) to characterize the types of faults that occur in this 

application domain. These applications include any devices under 

FDA authority, but are primarily small to medium sized 

embedded systems, and would range from roughly 104 to 105 

lines of code. All of the applications in the database were fielded 

systems that had been recalled because of reported defects. A 

limitation of this study, however, was that only 109 of the 

342 recalls of software-controlled devices contained enough 

information to determine the number of conditions required to 

replicate a given failure. Of these 109 cases, 97 percent of the 

reported flaws could be detected by testing all pairs of parameter 

settings, and only three of the recalls had an FTFI number greater 

than 2. (The number of failures triggered by a single condition was 

not given in [4], but we reviewed the data and report this figure in 

Table 1.) The most complex of these failures required four 

conditions. Kuhn and Reilly [5] analyzed reports in bug tracking 

databases for open source browser and server software, the 

Mozilla web browser and Apache server. Both were early releases 

that were undergoing incremental development. This study found 

that more than 70 percent of documented failures were triggered 

by only one or two conditions, and that no failure had an FTFI 

number greater than 6. Difficulty in interpreting some of the failure 

reports (e.g., in some cases, it was not clear whether some 

conditions were “don’t care” or were required to reproduce the 

failure) led to conservative assumptions regarding failure causes. 

Thus, some of the failures with high FTFI numbers may actually 

have been less than 6. 
Three other studies provided some limited information regard­

ing fault interactions. Dalal et al. [6] demonstrated the effectiveness 

of pairwise testing in four case studies but did not investigate 

higher-degree interactions. Smith et al. [7] investigated pairwise 

testing of the Remote Agent Experiment (RAX) software on 

NASA’s Deep Space 1 mission. The RAX is an expert system that 

generates plans to carry out spacecraft operations without human 

intervention. This study found that testing all pairs of input values 

detected over 80 percent of the bugs classified as either “correct­

ness” or “convergence” flaws in onboard planning software (i.e., 

successfully finding a feasible path), but only about half of engine 

and interface bugs [7]. (Figures for these four components are 

shown separately in Table 1.) The authors did not investigate 

higher-degree combinations required to trigger a failure. Pan [8] 

found that testing all values triggered more than 80 percent of 

detected errors in a selection of POSIX operating system function 

http:0098-5589/04/$20.00
mailto:tse@computer.org
mailto:al.gallo@nasa.gov
mailto:dwallac@pop300.gsfc.nasa.gov
mailto:kuhn@nist.gov


2 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 6, JUNE 2004 

TABLE 1
 
Cumulative Percent of Faults Triggered by n-way Conditions
 

* = not reported. 

calls from 15 fielded, commercial systems. Higher-degree combi­

nations were not reported. 

3 EMPIRICAL DATA 

We analyzed 329 error reports from development and integration 

testing of a large distributed system being developed at NASA 

Goddard Space Flight Center. This application is a data manage­

ment system that gathers and receives large quantities of raw 

scientific data. The system is comprised of numerous subsystems 

for scientific analysis of the data as well as the storage of all results. 

Multiple standalone copies of this system are deployed at several 

locations. Faults are initially corrected at the site where they were 

first discovered, and subsequently all sites receive the correction as 

there are new releases of the system. Regardless of the point of 

origin, faults are characterized in a database by date submitted, 

severity, priority for fix, the location where found, status, the 

activity being performed when found, and several other features. 

Several text fields provide additional context, including one to 

describe how the fault was found as well as one to discuss its 

resolution. Results of this analysis are shown in the last column of 

Table 1. System type, release stage, and approximate system size 

(or size of similar applications, where this information was not 

provided) are summarized in Table 2 for comparison purposes. 

TABLE 2
 
Characteristics of Systems Reviewed
 

Also, note that the distribution of failure-triggering conditions 
appears to follow a power law (Fig. 1, last four columns of Table 1), 
but many more data sets would be required to make this 
generalization. 

The analyses discussed above raise some interesting questions. 
Perhaps most intriguing is the absence of any clear differences in 
fault interaction complexities between development projects and 
fielded products. Intuition suggests that bugs should be more 
difficult to trigger, hence occur less frequently, once a system has 
been developed. Some spectacular software failures seem to bear 
out this thought. For example, the Mars Pathfinder failed as a 
result of a complex series of events leading to a priority inversion, 
which deadlocked critical system processes [9]. This intuition has 
been referred to as the “Heisenbug” hypothesis, which posits that 
bugs in fielded systems are likely to be transient, hard to 
reproduce, and not consistently observable. 

Yet surprisingly, this expectation does not clearly hold for the 
two sets of fielded products reviewed above. For all levels of fault 
interactions reported, the development project failures were harder 
to trigger than those in both classes of fielded products. In fact, 
bugs with an FTFI number of 2 accounted for a higher proportion 
of the medical device failures than for any of the development 
projects (ignoring the administrative database, which had too few 
data points to be statistically significant). Much more analysis 
across a variety of application domains will be needed to provide a 
comprehensive picture of the fault interactions of fielded systems, 
but these data suggest that it is not safe to assume that such 
failures are always due to rare combinations of conditions. We note 

Fig. 1. Failure triggering fault interactions, cumulative distribution. 



3 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 6, JUNE 2004 

also that there are a number of famous software failures with an 
FTFI number of only 1 or 2. One such example, the Ariane 5 
disaster [10], occurred because the horizontal velocity of the rocket 
exceeded that of Ariane 4. (The software-related cause of the error 
was a failed numerical conversion, but the operational condition 
required to trigger this situation was simply a horizontal velocity 
greater than earlier systems.) The USS Yorktown failure is another 
example of a spectacular failure resulting from a single fault 
condition. Assigning a value of zero in a particular database field 
caused a divide-by-zero error, which caused the local network to 
crash, disabling the entire ship [11]. 

4 IMPLICATIONS FOR TESTING 

Consider the previously discussed system with 20 inputs, each of 
which can assume 10 possible values. Exhaustive testing would, of 
course, require 1020 test cases, but the empirical results described 
above show that most failures were actually triggered by a single 
erroneous parameter; however, nearly all could be triggered by 
fewer than 4 or 5 and at most 6 for the software that was studied. 
This section gives some “back of the envelope” calculations of the 
number of tests required to cover all n-way combinations. 

Now, consider the effort required to exercise all n-tuples of 

k parameters, each of which has v possible values (known in the 

combinatorics literature as the problem of covering array construc­
tion [12], [13], [14]). The number of n-tuples drawn from 

k!k parameters is Cðk; nÞ ¼  and, since each parameter has v n!ðk-nÞ! 
values, the total number of test cases required to test exhaustively 

nwould be Cðk; nÞ · v . This calculation uses the simplifying 

assumption that each parameter has the same number, v, of  

values, but, in practice, v can be the maximum with ”don’t care” 

values for parameters with less than v values. Attempting to test all 

4-tuples for the example described above would require 48,450,000 

test cases. Fortunately, this prohibitively large number can be 

reduced to a reasonable level. 

Since each test case will contain 20 parameters, there are 

Cð20; 4Þ ¼ 4; 845 4-tuples of parameters and Cð20; 6Þ ¼ 38; 760 
6-tuples in each test case. If test case generation is perfectly 

efficient, then each test case would contain unique sets of n-tuples, 

i.e., ensure there are no duplicate tests. A rough best case estimate 
Cðk;nÞv nfor the total number of test cases would therefore be 

n 

¼ v ,Cðk;nÞ 
although avoiding all duplicates is not possible in practice [12], 

n[13], [14], so v is in fact a naı̈ve best-case estimate. The actual 

number of tests cases will be within a multiplicative constant factor 

of optimal [15], which increases proportional to the log of the 

number of parameters [12], [13], [14]. In practice, this naı̈ve 

estimate may be multiplied by as much as two to three, so our 
nearlier examples of 20 inputs with 10 values each, v may 

reasonably require 20,000 tests to cover all 4-tuples. Manually 

generating an extremely large number of test cases is hardly 

practical, but new automated test case generation tools [16], [17] 

render such a task possible. Finding efficient methods for 

generating n-way covering test combinations is an active research 

area [2], [18], [19], [20]. The results reported in this paper suggest 

that this work could be of significant benefit to software testers. 
Real systems are, of course, rarely as simple as the example. 

Rather than parameters with only 10 discrete values each, most or 
all parameters are either continuous or have significantly larger 
sets of discrete input values. Therefore, this form of testing should, 
for most cases, be considered pseudoexhaustive, rather than 
effectively exhaustive. The traditional approach to dealing with 
the problem of continuous variables is to partition the parameter 
values into equivalence classes, where values in each set are 
assumed to be equivalent from a testing standpoint, i.e., correct 
(incorrect) system operation for one value is assumed to imply 

TABLE 3 
Maximum Value of v for Combinations of n-Tuples and Test Cases 

correct (incorrect) operation for another value from the same 
equivalence class. In many cases, this assumption is not unreason­
able provided the input is partitioned into an appropriate set of 
classes. 

When planning for needed testing resources, the first question 
to define is the scope of the effort. For a given number, N , of test 
cases, and a specified level of n-tuple, how many values, or 
equivalence classes, can or must be covered (keeping in mind that 
the actual number of test cases will be a small multiple of N)? 

nUsing v as the best-case approximation of the number of n-tuples 
ncovered by the set of test cases, we have v : N , so  n log v : log N . 

So, for N ¼ 10x tests, v : 10 
x 

Maximum values for v, in various n. 
combinations of n and number of test cases, are shown in Table 3. 
Thus, testing all 2-tuples of parameters using 100 tests would 
require that each parameter have no more than 10 values. Looked 
at another way, producing pairwise tests for parameters with 
10 values each would require a minimum of 100 tests. One 
combinatorial testing tool makes it possible to test all pairs of 
values for this example using 180 cases [21]. 

Because testing occurs at the end of the development lifecycle, it 
must be both thorough and efficient in order to maximize 
effectiveness. Consider the case where deadlines are fixed and 
management has opted to conduct pseudoexhaustive testing. If it is 
believed that any fault present can be triggered by interactions of 
no more than five variables, the following line of reasoning is used. 
First, variable values are partitioned into some number of 
equivalence classes. If we assumed six for each variable, then a 
small multiple of 10,000 tests would be needed to cover all 
5-tuples. Using automated test generation tools, this number of 
tests is feasible to generate. Practical trials of automated test tools 
generating this number of tests are needed to evaluate this 
approach. 

5 CONCLUSIONS 

All failures of software reviewed in this paper were triggered 
by low FTFI number faults-at most four to six parameters were 
involved. If experience shows that all errors in a particular class 
of software are triggered by finite combinations of n values or 
less, then testing all combinations of n or fewer values would 
provide a form of “pseudoexhaustive” testing. Since most 
variables actually have very large ranges of values, equivalence 
classes would need to be used in practice. Appropriate levels of 
n appear to be 4 : n : 6 when considering “pseudoexhaustive” 
testing, according to dependability requirements. Because the 
effectiveness of combinatorial testing depends on the fact that a 
single test case can include a large number of pairs (or higher 
degree combination) of values, this approach may not be as 
effective for real-time or other software that depends on testing 
event sequences, but may be applicable to subsystems within 
real-time software. Many more empirical studies of other classes 
of software are needed to evaluate the applicability of 
combinatorial testing for other classes of systems. 



4 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 6, JUNE 2004 

ACKNOWLEDGMENTS 

The authors would like to thank Tim Grance for his support of this 
project. They want to thank Jim Lyle for his careful review and the 
TSE reviewers for many helpful suggestions. 

REFERENCES 

[1]	 R. Brownlie, J. Prowse, and M.S. Phadke, “Robust Testing of AT&T PMX/ 
StarMail Using OATS,” AT&T Technical J., vol. 71, no. 3, pp. 41-47, May/ 
June 1992. 

[2]	 D.M. Cohen, S.R. Dalal, J. Parelius, and G.C. Patton, “The Combinatorial 
Approach to Automatic Test Generation,” IEEE Software,, vol. 13, no. 5, 
pp. 83-88, Sept. 1996. 

[3]	 V.N. Nair, D.A. James, W.K. Erlich, and J. Zevallos, “A Statistical 
Assessment of Some Software Testing Strategies and Application of 
Experimental Design Techniques,” Statistica Sinica, vol. 8, no. 1, pp. 165­
184, 1998. 

[4]	 D.R. Wallace and D.R. Kuhn, “Failure Modes in Medical Device Software: 
An Analysis of 15 Years of Recall Data,” Int’l J. Reliability, Quality and Safety 
Eng., vol. 8, no. 4, 2001. 

[5]	 D.R. Kuhn and M.J. Reilly, “An Investigation of the Applicability of Design 
of Experiments to Software Testing,” Proc. 27th NASA/IEEE Software Eng. 
Workshop, Dec. 2002. 

[6]	 S.R. Dalal, A. Jain, N. Karunanithi, J.M. Leaton, C.M. Lott, G.C. Patton, and 
B.M. Horowitz, “Model-Based Testing in Practice,” Proc. Int’l Conf. Software 
Eng., 1999. 

[7]	 B. Smith, M.S. Feather, and N. Muscettola, “Challenges and Methods in 
Testing the Remote Agent Planner,” Proc. Fifth Int’l Conf. Artificial 
Intelligence Planning Systems, 2000. 

[8]	 J. Pan, “The Dimensionality of Failures—A Fault Model for Characterizing 
Software Robustness,” Proc. Int’l Symp. Fault-Tolerant Computing, June 1999. 

[9]	 M. Jones, “What Really Happened on Mars Pathfinder Rover,” RISKS 
Digest, vol. 19, no. 49, Dec. 1997. 

[10]	 J.L. Lions, “Ariane 5, Flight 501, Report of the Inquiry Board,” European 
Space Agency, July 1996. 

[11]	 G. Slabodkin, “Software Glitches Leave Navy Smart Ship Dead in the 
Water,” Government Computer News, July 1998. 

[12]	 B. Stevens, L. Moura, and E. Mendelsohn, “Lower Bounds for Transversal 
Covers,” Design, Codes, and Cryptography, vol. 15, pp. 279-299, 1998. 

[13]	 The CRC Handbook of Combinatorial Designs. C.J. Colbourn and J.H. Dinitz, 
eds., CRC Press, 1996. 

[14]	 A.W. Williams and R.L. Probert, “A Measure for Component Interaction 
Test Coverage,” Proc. ACS/IEEE Int’l Conf. Computer Systems and Applica­
tions (AICCSA 2001), pp. 304-311, June 2001. 

[15]	 C. Cheng, A. Dumitrescu, and P. Schroeder, “Generating Small Test Suites 
for Non-Uniform Instances ,” Third Int’l Conf. Quality Software, Nov. 2003. 

[16]	 P.E. Ammann, P.E. Black, and W. Majurski, “Using Model Checking to 
Generate Tests from Specifications ,” Proc. Second IEEE Int’l Conf. Formal 
Eng. Methods (ICFEM ’98), pp. 46-54, Dec. 1998. 

[17]	 M.R. Blackburn, R.D. Busser, A.M. Nauman, and R. Chandramouli, “Model 
Based Approach to Security Test Automation,” Proc. Quality Week, June 
2001. 

[18]	 K.C. Tai and Y. Lie, “A Test Generation Strategy for Pairwise Testing ,” 
IEEE Trans. Software Eng., vol. 28, no. 1, pp. 109-111, 2002. 

[19]	 A.W. Williams and R.L. Probert, “Formulation of the Interaction Test 
Coverage Problem as an Integer Program ,” Proc. TestCom Conf., pp. 283­
298, 2002. 

[20]	 M.B. Cohen, C.J. Colbourn, P.B. Gibbons, and W.B. Mugridge, “Construct­
ing Test Suites for Interaction Testing,” Proc. 25th Int’l Conf. Software Eng. 
(ICSE 2003), pp. 38-48, May 2003. 

[21]	 D.M. Cohen, S.R. Dalal, M.L. Fredman, and G.C. Patton, “The AETG 
System: An Approach to Testing Based on Combinatorial Design,” IEEE 
Trans. Software Eng., vol. 23, no. 7, pp. 437-444, July 1997. 


