Quantum Cryptography **Today and Tomorrow** Or.How to Make and Break Quantum Cryptosystems (Without Being an Expert in Quantum Mechanics)

Summer Undergraduate Research Fellowship Seminar

Rick Kuhn kuhn@nist.gov

Goals of Talk

- Very brief summary of cryptography
 - Impact of technology
- Introduce basics of quantum cryptography
 - Learn a little bit about quantum mechanics along the way
- Explain two types of quantum crypto protocols
- Show how to break quantum crypto
 - To understand the engineering difficulties of going from theory to practice

Old Style Cryptography

- Shift of alphabet
 - e.g. Caesar cipher A=D, B=E, C=F
 - Probably never fooled anybody (except Caesar)

- Many more sophisticated systems developed from 1500s to mid-20th century
 - Substitution and transposition of letters
 - Some essentially unbreakable by manual means
- Made obsolete by computers circa 1940

Technology Determines What is Breakable

Enigma vs. Human – Enigma wins!

Turing's machine

Enigma vs. Computer – computer wins!

Weakest part of cryptosystem

Desch's machines – even faster

Modern Cryptography

- One: hard problems in mathematics
 - Breaking the system requires an efficient algorithm for solving a hard problem – e.g. Factoring large numbers, discrete logarithms
 - Examples: RSA, El Gamal
 - Used in public key systems
 - Slow
- Two: information theory
 - Texts scrambled by repeated application of bit shifts and permutations
 - Examples: DES, AES
 - Used in private key systems
 - Fast

Technology Determines What is Breakable

RSA Cryptosystem $C = M^e \mod n$

 $d = e^{-1} \mod ((p-1)(q-1))$

RSA vs. supercomputer: 40 Tflop/s (4 x 10¹² flop/sec) – RSA wins!

Earth Simulator

RSA vs. Quantum Computer – computer wins!

Modern Ciphers vs. Quantum Computer

- "Hard problem" variety
 - Exponential speedup easily breaks algorithms such as RSA
 - If information requires long term protection (e.g. 20+ years), these algorithms are already dead
- "Information theory" variety
 - Quadratic speedup (so far)
 - Longer keys can keep them useful

Quantum Crypto – Why?

- Protect against attack by quantum computer
 - or any future machine
- Eavesdropping detection
 - Hard to do now
- High volume key distribution
 - If it can be made fast enough

Quantum Mechanics for Cryptography – Measurement Basis

- **Basis** frame of reference for quantum measurement
- Example **polarization** vertical/horizontal vs. diagonal
 - Horizontal filter, light gets through = 0
 - Vertical filter, light gets through = 1
 - -45 deg. filter, light = 0
 - -135 deg. filter, light = 1

Quantum Mechanics for Cryptography- Superposition

• Superposition – in "2 states at once" (at least think of it that way), until measured

Probability of either result can be varied

Schrodinger's cat – dead *and* alive

Quantum Mechanics for Cryptography - Entanglement

- Entanglement like superposition, but more so
 - Measuring one determines result for all
 - No matter where they are in the universe!
 - Result is unpredictable, but same result for all

Classical interlude – unbreakable cipher

10110010100111

XOR

00100110101101

10010100001010

One time pad or Vernam cipher

Text	Random key	Ciphertext
C (3)	⊕U (21)	X (24)
A (1)	⊕D (4)	E (5)
T (20)	⊕I (9)	C (3)

All keys equally likely Can't determine unique key So can't determine original message

Key can <u>never</u> be reused Key must be same length as message => impractical for most use

Quantum Key Distribution

Quantum Key Distribution

BB84 protocol – Bennett and Brassard, 1984

BB84 Quantum Key Distribution

Quantum Key Distribution – detecting eavesdropping

BB84 Result

• Alice and Bob share a random bit string that can be used as a one time pad for encryption/decryption

10110010100111...

• Eavesdropping is detected as a 25% error rate in transmission

Ping Pong Protocols

- Beige, Kurtseifer, Englert, Weinfurter 2002
- Several variations by different developers
- Outline:
 - Alice creates entangled pair
 - Alice sends one qubit to Bob
 - Bob rotates according to secret operation
 - Bob returns qubit to Alice
 - Alice measures with her qubit to determine operation
 - Security: need both qubits to measure; Eve does not know basis

Breaking Quantum Crypto Protocols

- Similar to breaking conventional crypto protocols
- Choose one:
 - Break crypto algorithm –

Look for weaknesses and flaws in implementation (find an invalid assumption and exploit it)

Breaking Quantum Crypto

- Break underlying cryptography
 - No go laws of physics make it unbreakable
- Attack the implementation
 - Hardware
 - Protocols
 - Software

Attack Hardware Implementation

- BB84
- Attenuated lasers used to generate *average* of one photon per time slice
- Poisson process ensures that sometimes there will be more than one
- Pick out extras "photon number splitting"

Attack the Protocol

- Eve captures qubit from Alice, creates entangled pairs, forwards one qubit to Bob
- Eve measures return qubit from Bob, duplicates his measurement on captured qubit, returns to Alice - *Eve can determine basis from stray qubits, since Bob's distribution of bases is 50/50*

Attack Software Implementation

- Quantum crypto running in a TCP/IP network on top of ordinary servers and operating systems
- 'nuff said!

NIST Quantum Communication Testbed

- Scalable, high speed quantum network
- Provides a measurement infrastructure for quantum protocols, and testbed for experiments

Industrial Prospects and Tech Transfer

- Selling points
 - Protect secrets long-term/forever \$
 - Distribute large volumes of key efficiently **\$**
- Currently two (count 'em!) commercial implementations of quantum crypto
- Potential markets?
 - Financial services (large key volume)
 - Government/military (long term secrecy, key dist.)
 - Ultra-high bandwidth networks, media/content distribution??

To Probe Further

• Introduction to quantum computing and crypto:

– qubit.org

- "Quantum Computing and Communications",introductory technical article on NIST site below:
- NIST quantum information testbed:
 math.nist.gov/quantum

Questions?

