
A Role-Based Access Control Model and
Reference Implementation Within a
Corporate Intranet

DAVID F. FERRAIOLO, JOHN F. BARKLEY, and D. RICHARD KUHN

National Institute of Standards and Technology

This paper describes NIST’s enhanced RBAC model and our approach to designing and
implementing RBAC features for networked Web servers. The RBAC model formalized in this
paper is based on the properties that were first described in Ferraiolo and Kuhn [1992] and
Ferraiolo et al. [1995], with adjustments resulting from experience gained by prototype
implementations, market analysis, and observations made by Jansen [1988] and Hoffman
[1996]. The implementation of RBAC for the web (RBAC/Web) provides an alternative to the
conventional means of administering and enforcing authorization policy on a server-by-server
basis. RBAC/Web provides administrators with a means of managing authorization data at
the enterprise level, in a manner consistent with the current set of laws, regulations, and
practices.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Distrib­
uted Systems; C.2.5 [Computer-Communication Networks]: Local and Wide-Area Net­
works; D.4.6 [Operating Systems]: Security and Protection—Access controls; D.4.7 [Operat­
ing Systems]: Organization and Design—Distributed systems

General Terms: Security, Standardization

Additional Key Words and Phrases: Access control, authorization management, RBAC, role
based access, world wide web, web servers

1. INTRODUCTION

In recent years, vendors have begun implementing role-based access con­
trol (RBAC) features into their databases, system management, and oper­
ating system products, without any general agreement as to what actually
constitutes an appropriate set of RBAC features. Several RBAC models
were proposed [Ferraiolo and Kuhn 1992; Ferraiolo et al. 1995; Sandhu et
al. 1996; Nyanchama and Osborn 1994], without any attempt at standard­
izing salient RBAC features. To identify RBAC features that both exhibit
true enterprise value and are practical to implement, the National Insti-

Authors’ address: National Institute of Standards and Technology, Gaithersburg, MD 20899­
8970.
Permission to make digital / hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 1999 ACM 1094-9224/99/0200 –0034 $5.00

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999, Pages 34 –64.

A Role-Based Access Control Model and Reference • 35

tute of Standards and Technology (NIST) has conducted and sponsored
market analysis [Ferraiolo et al. 1993], developed prototype implementa­
tions, sponsored external research [Feinstein 1995], and published formal
RBAC models [Ferraiolo and Kuhn 1992; Ferraiolo et al. 1995]. As a result
of these and other efforts, much has been learned about RBAC and its
practical implementation. The purpose of this paper is to rigorously define
NIST’s enhanced RBAC model and to describe its reference implementation
within a world wide web (WWW) intranet application (RBAC/Web). An
intranet application was chosen to show RBAC’s application to a network
and to demonstrate its ability to solve common authorization management
and policy problems.

1.1 The Existing Problem

One of the greatest obstacles to the growth of intranets as a means of
enterprise computing is inability to manage authorization data effectively.
Authorization management today is costly and prone to error. Web server
administrators usually control user access to enterprise published docu­
ments through creation and maintenance of access control lists (ACLs) on a
server-by-server basis. ACLs specify, for each protected resource, a list of
named individuals, or groups composed of individual users, with their
respective modes of access to that object.

This use of ACLs is problematic for a variety of reasons. ACLs are tied to
particular objects. As such, they are appropriate for discretionary need-to­
know policies, where ownership of objects resides with the end user. In
many enterprises within industry and civilian government, end users do
not “own” the information to which they are allowed access [Ferraiolo et al.
1993; Ferraiolo and Kuhn 1992]. For these organizations, the corporation
or agency is the actual “owner” of system objects and discretionary control
on the part of the users may not be appropriate. Although enforcing a
need-to-know policy is important where classified information is of concern,
there exists a general need to support subject-based security policies, such
as access based on competency, the enforcement of conflict-of-interest rules,
or permitting access based on a strict concept of least privilege. To support
such policies requires the ability to restrict access based on a user function
or role within the enterprise. Here the relevant question is: What are the
current operational capabilities for this user?

ACLs further complicate matters by allowing the direct association of
users with permissions. A large number of users, each with many permis­
sions, implies a very large number of user/permission associations that
have to be managed. Thus, when a user takes on different responsibilities
within the enterprise, reflecting these changes entails a thorough review,
resulting in the selective addition or deletion of user/permission associa­
tions on all servers. The larger the number of user/permission associations
to be managed, the greater the risk of maintaining residual and inappro­
priate user access rights.

Due to the potential problems associated with this lack of operational
security assurance, organizations have resisted publishing sensitive infor-

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.

36 • D. F. Ferraiolo et al.

mation on their web servers. This limits their utility, depriving the organi­
zation of potential productivity gains.

1.2 Solution: Role-Based Access Control

Although it can support discretionary access control (DAC) policies[Sandhu
and Munawer 1998], RBAC is primarily a nondiscretionary access control
model. RBAC does not permit users to be directly associated with permis­
sions.

With RBAC, permissions are authorized for roles and roles are autho­
rized for users. Thus, when administering RBAC, two different types of
associations must be managed: associations between users and roles and
associations between roles and permissions. When a user’s job position
changes, only the user/role associations change. If the job position is
represented by a single role, then, when a user’s job position changes, there
are only two user/role associations to change: remove the association
between the user and the user’s current role and add an association
between the user and the user’s new role.

1.2.1 Reduced Administrative Cost Complexity. There is usually a di­
rect relationship between the cost of administration and the number of
associations that must be managed to administer an access control policy:
the larger the number of associations, the costlier and more error-prone the
access control administration. In most organizations, the use of RBAC
reduces the number of associations that must be managed.

Job positions are typically occupied by more than one individual and
most positions require more than one permission in order for an individual
in a job position to carry out the responsibilities of that position. One can
describe the associations authorizing permissions to individuals who per­
form the responsibilities of a job position as an ordered pair consisting of a
set of individuals and a set of permissions, that is,

(U, P)

where U = the set of individuals in a job position and P = the set of
permissions required to perform that job position.

The number of associations required to directly relate the individuals to
those permissions is

IUI · IPI

where IUI = the number of individuals in the set U and IPI = the number
of permissions in the set P.

A role can be described as a set of permissions. Thus, the set P can refer
to a role that is the job position whose user/role and role/permission
associations are represented by the ordered pair (U, P). The number of
user/role and role/permission associations required to authorize each user

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.

A Role-Based Access Control Model and Reference • 37

in the set U for each of the permissions in the set P where P represents a
role is

IUI + IPI.

That is, there is an association with the role P for each individual in U and
an association with the role P for each permission in P.

For a job position, if IUI + IPI < IUI · IPI, then the administrative
advantage of RBAC over relating users directly with permissions is real­
ized for that job position. A sufficient condition for IUI + IPI < IUI · IPI is
IUI, IPI > 2, which is typically the case for most job positions in most
organizations.

If njp is the number of job positions within an organization, then the
administrative advantage of RBAC is realized organization-wide when .

�i
njp(IUiI + IPiI) < �i

njp(IUiI · IPiI).

1.2.2 Policy Support. The limiting factor in effectively enforcing secu­
rity policy is not the capability of the ACL mechanism but the administra­
tive interface. RBAC provides administrators with a context for the speci­
fication and enforcement of complex security policies that are often
impractical to enforce through the direct administration of lower level
access control mechanisms, such as ACLs.

Unlike ACLs that only support the specification of user/permission and
group/permission relationships, the RBAC model supports the specification
of user/role and role/role relationships. In particular, the RBAC model
supports the specification of

—user/role associations, i.e., user authorizations to perform roles;

—role hierarchies, e.g., the role bank teller inherits all of the permissions
of the role bank employee;

—separation of duty constraints (role/role associations indicating conflict of
interest):

static (SSD): a user cannot be authorized for both roles, e.g., bank
teller and auditor;
dynamic (DSD): a user can be authorized for both roles but cannot act
simultaneously in both roles, e.g., a bank teller who has an account in
the bank where employed cannot act in the role teller and customer
simultaneously;

—limits on the number of users that can be authorized for a role (role
cardinality), e.g., a branch office of a bank has only one branch manager.

For web server applications, RBAC provides administrative conveniences
by composing the seemingly unrelated and incomprehensible authorization
data of the lower level access control mechanisms, and other RBAC
relational data, into a single RBAC authorization database. In doing so,

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.

38 • D. F. Ferraiolo et al.

RBAC/Web, the implementation of the NIST RBAC model for intranets,
organizes this authorization data and presents it to the intranet adminis­
trator(s) in a relational format and at a level of abstraction that is natural
to the way enterprises are normally structured and conduct business. From
an administrator’s perspective, RBAC/Web serves as a visualization and
maintenance tool1 of the enterprise’s intranet access control policies in
terms of its users, roles, role hierarchies, operational constraints, and
permissions.

Even with the enhanced administrative interface, there exist opportuni­
ties for inconsistencies that could result in undesirable security conse­
quences. The complexity of dealing with consistency issues is not delegated
to the administrator, but instead is handled by the RBAC/Web administra­
tive software through the implementation of a series of integrity checks
that are derived from the RBAC model [Gavrila and Barkley 1998]. Based
on RBAC relationships, an interface can be built to solve virtually any
authorization problem— a proposition demonstrated by the advanced secu­
rity policies described in Simon and Zurko [1997] and Sandhu et al. [1996].
Still other real world policies can be expressed by imposing new constraints
on time and location. The scope of the RBAC model formalized in this paper
has been limited to those properties that were first described in Ferraiolo
and Kuhn [1992], with adjustments that have resulted through observa­
tions made by Jansen [1988] and Hoffman [1996].

The remainder of this paper describes NIST’s enhanced RBAC model and
our approach to RBAC/Web. Section 2 provides a detailed description of the
RBAC model with exemplary real-world security policies supported by the
model. Section 3 provides an overview of the administrative approach
assumed by the RBAC model and a description of our approach for
implementing the RBAC model presented in Section 2. This includes
RBAC/Web constituent process components and services, description of the
RBAC/Web distributed authorization database, and a comprehensive sce­
nario of use, from a client request for URL access (at the browser), through
user authorization and role activation, to the result provided by the web
server.

2. THE RBAC MODEL AND SUPPORTED POLICIES

The RBAC security model is both abstract and general. It is abstract
because properties not relevant to security are not included; it is general
because many designs could be valid interpretations of the model. The
model allows design decisions to be postponed and is usable as a basis for
the design of a variety of IT systems. A goal in creating the model was to
provide as concise and usable a notation as possible so that the security-
relevant properties of the model are not obscured by excessive notational
detail.

1The RBAC/Web implementation for Windows NT provides a tool, RGP-Admin, to manage
role-permission relationships (see Section 3.4), but in the UNIX implementation, the relation­
ships are managed using the tools of the web server.

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.

A Role-Based Access Control Model and Reference • 39

The RBAC model described below is sufficient to support a variety of
security policies. In particular, an argument is made for least privilege and
separation of duty. Least privilege is the time-honored administrative
practice of selectively assigning privileges to users such that the user is
given no more privilege than is necessary to perform his/her job. The
principle of least privilege avoids the problem of an individual with the
ability to perform unnecessary and potentially harmful actions as merely a
side-effect of granting the ability to perform desired functions. Permissions
(or privileges) are rights granted to an individual, or a subject acting on
behalf of a user, that enable the holder of those rights to act in the system
within the bounds of those rights. The question then becomes how to assign
the set of system privileges to the aggregates of functions or duties that
correspond to a role of a user or subject acting on behalf of the user. Least
privilege provides a rationale for where to install the separation boundaries
that are to be provided by RBAC protection mechanisms. Ensuring adher­
ence to the principle of least privilege is largely an administrative chal­
lenge that requires identification of job functions, specification of the set of
privileges required to perform each function, and restricton of the user to a
domain with those privileges and nothing more.

Separation of duty refers to the partitioning of tasks and associated
privileges among different roles associated with a single user to prevent
users from colluding with one another. These separation concepts include
multiplexing of shared resources, naming distinctive sets of permissions to
include functional decomposition, categorical classification, and hierarchi­
cal decomposition. Within an RBAC system, these separation concepts are
supported by the establishment of the principle of least privilege.

The RBAC security model has two components MC0, and MC1. Model
component MC0, called the RBAC Authorization Database model, defines
the RBAC security properties for the authorization into static roles. Model
component MC1, called the RBAC Activation model, defines the RBAC
security properties for dynamic activation of roles. Component MC1 re­
quires MC0. Each model component is defined by the following subcompo­
nents:

—a set of types, which define a basic set of elements, together with
functions on these elements. There are two types of functions: mapping
functions, which represent relationships between elements, and con­
straint functions, which represent restrictions on relationships between
elements;

—a set of rules, which represent assumptions about the model; and

—a set of properties, which are implications of the rules.

2.1 MC0: RBAC Authorization Database

The MC0 model is defined in terms of mapping functions and static
properties. Static properties refer to properties of the model that do not

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.

40 • D. F. Ferraiolo et al.

involve either subject or mappings from subject to other basic elements
(e.g., subject-user and active-roles). Static properties represent the most
fundamental and the strongest constraints and relationships in the model.
They include role hierarchy, inheritance, cardinality, and static separation
of duty.

2.2 Users, Roles, and Permissions

RBAC is described in terms of individual users associated with roles as well
as roles associated with permissions. As such, a role is a means for naming
many-to-many relationships among individual users and unique permis­
sions. A user in this model is a human being. A role is a job function or job
title within the organization with some associated semantics regarding the
authority and responsibility conferred on the user authorized for the role.
We discuss role association with permissions below, but first we formally
model user association with a role by the following types and mapping
function:

type user of individual users;

type role of role identifiers;

RM(r : role) 3 2user, the role/members mapping, which gives the set of
users authorized for the role, r.

A role is called empty if and only if RM[r] = 0.
A permission or privilege is an approval of a particular operation to be

performed on one or more objects. The relationship between roles and
permissions is depicted in Figure 1. As shown in Figure 1, arrows indicate a
many-to-many relationship (i.e., a permission can be associated with one or
more roles and a role can be associated with one or more permissions). We
formally describe permission and the association of permission with a role
by the following type and state independent mapping function:

2 (operationXobject); and type permission =

RP(r : role) 3 2permissions, the role/permissions mapping, which gives
the set of permissions authorized for the role r.

An operation is an executable image of a program, which, upon invocation,
causes information to flow from or to one or more RBAC-protected objects,
or cause the consumption of an exhaustible system resource. The type of
operations and the objects that RBAC controls depend on the type of
system in which it will be implemented. For example, within an operating
system, operations might include read, write, and execute; within a data­
base management system, operations might include insert, delete, select,
append, and update. Operations are defined using the following type:

type operation of executable program.

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.

A Role-Based Access Control Model and Reference • 41

Fig. 1. Role-operation-object relationship.

The purpose of any access control mechanism is to protect information and
other resources. However, in applying RBAC to a computer system, we
speak of protected objects. For a system that implements RBAC, the objects
can represent information containers (e.g., files, directories in an operating
system, or columns, rows, tables, and views within a database management
system) or objects can represent exhaustible system resources such as
printers, disk space, and CPU cycles. The set of objects covered by RBAC
includes all of the objects included in the permissions that are associated
with roles. For convenience, we introduce the following supertype, of which
information-container and exhaustible-resource are disjoint subtypes:

type object = InformationContainer U ExhaustibleResource.

The following state-independent mapping functions are defined for permis­
sions:

POp(p : permission) 3 {operation}, the permission to operation map­
ping, which gives the set of operations associated with permission p.

POb(p : permission) 3 {object}, the permission to object mapping,
which gives the set of objects associated with permission p.

Figure 1 gives a relational representation of the set of RBAC elements
originally formalized in Ferraiolo et al. [1995]. The arrows are used to
represent many-to-many relationships (e.g., user-role, and role-operations,
role-object). The lines represent relationships derived from the model
component, MC0, and as such are representative of the static relationships
among the types as they pertain to the RBAC authorization database.

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.

42 • D. F. Ferraiolo et al.

Fig. 2. Model element relationships.

For notational and conceptual purposes, the ternary relationship among
role, operation, and object is dropped and is reformulated as a pair of
binary relations, illustrated in Figure 2: one between operation and object,
referred to as permission; the other between role and permission. Permis­
sion is a construct often associated with information systems, used to
control user actions [Ferraiolo and Kuhn 1992]. In some contexts, permis­
sions are also referred to as privileges.

This arrangement provides great flexibility and granularity in assigning
privileges to roles and users to roles. Prior to providing these conveniences,
it was often the case that a user was granted more access to resources than
was needed due to the limited control over the type of access that can be
associated with users and resources. Users may need to list directories and
modify existing files, for example, without creating new files, or they may
need to append records to a file without modifying existing records. Any
increase in the flexibility of controlling access to resources also strengthens
the application of the principle of least privilege. We now describe relation­
ships between roles.

2.3 Role Membership Hierarchies

An instance of a role represents a many-to-many relationship between
individual user members and individual permissions. To address policy and
administrative authorization issues, RBAC includes the concept of contain­
ment. Containment is similar to inheritance in object-oriented systems,
whereby the properties and constraints of a containing role are an exten­
sion of the properties and constraints of any contained role. Containment is
also recursive; one role can contain other roles, which contain others, and
so on. Besides facilitating role administration, containment permits the

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.

A Role-Based Access Control Model and Reference • 43

substitution of role instances. That is, if role A contains role B, written
2 B, then instances of role A are treated as instances of role B for the

purpose of access control. Note that this rule defines inheritance properties
for role membership, but not necessarily for role activation (see Section
2.6). Containment is defined by the following property:

Role membership inheritance. A containing role is effectively an instance
of its contained roles:

A :

(@i, j : role)(@u : user)i : (1)2 j ∧ u E RM[i] f u E RM[j].

The complete set of containment relationships among all roles is referred
to as a role hierarchy. The containment relation is represented as a set of
ordered pairs i :2 j, where i is the parent or containing role, and j the child

or contained role. We may also say that role i inherits role j, or that i is a
senior and j is a junior role. The symbol “ :2 ” denotes that the contains
relationship forms a partial ordering of the roles (i.e., a reflexive, transi­
tive, and antisymmetric relation). Thus, i : means contains j, or 2 j i
alternatively, j is contained by i.

RBAC relations consist of an explicit set of role relationships (e.g.,
user-role, role-permission) and constraints (e.g., static separation of duty),
and an implicit set of inherited relationships and constraints. The explicit
relationships and constraints for a role are those relationships and con­
straints that are directly specified through an administrator role. The
implicit relationships and constraints of a role are those relationships and
constraints that are inherited from other roles within a hierarchy through
containment. As such, inheritance is described in some models in terms of
permissions [Sandhu et al. 1996;, Nyanchama and Osborn 1994]. For
example, in Nyanchama and Osborn [1994], a consistent notion of contain­
ment is defined in terms of an is-junior relationship, where role, ri is-junior
to rj, if the privileges (permissions) of ri are a subset of the privileges of rj.
Implementing a permission inheritance scheme assumes a means of identi­
fying and naming individual permissions, and directly and indirectly
associating these permissions with each system role. For a self-contained
RBAC system, such as a relational database management system, permis­
sions can be centrally identified for any role. For systems that are imple­
mented as a distributed RBAC authorization database, such as that of the
RBAC/Web, the associated permissions for each role are not centrally
available. For these systems, containment can be expressed in terms of
inheritance of user-role relationships. The users authorized for a role
include all users authorized for all roles contained by the role.

The inherited user members of a role include all user members of all
roles that are contained by the role. For example, if u1 is explicitly
authorized for role A and role B is contained by role A, then u1 is implicitly
authorized for role B and can execute the permissions associated with role

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.

44 • D. F. Ferraiolo et al.

B. In this sense the permissions of role B are inherited by role A. As such,
RBAC/Web provides services for management of user authorization to roles
in terms of user-role relationships, role-role relationships, and constraints
on user-role relationships, while role-permission relationships are main­
tained on the back-end web servers. Because the NIST model places no
restrictions on assignment of permissions to roles, such assignments with
respect to sensitive objects must be under strict administrator control. This
is similar to the nondiscretionary practice of assigning security levels to
classified information in a DoD multilevel secure (MLS) environment.

As illustrated in Figure 3, role hierarchies can be combined to form a
directed acyclic graph. A directed acyclic graph (DAG) role representation
is a natural way of organizing roles to reflect authority, responsibility, and
competency. The more powerful roles (i.e., those that contain the greatest
number of permissions and are authorized for the fewest users) are found
at the top of the graph, and the more general roles are at the bottom.
Consider the Staff role; permissions of the Staff role are implicitly associ­
ated with all other roles in the enterprise, and the user members of all
other roles are implicitly members of the Staff role. As shown in Figure 3,
not all roles have to be related. For example, the roles AR Supervisor and
Cashier Supervisor are not hierarchically related, and as such are not
comparable under the contains relationship, but they may contain some or
all of the same roles. It should also be noted that not all roles are intended
to have explicit user members, and may exist for the sole purpose of
associating permissions.

Role hierarchies provide a powerful and convenient means of administra­
tively specifying and ensuring adherence to the principle of least privilege
[Sandhu et al. 1996; Feinstein 1995]. Since many of the responsibilities
overlap job categories, maximum privilege for each job category could cause
unlawful access. To address least privilege issues, roles representing orga­
nizational functions can be associated with only those privileges that need
to perform that function, and users can be made members of the roles that
are known to be authorized to perform that function. In the cases where
privileges completely overlap among roles, hierarchies of roles can be
established. For example, it may seem sufficient to allow physicians to have
access to all data within a patient record if their access is monitored
sufficiently. However, this would entail much more auditing and monitor­
ing than would be necessary with a better-defined access control mecha­
nism. With RBAC, constraints can be placed on physician access so that, for
example, only those fields that are associated with a particular type of
physician can be accessed. Note that multiple inheritance in role hierar­
chies is allowed, but not required, by the model.

2.4 Static Constraints

RBAC provides administrators with the capability of imposing constraints
on user-role and role-permission authorization. From a policy perspective,
constraints provide a powerful means of enforcing conflicts of interest and

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.

A Role-Based Access Control Model and Reference • 45

Fig. 3. Example role hierarchy.

cardinality rules for roles as they uniquely apply to an enterprise. The
association of a user with a role can be subject to the following constraints:

—the role for which the user is authorized is not mutually exclusive with
another role for which the user already possesses membership; and

—the numerical limitation that exists for the number of users authorized
for a role cannot be exceeded.

2.4.1 Static Separation of Duty. The first constraint, called static sepa­
ration of duty (SSD), can be used to enforce conflicts of interest policies
that may arise as a result of a user gaining authorization for permissions
associated with conflicting roles. This means that if a user is authorized as
a member of one role, the user is prohibited from being a member of a
second role. For example, a user who is authorized for the role Cashier in
the application depicted in Figure 3 may not be authorized for the role
Accounts Receivable Clerk. That is, the roles Cashier and Accounts Receiv­
able Clerk are mutually exclusive. The SSD policy can be centrally speci­
fied and then be uniformly imposed on specific roles. The constraint
function for mutually exclusive roles and the Static Separation of Duty
property is specified as follows:

Ea : role X role, the exclusive authorization set, which gives the pairs
of roles that are mutually exclusive for role membership.

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.

46 • D. F. Ferraiolo et al.

Static separation of duty. A user is authorized for a role only if that role
is not mutually exclusive with any of the other roles for which the user is
already authorized:

(@u : user)(@i, j : roles)u E RM[i] ∧ u E RM[j] f (i, j) E/ Ea. (2)

As described earlier, constraints are inherited within a role hierarchy.
For example, in Figure 3, since roles Accounts Receivable Clerk and Billing
Clerk have an SSD relationship, AR Supervisor also has an SSD relation­
ship with Billing Clerk. Another way of thinking about this is that any
instance of AR Supervisor can be treated as an instance of Accounts
Receivable Clerk. Therefore, the SSD constraint that Billing Clerk has with
Accounts Receivable Clerk must also apply to AR Supervisor. Rather than
including constraint inheritance as a formal property of role hierarchy,
constraints are better treated as side effects of imposing constraints on
roles within a hierarchy.

Because a containing role is effectively an instance of its contained roles,
no SSD relationship can exist between them. In the previous example, it
would not make sense to have an SSD relationship between AR Supervisor
and AR Clerk, since by definition there cannot be any conflict of interest.
Otherwise, a containment relationship should not have been used to inherit
implicit properties that conflict with explicit properties being defined.

2.4.2 Role Cardinality. Another type of constraint imposed on the
RBAC authorization database is the cardinality of a role. Some roles in an
organization may be occupied by a certain number of employees at any
given time. For example, consider the role of a department head. Although
over time a number of individuals may assume this role, only one individ­
ual may assume the responsibilities of the department head at a given
point in time. Cardinality constraints could also be used as a means of
enforcing licensing agreements. We formally define cardinality by the
following rule: ML(r : role) 3 ', the number of users (0 or more) that
may be authorized for role r.

Cardinality. The number of users authorized for a role cannot exceed the
role’s cardinality:

(@r : role)#RM[r] : ML[r]. (3)

Note that cardinality applies to all authorizations, that is, both explicitly
assigned and those resulting from inheritance (see Section 3.1.1).

2.5 Static Properties

The model constraints described in previous sections have a number of
important implications for properties of the RBAC model [Kuhn 1997]. The
practical significance of the next result is that a role cannot inherit another
role that was designated as mutually exclusive to it. This is clearly a

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.

A Role-Based Access Control Model and Reference • 47

2

Fig. 4. Example, SSD consistency for AR Clerk is in SSD with Billing Clerk.

desirable property, and this result shows that the rules are sufficient to
ensure it.

THEOREM 1. CONSISTENCY OF SSD AND CONTAINMENT. Two nonempty
roles, i and j (i.e., RM[i] * 0 and RM[j] * 0) can be mutually exclusive
only if they are incomparable within the role hierarchy poset: (i, j) E Ea

j ∨ j :f ¬ 2(i :

PROOF.

i).

22Suppose (i, j) E Ea ∧ (i : j ∨ j :
the containing role and let u be authorized for role i. Then, by role
inheritance,

u E RM[j].

But by SSD, (i, j) E/ Ea, which contradicts the assumption. e

An immediate corollary is that if there are any mutually exclusive roles,
then a nonempty role cannot be mutually exclusive with itself. This might
have been required as one of the basic rules, but as it happens, it is one of
their consequences.

Corollary 1. Consistency Among Contained Roles. A nonempty role
cannot be mutually exclusive with itself: @i : (i, i) E/ Ea.

i). Arbitrarily choose i as

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.

48 • D. F. Ferraiolo et al.

PROOF. By the theorem above,

i f (i, j) E/ Ea.

Substituting j := i gives

i 2: j ∨ j :

i : i f (i, i) E/ Ea.

2

2

By definition, i :

If there are any mutually exclusive roles, then those roles cannot have a
common upper bound.

THEOREM 2. NONINHERITANCE OF MUTUALLY EXCLUSIVE ROLES. If there is

2 i, so for all i,

(i, i) E/ Ea. e

2any pair (i, j) E Ea, then there can be no nonempty role k such that k :
i ∧ k : j.2

22

PROOF. Suppose there is some nonempty role k, and mutually exclusive
roles i, j such that

k : i ∧ k : j ∧ (i, j) E Ea.

Then because

22k : i ∧ k :

the role inheritance rule requires that

u E RM[i] ∧ u E RM[j],

so by the SSD rule,

(i, j) E/ Ea,

which contradicts the assumption. e

An immediate corollary is that the rules also prohibit the existence of a
“superuser” or “root” role that contains all other roles on the system.

Corollary 2. Nonexistence of Superuser Role. If there is any pair (i, j)

j,

2E Ea, then there can be no nonempty role r such that for all i, r :

Users thus cannot gain access to unauthorized privileges directly
through inheritance, but it is also important to show that access cannot be
gained indirectly.

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.

i.

A Role-Based Access Control Model and Reference • 49

THEOREM 3. TRANSITIVITY OF MUTUAL EXCLUSION. If a user inherits a role
that is mutually exclusive with another role, then the user cannot be

j ∧ (j, k) E Eaauthorized for the second role. That is, u E RM[i] ∧ i :
f E/ RM[k].

2

PROOF. Suppose u E RM[i] ∧ i :
by the Inheritance rule,

2 j ∧ (j, k) E Ea ∧ u E RM[k]. Then

u E RM[j].

But by SSD,

u E RM[j] ∧ u E RM[k] f (j, k) E/ Ea,

which contradicts the assumption. e

Mutual exclusion between roles and role cardinality are examples of
static constraints, i.e., restrictions on user/role authorization. Inheritance
rules apply to arbitrary static constraints C(RM[i]) and C(RM[j]) on
users in roles i and j. In contrast to privileges, which can be thought of as
inherited “downward,” static constraints are, in general, inherited “up­
ward”:

2

2

For roles i, j, if i :
and C(RM[j]), where C is some constraint on users authorized for role j,
then C(RM[i]).

PROOF. If i :

THEOREM 4. INHERITANCE OF STATIC CONSTRAINTS. j

j and C(RM[j]) then, by role inheritance,

u E RM[i] f u E RM[j].

So by definition of E,

RM[i] t RM[j],

so C(RM[i]) holds. e

As stated earlier, the complexity of dealing with consistency issues is
handled by the RBAC software through the implementation of a series of
integrity checks that are derived from the RBAC model.

RBAC maintains the integrity of the RBAC authorization database by
checking and enforcing the consistency rules described above. For example,
administratively imposing Accounts Receivable Clerk in SSD with Billing
Clerk, within the hierarchies illustrated in Figure 3, results in the SSD
relationships illustrated in Figure 4. That is, through inheritance of static
constraints (2.5), the following relationships are guaranteed: AR Supervi­
sor is in SSD with Billing Clerk; Billing Supervisor is in SSD with AR
Clerk; and AR Supervisor is in SSD with Billing Supervisor.

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.

http:PROOF.If

50 • D. F. Ferraiolo et al.

2.6 MC1:RBAC Activation Model

Dynamic properties complement static properties and refer to properties of
the model that involve either subjects or mappings from subjects to other
basic elements (i.e., subject to user and subject to active-roles). Dynamic
properties include role activation, permission execution, dynamic separa­
tion of duties, and object access. Dynamic properties provide extended
support for the principle of least privilege, in that each user has different
levels of permission at different times, depending on the role being per­
formed. These properties ensure that permissions do not persist beyond the
time that they are required for performance of duty. This aspect of least
privilege is often referred to as timely revocation of trust. Revocation of
privileges can be a rather complex issue without the facilities of dynamic
separation of duty, and has been ignored in the past for reasons of
expediency.

In applying dynamic security policy to a computer system, we speak of
subjects, which are active entities whose access to roles, operations, and
objects must be controlled. All requests by a user are carried out by
subjects acting on the user’s behalf. Each subject is uniquely referenced by
an identifier, which is used to determine whether the subject is authorized
for a role and can become active in the role. Role inheritance for the active
role set can be handled in a number of ways. The model leaves open the
question of whether roles are inherited automatically into the active role
set. (See Section 3.3 for the explanation of how RBAC/Web addresses this
question.) Subjects are defined by the following type:

type Subject of subject identifiers

The following functions formalize mappings for users, subjects, and roles:

SU(s : subject) 3 user, the subject to user mapping, which gives the
user associated with subject s;

AR(s : subject) 3 2role , the active role mapping, which gives the set of
roles in which subject s is active.

Role activation. A subject cannot have an active role that is not autho­
rized for its associated user: .

(@s : subect, u : user, r : roles)r E AR[s] f SU[s] E RM[r]. (4)

RBAC is described in terms of a series of mapping functions on the basic
types. By considering the subject-user and active-role mapping functions of
the model component M1, along with the mapping functions of the model
component M0, we can now express RBAC in terms of these relationships.
These mappings are illustrated in Figure 5 and are used along with a series
of constraints on these mappings to express the properties of the model.
The solid lines represent static mapping functions among RBAC elements,

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.

A Role-Based Access Control Model and Reference • 51

Fig. 5. RBAC functional mappings.

and the dotted lines represent dynamic mapping functions among RBAC
elements.

2.7 Dynamic Constraints

With RBAC, administrators can enforce an organization-specific policy of
dynamic separation of duty (DSD). With SSD, an organization can address
potential conflict-of-interest issues at the time a user’s membership is
authorized for a role. With DSD, it is permissible for a user to be
authorized as a member of a set of roles that do not constitute a conflict of
interest when acted on independently, but which produces policy problems
when allowed to be acted on simultaneously. For example, a user may be
authorized for both the roles of Cashier and Cashier Supervisor, where the
supervisor is allowed to acknowledge corrections to a Cashier’s open cash
drawer. If the individual acting in the role Cashier attempted to switch to
the role Cashier Supervisor, RBAC would require the user to drop his or
her Cashier role, and force the closure of the cash drawer before assuming
the role Cashier Supervisor. As long as the same user is not allowed to
assume both roles at the same time, a conflicts of interest situation will not
arise. Although this effect could be achieved through an SSD relationship,
DSD relationships generally provide the enterprise with greater opera­
tional flexibility.

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.

52 • D. F. Ferraiolo et al.

The DSD constraint is formally defined using the following constraint
function and property:

Er : role X role = the set of role pairs (i, j) that are mutually exclusive
with each other at activation, that is., no user may be active in both i and
j simultaneously

Dynamic separation of duty (DSD). A pair of roles may be designated as
mutually exclusive regarding role activation. That is, a user may be active
in only one of the two distinct roles so designated: .

(@s, t : subject)(@i, j : role) : s * t :

i E AR[s] ∧ j E AR[t] ∧ (i, j) E Er f SU[s] * SU[t]. (5)

Note that in the RBAC/Web implementation, dynamic separation of
duties is only relative to a user on a single web server (see Section 3.1.2).

2.7.1 Operation Authorization. Note that, unlike roles in an SSD rela­
tion, roles in a DSD relation can be hierarchically related through the
containment relation. This is consistent with the DSD property of restrict­
ing simultaneous activation of roles and that of a role hierarchy as a
representation of a user’s implicit and explicit authorizations for a role. As
such, authorization and activation can be treated as independent notions.

In earlier models, authorization and activation were linked, so that if a
subject selected a particular role ri, then any junior roles rj such that ri

2 rj would be brought into the active role set as well. With this approach, :
if there were any roles rj with a DSD relationship with ri, then ri could not
be activated because doing so would require the conflicting roles to be
simultaneously active [Kuhn 1997] (see Section 2.5). The model described
in this paper does not dictate a specific way to handle role inheritance for
active roles. An approach to this problem by means of inheritance and
activation hierarchies is described in Sandhu [1998]. An alternative, used
in the RBAC/Web implementation for Unix, described in Section 3.3, is to
forbid roles that are related hierarchically from having a DSD relationship.
This prohibition is enforced when role relationships are added or when
DSD relation Er is defined.

exec : subject X operation 3 boolean

1 if subject s can execute operation op
exec(s, op) = { 0 otherwise.

Operation authorization. A subject can execute an operation only if the
operation is authorized for the role in which the subject is currently active.

(@s : subject)(@op : operation)

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.

A Role-Based Access Control Model and Reference • 53

exec(s, op) f (?r : role)(?p : permission)r

E AR[s] ∧ p E RP[r] ∧ op E POp[p]. (6)

2.7.2 Object Access. To ensure enforcement of enterprise policies for
RBAC objects, subject access to RBAC objects must be controlled. The
following rule determines if a subject can access an RBAC object:

access : subject X operation X object 3 boolean

1 if subject s can access object o using operation op
access(s, op, o) = { 0 otherwise.

With the role activation property defined above, the object access autho­
rization property defined below ensures that a subject’s access to an RBAC
object can be achieved through authorized operations by authorized active
roles only.

Object access authorization. A subject can perform an operation on an
object only if there exists a role that is an element of the subject’s active
role set and the role contains a permission that authorizes the operation on
the object:

(@s : subject)(@o : object)(@op : operation)access(s, p, op) f

(?r : role)(?p : permission)r

E AR[s] ∧ p E RP[r] ∧ op E POp[p] ∧ o E POb[p]. (7)

3. RBAC/WEB IMPLEMENTATION

3.1 Design Issues

The NIST RBAC model provides the opportunity for the implementor,
based on requirements, to choose between several alternative implementa­
tion approaches. Implementation decisions must be made in the design of
the administration tools and in the process used to activate roles.

3.1.1 Administration. While RBAC can be treated as either a discre­
tionary or nondiscretionary access control method, the treatment in this
paper takes the latter approach. That is, one or more administration roles
distinct from user roles are required, insofar as their permissions deal
solely with the policy attribute elements of the model: user-to-role and
role-to-permission mappings, containment relations, cardinality con­
straints, and separation of duty constraints. Users not assigned to admin­
istration roles are denied these permissions and must operate within the
confines of the roles defined for them and assigned to them by an adminis­
trator.

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.

54 • D. F. Ferraiolo et al.

The administrative model for RBAC/Web follows this approach. There is
a single role designated for administration. In the context of the implemen­
tation, this role is required to access administrative tools and, conse­
quently, the RBAC database. The administrative model for RBAC/Web is
minimal. An example of a richer, more flexible, model can be found in
Sandhu et al. [1997].

Another design decision for administration in RBAC/Web is how to
manage role authorization when there are role hierarchies. In the NIST
RBAC model, if a user is authorized for a role r0 and r0 inherits r1, then
that user is also authorized for r1. What should happen when authorization
for r0 is removed? Should the user retain the authorization for r1 or should
the authorization for r1 be removed as well?

In RBAC/Web, the design decision was made to remove the authorization
for r1 also. The goal is to make administration in RBAC/Web as easy as
possible, while making it difficult for an administrator to make a serious
mistake. To accomplish this, the decision was to keep the number of
operations in role authorizations to a minimum. Since authorizing a role
automatically authorizes the roles it inherits (this is the definition of role
inheritance), it is consistent to remove authorizations for inherited roles
when authorization for a parent is removed. If the administrator wishes
these inherited roles to be authorized for the user, those operations must be
done explicitly. With this approach, administrative errors result in roles
being unintentionally left unauthorized. The alternative approach, leaving
inherited roles authorized, could result in roles being unintentionally left
authorized.

Removing authorization for inherited roles when authorization for a
parent is removed also results in constantly reminding the administrator of
the organization’s role hierarchy. To further support this approach, the
RBAC/Web Admin Tool differentiates between role assignment and role
authorization as defined in the NIST RBAC model. A role is assigned to a
user explicitly by the Admin Tool. A role is authorized as defined in the
NIST RBAC model if that role is assigned to the user or is inherited by a
role assigned to the user. It follows that if an administrator attempts to
assign a role to a user who, by virtue of inheritance from an assigned role,
is already authorized for that role, then that attempt is deemed an error.

3.1.2 Role Activation. In the NIST RBAC model, there is a function,
AR(s : subject) 3 2role, that maps subjects that identify a user (e.g., a
login name) to active role sets (ARS) (see Section 2.6). The subject repre­
sents a user within the implementation environment. There is also a
function in the NIST model, SU(s : subject) 3 user, which maps subjects
to users; that is, given a subject, the function SU returns the user whom
that subject represents. An implementation of the NIST RBAC model must
define the concept of subject within the context of the implementation
environment, the function SU, and the function AR.

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.

A Role-Based Access Control Model and Reference • 55

Within the environment of a single computer system, e.g., a Unix system,
a subject could be defined as the process ID of a user process. The user
process represents the user and performs operations in the user’s name. In
the world wide web environment, each access (e.g., click on a hyperlink) is
analogous to the creation of a user process on the web server to perform the
access. Once the access completes, the user process is removed.

Due to the short lifetime of user processes within the web server
environment, defining the process ID of these processes as the user’s
subject implies that an active role set must be established upon each access
request. Since this is inefficient and unnecessary, RBAC/Web defines the
user’s subject as the user’s login name on the web server. On a web server,
each user has only one login name. Thus, there is only one subject per user;
that is, the function SU consists of ordered pairs of the form
(loginname, user), one for each web server user. Consequently, there is
only one active role set per user per web server; that is, the function AR
consists of ordered pairs of the form (loginname, ARS), one for each web
server user. There is only only one active role set per user per web server,
regardless of the location and number of browser windows that may be
open to the web server by the user.

RBAC/Web implements this approach by maintaining the user’s ARS in a
file on the web server. This file has the user’s login name, i.e., the user’s
subject, as part of the file name—thus making it possible to locate a user’s
ARS, given the user’s login name. Each time a user attempts to access a
URL, RBAC/Web determines whether the user has access by consulting
this file. The RBAC/Web Session Manager, a common gateway interface
(CGI) script, part of RBAC/Web, manages the contents of a user’s ARS. In
order to simplify the process of determining the contents of a user’s ARS,
when a user has authorized roles that have DSD relationships, the user is
presented with a selection of the largest subsets of his or hers set of
authorized roles and asked to choose. For the scenario describing how users
access a Web server enhanced with RBAC/Web, see Section 3.6.2.

The DSD relationship of the NIST RBAC model places a constraint on
active role set contents; that is, any pair of roles in the active role set
cannot have a DSD relationship. Given this constraint, the question arises
as to how to determine active role set contents when role pairs have both a
hierarchical and a DSD relationship.

Consider the following example: suppose role r1 and role r2 have a DSD
relationship, r1 is authorized for user U, and r1 inherits r2. When establish­
ing U’s active role set, the following apparent contradiction results. Role r2

belongs in U’s active role set because r1 inherits r2 but r2 cannot be in U’s
active role set because r1 and role r2 have a DSD relationship. There are at
least two possibilities for resolving this in an implementation:

—the inheritance relationship between a pair of roles in DSD is overridden
and one role or the other (but not both) is placed in the active role set; or

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.

56 • D. F. Ferraiolo et al.

—the situation, that is, a pair of roles related both hierarchically and
having a DSD relationship, is never allowed in the RBAC database.

The design decision made by RBAC/Web for Unix is to implement the
latter. In RBAC/Web for Unix, the Admin Tool does not permit a role pair
to simultaneously have both a hierarchical and a DSD relationship. Thus,
the apparent contradiction in active role set contents can never occur. This
design decision is based on the desire for all role relationships specified in
the RBAC database to hold at all times and in all situations. The goal is to
simplify the task of administration. Administrators are not required to be
aware of situation-sensitive rules. They are able to know that the RBAC
database holds throughout the administration, role activation, and enforce­
ment of role relationships and access.

Alternative approaches are equally valid, depending on implementation
requirements. One such alternative approach is described by Sandhu
[1998],which describes the distinction between the usage and activation
aspects of role hierarchies. In terms of these concepts, RBAC/Web’s imple­
mentation of role hierarchies combines both aspects into one hierarchy
model.

3.2 Components

RBAC for the world wide web (RBAC/Web) is an implementation of the
NIST RBAC model for web servers on both the internet and intranets.
RBAC/Web can be used in conjunction with existing WWW authentication
and confidentiality services. These include username/password and Secure
Socket Library (SSL). User identification information is passed to RBAC/
Web by the web server. It is the responsibility of the web server to
authenticate user identification information and provide confidential data
transmission as configured by the web server administrator.

RBAC/Web places no requirements on a browser. Any browser that can
be used with a particular web server can be used with that server enhanced
with RBAC/Web. RBAC/Web is implemented in two environments: UNIX
(e.g., Netscape, Apache servers) and Windows NT (e.g., Internet Informa­
tion server, website, or purveyor).

3.3 RBAC/Web for Unix

RBAC/Web for Unix implements MC0 and MC1, that is, the role properties:
hierarchy, cardinality, SSD, and DSD. Components of RBAC/Web are
shown in Table I; RBAC/Web for UNIX uses all components in Table I.

With RBAC/Web for UNIX, there are two ways to use RBAC/Web with a
UNIX Web server. The simplest is by means of the RBAC/Web CGI. The
RBAC/Web CGI can be used with any existing UNIX server without
modifying its source code. RBAC URLs are passed through the web server
and processed by the RBAC/Web CGI. RBAC/Web configuration files map
URLs to file names, while providing access control based on the user roles.
Installation of the RBAC/Web CGI is similar to the installation of the web
server.

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.

A Role-Based Access Control Model and Reference • 57

Table I. RBAC/Web Components

Database Files specifyng relationships between users
and roles, role hierarchy, constraints on user/
role relationships, current active roles, and
relationship between roles and operations.

API Library Specification used by web servers and CGIs
to access RBAC/Web database. The
application program interface (API) is the
means to add RBAC to any web server
implementation. API library is a C and Perl
library that implements RBAC/Web API.

CGI Implements RBAC as a CGI for use with any
existing web server without modifying the
server. RBAC/Web CGI uses RBAC/Web API.

Session Manager RBAC/Web Session Manager activates roles
by establishing a user’s current active role set
(ARS).

Admin Tool Allows server administrators to create users,
roles, and permitted operations; associate
users with roles and roles with permitted
operations; specify constraints on user/role
relationships; and maintain the RBAC
database. Administrators access the RBAC/
Web Admin Tool with a Web browser.

While RBAC/Web CGI is relatively simple to install and use, it is not as
efficient as performing access control directly in the web server. The other
way to use RBAC/Web is to modify the UNIX Web server to call the
RBAC/Web API to determine RBAC access. A URL is configured as an
RBAC-controlled URL by means of the web server configuration files that
map URLs to file names.

Some web servers for a UNIX environment, such as Netscape and
Apache, divide their operation into steps and allow each step to be
enhanced or replaced by means of a configuration parameter. This allows
web server operations to be modified without having to change the server’s
source code. For these web servers, the RBAC/Web API can be integrated
by simply providing the appropriate calling sequence and modifying config­
uration parameters.

3.4 RBAC/Web for Windows NT

RBAC/Web for Windows NT only implements MC0, that is, the static
properties: hierarchy, cardinality, and SSD. In order to implement DSD in
a Windows NT environment, it is necessary to change the session establish­
ment mechanisms of Windows NT. Such a difficult task was beyond the
scope of the project. The task is particularly difficult in that neither
documentation nor source code for Windows NT session establishment is
public information. Because RBAC/Web for Windows NT only implements

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.

58 • D. F. Ferraiolo et al.

MC0 and because built-in NT security mechanisms are closely compatible
with RBAC, RBAC/Web for Windows NT needs only the database and
administrative tool components shown in Table I. RBAC/Web for Windows
NT requires no modification of Web server internals or access to source
code.

Because Windows NT security mechanisms are uniform between Win­
dows NT itself and many Web servers that run on Windows NT, RBAC/Web
for Windows NT can also manage access to the Windows NT File System as
well as Web resources. In addition to the Admin Tool which manages
user/role and role/role relationships, the tool, RGP-Admin [Barkley and
Cincotta 1998], was implemented to manage role/permission relationships
in the Windows NT environment.

3.5 RBAC Database

The RBAC database is an implementation of the RBAC model component
MC1 for RBAC/Web for Unix and MC0 for RBAC/Web for Windows NT. The
RBAC database elements are created using the administrative tool that
graphically displays and maintains these relationships. In addition, the
RBAC administrative tool maintains the integrity of the RBAC database by
checking and enforcing consistency rules[Gavrila and Barkley 1998].

An operation as defined in Section 2.2 represents an access method to a
set of one or more protected RBAC objects. When authorizing user member­
ship into a role, the user is implicitly provided with the potential for
exercising operations associated with the role. Permissions in the RBAC/
Web are HTTP methods that an end-user can perform on RBAC-controlled
URLs.

In general, constraints provide confidence as to the adherence of enter­
prise-wide policies. In theory, similar effects can be achieved by establish­
ing procedures and sedulous actions of administrators. For example, ad­
ministrators can maintain and share a list of role pairs known to be
mutually exclusive and ensure that an individual user is never authorized
for both roles. However, the reality is that procedures break down and
administrators get reassigned over time. The constraints imposed by
RBAC/Web provide management and regulators with the confidence that
critical security policies are uniformly and consistently enforced within the
network and, as such, contribute to the network’s operational assurance.

Associated with objects managed by RBAC/Web are the ACLs that reside
with each web server. With RBAC/Web for Unix, an ACL is organized as a
list of roles, where, for each role, there is a list of HTTP methods under
which a user acting in the role is permitted to access an associated URL.
RBAC/Web for NT makes use of the ACLs built into Windows NT where a
role maps to a Windows NT domain or local group. The collection of ACLs is
organized and managed as the collection of role-privilege relationships.

In the context of RBAC/Web, each subject represents a user active in one
or possibly many roles. A user establishes an active role set, that is, a
subset of the roles in which the user has membership is activated. A user’s

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.

A Role-Based Access Control Model and Reference • 59

Fig. 6. RBAC/Web Admin Tool: Role hierarchy display.

authorization (a consequence of role membership) is a necessary, but not
always sufficient, condition for a user to be permitted to execute a privilege.
Other organizational policy considerations or constraints that pertain to
authorizing users to execute permissions may need to be taken into
consideration.

RBAC/Web requires that a user be authorized as active in a role before
being permitted to perform an operation or access a URL. This provides the
context for imposition of other policy checks. In the case of RBAC/Web for
Unix, administrators can enforce an organization-specific dynamic separa­
tion of duty (DSD) policy.

3.6 Use Scenario

There are two use scenarios. One describes how an administrator manages
access policy; the other describes end-user interaction.

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.

60 • D. F. Ferraiolo et al.

Fig. 7. RBAC/Web Admin Tool: Display for managing user/role and role/role relationships.

Fig. 8. RBAC/Web end-user perspective.

3.6.1 Use by Administrators. The RBAC/Web Admin Tool manages us­
er/role and role/role associations. The RBAC/Web Admin Tool manages the
specification of user/role assignments, role hierarchies, static separation of
duty constraints, dynamic separation of duty constraints (in the case of
RBAC/Web for Unix), and role cardinality.

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.

A Role-Based Access Control Model and Reference • 61

In order to reduce errors in administration, Admin Tool differentiates
between role assignment and role authorization as defined in the NIST
RBAC model. A role is assigned to a user explicitly by Admin Tool. A role is
authorized as defined in the NIST RBAC model if that role is assigned to
the user or is inherited by a role assigned to the user. Role assignment
helps an administrator maintain awareness of the role hierarchies that
describe an organization.

The Admin Tool manages a RBAC database by means of a fixed set of
operations that can be performed on the database. A formal description of
these operations can be found in Gavrila and Barkley [1998].

RBAC/Web is used to manage access to the Admin Tool itself. There is a
single special administrative role that must be authorized for a user to
access the Admin Tool and RBAC database.

The example access control policy for an accounting department, shown
in Figure 4, is illustrated in the Admin Tool screen captures of Figures 6
and 7. The role hierarchy display in Figure 6 presents a graphical view of
the sample accounting department policy. In particular, it shows the
accounting department’s role hierarchy. Figure 6 and the role relationships
of the selected role AR Supervisor (shaded) show that the role AR Supervi­
sor has a SSD relationship with the roles Billing Supervisor and Billing
Clerk. These SSD relationships are indicated by enclosing the roles Billing
Supervisor and Billing Clerk in pentagons instead of ovals. The parenthe­
sized expressions, (n, m), under each role name in Figure 6, indicates the
cardinality of each role (m) and how many users the role was authorized
for (n). The “U” indicates unlimited cardinality, i.e., there is no limit on the
number of users who may be authorized for the role.

The left frame of Figure 7 shows the display for managing user/role
assignments. The frame shows that user Smith was assigned the role AR
Supervisor. The frame also shows that, in concert with the role/role
associations defined by accounting department policy as shown in Figure 6,
Smith could also be assigned the role Cashier. However, Smith could not be
assigned the roles Accounting, Accounts Receivable, or Accounts Receivable
Clerk because these roles are inherited by the role AR Supervisor; nor
could Smith be assigned the role Billing Clerk or Billing Supervisor
because these roles have an SSD relationship with the role AR Supervisor.
These role/role associations can be seen using the graphical display shown
in Figure 6.

The right frame of Figure 7 shows the display for managing role/role
associations. It presents buttons for establishing and removing all role/role
associations. The frame shows that the role AR Supervisor was selected.
Since the role AR Supervisor was selected in the right frame of Figure 7,
the Role Hierarchy display of Figure 6 also shows the role AR Supervisor
selected.

Admin Tool enforces a set of consistency requirements on the RBAC/Web
database. These consistency requirements, described in Gavrila and Bark-
ley [1998], ensure that user/role and role/role relationships have the

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.

62 • D. F. Ferraiolo et al.

required relationships to each other. For example, as described in Section
3, RBAC/Web for Unix requires that any roles that have a DSD relation­
ship cannot have a hierarchical relationship.

3.6.2 Use by End-Users. From the end-user’s perspective, because DSD
is not supported, interaction with a web server enhanced with RBAC/Web
for Windows NT is exactly the same as interacting with any other Windows
NT web server. However, with RBAC/Web for Unix, before access to a URL
controlled by RBAC is permitted, end-users must establish an active role
set (ARS) as shown in Figure 8. End-users choose and/or are assigned a
current active role set. The ARS determines the HTTP methods that the
end-user can perform on RBAC-controlled URLs. The ARS remains in effect
until the end-user establishes a new ARS. It is the RBAC/Web session
manager that allows users to change their ARSs.

A user may be assigned roles that have DSD relationships. If this is the
case, the session manager enables users to choose the subset of their
assigned role set that they would like to have in their ARS. Users are
presented with a list of subsets that do not violate any DSD relationships
and asked to choose. In order to minimize the number of choices, the
subsets in the list, taken from the set of all possible subsets of a user’s
assigned roles, contains the largest subsets that do not violate any DSD
relationships. Once the choice is made, an ARS consisting of all assigned
roles in the chosen subset and all roles that the assigned roles inherit is
established. If there are no DSD relationships among the roles assigned to
a user, then the ARS consisting of all authorized roles is automatically
established. Note that because the RBAC/Web implementation applies only
to a single server, dynamic separation of duties is not implemented relative
to users across multiple servers (e.g., in an environment where a collection
of servers constitutes an administrative security domain), but only relative
to a user on a single web server (see Section 3 for how RBAC/Web
implements a user’s ARS on a web server).

4. CONCLUSIONS

Although intranets can offer great benefits to a company or government
agency, security problems remain. For intranets to reach their full poten­
tial in enterprise computing, access control mechanisms must be in place
that can conveniently, and cost effectively, regulate user access to informa­
tion, while providing management with confidence that their critical poli­
cies are faithfully and consistently enforced across administrative bound­
aries. To solve these and other authorization problems, NIST has initiated
an effort to provide and promote the use of role-based access control
(RBAC) for intranet web servers. RBAC is particularly attractive for
intranet applications because it can reduce the complexity and cost of
authorization management. In addition, RBAC provides a context for the
specification and enforcement of complex security policies that are often
impractical or even impossible to enforce through the direct use of conven­
tional access control mechanisms.

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.

A Role-Based Access Control Model and Reference • 63

RBAC is administered through roles and role hierarchies that mirror an
enterprise’s job positions and organizational structure. Users are assigned
membership into roles consistent with a user’s duties, competency, and
responsibility. To address conflicts of interest issues, constraints are im­
posed on user membership in roles and on a user’s ability to activate a role.
Complexities introduced by simultaneously supporting mutually exclusive
roles and role hierarchies are handled by the RBAC software, making
security administration easier. Roles, role hierarchies, and constraints
provide the context with which the intranet administrators can specify, and
RBAC/Web servers can enforce, the specifics of a large variety of laws,
regulations, and business practices.

RBAC supports several well-known security principles and policies im­
portant to commercial and government enterprises that process unclassi­
fied but sensitive information [Ferraiolo et al. 1993; van Solms and van der
Merve 1994]. These include specification of competency to perform particu­
lar tasks; the enforcement of least privilege for administrators and general
users; and the specification, as well as enforcement, of conflicts of interest
rules, which may entail duty assignment and dynamic and static separa­
tion of duties. For RBAC/Web, these policies can be enforced at the time
that users are authorized as members of a role, at the time of role
activation (e.g., when a role is established as part of a user’s active session),
or at the time the user attempts to access a URL.

Under RBAC, intranet administrators are provided with a single view of
the RBAC authorization database at a level of abstraction that is intuitive
and consistent with the way the enterprise is structured and conducts
business. RBAC/Web thereby bridges the huge gap between enterprise
laws, regulations, and business practices and the details of the underlying
access control mechanisms of web servers.

REFERENCES

BARKLEY, J. AND CINCOTTA, A. 1998. Managing role/permission relationships using object
access types. In Proceedings of the 3rd ACM Workshop on Role-Based Access Control
(RBAC, Fairfax, VA, Oct. 22-23). ACM Press, New York, NY, 73– 80.

FERRAIOLO, D. AND KUHN, D. R. 1992. Role based access control. In Proceedings of the 15th
Annual Conference on National Computer Security. National Institute of Standards and
Technology, Gaithersburg, MD, 554 –563.

FERRAIOLO, D., CUGINI, J., AND KUHN, D. R. 1995. Role based access control: Features and
motivations. In Proceedings of the 11th Annual Conference on Computer Security
Applications. IEEE Computer Society Press, Los Alamitos, CA, 241–248.

FERRAIOLO, D. F., GILBERT, D. M., AND LYNCH, N. 1993. An examination of federal and
commercial access control policy needs. In Proceedings of the 16th National Conference on
Computer Security (Baltimore, MD, Sept. 20 –23). National Institute of Standards and
Technology, Gaithersburg, MD, 107–116.

FEINSTEIN, H. L. 1995. Final report: NIST small business innovative research (SBIR) grant:
Role based access control: Phase 1. SETA Corporation. SETA Corporation.

GAVRILA, S. AND BARKLEY, J. 1998. Formal specification for role-based access control user/role
and role/role relationship management. In Proceedings of the 3rd ACM Workshop on
Role-Based Access Control (RBAC, Fairfax, VA, Oct. 22-23). ACM Press, New York, NY,
81–90.

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.

64 • D. F. Ferraiolo et al.

HOFFMAN, J. 1997. Implementing RBAC on type enforced systems. In Proceedings of the 13th
Annual Conference on Computer Security Applications. IEEE Computer Society Press, Los
Alamitos, CA, 158 –163.

JANSEN, W. A. 1988. Revised model for role based access control. NIST-IR 6192. National
Institute of Standards and Technology, Gaithersburg, MD.

KUHN, D. R. 1997. Mutual exclusion as a means of implementing separation of duty
requirements in role-based access control systems. In Proceedings of the 2nd ACM
Workshop on Role-Based Access Control (Fairfax, VA, Nov. 6-7). ACM Press, New York, NY,
23–30.

NYANCHAMA, M. AND OSBORN, S. L. 1994. Access rights administration in role-based security
systems. In Proceedings of the IFIP Working Group 11.3 Working Conference on Database
Security. Elsevier North-Holland, Inc., Amsterdam, The Netherlands.

SANDHU, R., COYNE, E. J., FEINSTEIN, H. L., AND YOUMAN, C. E. 1996. Role-based access control
models. IEEE Comput. 29, 2 (Feb.), 38 –47.

SANDHU, R. AND MUNAWER, Q. 1998. How to do discretionary access control using rules. In
Proceedings of the 3rd ACM Workshop on Role-Based Access Control (RBAC, Fairfax, VA,
Oct. 22-23). ACM Press, New York, NY, 47–54.

SANDHU, R. 1998. Role activation hierarchies. In Proceedings of the 3rd ACM Workshop on
Role-Based Access Control (RBAC, Fairfax, VA, Oct. 22-23). ACM Press, New York, NY,
33– 42.

SANDHU, R., BHAMIDIPATI, V., COYNE, E., GANTA, S., AND YOUMAN, C. 1997. The ARBAC97
model for role-based administration of roles: Preliminary description and model. In
Proceedings of the 2nd ACM Workshop on Role-Based Access Control (Fairfax, VA, Nov.
6-7). ACM Press, New York, NY, 41–54.

SIMON, R. AND ZURKO, M. E. 1997. Separation of duty in role based access control
environments. In Proceedings of the 10th IEEE Workshop on Computer Security Founda­
tions (Rockport, MA, June 10-12). IEEE Computer Society Press, Los Alamitos, CA,
183–194.

VON SOLMS, S. H. AND VAN DER MERVE, I. 1994. The management of computer security profiles
using a role-oriented approach. Comput. Secur. 13, 8, 673– 680.

Received: March 1998; revised: October 1998; accepted: October 1998

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.

