TAC DRAFT
04/17/98
 TAC DRAFT

FIPS PUB xyz

FEDERAL INFORMATION

PROCESSING STANDARDS PUBLICATION

(Date)

U.S. DEPARTMENT OF COMMERCE/National Institute of Standards and Technology

KEY RECOVERY STANDARD

(DRAFT)

CATEGORY: COMPUTER SECURITY, CRYPTOGRAPHY

This is a working draft of the Technical Advisory Committee to Develop a Federal Information Processing Standard for the Federal Key Management Infrastructure (TAC). As such, it is not a Federal Government document.

Foreword
The Federal Information Processing Standards Publication Series of the National Institute of Standards and Technology (NIST) is the official publication relating to standards and guidelines adopted and promulgated under the provisions of Section 5131 of the Information Technology Management Reform Act of 1996, and the Computer Security Act of 1987, Public Law 104‑106. Under these mandates, the Secretary of Commerce promulgates standards and guidance pertaining to the efficiency, security and privacy of Federal computer systems. The National Institute of Standards and Technology, through its Information Technology Laboratory, has the mission of developing standards, guidelines and associated methods and techniques for computer systems, and providing technical assistance to industry and government in the implementation of standards.

Comments concerning Federal Information Processing Standards Publications are welcomed and should be addressed to the Director, Information Technology Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899.

Shukri Wakid, Director

Information Technology Laboratory

Abstract
This standard specifies requirements to be met by government Key Recovery Systems. Such systems provide for the decryption of stored or communicated data when access to the data is properly authorized.

ALTERNATIVE TO THE ABOVE: This standard specifies requirements to be met by key recovery components used by Federal government agencies. These components provide for the recovery of keys which will be used for the decryption of stored or communicated data when access to the data is properly authorized.

Key words: ADP security, computer security, Key Recovery, Federal Information Processing Standard.

FIPS PUB xyz

Federal Information

Processing Standards Publication XXX

(Date)

Announcing the

KEY RECOVERY STANDARD
Federal Information Processing Standards Publications (FIPS PUBS) are issued by the National Institute of Standards and Technology (NIST) after approval by the Secretary of Commerce pursuant to Section 5131 of the Information Technology Management Reform Act of 1996, and the Computer Security Act of 1987, Public Law 104-106.

1.
Name of Standard. Key Recovery Standard.

2.
Category of Standard. Computer Security, Cryptography.

3.
Explanation. This Standard specifies requirements for key recovery components. These components provide for the recovery of keys to be used for the decryption of stored or communicated ciphertext when the decryption keys are not otherwise available. Key recovery is motivated by three primary scenarios:

1. recovery of stored data on behalf of an organization (or individual) e.g., in response to accidental loss of keys;

2. recovery of stored or communicated data on behalf of an organization (e.g., for the purposes of monitoring or auditing activities); and

3. recovery of communicated or stored data by lawfully authorized authorities.

The first scenario supports the ability to regain access to data that would otherwise be lost. The second scenario encompasses internal investigation authorized by an organization. The final scenario encompasses data acquired under the authorization of court orders for wiretaps, search and seizure orders, civil suit subpoenas, etc

A Key Recovery System (KRS) manages cryptographic keys in support of data recovery when normal key access mechanisms fail. These systems must be carefully designed so that plaintext may be recovered in a timely manner, and so that only authorized recoveries are permitted. Therefore, security is a critical factor in any KRS design.

The purpose of this standard is to specify requirements for key recovery components, and to enable the validation of components claiming conformance. The standard encompasses the security (from an implementation, managerial and operation perspective) and the availability of key recovery components, as well as defining interoperability requirements.

4.
Approving Authority. Secretary of Commerce.

5.
Maintenance Agency. U.S. Department of Commerce, National Institute of Standards and Technology (NIST), Information Technology Laboratory.

6.
Cross Index.
 a. FIPS PUB 46‑2, Data Encryption Standard.

 b. FIPS PUB 81, DES Modes of Operation.

 c. FIPS PUB 140‑1, Security Requirements for Cryptographic Modules.

Other NIST publications may be applicable to the implementation and use of this standard. A list (NIST Publications List 91) of currently available computer security publications, including ordering information, can be obtained from NIST.

7.
Applicability. This standard is applicable to all Federal departments and agencies and their contractors. This standard shall be used in designing, acquiring and implementing encryption and key recovery components and systems that Federal departments and agencies use or operate, or which are operated for them under contract. Components that implement cryptography for purposes other than general encryption (e.g., digital signatures, password encryption, or access control techniques) are outside the scope of this standard. To prevent the recovery of cryptographic keys used for these other purposes, it is incumbent on the user to ensure that different keys are used for encryption than are used for other purposes (e.g., digital signatures).

This standard shall apply to systems when both of the following are true:

a. Encryption is or will be employed to achieve the confidentiality of communicated or stored data.

b. The data protected by encryption are not classified according to Executive Order 12356, entitled “National Security Information,” or to its successor orders, or to the Atomic Energy Act of 1954, amended.

Systems in Federal departments or agencies that process data classified according to either of the acts cited in "b" above may employ encryption devices approved for classified data protection in order to protect unclassified data in lieu of this standard.

This standard supersedes FIPS 185. However, components which have been built to conform to FIPS 185 are still approved for U.S. Government use. The SKIPJACK encryption algorithm and the Key Exchange Algorithm used by FIPS 185 components continue to be FIPS approved.

This standard and components conforming to this standard, may be adopted and used by non-Federal Government organizations on a voluntary basis.

8.
Applications. This standard is appropriate for use in a variety of applications, including:

1. When computer files are encrypted for secure storage or transmission;

2. When electronic mail is encrypted before transmission among communicating entities; and

3. When electronic voice communications are encrypted for privacy.

9.
Specifications. Federal Information Processing Standard (FIPS xyz) Key Recovery Standard (affixed).

10.
Implementations. System components, or parts thereof, conforming to this standard may be implemented in software, firmware, hardware, or any combination thereof. All cryptographic modules employed in components of such systems shall comply with FIPS 140-1. FIPS approved encryption algorithms (e.g., DES) shall be used in Federal applications of systems conforming to this standard. The use of new encryption algorithms which are FIPS approved after the date of the standard is also permitted.

Information about the validation of implementations conforming to this standard may be found in Section X of the attached Specification. Additional information may be obtained from the National Institute of Standards and Technology, Information Technology Laboratory, Attn: Key Recovery Validation, Gaithersburg, MD 20899.

11.
Export Control. Implementations of this standard are subject to export controls as specified in Title 15, Code of Federal Regulations, Parts 730-774 and Title 22, Code of Federal Regulations, Parts 120-130. Exporters are advised to contact the Encryption Policy Controls Division at the Department of Commerce, Bureau of Export Administration for more information.

12.
Patents. Implementations of this standard may be covered by U.S. and foreign patents.

13.
Implementation Schedule. The effective date of this standard is <insert date>. From approval of this FIPS by the Secretary of Commerce to its effective date, agencies may purchase components that have been affirmed in writing from the manufacturer as complying with this standard. From the effective date until six months after the establishment of the validation program by NIST, agencies that have determined a need for key recovery components shall purchase components that have been affirmed in writing by the manufacturer as complying with this standard. A copy of the written affirmation shall have been sent to the Director, Information Technology Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899.

[image: image7.png]Product 2.ppt

Key Recovery Agent System

KRI
Generation Delivery
Function Function

Key Recovery
Agent

Function

For a one year period following the six month period after the establishment of the validation program, agencies shall purchase validated key recovery components, or components that have been submitted for validation. After this period, only validated key recovery components will be considered as meeting the provisions of this standard.

14.
Glossary. The following terms are used as defined below for purposes of this standard:

Abstract Machine

The underlying hardware or firmware abstraction to which the software is written.

Accountability

Assurance
(1) Confidence that an entity meets its security objectives. (2) The degree of confidence that a product correctly implements the security policy.

Auditable Events
Events within a key recovery product which may appear in an audit log (see Sections XX, XY,…XZ).

Authentication Data

(1) Information used to authenticate an entity, e.g., a password, PIN, biometric, or response to a challenge. (2) Information used to verify the claimed identity of a user.

Authentication Information

See “Authentication Data”.

Authentication Mechanism

A technique used to authenticate an entity, e.g., user ID and password, token, biometric or challenge-response.

Authentic Public Key Source
Used to provide a certificate infrastructure to support the use of public key cryptography within the Key Recovery System.

Authorized Administrator
A user to whom authorization has been granted to perform administrative operations which may affect the enforcement of the trusted system.

Authorized key recovery
Key recovery either with the permission of the owner of the data or as otherwise permitted by law.

Authorized Request
A request based on a legal and lawful right for access by a data owner or other authorized entity.

Authorized User

(1) A user who is authorized to access a system to perform one or more actions. (2) A user who may perform an operation in accordance with the system security policy.

Common Criteria (CC)
An international standard for security in information security components.

Common Criteria Evaluation Assurance Level (EAL)

A predefined set of assurance components that represents a point on the CC assurance scale.

Common Criteria Protection Profile
An implementation-independent set of security requirements for a category of components which meet specific consumer needs.

Confidentiality
(1) Assurance that the information is not disclosed to unauthorized entities or processes. (2) The property that sensitive information is not disclosed to unauthorized individuals, entities or processes. (3) The property that information is not made available or disclosed to an unauthorized user, process or object.

Configurable Capability

A capability feature that is available but need not be selected for use.

Configuration Item
Items (e.g., documents, software, hardware) which are under configuration control.

Configuration Management (CM)
The management of security features and assurances through the control of changes made to a system’s hardware, software, firmware, documentation set, test, test fixtures and test documentation throughout the development and operational life of the system.

Cryptographic Subsystem
Provides a set of cryptographic services (e.g., encryption and decryption) to an application.

Data
Voice, facsimile, computer files, electronic mail, and other stored or communicated information.

Data Encryption Key (DEK)

A symmetric key used to encrypt data.

Data recovery
Decryption of encrypted data with the aid of at least one data recovery agent.

Data Recovery Field (DRF)

Change to Key Recovery Field

Data Recovery System
The system/subsystem used to recover encrypted data using a recovered target key obtained by the Key Recovery Requestor System.

Decryption
(1) Transformation of ciphertext form of data to plaintext form. (2) The process of changing ciphertext into plaintext.

Encapsulated Key Recovery
A method of key recovery in which keys, key parts or key related information is maintained outside a Key Recovery Agent. Some of the Key Recovery Information is wrapped so that it is protected against disclosure when it is stored outside a security perimeter.

Encryption
(1) Transformation of plaintext form of data to ciphertext form. (2) A process of transforming plaintext into ciphertext for the purpose of security or privacy. (3) Transforming text into code in order to conceal its meaning. The process of transforming data to an unintelligible form in such a way that the original data either cannot be obtained (one-way encryption), or cannot be obtained without using the inverse decryption process. (3) Conversion of plaintext to ciphertext through the use of a cryptographic algorithm.

End User System
A system containing a user application and the encryption mechanism used to secure that application. The end user system is supported by the key recovery system (i.e., the end user system may include key recovery components, or another system may provide key recovery on behalf of the end user system). The encryption mechanism is controlled in accordance with key recovery policy.

Escrow Key Recovery
A method of key recovery where the secret or private keys, key parts or key related information to be recovered is stored by one or more Key Recovery Agents. Other Key Recovery Information may be available elsewhere.

Evidence of Origin

Should be “Proof of Origin”.

Evidence of Receipt

Should be “Proof of Receipt”.

FIPS compliant
Meeting all requirements of a specified level of this standard.

Flaw Hypothesis
A system analysis and penetration technique in which specifications and documentation for the system are analyzed, and flaws in the system are hypothesized.

Flaw Remediation
The correction of discovered security flaws in a product or system.

Functional Requirements

A high level description of the requirements for a system.

Functional Specification
High level description of the user-visible interface and behavior of a system.

Implementation Representation
A description of the implementation (e.g., source code when the implementation is software or firmware; or drawings and schematics, if the system is hardware).

Independent Testing

Testing performed by persons other than the developers.

Informal Security Policy Model
An accurate and concise statement of system security policy expressed informally (i.e., in natural language; e.g., English).

Informal
(1) Expressed in natural language. (2) Written as prose in natural language.

Informal style/presentation

Written in normal language, e.g., English.

Integrity
The property that sensitive data has not been modified or deleted in an unauthorized and undetected manner.

 Interactive Communication

Two-way communication between end users.

Interoperability
The ability of components or systems to communicate with one another.

Key Caching
(1) The processes of managing (e.g., generating, storing, transferring, auditing) the cryptographic keys or key components by one or more entities. (2) A key recovery technique that employs one or more Key Recovery Agents who hold (i.e., cache) keys or key components for their subscribers.

Key Encapsulation
The encryption of one cryptographic key by another key. See “Wrap”.

Key Encryption Key (KEK)
A key used to encrypt another key. May be a symmetric key, or the public key of an encryption public/private key pair.

Key Escrow
(1) The processes of managing (e.g., generating, storing, transferring, auditing) the cryptographic keys or key components by one or more entities.

Key Exchange Field

Key-recoverable Product
An encryption product whose encryption output is recoverable through key recovery.

Key Recovery
Access to information sufficient to recover encrypted data.

Key Recovery Agent (KRA)
A Key Recovery Agent System.

Key Recovery Agent (KRA) System

A key recovery system that performs a recovery service in response to an authorized request by a requestor system on behalf of a requestor.

Key Recovery Component
An element within a Key Recovery System that provides key recovery functionality (e.g., KRI generation, KRI management, and/or key recovery function).

Key Recovery Function

Recovers a target key using Key Recovery Information. Composed of the KRI Requestor Function and KRA Function.

Key Recovery Information (KRI)
Information that is used in the recovery of a key. The KRI does not include a plaintext key.

Key Recovery Information Field (KRIF)

Key recovery information which is specific to a single key recovery scheme.

Key Recovery Block (KRB)
A stream of bytes that serves as a container for a single key recovery scheme-specific KRIF and associates the KRIF with a set of standard fields in a predefined format.

Key Recovery Policy
A policy which specifies the conditions under which key recovery information must be created and conditions under which and to whom the key recovery information may be released; may also indicate the allowable Key Recovery Agent(s) and how or where key recovery information must be maintained.

Key Recovery Requestor System

The system/subsystem used by the requestor to request keys.

Key Recovery Service

Key Recovery System (KRS)
Consists of the KRI Generation Function, the KRI Management Function and the Key Recovery Function. Includes software, hardware, procedures and infrastructure.

KRA
Key Recovery Agent

KRB
Key Recovery Block

KRI Delivery Function
Assembles and formats the key recovery information (KRI) and makes the KRI available.

KRI Generation Function
Generates the key recovery information (KRI) needed to recover the target key and provides the KRI to the KRI Delivery Function.

KRI Management Function
Manages the KRI after generation for potential recovery. Composed of the KRI Delivery Function, KRI Receive Function and KRI Validation Function.

KRI Providers
Those entities provide Key Recovery Information (KRI) using a KRI Generation Function.

KRI Receive Function
Enables a receiver to determine the key recovery information (KRI) which is available and acquire KRI for subsequent processing.

KRI Validation Function
Checks, authenticates, validates or verifies the available key recovery information.

KRR
Key Recovery Requestor System.

KRS
Key Recovery System

Layered Product
A product in which security functions are layered. For example, a secure application which is implemented on top of a secure operating system is a layered product.

Least Abstract Representation
(1) The most concrete representation of an implementation (e.g., source code). (2) The representation that is closest to the implementation, e.g., source code.

Licensing Agent
Authorizes Key Recovery Agents after an evaluation against the FIPS.

Masquerading
An attempt to gain access to a system by posing as an authorized user.

Message Security Protocol (MSP)
A data format that cryptographically binds data sensitivity and provides public key cryptography based security services for the data, including confidentiality, integrity, etc.

MIME
Multipurpose Internet Mail Extension as defined in RFC 2045.

Monolithic Product
A product in which security functions are not layered. See “Layered Product”.

Non-key-recoverable Product
An encryption product whose encryption output is not recoverable through key recovery.

Partial Key Escrow

Presentation of Evidence

Providing the information necessary to carrying out the assurance activity.

Privacy Enhanced Mail

Communications protocol defined in RFCs 1421 through 1424.

Private Key
(1) In an asymmetric (public) key cryptosystem, that key of an entity’s key pair which is known only by that entity. (2) A cryptographic key used with a public key cryptographic algorithm, uniquely associated with an entity, and not made public.

Private Key Recovery
A Key Recovery technique which is used to recover the private key of a public key pair or the secret key used with a symmetric encryption algorithm.

Proof of Origin
(1) A proof of the origin of information that cannot be refuted by the originator, e.g., by using a digital signature. (2) Non-repudiation.

Proof of Receipt

A proof of the receipt of information so that the recipient cannot deny having received the information, e.g., using a digital signature by the recipient on the received message.

Public Key
(1) In an asymmetric key system, that key of an entity’s key pair which is publicly known. (2) A cryptographic key used with a public key cryptographic algorithm, uniquely associated with an entity, and which may be made public.

Receiver Verification
The ability of a recipient’s implementation to verify, with high assurance, that the originating implementation has implemented FIPS compliant key recovery.

Recovery Field
A field, output by the key recovery mechanism of a product, that identifies key recovery agents and enables key recovery agents to identify the key(s) required to decrypt corresponding ciphertext output by the product. Note that this definition may currently be different from the definition for “Key Recovery Field” .

Recovery Information

See Key Recovery Information.

Recovery subsystem
The physical components of a KRS which provide for the recovery of plaintext when legally authorized.

Registration Agent
Archives vendor-specific information in order to find, acquire and parse recovery information.

Representation Correspondence
An accurate and complete mapping from a higher level representation to a lower level representation (e.g., from functional requirements to a functional specification, from a functional specification to a high level design, from a high level design to a low level design, from a low level design to source code, etc.).

Requestor
An entity that is authorized to request a key recovery.

Requestor Function
Interacts with one or more Key Recovery Agents using Key Recovery Information to recover a data encrypting key.

Secret Key
A cryptographic key used with a secret key [symmetric] cryptographic algorithm, uniquely associated with one or more entities, and which shall not be made public.

Secret Sharing

Security Domain

(1) A set of objects , a security policy , a security authority and a set of relevant activities inwhich the set of elements are subject to the security policy , administered by the security authority , for the specified activities. (2) A set of security-related services, mechanisms, and policies. (3) The set of security objects that a subject has the ability to access.

Security Policy
(1) A precise specification of the security rules under which a cryptographic module may operate, including the security rules derived from the requirements of this standard and the additional security rules imposed by the manufacturer. (2) A set of rules and procedures regulating the use of information including its processing, storage, distribution and presentation.

Security Policy Enforcing Subsystem

Security Policy Model

A formal representation of the security policy enforced by the product.

Session-based Protocols

Interactive communications.

Session Key
A key that is used to encrypt and/or decrypt data for a single communications session.

Session Key Recovery

Recovery of the Data Encryption Key.

S/MIME
Secure MIME as defined by RFC XXX.

Source Authentication

The ability to authenticate the identity of the source of a information.

Standard Communication Protocol

Any communication protocol adopted by a generally recognized standards organization.

Store-and-Forward Communications

One way communications (i.e., from a sender to a receiver) without the involvement of the receiver. The receiver may acquire the communication at a time which is significantly later than the time the communication is sent.

System
Includes software, hardware, procedures.

Target key
The key recovered by a Key Recovery System.

Testing laboratory
A laboratory which has been accredited by NIST to test systems, subsystems, key recovery agents, or components for conformance to this standard.

Transaction-based Protocols

Store-and-forward communications.

Trusted Path

A mechanism by which a person or process can communicate directly with a cryptographic module and which can only be activated by the person, process or module, and cannot be imitated by untrusted software within the module.

Trusted Third Party
An entity which is trusted by the parties performing the encryption or decryption processes, but are not identical with those parties.

Unwrap
Decryption of an encrypted key by another key.

Verify Association

Vulnerability Analysis

The determination of the vulnerabilities of a product or system.

Wrap
Encryption of a cryptographic key by another key.

15.
Qualifications. The security requirements specified in this standard are based upon information provided by many sources within the Federal government and private industry. The requirements are designed to protect against adversaries mounting cost-effective attacks on unclassified government or commercial data. The primary goal in defining effective security for a system is to make the cost of any attack greater than the possible payoff.

While the security requirements specified in this standard are intended to maintain the security of a key recovery component, conformance to this standard does not guarantee that a particular component is secure. It is the responsibility of the manufacturer of a key recovery component to build the component in a secure manner.

Similarly, the use of a key recovery component that conforms to this standard in an overall system does not guarantee the security of the overall system. The responsible authority in each agency shall assure that an overall system provides an acceptable level of security.

Since a standard of this nature must be flexible enough to adapt to advancements and innovations in key recovery technology, this standard will be initially reviewed in two years in order to consider new or revised requirements that may be needed to meet technological changes.

16.
Waiver Procedure. Under certain exceptional circumstances, the heads of Federal departments and agencies may approve waivers to Federal Information Processing Standards (FIPS). The head of such agency may redelegate such authority only to a senior official designated pursuant to section 3506(b) of Title 44, United States Code. Waivers shall be granted only when:

 a.
Compliance with a standard would adversely affect the accomplishment of the mission of an operator of a Federal computer system; or

 b.
Cause a major adverse financial impact on the operator which is not offset by Government wide savings.

Agency heads may act upon a written waiver request containing the information detailed above. Agency heads may also act without a written waiver request when they determine that conditions for meeting the standard cannot be met. Agency heads may approve waivers only by a written decision which explains the basis on which the agency head made the required finding(s). A copy of each such decision, with procurement sensitive or classified portions clearly identified, shall be sent to: National Institute of Standards and Technology; ATTN: FIPS Waiver Decisions, Building 225 Building, Room A-231, Gaithersburg, MD 20899.

In addition, a notice of each waiver granted and each delegation of authority to approve waivers shall be sent promptly to the Committee on Government Operations of the House of Representatives and the Committee on Governmental Affairs of the Senate and shall be published promptly in the Federal Register.

When the determination on a waiver applies to the procurement of equipment and/or services, a notice of the waiver determination must be published in the Commerce Business Daily as a part of the notice of solicitation for offers of an acquisition or, if the waiver determination is made after that notice is published, by amendment to such notice.

A copy of the waiver, any supporting documents, the document approving the waiver and any supporting and accompanying documents, with such deletions as the agency is authorized and decides to make under 5 U.S.C. Sec. 552(b), shall be part of the procurement documentation and retained by the agency.

17.
Where to Obtain Copies of the Standard. Copies of this publication are for sale by the National Technical Information Service (NTIS), U.S. Department of Commerce, Springfield, VA 22161. Publication and ordering information may be found at http://www.ntis.gov. When ordering, refer to Federal Information Processing Standards Publication xyz (FIPS PUB XXX), and identify the title. When microfiche is desired, this should be specified. Prices are published by NTIS in current catalogs and other issuances. Payment may be made by check, money order, credit card or deposit account.

1 OVERVIEW

Federal Agencies have a right and a responsibility to protect the information and data contained in, processed by, and transmitted between their IT systems. Ownership of the information is often shared with individuals, companies, and organizations and therefore requires that the government protect that information on its own behalf and on behalf of those co-owners. That protection needs to meet or exceed Federal Government standards and the standards of those co-owners.

Protection of information on IT systems is complicated and evolving. One aspect of such protection is the requirement that certain information or information in specific states provide its own protection. An example of such a state is information in transit on the Internet. The method of such self protection is encryption, the process whereby the information is scrambled using methods which make it easy for authorized entities to decrypt and difficult for all others to decrypt. When sufficient strength and protection of the decryption key is provided, encryption can adequately protect the information from disclosure to unauthorized parties. However, the unavailability, loss, or corruption of those keys will prevent disclosure to authorized parties. The solution to this problem is to provide methods of recovering decryption keys by authorized parties.

The generation, storage, and recovery of decryption keys are complex processes. These processes need to be rigidly defined, stringently implemented, and conscientiously managed and operated. Such requirements are needed to ensure that the processes provide the proposed benefits and prevent any inappropriate increases in vulnerability. The FIPS addresses these requirements of the encryption process, the recovery process, and the supporting components of both processes.

The encryption process described in the FIPS includes their components, their actions and interfaces, and the sum of their interactions. Such components include the Encrypting Party (often the Sender of transmitted data,) the Encrypted Data Medium, the Decrypting Party (often the Receiver of transmitted data,) the Recovery Data Medium, and the Key Recovery Agent. It should be noted that the preparation of recovery information is the responsibility of the encryption process, not the recovery process.

The recovery process described in the FIPS includes processes and requirements for recovery requesters; structure, process and requirements of recovery including performance of the key recovery agents; and a description of the interactions between the parties involved in the recovery.

The supporting components described in the FIPS are integral parts of the key recovery process, and are needed to ensure the functionality of the key recovery process and the security of the keys. Such supporting components include the vendor products for the users, for the key recovery agents, and for the requesters. They also include the registration agent or process, the methods to authenticate the key sources, licensing agents, and system policy authorities.

The FIPS does not require a specific process or technique or set of processes or techniques for compliant systems. Therefore, Key Recovery systems or Key Recovery capabilities built into existing systems need to address interoperability, specifically between such systems and both non-key recovery capable systems and systems using a different form of FIPS compliant key recovery. While nothing in the FIPS precludes interoperability between systems that did not previously interoperate, such new functionality is not a requirement of the FIPS. (What should be said about the interoperability on FIPS compliant systems with each other? Can we say anything about the interoperability with non-compliant systems? It would be difficult to achieve and difficult to evaluate.)

To further the understanding of the overall key recovery processes, examples are presented to describe several general key recovery methods. These examples illustrate key recovery methods used for Stored Files, Encrypted Email, Real-time Communications, and the recovery of a specific key.

NOTE: It should be noted that the output of the TACDFIPSFKMI (TAC) is technical advice to the Secretary of Commerce regarding the technology of and technical use of key recovery. The TAC has not addressed and will not provide policy advice regarding the extent of usage of key recovery on any IT systems nor the scope of systems covered by the proposed FIPS.

2
KEY RECOVERY MODEL

A Key Recovery System (KRS) enables authorized persons to recover plaintext from encrypted data when the decryption key is not otherwise available. Key Recovery is a broad term that applies to many different key recovery techniques. Each technique will result in the recovery of a key – herein called the target key. The target key may be either:

· the data key that can be used to decrypt the data, or

· a key that can be used to decrypt the encrypted data key.

The information required by each key recovery technique to recover the target key may be different for each technique. The term “key recovery information” (KRI) will be used to refer to the aggregate of information needed by a key recovery technique to recover the target key. The key recovery information can be managed or handled in a variety of ways. It may exist for only a brief time during electronic transmission, or it may exist for a relatively long time on a storage device. The KRI may be distributed among multiple location(s) (e.g., at one or more Key Recovery Agents (KRAs), with a registration authority, associated with or attached to a message or file, stored with a third party which is separate from a KRA, in end user systems, in third party systems, at a CA, in a certificate, or in a requestor facility).

Figure 1 presents a generalized model for a Key Recovery System, consisting of a KRI Generation Function, A KRI Management Function and a Key Recovery Function. The model addresses the creation of KRI for the recovery of the target key, the management of the KRI, and the recovery of the target key from that KRI.

[image: image8.png]APPROVAL OF FIPS XXX | Purchase components with

<insert date> written affirmation from

wendor of conformance to
FIPS 33X (opt.)

EFFECTIVE DATE OF FIPS XXX »| Purchase components with
<insert date> written affirmation from
wendor of conformance to

ESTABLISHMENT OF FIPSXXX ___ | FIPS XXX Send written

VALIDATION PROGRAM affirmation to MIST.
SIX MONTHS AFTER — | Purchase components either,
ESTABLISHMENT OF submitted to or validated

FIPS XXX VALIDATION under FIPS X3
PROGRAM validation program

ONE YEAR LATER | Purchase components

(18 months after establishment validated under FIPS M

of validation program) YO validation program. |FUTURE

[image: image9.png]General Model.ppt

- KEY RECOVERY
GENERATION | MGMT | | FUNCTION
FUNCTION || I T —
n Key KRA“ |
‘ | Recovery | | |Requestor|*
5= * Information g on . KRA 2
KRA 1

GENERAL MODEL FOR KEY RECOVERY

The KRI Management Function is decomposed into a KRI Delivery Function, a KRI Receive Function and a KRI Validation Function. The Key Recovery Function is divided into a Requestor Function and a KRA Function. The resulting six functions are shown in Figure 2.

[image: image10.png]General Model Components.ppt

KRI KRI MGMT. KEY
GENERATION FUNCTION RECOVERY
FUNCTIONS FUNCTION
[
KRI KRI Key Recovery
Generation Delivery Requestor
Function Function Function
KRI Receive Key Recovery
Function Agent
(Opt.) Function
KRI
Validation

[Function (Opt.)

[image: image11.png](Key Caching)
—

KRI L »| Requestor Requestor
f— System

!#—\

KRA

KRA

KRA

REQUESTOR FUNCTION

The key recovery model supports a wide variety of different key recovery techniques and data applications, including:

· Interactive communication sessions,

· Store-and-forward communications, and

· Data storage.

The key recovery model addresses both key caching (i.e., key backup) and encapsulated KRI techniques, as well as hybrids of these two techniques. A key caching technique employs one or more Key Recovery Agents (KRAs) who hold (i.e., cache) keys or key components for their subscribers. In an encapsulated KRI technique, the KRA(s) do not hold keys belonging to their subscribers. Instead, a structure is created which contains information which will allow the Key Recovery Function to recover the subscriber’s key.

[DISCUSSION: WHICH TERM SHOULD WE USE – KEY ESCROW, KEY BACKUP OR KEY CACHING? ANYTHING ELSE?]

[image: image12.png]END USER APPLICATION

Send/Receive =
KRI KRI
Delivery Receive
Key Encrypt/ 4 |
Mgmt. Decrypt | v
P KRI «—— KRI
Generation | Validation

With both key caching and KRI encapsulation, a KRA may be operated by an organization as an integral part of its own security infrastructure, or a KRA may be operated by a third party organization. In the case of key caching by a third party organization, the key caching system is often called a key escrow system.

A Key Recovery System (KRS) {WILL? MAY?} exist over multiple “locations” (e.g., end user systems, KRA systems, Requestor system, and storage or transmission media). The normal key exchange mechanism is not affected by any key recovery mechanisms, but may be used to support the creation and distribution of key recovery information.

[image: image13.png]Other Other
—_
Providers KRI
Encapsulated
—_—
KRI
End User Key End User
System A System B
| Encrypted Data ————

Appendix “Examples” provides examples of the distribution of functions of the model within products implementing a Key Recovery System.

2.1
Key Recovery Information (KRI) Generation Function

[image: image14.png]Other Other
—
Providers KRI
KRI . Cached le KRI
Provider KRI Provider
,,,,,,,,,,,,,,,,,,,,,,, I
Encapsulated |
KRI
v
End User | Key End User
System System
A 1 Encrypted Data —— B

In this model, the KRI Generation Function--consisting of one or more KRI-generating entities, also called KRI providers --generates the KRI needed to recover the target key and provides the KRI to the KRI Delivery Function.

[image: image15.png]KRI
Provider

A

Other Other
Providers KRI
Cached
KRI
Encapsulated
>
KRI
End User Key
System
A Encrypted Data

End User
System
B

[image: image16.png]Other Other
Providers KRI
KRI Cached
Provider KRI
Encapsulated
KRI
End User Key
System
A Encrypted Data

End User
System
B

A KRI provider could, for example, be the sender or receiver of a communication, a Certification Authority (CA), a Key Distribution Center, a Registration Authority, or a component vendor. The KRI may include the identity of a KRA, the identity of a key, a date and time, authorization information, an indication of the key recovery type and manufacturer, an algorithm identifier, an encrypted key, or pointer information (e.g., information that points to the location or holder of a key).

During an initialization or configuration stage, and at times of periodic updates, the KRI-generating entities obtain initialization information and cryptographic parameters, or otherwise are configured to establish shared information as necessary with the KRA(s) to allow key recovery. For example, for key caching systems, initialization and configuration may involve setting parameters which will allow a secure communication channel to be established which will allow the private keys of the end user system to be backed up at the KRA. For KRI encapsulation systems, initialization may involve obtaining authentic copies of the KRA public key(s) for subsequent use in encapsulating the KRI by the end user system. These are critical aspects of the overall Key Recovery System, but their definition is beyond the scope of this document.

2.2
KRI Delivery Function

The KRI Delivery Function is a required function of KRI Management. The KRI Delivery Function assembles and formats the KRI (as necessary) and makes the KRI available (e.g., by storing or transmitting the KRI).

For KRI encapsulation techniques, the target key (or portion of the target key) or key related information is encrypted by a key associated with a KRA. This key encrypting key is typically a public encryption key for the KRA. Additional KRI may accompany the data key, depending on the key recovery technique. [NOTE THAT A KEY EXCHANGE MECHANISM MAY CREATE ENCAPSULATED KRI].

When a key caching technique is employed for key recovery, the data key is typically encrypted by a key for which the corresponding decryption key (e.g., the private key exchange decryption key) has been stored (i.e., cached), in whole or in part, by one or more KRAs.

2.3
KRI Receive Function
In certain cases, e.g., where KRI is transmitted to another system, a KRI receive function may be needed. The KRI Receive Function enables the receiving end user system to determine the types of KRI available (e.g., by examining received communications or certificates), and finding and/or acquiring any appropriate KRI for subsequent processing. The receiving system could be, for example, an end user system, a requestor system or a KRA.

2.4
KRI Validation Function
KRI validation may optionally be performed as part of KRI management. Several degrees of validation may be performed, including:

· Checking certificates for the presence of KRI (e.g., KRA identities, key recovery technique), [SHOULD WE SPECIFY THE TYPRE OF CERTIFICATE?]

· Checking that KRI is available for a KRA (e.g., in a recipient list or a key recovery block),

· Authenticating the source of the KRI,

· Validating the integrity of KRI associated with the encrypted data (e.g., received in the same message), and

· Verifying that the KRI is able to recover the data key needed to decrypt the encrypted data.

2.5
Requestor Function
The Requestor Function consists of the requestor and a Requestor System (see Figure 3). The requestor is an entity who seeks to recover information that will allow the decryption of encrypted data. A request for a key recovery service, made by a requestor using a Requestor System to interact with one or more Key Recovery Agents, must be an authorized request -- the requestor and the Requestor System which issues a request for a key recovery service must have a legal and lawful right to access the data that can be decrypted using the recovered target key. Furthermore, the requestor and the Requestor System must establish their right to access that data.

The requestor provides key recovery information to the requestor system(s). The requestor system(s) interacts with one or more KRAs to obtain either the target key, or multiple key parts or key related information which will allow the reconstruction of the target key. The target key can then be used to recover the data using a Data Recovery System which is not specified in this standard.

[image: image17.png]Product 1.ppt

End User System

KRI KRI
Generation Delivery
Function Function
I.<RI. KRI Receive
Validation Function
Function
Key Recovery Key Recovery
Requestor Agent
Function Function
Requestor System Key Recovery

Agent System

[image: image18.png]Product 3.ppt

End User System

KRI KRI
Generation Delivery
Function Function
Key Recovery Key Recovery
Requestor Agent
Function Function

Key Recovery Agent System

2.6
Key Recovery Agent(s)
[image: image19.png]Product 4.ppt

End User System

Agent System

KRI KRI Key Recovery
Generation Delivery Requestor
Function Function Function
I.<RI. KRI Receive
Validation Function
Function
Key Recovery
Agent
Function
Key Recovery

A Key Recovery Agent system, hereafter called a Key Recovery Agent (KRA), is a trusted entity who performs a key recovery service in response to an authorized request made by a Requestor System on behalf of a requestor. Before honoring such a request, the KRA authenticates the Requestor System’s right to receive the requested key recovery service. The key recovery service consists of processing all or part of the key recovery information provided to the KRA by the Requestor System, and returning an output value to the Requestor System.

2.7
Interoperability
Key recovery interoperability requirements apply for interoperable applications when encrypted data is shared or communicated across multiple end user systems. When KRI is generated for a specific instance of encrypted data, the KRI should be placed in a commonly understood structure (e.g., in a key recovery block or in the key exchange information). The use of this common structure may allow different key recovery techniques to interoperate and can be used to provide KRI which is not otherwise available. See Appendix “KRB” for a suggested structure.

Key recovery interoperability requirements also apply for communications between a Requestor Function and a KRA. This standard defines a syntax for communication between a Requestor Function and a KRA which pertains only to electronic key recovery transactions effected via a communication medium, e.g., telephone, LAN, Internet, etc. Recovery transactions effected via other methods, e.g., storage on diskette or tape, are not covered by these requirements. Section “KRR-KRA”defines the syntax for this communication syntax. No interoperability requirements are imposed by this standard on communication among KRAs.

There are a number of standard communication protocols (e.g., SSL, S/MIME) that allow the use of encryption to protect the data carried by the protocol. When encapsulated key recovery information is introduced into one of these communication protocols, it must be done in a manner that preserves interoperability. Interoperability with respect to this standard includes communications between:

· an end user system with a key recovery capability and another end user system with no key recovery capability, and

· two end user systems employing different key recovery techniques.

When this is not possible using the existing protocol, then either the protocol must be modified or extended to carry the key recovery information, or a different path may be used. In all cases, there must be an unambiguous method for coupling the ciphertext with the key recovery information. It is outside the scope of this standard to specify how key recovery information is to be transported. The definition of an interoperable means of carrying such information is solely the purview of the protocol designer. Appendix “KRB” is provided in order to assist in the development of key recovery-enabled protocols.

[THE FOLLOWING PARAGRAPH REALLY BELONGS IN THE ASSURANCE SECTION.]

A vendor of a component which implements key recovery that is compliant with this standard must provide documentation demonstrating that the component transports key recovery information in a fashion which is consistent with the specification developed for the protocol in question.[JAN MANNING WOULD LIKE TO DISCUSS THIS.]

Within a Public Key Infrastructure (PKI), key recovery information may be provided in the certificates of those entities using or supporting key recovery. It is beyond the scope of this standard to define the certificate structures to support key recovery. However, Appendix “Certificate Extensions” is provided in order to assist in this process.

3
KRS {COMPONENTS/PRODUCTS}

The functions of the Key Recovery Model specified in this standard must be implemented in components or products which, when used together with a key recovery policy and procedures, form a Key Recovery System. The key recovery functions within the model may be distributed across these components as appropriate for the specific key recovery technique and the key recovery policy adopted for an organization.

A key recovery policy specifies the conditions under which key recovery information must be created and the conditions under which key recovery information may be released. The policy may also indicate the allowable Key Recovery Agent(s), how or where key recovery information must be maintained, and whether or not the received encrypted information should be processed when key recovery information is not available. The key recovery policy could be “hardwired” (e.g.., implemented in a manner which does not allow key recovery to be bypassed), selectable by a user, or implemented in policy management tables or modules.

3.1
End User Systems
End user systems encrypt and decrypt data. In order for encrypted data to be recoverable, the capability must exist for key recovery information to be generated for that system that will allow the recovery of data keys used by that system. The necessary information needed to recover the data key may be made available, for example, as encapsulated information which may be stored or communicated with the encrypted data, or as cached data or both.

The model does not specify which system or systems generate the KRI. When KRI is generated by end user systems, the KRI could be generated by the entity that encrypts data (e.g., the sender) or the entity that decrypts data (e.g., the receiver). An end user system generates and processes KRI in accordance with a specified key recovery policy.

[image: image20.png]Product 2.ppt

Key Recovery Agent System

KRI
Generation Delivery
Function Function

Key Recovery
Agent

Function

Figure 4 depicts an end user application with an encryption/decryption capability. The application has a send/receive function for sending and receiving data, a key management function for generating and distributing keys, and an encrypt/decrypt function to encrypt and decrypt data. The key recovery functions within the end user system includes a KRI Generation Function, a KRI Delivery Function, a KRI Receive Function, and a KRI Validation Function.

Note that end user products need not contain this specific set of key recovery functions (see Appendix “Examples”). The use of the functions within an end user system can depend on whether the system is acting as a sender or receiver system. When the application is acting as a sender, it would typically use the KRI Generate and

Delivery Functions [AND ALSO THE KRI VALIDATE FUNCTION?], whereas when acting as a receiver, it would typically make use of the KRI Recive and Validaion Functions.

[IN FIGURE 4, IS THE ARROW BETWEEN THE KRI VALIDATION AND GENERATION FUNCTIONS APPROPRIATE?]

3.1.1
KRI Encapsulation
Figure 5 illustrates the interaction of two end user systems that share or communicate encrypted data using a KRI encapsulation method for key recovery. For each end user system, key recovery information (KRI) is encapsulated and made available for later recovery by a requestor. The system creating the encapsulated KRI (End User System A) can generate KRI for itself. If KRI is to be made available for the other party (End User System B), then System A must acquire enough information to do so (e.g., from a certificate) using its KRI Receive and Validation functions. The set of KRI to be encapsulated is then provided to the KRI Delivery Function, where the KRI is assembled, formatted and wrapped (i.e., encrypted) and delivered.

System B may receive the KRI as well as the encrypted data and key exchange information. The KRI received by the KRI Receive Function may be provided to a KRI Validation Function. The amount of validation that is performed is dependent on the structure and content of the KRI, the key recovery technique used and the validation policy of the receiving end user system. Validation may include checking that the key recovery technique used by System A is appropriate (e.g., by examining System A’s certificate).
3.1.2
Key Caching
Figure 6 illustrates the interaction of two end user systems that share or communicate encrypted data using a key caching method for key recovery. For each end user system, keys, key parts or key related information to be recovered are stored (i.e., cached) at the KRA. In this method, a KRI Provider, using KRI Generation and Delivery Functions, generates the key information and distributes the appropriate information to the KRA(s). If the KRI Provider who generates the key information is not the end user system, then the appropriate key information must also be supplied to the end user system.

The encrypting party (System A) can determine that the other party (System B) is using a key caching method of key recovery by acquiring this information from some source (e.g., a certificate) using its KRI Validation and Receive Functions. If the data key used to encrypt the data is available (e.g., as part of the key exchange process), additional KRI recovery information is not required for System B to recover. However, for System A to recover, encapsulated information must be provided (e.g., by encrypting a copy of the data key for System A and placing it in a recipient list or in a key recovery block) using the KRI Generation and Delivery Functions (shown by the dotted lines in the figure). [NOT SURE HOW TO WORD THIS TO ALLOW FOR THE DIFFERENT KEY EXCHANGE METHODS.]
As long as the decrypting party (End User System B) knows that the encrypted data key is readily available (e.g., as part of the key exchange process), System B can recover. If it is necessary to determine that System A is also recoverable, System B must use the KRI Validation and Receive Functions to determine that System A uses key caching, then examine the available information to determine that KRI is available for System A.

3.1.3
Mixed Methods
Key recovery may be provided between end user systems with different key recovery capabilities. Key recovery may also be provided for those key recovery enabled entities that communicate with other entities with no key recovery capability.

3.1.3.1 Between KRI Encapsulation and Key Caching Methods

In Figure 7, System A uses a KRI encapsulation method for key recovery; System B uses key caching. System A can use its KRI Receive and Validation Functions to determine that System B uses key caching (e.g., by examining System B’s certificate). System A can create encapsulated KRI for itself using its KRI Generation Function; KRI need not be created for System B if the data key is supplied to System B in such a way that the data key is recoverable using System B’s cached information. The generated KRI is provided to System A’s KRI Delivery Function.

System B can ignore the encapsulated KRI unless System B’s policy is to ensure that System A is recoverable. In this case, System B’s KRI Receive and Validation Functions acquire information about System A’s key recovery capability (e.g., by examining System A’s certificate), acquire the encapsulated KRI and validate that KRI. Note that the degree of validation depends on the implementation of System B’s validation function.

In Figure 8, System A uses Key Caching, and System B uses KRI Encapsulation. System A can use its KRI Receive and Validation Functions to determine that System B uses KRI encapsulation (e.g., by examining System B’s certificate). For System A to recover, encapsulated information must be provided (e.g., by encrypting a copy of the data key for System A and placing it in a recipient list or in a key recovery block) using the KRI Generation and Delivery Functions. Note that for some key exchange schemes, the key exchange mechanism may perform the KRI generation and delivery functions. System A could encapsulate another copy of the data key for System B’s KRA if this method is consistent with System B’s KRI encapsulation technique; otherwise, no KRI can be provided for recovery by System B.

System B can use its KRI Receive and Validate Functions to determine the type of key recovery employed by System A (e.g., by examining System A’s certificate) and check for the presence of the encapsulated KRI for System A. If encapsulated KRI is not available for System B, System B can create encapsulated KRI in accordance with its key recovery technique.

3.1.3.2 Between KRI Encapsulation and an End User System with No Key Recovery
In Figure 5, if System A uses KRI encapsulation and System B has no key recovery capability, System A can only provide encapsulated KRI for itself. The encapsulated KRI received from System A cannot be processed by System B. If the roles are reversed and System A receives encrypted data from System B, no KRI is present. If System A needs to recover, it must add its own encapsulated KRI.

3.1.3.3 Between Key Caching and an End User System with No Key Recovery
In Figure 8, if System A uses Key Caching and System B has no key recovery capability, System A can recover only if encapsulated information is created by the KRI Generation and Delivery Functions (e.g., by encrypting a copy of the data key for System A and placing it in a recipient list or in a key recovery block). System B must be able to ignore the presence of the KRI. If the roles are reversed and System B sends encrypted data to System A, System A can recover if the data key is recoverable using System A’s cached key.

3.2
Requestor System
A Requestor System consists of the Requestor Function and associated key recovery policy and procedures. The key recovery policy and procedures govern the configuration of the system and the interaction with the requestor(s) and the KRA(s). Key recovery is not automatic; it must be specifically requested using the Requestor System. The Requestor System may exist as a separate component or product, or the Requestor System may be included in other products (e.g., an end user system or KRA system). More than one Requestor System may exist within a KRS.

[WHAT MORE NEEDS TO BE SAID?]

3.3
Key Recovery Agent (KRA) System
A KRA System consists of the KRA Function and associated key recovery policy and procedures. The key recovery policy and procedures govern the configuration of the system and the interaction with the requestor system(s). The KRA System may exist as a separate component or product, or the Requestor System may be included in other products (e.g., included with the Requestor System).

The algorithm for processing the key recovery information is dependent on the algorithm originally used to protect the key recovery information, i.e. it is algorithm specific. There are many algorithms for creating the key recovery information and reconstructing the key from that key recovery information. For example, the output value calculated by the KRA could be a whole key, or it could be a key part or piece of information that the Requestor System will use in combination with other recovered parts or pieces of information to reconstruct or recover the whole key.

3.4
Supporting Components
Specific implementations of the Key Recovery System model may require “supporting” components to support the interactions between the main Key Recovery System components. This section describes these supporting components and provides examples of how they may be used in a Key Recovery System.

3.4.1
 Product Vendors

End User Product Vendors, Key Recovery Agent Product Vendors, and Requestor Product Vendors produce products for use in the Key Recovery System, and provide information to the Registration Agent as necessary.

3.4.2
 Registration Agent

The Registration Agent receives and archives vendor-specific information required by the Requestor to find, acquire, and parse recovery information obtained from the recovery information medium.

Recovery information may include the following: (1) product serial number, (2) vendor identification number, (3) recovery fields, (4) certificates, and (5) session information.

3.4.3
 Authentic Public Key Source

In some implementations, an Authentic Public Key Source will be used to provide a certificate infrastructure to support the use of public key cryptography within the Key Recovery System.

In a Key Recovery System which provides Private Key Recovery-based recovery, the Authentic Public Key Source may be very similar to a conventional Certification Authority, but will provide for the binding of recoverable public/private keypairs to users as shown in Figure 9.

[image: image1.wmf]Authentic

Public Key

Source

User Public Key Certificate:

used for authenticated key exchange

and verifiable private key recovery

System’s

Public Key

Figure 9 Example Hierarchy in Private Key Recovery System
In a Key Recovery System based on Key Encapsulation, the Authentic Public Key Source may instead bind public keys to legitimate Key Recovery Agents as shown in Figure 10.

[image: image2.wmf]Key Recovery Agent

Hierarchy

User Public Key

Hierarchy

KRA A

KRA B

User Public Key Certificate:

used for authenticated key exchange

(and optionally signature/verification)

Key Recovery Agent Certificate:

used for key encapsulation

Conventional

Certification

Authority

Authentic

Public Key

Source

Figure 10 Example Hierarchies in Key Encapsulation Key Recovery System
3.4.4
 Licensing Agent

The Licensing Agent is responsible for evaluating candidate Key Recovery Agents for compliance to this FIPS.

3.4.5

 Key Recovery System Implementation Examples

The following two sections describe two possible types of implementations for the Key Recovery System which require the use of supporting components. Neither example purports to be the only method of satisfying this standard--instead these examples are intended to illustrate how these supporting components fit into a Key Recovery System implementation.

3.4.5.1
 Private Key Recovery Example

The core of a Private Key Recovery-based Key Recovery System is the Key Recovery Agent(s) capability to recovery System A and System B’s private key exchange key. This example discusses component interactions for four phases: (1) establishment, (2) normal encrypted communications, (3) normal encrypted storage, and (4) recovery.

3.4.5.1.1
Establishment

First, the Key Recovery System’s Authentic Public Key Source must generate and securely maintain a public/private keypair. The public portion of this keypair will be embedded or loaded into the Key Recovery System’s components. The private portion of the keypair will be used to digitally sign component information to authorize its use in the Key Recovery System.

To establish a Private Key Recovery-based Key Recovery System, End User Product Vendors must describe to the Registration Agent how their systems (A and B) deposit the key exchange field into the Encrypted Data Medium and the Recovery Information Medium. End User Product Vendors must also embed the Authentic Public Key Source root public key into their systems (A and B) to enable authentication of interactions with other Key Recovery System components.

Key Recovery Agent Product Vendors must also embed the Authentic Public Key Source root public key into the Key Recovery Agent Product. Key Recovery Agents must demonstrate to the Licensing Agent that they will secure user private keys in accordance with the Key Recovery System policy. Once approved by the Licensing Agent, the Key Recovery Agent will be authorized via the Authentic Public Key Source. This authorization will allow systems (A and B) and Requestors to verify the legitimacy of a Key Recovery Agent.

Systems (A and B) make their public/private key exchange keypair recoverable via a Key Recovery Agent prior to participating in the Key Recovery System. Systems (A and B) can verify that they are communicating with a legitimate Key Recovery Agent by verifying the Key Recovery Agent information using the Authentic Public Key Source. The Key Recovery Agent will then issue a certificate to the System (A and B) verifying that the public/private keypair is recoverable.

3.4.5.1.2
Normal Encrypted Communications

System A provides for key recovery whenever it performs a key exchange with System B provided System B’s private key is recoverable by a Key Recovery Agent. System A can determine if System B’s private key is recoverable by verifying System B’s certificate (using the Authentic Public Key Source root public key embedded in the product). System A then generates the key exchange field by wrapping (encrypting) the data encryption key with System B’s public key. System A deposits the key exchange field and key recovery information into the Recovery Information Medium. The encrypted data to be communicated to System B is deposited into the Encrypted Data Medium. This scenario is shown in Figure 11.

[image: image3.wmf]System

A

System

B

System B’s Public

Key Certificate

System B’s

Public Key

(Bpub)

Encrypted Data Medium

Recovery Information Medium

E

DEK

[data]

KEF = E

Bpub

[DEK],

Key Recovery Information

Key

Recovery

Agent

System B’s

Public Key

(Bpub)

Figure 11 Private Key Recovery Example - Normal Encrypted Communications
3.4.5.1.3
Normal Encrypted Storage

System A provides for key recovery whenever it encrypts data for storage by wrapping (encrypting) the data encryption key with its own public key, the private portion of which is recoverable by a Key Recovery Agent. During data encryption, System A deposits the appropriate key recovery information into the Recovery Information Medium portion of the storage medium (e.g. a file header). This scenario is shown in Figure 12.

[image: image4.wmf]System

A

System A’s Public

Key Certificate

Encrypted Data Medium

Recovery Information Medium

E

DEK

[data]

KEF = E

Apub

[DEK],

Key Recovery Information

Key

Recovery

Agent

System A’s

Public Key

(Apub)

Storage

Medium

Figure 12 Private Key Recovery Example - Normal Encrypted Storage
3.4.5.1.4 Recovery

A properly authorized Requestor may recover the data encryption key by first retrieving information from the Registration Agent on how the key recovery information has been deposited in the Recovery Information Medium. The Requestor then retrieves the key recovery information from the Recovery Information Medium to determine the Key Recovery Agent. Next, the Requestor retrieves the key exchange field and sends it to the Key Recovery Agent. The Key Recovery Agent verifies the authenticity of the request, decrypts the key exchange field using the user’s recoverable private key, and securely returns the unwrapped data encryption key to the Requestor.

The Requestor uses the recovered data encryption key to decrypt the encrypted data which was gathered from the Encrypted Data Medium.

3.4.5.2

Key Encapsulation Example

The core of a Key Encapsulation-based Key Recovery System is the encapsulation (wrapping) of the data encryption key using the public key of a legitimate Key Recovery Agent(s). This example discusses component interactions for four phases: (1) establishment, (2) normal encrypted communications, (3) normal encrypted storage, and (4) recovery.

3.4.5.2.1
Establishment

First, the Key Recovery System’s Authentic Public Key Source must generate and securely maintain a public/private keypair. The public portion of this keypair will be embedded or loaded into Key Recovery System components. The private portion of the keypair will be used to digitally sign component information to authorize its use in the Key Recovery System.

To establish a Key Encapsulation-based Key Recovery System, End User Product Vendors must describe to the Registration Agent how their systems (A and B) deposit the key exchange field into the Recovery Information Medium. End User Product Vendors must also embed the Authentic Public Key Source root public key into their systems (A and B) to enable authentication of interactions with other Key Recovery System components.

Key Recovery Agent Product Vendors must also embed the Authentic Public Key Source root public key into the Key Recovery Agent Product. Key Recovery Agents must demonstrate to the Licensing Agent that they will secure their private keys in accordance with the Key Recovery System policy. Once approved by the Licensing Agent, the Key Recovery Agent will be authorized via the Authentic Public Key Source. This authorization will allow systems (A and B) and Requestors to verify the legitimacy of a Key Recovery Agent.

Systems (A and B) must load a public key from the Key Recovery Agent prior to participating in the Key Recovery System. The Key Recovery Agent issues a certificate to the System (A and B) verifying that the corresponding public/private keypair may be used to encapsulate data encryption keys for future recovery.

3.4.5.2.2
Normal Encrypted Communications

System A provides for key recovery whenever it performs a key exchange by encapsulating the data encryption key in the public key(s) provided by the Key Recovery Agent(s) and depositing the resulting key recovery field(s) into the Recovery Information Medium. System B can determine if System A has properly provided for key recovery by verifying the integrity of the key recovery field. The encrypted data to be communicated to System B is deposited into the Encrypted Data Medium.

Note, System A may also generate a key exchange field by wrapping the data encryption key with System B’s public key. Unlike the Private Key Recovery example, however, the key exchange field is not deposited in the Recovery Information Medium since it does not facilitate recovery. This scenario is shown in Figure 13.

[image: image5.wmf]System

A

System

B

System B’s Public

Key Certificate

System B’s

Public Key

(Bpub)

Encrypted Data Medium

Recovery Information Medium

E

DEK

[data],

KEF = E

Bpub

[DEK]

KRF = E

KRApub

[DEK],

Key Recovery Information

Key

Recovery

Agent

KRA’s

Public Key

(KRApub)

Figure 13 Key Encapsulation Example - Normal Encrypted Communications
3.4.5.2.3
Normal Encrypted Storage

System A provides for key recovery whenever it encrypts data for storage by wrapping (encrypting) the data encryption key with the public key(s) provided by the Key Recovery Agent(s) and depositing the resulting key recovery field(s) into the Recovery Information Medium. Additionally, System A deposits the appropriate key recovery information into the Recovery Information Medium portion of the storage medium (e.g. a file header).

Note, System A may also generate a key exchange field by wrapping the data encryption key with its own public key. Unlike the Private Key Recovery example, however, the key exchange field is not deposited in the Recovery Information Medium since it does not facilitate recovery. This scenario is shown in Figure 14.

[image: image6.wmf]System

A

KRA’s Public

Key Certificate

Encrypted Data Medium

Recovery Information Medium

Key

Recovery

Agent

Storage

Medium

KRA’s

Public Key

(KRApub)

E

DEK

[data],

KEF = E

Apub

[DEK]

KRF = E

KRApub

[DEK],

Key Recovery Information

Figure 14 Key Encapsulation Example - Normal Encrypted Storage
3.4.5.2.4
 Recovery

A properly authorized Requestor may recover the data encryption key by first retrieving information from the Registration Agent on how the key recovery information has been deposited in the Recovery Information Medium. The Requestor then retrieves the key recovery information from the Recovery Information Medium to determine the Key Recovery Agent. Next, the Requestor retrieves the key recovery field and sends it to the Key Recovery Agent. The Key Recovery Agent verifies the authenticity of the request, decrypts the key recovery field using the corresponding private key, and securely returns the recovered data encryption key to the Requestor.

The Requestor uses the recovered data encryption key to decrypt the encrypted data which was gathered from the Encrypted Data Medium.

4
INTEROPERABILITY

4.1
Overview
The scope of this section is limited to discussion of issues related to the interoperability of key recoverable implementations within standards-based secure protocols. Although the addition of key recovery to a non-standard protocol should ideally maintain interoperability, the associated design decisions are assumed to be the purview of the individual product vendors.

For the purposes of this section of the FIPS, two areas of interoperability are addressed. The first concerns the interoperability of individual protocols with, and without, the addition of FIPS-compliant key recovery. In particular, it is a requirement that compliant implementations of each protocol interoperate. To promote the use of this FIPS, the interoperability of recovery-enabled and non-recovery-enabled implementations is also at issue.

A second area of interoperability to be addressed concerns the interoperability between a KRR and a KRA. To facilitate the verification and service of key recovery requests, an electronic protocol for servicing these requests must be defined. Given the nature of these requests, a secure messaging protocol is appropriate for these transactions.

4.2
Interoperability Components
In order to certify interoperability, it is necessary to describe the issues previously discussed within the framework of the Key Recovery FIPS Model. Interoperability can then be defined by the component interactions within this model which consists of the:

· Key Recovery Requestor

· Key Recovery Agent

· Key Recovery Medium

· Data Recovery Medium

Interoperability between the KRR and a specific KRA is only an issue for electronic service requests and responses. These secure transactions may be sent using any of a variety of standard transaction-based security protocols. Interoperability compliance is determined by the ability of the KRR and KRA to process these transactions.

At the protocol level there are should be no interoperability issues associated with private key recoverable schemes. This is attributable to the fact that when using private key recovery, the KRM and the DRM are entirely separate. Thus the addition of KR to the protocol has no effect at runtime.

Conversely, session key recovery implies that the KRM and the DRM are the same. As a result, the addition of session key recovery may pose interoperability issues with the protocol.

4.3
Key Recovery Classifications

Key recovery may be broadly categorized into two types, private key recovery and session key recovery. Private key recovery may be implemented as a decryption key backup system implemented at public key pair, or symmetric KEK, generation time. In a public key cryptosystem, the KRA may optionally be specified in the user’s encryption key certificate. When so implemented, private key recovery does not affect the interoperability of cryptographic applications.

Session key recovery is concerned with direct third party access to the DEK. This is accomplished by requiring the cryptographic application to designate the KRA as a cryptographic recipient of the encrypted data. To recover the decrypted data, a requestor must have access to the encrypted data and the key recovery field containing the DEK for the data. Numerous techniques have been proposed to make session keys recoverable. Setting aside variations specifically addressing secret sharing, partial key escrow, timestamping, and certificates, these techniques may be broadly categorized as algorithms which allow authorized access to the DEK through the use of a key recovery block within the cryptographic protocol.
4.4
Protocol Classifications

The protocols, which are to be session key recoverable, fall broadly into two categories, transaction-based and session-based protocols. Application interoperability for the former is affected by the protocol’s ability to support the designation of multiple cryptographic recipients. Insofar as the protocol supports multiple cryptographic recipients per transaction, a DEK wrapped for the designated KRA may be added without affecting interoperability. If the protocol does not, then the addition of key recovery will cause recoverable and non-recoverable implementations to be non-interoperable.

Session-based protocols exchange a session DEK during session initialization. The session DEK is then used to encrypt multiple PDU’s for the duration of the session. This mode of operation is distinguished from transaction-based protocols, which utilize a DEK for a single PDU. If session setup supports variable length fields during this initialization, a DEK wrapped for the KRA may be added without affecting application interoperability. If the initialization fields are fixed length, the addition of key recovery to these protocols will likely preclude interoperability with non-recoverable implementations.
5
FUNCTIONAL REQUIREMENTS

5.1
General Requirements

5.2
 End User System Requirements

5.2.1
The end user system shall be capable of ensuring that transmission or storage of encrypted data is contingent on the generation and availability of the corresponding KRI. This function may be statically enabled, or may be controlled by a configuration parameter under the control of a System Administrator.
5.2.2
An end user system, when used for decryption, shall be capable of ensuring that authentic KRI is available prior to decryption

5.3
KRI Generation Function

5.3.1
The KRI Generation Function generates all or part of the KRI.

5.3.2
The KRI Generation Function shall make the generated KRI available to the KRI Delivery Function.

5.4
KRI Delivery Function

5.4.1
The KRI Delivery Function shall format the KRI for consumption by the KRI Recognition [Receive?] Function (if present) and Key Recovery Function and, optionally, for the KRA Function. The format of the KRI may be KR system-specific. However, if KRI is delivered in conjunction with a standard communication protocol, the (transmission) format of the KRI is determined by that protocol standard.

5.4.2
The KRI Delivery Function shall make the KRI available to the key recovery function (requestors or KRAs or a combination of both). The term “make available” is system dependent and includes sending the KRI to the Key Recovery Requestor directly, or depositing the KRI in location(s) known to and accessible to the Key Recovery Requestor (i.e., the requestor(s)). A KRI Delivery Function must ensure that the persistence and availability of the KRI is commensurate with that of the transmitted or stored data. For example, in a communication context, KRI need not be transmitted with every packet, but may have to be periodically retransmitted to facilitate requestor access for a very long lived communication session. (Note that the underlying communication or storage system is not considered to be part of the KRI Delivery Function.)

5.4.3
The KRI Delivery Function shall provide an implicit or explicit association between the KRI and the encrypted data.

5.4.4
The KRI Delivery Function shall be capable of ensuring that the validity of the KRI can be verified by the KRI Validation Function.

5.5
KRI Recognition [Receive?] Function

5.5.1
When the receipt of KRI is not transparent to a receiving system (see interoperability requirements), a KRI Recognition [Receive?] Function must be employed by the receiver. (The KRI Recognition [Receive?] Function is required only for key recovery enabled communication systems.)

5.6
KRI Validation Function

5.6.1
For a level 2 compliant component, the KRI Validation Function shall verify the association between the KRI and the encrypted data.

5.6.2
The KRI Validation Function shall be capable of verifying the validity of the KRI. The intent of this function is to provide assurance that a Key Requestor can successfully recover encrypted data using the KRI. The level of assurance provided ...
5.7
Requestor Function

5.7.1
For given KRI, the Requestor System within the Requestor Function shall have the ability to recover a target key by interacting with one or more Key Recovery Agents.

5.7.2
For encapsulated KRI, the Requestor Function shall have the ability to store KRI provided by the KRI Management [Delivery?] Function.

5.8
Key Recovery Agent Function

5.8.1
The KRAs shall have the ability to store the KRI provided by the KRI Management [Delivery?] Function.

5.8.2
The KRAs shall have the ability to process the KRI provided by the Requestor Function.

5.8.3
The Key Recovery Agent Function shall protect the integrity of the KRI received from the KRI Management [Delivery?] Function.

PRIVATE
6
SECURITY REQUIREMENTStc \l 1 "2.
Security Requirements"PRIVATE

The security requirements for the KRA and for the Requestor functions have been defined to allow a variety of product architectures. These include using a monolithic product on which no other software/firmware can be loaded, using a monolithic product on which other software/firmware can be loaded, or using a layered product that has a distinct operating system, application, and cryptographic module.

The requirements for the KRA and the Requestor functions have been defined so that all of these architectures can be evaluated. This is especially true of the requirements in the following areas: Audit, Identification and Authentication, some of the Access Control, and Protection of Trusted Security Functions.

Furthermore, the product architecture may imply some of the requirements do not apply, e.g., if the threat a requirement is supposed to mitigate does not arise in a particular implementation model. For example, if the product is a monolith on which no other software/firmware can be loaded, the domain separation, trusted path, and reference validation mechanism requirements do not apply since the untrusted software threat does not exist.

PRIVATE
6.1
Key Recovery Agent Requirementstc \l 2 "2.1.
Key Recovery Agent Requirements"
PRIVATE
6.1.1
Level 1 – Medium Assurancetc \l 3 "2.1.1.
Level 1 – Medium Assurance"
PRIVATE
6.1.1.1 Cryptographic Functions tc \l 4 "2.1.1.1.
Cryptographic Functions "
PRIVATE
6.1.1.1.1 All cryptographic modules shall be FIPS 140-1, Level 2 or higher compliant. tc \l 5 "2.1.1.1.1.
All cryptographic modules shall be FIPS 140-1, Level 2 or higher compliant. "
PRIVATE
6.1.1.2 Cryptographic Algorithmstc \l 4 "2.1.1.2.
Cryptographic Algorithms"
PRIVATE
6.1.1.2.1 The key recovery scheme shall be implemented so that only FIPS approved

algorithms are required to use it. The implementation of these algorithms shall

conform to the applicable FIPS.tc \l 5 "2.1.1.2.1.
The key recovery scheme shall be implemented so that only FIPS approved algorithms are required to use it. The implementation of these algorithms shall conform to the applicable FIPS standard(s)."
(Note: It was requested that the above section be moved under confidentiality. It is left here is since there are aspects to various schemes that are not related to confidentiality, e.g., source authentication, binding to encrypted data, integrity, etc. After the committee reviews this draft, this note will be deleted.)

PRIVATE
6.1.1.3 Confidentiality:tc \l 4 "2.1.1.3.
Confidentiality\:"
These requirements are intended to protect against both the outsider and insider threats. The only insider threat addressed is the unauthorized user. Authorized insider threat is handled elsewhere using audit, role separation, and multi-person control.

PRIVATE
6.1.1.3.1 The KRA shall protect all key recovery information stored against disclosure to unauthorized individuals.tc \l 5 "2.1.1.3.1.
The KRA shall protect all key recovery information stored against disclosure to unauthorized individuals."
PRIVATE
6.1.1.3.2 The KRA shall protect key recovery information transmitted - electronically or physically communicated against disclosure to parties other than the requestor(s).tc \l 5 "2.1.1.3.2.
The KRA shall protect key recovery information transmitted against disclosure to parties other than the requestor(s)."
PRIVATE
6.1.1.3.3 The strength of the algorithm used to protect the key recovery information shall be greater than or equal to the maximum strength of the encryption or key management algorithms employed for user traffic encryption or for generation of the keys being recovered.tc \l 5 "2.1.1.3.3.
The strength of the algorithm used to protect the key recovery information shall be greater than or equal to the maximum strength of the encryption or key management algorithms used for usage or generation of the keys being recovered."
PRIVATE
6.1.1.4 Audittc \l 4 "2.1.1.4.
 Audit"
These requirements are used to create a log of information to allow oversight by a security officer to detect unauthorized operations by a key recovery agent.

PRIVATE
6.1.1.4.1
The product shall be capable of generating an audit record for the following events:

(
tc \l 5 "2.1.1.4.1.
The product shall be capable of generating an audit record for the following events\: "Start-up and shutdown of the audit functions; and

· All auditable events as defined in the functional components included in this standard; (FAU_GEN.1.1)
PRIVATE
6.1.1.4.2
The following actions shall be auditable:

· Any specific operation performed to process audit data stored in the audit trail. (Note:This include backup and deletion of audit trail)

· Any attempt to read, modify or destroy the audit trail.

· All requests to use authentication data management mechanisms.

· All modifications to the audit configuration that occur while the audit collection functions are operating.

· All requests to access user authentication data

· Any use of an authentication mechanism. (e.g. login) The authentication information shall not be stored in the audit trail.

· All attempts to use the user identification mechanism, including the user identity provided.

· Any attempt to perform an operation on the audit trail. (including emptying the audit trail)

· Use of a security-relevant administrative function;

· Explicit requests to assume the security administrative role;

· The allocation of a function to a security administrative role.

· The addition or deletion of a user to/from a security administrative role.

· The association of a security-relevant administrative function with a specific security administrative role.

PRIVATE
6.1.1.4.3
The following actions shall be audited. The keys shall not be included in the audit:

tc \l 5 "2.1.1.4.3.
The following actions shall be audited. The keys shall not be included in the audit\:"
· Requests, responses, and other transactions generated by the product, including key recovery responses.

· Requests, responses, and other transactions received by the product, including key recovery requests.

PRIVATE
6.1.1.4.4
The product shall record within each audit record at least the following information:

tc \l 5 "2.1.1.4.4.
The product shall record within each audit record at least the following information\: "
· Date and time of the event, type of event, subject (user) identity, and success or failure of the event; and

· Other information, as described in the functional component audit events (FAU_GEN.1.2)
PRIVATE
6.1.1.4.5
The product shall be able to generate a human understandable presentation of any audit data stored in the permanent audit trail. (FAU_POP.1.1)tc \l 5 "2.1.1.4.5.
The product shall be able to generate a human understandable presentation of any audit data stored in the permanent audit trail. (FAU_POP.1.1)"
PRIVATE
6.1.1.4.6

The audit trail shall not store the old or new authentication information (e.g., password) tc \l 5 "2.1.1.4.6.
The audit trail shall not store the old or new authentication information (e.g., password) "
PRIVATE
6.1.1.4.7
The product shall be able to associate each auditable event with the identity of the user that caused the event. (FAU_GEN.2.1)tc \l 5 "2.1.1.4.7.
The product shall be able to associate each auditable event with the identity of the user that caused the event. (FAU_GEN.2.1)"
PRIVATE
6.1.1.4.8
The product shall provide the authorized administrator with the ability to empty the audit trail. (FAU_MGT.1.1) (Note: emptying the audit trail means backup and delete). tc \l 5 "2.1.1.4.8.
The product shall provide the authorized administrator with the ability to empty the audit trail. (FAU_MGT.1.1) (Note\: emptying the audit trail means backup and delete)."
PRIVATE
6.1.1.4.9
The product shall be able to include or exclude auditable events from the set of audited events based on the following attributes: User identity, and/or Event Type (FAU_SEL.1.1) (Note: The requirement applies to the auditable (i.e. optionally audited) events only. The mandatory audited events must never be excluded or excludable from the set of audited events.)tc \l 5 "2.1.1.4.9.
 The product shall be able to include or exclude auditable events from the set of audited events based on the following attributes\: User identity, and/or Event Type (FAU_SEL.1.1) (Note\: The requirement applies to the auditable events only. The always audited events must never be excluded or excludable from the set of audited events.)"
PRIVATE
6.1.1.4.10 The product shall store generated audit records in a permanent audit trail. (FAU_STG.1.1)tc \l 5 "2.1.1.4.10.
The product shall store generated audit records in a permanent audit trail. (FAU_STG.1.1)"
PRIVATE
6.1.1.4.11 The product shall restrict access to the audit trail to the authorized administrator. (FAU_PRO.1.1)tc \l 5 "2.1.1.4.11.
 The product shall restrict access to the audit trail to the authorized administrator. (FAU_PRO.1.1)"
PRIVATE
(Note: This requirement implies providing integrity to the audit trail)tc \l 5 "(Note\: This requirement implies providing integrity to the audit trail)"
PRIVATE
6.1.1.5
 Identification and Authenticationtc \l 4 "2.1.1.5.
 Identification and Authentication"
These requirements permit the unique identification of key recovery agent personnel. This facilitates individual accountability via audit functions and access controls. Requirements are levied on the strength of the authentication mechanism and the robustness of the authentication mechanism against attacks by rogue key recovery agent personnel.

These requirements do not apply to electronic transactions (requests and responses). The electronic transactions may be identified and authenticated (if the scheme permits) using the access control policy.

PRIVATE
6.1.1.5.1
The product shall provide functions for initializing and modifying KRA personnel authentication data. (FIA_ADA.3.1)tc \l 5 "2.1.1.5.1.
 The product shall provide functions for initializing and modifying KRA personnel authentication data. (FIA_ADA.3.1)"
PRIVATE
6.1.1.5.2

The product shall restrict the use of these functions on the KRA personnel authentication data for any user to the authorized administrator. (FIA_ADA.3.2)

(Note: The above function shall be assigned to the security administrator.) tc \l 5 "2.1.1.5.2.
The product shall restrict the use of these functions on the KRA personnel authentication data for any user to the authorized administrator. (FIA_ADA.3.2)"
PRIVATE
6.1.1.5.3
The product shall allow authorized KRA personnel to use these functions to modify their own authentication. (FIA_ADA.3.3)

PRIVATE
6.1.1.5.4
The product shall protect from unauthorized observation, modification, and destruction authentication data that is stored in the product.

6.1.1.5.5 The product shall protect authentication information from unauthorized reuse, including replay.

(Note: The above two requirements provide capability for secure remote login.)tc \l 5 "2.1.1.5.4.
The product shall protect from unauthorized observation, modification, and destruction authentication data that is stored in the product. "
PRIVATE
6.1.1.5.6
The product shall be able to terminate the KRA personnel session establishment process after five unsuccessful authentication attempts. (FIA_AFL.1.1)tc \l 5 "2.1.1.5.5.
The product shall be able to terminate the KRA personnel session establishment process after five unsuccessful authentication attempts. (FIA_AFL.1.1)"
PRIVATE
(Note: If the product terminates the session after fewer than five unsuccessful attempts, the product meets the above requirement)tc \l 5 "(Note\: If the product terminates the session after less than five unsuccessful attempts, the product meets the above requirement)"
PRIVATE
6.1.1.5.7
After the termination of a KRA user session establishment process, the product shall be able to disable the user account until account is enabled by an authorized administrator (i.e., security administrator). (FIA_AFL.1.2)tc \l 5 "2.1.1.5.6.
After the termination of a KRA user session establishment process, the product shall be able to disable the user account until account is enabled by an authorized administrator (i.e., security administrator). (FIA_AFL.1.2)"
PRIVATE
6.1.1.5.8
The product shall authenticate any KRA user’s claimed identity prior to performing any functions on the user’s behalf. (FIA_UAU.1.1)tc \l 5 "2.1.1.5.7.
The product shall authenticate any KRA user’s claimed identity prior to performing any functions on the user’s behalf. (FIA_UAU.1.1)"
PRIVATE
6.1.1.5.9
The product shall uniquely identify each KRA user before performing any actions requested by the user. (FIA_UID.2.1)tc \l 5 "2.1.1.5.8.
 The product shall uniquely identify each KRA user before performing any actions requested by the user. (FIA_UID.2.1)"
PRIVATE
6.1.1.5.10 The product shall provide a mechanism to verify that secrets (i.e., authentication information such as passwords) meet the FIPS PUB 112 “Password Usage” and Department of Defense Password Management Guideline (CSC-STD-002-85).tc \l 5 "2.1.1.5.9.
 The product shall provide a mechanism to verify that secrets (i.e., authentication information such as passwords) meet the FIPS PUB 112 “Password Usage” and Department of Defense Password Management Guideline (CSC-STD-002-85)."
PRIVATE
(Note: The above requirement implies that the product (as opposed to procedural means and management instructions) will enforce the password length, aging, etc. type requirements. If we do not want product to enforce the requirement, the above requirement should be deleted)tc \l 5 "(Note\: The above requirement implies that the product (as opposed to procedural means and management instructions) will enforce the password length, aging, etc. type requirements. If we do not want product to enforce the requirement, the above requirement should be deleted)"
PRIVATE
6.1.1.6
Access Controltc \l 4 "2.1.1.6.
 Access Control"
These requirements provide countermeasures against entities masquerading as an authorized requestor or key recovery information generator. The requirements in this section address the security of electronic communication between the KRA and the requestor or information generator. If these interactions are not electronic, then physical and procedural means may be used to secure the transactions. These procedural and physical measures are beyond the scope the standard.

PRIVATE
6.1.1.6.1
The product shall verify the source of received transactions. (FPT_ACP.1.1)

6.1.1.6.2
The product shall verify the integrity of received transactions. tc \l 5 "2.1.1.6.1.
The product shall verify authentication and integrity services for the received transactions as determined by the standard compliant protocol (scheme). (FPT_ACP.1.1)"
PRIVATE
6.1.1.6.3
The product shall decrypt the received transactions which are encrypted. (FPT_ACP.1.2)tc \l 5 "2.1.1.6.2.
The product shall decrypt the received transactions if the standard compliant protocol requires the transaction to be encrypted. (FPT_ACP.1.2)"
PRIVATE
6.1.1.6.4
The product shall apply source authentication to all transactions (i.e., requests and responses). (FPT_ACP.1.3) The strength of the algorithm used for authentication shall be greater than or equal to the maximum strength of the encryption or key management algorithms employed for user traffic encryption or for generation of the keys being recovered.

6.1.1.6.5
The product shall apply integrity services to all transactions. The strength of the algorithm used for integrity shall be greater than or equal to the maximum strength of the encryption or key management algorithms employed for user traffic encryption or for generation of the keys being recovered.

6.1.1.6.6

The product shall apply confidentiality services to all transactions. The strength of the algorithm used for confidentiality shall be greater than or equal to the maximum strength of the encryption or key management algorithms employed for user traffic encryption or for generation of the keys being recovered.

6.1.1.6.7
The product shall unambiguously associate the response to an outstanding request. The strength of the algorithm used for the association shall be greater than or equal to the maximum strength of the encryption or key management algorithms employed for user traffic encryption or for generation of the keys being recovered.

PRIVATE
6.1.1.6.8
The product shall release the keys only to authorized users.tc \l 5 "2.1.1.6.4.
The product shall release the keys only to authorized users."
PRIVATE
6.1.1.6.9
The product shall release a key only if the requester is authorized to receive the key associated with the user specified in the request and for the validity period (time interval).

PRIVATE
6.1.1.6.10
The product shall ensure that security features are always invoked and cannot be bypassed. (FPT_RVM.1.1)tc \l 5 "2.1.1.6.6.
The product shall ensure that security policy enforcement functions are invoked and succeed before any security-related operation is allowed to proceed. (FPT_RVM.1.1)"
PRIVATE
6.1.1.6.11
The product shall maintain a security domain for its own execution that protects it from interference and tampering by untrusted subjects. (FPT_SEP.1.1)tc \l 5 "2.1.1.6.7.
The product shall maintain a security domain for its own execution that protects it from interference and tampering by untrusted subjects. (FPT_SEP.1.1)"
PRIVATE
6.1.1.6.12
The product shall enforce separation between the security domains of subjects in the system. (FPT_SEP.1.2)tc \l 5 "2.1.1.6.8.
The product shall enforce separation between the security domains of subjects in the system. (FPT_SEP.1.2)"
PRIVATE
6.1.1.6.13
The product shall distinguish between security-relevant administrative functions from other functions. (FPT_TSA.2.1)tc \l 5 "2.1.1.6.9.
The product shall distinguish between security-relevant administrative functions from other functions. (FPT_TSA.2.1)"
PRIVATE
6.1.1.6.14
The set of security-relevant administrative functions shall include all functions necessary to install, configure, and manage the product; minimally, this set shall include assignment/deletion of authorized users from security administrative roles, association of security-relevant administrative commands with security administrative roles, assignment/deletion of subjects whose keys are held, assignment/deletion of parties who may be provided the keys, product cryptographic key management, actions on the audit log, audit profile management, and changes to the system configuration. (FPT_TSA.2.2)tc \l 5 "2.1.1.6.10.
The set of security-relevant administrative functions shall include all functions necessary to install, configure, and manage the product; minimally, this set shall include assignment/deletion of authorized users from security administrative roles, association of security-relevant administrative commands with security administrative roles, assignment/deletion of subjects whose keys are held, assignment/deletion of parties who may be provided the keys, product cryptographic key management, actions on the audit log, audit profile management, and changes to the system configuration. (FPT_TSA.2.2)"
PRIVATE
6.1.1.6.15
The product shall restrict the ability to perform security-relevant administrative functions to a security administrative role that has a specific set of authorized functions and responsibilities. (FPT_TSA.2.3)tc \l 5 "2.1.1.6.11.
The product shall restrict the ability to perform security-relevant administrative functions to a security administrative role that has a specific set of authorized functions and responsibilities. (FPT_TSA.2.3)"
PRIVATE
(Note: The term security administrative role refers to generic trusted administrative roles. Security administrator role is one, but not the only one, of these security administrative roles.)tc \l 5 "(Note\: The term security administrative role refers to generic trusted administrative roles. Security administrator role is one, but not the only one, of these security administrative roles.)"
PRIVATE
6.1.1.6.16
The product shall be capable of distinguishing the set of KRA operators authorized for administrative functions from the set of all other users. (FPT_TSA.2.4)tc \l 5 "2.1.1.6.12.
The product shall be capable of distinguishing the set of KRA operators authorized for administrative functions from the set of all other users. (FPT_TSA.2.4)"
PRIVATE
6.1.1.6.13
The product shall allow only specifically authorized KRA operators to assume the security administrative role. (FPT_TSA.2.5)tc \l 5 "2.1.1.6.13.
The product shall allow only specifically authorized KRA operators to assume the security administrative role. (FPT_TSA.2.5)"
PRIVATE
6.1.1.6.14
The product shall require an explicit request to be made in order for an authorized KRA operator to assume the security administrative role. (FPT_TSA.2.6)tc \l 5 "2.1.1.6.14.
The product shall require an explicit request to be made in order for an authorized KRA operator to assume the security administrative role. (FPT_TSA.2.6)"
PRIVATE
6.1.1.7
Non-Repudiationtc \l 4 "2.1.1.7.
 Non-Repudiation"
These capabilities facilitate trusted time source to further support accountability.

PRIVATE
6.1.1.7.1
The product shall be able to provide reliable time stamps for its own use. (FPT_STM.1.1)tc \l 5 "2.1.1.7.1.
The product shall be able to provide reliable time stamps for its own use. (FPT_STM.1.1)"
PRIVATE
6.1.1.7.2
The product shall be able to generate evidence of receipt for received transactions. (FCO_NRR.2.1)tc \l 5 "2.1.1.7.2.
The product shall be able to generate evidence of receipt for received transactions. (FCO_NRR.2.1)"
PRIVATE
(Note: The above requirement means using the reliable time stamp to requirement to put a trusted time stamp on the receipt. Furthermore, this requirement means that the product shall be able to generate evidence of receipt of: registration or deposit of key recovery information from users, and requests from requestor)tc \l 5 "(Note\: The above requirement means using the reliable time stamp to requirement to put a trusted time stamp on the receipt. Furthermore, this requirement means that the product shall be able to generate evidence of receipt of\: registration or deposit of key recovery information from users, and requests from requestor)"
PRIVATE
6.1.1.8
Availabilitytc \l 4 "2.1.1.8.
Availability"
These requirements are intended to provide the capability for a key recovery agent to recover in the event of a system failure or compromise. They act as a counter to the threat of the unauthorized destruction of the key recovery information or capabilities at the key recovery agent facility.

PRIVATE
6.1.1.8.1
The KRA facility shall have the capability to securely replicate any key recovery information stored.tc \l 5 "2.1.1.8.1.
The KRA facility shall have the capability to securely replicate any key recovery information stored."
PRIVATE
(Note: The intent of the above requirement is for continued on-line access in case of a facility failure. In light of that, should this be a requirement on the component since it is a system architecture issue. Please note that the multiple KRAs requirement at Level 2 is to prevent one KRA from compromising key recovery information)tc \l 5 "(Note\: The intent of the above requirement is for continued on-line access in case of a facility failure. In light of that, should this be a requirement on the component since it is a system architecture issue. Please note that the multiple KRAs requirement at Level 2 is to prevent one KRA from compromising key recovery information)"
PRIVATE
6.1.1.8.2
The KRA facility shall have a secure backup of the key recovery information stored.tc \l 5 "2.1.1.8.2.
The KRA facility shall have a secure backup of the key recovery information stored."
PRIVATE
(Note: The intent of the above requirement is for ability to rebuild the key recovery database in case of KRA system failure. In light of that, should this be a requirement on the component since this a facility operations related issue)tc \l 5 "(Note\: The intent of the above requirement is for ability to rebuild the key recovery database in case of KRA system failure. In light of that, should this be a requirement on the component since this a facility operations related issue)"
PRIVATE
6.1.1.9
Protection of Trusted Security Functionstc \l 4 "2.1.1.9.

Protection of Trusted Security Functions"
PRIVATE
6.1.1.9.1
Before establishing a session with KRA operator, the product shall display an advisory warning message regarding unauthorized use of the product. (FTA_TAB.2.1)tc \l 5 "2.1.1.9.1.
Before establishing a session with KRA operator, the product shall display an advisory warning message regarding unauthorized use of the product. (FTA_TAB.2.1)"
PRIVATE
6.1.1.9.2
The default advisory warning message displayed by the product shall be as follows: “This system shall be used only by authorized personnel and only for authorized key recovery purposes. Violation shall result in criminal prosecution and civil penalties”. (FTA_TAB.2.2)tc \l 5 "2.1.1.9.2.
The default advisory warning message displayed by the product shall be as follows\: “This system shall be used only by authorized personnel and only for authorized key recovery purposes. Violation shall result in criminal prosecution and civil penalties”. (FTA_TAB.2.2)"
PRIVATE
6.1.1.9.3
The product shall restrict the capability to modify the warning message to the authorized administrator. (FTA_TAB.2.3)tc \l 5 "2.1.1.9.3.
The product shall restrict the capability to modify the warning message to the authorized administrator. (FTA_TAB.2.3)"
PRIVATE
6.1.1.9.4
Upon successful session establishment, the product shall display the date, time, method, and port of the last successful session establishment to the KRA operator. (FTA_TAH.1.1)tc \l 5 "2.1.1.9.4.
Upon successful session establishment, the product shall display the date, time, method, and location of the last successful session establishment to the KRA operator. (FTA_TAH.1.1)"
PRIVATE
6.1.1.9.5
Upon successful session establishment, the product shall display the date, time, method, and location of the last unsuccessful attempt to session establishment and the number of unsuccessful attempts since the last successful session establishment. (FTA_TAH.1.2)tc \l 5 "2.1.1.9.5.
Upon successful session establishment, the product shall display the date, time, method, and location of the last unsuccessful attempt to session establishment and the number of unsuccessful attempts since the last successful session establishment. (FTA_TAH.1.2)"
PRIVATE
6.1.1.9.6
The data specified above shall not be removed without KRA operator intervention. (FTA_TAH.1.3)tc \l 5 "2.1.1.9.6.
The data specified above shall not be removed without KRA operator intervention. (FTA_TAH.1.3)"
PRIVATE
6.1.2
Level 2 – High Assurancetc \l 3 "2.1.2.
Level 2 – High Assurance"
PRIVATE
6.1.2.1
Cryptographic Functionstc \l 4 "2.1.2.1.
Cryptographic Functions"
PRIVATE
6.1.2.1.1
All cryptographic modules shall be FIPS 140-1, Level 3 or higher compliant. tc \l 5 "2.1.2.1.1.
All cryptographic modules shall be FIPS 140-1, Level 3 or higher compliant. "
PRIVATE
6.1.2.2 Cryptographic Algorithms

tc \l 4 "2.1.2.2.
 Cryptographic Algorithms"

 Same as Level 1

PRIVATE
6.1.2.3
Confidentiality:tc \l 4 "2.1.2.3.
Confidentiality\:"
Level 2 requires additional protection against the insider threat of a rogue key recovery agent by requiring multi-party control on access to the key recovery information.
PRIVATE
All level 1 requirements and;tc \l 4 " All level 1 requirements and;"
PRIVATE
6.1.2.3.1
The system shall be designed for multiple KRAs. Two or more KRAs shall be required to obtain the key recovery information. tc \l 5 "2.1.2.3.1.
The system shall be designed for multiple KRAs. Two or more KRAs shall be required to obtain the key recovery information. "
PRIVATE
6.1.2.4
Audit:tc \l 4 "2.1.2.4.
 Audit\:"
Level 2 adds a real time alarm to the security officer in the event of the audit trail becoming full to prevent audit data from being lost. It also requires the auditing of additional events consistent with the additional security requirements (i.e. trusted path) added at Level 2.

PRIVATE
Includes all the requirements of Level 1 and;tc \l 5 "Includes all the requirements of Level 1 and;"
PRIVATE
6.1.2.4.1
The product shall generate an alarm to the authorized administrator if the size of the audit data in the audit trail exceeds a pre-defined limit. (FAU_MGT.4.1)tc \l 5 "2.1.2.4.1.
The product shall generate an alarm to the authorized administrator if the size of the audit data in the audit trail exceeds a pre-defined limit. (FAU_MGT.4.1)"
PRIVATE
6.1.2.4.2
The product shall provide the authorized administrator with the ability to manage the audit trail at any time during the operation of the product. (FAU_MGT.4.2)tc \l 5 "2.1.2.4.2.
The product shall provide the authorized administrator with the ability to manage the audit trail at any time during the operation of the product. (FAU_MGT.4.2)"
PRIVATE
6.1.2.4.3
The following actions shall be auditable:

tc \l 5 "2.1.2.4.3.
The following actions shall be auditable\:"
· Execution of the tests of the underlying machine and the results of the tests.

· All attempted uses of the trusted path functions.

· Identification of the initiator and target of the trusted path.

· Attempts to provide invalid inputs for administrative functions

· The invocation of the non-repudiation service. The audit event shall include identification of the information, the destination, and a copy of the evidence provided. The event shall exclude all private and secret keys in encrypted or unencrypted form.

PRIVATE
6.1.2.5
Identification and Authenticationtc \l 4 "2.1.2.5.
 Identification and Authentication"
Level 2 enhances assurance by supporting a hardware token. This provides an additional countermeasure to the threat of an attack on the authentication mechanism and the subsequent unauthorized access to key recovery information or critical functions.

All Level 1 requirements and the following;

PRIVATE
6.1.2.5.1
The product shall support a token based authentication. The token shall meet FIPS 140-1 Level 2 requirements.tc \l 5 "2.1.2.5.1.
 The product shall support a token based authentication. The token shall meet FIPS 140-1 Level 2 requirements."
PRIVATE
6.1.2.6
Access Controltc \l 4 "2.1.2.6.
Access Control"
Level 2 requires multi-party access controls for release of key recovery information and establishes roles and responsibilities for key recovery facility personnel as additional countermeasures to the threat of a single rogue key recovery agent.

PRIVATE
All Level 1 requirements and the following;tc \l 1 "All Level 1 requirements and the following;"
PRIVATE
6.1.2.6.1
The KRA shall embody a facility for multi-party (at least 2) authorization in support of the release of key material.tc \l 5 "2.1.2.6.1.
The KRA shall embody a facility for multi-party (at least 2) authorization in support of the release of key material."
PRIVATE
(Note: The following requirements are to provide for strict role separation)tc \l 5 "(Note\: The following requirements are to provide for strict role separation)"
PRIVATE
6.1.2.6.2
The product shall distinguish security-relevant administrative functions from other functions. (FPT_TSA.3.1)tc \l 5 "2.1.2.6.2.
The product shall distinguish security-relevant administrative functions from other functions. (FPT_TSA.3.1)"
PRIVATE
6.1.2.6.3
The set of security-relevant administrative functions shall include all functions necessary to install, configure, and manage the product; minimally, this set shall include assignment/deletion of authorized users from security administrative roles, association of security-relevant administrative commands with security administrative roles, assignment/deletion of subjects whose keys are held, assignment/deletion of parties who may be provided the keys, product cryptographic key management, actions on the audit log, audit profile management, and changes to the system configuration. (FPT_TSA.3.2)tc \l 5 "2.1.2.6.3.
The set of security-relevant administrative functions shall include all functions necessary to install, configure, and manage the product; minimally, this set shall include assignment/deletion of authorized users from security administrative roles, association of security-relevant administrative commands with security administrative roles, assignment/deletion of subjects whose keys are held, assignment/deletion of parties who may be provided the keys, product cryptographic key management, actions on the audit log, audit profile management, and changes to the system configuration. (FPT_TSA.3.2)"
PRIVATE
6.1.2.6.4
The product shall restrict the ability to perform a security-relevant administrative function to the security administrative role(s) authorized to use that function. (FPT_TSA.3.3)tc \l 5 "2.1.2.6.4.
The product shall restrict the ability to perform a security-relevant administrative function to the security administrative role(s) authorized to use that function. (FPT_TSA.3.3)"
PRIVATE
6.1.2.6.5
The product shall be capable of distinguishing the set of users authorized for administrative functions from the set of all other users. (FPT_TSA.3.4)tc \l 5 "2.1.2.6.5.
The product shall be capable of distinguishing the set of users authorized for administrative functions from the set of all other users. (FPT_TSA.3.4)"
PRIVATE
6.1.2.6.6
The product shall allow only specifically authorized users to assume only those security administrative roles for which they have been authorized. (FPT_TSA.3.5)tc \l 5 "2.1.2.6.6.
The product shall allow only specifically authorized users to assume only those security administrative roles for which they have been authorized. (FPT_TSA.3.5)"
PRIVATE
6.1.2.6.7
The product shall require an explicit request to assume a specific security administrative role to be made in order for an authorized user to assume that security administrative role. (FPT_TSA.3.6)tc \l 5 "2.1.2.6.7.
The product shall require an explicit request to assume a specific security administrative role to be made in order for an authorized user to assume that security administrative role. (FPT_TSA.3.6)"
PRIVATE
6.1.2.6.8
The product shall define a set of security administrative roles that minimally includes security administrator, system operator, crypto officer and audit administrator. (FPT_TSA.3.7)tc \l 5 "2.1.2.6.8.
The product shall define a set of security administrative roles that minimally includes security administrator, system operator, crypto officer and audit administrator. (FPT_TSA.3.7)"
PRIVATE
6.1.2.6.9
The security administrator shall perform the following functions: assignment/deletion of authorized users from security administrative roles, association of security-relevant administrative commands with security administrative roles, assignment/deletion of subjects whose keys are held, and assignment/deletion of parties who may be provided the keys.tc \l 5 "2.1.2.6.9.
The security administrator shall perform the following functions\: assignment/deletion of authorized users from security administrative roles, association of security-relevant administrative commands with security administrative roles, assignment/deletion of subjects whose keys are held, and assignment/deletion of parties who may be provided the keys."
PRIVATE
6.1.2.6.10
The system operator shall change system configuration and run the system.tc \l 5 "2.1.2.6.10.
The system operator shall change system configuration and run the system."
PRIVATE
6.1.2.6.11
The crypto officer shall manage the cryptographic keys.tc \l 5 "2.1.2.6.11.
The crypto officer shall manage the cryptographic keys."
PRIVATE
6.1.2.6.12
The audit administrator shall manage audit log and audit profiles.tc \l 5 "2.1.2.6.12.
The audit administrator shall manage audit log and audit profiles."
PRIVATE
6.1.2.6.13
The product shall associate each security-relevant administrative function with at least one security administrative role. (FPT_TSA.3.8)tc \l 5 "2.1.2.6.13.
The product shall associate each security-relevant administrative function with at least one security administrative role. (FPT_TSA.3.8)"
PRIVATE
6.1.2.6.14
 The product shall enforce checks for valid input values for security-relevant administrative functions as described in the Administrative guidance. (FPT_TSU.1.1)tc \l 5 "2.1.2.6.14.
The product shall enforce checks for valid input values for security-relevant administrative functions as described in the Administrative guidance. (FPT_TSU.1.1)"
PRIVATE
6.1.2.7
Non Repudiationtc \l 4 "2.1.2.7.
Non Repudiation"
Level 2 requires additional capabilities to prove the origin of transmissions to allow recipients to counter the threat of an adversary spoofing as a Key Recovery Agent.

All Level 1 requirements and the following:

PRIVATE
6.1.2.7.1
The product shall generate evidence of origin for transmitted key recovery requests or responses. (FCO_NRO.1.1)tc \l 5 "2.1.2.7.1.
The product shall generate evidence of origin for transmitted key recovery requests or responses. (FCO_NRO.1.1)"
PRIVATE
(Note: The above requirement shall also the reliable time stamp service to include the time in the evidence)tc \l 5 "(Note\: The above requirement shall also the reliable time stamp service to include the time in the evidence)"
PRIVATE
6.1.2.7.2
The product shall provide a capability to verify the evidence of origin of information to the recipient. (FCO_NRO.1.3)tc \l 5 "2.1.2.7.2.
The product shall provide a capability to verify the evidence of origin of information to the recipient. (FCO_NRO.1.3)"
PRIVATE
6.1.2.7.3
The product shall provide a capability to verify the evidence of receipt of proof of receipt to the originator of message (i.e., recipient of proof of receipt). (FCO_NRR.2.3)tc \l 5 "2.1.2.7.3.
The product shall provide a capability to verify the evidence of receipt of proof of receipt to the originator of message (i.e., recipient of proof of receipt). (FCO_NRR.2.3)"
PRIVATE
6.1.2.7.4
The product shall provide the originator the ability to request evidence of receipt on information. (FCO_NRR.2.3)tc \l 5 "2.1.2.7.4.
The product shall provide the originator the ability to request evidence of receipt on information. (FCO_NRR.2.3)"
PRIVATE
6.1.2.8
Availability

Same as Level 1.tc \l 4 "2.1.2.8.
 Availability Same as Level 1."
PRIVATE
6.1.2.9
Protection of Trusted Security Functions

Same as Level 1 and the following:tc \l 4 "2.1.2.9.
Protection of Trusted Security Functions\: Same as Level 1 and the following\:"
PRIVATE
6.1.2.9.1
The product shall provide a communication path between itself and local human users that is logically distinct from other communication paths and provides assured identification of its endpoints. (FTP_TRP.1.1) (This communication path is generally called a trusted path.) tc \l 5 "2.1.2.9.1.
The product shall provide a communication path between itself and local human users that is logically distinct from other communication paths and provides assured identification of its endpoints. (FTP_TRP.1.1)"
PRIVATE
6.1.2.9.2
The local human users shall have the ability to initiate communication via the trusted path. (FTP_TRP.1.2)tc \l 5 "2.1.2.9.2.
The local human users shall have the ability to initiate communication via the trusted path. (FTP_TRP.1.2)"
PRIVATE
6.1.2.9.3
The product shall require the use of the trusted path for initial user (i.e., KRA operator) authentication. (FTP_TRP.1.3)tc \l 5 "2.1.2.9.3.
The product shall require the use of the trusted path for initial user (i.e., KRA operator) authentication. (FTP_TRP.1.3)"
PRIVATE
6.1.2.9.4
The product shall provide the authorized administrator with the capability to demonstrate the correct operation of the security-relevant functions provided by the underlying abstract machine. (FPT_AMT.1.1)tc \l 5 "2.1.2.9.4.
The product shall provide the authorized administrator with the capability to demonstrate the correct operation of the security-relevant functions provided by the underlying abstract machine. (FPT_AMT.1.1)"
PRIVATE
6.1.2.9.5
The product shall preserve a secure state when abstract machine tests fail. (FPT_FLS.1.1) tc \l 5 "2.1.2.9.5.
The product shall preserve a secure state when abstract machine tests fail. (FPT_FLS.1.1) "
PRIVATE
6.2
Key Recovery Information Generatortc \l 2 "2.2.
End User Product"
PRIVATE
6.2.1
Level 1 – Medium Assurance Key Recovery Information Generator

PRIVATE
6.2.1.1
Cryptographic Functions tc \l 4 "2.2.1.1.
Cryptographic Functions "
PRIVATE
6.2.1.1.1
All cryptographic modules shall be FIPS 140-1, Level 1 compliant. tc \l 5 "2.2.1.1.1.
All cryptographic modules shall be FIPS 140-1, Level 1 compliant. "
PRIVATE
6.2.1.2
Cryptographic Algorithmstc \l 4 "2.2.1.2.
Cryptographic Algorithms"
PRIVATE
6.2.1.2.1
The key recovery scheme shall be implemented so that only FIPS approved algorithms are required to use it. The implementation of these algorithms shall conform to the applicable FIPS standard(s).tc \l 5 "2.2.1.2.1.
The key recovery scheme shall be implemented so that only FIPS approved algorithms are required to use it. The implementation of these algorithms shall conform to the applicable FIPS standard(s)."
PRIVATE
6.2.1.3
Confidentialitytc \l 4 "2.2.1.3.
Confidentiality"
This requirement is intended to minimize the vulnerability created by the key recovery mechanism. The key recovery mechanism should not be weaker and thus easier to attack than the original encryption mechanism.

PRIVATE
6.2.1.3.1

The strength of the algorithm used to protect the key recovery information shall be greater than or equal to the maximum strength of the encryption or key management algorithms employed for user traffic encryption or for generation of the keys being recovered.

6.2.1.4 Integrity

These requirements counter the threat of a single end user or an outsider corrupting the key recovery information.
6.2.1.4.1
The product shall provide the capability to detect modifications to key recovery information.

 6.2.1.4.2.
The product shall unambiguously associate the key recovery information with the data.

6.2.1.4.3
The product shall provide the capability to detect modifications to the association of the key recovery information to the data.

6.2.1.5
Key Recovery Configurabilitytc \l 4 "2.2.1.5.
 Key Recovery Functionality"
PRIVATE
6.2.1.5.1
The key recovery mechanism in the end user product shall be always activated/deactivated by the system administrator.tc \l 5 "2.2.1.5.1.
 The key recovery mechanism in the end user product shall be always activated/deactivated by the system administrator."
PRIVATE
(Note: The above requirement will be taken out if it appears some place else.)

(Note: In order to meet the above requirement the crypto module FIPS 140-1 level 1 requirement must be augmented to provide role-based authentication.)tc \l 5 "(Note\: The above requirement will be taken out if it appears some place else.)"
6.2.2
Level 2 – High Assurance Key Recovery Information Generatortc \l 3 "2.2.2.
Level 2 – Mandatory Enforcement of Key Recovery"
PRIVATE
6.2.2.1
Cryptographic Functions tc \l 4 "2.2.2.1.
Cryptographic Functions "
PRIVATE
6.2.2.1.1
All cryptographic modules shall be FIPS 140-1, Level 2 compliant. tc \l 5 "2.2.2.1.1.
All cryptographic modules shall be FIPS 140-1, Level 2 compliant. "
PRIVATE
6.2.2.2
Cryptographic Algorithms

Same as Level 1tc \l 4 "2.2.2.2.
Cryptographic Algorithms\: Same as Level 1"
PRIVATE
6.2.2.3
Confidentiality
Same as Level 1

6.2.2.4
Integrity

All of Level 1 requirements and;

6.2.2.4.1
The product shall provide the capability for the decryptor to verify that the key recovery information can be successfully used to decrypt the data.

6.2.2.5
Configurability

6.2.2.5.1
The key recovery mechanism shall be always activated in the end user product.

PRIVATE
(Note: The above requirement will be taken out if it appears some place else.)

6.3tc \l 5 "(Note\: The above requirement will be taken out if it appears some place else.)"

tc \l 4 "2.2.2.3.
 Confidentiality\: Same as Level 1"
Key Recovery Information Delivery
6.3.1
Level 1 – Key Recovery Information Delivery

PRIVATE
6.3.1.1
Availability

6.3.1.2
The product shall make the key recovery information available on the key recovery information medium.

6.3.2
Level 2 – Key Recovery Information Delivery

Same as Level 1.

6.4
PRIVATE
Key Recovery Information Recognizer

No security requirements.

6.5
Key Recovery Information Validator

6.5.1
Level 1 – Medium Assurance Key Recovery Information Validator

PRIVATE
6.5.1.1
Cryptographic Functions tc \l 4 "2.2.1.1.
Cryptographic Functions "
PRIVATE
6.5.1.1.1
All cryptographic modules shall be FIPS 140-1, Level 1 compliant. tc \l 5 "2.2.1.1.1.
All cryptographic modules shall be FIPS 140-1, Level 1 compliant. "
PRIVATE
6.5.1.2
Cryptographic Algorithmstc \l 4 "2.2.1.2.
Cryptographic Algorithms"
PRIVATE
6.5.1.2.1
The key recovery scheme shall be implemented so that only FIPS approved algorithms are required to use it. The implementation of these algorithms shall conform to the applicable FIPS standard(s).tc \l 5 "2.2.1.2.1.
The key recovery scheme shall be implemented so that only FIPS approved algorithms are required to use it. The implementation of these algorithms shall conform to the applicable FIPS standard(s)."
6.5.1.3
Integrity. These requirements counter the threat of a single end user or an outsider corrupting the key recovery information.
6.5.1.3.1
The product shall provide the capability to verify integrity of recovery information.

 6.5.1.3.2
The product shall have the capability to verify the association of the key recovery information with the data.

6.5.1.3.3
The product shall provide the capability to verify the integrity of the association of the key recovery information to the data.

6.5.2
Level 2 – High Assurance Key Recovery Information Validatortc \l 3 "2.2.2.
Level 2 – Mandatory Enforcement of Key Recovery"
PRIVATE
6.5.2.1
Cryptographic Functions tc \l 4 "2.2.2.1.
Cryptographic Functions "
PRIVATE
6.5.2.1.1
All cryptographic modules shall be FIPS 140-1, Level 2 compliant. tc \l 5 "2.2.2.1.1.
All cryptographic modules shall be FIPS 140-1, Level 2 compliant. "
PRIVATE
6.5.2.2
Cryptographic Algorithms

Same as Level 1tc \l 4 "2.2.2.2.
Cryptographic Algorithms\: Same as Level 1"PRIVATE

6.5.2.3
Integrity

All of Level 1 requirements and;
6.5.2.3.1
The product shall provide the capability to verify that the key recovery information can be successfully used to decrypt the data.

6.6
Key Recovery Requestor

The security requirements for the KRA and for the Requestor functions have been defined to allow a variety of product architectures. These include using a monolithic product on which no other software/firmware can be loaded, using a monolithic product on which other software/firmware can be loaded, or using a layered product that has a distinct operating system, application, and cryptographic module.

The requirements for the KRA and the Requestor functions have been defined so that all of these architectures can be evaluated. This is especially true of the requirements in the following areas: Audit, Identification and Authentication, some of the Access Control, and Protection of Trusted Security Functions.

Furthermore, the product architecture may imply some of the requirements do not apply, e.g., if the threat a requirement is supposed to mitigate does not arise in a particular implementation model. For example, if the product is a monolith on which no other software/firmware can be loaded, the domain separation, trusted path, and reference validation mechanism requirements do not apply since the untrusted software threat does not exist.tc \l 2 "2.5.
Requestor"
PRIVATE
6.6.1
Level 1 – Medium Assurancetc \l 3 "2.5.1.
Level 1 – Medium Assurance"
PRIVATE
6.6.1.1
Cryptographic Functions tc \l 4 "2.5.1.1.
Cryptographic Functions "
PRIVATE
6.6.1.1.1
All cryptographic modules shall be FIPS 140-1, Level 2 or higher compliant. tc \l 5 "2.5.1.1.1.
All cryptographic modules shall be FIPS 140-1, Level 2 or higher compliant. "
PRIVATE
6.6.1.2
Cryptographic Algorithmstc \l 4 "2.5.1.2.
Cryptographic Algorithms"
PRIVATE
6.6.1.2.1
The key recovery requests and responses shall be implemented so that only FIPS approved algorithms are required to use them. The implementation of these algorithms shall conform to the applicable FIPS standard(s).tc \l 5 "2.5.1.2.1.
The key recovery requests and responses shall be implemented so that only FIPS approved algorithms are required to use them. The implementation of these algorithms shall conform to the applicable FIPS standard(s)."
PRIVATE
6.6.1.3
Confidentialitytc \l 4 "2.5.1.3.
Confidentiality"
PRIVATE
6.6.1.3.1
The requestor shall protect key recovery information received and/or stored against disclosure to unauthorized individuals. (Note: Storing the data encrypted and implementing access controls is one way to meet this requirement)tc \l 5 "2.5.1.3.1.
The requestor shall protect key recovery information received and/or stored against disclosure to unauthorized individuals."
PRIVATE
6.6.1.3.2
The requestor shall protect key recovery request (specially the identities of subjects and time periods, if applicable) transmitted against disclosure to parties other than the KRA. (Note: Encryption of the request is one way to meet this requirement.)tc \l 5 "2.5.1.3.2.
The requestor shall protect key recovery request (specially the identities of subjects and time periods, if applicable) transmitted against disclosure to parties other than the KRA."
PRIVATE
6.6.1.4
Audittc \l 4 "2.5.1.4.
Audit"
PRIVATE
6.6.1.4.1
The product shall be capable of generating an audit record for the following events:

tc \l 5 "2.5.1.4.1.
The product shall be capable of generating an audit record for the following events\: "
· Start-up and shutdown of the audit functions; and

· All auditable events as defined in the functional components included in this standard; (FAU_GEN.1.1)
PRIVATE
6.6.1.4.2
The following actions shall be auditable:

tc \l 5 "2.5.1.4.2.
The following actions shall be auditable\:"
· Any specific operation performed to process audit data stored in the audit trail. (Note:

· This include backup and deletion of audit trail)

· Any attempt to read, modify or destroy the audit trail.

· All requests to use authentication data management mechanisms.

· All modifications to the audit configuration that occur while the audit collection functions are operating.

· All requests to access user authentication data

· Any use of an authentication mechanism. (e.g. login) The authentication information shall not be stored in the audit trail.

· All attempts to use the user identification mechanism, including the user identity provided.

· Any attempt to perform an operation on the audit trail.

· Use of a security-relevant administrative function;

· Explicit requests to assume the security administrative role;

· The allocation of a function to a security administrative role.

· The addition or deletion of a user to/from a security administrative role.

· The association of a security-relevant administrative function with a specific security administrative role.

PRIVATE
6.6.1.4.3
The following actions shall be audited. The keys shall not be included in the audit:

tc \l 5 "2.5.1.4.3.
The following actions shall be audited. The keys shall not be included in the audit\:"
· Requests, responses, and other transactions generated by the product, including key recovery responses.

· Requests, responses, and other transactions received by the product, including key recovery requests.

PRIVATE
6.6.1.4.4
The product shall record within each audit record at least the following information:

tc \l 5 "2.5.1.4.4.
The product shall record within each audit record at least the following information\: "
· Date and time of the event, type of event, subject (user) identity, and success or failure of the event; and

· Other information, as described in the functional component audit events (FAU_GEN.1.2)
PRIVATE
6.6.1.4.5
The product shall be able to generate a human understandable presentation of any audit data stored in the permanent audit trail. (FAU_POP.1.1)tc \l 5 "2.5.1.4.5.
The product shall be able to generate a human understandable presentation of any audit data stored in the permanent audit trail. (FAU_POP.1.1)"
PRIVATE
6.6.1.4.6
The audit trail shall not store the old or new authentication information (e.g., password) tc \l 5 "2.5.1.4.6.
The audit trail shall not store the old or new authentication information (e.g., password) "
PRIVATE
6.6.1.4.7
The product shall be able to associate each auditable event with the identity of the user that caused the event. (FAU_GEN.2.1)tc \l 5 "2.5.1.4.7.
The product shall be able to associate each auditable event with the identity of the user that caused the event. (FAU_GEN.2.1)"
PRIVATE
6.6.1.4.8
The product shall provide the authorized administrator with the ability to empty the audit trail. (FAU_MGT.1.1) (Note: emptying the audit trail means backup and delete).tc \l 5 "2.5.1.4.8.
The product shall provide the authorized administrator with the ability to empty the audit trail. (FAU_MGT.1.1) (Note\: emptying the audit trail means backup and delete)."
PRIVATE
6.6.1.4.9
The product shall be able to include or exclude auditable events from the set of audited events based on the following attributes: User identity, and/or Event Type (FAU_SEL.1.1) (Note: The requirement applies to the auditable events only. The always audited events must never be excluded or excludable from the set of audited events.)tc \l 5 "2.5.1.4.9.
 The product shall be able to include or exclude auditable events from the set of audited events based on the following attributes\: User identity, and/or Event Type (FAU_SEL.1.1) (Note\: The requirement applies to the auditable events only. The always audited events must never be excluded or excludable from the set of audited events.)"
PRIVATE
6.6.1.4.10
The product shall store generated audit records in a permanent audit trail. (FAU_STG.1.1)tc \l 5 "2.5.1.4.10.
The product shall store generated audit records in a permanent audit trail. (FAU_STG.1.1)"
PRIVATE
6.6.1.4.11
The product shall restrict access to the audit trail to the authorized administrator. (FAU_PRO.1.1)tc \l 5 "2.5.1.4.11.
 The product shall restrict access to the audit trail to the authorized administrator. (FAU_PRO.1.1)"
PRIVATE
(Note: This requirement implies providing integrity to the audit trail)tc \l 5 "(Note\: This requirement implies providing integrity to the audit trail)"
PRIVATE
6.6.1.5
Identification and Authenticationtc \l 4 "2.5.1.5.
Identification and Authentication"
The requirements in this section are for the identification and authentication of the various requestor personnel. These requirements do not apply to electronic transactions (requests and responses).

PRIVATE
6.6.1.5.1
The product shall provide functions for initializing and modifying user authentication data. (FIA_ADA.3.1)tc \l 5 "2.5.1.5.1.
 The product shall provide functions for initializing and modifying user authentication data. (FIA_ADA.3.1)"
PRIVATE
6.6.1.5.2
The product shall restrict the use of these functions on the user personnel authentication data for any user to the authorized administrator. (FIA_ADA.3.2)tc \l 5 "2.5.1.5.2.
The product shall restrict the use of these functions on the user personnel authentication data for any user to the authorized administrator. (FIA_ADA.3.2)"
PRIVATE
6.6.1.5.3
The product shall allow authorized users to use these functions to modify their own authentication data in accordance with the identification and authentication policy. (FIA_ADA.3.3) (Note: The identification and authentication policy is to permit each person to change his/her authentication information.)tc \l 5 "2.5.1.5.3.
The product shall allow authorized users to use these functions to modify their own authentication data in accordance with the identification and authentication policy. (FIA_ADA.3.3) (Note\: The identification and authentication policy is to permit each person to change his/her authentication information.)"
PRIVATE
6.6.1.5.4
The product shall protect from unauthorized observation, modification, and destruction authentication data that is stored in the product. tc \l 5 "2.5.1.5.4.
The product shall protect from unauthorized observation, modification, and destruction authentication data that is stored in the product. "
PRIVATE
6.6.1.5.5
The product shall be able to terminate the user session establishment process after five unsuccessful authentication attempts. (FIA_AFL.1.1)tc \l 5 "2.5.1.5.5.
The product shall be able to terminate the user session establishment process after five unsuccessful authentication attempts. (FIA_AFL.1.1)"
PRIVATE
(Note: If the product terminates the session after less than five unsuccessful attempts, the product meets the above requirement)tc \l 5 "(Note\: If the product terminates the session after less than five unsuccessful attempts, the product meets the above requirement)"
PRIVATE
6.6.1.5.6
After the termination of a user session establishment process, the product shall be able to disable the user account until account is enabled by an authorized administrator (i.e., security administrator). (FIA_AFL.1.2)tc \l 5 "2.5.1.5.6.
After the termination of a user session establishment process, the product shall be able to disable the user account until account is enabled by an authorized administrator (i.e., security administrator). (FIA_AFL.1.2)"
PRIVATE
6.6.1.5.7
The product shall authenticate any user’s claimed identity prior to performing any functions on the user’s behalf. (FIA_UAU.1.1)tc \l 5 "2.5.1.5.7.
The product shall authenticate any user’s claimed identity prior to performing any functions on the user’s behalf. (FIA_UAU.1.1)"
PRIVATE
6.6.1.5.8
The product shall uniquely identify each user before performing any actions requested by the user. (FIA_UID.2.1)tc \l 5 "2.5.1.5.8.
 The product shall uniquely identify each user before performing any actions requested by the user. (FIA_UID.2.1)"
PRIVATE
6.6.1.5.9
The product shall provide a mechanism to verify that secrets (i.e., authentication information such as passwords) meet the FIPS PUB 112 “Password Usage” and Department of Defense Password Management Guideline (CSC-STD-002-85).tc \l 5 "2.5.1.5.9.
 The product shall provide a mechanism to verify that secrets (i.e., authentication information such as passwords) meet the FIPS PUB 112 “Password Usage” and Department of Defense Password Management Guideline (CSC-STD-002-85)."
PRIVATE
(Note: The above requirement implies that the product (as opposed to procedural means and management instructions) will enforce the password length, aging, etc. type requirements. If we do not want the product to enforce the requirement, the above requirement should be deleted)tc \l 5 "(Note\: The above requirement implies that the product (as opposed to procedural means and management instructions) will enforce the password length, aging, etc. type requirements. If we do not want the product to enforce the requirement, the above requirement should be deleted)"
PRIVATE
6.6.1.6
Access Controltc \l 4 "2.5.1.6.
 Access Control"
tc \l 4 "2.1.1.6.
 Access Control"
These requirements provide countermeasures against entities masquerading as an authorized requestor. The requirements in this section address the security of electronic communication between the KRA and the requestor. If these interactions are not electronic, then physical and procedural means may be used to secure the transactions. These procedural and physical measures are beyond the scope the standard.

PRIVATE
6.6.1.6.1
The product shall verify the source of received transactions. (FPT_ACP.1.1)

6.6.1.6.2
The product shall verify the integrity of received transactions. tc \l 5 "2.1.1.6.1.
The product shall verify authentication and integrity services for the received transactions as determined by the standard compliant protocol (scheme). (FPT_ACP.1.1)"
PRIVATE
6.6.1.6.3
The product shall decrypt the received transactions which are encrypted. (FPT_ACP.1.2)tc \l 5 "2.1.1.6.2.
The product shall decrypt the received transactions if the standard compliant protocol requires the transaction to be encrypted. (FPT_ACP.1.2)"
PRIVATE
6.6.1.6.4
The product shall apply source authentication to all requests. (FPT_ACP.1.3) The strength of the algorithm used for authentication shall be greater than or equal to the maximum strength of the encryption or key management algorithms employed for user traffic encryption or for generation of the keys being recovered.

6.6.1.6.5
The product shall apply integrity services to all requests. The strength of the algorithm used for integrity shall be greater than or equal to the maximum strength of the encryption or key management algorithms employed for user traffic encryption or for generation of the keys being recovered.

6.6.1.6.6
The product shall apply confidentiality services to all requests. The strength of the algorithm used for confidentiality shall be greater than or equal to the maximum strength of the encryption or key management algorithms employed for user traffic encryption or for generation of the keys being recovered.

6.6.1.6.7
The product shall verify the association of the response to an outstanding request.

6.1.1.6.8
The product shall ensure that the key recovery information is destroyed (e.g., by zeroizing) when it is no longer required, when it is no longer valid (e.g., time expiry), when the KRA requires its deletion, or when the legal authority to it expires, whichever occurs first.

tc \l 5 "2.1.1.6.3.
The product shall apply authentication, integrity, and confidentiality services to all transactions (i.e., requests and responses) as determined by the standard compliant protocol. (FPT_ACP.1.3)"PRIVATE
6.6.1.6.9
The product shall ensure that security features are always invoked and cannot be bypassed. (FPT_RVM.1.1)

PRIVATE
6.6.1.6.10
The product shall maintain a security domain for its own execution that protects it from interference and tampering by untrusted subjects. (FPT_SEP.1.1)tc \l 5 "2.5.1.6.6.
The product shall maintain a security domain for its own execution that protects it from interference and tampering by untrusted subjects. (FPT_SEP.1.1)"
PRIVATE
6.6.1.6.11
The product shall enforce separation between the security domains of subjects in the system. (FPT_SEP.1.2)tc \l 5 "2.5.1.6.7.
The product shall enforce separation between the security domains of subjects in the system. (FPT_SEP.1.2)"
PRIVATE
6.6.1.7
Non-Repudiationtc \l 4 "2.5.1.7.
Non-Repudiation"
PRIVATE
6.6.1.7.1
The product shall be able to provide reliable time stamps for its own use. (FPT_STM.1.1)tc \l 5 "2.5.1.7.1.
The product shall be able to provide reliable time stamps for its own use. (FPT_STM.1.1)"
PRIVATE
(Note: We want to rely more on the KRA for time. But, having requestor time stamp does not hurt)tc \l 5 "(Note\: We want to reply more on the KRA for time. But, having requestor time stamp does not hurt)"
PRIVATE
6.6.1.7.2
The product shall be able to generate evidence of receipt for received transactions. (FCO_NRR.2.1)tc \l 5 "2.5.1.7.2.
The product shall be able to generate evidence of receipt for received transactions. (FCO_NRR.2.1)"
PRIVATE
(Note: The above requirement means using the reliable time stamp to requirement to put a trusted time stamp on the receipt. Furthermore, this requirement means that the product shall be able to generate evidence of receipt of: registration or deposit of key recovery information from users, and requests from requestor).tc \l 5 "(Note\: The above requirement means using the reliable time stamp to requirement to put a trusted time stamp on the receipt. Furthermore, this requirement means that the product shall be able to generate evidence of receipt of\: registration or deposit of key recovery information from users, and requests from requestor)"
PRIVATE
6.6.1.8
Protection of Trusted Security Functionstc \l 4 "2.5.1.8.

Protection of Trusted Security Functions"
PRIVATE
6.6.1.8.1
Before establishing a session with a user, the product shall display an advisory warning message regarding unauthorized use of the product. (FTA_TAB.2.1)tc \l 5 "2.5.1.8.1.
Before establishing a session with a user, the product shall display an advisory warning message regarding unauthorized use of the product. (FTA_TAB.2.1)"
PRIVATE
6.6.1.8.2
The default advisory warning message displayed by the product shall be as follows: “This system shall be used only by authorized personnel and only for authorized key recovery purposes. Violation shall result in criminal prosecution and civil penalties”. (FTA_TAB.2.2)tc \l 5 "2.5.1.8.2.
The default advisory warning message displayed by the product shall be as follows\: “This system shall be used only by authorized personnel and only for authorized key recovery purposes. Violation shall result in criminal prosecution and civil penalties”. (FTA_TAB.2.2)"
PRIVATE
6.6.1.8.3
The product shall restrict the capability to modify the warning message to the authorized administrator. (FTA_TAB.2.3)tc \l 5 "2.5.1.8.3.
The product shall restrict the capability to modify the warning message to the authorized administrator. (FTA_TAB.2.3)"
PRIVATE
6.6.1.8.4
Upon successful session establishment, the product shall display the date, time, method, and location of the last successful session establishment to the user (FTA_TAH.1.1)tc \l 5 "2.5.1.8.4.
Upon successful session establishment, the product shall display the date, time, method, and location of the last successful session establishment to the user (FTA_TAH.1.1)"
PRIVATE
6.6.1.8.5
Upon successful session establishment, the product shall display the date, time, method, and location of the last unsuccessful attempt to session establishment and the number of unsuccessful attempts since the last successful session establishment. (FTA_TAH.1.2)tc \l 5 "2.5.1.8.5.
Upon successful session establishment, the product shall display the date, time, method, and location of the last unsuccessful attempt to session establishment and the number of unsuccessful attempts since the last successful session establishment. (FTA_TAH.1.2)"
PRIVATE
6.6.1.8.6
The data specified above shall not be removed without user intervention. (FTA_TAH.1.3)tc \l 5 "2.5.1.8.6.
The data specified above shall not be removed without user intervention. (FTA_TAH.1.3)"
PRIVATE
6.6.2
Level 2 – High Assurancetc \l 3 "2.5.2.
Level 2 – High Assurance"
PRIVATE
6.6.2.1
Cryptographic Functionstc \l 4 "2.5.2.1.
Cryptographic Functions"
PRIVATE
6.6.2.1.1
All cryptographic modules shall be FIPS 140-1, Level 3 or higher compliant. tc \l 5 "2.5.2.1.1.
All cryptographic modules shall be FIPS 140-1, Level 3 or higher compliant. "
PRIVATE
6.6.2.2
Cryptographic Algorithms

tc \l 4 "2.5.2.2.
 Cryptographic Algorithms"
 Same as Level 1

PRIVATE
6.6.2.3
Confidentiality

Level 1 requirements and;tc \l 4 "2.5.2.3.
Confidentiality Level 1 requirements and;"
PRIVATE
6.6.2.4
Audit

Includes all the requirements of Level 1 and;tc \l 4 "2.5.2.4.
 Audit\: Includes all the requirements of Level 1 and;"
PRIVATE
6.6.2.4.1
 The product shall generate an alarm to the authorized administrator if the size of the audit data in the audit trail exceeds a pre-defined limit. (FAU_MGT.4.1)tc \l 5 "2.5.2.4.1.
The product shall generate an alarm to the authorized administrator if the size of the audit data in the audit trail exceeds a pre-defined limit. (FAU_MGT.4.1)"
PRIVATE
6.6.2.4.2
The product shall provide the authorized administrator with the ability to manage the audit trail at any time during the operation of the product. (FAU_MGT.4.2)tc \l 5 "2.5.2.4.2.
The product shall provide the authorized administrator with the ability to manage the audit trail at any time during the operation of the product. (FAU_MGT.4.2)"
PRIVATE
6.6.2.4.3
The following actions shall be auditable:

tc \l 5 "2.5.2.4.3.
The following actions shall be auditable\:"
· Execution of the tests of the underlying machine and the results of the tests.

· All attempted uses of the trusted path functions.

· Identification of the initiator and target of the trusted path.

· Attempts to provide invalid inputs for administrative functions

· The invocation of the non-repudiation service. The audit event shall include identification of the information, the destination, and a copy of the evidence provided. The event shall exclude all private and secret keys in encrypted or unencrypted form.

PRIVATE
6.6.2.5
 Identification and Authentication Same as Level 1 and;tc \l 4 "2.5.2.5.
 Identification and Authentication Same as Level 1 and;"
PRIVATE
6.6.2.5.1
The product shall support and token based authentication. The token shall meet FIPS 140-1 Level 2 requirements.tc \l 5 "2.5.2.5.1.
 The product shall support and token based authentication. The token shall meet FIPS 140-1 Level 2 requirements."
PRIVATE
6.6.2.6
Access Control

 Same as Level 1 and the following;tc \l 4 "2.5.2.6.
Access Control Same as Level 1 and the following;"
PRIVATE
6.6.2.6.1
Two or more users shall be required to request the recovery information from a KRA. tc \l 5 "2.5.2.6.1.
Two or more users shall be required to request the recovery information from a KRA. "
PRIVATE
6.6.2.6.2
The product shall enforce checks for valid input values for security-relevant administrative functions as described in the Administrative guidance. (FPT_TSU.1.1)tc \l 5 "2.5.2.6.2.
 The product shall enforce checks for valid input values for security-relevant administrative functions as described in the Administrative guidance. (FPT_TSU.1.1)"
PRIVATE
6.6.2.7
Non Repudiation

 Includes the Level 1 requirements and;tc \l 4 "2.5.2.7.
Non Repudiation Includes the Level 1 requirements and;"
PRIVATE
6.6.2.7.1
The product shall generate evidence of origin for transmitted key recovery requests or responses. (FCO_NRO.1.1)tc \l 5 "2.5.2.7.1.
The product shall generate evidence of origin for transmitted key recovery requests or responses. (FCO_NRO.1.1)"
PRIVATE
(Note: The above requirement shall also the reliable time stamp service to include the time in the evidence)tc \l 5 "(Note\: The above requirement shall also the reliable time stamp service to include the time in the evidence)"
PRIVATE
6.6.2.7.2
The product shall provide a capability to verify the evidence of origin of information to the recipient. (FCO_NRO.1.3)tc \l 5 "2.5.2.7.2.
The product shall provide a capability to verify the evidence of origin of information to the recipient. (FCO_NRO.1.3)"
PRIVATE
6.6.2.7.3
The product shall provide a capability to verify the evidence of receipt of proof of receipt to the originator of message (i.e., recipient of proof of receipt). (FCO_NRR.2.3)tc \l 5 "2.5.2.7.3.
The product shall provide a capability to verify the evidence of receipt of proof of receipt to the originator of message (i.e., recipient of proof of receipt). (FCO_NRR.2.3)"
PRIVATE
6.6.2.7.4
The product shall provide the originator the ability to request evidence of receipt on information. (FCO_NRR.2.3)tc \l 5 "2.5.2.7.4.
The product shall provide the originator the ability to request evidence of receipt on information. (FCO_NRR.2.3)"
PRIVATE
6.6.2.8
Protection of Trusted Security Functions
Same as Level 1 and the following:tc \l 4 "2.5.2.8.
 Protection of Trusted Security Functions\: Same as Level 1 and the following\:"
PRIVATE
6.6.2.8.1
The product shall provide a communication path between itself and local human users that is logically distinct from other communication paths and provides assured identification of its endpoints. (FTP_TRP.1.1)tc \l 5 "2.5.2.8.1.
The product shall provide a communication path between itself and local human users that is logically distinct from other communication paths and provides assured identification of its endpoints. (FTP_TRP.1.1)"
PRIVATE
6.6.2.8.2
The local human users shall have the ability to initiate communication via the trusted path. (FTP_TRP.1.2)tc \l 5 "2.5.2.8.2.
The local human users shall have the ability to initiate communication via the trusted path. (FTP_TRP.1.2)"
PRIVATE
6.6.2.8.3
The product shall require the use of the trusted path for initial user authentication. (FTP_TRP.1.3)tc \l 5 "2.5.2.8.3.
The product shall require the use of the trusted path for initial user authentication. (FTP_TRP.1.3)"
PRIVATE
6.6.2.8.4
The product shall provide the authorized administrator with the capability to demonstrate the correct operation of the security-relevant functions provided by the underlying abstract machine. (FPT_AMT.1.1)tc \l 5 "2.5.2.8.4.
The product shall provide the authorized administrator with the capability to demonstrate the correct operation of the security-relevant functions provided by the underlying abstract machine. (FPT_AMT.1.1)"
PRIVATE
6.6.2.8.5
The product shall preserve a secure state when abstract machine tests fail. (FPT_FLS.1.1)tc \l 5 "2.5.2.8.5.
The product shall preserve a secure state when abstract machine tests fail. (FPT_FLS.1.1)"
Ancillary Components
6.7
Registration Agent

Registration Agents maintain information on key recovery products and corresponding key recovery protocol (schemes). Thus, the requirement on a registration agent is to ensure the accuracy and maintain the integrity of this product information.tc \l 2 "2.3.
Registration Agent. Registration Agents maintain the information on products and their key recovery protocol (scheme). Thus, the requirement on the registration agent is to maintain the integrity of the product information."
PRIVATE
6.7.1
Integrity/Authenticitytc \l 3 "2.3.1.
Integrity/Authenticity"
These requirements counter the threat of an adversary spoofing as the registration agent and of unauthorized access to the information and critical functions at the registration agent.

PRIVATE
6.7.1.1
The Registration Agent shall verify authentication and integrity services for the received product information.tc \l 4 "2.3.1.1.
 The Registration Agent shall verify authentication and integrity services for the received product information."
PRIVATE
6.7.1.2
The Registration Agent shall apply authentication and integrity services to the product information it transmits.tc \l 4 "2.3.1.2.
 The Registration Agent shall apply authentication and integrity services to the product information it transmits."
PRIVATE
6.7.1.3
The Registration Agent shall ensure that the product information it maintains is not modified by unauthorized parties.tc \l 4 "2.3.1.3.
The Registration Agent shall ensure that the product information it maintains is not modified by unauthorized parties."
PRIVATE
6.8
Licensing Agent

 Licensing Agents shall perform a compliance audit of the KRA to ensure that the KRA operates in accordance with the KRA’s stated policy.

6.9
Authentic Public Key Source (APKS AKA Public Key Infrastructure (PKI))tc \l 2 "2.6.
Authentic Public Key Source (APKS AKA Public Key Infrastructure (PKI))"
PRIVATE
6.9.1
Standardstc \l 3 "2.6.1.
Standards"
PRIVATE
6.9.1.1
The APKS shall carry out transactions in accordance with the Minimum Interoperability Specifications for PKI Components (MISPC)tc \l 4 "2.6.1.1.
 The APKS shall carry out transactions in accordance with the Minimum Interoperability Specifications for PKI Components (MISPC)"
PRIVATE
6.9.2
Security/Certificate Policy
The security of PKI and the degree to which the binding between an entity (subject or subscriber) and public key can be trusted, is determined by the Certificate Policy. Certificate Policy is defined and described in Certificate Policy Framework. Using this Framework, NIST has developed Baseline Security Requirements. NIST plans to enhance these for up to three more strictly superior policies. Thus, in order to define the security requirements for the APKS, we only need to select the proper certificate policy. Please note the certificate policy security requirements are quite comprehensive. For details, see IETF PKIX Part IV: Certificate Policy Framework.tc \l 3 "2.6.2.
Security/Certificate Policy\: The security of PKI and the degree to which the binding between an entity (subject or subscriber) and public key can be trusted, is determined by the Certificate Policy. Certificate Policy is defined and described in Certificate Policy Framework. Using this Framework, NIST has developed Baseline Security Requirements. NIST plans to enhance these for up to three more strictly superior policies. Thus, in order to define the security requirements for the APKS, we only need to select the proper certificate policy. Please note the certificate policy security requirements are quite comprehensive. For details, see IETF PKIX Part IV\: Certificate Policy Framework."
PRIVATE
6.9.2.1
For Level 1, the APKS shall meet the medium Certificate Policy. For Level 2, the APKS shall meet the high Certificate Policy.tc \l 4 "2.6.2.1.
 For Level 1, the APKS shall meet the medium Certificate Policy. For Level 2, the APKS shall meet the high Certificate Policy."
END OF NEW DOCUMENT ******

PRIVATE
6.2.1.4.2 The key recovery information shall provide source authentication.tc \l 5 "2.2.1.4.2.
The key recovery information shall provide source authentication."
PRIVATE
6.2.1.4.3 The end user product shall be capable of securely binding (i.e., with integrity) the key recovery information to the encrypted communications.tc \l 5 "2.2.1.4.3.
The end user product shall be capable of securely binding (i.e., with integrity) the key recovery information to the encrypted communications."
PRIVATE
6.2.1.4.4 The end user product shall be capable of verifying the source and integrity of key recovery informationtc \l 5 "2.2.1.4.4.
The end user product shall be capable of verifying the source and integrity of key recovery information"
PRIVATE
6.2.1.5 Key Recovery Functionalitytc \l 4 "2.2.1.5.
 Key Recovery Functionality"
PRIVATE
6.2.1.5.1 The key recovery mechanism in the end user product shall be always activated/deactivated by the system administrator.tc \l 5 "2.2.1.5.1.
 The key recovery mechanism in the end user product shall be always activated/deactivated by the system administrator."
PRIVATE
(Note: The above requirement will be taken out if it appears some place else.)tc \l 5 "(Note\: The above requirement will be taken out if it appears some place else.)"
PRIVATE
6.2.2 Level 2 – Mandatory Enforcement of Key Recoverytc \l 3 "2.2.2.
Level 2 – Mandatory Enforcement of Key Recovery"
PRIVATE
6.2.2.1 Cryptographic Functions tc \l 4 "2.2.2.1.
Cryptographic Functions "
PRIVATE
6.2.2.1.1 All cryptographic modules shall be FIPS 140-1, Level 2 compliant. tc \l 5 "2.2.2.1.1.
All cryptographic modules shall be FIPS 140-1, Level 2 compliant. "
PRIVATE
6.2.2.2 Cryptographic Algorithms: Same as Level 1tc \l 4 "2.2.2.2.
Cryptographic Algorithms\: Same as Level 1"
PRIVATE
6.2.2.3 Confidentiality: Same as Level 1tc \l 4 "2.2.2.3.
 Confidentiality\: Same as Level 1"
PRIVATE
6.2.2.4 Integrity/Authenticity: Same as Level 1tc \l 4 "2.2.2.4.
 Integrity/Authenticity\: Same as Level 1"
PRIVATE
6.2.2.5 Key Recovery Functionalitytc \l 4 "2.2.2.5.
 Key Recovery Functionality"
PRIVATE
6.2.2.5.1 The key recovery mechanism shall be always activated in the end user product.tc \l 5 "2.2.2.5.1.
 The key recovery mechanism shall be always activated in the end user product."
PRIVATE
(Note: The above requirement will be taken out if it appears some place else.)

7
INTEROPERABILITY REQUIREMENTS

7.1 General Requirements

7.1.1 In order to be FIPS compliant, there shall be a well-defined mapping from each component of the model to the implementation seeking certification. Certification shall be determined through the functionality of, and interactions between, the system components as defined by this mapping.

7.2.1 Interoperable protocols which incorporate a FIPS-compliant key-recovery mechanism must remain interoperable. Users of FIPS-compliant implementations for the same protocol must have assurance that these implementations will interoperate.

7.1.3 Compliant systems which implement private key recovery shall not affect protocol interoperability. Such systems may optionally specify a KRA in the user certificate. As long as the originator is not required to retain the ability to subsequently decipher traffic, there are no interoperability issues in implementing private key recovery within a particular protocol.
7.1.4 Multiple techniques for key recovery shall be supported by the FIPS. These will include both private key and session key recovery schemes.

7.1.5 Receiver verification is desirable, but shall not be required for compliance. High assurance receiver verification that an originator is using a recoverable implementation is a stated objective of this FIPS. If receiver verification is mandatory, then a single method of verification must be defined. If multiple methods are allowed, two compliant implementations using the same protocol may be unable to communicate. Further, verification may be dependent upon the KR mechanism used, implying that the specification of a single verification method may disallow some KR methods. It is worth noting that a finite set of verification methods poses the same problem as the single method assumed.

7.1.6 When possible, the addition of compliant key recovery shall not affect interoperability with non-recoverable implementations. To promote the use of FIPS-compliant implementations, it is desirable for compliant implementations to interoperate with the existing installed base.

7.17 The recovery request itself shall utilize FIPS-compliant key recovery system. To provide a means to monitor rogue KRR’s and/or KRA’s it is necessary to incorporate compliant mechanisms for KRR to KRA communications.

7.1.8 The KR request message containing the subject key recovery field and/or encrypted data shall be both digitally signed and encrypted. These services shall be applied to the KRR message to prevent forgery, or manipulation of KRR data, as well as to provide auditability for KR requests.

7.2
KRR TO KRA REQUIREMENTS

7.2.1 An algorithm-independent secure Multipurpose Internet Mail Extensions (MIME) format shall be utilized for electronic KRR to KRA exchanges. These transactions shall be cryptographically secured with an assurance commensurate with the cryptosystem being recovered. Compliant systems may choose from multiple well-defined MIME formats. These include the S/MIMEv3, PGP-MIME, and MOSS formats.

7.2.2 A key recovery request body shall include the following:

· Originator identity
· Recipient identity
· Current date and time
· Date and time of encrypted key/data capture
· Key recovery block
· Optional: subject passphrase
· Optional: MIME formatted encrypted data
7.2.2.1 Individual items within the request transaction body shall be delimited by blank lines.

· Originator-id: <identifying information>

· Recipient-id: <identifying information>

· Date-Time: <date/time string>

· Capture-Time: <date/time string>

· KRB: <printably encoded recovery block>

· Passphrase: <subject authentication data>

· Encrypted-Data: <MIME encoded data>

7.2.2.2 EXAMPLE: Key Recovery Request

7.2.3 A key recovery response body shall include the following:

· KRA identity information
· KRR identity information
· Recipient identity
· Current date and time
· Date and time of key/data recovery
· Printably encoded key
· Optional: MIME formatted data
7.2.3.1 Individual items within the response transaction body shall be delimited by blank lines.

· KRA-id: <identifying information>

· KRR-id: <identifying information>
· Recipient-id: <identifying information>

· Date-Time: <date/time string>

· Recovery-Time: <date/time string>

· DEK: <printably encoded encryption key>

· Data: <MIME encoded data>

7.2.3.2 EXAMPLE: Key Recovery Response
8
ASSURANCE REQUIREMENTS

The assurance in a CKRS compliant product can be achieved using the Common Criteria Evaluation Assurance Level (EAL). The Common Criteria defines seven hierarchical assurance levels EAL1 through EAL7. The Common Criteria assurance levels may be overkill for the CKRS compliance validation program.

Thus, the following is a tailored list of assurance requirements. These requirements are derived from the Common Criteria Part 3 (Assurance Requirements). Specifying assurance requirements in the common criteria language will help in converting the FIPS into a Common Criteria Protection Profile and in validating CKRS compliance products under the Common Criteria (CC) Evaluation Methodology.

For the sake of clarity, it should be noted that the CC structure for assurance requirements is hierarchical follows. At the highest level, the requirements are categorized into classes. The classes are further decomposed into families. The families are decomposed into components. Each component has three sets of elements. The first set of elements is the list of developer (vendor) actions to satisfy the component. The second set of elements are a list of contents and presentation for the assurance evidence for that element. The third and last set of elements are what an independent evaluator should do to assess the contents and presentation.

A later section of this report also explains why the remaining Common Criteria assurance requirements are not recommended.

We have defined three assurance levels. These levels are somewhat related to the Common Criteria assurance levels, but not derived from the Common Criteria assurance levels. We term these assurance levels basic, enhanced, and delux. The components in the assurance levels are listed in Table 1. A later section of the report describes these components and elements.

The assurance can be applied commensurate with the CKRS component sensitivity. For example the KRA must have high degree of assurance, where as the client may have a lower degree of assurance. The CKRS components for assurance purposes can be broken down in the following areas: KRA, clients, other trusted components such as CA, and other components such as registration agents. Table 2 contains a matrix of which assurance levels make sense for each environment. For entities such as the CA, if there are assurance and security requirements or standards, these standards may (should) be used in lieu of the recommendations in Table 2. Furthermore, it does not make sense for clients and other components to have higher assurance than the KRA and other trusted components (e.g., CA). Thus, the assurance for the KRA and CA should be equal to or greater than assurance for the clients and other components. Basic assurance is not recommended for the KRA and CA.

Table 1: CKRS Assurance Levels

Assurance Class
Assurance Family
Basic
Enhanced
Delux

Configuration Management
ACM_CAP

CM Capabilities

1
1

ACM_SCP

CM Scope

2

Delivery and Operation
ADO_DEL

Delivery

2

ADO_IGS

Installation, Generation and Start-up
1
1
1

ADV_FSP

Functional Specification
1
2
2

ADV_HLD

High-Level Design
1
2
2

Development
ADV_IMP

Implementation Representation

1

ADV_LLD

Low-Level Design

1

ADV_RCR

Representation Correspondence

1

Guidance Documents
AGD_ADM

Administrator Guidance
1
1
1

AGD_USR

User Guidance
1
1
1

Life Cycle Support
ALC_FLR

Flaw Remediation
2
2
2

ATE_COV

Coverage
1
1
1

ATE_DPT

Depth
1
1
1

Tests
ATE_FUN

Functional Tests
1
1
1

ATE_IND

Independent Testing
2
2
2

Vulnerability Assessment
AVA_VLA

Vulnerability Analysis

1
1

Table 2: Assurance for CKRS Components

Component
Basic
Enhanced
Delux

KRA

Yes
Yes

Other Trusted (e.g., CA)

Yes
Yes

Client
Yes
Yes
Yes

Other
Yes
Yes
Yes

8.1 Configuration Management ACM_CAP – CM Capabilities

8.1.1 Objectives

Configuration management (CM) is an aspect of establishing that the functional requirements and specifications are realized in the implementation. CM meets these objectives by requiring discipline and control in the processes of refinement and modification of the product/system. CM systems are put in place to ensure the integrity of the configuration items that they control, by providing a method of tracking these configuration items, and by ensuring that only authorized users are capable of changing them.

The capabilities of the CM system address the likelihood that accidental or unauthorized modifications of the configuration items will occur. The CM system should ensure the integrity of the product/system from the early design stages through all subsequent maintenance efforts. The objectives of this assurance requirement include the following:

1. ensuring that the product/system is correct and complete before it is sent to the consumer; and

2. ensuring that no configuration items are missed during evaluation.

Clear identification of the product/system is required to determine those items under

evaluation that are subject to the criteria requirements.

8.1.2 Application notes

There is a requirement that a configuration list be provided. The configuration list contains all configuration items which are maintained by the CM system.

8.1.3
ACM_CAP.1 Minimal support

8.1.3.1
Developer action elements

8.1.3.1.1
ACM_CAP.1.1D: The developer shall use a CM system.

8.1.3.1.2
ACM_CAP.1.2D: The developer shall provide CM documentation.

8.1.3.2
Content and presentation of evidence elements

8.1.3.2.1
ACM_CAP.1.1C: The CM documentation shall include a configuration list.

8.1.3.2.2
ACM_CAP.1.2C: The configuration list shall describe the configuration items that comprise the product.

8.1.3.2.3
ACM_CAP.1.3C: The CM documentation shall describe the method used to uniquely identify the product configuration items.

8.1.3.3
Evaluator action elements

8.1.3.3.1
ACM_CAP.1.1E: The evaluator shall confirm that the information provided meets all requirements for content and presentation of evidence.

8.2
Configuration Management ACM_SCP - CM Scope

8.2.1
Objectives

Configuration management (CM) is an aspect of establishing that the functional requirements and specifications are realized in the implementation. CM meets these objectives by requiring discipline and control in the processes of refinement and modification of the product/system. CM systems are put in place to ensure the integrity of the configuration items that they control, by providing a method of tracking these configuration items, and by ensuring that only authorized users are capable of changing them.

The objective is to ensure that all necessary configuration items are tracked by the CM system. This helps to ensure that the integrity of these configuration items is protected through the capabilities of the CM system. The objectives of this assurance requirement include the following:

1. ensuring that the implementation representation (i.e., code) is tracked; and

2. ensuring that all necessary documentation, including problem reports, are tracked during development and operation.

A CM system can control changes only to those items that have been placed under

CM. The implementation representation, design, tests, user and administrator documentation, security flaws, and CM documentation should be placed under CM. The ability to track security flaws under CM ensures that security flaw reports are not lost or forgotten, and allows a developer to track security flaws to their resolution.

8.2.2
Application notes

There is a requirement that the implementation representation be tracked by the CM system. The implementation representation refers to all hardware, software, and firmware that comprise the physical product/system. In the case of a software-only product, the implementation representation may consist solely of source and object code, but in other cases, the implementation representation may refer to a combination of software, hardware, and firmware. There is a requirement that security flaws be tracked by the CM system. This requires that information regarding previous security flaws and their resolution be maintained, as well as details regarding current security flaws.

8.2.3 ACM_SCP.2 Problem tracking CM coverage

8.2.3.1
Developer action elements

8.2.3.1.1
ACM_SCP.2.1D: The developer shall provide CM documentation.

8.2.3.2
Content and presentation of evidence elements

8.2.3.2.1
ACM_SCP.2.1.C: As a minimum, the following shall be tracked by the CM system: the implementation representation, design documentation, test documentation, user documentation, administrator documentation, CM documentation, and security flaws.

8.2.3.2.2
ACM_SCP.2.2C: The CM documentation shall describe how configuration items are tracked by the CM system.

8.2.3.3
Evaluator action elements

8.2.3.3.1
ACM_SCP.2.1E: The evaluator shall confirm that the information provided meets all requirements for content and presentation of evidence.

8.3
Delivery and Operation ADO_DEL – Delivery

8.3.1
Objectives

The requirements for delivery call for system control and distribution facilities and procedures that provide assurance that the recipient receives the product that the sender intended to send, without any modifications. For a valid delivery, what is received must correspond precisely to the master copy, thus avoiding any tampering with the actual version, or substitution of a false version.

8.3.2 Application notes

This assurance requirement should be applied to sensitive components whose modification can compromise security.

8.3.3 ADO_DEL.2 Detection of modification

8.3.3.1
Developer action elements

8.3.3.1.1
ADO_DEL.2.1D: The developer shall provide documentation about the procedures for delivery of the product/system or parts of it to the user.

8.3.3.1.2
ADO_DEL.2.2D: The developer shall use the delivery procedures.

8.3.3.2
Content and presentation of evidence elements

8.3.3.2.1
ADO_DEL.2.1C: The delivery documentation shall describe the procedures to be employed when distributing versions of the product/system to a user's site.

8.3.3.2.2
ADO_DEL.2.2C: The delivery documentation shall state how the procedures are to be employed to detect modifications.

8.3.3.2.3
ADO_DEL.2.3C: The delivery documentation shall describe how the various procedures and technical measures provide for the detection of modifications, or any discrepancy between the developer's master copy and the version received at the user site.

8.3.3.2.4
ADO_DEL.2.4C: The delivery documentation shall describe how the various procedures allow detection of attempted masquerading even in cases in which the developer has sent nothing to the user's site.

8.3.3.3
Evaluator action elements

8.3.3.3.1
ADO_DEL.2.1E: The evaluator shall confirm that the information provided meets all requirements for content and presentation of evidence.

8.4
Delivery and Operation ADO_IGS - Installation, Generation, and Start-up

8.4.1
Objectives

Installation, generation, and start-up procedures are useful for ensuring that the

product has been installed, generated, and started in a secure manner as intended by

the developer.

8.4.2
Application notes

The generation requirements are applicable only to the products that provide the ability to

generate an operational product from source or object code.

The installation, generation, and start-up procedures may exist as a separate document, but would typically be grouped with other administrative guidance.

8.4.3 ADO_IGS.1 Installation, generation, and start-up procedures

8.4.3.1
Developer action elements

8.4.3.1.1
ADO_IGS.1.1D: The developer shall document procedures to be used for the secure installation, generation, and start-up of the product/system.

8.4.3.2
Content and presentation of evidence elements

8.4.3.2.1
ADO_IGS.1.1C: The documentation shall describe the steps necessary for secure installation, generation, and start-up of the product/system.

8.4.3.3
Evaluator action elements

8.4.3.3.1
ADO_IGS.1.1E: The evaluator shall confirm that the information provided meets all

requirements for content and presentation of evidence.

8.5
Development ADV_FSP - Functional Specification

8.5.1
Objectives

The functional specification is a high-level description of the user-visible interface

and behavior of the product/system. It is a refinement of the statement of functional requirements for the product/system. The functional specification must show that all

defined functional requirements are addressed, and that the product/system security policy is enforced by the system.

8.5.2
Application notes

In addition to the content indicated in the following requirements, the functional

specification shall also include any additional specific detail specified by the

documentation notes in the related functional components. For example, it shall contain the specification of the interaction (protocol) among various product/system components.

The developer must provide evidence that the product/system is completely represented by the functional specification. While a functional specification for the entire product/system would allow an evaluator to determine the product/system boundary, it is not necessary to require that specification when other evidence could be provided to demonstrate the product/system boundary.

The evaluator of the product/system is expected to make determinations regarding the relevance of the functional specification to the functional requirements. In the course of the functional specification evaluation, there are essentially three types of evaluator determination: specific functional requirements are met and no further work (e.g., with a less abstract representation of the product/system) is necessary; specific functional requirements are violated and the product/system fails to meet its requirements; and

specific functional requirements have not been addressed and further analysis (of

another product/system representation) is necessary. Whenever additional analysis is necessary, the evaluator is expected to carry that information forward to the analysis of other product/system representations. If requirements are not addressed after the analysis of the last provided product/system representation, this also represents a failure of the product/system evaluation.

In all cases, it is important that the evaluator evaluate the product/system as a unit since in many cases the security functions must cooperate to meet specific functional requirements and also each security function must not interfere with the operation

of any other security function.

An informal security policy model can be representation of the security policy in any notation, including a series of statements in the English Language.

8.5.3 ADV_FSP.1 Functional specification and security policy

8.5.3.1
Developer action elements

8.5.3.1.1
ADV_FSP.1.1D: The developer shall provide a functional specification.

8.5.3.1.2
ADV_FSP.1.2D: The developer shall provide a product/system security policy.

8.5.3.2
Content and presentation of evidence elements

8.5.3.2.1
ADV_FSP.1.1C: The functional specification shall describe the product/system using an informal style.

8.5.3.2.2
ADV_FSP.1.2C: The functional specification shall include an informal presentation of syntax and semantics of all external product/system interfaces.

8.5.3.2.3
 ADV_FSP.1.3C: The functional specification shall include evidence that demonstrates that the product/system is completely represented.

8.5.3.3
Evaluator action elements

8.5.3.3.1
ADV_FSP.1.1E: The evaluator shall confirm that the information provided meets all requirements for content and presentation of evidence.

8.5.3.3.2
ADV_FSP.1.2E: The evaluator shall determine that the functional specification is consistent with the product/system security policy.

8.5.3.3.3
ADV_FSP.1.3E: The evaluator shall determine if the functional requirements are addressed by the representation of the product/system, i.e., the functional specification.

8.5.4
ADV_FSP.2 Informal security policy model

8.5.4.1
Developer action elements

8.5.4.1.1
ADV_FSP.2.1D: The developer shall provide a functional specification.

8.5.4.1.2
ADV_FSP.2.2D: The developer shall provide a product/system security policy.

8.5.4.1.3
ADV_FSP.2.3D: The developer shall provide an informal security policy model.

8.5.4.1.4
ADV_FSP.2.4D: The developer shall provide a demonstration of correspondence between the informal security policy model and the functional specification.
8.5.4.2
Content and presentation of evidence elements

8.5.4.2.1
ADV_FSP.2.1C: The functional specification shall describe the product/system using an informal style.

8.5.4.2.2
ADV_FSP.2.2C: The functional specification shall include an informal presentation of syntax and semantics of all external product/system interfaces.

8.5.4.2.3
ADV_FSP.2.3C: The functional specification shall include evidence that demonstrates that the product/system is completely represented.

8.5.4.2.4
ADV_FSP.2.4C: The demonstration of correspondence between the informal security policy model and the functional specification shall describe how the functional specification satisfies the informal security policy model.

8.5.4.2.5
ADV_FSP.2.5C: The demonstration of correspondence between the informal security policy model and the functional specification shall show that there are no security functions in the functional specification that conflict with the informal security policy model.

8.5.4.2.6
ADV_FSP.2.6C: The informal security policy model shall describe the rules and characteristics of all policies of the product/system that can be modeled.

8.5.4.2.7
ADV_FSP.2.7C: The informal security policy model shall include a rationale that demonstrates that policies that are modeled are satisfied by the informal security policy model.

8.5.4.2.8
ADV_FSP.2.8C: The informal security policy model shall justify that all policies that can be modeled are represented in the informal security policy model.

8.5.4.3
Evaluator action elements

8.5.4.3.1
ADV_FSP.2.1E: The evaluator shall confirm that the information provided meets all requirements for content and presentation of evidence.

8.5.4.3.2
ADV_FSP.2.2E: The evaluator shall determine that the functional specification is consistent with the product/system security policy.

8.5.4.3.3
ADV_FSP.2.3E: The evaluator shall determine if the functional requirements are addressed by the representation of the product/system, i.e., the functional specification.

8.6
Development ADV_HLD - High-Level Design

8.6.1
Objectives

The high-level design of a product/system provides a description of the product/system in terms of major structural units (i.e., subsystems) and relates these units to the functions that they contain. The high-level design provides assurance that the product/system provides an architecture appropriate to implement the claimed functional requirements.

The high-level design refines the functional specification into subsystems. For each

subsystem of the product/system, the high-level design describes its purpose and function and identifies the security functions enforced by the subsystem. The interrelationships

of all subsystems are also defined in the high-level design. These interrelationships will be represented as external interfaces for data flow, control flow, etc., as appropriate.

8.6.2
Application notes

In addition to the content indicated in the following requirements, the high-level design shall also include any additional specific detail specified by the documentation notes in the related functional components.

The developer is expected to describe the design of the product/system in terms of subsystems. The term ``subsystem'' is used here to express the idea of decomposing the product/system into a relatively small number of parts. While the developer is not required to actually have ``subsystems'', the developer is expected to represent a similar level of decomposition. For example, a design may be similarly decomposed using ``layers'', ``domains'', or ``servers''.

The evaluator of the product/system is expected to make determinations regarding the functional requirements in the product relevant to the high-level design. In the course of the high-level design evaluation, there are essentially three types of evaluator determination: specific functional requirements are met and no further work (e.g., with a less abstract representation of the product/system) is necessary; specific functional requirements are violated and the product/system fails to meet its requirements; and specific functional requirements have not been addressed and further analysis (of another product/system representation) is necessary. Whenever more analysis is necessary, the evaluator is expected to carry that information forward to the analysis of other product/system representations. If requirements are not addressed after the analysis of the last provided product/system representation, this also represents a failure of the product/system evaluation.

In all cases, it is important that the evaluator evaluate the product/system as a unit since in many cases the security functions must cooperate to meet specific functional requirements and also each security function must not interfere with the operation of any other security function.

The term ``security functionality'' is used to represent operations that a subsystem

performs that have some effect on the security functions implemented by the product.

This distinction is made because design constructs, such as subsystems and

modules, do not necessarily relate to specific security functions. While a given

subsystem may correspond directly to a security function, or even multiple security

functions, it is also possible that many subsystems must be combined to implement

a single security function.

The term ``security policy enforcing subsystems'' refers to a subsystem that contributes to the enforcement of the security policy.

8.6.3
ADV_HLD.1 Descriptive high-level design

8.6.3.1
Developer action elements

8.6.3.1.1
ADV_HLD.1.1D: The developer shall provide the high-level design of the product/system.

8.6.3.2
Content and presentation of evidence elements

8.6.3.2.1
ADV_HLD.1.1C: The presentation of the high-level design shall be informal.

8.6.3.2.2
ADV_HLD.1.2C: The high-level design shall describe the structure of the product/system in terms of subsystems.

8.6.3.2.3
ADV_HLD.1.3C: The high-level design shall describe the security functionality provided by each subsystem of the product/system.

8.6.3.2.4
ADV_HLD.1.4C: The high-level design shall identify the interfaces of the subsystems of the product/system.

8.6.3.2.5
ADV_HLD.1.5C: The high-level design shall identify any underlying hardware, firmware, and/or software required by the product/system with a presentation of the functions provided by the supporting protection mechanisms implemented in that hardware, firmware, or software.

8.6.3.3
Evaluator action elements

8.6.3.3.1
ADV_HLD.1.1E: The evaluator shall confirm that the information provided meets all requirements for content and presentation of evidence.

8.6.3.3.2
ADV_HLD.1.2E: The evaluator shall determine if the functional requirements in the product/system are addressed by the design.

8.6.4
ADV_HLD.2 Security enforcing high-level design

8.6.4.1
Developer action elements

8.6.4.1.1
ADV_HLD.2.1D: The developer shall provide the high-level design of the product/system.

8.6.4.2
Content and presentation of evidence elements

8.6.4.2.1
ADV_HLD.2.1C: The presentation of the high-level design shall be informal.

8.6.4.2.2
ADV_HLD.2.2C: The high-level design shall describe the structure of the product/system in terms of subsystems.

8.6.4.2.3
ADV_HLD.2.3C: The high-level design shall describe the security functionality provided by each subsystem of the product/system.

8.6.4.2.4
ADV_HLD.2.4C: The high-level design shall identify the interfaces of the subsystems of the product/system.

8.6.4.2.5
ADV_HLD.2.5C: The high-level design shall identify any underlying hardware, firmware, and/or software required by the product/system with a presentation of the functions provided by the supporting protection mechanisms implemented in that hardware, firmware, or software.

8.6.4.2.6
ADV_HLD.2.6C: The high-level design shall describe the separation of the product/system into security policy enforcing and other subsystems.

8.6.4.3
Evaluator action elements

 8.6.4.3.1
ADV_HLD.2.1E: The evaluator shall confirm that the information provided meets all requirements for content and presentation of evidence.

8.6.4.3.2
ADV_HLD.2.2E: The evaluator shall determine if the functional requirements in the product/system are addressed by the design.

8.7
Development ADV_IMP - Implementation Representation

8.7.1
Objectives

The description of the implementation in the form of source code, firmware, hardware drawings, etc. captures the detailed internal workings of the product in support of analysis.

8.7.2
Application notes

The implementation representation is used to express the notion of the least abstract representation of the product/system, specifically the one that is used to create the product/system itself without further design refinement. Source code which is then compiled or a hardware drawing which is used to build the actual hardware are examples of parts of an implementation representation.

The evaluator of the product/system is expected to make determinations regarding the functional requirements in the ST relevant to the implementation. In the course of the implementation evaluation, there are essentially three types of evaluator determination: specific functional requirements are met and no further work (e.g., with a more abstract representation of the product/system) is necessary; specific functional requirements are violated and the product/system fails to meet its requirements; and specific functional requirements have not been addressed and further analysis is necessary.

However, since the implementation is the least abstract representation it is likely that further analysis cannot be performed unless the product/system representations have not been evaluated in the usual order (i.e., most abstract to least abstract). If requirements are not addressed after the analysis of all product/system representations, this represents a failure of the product/system evaluation. Note that this more comprehensive failure determination requirement is realized in the Representation correspondence (ADV_RCR) family.

In all cases, it is important that the evaluator evaluates the product/system as a unit since, in many cases, the security functions must cooperate to meet specific functional requirements and each security function must not interfere with the operation of any other security function.

It is expected that evaluators will use the implementation to directly support other evaluation activities (e.g., vulnerability analysis, test coverage analysis).

8.7.3
ADV_IMP.1 Subset of the implementation
Application notes

The implementation representation needs to be provided for the security relevant functions of the product/system. Any hardware, software, and/or firmware that does not contribute to the security need not be provided, analyzed, or tested. However, an explanation must be provided, and the evaluator must agree that the excluded items are not security relevant.

8.7.3.1

Developer action elements

8.7.3.1.1
ADV_IMP.1.1D: The developer shall provide the implementation representations for a selected subset of the product/system.

8.7.3.2
Content and presentation of evidence elements

8.7.3.2.1
ADV_IMP.1.1C: The implementation representations shall unambiguously define the product/system to a level of detail such that it can be generated without further design

decisions.

8.7.3.3
Evaluator action elements

8.7.3.3.1
ADV_IMP.1.1E: The evaluator shall confirm that the information provided meets all

requirements for content and presentation of evidence.

8.7.3.3.2
ADV_IMP.1.2E: The evaluator shall determine if the CKRS functional requirements are addressed by the representation of the product/system.

8.8
Development ADV_LLD - Low-Level Design

8.8.1
Objectives

The low-level design of a product/system provides a description of the internal workings of the product/system in terms of modules and their interrelationships and dependencies. The low-level design provides assurance that the subsystems have been correctly and effectively refined.

For each module of the product/system, the low-level design describes its purpose, function, interfaces, dependencies, and the implementation of any security policy enforcing functions.

8.8.2
Application notes

In addition to the content indicated in the following requirements, the low-level design shall also include any additional specific detail specified by the documentation notes in the related functional components.

The evaluator of the product/system is expected to make determinations regarding the

functional requirements relevant to the low-level design. In the course of the low-level design evaluation, there are essentially three types of evaluator determination: specific functional requirements are met and no further work (e.g., with a less abstract representation of the product/system) is necessary; specific functional requirements are violated and the product/system fails to meet its requirements; and specific functional requirements have not been addressed and further analysis (of another product/system representation) is necessary. Whenever more analysis is necessary, the evaluator is expected to carry that information forward to the analysis of other product/system representations. If requirements are not addressed after the analysis of the last provided product/system representation, this also represents a failure of the product/system evaluation. Note that this more comprehensive failure determination requirement is realised in the Representation correspondence (ADV_RCR) family.

In all cases, it is important that the evaluator evaluates the product/system as a unit since, in many cases, the security functions must cooperate to meet specific functional requirements and also each security function must not interfere with the operation

of any other security function.

8.8.3
ADV_LLD.1 Descriptive low-level design

Application notes:

Only representations for modules in the product/system need to be provided.

8.8.3.1
Developer action elements

8.8.3.1.1
ADV_LLD.1.1D: The developer shall provide the low-level design of the product/system.

8.8.3.2
Content and presentation of evidence elements

8.8.3.2.1
ADV_LLD.1.1C: The presentation of the low-level design shall be informal.

8.8.3.2.2
ADV_LLD.1.2C: The low-level design shall describe the product/system in terms of modules.

8.8.3.2.3
ADV_LLD.1.3C: The low-level design shall describe the purpose of each module.

8.8.3.2.4
ADV_LLD.1.4C: The low-level design shall define the interrelationships between the modules in terms of provided functionality and dependencies on other modules.

8.8.3.2.5
ADV_LLD.1.5C: The low-level design shall describe the implementation of all security policy enforcing functions.

8.8.3.2.6
ADV_LLD.1.6C: The low-level design shall describe the interfaces of each module in terms of their syntax and semantics.

8.8.3.2.7
ADV_LLD.1.7C: The low-level design shall provide a demonstration that the product/system is completely represented.

8.8.3.2.8
ADV_LLD.1.8C: The low-level design shall identify the interfaces of the modules of the product/system visible at the external interface of the product/system.

8.8.3.3
Evaluator action elements

8.8.3.3.1
ADV_LLD.1.1E: The evaluator shall confirm that the information provided meets all requirements for content and presentation of evidence.

8.8.3.3.2
ADV_LLD.1.2E: The evaluator shall determine if the functional requirements in the CKRS are addressed by the representation of the product/system.

8.9
Development ADV_RCR - Representation Correspondence

8.9.1
Objectives

The correspondence between the various representations (i.e. functional requirements expressed in the CKRS, functional specification, high-level design, low-level design, implementation) addresses the correct and complete instantiation of the requirements to the least abstract representation provided. This conclusion is achieved by step-wise refinement and the cumulative results of correspondence determinations between all adjacent abstractions of representation.

8.9.2
Application notes

The developer must demonstrate to the evaluator that the most detailed, or least abstract, representation of the product/system is an accurate, consistent, and complete instantiation of the functions expressed as functional requirements in the CKRS. This is accomplished by showing correspondence between adjacent representations at a commensurate level of rigor.

The evaluator must analyze each demonstration of correspondence between abstractions, as well as the results of the analysis of each product/system representation, and then make a determination as to whether the functional requirements in the CKRS have been satisfied.

This family of requirements is not intended to address correspondence relating to the security policy model. Rather, it is intended to address correspondence between the requirements in the CKRS as well as the product/system, functional specification, high-level design, low-level design, and implementation representation.

8.9.3 ADV_RCR.1 Informal correspondence demonstration

8.9.3.1
Developer action elements

8.9.3.1.1
ADV_RCR.1.1D: The developer shall provide evidence that the least abstract product/system representation provided is an accurate, consistent, and complete instantiation of the functional requirements expressed in the CKRS.

8.9.3.2
Content and presentation of evidence elements

8.9.3.2.1
ADV_RCR.1.1C: For each adjacent pair of product/system representations, the evidence shall demonstrate that all parts of the more abstract representation are refined in the less abstract representation.

8.9.3.2.2
ADV_RCR.1.2C: For each adjacent pair of product/system representations, the demonstration of correspondence between the representations may be informal.

8.9.3.3
Evaluator action elements

8.9.3.3.1
ADV_RCR.1.1E: The evaluator shall confirm that the information provided meets all requirements for content and presentation of evidence.

8.9.3.3.2
ADV_RCR.1.2E: The evaluator shall analyze the correspondence between the functional requirements expressed in the CKRS and the least abstract representation provided to ensure accuracy, consistency, and completeness.

8.10
Guidance Documents AGD_ADM Administrator Guidance

8.10.1
Objectives

Administrator guidance refers to written material that is intended to be used by those persons responsible for configuring, maintaining, and administering the product/system in a correct manner for maximum security. Because the secure operation of the product/system is dependent upon the correct performance of the product/system, persons responsible for performing these functions are trusted by the product/system. Administrator guidance is intended to help administrators understand the security functions provided by the product/system, including both those functions that require the administrator to perform security-critical actions and those functions that provide security-critical information.

8.10.2
Application notes

The requirements AGD_ADM.1.2C and AGD_ADM.1.11C encompass the aspect that any warnings to the users of a product/system with regard to the product/system security

environment and the security objectives described in the CKRS are appropriately covered in the administrator guidance.

Those topics that are relevant to administrator guidance for understanding and proper application of the security functions should be considered for inclusion in the administrator guidance requirements. An example of an administrator guidance document is a reference manual.

8.10.3 AGD_ADM.1 Administrator guidance

8.1.0.3.1
Developer action elements

8.1.0.3.1.1
AGD_ADM.1.1D: The developer shall provide administrator guidance addressed to system administrative personnel.

8.1.0.3.2
Content and presentation of evidence elements

8.1.0.3.2.1
AGD_ADM.1.1C: The administrator guidance shall describe how to administer the product/system in a secure manner.

8.1.0.3.2.2
AGD_ADM.1.2C: The administrator guidance shall contain warnings about functions and privileges that should be controlled in a secure processing environment.

8.1.0.3.2.3
AGD_ADM.1.3C: The administrator guidance shall contain guidelines on the consistent and effective use of the security functions within the product/system.

8.1.0.3.2.4
AGD_ADM.1.4C: The administrator guidance shall describe the difference between two types of functions: those which allow an administrator to control security parameters, and those which allow the administrator to obtain information only.

8.1.0.3.2.5
AGD_ADM.1.5C: The administrator guidance shall describe all security parameters under the administrator's control.

8.1.0.3.2.6
AGD_ADM.1.6C: The administrator guidance shall describe each type of security-relevant event relative to the administrative functions that need to be performed, including changing the security characteristics of entities under the control of the product/system.

8.1.0.3.2.7
AGD_ADM.1.7C: The administrator guidance shall contain guidelines on how the security functions interact.

8.1.0.3.2.8
AGD_ADM.1.8C: The administrator guidance shall contain instructions regarding how to configure the product/system.

8.1.0.3.2.9
AGD_ADM.1.9C: The administrator guidance shall describe all configuration options that may be used during the secure installation of the product/system.

8.1.0.3.2.10
AGD_ADM.1.10C: The administrator guidance shall describe details, sufficient for use, of procedures relevant to the administration of security.

8.1.0.3.2.11
AGD_ADM.1.11C: The administrator guidance shall be consistent with all other documents supplied for evaluation.

8.10.3.3
Evaluator action elements

8.10.3.3.1
AGD_ADM.1.1E: The evaluator shall confirm that the information provided meets all requirements for content and presentation of evidence.

8.10.3.3.2
AGD_ADM.1.2E: The evaluator shall confirm that the installation procedures result in a secure configuration.

8.11
Guidance Documents AGD_USR - User Guidance

8.11.1
Objectives

User guidance refers to written material that is intended to be used by non-administrative (human) users of the product/system. User guidance describes the security functions provided by the product/system and provides instructions and guidelines, including warnings, for its secure use.

The user guidance provides a basis for assumptions about the use of the product/system and a measure of confidence that non-malicious users and application providers will understand the secure operation of the product/system and will use it as intended.

8.11.2
Application notes

The requirement AGD_USR.1.3.C and AGD_USR.1.5C encompass the aspect that any warnings to the users of a product/system with regard to the product/system security environment and the security objectives described in the CKRS are appropriately covered in the user guidance.

Those topics in CKRS that are relevant to user guidance aimed at the understanding and proper use of the security functions should be considered for inclusion in the user guidance requirements. Examples of user guidance are reference manuals, user guides, and on-line help.

8.11.3 AGD_USR.1 User guidance

8.11.3.1
Developer action elements

8.11.3.1.1
AGD_USR.1.1D: The developer shall provide user guidance.

8.11.3.2
Content and presentation of evidence elements

8.11.3.2.1
AGD_USR.1.1C: The user guidance shall describe the product/system and interfaces available to the user.

8.11.3.2.2
AGD_USR.1.2C: The user guidance shall contain guidelines on the use of security functions provided by the product/system.

8.11.3.2.3
AGD_USR.1.3C: The user guidance shall contain warnings about functions and privileges that should be controlled in a secure processing environment.

8.11.3.2.4
AGD_USR.1.4C: The user guidance shall describe the interaction between user-visible security functions.

8.11.3.2.5
AGD_USR.1.5C: The user guidance shall be consistent with all other documentation delivered for evaluation.

8.11.3.3
Evaluator action elements

8.11.3.3.1
AGD_USR.1.1E: The evaluator shall confirm that the information provided meets all requirements for content and presentation of evidence.

8.12
Life Cycle Support ALC_FLR - Flaw Remediation

8.12.1
Objectives

Flaw remediation requires that discovered flaws be tracked and corrected by the developer. Although future compliance with flaw remediation procedures cannot be

determined at the time of the product/system evaluation, it is possible to evaluate the policies and procedures that a developer has in place to track and correct flaws, and to

distribute the flaw information and corrections.

8.12.2
Application notes

None

8.12.3
ALC_FLR.2 Flaw reporting procedures

8.12.3.1
Developer action elements

8.12.3.1.1
ALC_FLR.2.1D: The developer shall document the flaw remediation procedures.

8.12.3.1.2
ALC_FLR.2.2D: The developer shall establish a procedure for accepting and acting upon user reports of security flaws and requests for corrections to those flaws.

8.12.3.2
Content and presentation of evidence elements

8.12.3.2..1
ALC_FLR.2.1C: The flaw remediation procedures documentation shall describe the procedures used to track all reported security flaws in each release of the product/system.

8.12.3.2.2
ALC_FLR.2.2C: The flaw remediation procedures shall require that a description of the nature and effect of each security flaw be provided, as well as the status of finding a correction to that flaw.

8.12.3.2.3
ALC_FLR.2.3C: The flaw remediation procedures shall require that corrective actions be identified for each of the security flaws.

8.12.3.2.4
ALC_FLR.2.4C: The flaw remediation procedures documentation shall describe the methods used to provide flaw information and corrections to product/system users.

8.12.3.2.5
ALC_FLR.2.5C: The procedures for processing reported security flaws shall ensure that any reported flaws are corrected and the correction issued to product/system users.

8.1.2.3.3
Evaluator action elements

8.1.2.3.3.1
ALC_FLR.2.1E: The evaluator shall confirm that the information provided meets all requirements for content and presentation of evidence.

8.13
Tests ATE_COV - Coverage

8.13.1
Objectives

This family addresses those aspects of testing that deal with completeness of

testing. That is, it addresses the extent to which the product/system security functions are

tested, whether or not the testing is sufficiently extensive to demonstrate that the product/system operates as specified, and whether or not the order in which testing proceeds correctly accounts for functional dependencies between the portions of the product/system being tested.

8.13.2
Application notes

The specific documentation required by the coverage components will be determined, in most cases, by the documentation stipulated in the level of ATE_FUN that is specified.

8.1.3.3 ATE_COV.1 Complete coverage - informal

Objectives

In this component, the objective is that testing completely address the security

functions.

Application notes

While the testing objective is to completely cover the product/system, there is no more than informal explanation to support this assertion.

8.13.3.1
Developer action elements

8.13.3.1.1
ATE_COV.1.1D: The developer shall provide an analysis of the test coverage.

8.13.3.2
Content and presentation of evidence elements

8.1.3.3.2.1 ATE_COV.1.1C: The analysis of the test coverage shall demonstrate that the tests identified in the test documentation cover the product/system.

8.13.3.3
Evaluator action elements

8.13.3.3.1
ATE_COV.1.1E: The evaluator shall confirm that the information provided meets all requirements for content and presentation of evidence.

8.14
Tests ATE_DPT - Depth

8.14.1
Objectives

The components in this family deal with the level of detail to which the product/system is tested. Testing of security functions is based upon an increasing depth of information derived from the analysis of the representations.

The objective is to counter the risk of missing an error in the development of the product/system. Additionally, the components of this family, especially as testing is more concerned with the internals of the product/system, are more likely to discover any malicious code that has been inserted.

8.14.2
Application notes

The specific amount and type of documentation and evidence will, in general, be

determined by that required by the level of ATE_FUN selected.

8.14.3 ATE_DPT.1 Testing - functional specification

Objectives

The functional specification of a product/system provides a high level description of the

external workings of the product/system. Testing at the level of the functional specification, in order to demonstrate the presence of any flaws, provides assurance that the product/system functional specification has been correctly realized.

Application notes

The functional specification representation is used to express the notion of the most

abstract representation of the product/system.

8.14.3.1
Developer action elements

8.14.3.1.1
ATE_DPT.1.1D: The developer shall provide the analysis of the depth of testing.

8.14.3.2
Content and presentation of evidence elements

8.14.3.2.1
ATE_DPT.1.1C: The depth analysis shall demonstrate that the tests identified in the test documentation are sufficient to demonstrate that the product/system operates in accordance with the functional specification of the product/system.

8.14.3.3
Evaluator action elements

8.14.3.3.1
ATE_DPT.1.1E: The evaluator shall confirm that the information provided meets all requirements for content and presentation of evidence.

8.15
Tests ATE_FUN - Functional Tests

8.15.1
Objectives

Functional testing establishes that the product/system exhibits the properties necessary to satisfy the functional requirements of CKRS. Functional testing provides assurance that the product/system satisfies at least the security functional requirements, although it cannot establish that the product/system does no more than what was specified. The family ``Functional tests'' is focused on the type and amount of documentation or support tools required, and what is to be demonstrated through testing.

This family contributes to providing assurance that the likelihood of undiscovered

flaws is relatively small.

8.15.2
Application notes

Procedures for performing tests are expected to provide instructions for using test programs and test suites, including the test environment, test conditions, test data parameters and values. The test procedures should also show how the test results are

derived from the test inputs.

The developer shall eliminate all security relevant flaws discovered during testing.

The developer shall test the product/system to determine that no new security relevant flaws have been introduced as a result of eliminating discovered security relevant flaws.

Tests shall include examination of procedures and documents that assist in implementing the product/system security policy.

8.15.3 ATE_FUN.1 Functional Testing

Objectives

The objective is for the developer to demonstrate that all security functions perform as specified. The developer is required to perform testing and to provide test documentation.

8.15.3.1
Developer action elements

8.15.3.1.1
ATE_FUN.1.1D: The developer shall test the product/system and document the results.

8.15.3.1.2
ATE_FUN.1.2D: The developer shall provide test documentation.

8.15.3.2
Content and presentation of evidence elements

8.15.3.2.1
ATE_FUN.1.1C: The test documentation shall consist of test plans, test procedure descriptions, and test results.

8.15.3.2.2
ATE_FUN.1.2C: The test plans shall identify the security functions to be tested and describe the goal of the tests to be performed.

8.15.3.2.3
ATE_FUN.1.3C: The test procedure descriptions shall identify the tests to be performed and describe the scenarios for testing each security function.

8.15.3.2.4
ATE_FUN.1.4C: The test results in the test documentation shall show the expected results of each test.

8.15.3.2.5
ATE_FUN.1.5C: The test results from the execution of the tests by the developer shall demonstrate that each security function operates as specified.

8.15.3.3
Evaluator action elements

8.15.3.3.1
ATE_FUN.1.1E: The evaluator shall confirm that the information provided meets all requirements for content and presentation of evidence.

8.16
Tests ATE_IND - Independent Testing

8.16.1
Objectives

The objective is to demonstrate that the security functions perform as specified.

Additionally, an objective is to counter the risk of an incorrect assessment of the test outcomes on the part of the developer which results in the incorrect implementation of the specifications, or overlooks code that is non-compliant with the specifications.

8.16.1
Application notes

The testing specified in this family can be performed by a party other than the evaluator (e.g., an independent laboratory, an objective consumer organization).

This family deals with the degree to which there is independent functional testing of the product/system. Independent functional testing may take the form of repeating the developer's functional tests in whole or in part. It may also take the form of the augmentation of the developer's functional tests, either to extend the scope or the depth of the developer's tests.

8.16.3
ATE_IND.2 Independent testing - sample

Objectives

The objective is to demonstrate that the security functions perform as specified.

In this component, the objective is to select and repeat a sample of the developer

testing.

Application notes

The suitability of the product/system for testing is based on the access to the product/system, and the supporting documentation and information required to run tests. The need for documentation is supported by other assurance families (e.g., ATE_FUN)

Additionally, the suitability of the product/system for testing may be based on other considerations (e.g., the version of the product/system submitted by the developer is not the final version).

The developer is required to perform testing and to provide test documentation and test results. This is addressed by the ATE_FUN family.

Testing may be selective and shall be based upon all available documentation.

8.16.3.1
Developer action elements

8.16.3.1.1
ATE_IND.2.1D: The developer shall provide the product/system for testing.

8.16.3.2
Content and presentation of evidence elements

8.16.3.2.1
ATE_IND.2.1C: The product/system shall be suitable for testing.

8.16.3.3
 Evaluator action elements

8.16.3.3.1 ATE_IND.2.1E: The evaluator shall confirm that the information provided meets all requirements for content and presentation of evidence.

8.16.3.3.2
ATE_IND.2.2E: The evaluator shall test the product/system to confirm that the product/system operates as specified.

8.16.3.3.3
ATE_IND.2.3E The evaluator shall execute a sample of tests in the test documentation to verify the developer test results.

8.17
Vulnerability Assessment AVA_VLA - Vulnerability Analysis

8.17.1
Objectives

Vulnerability analysis is an assessment to determine whether vulnerabilities could allow malicious users to violate the security policy. These vulnerabilities will be identified during the evaluation by flaw hypotheses,

Vulnerability analysis deals with the threats that a malicious user will be able to discover flaws that will allow access to resources (e.g., data), allow the ability to interfere with or alter the product/system, or interfere with the authorized capabilities of other users.

8.17.2
Application notes

The vulnerability analysis should consider the contents of all the product/system deliverables for the targeted evaluation assurance level.

Obvious vulnerabilities are those that allow common attacks or those that might be

suggested by the product/system interface description. Obvious vulnerabilities are those in the public domain, details of which should be known to a developer, publicly available, or available from NIST.

The evidence identifies all the product/system documentation upon which the search for flaws was based.

8.17.3 AVA_VLA.1 Developer vulnerability analysis

Objectives

A vulnerability analysis is performed by the developer to ascertain the presence of ``obvious'' security vulnerabilities.

The objective is to confirm that no identified security vulnerabilities can be exploited in the intended environment for the product/system.

Application notes

Obvious vulnerabilities are those which are open to exploitations which require a minimum of understanding of the product/system, skill, technical sophistication, and

resources.

8.17.3.1
 Developer action elements

8.17.3.1.1
AVA_VLA.1.1D: The developer shall perform and document an analysis of the product/system deliverables searching for obvious ways in which a user can violate the security policy.

8.17.3.1.2
AVA_VLA.1.2D: The developer shall document the disposition of identified vulnerabilities.

8.17.3.2
Content and presentation of evidence elements

8.17.3.2.1
AVA_VLA.1.1C: The evidence shall show, for each vulnerability, that the vulnerability cannot be exploited in the intended environment for the product/system.

8.17.3.3
Evaluator action elements

8.17.3.3.1
AVA_VLA.1.1E: The evaluator shall confirm that the information provided meets all requirements for content and presentation of evidence.

8.17.3.3.2
AVA_VLA.1.2E: The evaluator shall conduct penetration testing, based on the developer vulnerability analysis, to ensure that obvious vulnerabilities have been addressed.

This section contains the Common Criteria assurance requirements that are recommended for exclusion.

ADV_INT family relates to modularity, layering, information hiding, etc. For economic reasons, this family is applied to deluxe assurance level only.

ALC_DVS (Developmental Security), ALC_LCD (Life Cycle Definition), and ALC_TAT (Tools and Techniques) are excluded in order to provide vendors engineering independence, spur commercial product development, and align assurance requirements with the commercial practices.

AVA_CCA (Covert Channel Analysis), AVA_SOF (Strength of Function, e.g., work factor for cryptographic operation) are excluded since they are not particularly relevant here. AVA_CCA in non-discretionary policy environments can be implemented using procedural controls such as executing trusted software only. Cryptanalysis work factors will be provided or implied by the FIPS cryptographic algorithms.

AVA_MSU (Misuse Analysis) is excluded since obvious flaws and known flaws will come under AVA_VLA (Vulnerability Analysis). Given this is a standard for SBU data, vulnerability analysis may be an overkill.

APPENDIX A

EXAMPLES

A.1

Key Recovery Function Distribution

The functions of a KRS may be integrated into products in a variety of configurations in order to accommodate different user environments. In Figure 15, the KRI Generation, Delivery, Receive and Validation functions are provided in a single end user product. The Requestor and KRA functions are each available as independent products. The separate Requestor System might be appropriate in an organization which prefers to centralize the key recovery process.

In Figure 16, the KRI Generation and Delivery Functions are provided in one product, while the Requestor Function and KRA Function are in a separate product. This configuration may be appropriate for a storage application, where files are encrypted by a user, KRI is attached to the file and thereafter ignored unless the decryption key becomes unavailable and recovery is required. The user could then go to a special recovery system in order to recover the appropriate key.

In Figure 17, the KRA function is bundled with the KRI Generation and Delivery Functions. This might be appropriate for an environment in which the KRA generates the encryption key pair, sends it off to the user and/or a CA for certification, and caches a copy of the private key for potential recovery at a later time.

In Figure18, the KRI Generation, Delivery, Receive, Validation and Requestor Functions are provided in a single end user system. The KRA Function is a separate product. There may be an electronic connection between the end user system and the KRA in order to effect the recovery process.

A.2

KRI Generation Scenarios
A.2.1
Interactive Communications

Each system has an encryption public key certificate (hereafter called an encryption certificate) that identifies the key recovery method and the identity of the KRA(s). Encryption certificates are also available for the KRAs.

A.2.1.1
Between Two Encapsulation Techniques
In Figure 5, end user systems A and B are two systems that employ two different encapsulation methods for key recovery, but using a common key recovery block (KRB). A key transport method of key exchange is used (e.g., the data key is encrypted using the receiver’s encryption public key). System A has a key recovery policy stating that key recovery information is not created for interactive communications. System B has a key recovery policy that states: (1) key recovery information must be created for itself for all communications when that information is not present, and (2) key recovery information must also be created for the other party whenever possible.

System A creates a data encrypting key to be used for the communication session and encrypts the data key using the public encryption key of System B (obtained from System B’s encryption certificate). System A sends the encrypted key as part of the normal key exchange process. System A then encrypts a message for System B, and sends the encrypted message on the communications path.

When System B determines that no key recovery information is available for the message received from System A (i.e., no KRB is present), System B decrypts the encrypted data key (received as part of the key exchange process), and uses the resulting plaintext data key to create key recovery information for itself and/or its Key Recovery Agent. The KRI is placed in a KRB in accordance with its key recovery scheme. By examining System A’s certificate, the identity of System A’s KRA(s) can be determined and the KRA encryption certificate(s) can be acquired. If System B can create a KRB for System A’s key recovery technique and all information is available, key recovery information is created for System A and/or its Key Recovery Agent(s). System B then uses the data key to decrypt the received message. The newly created key recovery information is then attached to the next message in the communication session and sent back to System A.

In subsequent messages received by System A within this interactive session, System A can recognize the presence of the KRI (perhaps perform some processing of the KRI in the KRB) and decrypt the received messages.

A.2.1.2
Between Encapsulated and Key Caching Techniques
Figure 8 includes end user systems A and B that use key caching and encapsulation methods of key recovery, respectively. System B uses a KRB. A key agreement method of key exchange is used (e.g., the encryption public and private keys pairs of both parties to a communication are used along with randomly generated values to generate a shared data key at the end user systems). End user system A has a key recovery policy that requires that all incoming communications must have KRI available for the sender. System B has a policy stating that communications will only conducted with other parties that employ key recovery techniques, and that KRI is always created for itself in outgoing communications.

End user system B wants to initiate a communication session with end user system A. By obtaining system A’s encryption certificate, system B obtains system A’s public encryption key as well as determining that system A uses a key caching method of key recovery. System B initiates a key exchange with System A to agree upon a data key, then encapsulates the data key and other KRI in a KRB. The data key is then used to encrypt the data, and the encrypted data and the KRB are sent to system A.

End user system A (probably during the key exchange process) determines that System B uses an encapsulated method of key recovery by examining system B’s encryption certificate. When the initial message is received from system B, system A is able to recognize that there is a KRB for system B. System A then proceeds to decrypt the received message.

A.2.2
Store and Forward Communications
A.2.2.1
Between Two Key Caching Key Recovery Schemes
In Figure 6, end user systems A and B employ key caching methods of key recovery. A key transport method of key exchange is used. System B has a policy stating that all outgoing email messages will be archived and recoverable (i.e., KRI must be available to recover encrypted email messages that have been archived). System A is able to recover incoming encrypted email messages if key transport is used for key exchange.

System B generates a data encrypting key and encrypts the key using the encryption public key of the receiver (system A) for use in the key exchange (key transport process). Even though system B uses key caching, there is nothing yet which allows system B to recover after the outgoing message is archived. System B encrypts the data encrypting key using his own encryption public key, and places it in a KRB. System B then encrypts the message with the data encrypting key, and sends the encrypted message and system A’s copy of the encrypted data key to system A. The encrypted message and the KRB are archived.

System A decrypts the data encrypting key received via the key transport mechanism and decrypts the received message using that key.

A.2.2.2
Between an Encapsulated Scheme and an End User System with No Key Recovery Capability
In Figure 5, end user system A uses an encapsulated method of key recovery. End user system E has no key recovery capability. A key transport method of key exchange is in use (e.g., the data key is encrypted by the receiver’s encryption public key). System A has a key recovery policy that states: (1) key recovery information must always be created for itself and/or its Key Recovery Agent, and (2) Key recovery Information is not created for anyone else. System A retains a copy of all outgoing email messages. System A sends the KRB along an alternate path from that of the encrypted messages; this allows system B to ignore key recovery information so that interoperability is possible.

System A creates a data key, then creates Key Recovery information for itself and/or its Key Recovery Agent, and places the KRI in a KRB. The KRB is sent along the alternate communication path. The data key is encrypted by system B’s encryption public key (obtained from System B’s encryption certificate) and then used to encrypt an e-mail message. The encrypted key is placed in the message header (the method of key transport that is employed in this example) and sent with the encrypted message to System B.

Upon receipt of the encrypted message and key exchange information , System B decrypts the data encryption key in the message header, and uses the decrypted data encryption key to decrypt the message.

A.2.3
Data Storage
A.2.3.1 Creation by an End User with an Encapsulated Scheme; Read Access by Anyone
For data storage applications, the Encryptor and Decryptor may not be the same entity (e.g., shared files). In Figure 5, end user system A uses an encapsulated method for key recovery. System A’s organization has a policy stating that key recovery information must exist for all stored data. Read only access can be granted to a list of other systems in the organization, whether or not those systems have a key recovery capability.

System A creates a data key and uses the encryption public key of each system on the access list to encrypt a copy of the data key for that system (including itself). System A also encrypts the data key using the encryption public key of the organization’s KRA. The data key is then used to encrypt the data. All copies of the encrypted key are placed in a file along with the encrypted data.

When accessing the encrypted file, the acquiring end user system decrypts the appropriate copy of the encrypted data key, and uses the decrypted data key to decrypt the file.

A.3

Key Recovery Scenarios

A.3.1

Interactive Session

Referring back to scenario “Examples”.2.1.2, when end user system A initially tries to participate in the key exchange process, it is discovered that the private key of the encryption public key pair is lost. System A immediately requests the recovery of its private key from the KRA using its automated ability to request key recovery. When the private key is provided, system A can continue with the key exchange process and participate in the determination of the data key to be used for the communication session.

A.3.2
Store-and-Forward Communications

In scenario “Examples”.2.2.1, the email message received by system A is stored in the in-box until read. Suppose that the user receives a large number of email messages before reading them. When attempting to read the encrypted messages, it is discovered that the private key of the encryption public key pair is corrupted. The user requests a recovery of the private key from the key recovery function, uses the recovered private key to decrypt the data key for each message, and then uses the data key to decrypt the associated message.

A.3.3
Data Storage
In scenario “Examples”.2.3.1, System A could create a file for himself (i.e., no one else is on the access list, so the data encrypting key is not encrypted for anyone else). At some later time, the user needs to retrieve the file, but has lost access to his decryption key. The data key can be recovered by sending the copy of the key which was encrypted using the KRA’s encryption public key to the KRA for decryption

APPENDIX B

KEY RECOVERY BLOCK

When different key recovery products that employ KRI encapsulation need to interoperate with one another, one of the major obstacles is the inability of the receiver product to recognize and validate the key recovery information received from the sender product. In order to allow the interoperability of various key recovery techniques which require the use of KRI encapsulaton, a common structure -- a Key Recovery Block (KRB) -- may be required. The KRB serves as a container for technique-specific key recovery information, and supports generic mechanisms to identify and validate the contained key recovery information. Various levels of validation may be performed depending on the key recovery techniques used by the sending and receiving parties, including:

(
Verification of the presence of the KRB,

(
Validation of the integrity of the KRB,

(
Authentication of the source and validation of the integrity of the KRB [WILL THIS BE THE CASE? INFO MAY NEED TO BE ADDED], and

(
Verification that the KRI can be used to recover the data key.

The KRB is independent of the encryption algorithm used to protect the confidentiality of the data, and independent of the communication or storage protocol used to carry the encrypted data.

The KRB should include the following fields of information:

· The KRB version number,

· The KRB length – beginning at the version number and ending at the last word/byte of the Integrity Field,

· Object Identifier (OID) for the key recovery technique used to generate the KRI field.

· Encrypted Data Sensitivity (EDS) Field Type:

Type = 0: NONE (no EDS field is specified)

· Encrypted Data Sensitivity (EDS) Field Length:

Number of {words/bytes} in the EDS field.

· Encrypted Data Sensitivity (EDS) Field– the sensitivity of the data recoverable by this KRB [THIS NEED WAS IDENTIFIED IN THE BUSINESS REQUIREMENTS PAPER PRODUCED BY THE KEY RECOVERY ALLIANCE – SEE SCENARIO 13, 2ND COLUMN, 4TH ITEM] .

· KRI Field length – in {words,bytes}.

· KRI Field (KRIF) – the KRI as specified by the indicated key recovery technique using the format employed by that technique,

· Encrypted Data Locator (EDL) Field Type – identifies the method used to generate the EDL Field. Defined methods include:

type = 0: NONE (no EDL field was calculated)

· Encrypted Data Locator (EDL) Field Length:

Number of {words/bytes} in the EDL field.

· Encrypted Data Locator (EDL) Field:

The value of the Encrypted Data Locator Field. This is reserved for
 possible future use in locating the encrypted data that may be recovered using this KRB.

· Integrity Field Type:

Identifies the method used to generate the Integrity Field. Defined methods include:

type = 0: NONE (no integrity field was calculated)

type = 1: SEMANTIC (no integrity field was calculated)

type = 2: PROTOCOL (no integrity field was calculated)

type = 3: CONF-HMAC-SHA-1-96 (integrity field calculated using HMAC and SHA-1 and the confidentiality key associated with the KRF - described in RFC 2104 and draft-ietf-ipsec-hmac-sha196-00.txt)

type = 4: CONF-HMAC-MD5-96 (integrity field calculated using HMAC and MD5 and the confidentiality key associated with the KRF

type = 5: INTEG-HMAC-SHA-1-96 (integrity field calculated using HMAC and SHA-1 and the integrity key associated with the session - described in RFC 2104 and draft-ietf-ipsec-hmac-sha196-00.txt)

type = 6: INTEG-HMAC-MD5-96 (integrity field calculated using HMAC and MD5 and the integrity key associated with the session - described in RFC 2104 and
draft-ietf-ipsec-hmac-md5-96-00.txt)

type = 7: SIGNATURE-PKCS7 (integrity field calculated as a PKCS #7 envelope with ContentType = "signed data" - described in the PKCS #7 specification. The data content that is carried within the PKCS#7 envelope is the hash of the KRF. The hash algorithm used is the same one that is specified within the PKCS#7 Content.

· Integrity Field Length:

Number of {words/bytes} in the Integrity Field. The Integrity Field Length must be consistent with the Integrity Field Type:

Integrity Field Type
Integrity Field Length

0
0

1
0

2
0

3
5

4
4

5
5

6
4

7
Varies

· Integrity Field Value:

The value of the Integrity Field that is calculated over all fields of the KRB except for the Integrity Field Value itself.

For Integrity Field Types 0 through 2, the Integrity Field value does not exist. For Integrity Field Types 3 and 5, the Integrity Field Value is a 20 byte hash of the KRF using HMAC and SHA-1. For Integrity Field Types 4 and 6, it is a 16 byte hash of the KRF using HMAC and MD5.

For Integrity Field Type 7, the Integrity Field Value is a PKCS#7 envelope [SEE ENVELOPE STRUCTURE BELOW] whose content is a hash of the relevant fields of the KRB using the digestAlgorithmIdentifier specified within the PKCS#7 Content.

[NOTE: THE FOLLOWING MAY NEED TO BE REMOVED OR EXTENSIVELY REVISED BASED ON THE THE FIPS VALIDATION REQUIREMENTS.]

Further Notes on the Integrity Field:

Certain key recovery products do not require any verification of the KRIF to be done at the receiving side. These products should use Integrity Field Type "NONE", indicating that KRIF verification is unnecessary.

Certain other products use technique-specific validation methods for the KRIF since these may be potentially stronger than the KRIF integrity checking techniques that are supported by the KRB. Products of this class should construct KRBs with Integrity Field Type "SEMANTIC", implying that the KRIF should be validated semantically using the technique-specific algorithm. A major drawback of using semantic validation techniques is that interoperability between products using dissimilar key recovery techniques may not be supportable.

Some key recovery products are based on secure communication protocols which provide integrity protection for the KRB when it is carried as an integral part of the secure association. This class of products should use Integrity Field Type "PROTOCOL", implying that the KRIF need not be checked for integrity since the carrier protocol provides integrity protection for the entire KRB.

Finally, there are a class of key recovery products which require KRIF validation by the receiver who cannot rely on the carrier protocol to provide integrity protection to the KRB, and require interoperability between heterogeneous key recovery systems. This class of products should use the supported integrity checking mechanisms of the KRB by using Integrity Field Types 3 to 7. The Integrity Field should contain the value corresponding to the specified type.

Certain products may like to use keyed-hash based integrity checks for the KRB. These products will generate KRBs with Integrity Field Types 3 to 6. The keyed-hash Integrity Field Types are defined for systems that use a single key for confidentiality and integrity protection, as well as systems using separate confidentiality and integrity keys. Types 3 and 4 use the confidentiality key associated with the session in generating the HMAC value, while types 5 and 6 use the integrity key associated with a session for the HMAC. A careful analysis of the cryptographic system is required when the same key does double duty as the encryption key and the HMAC key for the key recovery block.

Certain products may like to use digital signature techniques to validate the integrity of the KRB. These products will generate KRBs with Integrity Field Type 7, which denotes that the Integrity Field Value is a PKCS#7 envelope that carries a digital signature over the relevant fields of the KRB. The PKCS#7 format was chosen as a vehicle for carrying the signature value since it allows the pertinent certificates (needed for signature verification) to be conveniently packaged in a well-known format. It may be noted that the Content within the PKCS#7 envelope is a hash of the relevant fields of the KRB. Thus, the actual signature carried within the PKCS#7 envelope will be calculated on the hash of the KRB, rather than the KRB itself.

It may be noted that a product that generates a KRB specifies the Integrity Field Type based on its assumptions about its operating environment and its policy related to KRIF verification. Similarly, the types of KRBs that may be accepted by a receiver product are based on the receiver's assumptions about its operating environment and its policy related to KRIF verification. This proposal in no way mandates that a receiver product accept a KRB with all possible integrity Field Types; it leaves the usage and acceptability of specific Integrity Field Types to the discretion of the sending and receiving products.

The KRB format can also be used very conveniently to identify the KRIF carried within it. Certain vendors may like to use the KRB format for KRIF identification purposes only, but may not want to incur the overhead of generating and verifying the integrity field. It is recommended that these vendors use Integrity Field Type "NONE".

The KRB integrity field is a "robust" mechanism for verifying the integrity of the enclosed KRIF. The integrity field is not susceptible to typical man-in-the-middle attacks (MITM). Modification of the Integrity Field Type is not useful to an attacker, since the communicating peers have a security association that demands specific Integrity Field Types. Substitution of the KRIF and the corresponding Integrity Field value (for types 3 to 6) does not succeed, since the MITM does not have the session key necessary to generate a valid Integrity Field value for the bogus KRIF that was substituted.

KRB Format: [NEED TO DECIDE HOW DEEPLY TO SPECIFY THE KRB. SHOULD PROBABLY SPECIFY ENOUGH THAT ANY PROTOCOL USING THE KRB INFORMATION WOULD USE THE SAME STRUCTURE, ALLOWING DEVELOPERS TO DESIGN TO THE SAME FORMAT.]

31
23
15
7

Version
KRB Length

Key Recovery Technique OID

EDS Field Type
EDS Field Length

Encrypted Data Sensitivity (EDS)

Reserved
KRIF Length

Key Recovery Information Field (KRIF)

EDL Field Type
EDL Field Length

Encrypted Data Locator (EDL) Field

Integrity Field Type
Integrity field length

Integrity Field Value

Implementation Guidance:

Vendors that are compliant with the common KRB format, would design their products so that their KRIF (in its proprietary format) is placed within the common KRB defined above. The appropriate information should be provided in the other fields of the KRB. When a compliant product receives a KRB with an integrity field, the product can validate the KRIF embedded within the KRB, either by using the KRB integrity field, or the technique-specific validation algorithm (if known).

PKCS #7 Structure

PKCS #7 contains the following fields:
· Version

· Digest Algorithm ID

· Content

· Certificates (opt.)

· CRLs (Opt.)

· Signer Info

version,

issuer & serial ID,

digest algorithm ID,

authenticated attribute (opt.),

encrypted digest,

unauthenticated attributes (opt.)

Note: There may be multiple Signer Info fields.
APPENDIX C

In order to facilitate the recovery of a key in a Public Key Infrastructure (PKI), the appropriate certificates should be extended to include key recovery information. Modifications may include:

(
The encryption certificate for a KRA should include:

(1)
a key usage bit which indicates that the public key is to be used for key recovery purposes, and

(2)
an identification of the key recovery technique(s) with which the public key may be used.

· A certificate for the entity using key recovery should include:

(1)
an indication that the entity has a key recovery capability,

(2)
identify the KRA(s),

(3) indicate the KRA certificate(s) containing the appropriate KRA public key(s),

(4) identify the key recovery technique(s) supported by the entity, and

(5) include any key recovery technique information required

APPENDIX D

INTEROPERABILITY

D.1 Interoperability of Non-Key-Recoverable and Key-Recoverable Systems

The interoperability of a non-key-recoverable product with a key-recoverable one appears to depend not so much on the key-recovery technique, as on whether or not there is a DRF or space for the addition of a KRF. If the session-based system uses a session-establishment protocol that ignores additional fields, then this is not an issue. However, for those products designed for a specific number of messages to be exchanged, often with a fixed length, the addition of a DRF received from a key-recoverable product will break interoperability. For these products, choosing a key-recovery technique that does not use a DRF may preserve interoperability.

As a simple example, suppose two secure voice products each have fixed RSA private/public key pairs. Each generates a random number and exchanges it encrypted with the other’s public key. Each decrypts the other’s random number using its own private key and forms the session key by combining the two random numbers. If these products were modified to escrow the private keys, then with a recording of the key exchange, a KRA could form the session key. The addition of this key-recovery method does not use a DRF, and will not prevent a product whose private key is not escrowed from interoperating with a product whose private key is escrowed.

D.2 Interoperability of Different Key-Recovery Techniques

Whether or not two session-based systems will interoperate when each has implemented a different key-recovery technique depends on the techniques chosen and the key-exchange protocol design.

One example would be the case of a system that used a DRF and one that did not, with the further stipulation that each used the same basic key exchange. As a simple illustration, consider products A and B that each have a fixed RSA private-public key pair and use a session-establishment protocol, such that the one initiating the secure session generates a random session key and sends it to the other, encrypted with the other’s public key. Product A sends no DRF, but can tolerate receiving one, and ignores it. Product A has escrowed its private key. Product B, on the other hand, has not escrowed its private key, but when it generates the session key, sends it encrypted with A’s public key and sends a DRF containing the session key encrypted with product B’s KRA’s public key. Designed in this manner, A and B will interoperate with two different key-recovery techniques.

Since this type of solution depends on an underlying key exchange protocol, and since so many exist for session-based systems, one could imagine a different key-recovery solution for each. Moreover, some key exchange protocols are expressly designed to build in key recovery with various properties.

D.3 S/MIME

The Secure MIME (S/MIME) protocol provides encryption for Internet electronic mail that uses the MIME encoding format. S/MIME defines two security wrappers: one for digital signatures and one for encryption. To encrypt and sign a message, both wrappers are applied. Both of these wrappers build on the formats defined in PKCS#7 version 1.5. For encryption, the EnvelopedData wrapper is used. The EnvelopedData wrapper requires RSA key management, and the RSA public keys must be carried in certificates.

S/MIME does not include a location that can be used to carry a key recovery field. However, the key recovery center could be a recipient on every message, even if the message is not delivered to the key recovery center. In this way, the key recovery center private key can be used to recover the message plaintext content.

Key recovery may also be done as part of certificate management. This technique only works if the originator is a recipient of the message. That is, a RecipientInfo field for the originator must be included to ensure that the key used to encrypt the message content is available to the key recovery center who holds a copy of the originator’s RSA private key.

D.4 MSP

The Message Security Protocol (MSP) provides encryption for Internet and X.400 electronic mail. MSP is used in the Defense Message System, and MSP is specified in SDN.701. Like S/MIME, MSP supports both digital signatures and encryption; however, MSP defines one wrapper to provide both services. MSP is algorithm independent.

MSP includes two locations that could be used to carry a key recovery field: the token and the extensions. To carry a key recovery field in the token, a separate object identifier for a new key management technique must be assigned. This approach would destroy interoperability with existing implementations. To carry a key recovery field in the extensions, a non-critical extension is added to the end of the message. MSP does not encrypt the extensions; therefore a key recovery field carried in an extension would be accessible.

Alternatively, the key recovery center could be a recipient on every message, even if the message is not delivered to the key recovery center. In this way, the key recovery center private key can be used to recover the message plaintext content.

Key recovery may also be done as part of certificate management. MSP includes a token for the originator. If the mail transfer system is unable to deliver the MSP protected message and returns the message to the originator as part of non-delivery notification, this token allows the originator to decrypt the message to determine which one was returned. If the key recovery center holds a copy of the originator’s private key, then the key recovery center can also use the originator token to decrypt the message content.

D.5 PEM
The Privacy Enhanced Mail (PEM) protocol provides encryption for Internet electronic mail. PEM defines one encapsulation mechanism for digital signatures and encryption. PEM is defined in Internet RFCs 1421 through 1424. Two forms of key management are supported for encryption: RSA key management using certificates, and out-of-band distribution of symmetric key encryption keys.

PEM includes one location that could be used to carry a key recovery field: the Key-Info header line. This header line is used for both forms of key management. To carry a key recovery field in the Key-Info line, a separate Date Encryption Key protection algorithm identifier must be assigned. This approach would destroy interoperability with existing implementations.

Key recovery may also be done as part of certificate management. RFC 1421 recommends that a Key-Info header line be included for the originator as well as each recipient. This technique only works if the originator Key-Info header line is included. That is, a Key-Info header line for the originator must be included to ensure that the key used to encrypt the message content is available to the key recovery center who holds a copy of the originator’s RSA private key. RFC 1424 specifies the certificate management for PEM, and a single RSA key is used for key management and digital signature. Thus, this form of key recovery permits a malicious key recovery center to masquerade as the originator by generating signed PEM messages. These unauthorized messages could also be encrypted.

D.6 ISAKMP -- Work in progress by the Key Recovery Alliance

Both items below are the product of work-in-progress by the KRA technical WG. Please treat them with the appropriate sensitivity.

KRA members
Enclosed below is my updated proposal for providing key recovery in ISAKMP. I believe this will work from a protocol standpoint. However, we need to work with the IETF reps in our respective companies so that they can lobby the ISAKMP authors to meet our requirements.

Proposed ISAKMP key recovery approach

5-14-97: Initial version

5-30-97: Updated to reduce Phase 1/2 confusion

D.6.1. PURPOSE

This technical note proposes a scheme for inserting a key recovery block (KRB) into the Internet Security Association Key Management Protocol (ISAKMP).

D.6.2. OVERVIEW

The requirements for the key recovery approach are that it MUST:

· Comply with Government requirements for recovery, including tamper resistance.

· Allow interoperation of products from different vendors which have implemented different key recovery infrastructures.

· Allow a smooth migration from non-key recovery to key recovery such that products that implement key recovery can interoperate with products that do not implement key recovery.

Three approaches were considered.

· Approach 1: Give the recovery center your secret portion of the Diffie Hellman exchange. This approach was rejected because it does not work with the key recovery approaches already developed by some vendors. In addition, it gives the Government access to the authentication keys in addition to the encryption keys.

· Approach 2: Create a new ISAKMP exchange type. This approach was rejected because it fails to meet requirement 3 above. In addition, the political climate within the IETF makes it unlikely that this approach would make it through the standards process.

· Approach 3: Notification message. This approach is presented below. It minimizes the impact on ISAKMP specifications while meeting other requirements.

The notification message approach uses the ISAKMP Header commit bit to prevent the use of keying material until the KRB has been received and validated by the peer ISAKMP implementation.

The approach places a KRB into the Notification Data field of the Notification Payload. This information is authenticated by the authentication key (SKEYID_a) for the ISAKMP SA. This makes the approach tamper resistant.

The details of the approach are presented in the following section.

D.6.3 DETAILED DISCUSSION
This section provides a detailed discussion of key recovery within the ISAKMP. It provides background on ISAKMP, discusses the sender/receiver packet processing and the packet contents.

The ISAKMP specification is still an Internet draft. The latest version of this document may be obtained from

http://www.ietf.cnri.reston.va.us/ids.by.wg/ipsec.html

Much of the information in this section is taken directly from the February 21, 1997, version of the spec.

The ISAKMP specification defines the following five exchange types.

· Base exchange

· Identify Protection exchange

· Authentication Only exchange

· Aggressive exchange

· Informational exchange

Key recovery information will be sent in the informational exchange.

The ISAKMP supports the use of a commit flag bit which is carried in the ISAKMP header. When the commit bit is set it tells the receiver not to use the associated key in an IPSEC SA until the side setting the commit bit sends a "connected" notify message. This notify message is carried within the notification payload of the informational exchange.

This bit was intended to give an ISAKMP/IPSEC device time to complete ISAKMP processing and move the key to the IPSEC engine before encrypted packets were sent. This can also be used to prevent the other device from using a key until the KRB has been transmitted.

The commit flag is reset by sending the "connected" notify message. This message is protected by a keyed hash which uses a derivative of the pairwise key created during the key exchange. This keyed hash will be calculated over the KRB to provide tamper resistance.

The typical KRB processing is outlined below. For this example, assume the initiator is required to perform key recovery. The key recovery actions could be performed by the initiator, responder, or both.

1. The ISAKMP Phase 1 exchange is performed as normal.

2. The initiator of the Phase 2 exchange sets the commit flag in the ISAKMP Header (HDR) sent at the start of the OAKLEY quick mode exchange. (The responder could also set the commit bit in the packet sent from responder to initiator.)

3. The exchange is completed and the key for IPSEC ESP is produced along with other keying material. The associated IPSEC SA cannot be used yet.

4. The initiator prepares the key recovery block and notification payload.

· The inner contents of the key recovery block (KRB) are vendor specific but the outermost fields contain common information such as the ID of the key recovery agent. (Sarbari Gupta is developing the block format.)

· The type and length fields are prepended to the KRB. The type field is an IANA registered number indicating "additional key management information."

· The key recovery block is placed into the Notification Data field of a notification payload. The notify message type is set to 16384 (connected).

· The remainder of the notification payload fields are filled in just as they would be for a normal connected notification.

5. The initiator computes the HASH over the notification payload per the ISAKMP spec. i.e., Hash=prf(SKEYID_a, M-ID, NOTIFY)

6. The initiator sends the authenticated (but NOT encrypted) packet to the responder. The packet has the form HDR, HASH, NOTIFY. The detailed structure of this packet is shown below.

 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

ISAKMP header

Initiator Cookie

Responder Cookie

Next Payload

HASH = 8
MjVer

MnVer

Exchange Type

INFORMATIONAL = 5
Flags

COMMIT = 0

ENCRYPTION = 0

Message ID

Length

Hash payload

Next Payload

NOTIFY = 11
RESERVED
Payload Length

Hash Data

Notification payload

Next Payload

NONE = 0
RESERVED
Payload Length

Domain of Interpretation (DOI)

Protocol-ID
SPI Size
Notify Message Type

CONNECTED = 16384

Security Parameter Index (SPI)

Notification Data

Type

Additional key management information = TBD
Notification Data

Length

Key Recovery Block

Informational exchange carrying a key recovery block

The responder processes the informational exchange as follows.

1. The standard informational exchange processing steps such as checking the ISAKMP header fields is performed.

2. The hash functions are performed as described in ISAKMP and Oakley. This validates the contents of the notification payload.

3. The notification payload is processed.

· The connected (16384) is acknowledged by resetting the local commit flag.

· The notification data type is examined and found to be "additional key management information." The responder does not process this, and silently discards it.

The ISAKMP exchange is now complete, and the key for IPSEC ESP is placed into the IPSEC engine.

There are several issues with this approach that must be worked out with the authors of the ISAKMP spec. (Three of the authors are from the Government and the fourth is from Terisa Systems. Unfortunately, none are members of the key recovery alliance.) These issues are identified in the summary.

D.6.4 SUMMARY

The KRA technical committee needs to provide feedback on this approach and determine if it is acceptable. If it is, we must work the following issues:

1. Work with IANA to reserve the required number for the ISAKMP notification data type = "additional key management information." This number will inform the receiving ISAKMP implementation and law enforcement that the key material has been placed on the wire in a KRB.

2. We must also work with the ISAKMP authors to ensure that the specification supports this approach. Specific allowances that need to be written into the spec are:

· Implementations MUST accept notification payloads, which are not encrypted even if an ISAKMP SA has been established. Subsection 4.8 of the February 21, 1997 spec states "Once an ISAKMP SA has been established, the Informational Exchange MUST be transmitted under the protection provided by the ISAKMP SA." We can argue that we are protecting the integrity but not the confidentiality using the ISAKMP SA. Daniel Harkins, an ISAKMP author, agrees that integrity is required. We must convince the ISAKMP authors that informational exchanges, which are authenticated but not encrypted, should be accepted.

· Implementation MUST silently discard Notification Data contained in a Notification Payload if the Notification Data type is not recognized; i.e., when an ISAKMP implementation receives notification data of type "additional key management information," it discards it.

· The commit bit MAY be set by either or both parties in an ISAKMP exchange.

If we can resolve these issues, we have a reasonable approach for key recovery in ISAKMP.

IP Security (IPSec)
· IP Security Architecture

· RFC 1825 (August 95)

· Defines two mechanisms for cryptographic protection of IP datagrams

· Authentication Header (AH)

· RFC 1826 (August 95)

· Integrity and authentication without confidentiality for IP datagrams

IP-HDR
AUTH-HDR
UPPER-PROTOCOL

IPSec (Cont’d)
· Encapsulating Security Payload (ESP)

· RFC 1827 (August 95)

· Integrity, authentication, and confidentiality for IP datagrams

· Alone, in combo with AH, or nested

· Host-host, GW-GW, host-GW

· Two modes:

· Tunnel mode

IP-HDR
PROTECTED-IP-DATAGRAM

· Transport mode

IP-HDR
ESP-HDR
PROTECTED-UPPER-PROTOCOL

IPSec Revisions
· New Internet Drafts

· draft-ietf-ipsec-arch-sec-01.txt (??)

· draft-ietf-ipsec-esp-v2-00.txt (July 97)

· draft-ietf-ipsec-auth-header-01.txt (July 97)

· New ESP Draft

· More complete framework/context for ESP

· Define fields previously defined in transform docs

· I.e., authentication (and anti-replay) information (optional), padding, and next protocol

· Minimize combinatorial explosion of transforms

· Little-to-no impact on key recovery approach Key Recovery Header (KRH)

· New, third mechanism for key recovery

· MAY follow AH and MUST precede ESP header

· MAY be in an authenticated packet with critical Upper Protocol information

· Requires IP Protocol Number from IANA

IP-HDR
AH
KRH
ESP-HDR
PROTECTED-UPPER-PROTOCOL

KRH Format
· Modeled after Authentication Header (AH)

Next Header
Length
RESERVED

Security Parameter Index

Key Recovery Block (variable number of 32-bit words)

KRH Fields
· Next Header

· 8 bits; identifies next payload after KRH; values are set of IP Protocol Numbers defined by IANA in STD-2

· Length

· 8 bits; length of KRB in 32-bit words

· Security Parameter Index (SPI)

· 32 bits; identifies, along with Destination Address (DA), Security Association (SA) for datagram; values 1-255 reserved by IANA for future use

· Key Recovery Block (KRB)

· variable (32-bit words); key recovery information using Common Key Recovery Block format; padding issues

Figure � SEQ Figure * ARABIC �1�: General Model for Key Recovery

Figure � SEQ Figure * ARABIC �2�: The Six Functions of Key Recovery

Figure � SEQ Figure * ARABIC �3�: Key Recovery Function

Figure � SEQ Figure * ARABIC �4�: End User Application

Figure � SEQ Figure * ARABIC �5�: KRI Encapsulation Method of Key Recovery

Figure � SEQ Figure * ARABIC �6�: Key Caching Method of Key Recovery

Figure � SEQ Figure * ARABIC �7�: Mixed Methods - KRI Encapsulation to Key Caching

Figure � SEQ Figure * ARABIC �8�: Mixed Methods - Key Caching to KRI Encapsulation or No Key Recovery Method

Figure � SEQ Figure * ARABIC �17�

� EMBED Word.Picture.8 ���

Figure � SEQ Figure * ARABIC �18�

Figure � SEQ Figure * ARABIC �20�

Figure � SEQ Figure * ARABIC �19�

Figure � SEQ Figure * ARABIC �15�

Figure � SEQ Figure * ARABIC �16�

Figure 17

Figure 18

1

_954132985.doc
[image: image1.png]Product 2.ppt

Key Recovery Agent System

KRI
Generation Delivery
Function Function

Key Recovery
Agent

Function

