Efficient Second-Order Masked Software
Implementations of Ascon in Theory and
Practice

Barbara Gigerl!, Florian Mendel?, Martin Schliffer? and Robert Primas?

! Graz University of Technology, Graz, Austria, barbara.gigerl@iaik.tugraz.at
2 Infineon Technologies, Munich, Germany, first.second@infineon.com
3 Graz University of Technology, Graz, Austria, rprimas@proton.me

Abstract. In this paper, we present efficient protected software implementations
of the authenticated cipher ASCON, the recently announced winner of the NIST
standardization process for lightweight cryptography. Our implementations target
theoretical and practical security against second-order power analysis attacks.
First, we propose an efficient second-order extension of a previously presented first-
order masking of the KECCAK S-box that does not require online randomness. The
extension itself is inspired by a previously presented second-order masking of an
AND-XOR construction. We then discuss implementation tricks that further improve
performance and reduce the chance of unintended combination of shares during
the execution of masked software on microprocessors. This allows us to retain the
theoretic protection orders of masking in practice with low performance overhead,
which we also confirm via TVLA on ARM microprocessors. The formal correctness of
our designs is additionally verified using Coco on the netlist of a RISC-V IBEX core.
We benchmark our masked software designs on 32-bit ARM and RISC-V micro-
processor platforms. On both platforms, we can perform ASCON-128 authenticated
encryption with a throughput of about 300 or 550 cycles/byte when operating on 2
or 3 shares. When utilizing a leveled implementation technique, the throughput of
our masked implementations generally increases to about 90 cycles/byte.

We publish our masked software implementations together with a generic software
framework for evaluating performance and side-channel resistance of various masked
cryptographic implementations.

Keywords: Ascon - Power Analysis - Masking - SIFA

1 Introduction

Implementation attacks such as fault attacks [BDL97, BS97, DEKT18] or power analy-
sis [KJJ99, QS01, CRR02] are among the most relevant threats for implementations of
cryptographic algorithms. To counteract such attacks, cryptographic devices like smart
cards typically implement dedicated countermeasures on algorithmic level. The most
prominent examples of algorithmic countermeasures are masking against power analy-
sis [RP10a, NRS11, RBN*15a, GMK17], and the usage of some form of redundancy against
fault attacks [BCNT06, DDE*20].

Masking is a secret-sharing technique that splits up cryptographic computations in
multiple shares that, when observed individually, do not reveal any useful information
about the processed data. This technique can be used to counteract power analysis
techniques such as differential power analysis (DPA) [KJJ99].

mailto:barbara.gigerl@iaik.tugraz.at
mailto:first.second@infineon.com
mailto:rprimas@proton.me

PBfficient Second-Order Masked Software Implementations of Ascon in Theory and Practice

Redundant computations are usually used to detect and prevent the release of erro-
neous cryptographic computations, that could otherwise be exploited by an attacker that
physically tampers with the device, using techniques like differential fault attacks [BDL97]
or statistical fault attacks [FJLT13, DEKT18].

One of the main practical challenges with implementation security is the accompanied
overhead, in terms of area/code size and runtime, that can increase by several orders of
magnitude compared to plain (unprotected) implementations [BBCT20], mostly due to
the overhead of masking countermeasures. The importance of efficiency is also reflected by
the NIST standardization process for lightweight cryptography [NIS18] that recently came
to a close. Here, the goal was to select future standards for authenticated encryption that
should not only outperform current AES-based schemes but also, amongst others, allow
the addition of countermeasures against implementation attacks at low cost.

One way to achieve efficient protected implementations is to use cryptographic schemes
based on so-called lightweight building blocks that are comparably cheap to protect against
implementation attacks. Nearly all candidates in the final round of the standardization
process follow this approach, e.g., by using cryptographic building blocks with low-degree
nonlinear layers that keep the overhead of masking comparably low. On top of that,
efficiency can be further improved by using of cryptographic modes that can either reduce
the attack surface of certain implementation attacks or prevent them entirely. The attack
surface of DPA-based key recovery attacks can be reduced, e.g., by using cryptographic
modes allowing so-called leveled implementations that restrict the need for algorithmic
countermeasures to only certain parts of a cryptographic computation [PSV15, DEMS21].
AscoN, the winner of the standardization process for lightweight cryptography, follows
both of these approaches.

Related Work. Besides mode-level properties, another way to improve the efficiency of
protected cryptographic implementations is to design more efficient algorithmic counter-
measure techniques. These efforts mostly focus on optimizing masking countermeasures
as their performance overhead scales quadratically with the desired security level. One
important optimization goal for masking countermeasures is to reduce the amount of
randomness needed during the execution of a masked cryptographic algorithm, which
decreases the cost of additionally required RNGs. In recent years, multiple works have
already proposed efficient masking schemes for various (symmetric) cryptographic algo-
rithms requiring low online randomness [Sug19, BDZ20, DDE*20, SM21a, SM21b]. Many
of these works consider masked implementations of cryptographic algorithms in hardware,
often at the cost of increasing the area of the cryptographic hardware circuit.

In software, however, such trade-offs are often not desirable as increasing the com-
putation state, i.e., the number of temporary variables required for computation, also
increases software runtime. In fact, increasing the computation state often disproportion-
ally increases software runtime since a processor will need to make excessive use of load
and store instructions to keep all currently required temporary variables in the register
file [GPM21]. Hence, efficient masked software needs find good trade-offs between the size
of the computation state and the amount of required randomness from hardware/software
RNGs. We present such solutions by providing the following contributions.

Our Contribution.

e We present efficient software implementations of ASCON-128 that come with the-
oretical and practical security against second-order power analysis attacks. Our
designs do not require any online randomness which makes them particularly efficient
on low-end devices. While we do use the ASCON cipher as a discussion example,
our techniques are also applicable to other lightweight symmetric ciphers, such as
KEccak-like ciphers, or ciphers using 4-bit S-boxes.

Barbara Gigerl, Florian Mendel, Martin Schliffer and Robert Primas 3

e We present implementation tricks that further improve performance and help masked
software implementations retain their theoretical protection order while being exe-
cuted on real microprocessors.

e We benchmark our masked software designs on common 32-bit ARM and RISC-V
microprocessor platforms.

e We verify the practical and theoretical correctness of our masked implementations
using TVLA on 32-bit ARM microprocessors, as well as formal verification using
Coco and the netlist of the 32-bit RISC-V IBEX core.

e We build a generic software framework based on the chipwhisperer toolchain that
allows practical evaluations of masked cryptographic software. The framework has
convenient features such as automatic sharing of data during transmission over the
serial interface, optional external bitinterleaving or endian-swaps, features benchmark
and TVLA scrips, and supports arbitrary orders of cipher input arguments. We will
publish the code of our masked software implementations and software framework
on github [link redacted for submission].

Outline. In Section 2, we cover preliminaries on the authenticated cipher ASCON, power
analysis, and fault attacks. Section 3 explains the design of our masked software imple-
mentations of ASCON. Section 4 describes how we use the tool Coco to verify the formal
correctness of our masked software designs. Section 5 describes performance metrics and
practical evaluation results of our implementations. We conclude our work in Section 6.

2 Background
2.1 Ascon

The cipher suite ASCON provides authenticated encryption with associated data and
hashing functionality, and has recently been selected as the new standard for lightweight
cryptography in the NIST Lightweight Cryptography competition [NIS23]. The ASCON
suite consists of the authenticated ciphers ASCON-128 and ASCON-128A4, the hash functions
AscoN-HAsH and ASCON-HASHA, and the extendable output functions ASCON-XOF and
ASCON-XOFA. All schemes provide 128-bit security and internally use the same permutation
ASCON-p operating on a 320-bit state that is organized into 5 x 64 bit lanes. ASCON-p
consists of 3 steps: a round constant addition, a non-linear substitution layer, and a
linear mixing layer, that are consecutively applied on the state in each round (for details
see Appendix A).

ASCcoN’s modes describe how ASCON-p can be used to realize authenticated encryption,
hashing, or extendable output functions. For the purpose of this paper, we only give
descriptions of the authenticated encryption schemes ASCON-128 and ASCON-128A that
are of main interest in the context of implementation attacks. Here, the input consists
of a secret key K, a nonce N, associated data A, and a plaintext P. The produced
output consists of the authenticated ciphertext C' plus an authentication tag 7', which
authenticates both the associated data and the encrypted message. The decryption and
verification procedure takes as input the key K, nonce N, associated data A, ciphertext C'
and tag T, and outputs either the plaintext P if the verification of the tag is correct or an
error if the verification of the tag fails. Figure 1 illustrates the authenticated encryption
modes of the ASCON suite. Table 1 contains additional parameters of these modes. The
sizes of associated data A and plaintext P are arbitrary, the ciphertext C' has the exact
same length as P.

Ffficient Second-Order Masked Software Implementations of Ascon in Theory and Practice

In the context of implementation security, one especially interesting property of the
ASsCON mode is its keyed initialization and finalization (indicated in blue in Figure 1) which
protects against trivial key recovery and forgery attacks even if an attacker somehow gets
knowledge of an internal state during the data procession of ASCON. This property hence al-
lows for so-called leveled implementations where the degree of algorithmic countermeasures
can be reduced during the data processing phase to improve efficiency [PSV15, DEMS21].

E Ay Ag E P Cy P 1Cy P,Cy E T
AR A RS G N A G N L
i % 1 U 1 = 128
pr | P P P C |t
DL C o ,?J(_, | c I=?=
V|| K||N 0*|| K 0*|1: K0 K
Initialization Associated Data Plaintext Finalization

Figure 1: Illustration of ASCON’s mode for authenticated encryption. Protection against
DPA-based key recovery attacks can be achieved by only adding algorithmic countermea-
sures to the initialization and finalization phase (indicated in blue).

Table 1: Recommended parameters for ASCON’s modes for authenticated encryption.
Bit size of Rounds
K N T r c a b

AScoON-128 128 128 128 64 256 12 6
Ascon-128A 128 128 128 128 192 12 8

Name

2.2 Masking

Masking is an algorithmic countermeasure against power analysis attacks such as differential
power analysis [KJJ99]. In a nutshell, masking is a secret-sharing technique that splits
intermediate values of a computation into d + 1 uniformly random shares, such that
observing up to d shares does not leak any information about the underlying value. The
used masking scheme determines the number of masks d, and results in a dth-order masking
scheme. In classical Boolean masking, the sharing of a native variable s, when split into
d + 1 random shares sg ... sq, must satisfy s = so @ ... ® sq. Hereby, sg...sq_1 is chosen
uniformly at random while sq = s ® ... ® sq_1 ® s. This ensures that each share s; is
uniformly distributed and statistically independent of s. For example, in a first-order
masking scheme (d = 1), the secret variable s is split up into two shares sg and s1, such
that s = sg @ s1. sg is chosen uniformly at random, while s1 = s & sg.

When implementing masked cryptographic algorithms, dealing with linear functions is
trivial as they can simply be computed on each share individually. However, implementing
masking for non-linear functions requires computations on all shares of a native value, which
is more challenging to implement in a secure and correct manner, and thus the main interest
in literature [ISW03, NRS11, RBN*15b, GMK16, BBPT17, DDE*20, GHP*21, SM21b].

2.3 Formal Verification of Masking

Masked implementations generally need to take care that each intermediate variable of a
computation is statistically independent of any native (unmasked) values. The verification
of this property is usually done with the help of a security model that specifies the abilities

Barbara Gigerl, Florian Mendel, Martin Schliffer and Robert Primas 5

of an attacker. Typically, it is assumed that the ability of the attacker is to place a
certain amount of probes in a computation, that allow monitoring concrete values at those
locations.

The classical probing model by Ishai et al. [[SWO03] is the most commonly used security
model for masked hardware circuits and it’s accuracy in modeling real world attacks has
been confirmed by many works [FRR ™10, RP10b, GMK16, GHP21, SM21b]. Here, an
attacker is allowed to place up to d probes at any location in a circuit, which can be
used to observe the corresponding gates/wires permanently. A masked hardware circuit is
considered d-order secure if an attacker cannot learn any information about the native
values by combining all d observations. Examples of tools that can verify classical probing
security for masked hardware circuits are REBECCA [BGIT18], Silver [KSM20], and
maskVerif [BBCT19].

On software side, there exist many methods and tools for automatically generating
or verifying masked software implementations [BBDT16, MOPT12, BRNI13, EWS14,
ZGSW18, BBD 15, BBPT17]. These tools model an attacker to place probes on individual
words of a processor’s register file, and to use them for one cycle each during the execution
of a masked software implementation. Hereby, it is assumed that the probed registers cause
independent leakage, in other words, no additional potential side effects of a processors
architecture, such as glitches or register overwrites, are considered [RSV*11]. With Coco,
Gigerl et al. have presented a tool that can verify the correctness of masked software
implementations while considering possible architectural side effects of a given processor
netlist [GHP*21].

2.4 Coco

Coco is a tool for the co-design and co-verification of masked software implementations
on processor netlists [GHPT21]. Coco formally verifies the security of (any-order) masked
assembly implementations that are executed on concrete processors, defined by gate-level
netlists.

CocCoO considers the time-constrained probing model, which allows an attacker to
distribute d probes in the processor netlist, in arbitrary execution cycles of the masked
software. Each probe can be used to measure information in one specific clock cycle and
at one specific location. The attacker can distribute the d probes spatially and temporally.
Hence, the attacker can perform d measurements at different locations in the same clock
cycle, or probes at the same location in different clock cycles, or a mix of both. A masked
software implementation is considered dth-order secure in the time-constrained probing
model if an attacker cannot combine the recorded information to learn anything about
native variables.

This security notion is verified in Coco by (1) defining an initial labeling that indicates
the location and dependencies of shares in a processor netlist prior to the start of masked
software execution, (2) propagating these labels efficiently encoded as correlation sets
throughout the netlist until the execution of masked software is finished. In a nutshell, a
correlation set contains the labels of all variables which might be visible to the attacker
on the gate output during a clock cycle. For example, an XOR gate with 1-bit share
a, and 1-bit random variable r, as inputs will generate the correlation set {a ® r} if we
only consider stable signals or {0, a,r,a ® r} if we additionally consider glitches due to
propagation delay of signals. Put differently, an attacker can either observe an arbitrary
independent constant (denoted by 0), the share a (if r is delayed), the randomness r (if a
is delayed), or a @ r once the circuit has stabilized. In contrast, an AND gate will generate
the correlation set {0, a,r, ar} even if we only consider stable signals [BGIT18, GHP'21].
Coco reports a leak if there exists a correlation set in the circuit which contains a term
which directly depends on the native (unmasked) variables in any clock cycle. For dth-order
masking verification, Coco will check if any combination of up to d probes depends on

Bfficient Second-Order Masked Software Implementations of Ascon in Theory and Practice

native variables.

One additional outcome of the work in [GHP21] is a modified, secured version of the
IBEX core. This secured IBEX core features several small adaptions of the microarchitecture
that eliminate various sources of masking-related side-channel leakage that are otherwise
hard, if not impossible, to compensate for purely in software. Additionally, they state a
couple of constraints to be followed by masked software that are otherwise to costly to
address in hardware entirely. These constraints mainly boil down to (1) shares of the same
native value must not be accessed within two successive instructions, and (2) a register or
memory location containing one share must not be overwritten by another share of the
same native value.

2.5 Statistical Ineffective Fault Attacks

In this section we describe statistical ineffective fault attacks (SIFA) [DEK'18, DEG'18]
in a simplified (abstract) setting that only considers a single S-box implementation. For
key recovery attacks against implementations of entire (authenticated) ciphers we refer to
the original papers [DEKT18, DMMP18§].

Consider a simple fault-protected implementation of a single S-box that performs
the S-box computation twice and only releases an output if the results of the redundant
computations match. Further, assume a physical attacker who can query the S-box
implementation with uniformly random inputs, perform one fault induction during the
processing of each input, and is able to observe the corresponding outputs if they are
released (correct).

In this setting, the attacker can target one specific intermediate operation/variable
of one redundant S-box computation using fault induction. If these fault inductions are
repeated for the processing of multiple (uniform) inputs, the attacker can collect a filtered
set of correct outputs (or corresponding inputs) that may show a non-uniform (biased)
distribution. To exemplify this, in the most simple case, consider a set-to-0 fault induction
on the S-box input that is only ineffective if the input was 0 prior to the fault induction.
This bias can then be used to mount key recovery attacks [DEK™18, DMMP18|.

Curiously enough, if we consider a protected S-box implementation featuring masking
on top of redundant computation, an attacker may still be able to collect a set of outputs
showing a bias in their native values, even if the fault induction only targets a single share
of one of the redundant computations. To see why, we can consider the domain-oriented
masking AND-gate computing z = xy using 2 shares in Figure 2. If a fault induction
changes the value of x(in one of the redundant computations, the difference can either
cancel out at the AND-gates of the integration phase (both shares of y are zero) or at the
XOR of the compression phase (both shares of y are one). Hence, the fault injection is
always ineffective if the native value y in the faulted computation is zero and an attacker
can collect outputs that show a bias in the native value.

EY *D—| 20
A

oD :

Yo D ;

7 o AL

X4 Zq

Figure 2: SIFA on a domain-oriented masking AND-gate. A fault-induced difference in z¢
cancels out if the shares of y are both zero or one.

Barbara Gigerl, Florian Mendel, Martin Schliffer and Robert Primas 7

3 Protected Software Implementations of Ascon

In this section, we describe efficient masking schemes for ASCON in software. We mostly
focus our discussion on the 5-bit x S-box, which is prominently used in KECCAK and in
the core of the ASCON S-box (cf. Appendix A). First, we recall a previously presented
efficient 2-share masking scheme for y that serves as the basis for our designs. We then
describe how we extend this design using 3 shares to lift probing security to the second
order at low cost. Finally, we describe how we design an entire round of ASCON-p using
additional implementation tricks that further improve performance and reduce the impact
of glitches/transitions on microprocessors.

3.1 2-share Design of the x S-box

We now recall the 2-share design of the 5-bit x S-box from Daemen et al. [DDE*20] that
is based on ideas from Sugawara et al. [Sugl9] and Vivek et al. [SPMHO03]. We denote the
input bits of x with a, b, ¢, d, e plus an additional intermediate variable . The shared
versions of these variables are indicated with subscripts. The 2-share design y2g relies on
repeated calls of the 2-share Toffoli gate py2s:

Name: xa2g Name: pyog

In-/Output: {ag,a1,bg, b1, co,c1,do,d1,eq,e1,70,71} In-/Output: {co,c1,a0,a1,bo,b1}
Py25 (70,71, €0, €1, Ao, a1) co < co @ Ggby

Py2s(ao, a1, bo, b1, co, c1) o 4 co B Gpbo

Py2s(co, c1,do, di1, e, 1) ¢+ c1 D arb

Py2s(€o, €1, a0, a1, bo, by) c1 ¢ c1 @ arby

px?s(b()ablac()aclad()adl)
do < do ® 1o
d1 $— d1 Dr

Construction 3.1: 2-share y S-box from [DDE*20]. Construction 3.2: 2-share Toffoli
gate from [DDE*20].

The 2-share Toffoli gate py2gs, here used with an additionally negated input, takes as
input the shares of a,b,c and calculates ¢ <— ¢ @ ab. py2s is comprised of four calls of
the ordinary Toffoli gate in succession, each of which receives the updated variables of
previous calls and operates on an incomplete set of shares. Since each ordinary Toffoli gate
is invertible, given the construction of pyss, it is possible to directly calculate input shares
from output shares, which makes p,2s5 invertible and free of entropy loss.

As described in [SPMHO03], every permutation (S-box) with an odd number of inputs
can be implemented using reversible (Toffoli) gates by using at most one additional
variable. xs2g is a masked variant of one such implementation. The additional masked
input variables 7y and 1 of x25 should be initialized such that they represent a sharing of
zero, i.e., 7o @ 1 = 0. Since x25 is a permutation on the input shares, it is possible to use
one share rq of the output of one S-box layer as input to the next layer of S-boxes without
reducing the entropy of the state. Hence, it is possible to implement entire masked ciphers
without the need for additional online randomness, except the one needed for r¢ and rq in
the initial sharing of the first S-box layer.

Besides the suitability for masking, x2s has another convenient property as it can be
combined with redundant computation to achieve protection from statistical ineffective

Bfficient Second-Order Masked Software Implementations of Ascon in Theory and Practice

fault attacks (SIFA) that are otherwise notoriously difficult to defend against [DDE20].
More concretely, the x2g construction ensures that, within one S-box computation, a single
fault induction either (1) cannot cancel out based on the all shares of any native value, or (2)
is detectable by comparing the result of the S-box computation to a redundant computation
that is typically needed anyway to cope with other fault attacks. Put differently, if a fault
induction causes a difference within one of the ordinary Toffoli gates, it can only cancel out
due to an AND gate computation on incomplete sets of shares. If a fault induction causes
a difference outside of an ordinary Toffoli gate, it will propagate to the S-box output where
it can be detected by comparison with a redundant computation.

3.2 3-share Design of the x S-box

The main idea behind our 3-share design of x is to keep the general structure of the 2-share
design but to use 3-share Toffoli gates instead. While this is not difficult in principle,
the situation becomes more challenging if we additionally want to avoid using any online
randomness. In this context, a recent work from Shahmirzadi et al. [SM21b] has explored
the possibilities of implementing various quadratic functions such as y with second-order
probing security and without the requirement of online randomness. Their constructions
are based on the AND-XOR3g construction that calculates x < ab + ¢ on three shares:

Name: AND-XOR3g Name: py3s
IDPUt:{GOu ai, az, b07 b17 b27 Cp, C1, 02} In'/OUtPUt:{CO7 C1,C2, 00,01, a2, b07 bla b23 Ro, Ry, R2}

Output:{zo, x1, 22}

l‘6 < agpby @ by co < ¢co D agba

Ty aphy co < co D apb1 ®Ro
SCIQ — apbs @ ¢ co < ¢o D apbo

l‘é < a1by @ by 1 ¢c1 Darby

Ty < arby c1 < ¢1 ®arb1®Ro
x5 < a1by ® by ® ¢ c1 < c1 D arby
$%<—a2bo€Ba2@02 Co < o ® boas

;v’7 — asby Co — Co @ a2b;®R;
xg < asby ® as @ bo Cca 4 coDax @by

/ / /
To < o D] DTy
/ / /
T < 3Dy Dy
/ / /
To < T D a7 O Ty

Construction 3.3: 3-share AND-XOR Construction 3.4: Our 3-share Toffoli gate
from [SM21b]. (with negated input a).

As later stated in their paper, while AND-XOR3g produces correct outputs, the compu-
tation itself is not second-order probing secure. Nevertheless, we use AND-XOR3zg as the
basis for designing p,3g, a Toffoli gate that calculates ¢ <— ¢ ® @b on 3 shares.

From a runtime perspective, the main benefit of our Toffoli gate construction is that it
allows expressing the y S-box as a sequence of permutations which reduces the computation
state, i.e., the number of temporary variables required for computation. This benefits
software runtime, especially on low-end devices with limited register file sizes, and with
increasing masking order. Besides that, our construction also features some logic-level
optimizations that further reduce the amount of computation steps.

Barbara Gigerl, Florian Mendel, Martin Schliffer and Robert Primas 9

In any case, additional measures need to be taken to make both of these constructions
second-order probing secure. The main problem with our second-order extension of
the masked Toffoli gate is that the single ¢ term is no longer sufficient to refresh the
multiplication of a and b if two probes can be used by an attacker. Hence, if we want to
implement p,3s as a permutation on the input shares, we need to increase the number
of inputs by introducing the additional refreshing terms Rg, R1, Ry representing a sharing
of zero. These terms can then be used for refreshing in the individual calls of py3s. The
description of the 3-share y3g is given in Construction 3.5.

Name: x3s

In-/Output: {ag,a1,as,bo, b1, b, co, c1, ca, do, d1,da, g, €1, €2,70,71,72, Ro, R1, R }
PXSS(T07T1,T27€0761,62,a0,a17a27R07R1,R2)
(Ro, R1,R2) < (Ro, R1,Ra) >> 1
px3s(a0,Cll,Cl2,bo,517527007017027R0,R1,R2)
(Ro, R1, R2) < (Ro, R1, Ra) >> 1
pxSS(C()aclac%dOad17d2760761762aR07R17R2)
(Ro, R1,R2) < (Ro, R1,Ra) >> 1
px3s(€0,€1762,%,a1,a2,bo,bl,bz,Ro,R1,R2)
(Ro, R1, R2) < (Rg, R1,Ra) >> 1
px3s(b07blvb27607617C27d07d1;d27R0;R17R2)
do — do D ro

di < di ®r

do < do Dro

Construction 3.5: Our 3-share second-order secure x S-box.

While each call of py3s requires independent refreshing terms, we can achieve this by
simply rotating each term by some constant to derive a new refreshing term for the next
Dy3s call. In the above description, this is denoted as (Rg, R1, R2) 3> 1 for a rotation offset
of one. With this trick, our construction again becomes a permutation of shares, although,
at the expense of an increased computation state.

3.3 Further Performance Improvements and SCA-Hardening

We now discuss additional steps that can be taken to improve the performance and
practical side-channel resistance of our masked software implementations. We then describe
how we implement the round function ASCON-p, the main building block of our Ascon
implementations that will be used in the later sections for benchmarks and formal /empirical
masking verification.

The most notable downside of our previously discussed y3g construction, when compared
to x2s, is the increase of the computation state with refreshing terms which causes increased
register spilling and thus performance degradation. If we allow ourselves to deviate a
bit from the so-far used design strategy, it is however still possible to avoid most of
this overhead. More concretely, we can replace the previously required refreshing terms
Ro, R1, Ry with rotated versions of the already existing additional inputs rq, r1, 72 that also
represent a shared zero. On top of that, and to avoid potential entropy loss of the state
over multiple rounds, we can then add these (rotated) refreshing terms back to the state

Hificient Second-Order Masked Software Implementations of Ascon in Theory and Practice

towards the end of the S-box computation. If we apply these modification to our xsg
construction, we end up with the optimized ysg+ variant in Construction 3.6.

Name: y3g+

In-/Output: {ag, a1,as,bo,b1,bs,co,c1,ca,do,d1,da, eq,€1,€2,70,71,72}
(Ro, R1,R2) < (ro,71,7m2) >> 1
pxss(Toﬂ“hTQ,eo,617627a07a17a27R0,R1,Rz)
(Ro, R1,R2) < (Ro, Ry, Ra) > 1
pxSS(amal,02,b07b17b27007017027RO,R17R2)
(Ro, R1, R2) < (Ro, R1,Rg) > 1
Py3s(co,c1,c2,do,di, da, €9, €1, €2, Ry, R, R2)
(Ro, R1,R2) < (Ro,R1,R2) >> 1
PX3S(€0,61762,00,01,02,50,51,52,Ro,Rlsz)
(Ro, R1, R2) < (Rg, R1, Ra) >> 1

Py35(bo, b1, b, co, 1, c2,do, dy1, d2, Ry, Ry, Ra)
(Ro, R1,R2) < (Ro, R1,Ra) >> 1

o < 70 D Rg

1 <11 DRy

T9 <= 79 @ Ro

do < do ® g

di < di ®r

do < do Dro

Construction 3.6: Our optimized 3-share second-order secure x S-box. The main modifica-
tions compared to x3g are highlighted in blue.

The main consequence of our modifications is that x3s+ is not a direct permutation of
shares anymore since the values of R, R1, Re are not part of the input/output anymore.
From a masking perspective, however, the computation of one round of x3g+ is still correct
since the refreshing terms are still in derived from other independent computations in
a changing of the guards fashion [Dael7]. While this argument does not necessarily
imply the correctness of masking over multiple rounds, we do show in a later practical
evaluation that we do not observe any degradation in masking protection order over
multiple rounds (cf. Section 5.2).

Nevertheless, one property that may be lost is SIFA protection if this construction is
combined with redundant computation. More concretely, a fault induction outside of a
Toffoli gate may not always propagate to the S-box output.

SCA Hardening. So far, we have discussed our masked constructions in a somewhat
abstract probing model. If one now wants to map these constructions into concrete software
implementations, one needs to additionally consider that the practical security of masked
software implementations does depend on some assumptions that may not be satisfied when
they are being executed on real processors. Coron et al. [CGPT12] were among the first who
showed that, e.g., memory transitions in the register file or RAM can leak the Hamming
distance between two shares, thereby reducing the protection order of masking schemes on

Barbara Gigerl, Florian Mendel, Martin Schliffer and Robert Primas 11

processors. Later publications follow up on these observations and describe many more
potential sources for the reduction of security order of masked software implementations
due transition or glitch effects in processor microarchitecture [PV17, dGPdIPT16, MMT20,
BGGT14, GHP21, GPM22]. Consequently, if one wants to counteract such problems,
one can either use masking scheme with a protection order that is higher than theoretically
required, or employ additional hardening tricks in software. We opted to go with the
second option.

Our main hardening technique involves the usage of constant rotation offsets between
all the shares of a native variable. This reduces information leakage in the case that an
unintentional combination of shares occurs in the processor microarchitecture. The rotation
offsets can be chosen in a way such that their greatest common divisor is high, which
reduces the information leakage, e.g., if the hamming distance between two rotated shares
is observed. Naturally, whenever a computation needs to be performed on multiple shares
of the same native variable, they need to be rotated back temporarily. For our purposes,
we decided on using the rotation offsets 0, 5, and 10 for our 3-share implementation.

Besides that, we also add to our implementations the optional possibility of transmitting
inputs and outputs of our ASCON implementations in a shared representation, with or
without bit-interleaving, and with or without swapped endianness. This further reduces
the processing of masked inputs/outputs which can present another source of leakage in a
practical side-channel evaluation.

The Design of Ascon-p. Given masked descriptions of y, a protected implementation
of the entire round function ASCON-p is not too much additional work. The Ascon
S-box can be viewed as x with additional affine layers at the beginning and the end
(cf. Appendix A). These affine layers can be treated similar as linear layers, i.e., they are
computed individually on each share of the state. The bitsliced algorithmic description
of x allows to split its computation into multiple parts, e.g., computation on the low
and high words of the lanes in case of 32-bit implementations. What remains is the
linear layer which calculated on each lane of each share individually. We keep the entire
state in a bitinterleaved representation such that 64-bit rotations can be more efficiently
implementation if dedicated 32-bit rotation instructions are available.

4 Formal Masking Verification

In this section, we describe how we apply the formal verification tool Coco [GHP*21]
to verify the correctness of our masked designs of y and ASCON-p from the previous
section. We first describe the general verification flow of Coco and how we adapt it for
our purposes. We then discuss the verification results.

4.1 \Verification Flow

We use the secured version of the 32-bit IBEX core from [GHPT21] as the reference
processor netlist for our formal verification of masked software designs. This core is roughly
comparable to an ARM Cortex-MO0 in terms of area and performance.

As a first step for the verification process, we prepare RISC-V assembly implementations
of the previously presented masked designs of ASCON-p that adhere to all constraints for
masked software listed in [GHPT21] to achieve protection against transitions and glitches
on the secured IBEX core. We then copy the assembly code into the SRAM model that is
used by the netlist simulation of the secured IBEX core. Next, we assign labels indicating
the position and dependencies of shares at the start of the execution of the masked software.
Labels are either shares of a native value, fresh randomness in case of a fresh independent
random variable, or public, which includes constants and control signals like the clock

Efficient Second-Order Masked Software Implementations of Ascon in Theory and Practice

Table 2: Summary of formal masking verification results on the secured IBEX core. Verifica-
tion runtimes stem from single-threaded executions on an Intel Core i7 notebook processor
with 16GB of RAM.

Stable Transient
Implementation Input Labels Order
Result Time Result Time
2-share ASCON-p round 5 x 64 x 2 bits 1 v 3m v 5h 20m
3-share ASCON S-box 5 x 32 x 3 bits 2 v 26m v 1h 17m

signal. In our case, we simply label the contents of the register file which holds the shares
of the ASCON-p state before the start of the computation. For the 2-share implementation
based on Y25 we label the entire masked state and execute one round of ASCON-p. For
the 3-share implementation based on y3s+ we only add labels for the lower 32-bit of each
lane since the IBEX register file (32 x 32-bit) cannot hold 3 shares of the entire ASCON-p
state at once. During verification we then execute one entire round of ASCON-p in case of
the 2-share implementation, and the ASCON S-box for the lower word of each lane in case
of the 3-share implementation. While we could also include the computation for the upper
words in the verification of our 3-share implementation, e.g., by executing them one after
another and loading/storing them in SRAM, we avoid this step since they are anyway
independent from each other.

During the verification with Coco, these labels are propagated through the netlist
until the execution of the masked software implementation is finished. COCO reports a
leak if there exists a correlation set in the circuit which contains a term which directly
depends on the native (unmasked) value. In case of second-order masking verification,
Coco will check if any combination of up to two probes depends on native variables.

4.2 \Verification Results

We have summarized our verification results, as well as the corresponding runtime of the
verification procedures in Table 2. Stable verification only considers probes of signals in
the processor netlist after they have stabilized while transient verification also considers
side-effects such as transitions and glitches in the netlist.

In case of our 2-share implementation, we could immediately successfully verify first-
order security for stable and transient masking verification. The verification runtime for
transient execution is significantly increased which is mainly due to the large amount of
possible glitches during rotation operations in the linear layer.

In case of our 3-share implementation, we could not immediately verify second-order
security successfully. As it turns out, the IBEX core, same as similar other processors,
feature logic in the ALU for the computation of sign-bits and processor flags that does
cause masking-related issues with our ysg« construction. More concretely, while our
used rotation offset by one should result in independent refreshing terms in theory, the
additional ALU logic does violate this assumption. Nevertheless, a simple increase of the
rotation offset to the value two eliminates this problem and we can successfully verify
second-order security for stable and transient masking verification. This time, the runtime
between stable and transient masking verification is smaller since only the S-box execution
is considered in the verification.

5 Performance and Side-Channel Evaluation

In this section, we present performance numbers, as well as practical side-channel evaluation
results of our masked software implementations. We first compare the performance of

Barbara Gigerl, Florian Mendel, Martin Schliffer and Robert Primas 13

ASCON-128 implementations using 2 shares (x2s) and 3 shares (x3s+) to plain (unmasked)
implementations. We then evaluate practical first and second-order security of our masked
implementations using test-vector leakage assessment (TVLA) methodology.

5.1 Performance Evaluation

STM32F3. For our performance evaluation on ARM microprocessors, we use a STM32F303
microprocessor as target devices!. This device is based on the 32-bit ARM Cortex-M4
and is used in combination with the ChipWhisperer UFO board? and the open-source
ChipWhisperer toolchain [OC14].

In our experiments, we send masked versions of key, nonce and plaintext to our target
device. The software interface on the target device corresponds to the one defined in
the call for protected software implementations of the NIST standardization process for
lightweight cryptography?®. Since our implementations do not require online randomness,
we can use a simple software RNG on the target device to generate the necessary additional
randomness for the initial sharing of the ASCON-p state without much performance impact.
We then measure the runtime (cycles) of processing one block of plaintext (i.e. 8 bytes)
without the overhead of initialization and finalization. The resulting numbers are presented
in Table 3.

Compared to a plain (unmasked) implementation, the masked variants using 2 (3)
shares have a runtime that is increased by a factor of about 6 (10). Even though the pure
algorithmic overhead of our masking schemes is a lot lower than that, the main explanation
for the observed runtime is the comparably small register file of Cortex-M4 (16 x 32-bit)
and the resulting register spilling when computing on the shared state.

Since the AscoN AEAD mode allows the usage of so-called leveled implementations
that provide protection against DPA-based key-recovery attacks using masking only during
the initialization/finalization phases, we also present performance numbers for this case.
To no surprise, our leveled implementation of ASCON using 2 or 3 shares can processes
plaintext blocks with a similar performance to plain implementations. Nevertheless, with
a bit more work, it should be possible to design a leveled implementation of ASCON that
matches the throughput of the plain implementation.

IBEX. For our performance evaluation on the RISC-V IBEX core, we perform a cycle-
accurate simulation of the IBEX netlist while executing one round of our masked software
implementations of ASCON-p. The used assembly code and netlist is the same that was
used for our formal verification efforts in Section 4. We then extrapolate the required
cycles of processing one block of plaintext by multiplying the measured cycle count of
one round by 6 (round parameter b) and dividing by 8 (block size in bytes). The results
are presented in Table 3 and show a generally better performance than the ARM devices.
This is mainly due to the fact that the register file of the IBEX core (32 x 32-bit) causes
significantly reduced register spilling.

5.2 Practical Side-Channel Evaluation

In our practical side-channel evaluation we perform standard test-vector leakage assessment
(TVLA) following the guidelines of Goodwill [GJJR11], which is a standard method to
measure information leakage of masked software implementations. The basic idea behind
TVLA is to create two sets of power measurements, one corresponding to the processing of
random inputs, and one corresponding to fixed inputs. Given such sets of measurements,
one can compare their first and second-order statistical moments, i.e., mean and variance.

Ihttps://rtfm.newae.com/Targets/UF0%20Targets/CW308T-STM32F/
2https://rtfm.newae.com/Targets/CW308%20UF0/
3https://cryptography.gmu.edu/athena/LWC/Call_for_Protected_Software_Implementations.pdf

https://rtfm.newae.com/Targets/UFO%20Targets/CW308T-STM32F/
https://rtfm.newae.com/Targets/CW308%20UFO/
https://cryptography.gmu.edu/athena/LWC/Call_for_Protected_Software_Implementations.pdf

Efficient Second-Order Masked Software Implementations of Ascon in Theory and Practice

Table 3: Performance of ASCON-128 for processing a single plaintext block on 32-bit
microprocessors in cycles/byte (X+0 encrypt for long messages).

Implementation STM32F303 IBEX
Plain 59 -
Leveled 89 -
2-shares 318 260*
3-shares 542 500*

*Estimated based on cycle counts of linear and non-linear layer.

The null-hypothesis is that both sets of measurements have equal means/variances, which
is rejected with a confidence greater than 99.999% if the absolute t-score does not exceed
the value 4.5. In this case, the sets of measurements cannot be reliably distinguished from
each other and the masking countermeasure works as intended.

In our evaluation, we call masked versions of the ASCON-128 authenticated encryption
procedure running on a STM32F303 microprocessor using a fixed key, fixed or random
nonces, and zero bytes of plaintext and associated data. The initial sharing of these inputs
is generated using a proper source of randomness before transmitting them to the target
device. The goal of our evaluation is to provide evidence that:

G1 Our 3-share implementations achieve practical second-order protection despite po-
tential micro-architectural side-effects.

G2 Our 3-share masking scheme remains secure over multiple rounds without any fresh
randomness.

For this purpose, we perform multiple measurements covering one (four) rounds of ASCON-p
during ASCON’s initialization phase (cf. Figure 1) using a synchronized sampling frequency
that is set to four (one) times the clock frequency. The restriction on the sampling rate for
the four-round measurement is due to the fact that a bivariate analysis would otherwise
become too computationally expensive. With our restrictions in place, a single measurement
never contains much more than 4 000 samples. For the sake of comparison, we also provide
measurements of 2-share implementations and implementations using a share rotation
offset of zero which essentially deactivates our additional side-channel hardening technique.
The power measurements themselves are recorded by a ChipWhisperer-Lite [OC14]. Given
such sets of measurements, we evaluate their first/second-order statistical moments using
the univariate and bivariate t-test functionality of the SCALib library*. The evaluation
results of our 2 and 3-share ASCON implementations using 10M measurements are shown
in Figure 3, Figure 4, and discussed in more detail in the following.

2 Shares. Our 2-share implementation is based on the ysg construction from Section 3.1
and features share-rotations as an additional hardening technique (cf. Section 3.3). As
can be seen in Figure 3a, our 2-share implementation does show some first-order leakage
in the univariate t-test. While this should not happen in theory, many works in the
past have pointed out that the practical security of masked software does depend on
some assumptions that may not be satisfied on real processors due to microarchitectural
side-effects such as transitions or glitches. Hence, without concrete knowledge of the
microarchitecture of the target device, a certain reduction in practical protection order
is not unexpected [PV17, dGPdIPT16, MMT20, SSB*19, GPM22]. While hardening
techniques such as share-rotations (cf. Section 3.3) can significantly reduce such unwanted
side-effects, these measures were not sufficient to fully prevent first-order leakage in our
measurements. As expected, if we take a look at the bivariate t-test result of our 2-share

4https://github. com/simple-crypto/SCALib

https://github.com/simple-crypto/SCALib

Barbara Gigerl, Florian Mendel, Martin Schliffer and Robert Primas 15

4.5 |- - 4.5 =
‘ I \ \
Mﬁ LM M (i Wt Al AAT ‘u P W '{ " H \1' "\ ’“ I) Iﬁi | f'“
0 #» N“ '\M}M\\Mw "‘w“ Wi ‘\' " “ ‘kﬂ "“‘}H 0 M MU' M“ 4* ir”llw % (*‘f I Fh
—4.5 |- ‘ m - —4.5 |- =
‘ | | | | | |
0 500 1,000 1,500 2,000 0 1,000 2,000 3,000
(a) shares:2, rounds:1, share-rotation:5. (b) shares:3, rounds:1, share-rotation:5.

Figure 3: Univariate t-test of ASCON-p using 10M traces on the STM32F303.

implementation in Figure 4a, we see a clear indication of second-order leakage after
evaluating 10M traces.

3 Shares. Our 3-share implementation is based on the y3g+ construction from Section 3.3
that we have also formally verified for the correctness of masking in Section 4. Again,
we use share-rotations as an additional hardening technique (cf. Section 3.3). Somewhat
expected, as can be seen in Figure 3b, our 3-share implementation does not show any
significant first-order leakage in our univariate t-test evaluation after 10M traces. In
case of bivariate analysis, and corresponding to our evaluation goal G1, Figure 4b and
Figure 4c show the practical difference of using a share-roation hardening technique for
our 3-share implementations. While a rotation offset of zero already leads to significant
second-order leakage after evaluating only 10000 traces, a non-zero offset results in no
significant second-order leakage after evaluating 10M traces, thereby noticeably improving
the practical side-channel security of our implementations. Generally, a certain security
degradation of the masking due to transitions/glitches in the microarchitecture, or even
more measurements, is also possible here. However the magnitude of these problems was
not large enough to be of practical concern in our bivariate evaluation scenario where an
attacker is forced to work with combinations of samples (and thus also their combined
noise). Regarding our evaluation goal G2, Figure 4d shows a bivariate analysis covering
four rounds of ASCON-p and gives no indication that the practical side-channel security of
our implementation degrades over the course of four rounds, despite the fact the we do
not use any fresh randomness during the computation.

6 Conclusion

We have presented efficient protected software implementations of the authenticated cipher
ASCON targeting theoretical and practical security against second-order power analysis
attacks. Our designs use a second-order extension of a previously presented first-order
masking of the KECCAK S-box based on Toffoli gates. This allows us to implement
second-order masked software implementations of ASCON that do not require any online
randomness and are hence especially suitable for the execution on low-end microprocessor
devices. Our implementations also feature some implementation tricks that reduce the
chance of unintended combinations of shares during the execution on microprocessors
which helps them to preserve their theoretical protection against power analysis attacks in
practice.

We benchmark our masked software implementations on 32-bit ARM and RISC-V mi-

Hificient Second-Order Masked Software Implementations of Ascon in Theory and Practice

-—4.5 -—4.5 = 1,000

S A G | \ ‘ 0
0 500 1,000 1,500 2,008 0 1,000 2,000 3,000
(a) shares:2, rounds:1, share-rotation:5. (b) shares:3, rounds:1, share-rotation:0.
-1 3,000 - 3,000
~4.5 ~4.5
0.0 42,000 | ~0.0 2,000
-—4.5 11,000 -—4.5 {1,000
| \ | 0 | | \ 0
0 1,000 2,000 3,000 0 1,000 2,000 3,000
(c) shares:3, rounds:1, share-rotation:5. (d) shares:3, rounds:4, share-rotation:5.

Figure 4: Bivariate t-test of ASCON-p using 10M traces on the STM32F303.

crocontroller platforms and verified the practical and theoretical correctness of our masked
implementations using TVLA on ARM microprocessors, as well as formal verification
using COCO on the netlist of a RISC-V IBEX core. On both platforms, our second-order
masked implementation of ASCON-128 reaches a throughput of about 550 cycles/byte or
90 cycles/byte if the leveled implementation technique is used.

While we do use the ASCON cipher as a discussion example, our techniques are also
applicable to other lightweight symmetric ciphers, such as KECCAK-like ciphers, or ciphers
using 4-bit S-boxes that can be expressed as a sequence of Toffoli gates. We publish
our software implementations together with generic software framework based on the
ChipWhisperer toolchain that allows performance and side-channel evaluations of various
masked cryptographic algorithms.

Barbara Gigerl, Florian Mendel, Martin Schliffer and Robert Primas 17

A Ascon-p

The following description of the ASCON-p permutation is adapted from the ASCON specifi-
cation [DEMS19]. The permutation iteratively applies an SPN-based round transformation
p that in turn consists of three steps pc, ps, pr. and differ only in the number of rounds:

bp=pLepsopc.

For the description and application of the round transformations, the 320-bit state S is
split into five 64-bit registers words z;, S = zo || x1 || 2 || #3 || z4-

Addition of Constants

The constant addition step pc adds a round constant ¢, to register word zs of the state S
in round 4. Both indices r and i start from zero and we use r = for p® and r =i+a—1b
for p® (see Table 4):

To < To D Cp.

Table 4: The round constants ¢, used in each round 7 of ASCON.

pt2 p® pb Constant ¢, pt2 p® pb Constant ¢,
0 00000000000000£0 6 2 0 0000000000000096
1 00000000000000e1 7 3 1 0000000000000087
2 00000000000000d2 8 4 2 0000000000000078
3 00000000000000c3 9 5 3 0000000000000069
4 0 00000000000000b4 10 6 4 000000000000005a
5 1 00000000000000a5 11 7 5 000000000000004b

Substitution Layer

The substitution layer ps updates the state S with 64 parallel applications of the 5-bit
S-box S(x) defined in Figure 5a to each bit-slice of the five registers g . .. x4. It is typically
implemented in bitsliced form with operations performed on the 64-bit words.

Linear Diffusion Layer

The linear diffusion layer p; provides diffusion within each 64-bit register word z;. It
applies a linear function ¥;(z;) defined in Figure 5b to each word z;:

.’L‘i<—2i($i), 0<i<4.

References

[BBC*19] Gilles Barthe, Sonia Belaid, Gaétan Cassiers, Pierre-Alain Fouque, Benjamin
Grégoire, and Francois-Xavier Standaert. maskverif: Automated verification
of higher-order masking in presence of physical defaults. In Computer
Security - ESORICS 2019 - 24th European Symposium on Research in
Computer Security, Luzembourg, September 23-27, 2019, Proceedings, Part
I, volume 11735 of Lecture Notes in Computer Science, pages 300-318.
Springer, 2019.

Hficient Second-Order Masked Software Implementations of Ascon in Theory and Practice

o> v -D—-O—> L0 zg < Xo(xo) = xo B (zo >> 19) @ (x0 > 28)
y 14 9 /‘A“ A

1 ¥ SO T1 x1 ¢ X1(z1) =21 @ (21 3> 61) @ (11 > 39)
ey

To—ed . 4 j -T2 o Yo(z2) =22 ® (22> 1)@ (z2> 6)

'é 2% y

T3 ¥ i 1"773 x3 X3(x3) = 23 @ (23 >> 10) & (x3 >> 17)
bl)

Ty—ot ! : & -1y Ty Bg(2g) =24 ® (4> 7) D (xg > 41)

3
(a) AscoN’s 5-bit Sbox S(z) (b) AscoN’s linear layer with 64-bit functions

Figure 5: ASCON’s substitution layer and linear diffusion layer

[BBC*20] Davide Bellizia, Olivier Bronchain, Gaétan Cassiers, Vincent Grosso, Chun
Guo, Charles Momin, Olivier Pereira, Thomas Peters, and Frangois-Xavier
Standaert. Mode-level vs. implementation-level physical security in symmet-
ric cryptography - A practical guide through the leakage-resistance jungle.
In CRYPTO (1), volume 12170 of Lecture Notes in Computer Science, pages
369-400. Springer, 2020.

[BBD*15] Gilles Barthe, Sonia Belaid, Francois Dupressoir, Pierre-Alain Fouque, Ben-
jamin Grégoire, and Pierre-Yves Strub. Verified proofs of higher-order
masking. In Elisabeth Oswald and Marc Fischlin, editors, Advances in
Cryptology - EUROCRYPT 2015 - 34th Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria,
April 26-30, 2015, Proceedings, Part I, volume 9056 of Lecture Notes in
Computer Science, pages 457-485. Springer, 2015.

[BBD*16] Gilles Barthe, Sonia Belaid, Francois Dupressoir, Pierre-Alain Fouque, Ben-
jamin Grégoire, Pierre-Yves Strub, and Rébecca Zucchini. Strong non-
interference and type-directed higher-order masking. In Edgar R. Weippl,
Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai
Halevi, editors, Proceedings of the 2016 ACM SIGSAC Conference on Com-
puter and Communications Security, Vienna, Austria, October 24-28, 2016,
pages 116-129. ACM, 2016.

[BBPT17] Sonia Belaid, Fabrice Benhamouda, Alain Passelegue, Emmanuel Prouff,
Adrian Thillard, and Damien Vergnaud. Private multiplication over finite
fields. In Advances in Cryptology - CRYPTO 2017 - 87th Annual Inter-
national Cryptology Conference, Santa Barbara, CA, USA, August 20-2/,
2017, Proceedings, Part III, volume 10403 of Lecture Notes in Computer
Science, pages 397-426. Springer, 2017.

[BCNT106] Hagai Bar-El, Hamid Choukri, David Naccache, Michael Tunstall, and Claire
Whelan. The sorcerer’s apprentice guide to fault attacks. Proceedings of the
IEEE, 94(2):370-382, 2006.

[BDL97] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the importance
of checking cryptographic protocols for faults (extended abstract). In
EUROCRYPT, volume 1233 of Lecture Notes in Computer Science, pages
37-51. Springer, 1997.

Barbara Gigerl, Florian Mendel, Martin Schliffer and Robert Primas 19

[BDZ20]

[BGGT114]

[BGI*18]

[BRNIL13]

[BS97]

[CGPT12]

[CRR02]

[Dael7]

[DDE+20]

[DEG+18]

Tim Beyne, Siemen Dhooghe, and Zhenda Zhang. Cryptanalysis of masked
ciphers: A not so random idea. In ASTACRYPT (1), volume 12491 of
Lecture Notes in Computer Science, pages 817-850. Springer, 2020.

Josep Balasch, Benedikt Gierlichs, Vincent Grosso, Oscar Reparaz, and
Francgois-Xavier Standaert. On the cost of lazy engineering for masked soft-
ware implementations. In Smart Card Research and Advanced Applications -
13th International Conference, CARDIS 2014, Paris, France, November 5-7,
2014. Revised Selected Papers, volume 8968 of Lecture Notes in Computer
Science, pages 64-81. Springer, 2014.

Roderick Bloem, Hannes Grof}, Rinat Tusupov, Bettina Kénighofer, Stefan
Mangard, and Johannes Winter. Formal verification of masked hardware
implementations in the presence of glitches. In Advances in Cryptology -
EUROCRYPT 2018 - 37th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Tel Aviv, Israel, April 29
- May 3, 2018 Proceedings, Part II, volume 10821 of Lecture Notes in
Computer Science, pages 321-353. Springer, 2018.

Ali Galip Bayrak, Francesco Regazzoni, David Novo, and Paolo Ienne. Sleuth:
Automated verification of software power analysis countermeasures. In Guido
Bertoni and Jean-Sébastien Coron, editors, Cryptographic Hardware and
Embedded Systems - CHES 2013 - 15th International Workshop, Santa
Barbara, CA, USA, August 20-23, 2013. Proceedings, volume 8086 of Lecture
Notes in Computer Science, pages 293-310. Springer, 2013.

Eli Biham and Adi Shamir. Differential fault analysis of secret key cryp-
tosystems. In CRYPTO, volume 1294 of Lecture Notes in Computer Science,
pages 513-525. Springer, 1997.

Jean-Sébastien Coron, Christophe Giraud, Emmanuel Prouff, Soline Renner,
Matthieu Rivain, and Praveen Kumar Vadnala. Conversion of security
proofs from one leakage model to another: A new issue. In Constructive
Side-Channel Analysis and Secure Design - Third International Workshop,
COSADE 2012, Darmstadt, Germany, May 3-4, 2012. Proceedings, volume
7275 of Lecture Notes in Computer Science, pages 69-81. Springer, 2012.

Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template attacks. In
CHES, volume 2523 of Lecture Notes in Computer Science, pages 13-28.
Springer, 2002.

Joan Daemen. Changing of the guards: A simple and efficient method
for achieving uniformity in threshold sharing. In CHES, volume 10529 of
Lecture Notes in Computer Science, pages 137-153. Springer, 2017.

Joan Daemen, Christoph Dobraunig, Maria Eichlseder, Hannes Grof3, Florian
Mendel, and Robert Primas. Protecting against statistical ineffective fault
attacks. TACR Trans. Cryptogr. Hardw. Embed. Syst., 2020(3):508-543,
2020.

Christoph Dobraunig, Maria Eichlseder, Hannes Grof}, Stefan Mangard,
Florian Mendel, and Robert Primas. Statistical ineffective fault attacks
on masked AES with fault countermeasures. In ASIACRYPT (2), volume
11273 of Lecture Notes in Computer Science, pages 315-342. Springer, 2018.

Plificient Second-Order Masked Software Implementations of Ascon in Theory and Practice

[DEK*18]

[DEMS19]

[DEMS21]

[AGPdIP+16]

[DMMP18]

[EWS14]

[FILT13]

[FRR*10]

[GHP+21]

[GJIR11]

[GMK16]

Christoph Dobraunig, Maria Eichlseder, Thomas Korak, Stefan Mangard,
Florian Mendel, and Robert Primas. SIFA: exploiting ineffective fault
inductions on symmetric cryptography. IACR Trans. Cryptogr. Hardw.
Embed. Syst., 2018(3):547-572, 2018.

Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin
Schlédffer. Ascon v1.2. Submission to the NIST Lightweight Crypto
Competition, 2019. https://csrc.nist.gov/CSRC/media/Projects/
lightweight-cryptography/documents/round-2/spec-doc-rnd2/
ascon-spec-round2.pdf.

Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schléf-
fer. Ascon v1.2: Lightweight authenticated encryption and hashing. J.
Cryptol., 34(3):33, 2021.

Wouter de Groot, Kostas Papagiannopoulos, Antonio de la Piedra, Erik
Schneider, and Lejla Batina. Bitsliced masking and ARM: friends or foes?
In Lightweight Cryptography for Security and Privacy - 5th International
Workshop, LightSec 2016, Aksaray, Turkey, September 21-22, 2016, Revised
Selected Papers, volume 10098 of Lecture Notes in Computer Science, pages
91-109. Springer, 2016.

Christoph Dobraunig, Stefan Mangard, Florian Mendel, and Robert Primas.
Fault attacks on nonce-based authenticated encryption: Application to keyak
and ketje. In SAC, volume 11349 of Lecture Notes in Computer Science,
pages 257-277. Springer, 2018.

Hassan Eldib, Chao Wang, and Patrick Schaumont. Formal verification of
software countermeasures against side-channel attacks. ACM Trans. Softw.
Eng. Methodol., 24(2):11:1-11:24, 2014.

Thomas Fuhr, Eliane Jaulmes, Victor Lomné, and Adrian Thillard. Fault
attacks on AES with faulty ciphertexts only. In FDTC, pages 108-118.
IEEE Computer Society, 2013.

Sebastian Faust, Tal Rabin, Leonid Reyzin, Eran Tromer, and Vinod Vaikun-
tanathan. Protecting circuits from leakage: the computationally-bounded
and noisy cases. In Henri Gilbert, editor, Advances in Cryptology - EU-
ROCRYPT 2010, 29th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Monaco / French Riviera, May
30 - June 3, 2010. Proceedings, volume 6110 of Lecture Notes in Computer
Science, pages 135-156. Springer, 2010.

Barbara Gigerl, Vedad Hadzic, Robert Primas, Stefan Mangard, and Rod-
erick Bloem. Coco: Co-design and co-verification of masked software im-
plementations on cpus. In USENIX Security Symposium, pages 1469—-1468.
USENIX Association, 2021.

Gilbert Goodwill, Benjamin Jun, Josh Jaffe, and Pankaj Rohatgi. A testing
methodology for side-channel resistance validation. In NIST Non-Invasive
Attack Testing Workshop, 2011.

Hannes Grof3, Stefan Mangard, and Thomas Korak. Domain-oriented mask-
ing: Compact masked hardware implementations with arbitrary protection
order. In Proceedings of the ACM Workshop on Theory of Implementation
Security, TISQCCS 2016 Vienna, Austria, October, 2016, page 3. ACM,
2016.

https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/ascon-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/ascon-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/ascon-spec-round2.pdf

Barbara Gigerl, Florian Mendel, Martin Schliffer and Robert Primas 21

[GMK17] Hannes Gro8, Stefan Mangard, and Thomas Korak. An efficient side-channel
protected AES implementation with arbitrary protection order. In CT-RSA,

volume 10159 of Lecture Notes in Computer Science, pages 95—112. Springer,
2017.

[GPM21] Barbara Gigerl, Robert Primas, and Stefan Mangard. Secure and efficient
software masking on superscalar pipelined processors. In ASTACRYPT (2),

volume 13091 of Lecture Notes in Computer Science, pages 3-32. Springer,
2021.

[GPM22] Barbara Gigerl, Robert Primas, and Stefan Mangard. Formal verification of
arithmetic masking in hardware and software. JACR Cryptol. ePrint Arch.,
page 849, 2022.

[ISWO03] Yuval Ishai, Amit Sahai, and David A. Wagner. Private circuits: Securing
hardware against probing attacks. In Advances in Cryptology - CRYPTO
2003, 23rd Annual International Cryptology Conference, Santa Barbara,
California, USA, August 17-21, 2003, Proceedings, volume 2729 of Lecture
Notes in Computer Science, pages 463-481. Springer, 2003.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis.
In CRYPTO, volume 1666 of Lecture Notes in Computer Science, pages
388-397. Springer, 1999.

[KSM20] David Knichel, Pascal Sasdrich, and Amir Moradi. SILVER - statistical
independence and leakage verification. TACR Cryptol. ePrint Arch., 2020:634,
2020.

[MMT?20] Lauren De Meyer, Elke De Mulder, and Michael Tunstall. On the effect
of the (micro)architecture on the development of side-channel resistant
software. TACR Cryptol. ePrint Arch., 2020:1297, 2020.

[MOPT12] Andrew Moss, Elisabeth Oswald, Dan Page, and Michael Tunstall. Compiler
assisted masking. In Emmanuel Prouff and Patrick Schaumont, editors,
Cryptographic Hardware and Embedded Systems - CHES 2012 - 14th Inter-
national Workshop, Leuven, Belgium, September 9-12, 2012. Proceedings,
volume 7428 of Lecture Notes in Computer Science, pages 58—75. Springer,

2012.

NIS18 NIST. Lightweight cryptography. https://csrc.nist.gov/Projects/

p g J

lightweight-cryptography, 2018.

NIS23 NIST Lightweight Cryptography Team. Lightweight cryp-

g g 8 g g

tography standardization process: NIST Selects Ascon,
2023. https://www.nist.gov/news-events/news/2023/02/

lightweight-cryptography-standardization-process-nist-selects-ascon

(accessed 02/2023).

[NRS11] Svetla Nikova, Vincent Rijmen, and Martin Schléffer. Secure hardware
implementation of nonlinear functions in the presence of glitches. J. Cryptol.,
24(2):292-321, 2011.

[OC14] Colin O’Flynn and Zhizhang (David) Chen. Chipwhisperer: An open-source
platform for hardware embedded security research. In COSADE, volume
8622 of Lecture Notes in Computer Science, pages 243—-260. Springer, 2014.

https://csrc.nist.gov/Projects/lightweight-cryptography
https://csrc.nist.gov/Projects/lightweight-cryptography
https://www.nist.gov/news-events/news/2023/02/lightweight-cryptography-standardization-process-nist-selects-ascon
https://www.nist.gov/news-events/news/2023/02/lightweight-cryptography-standardization-process-nist-selects-ascon

Pificient Second-Order Masked Software Implementations of Ascon in Theory and Practice

[PSV15]

[PV17]

[QS01]

[RBN+15a]

[RBN+15b]

[RP10a]

[RP10b]

[RSV*11]

[SM21a]

[SM21b)

[SPMHO03]

[SSB+19]

Olivier Pereira, Francois-Xavier Standaert, and Srinivas Vivek. Leakage-
resilient authentication and encryption from symmetric cryptographic prim-
itives. In CCS, pages 96-108. ACM, 2015.

Kostas Papagiannopoulos and Nikita Veshchikov. Mind the gap: Towards
secure lst-order masking in software. In Constructive Side-Channel Analysis
and Secure Design - 8th International Workshop, COSADE 2017, Paris,
France, April 13-14, 2017, Revised Selected Papers, volume 10348 of Lecture
Notes in Computer Science, pages 282-297. Springer, 2017.

Jean-Jacques Quisquater and David Samyde. Electromagnetic analysis
(EMA): measures and counter-measures for smart cards. In E-smart, volume
2140 of Lecture Notes in Computer Science, pages 200-210. Springer, 2001.

Oscar Reparaz, Begiil Bilgin, Svetla Nikova, Benedikt Gierlichs, and Ingrid
Verbauwhede. Consolidating masking schemes. In CRYPTO (1), volume
9215 of Lecture Notes in Computer Science, pages 764—783. Springer, 2015.

Oscar Reparaz, Begiil Bilgin, Svetla Nikova, Benedikt Gierlichs, and Ingrid
Verbauwhede. Consolidating masking schemes. In Advances in Cryptology -
CRYPTO 2015 - 35th Annual Cryptology Conference, Santa Barbara, CA,
USA, August 16-20, 2015, Proceedings, Part I, volume 9215 of Lecture Notes
in Computer Science, pages 764-783. Springer, 2015.

Matthieu Rivain and Emmanuel Prouff. Provably secure higher-order mask-
ing of AES. In CHES, volume 6225 of Lecture Notes in Computer Science,
pages 413-427. Springer, 2010.

Matthieu Rivain and Emmanuel Prouff. Provably secure higher-order mask-
ing of AES. In Cryptographic Hardware and Embedded Systems, CHES
2010, 12th International Workshop, Santa Barbara, CA, USA, August 17-20,
2010. Proceedings, volume 6225 of Lecture Notes in Computer Science, pages
413-427. Springer, 2010.

Mathieu Renauld, Frangois-Xavier Standaert, Nicolas Veyrat-Charvillon,
Dina Kamel, and Denis Flandre. A formal study of power variability issues
and side-channel attacks for nanoscale devices. In Advances in Cryptology -
EUROCRYPT 2011 - 30th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Tallinn, Estonia, May 15-19,
2011. Proceedings, volume 6632 of Lecture Notes in Computer Science, pages
109-128. Springer, 2011.

Aein Rezaei Shahmirzadi and Amir Moradi. Re-consolidating first-order
masking schemes nullifying fresh randomness. TACR Trans. Cryptogr. Hardw.
Embed. Syst., 2021(1):305-342, 2021.

Aein Rezaei Shahmirzadi and Amir Moradi. Second-order SCA security
with almost no fresh randomness. TACR Trans. Cryptogr. Hardw. Embed.
Syst., 2021(3):708-755, 2021.

Vivek V. Shende, Aditya K. Prasad, Igor L. Markov, and John P. Hayes. Syn-
thesis of reversible logic circuits. IEEE Transactions on CAD of Integrated
Circuits and Systems, 22(6):710-722, 2003.

Madura A. Shelton, Niels Samwel, Lejla Batina, Francesco Regazzoni,
Markus Wagner, and Yuval Yarom. Rosita: Towards automatic elimination
of power-analysis leakage in ciphers. CoRR, abs/1912.05183, 2019.

Barbara Gigerl, Florian Mendel, Martin Schliffer and Robert Primas 23

[Sugl9]

[ZGSW1S]

Takeshi Sugawara. 3-share threshold implementation of AES s-box without
fresh randomness. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2019(1):123—
145, 2019.

Jun Zhang, Pengfei Gao, Fu Song, and Chao Wang. Scinfer: Refinement-
based verification of software countermeasures against side-channel attacks.
In Hana Chockler and Georg Weissenbacher, editors, Computer Aided Ver-
ification - 30th International Conference, CAV 2018, Held as Part of the
Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17, 2018,
Proceedings, Part 11, volume 10982 of Lecture Notes in Computer Science,
pages 157-177. Springer, 2018.

	Introduction
	Background
	Ascon
	Masking
	Formal Verification of Masking
	Coco
	Statistical Ineffective Fault Attacks

	Protected Software Implementations of Ascon
	2-share Design of the S-box
	3-share Design of the S-box
	Further Performance Improvements and SCA-Hardening

	Formal Masking Verification
	Verification Flow
	Verification Results

	Performance and Side-Channel Evaluation
	Performance Evaluation
	Practical Side-Channel Evaluation

	Conclusion
	Ascon-p

