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Abstract. We report on efficient and secure hardware implementation techniques for the FIPS 205 
SLH-DSA Hash-Based Signature Standard. We demonstrate that very significant overall performance 
gains can be obtained from hardware that optimizes the padding formats and iterative hashing processes 
specific to SLH-DSA. A prototype implementation, SLotH, contains Keccak/SHAKE, SHA2-256, and 
SHA2-512 cores and supports all 12 parameter sets of SLH-DSA. SLotH also supports side-channel 
secure PRF computation and Winternitz chains. SLotH drivers run on a small RISC-V control core, as 
is common in current Root-of-Trust (RoT) systems. 
The new features make SLH-DSA on SLotH many times faster compared to similarly-sized general-
purpose hash accelerators. Compared to unaccelerated microcontroller implementations, the perfor-
mance of SLotH’s SHAKE variants is up to 300× faster; signature generation with 128f parameter set 
is is 4,903,978 cycles, while signature verification with 128s parameter set is only 179,603 cycles. The 
SHA2 parameter sets have approximately half of the speed of SHAKE parameter sets. We observe 
that the signature verification performance of SLH-DSA’s “s” parameter sets is generally better than 
that of accelerated ECDSA or Dilithium on similarly-sized RoT targets. The area of the full SLotH 
system is small, from 63 kGE (SHA2, Cat 1 only) to 155 kGe (all parameter sets). Keccak Threshold 
Implementation adds another 130 kGE. 
We provide sensitivity analysis of SLH-DSA in relation to side-channel leakage. We show experimentally 
that an SLH-DSA implementation with CPU hashing will rapidly leak the SK.seed master key. We 
perform a 100,000-trace TVLA leakage assessment with a protected SLotH unit. 
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1 Introduction 

A Root of Trust (RoT) is a component that forms the basis for the security of an SoC (System on Chip.) 
An SoC is a large-scale integrated circuit that implements much of the functionality of a typical computer 
or a similar device. RoT provides cryptographic functions and other features required for secure boot and 
maintenance of platform security. An important part of this functionality is the verification and generation 
of digital signatures for integrity checks, authentication, and device attestation. 

The U.S. Government has made firmware signatures a priority in their Post-Quantum Cryptography 
transition timetables [27]. Firmware signature verification is one of the key functions implemented by RoT 
systems. Hash-based signatures are often viewed as an appropriate, “conservative” selection for such appli-
cations, as their security is based simply on the security of hash functions. 

Hence many RoT systems already support hash-based signatures in their first-stage boot process. This 
includes prominent open-source RoTs OpenTitan⋆ and Caliptra⋆⋆ . OpenTitan supports SPHINCS+[4] sig-
nature verification, while Caliptra supports LMS[18,11] verification. We note that those implementations 
currently rely on general-purpose hash accelerators, and do not achieve the performance and functionality 
of the accelerators presented in this work. 

The Initial Public Draft (IPD) for FIPS 205, the Stateless Hash-Based Digital Signature Standard (SLH-
DSA), was published in August 2023 [26]. In this work, we refer to the standard draft [26] as SLH-DSA. 
SLH-DSA is derived (with minor modifications) from the SPHINCS+ v3.1 algorithm [4], which was selected 
as one of the NIST PQC competition winners in July 2022 [1]. SPHINCS+, in turn, is built on a large body 
of prior research [8]. 
⋆ OpenTitan silicon root of trust (RoT). https://opentitan.org/ 

⋆⋆ Caliptra: A Datacenter System on a Chip (SoC) Root of Trust. https://github.com/chipsalliance/Caliptra 
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1.1 Our Contributions 

We provide a quantitative analysis of SLH-DSA and its suitability for RoT applications. We describe SLotH, 
an open-source implementation that supports all FIPS 205 IPD [26] parameter sets with similar optimization 
levels, allowing for speed and area comparisons. We observe that SLH-DSA “s” parameter signature verifi-
cation is faster than that of ECDSA or Dilithium RoT accelerators, indicating good suitability of SLH-DSA 
for firmware verification. 

A general-purpose hash accelerator will speed up an SLH-DSA implementation by a large factor, roughly 
10×. Due to message formatting overhead, this will still leave the core hash unit underutilized. As a practical 
contribution, we show how a “second order of magnitude” (100×) speed-up can be achieved by offloading 
SLH-DSA-specific Winternitz iteration and key management into hardware and optimizing the firmware. 
Full hardware and firmware source code is freely available: https://github.com/slh-dsa/sloth 

While the fragility of SPHICS+ in relation to fault attacks has been previously analyzed [10,3,14,30], 
masked or side-channel protected implementations of the current SLH-DSA have not been reported [16]. We 
perform a variable sensitivity analysis and observe that the use of the master secret SK.seed in thousands 
of PRF calls makes CPU-based implementations highly vulnerable. We verify this experimentally and also 
perform a 100,000-trace TVLA leakage assessment with a masked (TI) SHAKE256 instantiation that protects 
the PRF secrets and sensitive hash-chaining operations. 

2 Overview and Observations on SLH-DSA 

The security of SLH-DSA is based on the second-preimage resistance of hash functions in the SHA-2 (FIPS 
180-4) [21] and SHA-3 (FIPS 202) [22] families. These hash functions are used to instantiate six SLH-DSA 
functions shown in Fig. 1. More precisely, the existential unforgeability (EUF-CMA) security proofs of SLH-
DSA in [8,4] require functions with various properties: Pseudorandomness (PQ-PRF), interleaved target 
subset resilience (PQ-ITSR), and distinct-function multi-target second-preimage resistance (PQ-DM-SPR). 
Avoidance of a general collision resistance requirement allows the scheme to keep the hash sizes (parameter 
n) equivalent to the security level in most cases, reducing the signature size and increasing overall efficiency. 

264Under these assumptions, the scheme is designed to provide Q = signatures for each key pair without 
the need to maintain knowledge of already generated signatures. 

2.1 SLH-DSA Parameter Sets 

From the SPHINCS+ proposal [4], only the “simple” variants were selected into SLH-DSA, and some rela-
tively minor internal changes were made. 

Table 1 contains the parameter sets chosen for the SLH-DSA draft standard, together with its key and 
signature sizes. The main parameters are: 

n : Security parameter/hash length (bytes). 
h : Height of the XMSS hypertree. 
d : Number of layers in the hypertree. h ′ = h/d is the layer height. 
a : Height of FORS tree; the number of leaves is t = 2a. 
k : Number of trees in FORS. 
w : Winternitz parameter. For SLH-DSA we have lg2 w = 4. 
m : Message digest length (bytes). 

SLH-DSA has 2 × 3 × 2 = 12 parameter sets in total, denoted: 

SLH-DSA-{SHA2, SHAKE}-{128,192,256}{s, f} 

Here SHA2 and SHAKE are the two hash function families supported. There are three different core hash 
lengths: 8n ∈ {128, 192, 256} bits. These also map to the targeted post-quantum security categories {1, 3, 5}, 
respectively. Furthermore, two variants are provided; a small (“s”), and a fast (“f”) one. The “s” variants have 
smaller signature sizes, while the “f” variants require fewer hashes to be computed during signing, making 
them faster. However, signature verification with “s” variants is faster than with ”f” variants; see Table 2. 
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Hash Function Instantations: 

Hmsg(R, PK.seed, PK.root,M ) (PQ-ITSR) Instantiated in: 
= SHAKE256(R ∥ PK ∥ M, 8m) SHAKE, all 
= MGF1-SHA-256(R ∥ PK.seed ∥ SHA-256(R ∥ PK ∥ M),m) SHA2, n = 16 
= MGF1-SHA-512(R ∥ PK.seed ∥ SHA-512(R ∥ PK ∥ M),m) SHA2, n ≥ 24 

PRF(PK.seed, SK.seed, ADRS) (PQ-PRF) Instantiated in: 
= SHAKE256(PK.seed ∥ ADRS ∥ SK.seed, 8n) SHAKE, all 
= Truncn(SHA-256(PK.seed ∥ toByte(0, 64 − n) ∥ ADRSc ∥ SK.seed)) SHA2, all 

PRFmsg (SK.prf, opt_rand, M ) (PQ-PRF) Instantiated in: 
= SHAKE256(SK.prf ∥ opt_rand ∥ M, 8n) SHAKE, all 
= Truncn(HMAC-SHA-256(SK.prf, opt_rand ∥ M)) SHA2, n = 16 
= Truncn(HMAC-SHA-512(SK.prf, opt_rand ∥ M)) SHA2, n ≥ 24 

F(PK.seed, ADRS,M1) (PQ-DM-SPR) Instantiated in: 
= SHAKE256(PK.seed ∥ ADRS ∥ M1, 8n) SHAKE, all 
= Truncn(SHA-256(PK.seed ∥ toByte(0, 64 − n) ∥ ADRSc ∥ M1)) SHA2, all 

H(PK.seed, ADRS,M2) (PQ-DM-SPR) Instantiated in: 
= SHAKE256(PK.seed ∥ ADRS ∥ M2, 8n) SHAKE, all 
= Truncn(SHA-256(PK.seed ∥ toByte(0, 64 − n) ∥ ADRSc ∥ M2)) SHA2, n = 16 
= Truncn(SHA-512(PK.seed ∥ toByte(0, 128 − n) ∥ ADRSc ∥ M2)) SHA2, n ≥ 24 

Tℓ(PK.seed, ADRS,Mℓ) (PQ-DM-SPR) Instantiated in: 
= SHAKE256(PK.seed ∥ ADRS ∥ Mℓ, 8n) SHAKE, all 
= Truncn(SHA-256(PK.seed ∥ toByte(0, 64 − n) ∥ ADRSc ∥ Mℓ)) SHA2, n = 16 
= Truncn(SHA-512(PK.seed ∥ toByte(0, 128 − n) ∥ ADRSc ∥ Mℓ)) SHA2, n ≥ 24 

Lengths of variables in bytes: 

User message |M | = any length. PK = (PK.seed ∥ PK.root), |PK| = 2n. 
|SK.seed| = |SK.prf| = |PK.seed| = |PK.root| = |R| = |M1| = n, |M2| = 2n, 

|Mℓ| ∈ {len ∗ n, kn}. |opt_rand| = n, |ADRS| = 32, |ADSRc| = 22. 

Subfunctions: 

toByte(0, n): A sequence of n zero bytes. 
Truncn(X): First n bytes of string X (truncation). 

SHAKE256(M, 8n): First n bytes from SHAKE256 XOF (FIPS 202) [22]. 
SHA-256(X): 32-byte hash result from SHA2-256 (FIPS 180-4) [21]. 
SHA-512(X): 64-byte hash result from SHA2-512 (FIPS 180-4) [21]. 

MGF1-SHA-256(X, m): First m bytes from MGF “counter mode”, SHA2-256 [5]. 
MGF1-SHA-512(X, m): First m bytes from MGF “counter mode”, SHA2-512 [5]. 
HMAC-SHA-256(K, X): 32-byte HMAC of X with key K using SHA2-256 [20]. 
HMAC-SHA-512(K, X): 64-byte HMAC of X with key K using SHA2-512 [20]. 

Fig. 1. Hash function instantations in SLH-DSA. The main formats are directly supported by SLotH hardware. Keys 
PK.seed, SK.seed, and address variable ADRS are held in special registers for automatic formatting and padding. 
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Table 1. SLH-DSA parameter sets. SHA2 and SHAKE variants are identical apart from hash function instantiations, 
and have the same signature lengths |SIG|. The secret (signing) key SK includes the public (verification) key PK. 

Parameter set. PQ Internal parameters. Sizes in bytes. 
SHA2 or SHAKE 

SLH-DSA-*-128s 
Sec 

1 

n 

16 

h 

63 

d 

7 

h ′ 

9 

a 

12 

k 

14 

w 

16 

m 

30 

|PK| |SK|
32 64 

|SIG| 
7,856 

SLH-DSA-*-128f 1 16 66 22 3 6 33 16 34 32 64 17,088 
SLH-DSA-*-192s 3 24 63 7 9 14 17 16 39 48 96 16,224 
SLH-DSA-*-192f 3 24 66 22 3 8 33 16 42 48 96 35,664 
SLH-DSA-*-256s 5 32 64 8 8 14 22 16 47 64 128 29,792 
SLH-DSA-*-256f 5 32 68 17 4 9 35 16 49 64 128 49,856 

SLH-DSA Keys. In SLH-DSA, the public (signature verification) key PK has two n-byte components, while 
the signing key SK has two additional secret n-byte components. 

PK = (PK.seed, PK.root) (1) 

SK = (SK.seed, SK.prf, PK.seed, PK.root) (2) 

All components except PK.root are random (generated with an RBG). We won’t go into details of key 
generation, but it is a relatively straightforward process: PK.root is the root of the final layer of the XMSS 
hypertree (Section 2.4) and always recomputed in signature verification for comparison. 

Signature format. An SLH-DSA signature has three main parts, each created in a distinct step of the signing 
process: 

SIG = R ∥ SIGF ORS ∥ SIGHT (3) 

The R randomizer (Section 2.2) is n bytes, the SIGF ORS (Section 2.3) component is kan bytes, while SIGHT 

(Section 2.4) is (h + d ∗ len)n bytes. We give a high-level view of the signing process (function slh_sign [26, 
Alg. 18]) here, together with analysis and commentary related to implementation and security aspects. 

2.2 R: Randomized Hashing 

The signing process starts with a randomized hashing of the message to be signed. A two-pass mechanism 
is used; the first pass derives the randomizer R (Eq. 4), and the second one (Eq. 5) produces a digest that 
is actually signed. 

R ← PRFmsg(SK.prf, opt_rand, M) (4) 

digest ← Hmsg(R, PK.seed, PK.root,M) (5) 

md ∥ idx ← digest (6) 

The verification process only needs a single pass with Hmsg (Eq. 5). It is easy to see that Eq. (4) is essentially 
redundant in signing if a secure RBG is available to reliably produce a random R. SLotH follows the two-pass 
flow of the SLH-DSA specification in this aspect, mainly for compliance reasons. 

The m-byte md component split from the digest (Eq. 6) is signed in the FORS step (Section 2.3). The 
h-bit component idx specifies the XMSS authentication path and also the FORS public key for the XMSS 
signature (Section 2.4). 

Implementation Analysis. The randomized hashing step is the only one accessing the user-supplied message 
M itself. It is possible that the Hmsg (and PRFmsg) are computed outside the SLH-DSA module (e.g. by 
the system main CPU) and the digest passed to it for signature creation or verification. This way a RoT 
unit (such as one containing SLotH) may have relatively low-bandwidth interfaces. 

For latency-critical verification of large amounts of data (e.g. in the boot process), it is possible to store 
the digest in the data header and start signature verification before the hash has been actually computed. 
The verifier checks afterward that Hmsg has indeed produced the correct value. 
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From a side-channel perspective, the R randomizer generation (Eq. 4) is the only part handling con-
fidential variables (SK.prf) in this step. However, SK.prf is essentially redundant if randomization is used. 
Implementations may choose to not even store SK.prf. 

The impact of faulting the randomized hashing step is that a signature for some other message may be 
produced. Given that in the security model, the adversary can query up to Q signatures at will, the risks 
from faulting this step appear to be lower than from the subsequent hashes. 

2.3 SIGF ORS : FORS Signature of the Message 

SLH-DSA uses the few-time signature scheme FORS to sign the message M itself. FORS is “few-time” in 
relation to a specific FORS secret key. For each SLH-DSA keypair, there are 2h possible FORS keys, and 
one is chosen pseudorandomly (using h-bit idx) for each message. Since h ≥ 63 for SLH-DSA parameters, 
a statistical argument shows that the security risk of FORS key re-use remains within bounds for up to 
Q = 264 signatures. After this, there is a gradual increase in the risk of signature forgery. 

Fig. 2 illustrates the FORS signing process. The secret keys of the FORS scheme are the 2a leaf nodes for 
each of the k FORS trees; these are dynamically generated with PRF using the master secret SK.seed and 
tree index idx (fors_SKgen). In signing, the message digest component md is split into a-bit chunks. Each of 
those is used to select a leaf node (index) in one of the k Merkle trees. The authentication paths from leaf 
nodes to respective roots form the SIGF ORS signature. The concatenation of k root nodes is hashed, and 
this is the SIGPK public key. In verification, the signature is valid if hashing the preimage paths provided 
in SIGF ORS leads the same roots and hence to PKF ORS . 

FORS
0

FORS
1

FORS
2

FORS
k-1

md[1]md[0] md[2] md[k-1]

Tk(PK.seed, ADRSidx, roots)

PKFORS

 select
leaf

k auth paths
= SIGFORS

Fig. 2. Each SLH-DSA keypair defines 2h pseudorandom FORS keypairs; idx selects which one is used. FORS few-
time signature generation uses a-bit segments of the message digest md to select leaf nodes in k Merkle trees. The 
trees have height a and are illustrated here with roots at the bottom. The authentication paths (hashes) to reach the 
roots from the leaves form the message signature SIGF ORS . 

Implementation Analysis. The FORS step can be k-way parallelized in relation to the trees, as those com-
putations are independent, apart from the final Tℓ that combines the k tree roots into final PKF ORS . In a 
sequential implementation one can randomize the execution order in relation to the trees as an inexpensive 
side-channel countermeasure, and to de-synchronize against a targeted FIA. It is also possible to randomize 
the tree traversal order (Alg. 14, fors_node in [26]). 

The FORS signing step uses PRF to generate the leaf secret keys, and an additional F iteration to bind 
the secret key with a message-dependent index. For side-channel protection, one needs to put extra effort 
into protecting PRF as it directly uses the master secret SK.seed. Our protected implementation masks 
PRF and also the following F binding step (Alg. 13, fors_SKgen everywhere and also F on line 8 of Alg. 14, 
fors_node in [26].) 

Errors from faulting almost any hash of the FORS signing step will cause a hash path and a PKF ORS 

public key which is completely different from the correct one. However, since the subsequent XMSS step 
(Section 2.4) simply authenticates this value, the produced SLH-DSA signature will still be verified as a 
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valid one. Hence a signature verification check does not protect against fault attacks in the case of the 
SLH-DSA signing process. Furthermore, as has been observed (and exploited) by Genêt [14] and others, the 
faulty SIGF ORS reveals information that can be used to forge signatures with high likelihood. 

2.4 SIGHT : XMSS Hypertree Signature of the FORS Public Key 

The final step in the SLH-DSA signing process authenticates the PKF ORS public key using an XMSS 
hypertree. The hypertree supports a total of 2h one-time Winternitz signatures, which are structured into 
d layers. Each of the XMSS tree layers has height h ′ = h/d and contains WOTS public keys in its 2h ′ 

leaf nodes. WOTS signatures authenticate the root (public key) of the previous layer, or PKF ORS on the 
first layer. The final XMSS root is the main SLH-DSA public verification key PK.root. Fig. 3 illustrates the 
hypertree signing process with a toy example, but we refer to [26] for details and terminology. 

A1A0 A2 A3

B1B0 B2 B3

C1C0 C2 C3

D1D0 D2 D3

E1E0 E2 E3

F1F0 F2 F3

csum = 4*3-(a+b+c+d)
e = ⌊csum / 4⌋

f = csum mod 4

TPRF
(SK)

SK

WPK

F() F() F()

F() F() F()

F() F() F()

F() F() F()

F() F() F()

F() F() F()

M = ( a, b, c, d )

SIGW = ( Aa, Bb, Cc, Dd, Ee, Ff )

H H H H

H H

H

WPK0 WPK1 WPK2 WPK3 WPK4 WPK5 WPK6 WPK7

wots_sign

wots_sign

H H H H

H H

H

WPK0 WPK1 WPK2 WPK3 WPK4 WPK5 WPK6 WPK7

PKROOT

PKFORS

Fig. 3. A toy example of an XMSS hypertree signature, similar to the one in SLH-DSA. We illustrate WOTS (top) 
by signing an 8-bit message organized into four-bit pairs M = (a, b, c, d). Two additional checksum digits (e, f) are 
required. The hypertree (bottom) consists of d (here 2) layers of XMSS trees, each with a WOTS one-time signature 
authenticating the root of the previous layer. 

Implementation Analysis. In SLH-DSA key generation and signing, a PRF call to generate the WOTS 
public key is followed by Winternitz chain iteration with function F. Simplifying ADRS (domain-separation 
addressing) syntax, we write: 

X0 = PRF(PK.seed, SK.seed, WOTS_PRF) (7) 

Xj = F(PK.seed, WOTS_HASH(j), Xj−1) for j ≥ 1. (8) 

In key generation (wots_PKgen) the index Xw−1 = X15 is the result, while the signing process (wots_sign) 
uses Xmsg[i]. The wots_PKFromSig verification function evaluates Eq. (8) only, between Xmsg[i] and X15. 

As highlighted in Table 2, the F invocations in Winternitz chains (Eq. 8) completely dominate the SLH-
DSA computational cost, making up roughly 80% of all of the hash function invocations in signing and 90% 
in verification. The PRF calls of Eq. (7) make up much of the rest of the hash invocations. 

Clearly, an implementation should optimize chaining; our implementation moves the padding and iteration 
of Eq. (8) completely into hardware, in which case there are only 1 or 2 cycles between autonomous hash 
iterations. A helpful aspect in the case of SHA2 is that all security levels use SHA2-256 for these core 
operations; the SHA2-512 core does not need this feature. 
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From a side-channel leakage perspective, the hashes have a decreasing sensitivity. Since the thousands of 
invocations of PRF directly use the master secret key SK.seed, PRF requires protection to prevent horizontal 
attacks against this variable. The sensitivity of X1 and above is lessened by randomization by idx and other 
contents of ADRS, but may also require protection. Our protected implementation masks PRF everywhere 
and also subsequent chaining operation in key generation and signing (lines 6–7 of Alg 5., wots_PKgen and 
lines 17–19 of Alg. 6, wots_sign in [26].) 

In the signing process, each layer of the XMSS hypertree computation will authenticate the previous 
layer (or PKF ORS in the case of the initial layer) regardless of whether it is correct or not. As noted in 
Section 2.3, faulted signatures will be verified as correct, but will reveal sensitive information that can be 
used to create forgeries and mount other attacks [10,30,14]. Intuitively, the PKF ORS index is always the same 
for a given idx regardless of md; hence the one-timeness of XMSS is not violated in the first layer as the 
same index is used to sign the same message. However, faulting anywhere in the process will cause XMSS to 
potentially use the index twice, enabling forgeries. As observed in [14] and other works, redundancy via error 
detection/correction and repeated computations appears to be the only robust countermeasures, assisted by 
control flow randomization against targeted faults. 

Table 2. Quantitative analysis: Distribution of high-level hash function invocations with standard SLH-DSA pa-
rameter sets. The distribution of high-level calls is independent of instantiation (same number for both SHAKE and 
SHA2, with or without acceleration.) Averages for 2000 runs are given for F invocations in signing and verification 
functions – other functions use a constant number of invocations. The single Hmsg and PRFmsg calls are omitted 
in the table for space but are included in the total. Also listed are the number of chain() calls, the number of F calls 
in chains, and the percentage of these chaining F’s of the total number of high-level hash invocations. 

Key Generation (slh_keygen) 
Funct. 128f 192f 256f 128s 192s 256s 
PRF 280 408 1,072 17,920 26,112 17,152 

F 4,200 6,120 16,080 268,800 391,680 257,280 
H 7 7 15 511 511 255 
Tℓ 8 8 16 512 512 256 

Total 4,495 6,543 17,183 287,743 418,815 274,943 
chain() 
chain F 

280 
4,200 

408 
6,120 

1,072 
16,080 

17,920 
268,800 

26,112 
391,680 

17,152 
257,280 

chain % 93.4% 93.5% 93.6% 93.4% 93.5% 93.6% 

Signature Generation (slh_sign) 
Funct. 128f 192f 256f 128s 192s 256s 
PRF 8,272 17,424 36,144 182,784 461,312 497,664 

F 94,246 142,697 290,775 1,938,676 3,019,898 2,418,182 
H 2,230 8,566 18,136 60,898 282,079 362,458 
Tℓ 176 176 272 3,584 3,584 2,048 

Total 104,926 168,865 345,329 2,185,944 3,766,875 3,280,354 
chain() 
chain F 

6,895 
92,134 

10,047 
134,249 

19,296 
272,855 

125,650 
1,881,332 

183,090 
2,741,370 

137,685 
2,057,734 

chain % 87.8% 79.5% 79.0% 86.1% 72.8% 62.7% 

Signature Verification (slh_verify) 

Funct. 128f 192f 256f 128s 192s 256s 
PRF 0 0 0 0 0 0 

F 5,908 8,620 8,633 1,886 2,751 4,067 
H 264 330 383 231 301 372 
Tℓ 23 23 18 8 8 9 

Total 6,196 8,974 9,035 2,126 3,061 4,449 
chain() 
chain F 

770 
5,875 

1,122 
8,587 

1,139 
8,598 

245 
1,872 

357 
2,734 

536 
4,045 

chain % 94.8% 95.7% 95.2% 88.1% 89.3% 90.9% 
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3 Hardware Architecture 

The hardware components of SLotH were newly written for the project, apart from the small “pug” RISC-V 
core that the author uses for prototyping. Custom instruction set extensions or other special features are not 
used; the RISC-V core can be replaced by almost any other RV32IMC core, e.g. IBEX⋆ ⋆ ⋆ or VeeR†. There 
is no reason not to expect that an ARM Cortex M3/M4 core or some other controller type commonly used 
in RoTs would not work as the amount of assembler code is very small. 

Fig. 4 illustrates the relationships between logical components; the CPU is expected to be a generic RoT 
controller and the SLotH accelerators can be instantiated independently of each other to support various 
configurations (when there is no need for both SLH-DSA-SHA2 and SLH-DSA-SHAKE, or for masking in a 
verify-only module.) Since the unit is relatively small (Table 3), redundancy can be provided by duplicating 
it entirely. 

The SHA2-256 unit is sufficient to support SLH-DSA-SHA2-128 variants, while the SHA2-512 unit is 
additionally required for Category 3 and 5. The Keccak module supports all security levels of SLH-DSA. 
SCA security is currently only provided for Keccak via a fast Threshold Implementation (TI). This module is 
very large and not required for signature verification, and hence currently separate from unmasked Keccak. 

SHA2-256
Round

SHA2-512
Round

Keccak
Round

Threshold
Keccak

UART

RAM
128 kB

RV32
Core

S256<reg> S512<reg> KECC<reg> KTI3<reg>

32-bit Interconnect

GPIO

Fig. 4. SLotH consists of independent memory-mapped accelerators (top) and firmware that runs on a generic 
embedded RISC-V controller (bottom). SHA2-256 and SHA2-512 units are independent and the threshold (side-
channel protected) Keccak is a separate unit from the “normal” Keccak. The FPGA instantiations have simple 
UART and GPIO external interfaces, and 128kB of Block RAM to hold the firmware and work memory (stack). RoT 
“production” silicon would have different types of interfaces and parts of the firmware would be in mask ROM. 

3.1 SLotH Keccak (SHAKE) Units 

The Keccak unit computes the Keccak-p[1600, 24] permutation [22] (and single-block SHAKE256 functions 
PRF, F, H) in 24 cycles at all security levels. The chaining modes require at most 2 additional cycles per 
Winternitz iteration. 

The Keccak accelerator has two components, the Keccak f1600 round function (keccak_round.v) and 
its memory-mapped control logic (keccak_sloth.v). The round function is pure combinatorial logic with 
1600-bit inputs and outputs for the state. It updates the Keccak round constant LFSR, which also serves as 
the round counter. The combinatorial logic allows one to potentially combine two round functions into one 
clock cycle if needed (this is plausible as the Keccak critical path is relatively short). 

⋆ ⋆ ⋆ IBEX (https://github.com/lowRISC/ibex) is the RV32 core used by the OpenTitan RoT project. 
† VeeR (https://github.com/chipsalliance/Cores-VeeR-EL2) is the RV32 core used by the Caliptra RoT project. 
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The control unit maintains a memory-mapped register interface and offers several modes of operation, 
including automatic padding and iteration for Winternitz chains. See Table 7 for an overview of the control 
registers. The module also holds the contents of PK.seed, SK.seed, and ADRS variables as they are required 
to create the message formats for PRF, F, H, Tℓ functions (Fig. 1.) Due to similarities between SLH-
DSA SHAKE message formats, we don’t have to implement all of these separately; furthermore quantitative 
analysis (Table 2) shows that optimization of some formats is more important than others. 

Each security level n ∈ {16, 24, 32} (set in the KECC_SECN register) changes the sizes of the message fields 
in the message formats (requiring wide MUXes for fast implementation.) Furthermore, the “hash address” 
component in ADRS is incremented after each hash iteration during autonomous Winternitz chain operation 
triggered by a write to the KECC_CHNS iteration count register. 

The unit supports raw memory-mapped permutation as well, allowing other SHA-3-derived functions 
and modes of operation to be accelerated. Hence the Keccak module may also be used to provide support 
for ML-KEM (FIPS 203 Kyber [25]) and ML-DSA (FIPS 204 Dilithium [26]), as about half of the cycles of 
those algorithms are typically spent on Keccak computation. However, these algorithms benefit from different 
types of Keccak “helper” optimization features than SLH-DSA. 

Threshold Implementation. For side-channel security experiments, a fast (24-cycle) Threshold Implementa-
tion [19] is used. As can be seen from the register map Table 7, it is functionally equivalent to the standard 
Keccak unit, apart from operating with three Boolean shares for the cached secret key and the entire state. 
Performance reduction in relation to standard Keccak comes mainly from CPU-operated setting up and 
“collapsing” of masked results. 

The threshold implementation technique is very similar to the one originally proposed in [9]. Hence it is 
lacking in certain theoretical aspects as it does not achieve uniformity; “changing of the guards” [12] or active 
re-randomization techniques are not used. Furthermore, only the secret key components of the input hashes 
are refreshed. However, the extremely high speed and parallelism of the implementation help to minimize 
leakage in practice; see Section 6.2. 

3.2 SLotH SHA2-256 and SHA2-512 Units 

The SHA2 [21] units process a message block (a full compression function, including simultaneous message 
schedule) of SHA2-256 and SHA2-512 in 64 cycles and 80 cycles, respectively. The padding and Winternitz 
iteration features require at most 2 additional cycles. 

SHA2 is effectively two different algorithms from a hardware perspective: SHA2-256 has 32-bit state 
variables while SHA2-512 has 64-bit state variables and a twice larger block size; its round function is more 
than twice as large (Table 3). While there are obvious similarities between SHA2-256 and SHA2-512, there 
are performance disadvantages in combining the two implementations. The carry chains in adders make the 
critical paths of SHA2 rather long – adding MUXes to simultaneously deal with 32-bit and 64-bit nonlinear 
functions and rotations on the data path would create a bottleneck against high clock frequencies. Area 
savings from combining the two modules are relatively small. 

The SHA2 accelerators are structured into two components: Logic for the compression function and 
message schedule (sha256_round.v, sha512_round.v) and memory-mapped controls (sha256_sloth.v, 
sha512_sloth.v). The SHA2-256 control unit sha256_sloth.v supports automatic padding and Winter-
nitz iteration, while the SHA2-512 version sha512_sloth.v does not (See register map in Table 8). This 
is because all security levels and parameters of SLH-DSA-SHA2 instantiate F and PRF with SHA2-256. 
SHA2-512 is not used in chaining or secret key computation (See Fig. 1) 

A noteworthy optimization built into the SHA2 instantiations of SLH-DSA itself is the padding of PK.seed 
into the initial 64 bytes of the input in PRF, F, H, Tℓ functions. Since 64 bytes is the block size of SHA2-
256, there is no need to compute this initial block in each high-level function invocation; one can just store 
the contents of the 256-bit chaining variable after that block and use it for operations. This “key-dependent 
IV” is set in the S256_SEED register and automatically used in hash preparation. 

The SHA2 control unit is able to handle compressed 22-byte ADRSc headers automatically, extracting 
the necessary bytes from the internal holding state S256_ADRS. While the 22-byte ADRSc allows SLH-DSA 
to fit a 32-byte M1 (for F) or SK.seed (for PRF) into the final SHA2-256 block together with padding, it 
also creates a performance issue as elements following the 22-byte field are not aligned to word boundaries. 

9 



This affects H and Tℓ as well. The implementation optimizes this bottleneck by making the message input 
registers of the SHA2-256 SLotH module available for unaligned writes via an unaligned write mirror. 

The secret key SK.seed is provided via the S256_SKSD register for PRF computation, where it can be 
semi-permanently stored. As with the Keccak unit, the control firmware can “forget” the secret key. 

The current version of the SHA2-512 control unit sha512_sloth.v (Table 8) is substantially simpler 
than the SHA2-256 unit, as it doesn’t need to support Winternitz chaining. Non-aligned offset writes are 
supported to speed up the formatting of H and Tℓ with n = 24 and n = 32 (security categories 3 and 5). 
Similarly to the SHA2-256 case, an unaligned write mirror is provided. 

3.3 Hardware Complexity and Size 

Table 3 summarizes the relative synthesis sizes of submodules on FPGA and ASIC targets. If only Category 
1 (SLH-DSA-SHA2-128{s,f}) security parameters are required, then the SHA2-256 accelerator is sufficient. 
It is very compact. However, we find that to support all security categories, the Keccak (SHAKE) accelerator 
is smaller than the SHA2 accelerator as Category 3 and 5 instantiations (SLH-DSA-SHA2-{192,256}){s,f} 
require both SHA2-256 and SHA2-512 modules (See Fig. 1). 

To assess audit complexity we note that the implementation discussed in this report is about 3000 lines 
of Verilog, with the RV32IMC control core and basic IO peripherals adding another 1000 lines. No external 
IP modules are used. 

Mid-range FPGA. The design was targeted on the ChipWhisperer CW305 board‡ with Xilinx (AMD) Artix-
7 chip XC7A100T-2FTG256 (a chip with a list price around $100.) The Artix-7 family has been the de facto 
evaluation target on mid-range FPGAs in recent NIST LWC and PQC efforts. An all-algorithm test system 
requires 14,428 LUTs (logic resource utilization 22.76%), while the TI Keccak doubles this to 30,717 LUTs 
(48.45%). Table 3 lists the relative sizes of the submodules. All synthesized FPGA configurations had 32 
Block RAM tiles for 128kB of main memory and were functional systems with interconnect, simple IO 
components, etc. No DSP units or other special logic was used. Vivado 2023.2 with a 100 MHz timing 
constraint was used, which is a typical system clock for complex designs instantiated on Artix-7. 

High-end FPGA. We also instantiated the design on a higher-end FPGA using the Xilinx VCU118 Evaluation 
Kit, which has an XCVU9P‐L2FLGA2104 chip, belonging to the Virtex UltraScale+ family. Full-system 
synthesis was targeted at 250 MHz and required 14,237 CLB LUTs, the same amount of block RAM tiles as 
the Artix-7 version, and some miscellaneous other resources. Utilization of any logic fabric resource didn’t 
exceed 1.61%, so dozens of independent, fully-featured SLotH units can probably be made to run on a single 
chip (however, we have not performed this experiment.) The Threshold Keccak unit doubles the area to 
30,692 CLB LUTs, with maximum utilization of 3.42%. 

ASIC Area Estimates. We used the Nangate45 cell library and the Yosys / OpenSTA flow from lowRISC 
IBEX§ to estimate ASIC sizes. This flow reports 27.3kGE for the default (“small”) configuration of the 
IBEX core. Table 3 contains synthesis reports for various SLotH configurations. Synthesis settings were kept 
at IBEX repository defaults, including a 4ns / 250 MHz timing closure, which was met with a significant 
slack. Tool versions were built from source code in early 2024. The 128kB main memory was excluded from 
synthesis, but (the rather large) internal holding registers of the accelerators were included. 

4 SLotH Firmware 

Development process. The core SLH-DSA algorithm implementation of SLotH was created using the FIPS 
205 IPD [26] specification – not adapted from prior implementations. We first created a Python model and 
verified that it matches the FIPS-updated Known Answer Tests (KATs) available from the SPHINCS+ team. 
We then implemented a portable, stand-alone C version suitable for bare metal targets as well as generic 

‡ NewAE/lowRISC CW305 Artix Target: https://rtfm.newae.com/Targets/CW305%20Artix%20FPGA/ 
§ IBEX Yosys/OpenSTA Flow: https://github.com/lowRISC/ibex/blob/master/syn/README.md 
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Table 3. Artix-7 FPGA LUT utilization and estimated Nangate45 silicon area in thousands of NAND2 Gate 
Equivalents (kGE). Synthesis results for various system configurations; the plus sign (+) indicates the total area 
increase caused by the accelerator configuration in relation to the control unit on the top row. 

CPU+IX Keccak SHA2 SHA2 Keccak LUTs kGE 
RV32IMC “plain” -256 -512 TI3 XC7A100T Nangate45 

yes - - - - (3,023) (31.36) 
yes - yes - - +2,463 +32.03 
yes yes - - - +5,582 +41.72 
yes - yes yes - +5,942 +82.36 
yes yes yes - - +8.205 +73.52 
yes yes yes yes - +10,857 +123.99 

Full system, all SLH-DSA parameters: 14,428 155.35 

yes yes - - yes +21,826 +173.22 
yes yes yes yes yes +27,694 +254.48 

Full system with Three-Share TI Keccak: 30,717 285.84 

Table 4. RISC-V Firmware size of SLotH components. One can remove either SHA2 or SHAKE driver components 
if those are not required. Compiled with gcc version 13.2.0, flags -O2 -mabi=ilp32 -march=rv32imc. 

bytes file (source) Description. 
4,928 slh/slh_dsa.o SLH-DSA algorithm, common for all parameter sets. 
6,124 drv/sloth_sha2.o SHA2 parameters and SLotH SHA2-256/512 driver. 
3,299 drv/sloth_shake.o SHAKE parameters and SLotH Keccak driver. 
681 slh/sha2_256.o Plain SHA2-256 padding / C API. 
771 slh/sha2_512.o Plain SHA2-512 padding / C API. 
566 slh/sha3_api.o Plain SHA3/SHAKE padding / C API. 

16,369 total Complete SLH-DSA binary size, all 12 parameter sets. 

PCs. This is still a part of the distribution – one can run SLH-DSA without any hardware acceleration too 
(software implementations of SHA2 and SHAKE are included.) 

The co-design phase to develop hardware drivers was guided by quantitative analysis of SLH-DSA, end-
to-end Verilator benchmark tests, and profiling. The prototype system uses the reference KATs as self-tests; 
we adopted the NIST KAT generator (including its deterministic AES-based randombytes() component) on 
the target and uses checksums to match keys and signatures. To estimate audit effort, we note that the entire 
firmware (including self-tests, headers, etc) is about 7,060 lines of C code. 

Firmware structure and size. Many PQC algorithm implementations hard-code parameters into C macros, 
necessitating duplication of the entire implementation for different parameter sets. We wanted the same, com-
pact firmware to be able to run all parameter sets. Hence algorithm parameters are read from an object-like 
struct that also provides a function pointer abstraction (“methods”) for the optimized core hash functions. 
There is a performance penalty to this as function pointers hinder inlining and link-time optimization, but 
the resulting firmware is much more compact as a result, simultaneously supporting all 12 parameter sets 
(both SHA2 and SHAKE) in 16.4 kB (Table 4). Note that the optional side-channel countermeasures are in 
hardware and do not require much additional firmware support. 

For each parameter set, the drivers provide the numerical parameters themselves (n, h, d, h ′ , a, k, m), 
functions for creating a hardware context (including a direct-hardware pointer to an ADRS structure), core 
hash instantiations (Hmsg, PRF, PRFmsg, F, H, Tℓ). Some more complex primitives are also supported 
by the drivers: the Winternitz iteration of F in chain() [26, Alg. 4] in WOTS verification and a combined 
PRF + F operation for FORS key generation and signing [26, Algs. 5 and 6]. All instances of PRF utilize 
hardware-stored secret keys and automatic formatting (See Section 6.4.) 

The HAL used in the SLotH prototype is very primitive. As a closely coupled bare metal embedded system 
with a dedicated MCU, the “drivers” directly poke the control registers and wait for completion before issuing 
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new commands. This direct control helps to reduce latency and hence to maximize the utilization of the hash 
units. Note that the entire SHAKE block processing time is 24 cycles, which is less than the typical interrupt 
handler latency alone. Memory copying is minimized in critical sections by hardware formatting features, 
such as the direct ADRS registers. 

RAM Usage. The SLH-DSA signing process does not require much working memory beyond that for the 
signature itself, which can be almost 50 kB in size (Table 1). As noted in Section 2.2, there are potential 
techniques to externalize the computation of message hashing outside the SLH-DSA module itself. Unlike 
software countermeasures, hardware side-channel countermeasures do not significantly increase the RAM 
footprint. We measured the maximum additional stack depth (temporary working memory usage) of the 
SLH-DSA primitives to be 3,956 bytes required by the SLH-DSA-SHA2-256s signing function. 

5 Performance Analysis 

Table 5 contains end-to-end measurements of SLotH cycle counts for the high-level functions in FIPS 205 IPD 
[26]: Key Generation (slh_keygen, Alg. 17), Signature Generation (slh_sign, Alg. 18), Signature Verification 
(slh_verify, Alg. 19.) A short/single-block message M used for Sign and Verify benchmarking. All 12 variants 
tested pass a Known Answer Test comparison with an updated (“post-FIPS”) reference implementation of 
SPHINCS+. The benchmarked implementations didn’t deploy SCA or FIA countermeasures (See Table 6.) 

As the algorithms do not interact with platform-dependent components such as external memories, the 
cycle counts are the same for all synthesis targets (XC7A100T @ 100 MHz, XCVU9P @ 250 MHz, Nangate45 
@ 250 MHz). There is no reason to expect that higher-end technology nodes will not support substantially 
higher clock frequencies for this design. 

Table 5. Clock cycles for the current version of SLotH in end-to-end testing (average of 100 iterations.) We also 
include a clk/h metric, where we divide cycles by the number of high-level hash invocations (Table 2). We compute 
the same metric for Cortex M4 benchmarks from PQM4 [17] to illustrate the effect of custom SLH-DSA acceleration. 
For Cortex M4, its 12,000-cycle Keccak and 3,000-cycle SHA2-256 are evident. 

SLH-DSA-SHAKE-* 
SLotH (PQM4) 

SLH-DSA-SHA2-* 
SLotH (PQM4) 

Param. Func. clk average clk/h clk/h × clk average clk/h clk/h × 
128f KeyGen 

Sign 
Verify 

176,552 
4,903,978 
440,636 

39.3 
46.7 
71.1 

13294.6 
14140.2 
13405.8 

338.5 
302.5 
188.5 

358,494 
9,127,150 
691,186 

79.8 
87.0 

111.5 

3423.4 
3645.8 
3413.5 

42.9 
41.9 
30.6 

192f KeyGen 
Sign 

Verify 

284,238 
10,596,236 

711,431 

43.4 
62.7 
79.3 

13500.4 
14267.0 
13744.0 

310.8 
227.4 
173.4 

541,583 
23,726,217 
1,290,921 

82.8 
140.5 
143.9 

3461.1 
3786.0 
3670.8 

41.8 
26.9 
25.5 

256f KeyGen 
Sign 

Verify 

815,609 
23,660,226 

857,059 

47.5 
68.5 
94.9 

13702.4 
14089.4 
14098.8 

288.7 
205.6 
148.6 

1,454,706 
50,240,516 
1,419,466 

84.7 
145.5 
157.1 

3480.7 
3710.5 
3646.5 

41.1 
25.5 
23.2 

128s KeyGen 
Sign 

Verify 

11,180,642 
102,346,701 

179,603 

38.9 
46.8 
84.5 

13294.3 
13306.1 
13870.8 

342.1 
284.2 
164.2 

22,709,640 
190,085,952 

268,445 

78.9 
87.0 

126.2 

3424.5 
3429.0 
3369.9 

43.4 
39.4 
26.7 

192s KeyGen 
Sign 

Verify 

18,038,904 
263,100,826 

289,825 

43.1 
69.8 
94.7 

13497.4 
13492.5 
13620.7 

313.4 
193.2 
143.8 

34,280,105 
626,858,593 

641,048 

81.9 
166.4 
209.5 

3462.3 
3654.0 
3843.6 

42.3 
22.0 
18.4 

256s KeyGen 
Sign 

Verify 

13,003,653 
296,265,468 

469,973 

47.3 
90.3 

105.6 

13691.4 
13674.5 
13993.7 

289.5 
151.4 
132.5 

23,174,830 
696,201,400 

894,078 

84.3 
212.2 
200.9 

3465.4 
3750.9 
3756.7 

41.1 
17.7 
18.7 

PQM4: Cycles for SPHINCS+ simple, accessed Jan 20, 2024: https://github.com/mupq/pqm4/blob/master/ 
benchmarks.csv 
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5.1 Comparison with Other Hardware Accelerators 

To our knowledge, SLotH is the first implementation that supports all SLH-DSA parameters and features. 
The SHA2+ hardware accelerator reported in [29] is of comparable size and application target (OpenTitan 
Secure Boot), but requires 4.95M cycles for verification with the 256s parameter set. SLotH verification is 10× 
faster with 0.469M cycles using the SHAKE hash function, and 5× faster at 0.894M cycles using the SHA2 
hash functions. Since both designs use a 64-cycle SHA2-256 core, the differences are very likely explained by 
overhead and underutilization caused by firmware bottlenecks and the lack of hash formatting automation 
features that SLotH provides. 

Early SPHINCS+ FPGA work reported in [2] did not support either SHA2 or SHAKE. The SPHINCS+ 

implementation reported in [3] is faster than SLotH, but is also larger by a factor of 10, requiring roughly 
50,000 Artix-7 LUTs for SHAKE-only parametrizations. Furthermore, it is unclear if it can support more than 
one parameter set without hardware re-configuration. Such a design is more suitable for an HSM appliance 
or a network accelerator than for a RoT. 

5.2 Comparing SHAKE and SHA2 Variants 

The clk/h measure divides the clock count with the total number of high-level hash function invocations 
in Table 2. These do not correspond exactly to hash-algorithm-dependent core functions, namely Keccak 
permutations or SHA2 compression function calls. However, using the same hash counts allows us to compare 
the SHA2 and SHAKE variants with each other. Recall that the Keccak permutation is 24 rounds/cycles 
while SHA2-256 compression is 64 rounds/cycles. We can observe the rough 64-24 = 40 cycle difference in 
most clk/h measurements, albeit differing details in hash instantiation (Fig. 1) throw the difference up or 
down. We note that higher-security variants also require more memory copying (as each hash is n=24 or 32 
bytes rather than 16 bytes), which increases the clk/h number for them. 

5.3 Comparison to Microcontroller SLH-DSA 

Table 5 also includes Cortex M4 clk/h numbers derived from the PQM4 benchmarks [17], which serve to 
illustrate the performance situation on a security controller without dedicated acceleration. The SHAKE 
variants are up to 300× faster, while up to 40× acceleration is achieved for SHA2. 

It can be easily seen that the roughly 12,000-cycle Keccak permutation and 3,000-cycle SHA2 compres-
sion functions completely dominate the clk/h metric for a plain Cortex M4 implementation. In such an 
implementation there are only small relative gains available from fine-tuning higher-level components or 
padding steps – but these aspects immediately become obvious bottlenecks when the time required for core 
hash function computation decreases to 0.2% (SHAKE) or 2% (SHA2) of the original. 

5.4 Note on Application-Class Processor Performance 

SLotH is a small-area design intended to be integrated with an embedded security controller rather than 
with a SIMD/Vector-capable main application core, but its cycle counts are significantly better than those 
reported for corresponding parametrizations of SPHINCS+-simple on x86-64 in [4, Section 10]. There, 56.9M 
cycles is reported for SPHINCS+-SHAKE-128f-simple signing with AVX2; SLotH performs the same task in 
4.9M cycles, despite a vast area difference. 

6 Side-Channel and Fault Injection Countermeasures 

It is clear that randomized signing makes side-channel attacks much more difficult to mount, so this must 
be the default in all high-security applications. Timing attacks are not a great concern for SLH-DSA, as 
conditional branching and memory access patterns are dependent on non-secret authentication paths; they 
are revealed by the signature and known to a verifier. 

As already noted in Sections 2.3 and 2.4, the main target for SLH-DSA leakage countermeasures is the 
PRF function, as it directly handles secret variables. 
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6.1 Side-Channel Attacks 

In [16] Kannwischer, et al. performed a side-channel analysis of an early precursor of SLH-DSA (with a 
BLAKE hash component). The work describes attacks on its PRF component. It is easy to see that the 
same considerations extend to SLH-DSA. We performed a fixed-vs-random TVLA assessment [7,15] against 
the master secret SK.seed. Other key components were randomized. Fig. 5 shows leakage from SLH-DSA-
SHAKE-128f in an unaccelerated version that computes hashes with the (RISC-V) CPU. 

Since such an implementation is very slow, we simply aborted the signing process after 2ms, enough 
to contain the first PRF invocation (which is located in fors_sign/fors_SKgen.) Leakage from SK.seed was 
rapidly evident, with t value reaching 24.5 in 1,000 traces. The thousands of subsequent PRF calls required 
for each signature would have created similar spikes. We note that leakage from these PRF calls can be 
combined in a horizontal attack as they all use the same SK.seed. 

|t| > 24.5 

+6.42 
+4.50 

+4.50 
−6.42 

Fig. 5. A TVLA test of a processor implementation of SLH-DSA rapidly shows a leak of SK.seed secret key material. 
In this t-trace we captured the initial 73k cycles of the signing process, containing the first SHAKE256 PRF call. 
Maximum t value reaches 24.5 already in 1,000 traces. The SHA2-256 PRF exhibits similar leakage behavior. 

6.2 Masking and Threshold Implementations 

In SLH-DSA, some other variables besides the secret key SK itself are also sensitive, although randomization 
helps to protect them to a degree. Since low members of hash chains (Section 2.4) can be used in forgery 
attacks, SLotH protects F hash chains that follow a PRF (these operations are combined and automated.) 
We do this in WOTS signing and public key generation to protect the entire chain computation. We also 
mask the “address fixing” F that follows PRF in FORS signing (line 8 of Alg. 14, fors_node in [26].) 

Side-channel protections are somewhat easier to introduce for Keccak than for SHA2, as the relevant 
techniques such as Threshold Sharing are well-established [9,12]. We observe only a minor performance 
penalty when using these techniques (Table 6), but the area of the TI Keccak unit is very large (Table 3.) 

The current SLotH implementation does not support side-channel countermeasures for SHA2 variants. 
One large complication in SHA2 masking is caused by the continuous mixing of addition and XOR operations 
in the algorithm. This requires conversions or Boolean-domain additive arithmetic, which are costly. It 
appears that masking or other comparable countermeasures will slow down SHA2 significantly more than 
the SHAKE variants. 

We note that the public key component PK.seed is used in virtually every hash, and shows up as false 
positive leakage in a fixed-vs-random keypair test [28,7,15]. Hence our fixed-vs-random test fixes only the 
secret key SK.seed and randomizes other components. Recall that three of the four components in the SLH-
DSA key (Eq. (2)) are generated randomly, while PK.root is derived from the others. The variable PK.root 
is not explicitly needed for signature generation. 

For positive assurance, we perform a leakage assessment of the SLH-DSA-SHAKE-128f signing function 
with the TI Keccak module. Fig. 6 shows the result of N = 100, 000 traces with L = 5, 950, 239 data points 
each; TVLA hence consists of L independently computed instances of Welch’s t-test. Since the number of 
tests is very large, using the traditional critical value C = 4.5 would cause false positives [31]. We adjust 
the critical value based on trace length L using the Mini-p procedure from Zhang et al. [13], leading to 
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Table 6. Clock cycles for protected SLotH (TI Keccak) in end-to-end testing (average of 100 iterations.) Verification 
time is included for completeness (as masking is not used.) The 20-30% overhead comes mainly from setting up and 
collapsing masked outputs. 

Parameter Set KeyGen Sign Verify 

SLH-DSA-SHAKE-128f 
SLH-DSA-SHAKE-192f 
SLH-DSA-SHAKE-256f 
SLH-DSA-SHAKE-128s 
SLH-DSA-SHAKE-192s 
SLH-DSA-SHAKE-256s 

212,223 +20.2% 
354,577 +24.7% 

1,004,496 +23.2% 
13,456,593 +20.4% 
22,530,331 +24.9% 
16,022,620 +23.2% 

5,958,477 +21.5% 
13,789,144 +30.1% 
30,395,303 +28.5% 

125,533,357 +22.7% 
348,715,357 +32.5% 
391,246,520 +32.1% 

440,636 
711,431 
857,059 
179,603 
289,825 
469,973 

C = 7.06. The maximum spike in testing was |t| = 5.00. As with other tests in this paper, we used the 
XC7A100T FPGA chip of a CW305 board, and measured power traces from the board with a PicoScope 
2208B oscilloscope. The sampling frequency was the same as the clock frequency of the target FPGA, 31.25 
MHz. 

max |t| = 5.00 

+7.06 

+4.50 

−4.50 

−7.06 

Fig. 6. 100,000 traces of the core signing process (5.95M cycles, one sample per cycle at 31.24MHz) has a maximum 
spike of |t| = 5.00, which is below the long-trace adjusted critical value C = 7.06. 

6.3 Custom PRF Hardening Options 

The thousands of “secret key expansion” PRF calls are modeled as random bits in SLH-DSA security 
proofs and as long as PRF produces deterministic outputs at given addresses (ADRS), SLH-DSA works. 
Matching PRF output values need to be used for public key generation too, of course, but the verification 
process will not require any modification if PRF is changed. Since signature and public key formats are 
unmodified, a signing module hardened this way is externally interoperable and can be used transparently 
in most SLH-DSA applications. 

Hence, if deviance from the specification of the signing function is allowed, one can consider using a secure 
Keccak-based PRF implementation with otherwise SHA2-based SLH-DSA or replacing the PRF function 
with something completely different. For example, using different secret seed values at different parts of 
the algorithm reduces the exposure in attack compared to directly using the same master value SK.seed in 
thousands of hashes [6]. One can also consider using a custom-designed side-channel secure PRF component. 

6.4 Practical Security Considerations 

We note that SLotH offers a substantial security improvement over all CPU-based implementations even if 
masking is not used. This is because the master secret key SK.seed is held in a hardware register: KECC_SKSD 
for Keccak (Table 7) and S256_SKSD for SHA2 (Table 8). The Threshold Implementation further splits it 
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into three Boolean shares (SK.seed = KTI3_SKSA ⊕ KTI3_SKSB ⊕ KTI3_SKSC) that are continuously refreshed 
(Table 7). 

Even without masking, the firmware component can forget SK.seed after it has been loaded into a SLotH 
hash unit once. The hardware always uses it as a whole, loading it into the respective hash engines in a single 
cycle for PRF computation, where it is very rapidly processed. Hence an attacker gains significantly less 
information than from a CPU implementation that spends many cycles processing each key word separately, 
resulting in leakage as shown in Fig. 5. In such a single-cycle hardware register load, the main dynamic 
power “toggling” comes for the state change of the 1600-bit Keccak register or 512-bit SHA2-256 message 
block; essentially the Hamming distance between the final state of the previous hash computation and the 
new PRF input message block. This significantly complicates key recovery attacks in practice. 

Hence from a practical viewpoint, even unmasked SLotH gives substantial side-channel protection due 
to its secret key management, very wide data paths, and fast speed. Fig. 7 contains a TVLA evidence of 
N = 10, 000 traces with the unmasked Keccak module, without the “plaintext key load” initialization step. 

max |t| = 4.80 
+7.03 

+4.50 

−4.50 

−7.03 

Fig. 7. 10,000 traces of the core signing process (SLH-DSA-SHAKE-128f) has a maximum spike at |t| = 4.80, which 
is below the critical value C = 7.03 with 4.91M time points . The secret keys are entirely handled by hardware, 
reducing their exposure to side-channel attacks. 

6.5 Redundancy for Fault Injection Protection 

As discussed in [10,3] and further emphasized by recent work by Genêt and others [14,30], SLH-DSA is 
surprisingly fragile against Fault Injection Attacks (FIA). Since such attacks are highly relevant for the 
RoT applications where SLotH is intended, redundancy is required. The relatively small size of SLotH allows 
one to instantiate two or more copies of it in hardware. To counter targeted faults and dual-fault attacks, 
each instance should be independently randomized, and special care must be taken when implementing 
cross-checks. We leave this for future work. 

7 Conclusions 

We have described SLotH, a new open-source accelerator designed specifically to support FIPS 205 SLH-
DSA [26] in SoC Root-of-Trust (RoT) systems. SLotH supports all 12 parameter sets of the new standard 
and offers approximately two orders of magnitude faster performance when compared to a RoT without 
acceleration. We observe that one can make SLH-DSA 10× faster simply by making a fast hardware hash 
function available [29], but to make it 100× faster, one needs to design and optimize the software-hardware 
control specifically for SLH-DSA. However, this does not greatly increase the hardware area. 

With these optimizations, SLH-DSA signature verification (required for RoT-supported secure boot) is 
arguably faster and more energy efficient than the corresponding functionality provided by ML-DSA [24] or 
ECDSA [23] accelerators of comparable size. For example, the OpenTitan Big Number (OTBN) accelerator¶ 

¶ OpenTitan Big Number performance: https://opentitan.org/book/hw/ip/otbn/doc/otbn_intro.html 
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performs ECDSA P-256 signature verification in 420,220 cycles, while SLH-DSA-SHAKE-128s verification 
with SLotH is 179,603 cycles. Similarly, 1,075,092 cycles are reported for ECDSA-P384 verification with 
OTBN, while SLH-DSA-SHAKE-192s verification with SLotH is 289,825 cycles. 

The SLotH control firmware has been newly developed to reduce memory copying and other CPU bot-
tlenecks that become apparent when core hash function computation no longer dominates the overall cycle 
count. SLotH also has reduced firmware/ROM size as the same high-level (portable) algorithm code is shared 
by all variants and parameters are not hard-coded into macros. Firmware that supports all parameter sets 
fits into 17 kB, while 64 kB of working RAM is sufficient to run the algorithms and hold SLH-DSA signa-
tures (that can be up to 50 kB in size). The co-design remains relatively compact in terms of hardware area, 
containing only one instance of each hash compression function; the speed-up compared to prior works is 
achieved mainly by optimizing their utilization. Category 1 SLH-DSA-SHA2 unit (with SHA2-256 only) is the 
smallest configuration (32.03 kGE in addition to the CPU), but SHA2-512 support required for high-security 
(Category 3 and 5) SLH-DSA-SHA2 increases the area requirement to 82.36 kGE. The high-performance 
Keccak unit supports all parameter sets with an area requirement of 41.72 kGE. 

We also offered an analysis of the sensitivity of SLH-DSA signing against power and electromagnetic 
side-channel attacks and suitable countermeasures to protect against them. We first demonstrated the vul-
nerability of CPU-based SLH-DSA implementations by showing SK.seed secret key leakage from the PRF 
function. We then perform a TVLA leakage assessment of our protected implementation with N = 100, 000 
traces of the full signing function. We further consider the practical security increase obtained by hardware 
key management of SLotH even when masking is not used, and special design ideas such as a “custom PRF” 
which still has interoperable signature verification. 

We note that SLH-DSA has an especially strong requirement for redundancy and careful consistency 
checking due to the fragility of the scheme against fault injection attacks [14,30]. We are working to create 
functionally duplicated, redundant instances of SLotH for this purpose, which requires special considerations. 
However, the self-contained nature and compact size of SLotH makes this a feasible option. 

Hardware and firmware source code of SLotH is available from: https://github.com/slh-dsa/sloth 
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Table 7. Register map for SLotH’s unmasked and masked Keccak units (Section 3.1). 

Register Name Offset Brief description 
KECCAK_BASE_ADDR 
KECC_MEMA 
KECC_ADRS 
KECC_SEED 
KECC_SKSD 
KECC_MTOP 
KECC_CTRL 

KECC_STOP 
KECC_SECN 
KECC_CHNS 

(0) 
0x0000 
0x00c8 
0x00e8 
0x0108 
0x0128 
0x01e0 

0x01e4 
0x01e8 
0x01ec 

Base address, in prototype 0x15000000. 
1600-bit Keccak permutation input-output state A. 
32-byte ADRS structure for hash formatting. 
Public key variable PK.seed for hash formatting. 
Secret key SK.seed for PRF computation. 
End of data / state register space. 
Control and status: Write 0x01 to start raw Keccak 
f1600, read for status (0x00=ready). 
Round count (for TurboShake / KangarooTwelve). 
Security / field length write n ∈ {16, 24, 32}. 
Iteration count & trigger for hash chaining. Set to s 
for s iterations. Set to 0x40 + s for PRF + hashes. 
Set to 0x80 to perform initial padding for H or Tℓ. 

Register Name Offset Brief description 
KECTI3_BASE_ADDR (0) Base address, in prototype 0x14000000. 
KTI3_MEMA 0x0000 1600-bit Keccak permutation input-output state A. 
KTI3_MEMB 0x00c8 Keccak secret state share B. 
KTI3_MEMC 0x0190 Keccak secret state share C. 
KTI3_ADRS 0x0260 32-byte ADRS structure for hash formatting. 
KTI3_SEED 0x0280 Public key variable PK.seed for hash formatting. 
KTI3_SKSA 0x02a0 Secret key SK.seed for PRF, Share A. 
KTI3_SKSB 0x02c0 Secret key SK.seed share B. 
KTI3_SKSC 0x02e0 Secret key SK.seed share C. 
KTI3_MTOP 0x0300 End of data / state register space. 
KTI3_CTRL 0x03c0 Control and status: Write 0x01 to start raw Keccak 

f1600, read for status (0x00=ready). 
KTI3_STOP 0x03c4 Round count (for TurboShake / KangarooTwelve). 
KTI3_SECN 
KTI3_CHNS 

0x03c8 
0x03cc 

Security / field length write n ∈ {16, 24, 32}. 
Iteration count & trigger for hash chaining. Set to s 
for s iterations. Set to 0x40 + s for PRF + hashes. 
Set to 0x80 to perform initial padding for H or Tℓ. 
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Table 8. Control registers for SLotH SHA2-256 and SHA2-512 units (Section 3.2). 

Register Name Offset Brief description 
SHA256_BASE_ADDR (0) Base address, in prototype at 0x16000000. 
S256_HASH 0x0000 32-byte hash chaining variable (IV/output). 
S256_MSGB 0x0020 64-byte message block input. 
S256_SEED 0x0060 Precomputed result of processing a zero-padded 

PK.seed block (for formatting). 
S256_ADRS 0x0080 32-byte ADRS structure. Automatically compressed 

into 22-byte ADRSc for message formatting. 
S256_SKSD 0x00A0 Secret key SK.seed for PRF computation. 
S256_MTOP 0x00C0 End of main data/register state. 
S256_MSH2 0x0100 Start of 2-byte offset alignment mirror. 
S256_CTRL 0x01e0 Control: Write for trigger (0x01 to start Keccak, 

0x02 to start chain iteration, 0x03 for PRF + 
chain.) 

S256_SECN 
S256_CHNS 

0x01e8 
0x01ec 

Security / field length parameter n ∈ {16, 24, 32}. 
Iteration count for Winternitz chain (not a trigger.) 
Set to 0x00 to only perform state formatting. 

Register Name Offset Brief description 
SHA512_BASE_ADDR 
S512_HASH 
S512_MSGB 
S512_MTOP 
S512_MSH2 
S512_CTRL 

(0) 
0x0000 
0x0040 
0x00c0 
0x0100 
0x01e0 

Base address, in prototype at 0x17000000. 
64-byte hash chaining variable (IV/output). 
128-byte message block input. 
End of main data/register state. 
Start of 2-byte offset alignment mirror. 
Control: Write 0x01 to trigger the compression 
function. Read for status (0x00 = done.) 
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