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Number theoretic problems for public-key crypto

For about 40 years, we’ve been used to having:

Integer Factorization (IF)
Compute prime factors p and q of a large composite integer N.
and (finite field) discrete logarithms (FF-DLP)
Compute x such that gx = a given some p, and a, g ∈Z/pZ×.

as prominent mathematical problems for public-key cryptography.
Hardness of IF is the security assumption behind RSA, FF-DLP backs Diffie-Hellman,
DSA, and others.
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Still relevant ?

Myth: this is all quaint, everybody uses EC or even PQ crypto by now.
Fact: pervasive software and hardware do rely on IF and DLP: TLS, SSH, IPsec, code
signing, . . .

. . . now and for quite a few years to come.
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How does one choose key sizes?

Tricky questions for public-key crypto
How does one assess the hardness of cryptanalysis, for key sizes that are (fortunately)
out of its reach?
How does one make this assessment convincing?

Several possible strategies (non-exclusive).

Use complexity formulas for the best known cryptanalytic methods, and
extrapolate from known computations.
Simulate the cryptanalysis algorithms, and deduce the cost of cryptanalysis now
and tomorrow.
Improve implementations of algorithms, an demonstrate how/if they can scale.
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Summary of NFS

To factor an integer N, or to compute discrete logs in F×
p , we use

The Number Field Sieve (NFS).

The NFS algorithm (1990) easily fills a one-semester graduate course.

N

polynomial
selection

sieving filtering linear
algebra

square
root

p, q
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Complexity of NFS

The time it takes to run NFS
The complexity C(N) of NFS to factor an integer N is

C(N) = LN(1/3, (64/9)1/3)1+o(1),

with LN(1/3, (64/9)1/3) = exp
(
(64/9)1/3(log N)1/3(log log N)2/3

)
.

Computing discrete logs in Fp for p ≈ N can be done with mostly the same algorithm,
with the same first-order asymptotic estimate.
We’ll come back to this formula later.
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Simulation

The major obstacle to simulating NFS is that the algorithm has many steps, with
diverse computational requirements.

Back-of-the-envelope simulations, or claims resembling “in theory, I could do
that” are rarely taken seriously.
Technological stumbling blocks are easily cited as reasons to not believe the
simulation results (memory access cost, wafer size for ASIC designs, . . . ).
In record computations, the size of intermediate data is quite often badly
anticipated. The credibility of simulations and predicted running times is affected
by this.
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We need hard facts

Predictions should be based on state-of-the-art software implementation performance.
We need actual software that is fit for large sizes, together with convincing
computational results.

Explore algorithmic ideas that pay off only for large sizes.
Explore scalability, try to address stumbling blocks.
Harness large computing power, show that this is more than just theory.
Make our work reproducible.
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In this talk

State of the art of NFS calculations: how?
Is it just about Moore’s law?
Where can we go from there?

Large-scale computations for PKC 9/34



State of the art

Integer factoring:
RSA-250 (829 bits) factored in February 2020, approx. 2900 core-years;
RSA-240 (795 bits) factored in November 2019, approx. 1000 core-years;
A 232-digit modulus (RSA-768) factored in December 2009, approx. 1500 core-years.

Discrete logarithms in prime fields:
a 240-digit (795 bits) prime: in November 2019, approx. 3100 core-years.
a 232-digit prime (768 bits) prime: in June 2016, approx. 5300 core-years.
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Summary of NFS

N

polynomial
selection

sieving filtering linear
algebra

square
root

p, q

Computational requirements are diverse.

Sieving (relation collection) is the most expensive. It can be massively distributed.
(Sparse) Linear algebra comes second.
It is somewhat cheaper, but needs expensive hardware.
There are also many auxiliary tasks.
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What kind of relations does NFS collect?
Polynomial selection finds f with a known root m mod N.
Let Q(α) be the number field defined by f .

Bird’s eye view of strategy for factoring

Search for pairs of integers (a, b) such that

a − bm
(an integer) and a − bα

(ideal in Q(α), of norm Res(a − bx , f (x)))

are both smooth: they factor into small things. Pairs yield relations.
Combine relations so that all multiplicities are even.
We (almost) have squares on both sides.
With further (easy) work, we find many equalities of squares: u2 ≡ v2 mod N
leads to factors of N with probability at least 1

2 .
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Relations in NFS

Relations in NFS
Most of NFS is about collecting:

pairs of integers (a, b)
such that two integers derived from (a, b) are smooth.

How do we achieve this for larger and larger problem sizes?
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Factoring large numbers?

Fantasy: NFS is like a RC airplane.

You power it up, it flies.
If you want it to fly higher, the same
plane will do.
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Factoring large numbers?

Reality: NFS is more like an airliner.

LOTS of controls.
Toggling them at random does not get
you very far.
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Record computations

In contrast with computations that you hope can be one-man efforts with modest
resources, record computations are inherently more heavy.

Software has to include special-purpose stuff:
hardware platforms for large computations are not necessarily the same as the
resources in a university basement;
some improvements start to pay off only for large sizes;
for a record computation, we’re certainly willing to trade usability for performance.

How the software gets run is sometimes an important part of the story.
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cado-nfs

Enter cado-nfs, a complete, entirely original implementation of NFS.

Work started in 2007.
Open development on gitlab/github. LGPL license.
As of today, about 275,000 lines of code (excluding generated code), about
18,000 commits.
Three main authors (PG, ET, PZ), and many contributors.
Has been able to tackle record computations since around 2015.
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Free software for record computations: why?

Motivation for doing this with freely available code, which others rarely do (if ever):

Reproducibility. Data for the latest RSA-240, DLP-240, RSA-250 is online.
Software can be used by other record computations that use slightly different
methods, but otherwise a similar framework.
Even if not for computing records, having a tool that aims high is a good way to
show that some old key sizes are really truly broken.
Or just “for parts”. Carry building blocks of cado-nfs to other areas (and also the
other way around).
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Collecting relations

Relation collection is the most expensive step of NFS.

Description of relation collection

1. How do we divide the work?
2. How do we find smooth a − bm and a − bα?
3. How do we choose parameters so that the cost of linear algebra remains under

control?
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1. (many) needles in a (huge) haystack

Searching a space of size (say) 265 takes long.

Trivial strategy (loop over a, then b) has unstable yield and does not work well.
Better: constrain a factor q in one of the factorizations.

Independent tasks per q.
Yield is stable.
The prescribed factor is one thing less to find!

(old folklore; records have been doing this for decades.)
(⇒ special-q sieving, lattice sieving, sieving by vectors.)
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2. Finding smooth (a, b)

We fix some q.
We explore many (a, b) such that q appears somewhere (it is a lattice in Z2).

We want a − bm and a − bα to be smooth.
The strategy depends on potential prime factors p in these factorizations.

A prime should appear either often, or very rarely.

below some bound, for p < B, strive to find all pairs (a, b) such that p appears.
We typically use sieving. So-called bucket sieving is key.
“large primes” (LPs) such that B ≤ p < L are allowed if we happen to find them.
We limit to a few such LPs per relation (e.g., 2, sometimes 3).
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The relations that we like to see

52 · 11 · 23 · 287093 · 870953 · 20179693 · 28306698811 · 47988583469 23 · 5 · 7 · 13 · 31 · 61 · 14407 · 26563253 · 86800081 · 269845309 · 802234039 · 1041872869 · 5552238917 · 12144939971 · 15856830239

3 · 1609 · 77699 · 235586599 · 347727169 · 369575231 · 9087872491 23 · 3 · 5 · 13 · 19 · 23 · 31 · 59 · 239 · 3989 · 7951 · 2829403 · 31455623 · 225623753 · 811073867 · 1304127157 · 78955382651 · 129320018741

5 · 1381 · 877027 · 15060047 · 19042511 · 11542780393 · 13192388543 24 · 5 · 13 · 31 · 59 · 823 · 2801 · 26539 · 2944817 · 3066253 · 87271397 · 108272617 · 386616343 · 815320151 · 1361785079 · 12322934353

23 · 52 · 173 · 971 · 613909489 · 929507779 · 1319454803 · 2101983503 27 · 32 · 5 · 29 · 1021 · 42589 · 190507 · 473287 · 31555663 · 654820381 · 802234039 · 19147596953 · 23912934131 · 52023180217

22 · 15193 · 232891 · 19514983 · 139295419 · 540260173 · 606335449 22 · 34 · 13 · 19 · 74897 · 1377667 · 55828453 · 282012013 · 802234039 · 3350122463 · 35787642311 · 37023373909 · 128377293101

22 · 54 · 439 · 1483 · 13121 · 21383 · 67751 · 452059523 · 33099515051 22 · 33 · 11 · 13 · 19 · 5023 · 3683209 · 98660459 · 802234039 · 1506372871 · 4564625921 · 27735876911 · 32612130959 · 45729461779

small primes: abundant → dense column in the matrix
large primes: rare → sparse colum, limit to 2 or 3 on each side.
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small primes: abundant → dense column in the matrix
large primes: rare → sparse colum, limit to 2 or 3 on each side.
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3. Paying attention to the combination cost

Relations with 2 LPs or less are a blessing.

They easily participate in cheap combinations.
If we have many 2-LP relations, filtering will get rid of most of them.
We are left with a number of primes to combine that is roughly the number of
primes below B.
Caveat: two sides to deal with.

We must pay attention to q as well! How does it compare to B?
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Strategy for RSA-240

q

229.6
0.8e9

231
2.1e9

B

232.8
7.4e9

236
69e9

L
q < B: allow

2 LPs on side 0,
3 LPs on side 1.

B ≤ q < L: allow 2 LPs on each side.
(q counts as an extra LP on side 1.)

This strategy makes it easy to get rid of most p ≥ B on side 0 before we enter linear
algebra proper.
We still have many on side 1, but that is not too bad because linear algebra in the
factoring context is reasonable.
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Strategy for DLP-240

For DLP-240, we used composite q.

q

213
8e3

226.5
1e8

229
0.5e9

B

235
34e9

L

237.1
150e9

238.1
300e9

qi , qj
(prime factors of q)

q = qiqj
Allow 2 LPs on each side.
(Factors of q are not LPs.)

This strategy reduced the combination work to essentially primes p < B only.
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Summary of important choices

For relation collection:

Choose range of special-q wisely.
Vary the number of LPs depending on whether q ≤ B or q > B.
For dlog, consider composite special-q.

In addition, we combine with batch smoothness detection, which we can use as an
alternative to sieving on one of the two sides.
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Sparse linear algebra
The matrix is always large and very sparse.

2019: 795-bit factoring: 282M rows/cols, density ≈ 200. ⇒212G
2019: 795-bit DLP: 36M rows/cols, density ≈ 250. ⇒68G
2020: 829-bit factoring: 405M rows/cols, density ≈ 250. ⇒382G

Note: we’re dealing with exact linear algebra here.

The block Wiedemann algorithm allows reasonable
scaling performance on HPC clusters.

Scaling to 8,000 cores and slightly beyond works ok.
Running time is very predictable.
Nothing is automatic, though.

26 27 28 29 210 211 212 213 214 215 216
cores22

23

24

25

26

27

28

29

210

211

212

time to solution (days)

n=48
n=32
n=24
n=16
n=8
n=4
n=2
n=1
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Bringing it to scale

A record computation is a several-month journey.

On a large, single computing infrastructure with coherent policy and tools, it can
be relatively “easy” to keep track of the progress of the computation.
On the other end of the spectrum, the approach “try to see what we can do with
computing power that we can get for free” inevitably puts pressure on the
bookkeeping task. It takes a group of crazy academics to do such things, but this
model is not tenable much further.

Terabytes of data, zillions of files, many possibilities of transient failures, many
hardware/software/policy idiosyncrasies.
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Comparing factoring and DLP

Integer factoring:
RSA-250 (829 bits) in 02/2020, ≈2900 core-years, matrix 405M;
RSA-240 (795 bits) in 11/2019, ≈1000 core-years, matrix 282M;
A 232-digit modulus (RSA-768) in 12/2009, ≈1500 core-years, matrix 193M.

Discrete logarithms in prime fields:
a 240-digit (795 bits) prime in 11/2019, ≈3100 core-years, matrix 36M;
a 232-digit prime (768 bits) prime in 06/2016, ≈ 5300 core-years, matrix 23M.

Lesson #1: progress is not about Moore’s law
We measured how long our 240-digit DLP computation would have taken on hardware
identical to hardware that was used for the 232-digit computation from 2016:

About 25% less time, even though it is a priori ≈ 2.25× harder.
This is akin to a 3-fold speedup on identical hardware.
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Comparing factoring and DLP

Integer factoring:
RSA-250 (829 bits) in 02/2020, ≈2900 core-years, matrix 405M;
RSA-240 (795 bits) in 11/2019, ≈1000 core-years, matrix 282M;
A 232-digit modulus (RSA-768) in 12/2009, ≈1500 core-years, matrix 193M.

Discrete logarithms in prime fields:
a 240-digit (795 bits) prime in 11/2019, ≈3100 core-years, matrix 36M;
a 232-digit prime (768 bits) prime in 06/2016, ≈ 5300 core-years, matrix 23M.

Lesson #2: factoring vs DLP
Unlike what is commonly thought, DLP is not a LOT harder than factoring.

Sure, linear algebra is harder.
But much better number fields can be chosen.
Adequate parameter choices can balance these effects.
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Comparing factoring and DLP

Integer factoring:
RSA-250 (829 bits) in 02/2020, ≈2900 core-years, matrix 405M;
RSA-240 (795 bits) in 11/2019, ≈1000 core-years, matrix 282M;
A 232-digit modulus (RSA-768) in 12/2009, ≈1500 core-years, matrix 193M.

Discrete logarithms in prime fields:
a 240-digit (795 bits) prime in 11/2019, ≈3100 core-years, matrix 36M;
a 232-digit prime (768 bits) prime in 06/2016, ≈ 5300 core-years, matrix 23M.

Lesson #3: this scales

Relation collection scales at will.
Linear algebra scaling results are very good.
Running over 8,000 cores is easy today, maybe significantly more tomorrow?
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Recall: complexity of NFS

Our primary question was:
How hard is 1024-bit RSA? 1024-bit DLP? How hard are 1536-, 2048-bit, . . . ?

The time it takes to run NFS
The complexity C(N) of NFS to factor an integer N is

C(N) = LN(1/3, (64/9)1/3)1+o(1),

with LN(1/3, (64/9)1/3) = exp
(
(64/9)1/3(log N)1/3(log log N)2/3

)
.

Can we extrapolate based on this formula + experimental data?
E.g., can we take o(1) = 0 and work from there?
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Is LN(1/3, c)1+o(1) a useful estimate?

log / log-plot of LN(1/3, c):

LN(1/3, c)1+o(1) can be weird.

E.g., o(1) = sin log log N
log log N

Worse, NFS does have some
oscillatory behaviour
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o(1) is not zero!

Blindly relying on the L(1/3, c) formula by setting o(1) = 0 is actually dangerous.

Analytic number theory does not help.
o(1) is the error term of a series that diverges for all practical values of N.
The methodology is not sound. There is hardly any justification to relying on an
L(1/3, c) fit rather than a linear or quadratic fit, really.
Transitions such as when the degree of number fields used in NFS-DL goes from 4
to 5 can be dramatic. It turns out that 5 is not quite +∞ yet.

Lesson #4
I do not give any credence to far-fetched extrapolations of NFS hardness.
(Up to 1024-bit, existing software can give estimates. Beyond that, all bets are off).
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How about the quantum threat?

Of course, Shor’s algorithm breaks both factoring and DLP. My personal take:

No significant factoring or DLP challenge will be first broken by quantum
computers before at least a few decades.
The sheer computing power of state-level adversaries is a much more concrete risk
that should be taken seriously!

PQ is on the verge of being deployed everywhere.

How long will it take? Deploying the full set of Kyber + Dilithium + Falcon +
Sphincs (for best PQ interoperability) is not a mundane task: variety is likely to
put off full transition by many years.
I’m slightly worried that in the meantime, the repeal of RSA and DLP from
public-key crypto hasn’t happened as fast as it should have (if at all).
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On to larger sizes?

We might not see many further record computations done with NFS.

Gathering disordered resources as academics often do won’t scale much further.
It’s a formidable amount of work for just one paper or two.
Environmental footprint of large scale computing is often brought up.
Landmarks such as 1024 bit remain attractive, though.
IMO, the most important message to convey is that IT SCALES.

Factoring and DLP have been studied for long but a breakthrough cannot be ruled out.

I doubt THE complexity of factoring is something as weird as L(1/3, c + o(1)).
A good share of public-key crypto might be hanging from a cliff.
A breakthrough would be mostly unnoticed if the author does not disclose it.
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