Combining Cryptography and Other Techniques for Various Privacy-Preserving Applications

Mariya Georgieva Belorgey, Sergiu Carpov

Presented at the NIST Crypto Reading Club on 2024-May-15

Privacy-Enhancing Technologies

Privacy-Enhancing Technologies (PETs)

Primary Goal:

They enable the computation of an arbitrary function without revealing the input data.

Examples of PETS

- Fully Homomorphic Encryption (FHE)
- Secure Multi-Party Computation (MPC)
- Federated Learning (FL)
- Differential Privacy (DP)
- Trusted Execution Environments (TEEs)

PETs use-cases

Physics/Astronautics

- Predict trajectories: are satellites on a collision course?
- Iridium 33 and Kosmos-2251 Satellite Collision in 2009
- Need to evaluate non-linear functions with high precision on secret trajectories

Medicine/Genomic

- Predictive healthcare
- Find the right dosage for a cure
- Need to evaluate/train machine learning algorithms on secret medical data

Finance/Banking

- Fraud detection, risk scoring
- Investment Banking and Hedge Funds
- Detect loops in transaction graphs

Input vs Output Privacy

Input Privacy

Allows forward computation from input data without disclosing it.

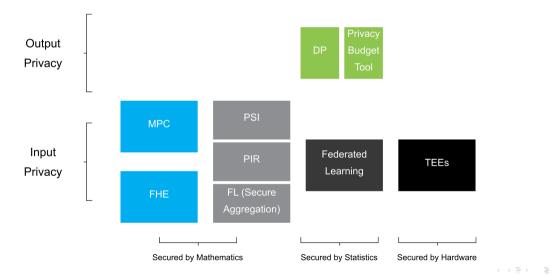
Output Privacy

Privacy prevents backward inference from disclosed output results.

うてん 正 エルチャルボチュー

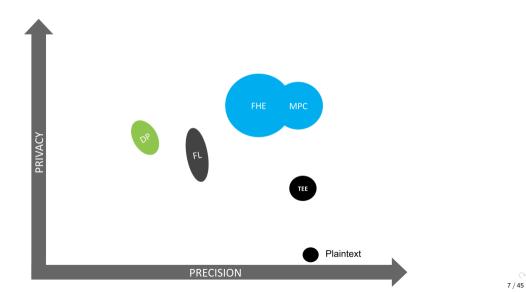
Privacy-Enhancing Technologies

PETs



*inspired by N. Smart

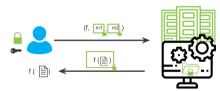
PETs



Given ciphertexts $(c_1, c_2, \ldots, c_k) = (\mathcal{E}(m_1), \mathcal{E}(m_2), \ldots, \mathcal{E}(m_k))$

The homomorphic computation consists of computing $\mathcal{E}(f(m_1, m_2, \ldots, m_k))$ without decryption

A scheme that can homomorphically evaluate all function is said to be fully homomorphic



Examples

Multiplicatively homomorphic : RSA

$$c_1 = m_1^e \mod N \quad \text{et} \quad c_2 = m_2^e \mod N$$
$$c_1.c_2 = (m_1.m_2)^e \mod N = \mathcal{E}(m_1.m_2) \mod N$$

Additively homomorphic : Paillier

 $c_1 = g^{m_1} r_1^n \mod n^2 \quad \text{et} \quad c_2 = g^{m_2} r_2^n \mod n^2$ $c_1 \cdot c_2 = g^{m_1 + m_2} (r_1 \cdot r_2)^n \mod n^2 = \mathcal{E}(m_1 + m_2) \mod n^2$

Given ciphertexts $(c_1, c_2, \ldots, c_k) = (\mathcal{E}(m_1), \mathcal{E}(m_2), \ldots, \mathcal{E}(m_k))$

The homomorphic computation consists of computing $\mathcal{E}(f(m_1, m_2, \dots, m_k))$ without decryption

A scheme that can homomorphically evaluate all function is said to be fully homomorphic

Examples

Multiplicatively homomorphic : RSA

$$c_1 = m_1^e \mod N$$
 et $c_2 = m_2^e \mod N$
 $c_1.c_2 = (m_1.m_2)^e \mod N = \mathcal{E}(m_1.m_2) \mod N$

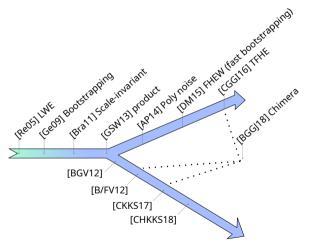
Additively homomorphic : Paillier

$$c_1 = g^{m_1} r_1^n \mod n^2 \quad \text{et} \quad c_2 = g^{m_2} r_2^n \mod n^2$$

$$c_1 \cdot c_2 = g^{m_1 + m_2} (r_1 \cdot r_2)^n \mod n^2 = \mathcal{E}(m_1 + m_2) \mod n^2$$

Little history of FHE

🛇 inpher



Almost all FHE are based on LWE/RLWE problems.

We distinguish two main families of homomorphic encryption schemes

Bootstrapped constructions

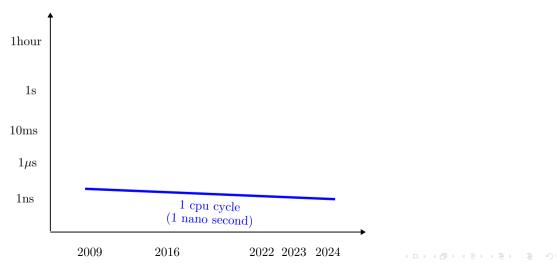
Set the parameters, it is possible to homomorphically evaluate any function.

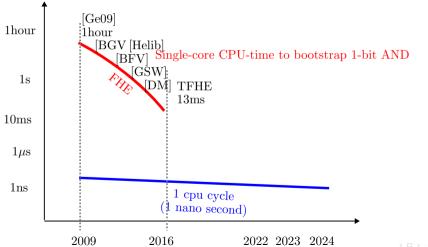
- No depth limitations
- ✓ Fast single evaluation
- × Slow multiple evaluations

Leveled constructions

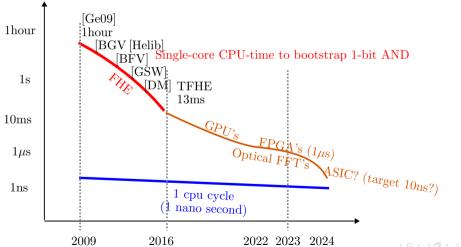
Set the function, there exists parameters to homomorphically evaluate it.

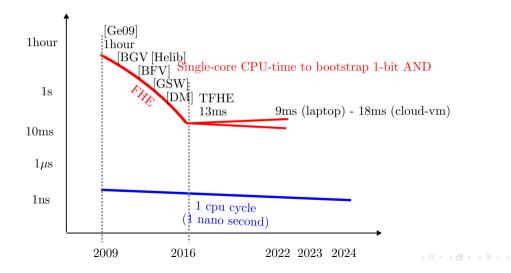
- X The depth has to be known in advance
- ✗ Slow single evaluations
- ✓ Fast multiple evaluations



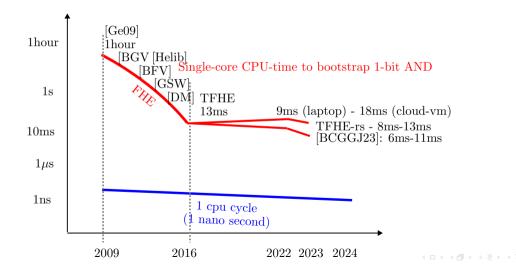


マック・ヨー 《川・《川・《山・《





11 / 45



Fully Homomorphic Schemes

Strengths of FHE schemes

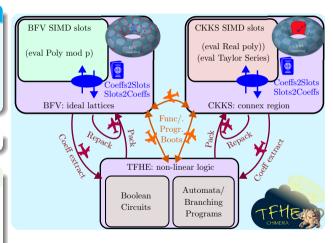
- BGV/BFV: SIMD integer arithmetic
- CKKS: SIMD fixed point arithmetic
- CGGI(TFHE)/DM: single evaluation, boolean logic, comparison, threshold, complex circuits

• etc...

How to get all the benefits without the limitations?

Scheme Swiching: Chimera [BGGJ20]

- Unified plaintext space
- Switch between ciphertext representations
- Implement bridges between TFHE, BFV and CKKS



Fully Homomorphic Schemes

Strengths of FHE schemes

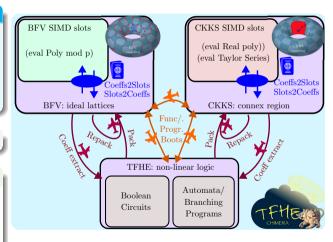
- BGV/BFV: SIMD integer arithmetic
- CKKS: SIMD fixed point arithmetic
- CGGI(TFHE)/DM: single evaluation, boolean logic, comparison, threshold, complex circuits

• etc...

How to get all the benefits without the limitations?

Scheme Swiching: Chimera [BGGJ20]

- Unified plaintext space
- Switch between ciphertext representations
- Implement bridges between TFHE, BFV and CKKS



Fully Homomorphic Schemes

Strengths of FHE schemes

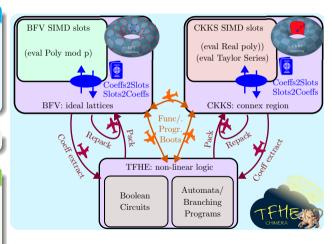
- BGV/BFV: SIMD integer arithmetic
- CKKS: SIMD fixed point arithmetic
- CGGI(TFHE)/DM: single evaluation, boolean logic, comparison, threshold, complex circuits

• etc...

How to get all the benefits without the limitations?

Scheme Swiching: Chimera [BGGJ20]

- Unified plaintext space
- Switch between ciphertext representations
- Implement bridges between TFHE, BFV and CKKS



FHE libraries

Library/	BGV	BGV	BFV	CGGI'16	CGGI'17	CKKS	CKKS	DM	Scheme
Scheme		bootstr			advanced API		bootstr		switching
TFHE-lib				\checkmark	*				*
TFHE-rs				\checkmark	\checkmark				
Lattigo	\checkmark		\checkmark			\checkmark	\checkmark		
HEAAN						\checkmark	\checkmark		
HELib	\checkmark	\checkmark				\checkmark			
FHEW								\checkmark	
OpenFHE	\checkmark	*	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	*
SEAL	\checkmark		\checkmark			\checkmark			

* experimental

Coming soon! SPQlios-arithmetic: a middle-ground arithmetic API for FHE (included in TFHE-lib)

Supports CRT and bivariate frontends at any depth [BCGGJ23]: allowing efficient implementation of Chimera

- BlindRotate (CGGI bootstrapping in 6ms).
- CKKS and BFV products (depth 30 in 0.3s)
- Keyswitches and Automorphisms (depth 30 in 0.2s)

Running time is still bottleneck! \rightarrow target for hardware developers!

Secure Multi-party Computation

Secure Multi-party computation

Multi Party Computation

- Allows a set of parties to compute a function on their private data without revealing the inputs.
- Do this without putting all the data in the same room.
- Computation is enabled via interaction: thus communication is the bottleneck

Participants

- Input party: owns input data sources
- Compute party: performs the MPC computation
- Output party: receives the result
- Dealer (optional): generates the triplets/masks

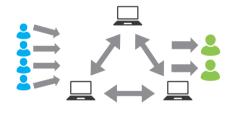
Security Models

- Passive (honest-but-curious)-The players follow the protocol as prescribed.
- Active (malicious)- Attackers can make players deviate from the protocol.
- How many collusions are allowed? Honest (nb coll< half)/Dishonest majority (up to all except one)

Secure Multi-party computation

Multi Party Computation

- Allows a set of parties to compute a function on their private data without revealing the inputs.
- Do this without putting all the data in the same room.
- Computation is enabled via interaction: thus communication is the bottleneck



Participants

- Input party: owns input data sources
- Compute party: performs the MPC computation
- Output party: receives the result
- Dealer (optional): generates the triplets/masks

Security Models

- Passive (honest-but-curious)-The players follow the protocol as prescribed.
- Active (malicious)- Attackers can make players deviate from the protocol.
- How many collusions are allowed? Honest (nb coll< half)/Dishonest majority (up to all except one)

Some building blocks

Linear Secret Sharing

- Additive Secret Sharing
- Shamir Secret Sharing
- Replicated Secret Sharing

Non-linear operations

- Mask and Reveal: e.g. Beaver triplets
- Encrypt and Reveal

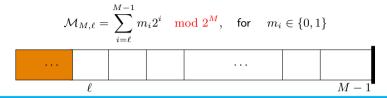
Garbled Circuit

Yao's garbled circuit protocol allows a garbler to encode a boolean function into a garbled circuit that is evaluated by a second party, called the evaluator.

SMPC Schemes and Libraries

Library	Backend	Nb Players	Security Model	
Manticore	A_{2k}, B, Y	n-PC	passive with Dealer	
	2		full-threshold	
ABY/ABY3	A_{2k}, B, Y	2/3-PC	passive, replicated SS	
	-		honest majority	
MP-SPDZ	A_p, A_{2^k}, B, Y	n-PC	active/passive, replicated SS/dealer/FHE	
			honest/dishonest majority	
Scala-Mamba	A_p, B, Y	n-PC	active	
			honest/dishonest (A_p) majority	
Sharemind	$A_{2^{k}}, B, Y$	3-PC	passive, replicated SS	
	_		honest majority	
FRESCO	A_p, A_{2^k}, B	n-PC	active (A) , passive (B)	
			dishonest majority	
TinyGarble	Y	2-PC	passive	
MPyC	A_p	<i>n</i> -PC	passive	
			honest/dishonest (Shamir SS)	
	Computation	domain (backe	end) : a range $[0, L-1]$	
	L	= 2 boolean b	backend (B)	
	L >	> 2 arithmetic	backend (A)	
	if L a pow	er of 2: "nativ	ve" arithmetic (A_{2^k})	
	if L a prim	ne number: "fi	eld" arithmetic (\tilde{A}_p)	
Garbled circuits: (Y)				

Zoom into Manticore [Belorgey et al.'23]



ModReal representation

- ${\, \bullet \, }$ Numerical window in Manticore is not fixed, so we can increase or decrease M or ℓ
- thus improving on the sizes of the representation as well as the communication cost
- Allows for automating the estimate of these parameters at compile time
- Real number arithmeric with high numerical precision (≥ 7 digits after the decimal point)

Lift algorithm

- Uses masking data precomputed in the setup phase and is without error probability.
- Compared to [Escudero et al.'20] (logical right shift used in MP-SPDZ) provides better efficiency by avoiding the use of 2 oblivious comparisons

SMPC Logistic regression benchmarks

Dataset	Method	Log-loss	Exec. time	Comm.
		-	(sec)	(MB)
	Manticore	0.445	12.4	512
	mp-spdz a	0.449	5.5	263
X	mp-spdz b	np-spdz b 0.449		1020
	mp-spdz c	0.445	43.4	2697
	mp-spdz d	0.445	414.9	25352
	Manticore	0.445	12.5	512
	mp-spdz a	8.549	5.5	263
X'	mp-spdz b	4.689	35.6	1020
	mp-spdz c	17.102	43.5	2697
	mp-spdz d	3.821	415.8	25352
	Manticore	0.445	12.8	539
X X	mp-spdz a	0.652	5.5	264
	mp-spdz b	0.695	36.3	1033
	mp-spdz c	0.825	43.6	2698
	mp-spdz d	0.819	415.2	25365

mp-spdz a uses a 5 piece-wise sigmoid approx. with 10 iterations, mp-spdz b uses a 5 piece-wise sigmoid approx. with 100 iterations, mp-spdz c uses exact sigmoid with 10 iterations, mp-spdz d uses exact sigmoid with 100 iterations. MP-SPDZ:

- Mini-batch logreg (batch size 128)
- ${\, \bullet \,}$ Using edaBits and $\mod 2^k$ plaintext space
- Fixed-point parameters 16.16 (could not compile with higher decimal precision)
- Honest majority, 3 parties, non-malicious, replicated secret-sharing

Manticore:

- Full threshold, 3 parties, non-malicious
- 10 IRLS + 2 SGD iterations

Datasets (30k imes10)

- X random full-rank in the interval [-4, 4]
- X' re-scaled a column of X by 2^8
- X|X correlated features

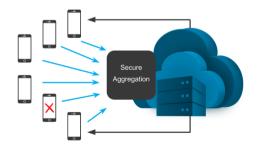
Federated Learning and Differential Privacy

Federated Learning

Problem: train a deep neural network on horizontally split data (same features) across multiple client devices

Federated Learning as an Edge Computing Framework

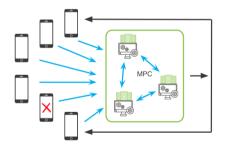
• FL is NOT a privacy-preserving method, it is a framework combining different PPTs (MPC, FHE, DP etc.) to support massively distributed ML computations

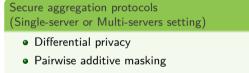


hallenges

- Millions of clients with limited compute capabilities
- Complex models (millions/billions of coefficients)
- Several TB of model coefficients to communicate
- Unstable connectivity of the clients (drop-out)
- Synchronization of communication
- Need for Adapted Optimization: not just linear operations

Leaking input data from client to server via model updates (inversion attacks)





- Threshold (fully) homomorphic encryption
- Secure multiparty computation
- Trusted execution environments

[BDGJM23] Falkor: Federated Learning Secure Aggregation Powered by AES-CTR GPU Implementation

Goal:

- $\, \bullet \,$ Output does not reveal whether an individual was in the input database $\, \rightarrow \,$ output privacy
- · Adds small amounts of randomness to a dataset, a model, or an output to protect individual samples

Callenges

- More noise yields better privacy but also degrades the utility of the result.
- However, every query on the underlying private data results in some amount of information being revealed.
- Given enough computations or queries on the same data, an attacker might be able to learn about the input.
- Each application therefore needs a privacy budget.

Privacy Budget

Indicates how much information is allowed to be revealed cumulatively across all queries/computations.

▲ロト ▲回 ▶ ▲ 臣 ▶ ▲ 臣 ● の Q @

24 / 45

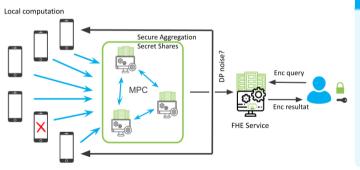
Which privacy preserving technology will be the best?

	FHE	MPC	secure FL	plaintext + DP FL
data stacking	any	any	vertical only	vertical only
performance	compute-bound	network-bound	medium	fast
hardware req.	large/specific	medium to large	normal/light	normal/light
conv. speed	fast	fast	medium	slow
security	encryption	secret sharing/non-collusion	agg. reveal	individual grad. leakage
interactive	non	yes	yes	yes
precision	medium/high	high	medium	low

◆□▶ ◆□▶ ◆ ≧▶ ◆ ≧▶ ─ ≧ − のへぐ

Chaining heterogeneous computations

- In 2024, nobody believes anymore that there exists single best technology.
- $\bullet\,$ Most of the use-cases require to compose many PPC/PET technology out of MPC, FHE, DP, TEE $\ldots\,$
- Chaining heterogeneous PPC computation to control the privacy of the data flow.



Challenges

- Each input under which visibility: plaintext, shares, or ciphertexts?
- Transfers of visibility/ ownership legitimate? (GDPR, ethical, etc...)?
- What are the variables allowed to reveal?
- Do we need DP noise?
- What are the allowed computations?
- Privacy Budget?

Standardization

- ISO/IEC AWI 28033 Fully homomorphic encryption (under development) Part 1: General
 - Part 2: Mechanisms for exact arithmetic on modular integers (BFV/BGV)
 - Part 3: Mechanisms for arithmetic on approximate numbers (CKKS)

Part 4: Mechanisms for arithmetic based on evaluation of digital circuits, look-up tables and deterministic automata (CGGI/DM)

Part 5: Mechanisms for Scheme Switching (Chimera)

- ISO/IEC 4922-1:2023: Part 1: General (definitions, terminology and processes for MPC) (published)
- ISO/IEC 4922-2:2024 Part 2: Mechanisms based on secret sharing (published)
- ISO/IEC 4922-3 Part 3: Mechanisms based on garbled circuits (under development)
- PWI 24836 Oblivious Transfer (under development)
- NIST's Multi-Party Threshold Cryptography standardization project
- NIST's Guidelines for Evaluating Differential Privacy Guarantees (initial public draft)

GenoPPML Genomic Privacy-Preserving Machine Learning

Introduction

Goal of GenoPPML framework

Secure machine learning on genomic data

Problem

- Train a machine learning model on gene data, where data is owned by ≥ 2 parties.
 - breast tumors prediction, cancer relapse, tumor differentiation, etc.
- DP federated learning for cancer prediction model.
- Privacy preserving predictions keeping data private and model secure.

Solution [CGGJ22

- MPC for learning a breast cancer prediction model (Manticore)
- DP for protecting the revealed model
- HE for predicting on encrypted data (TFHE)
- Idash 2020 secure genome analysis competition

Introduction

Goal of GenoPPML framework

Secure machine learning on genomic data

Problem

- Train a machine learning model on gene data, where data is owned by ≥ 2 parties.
 - breast tumors prediction, cancer relapse, tumor differentiation, etc.
- DP federated learning for cancer prediction model.
- Privacy preserving predictions keeping data private and model secure.

Solution [CGGJ22

- MPC for learning a breast cancer prediction model (Manticore)
- DP for protecting the revealed model
- HE for predicting on encrypted data (TFHE)
- Idash 2020 secure genome analysis competition

Introduction

Goal of GenoPPML framework

Secure machine learning on genomic data

Problem

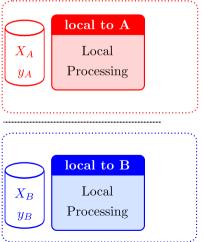
- $\bullet\,$ Train a machine learning model on gene data, where data is owned by ≥ 2 parties.
 - breast tumors prediction, cancer relapse, tumor differentiation, etc.
- DP federated learning for cancer prediction model.
- Privacy preserving predictions keeping data private and model secure.

Solution [CGGJ22]

- MPC for learning a breast cancer prediction model (Manticore)
- DP for protecting the revealed model
- HE for predicting on encrypted data (TFHE)
- Idash 2020 secure genome analysis competition

final users data owners (data remains local) X_A Analyst y_A X_B y_B メロト (周) (ヨ) ()

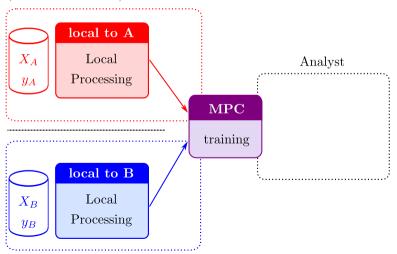
data owners (data remains local)




```
۶<u>.</u>.....
```


final users

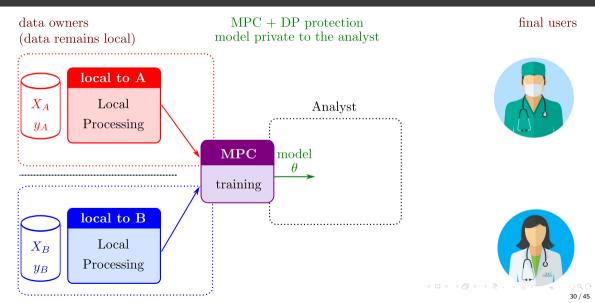
data owners (data remains local)



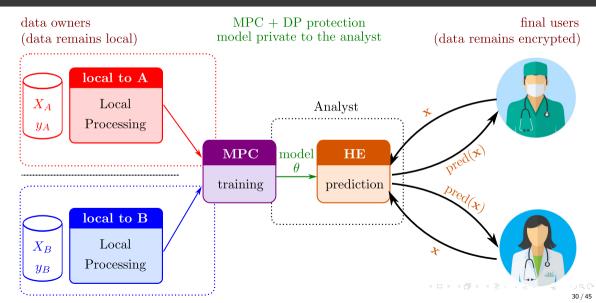
🛇 inpher

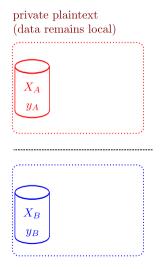
final users

♦ inpher

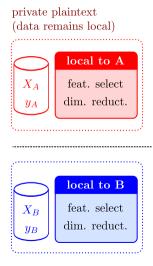


🛇 inpher

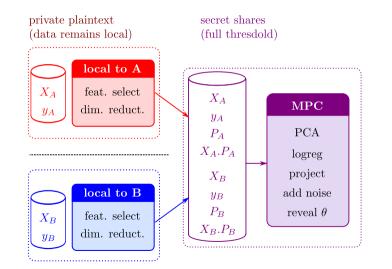




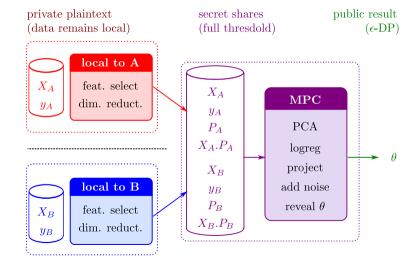
- Each data owner first execute a local computation (feature selection)
- Both perform a common secret-shared MPC computation (logistic regression)
- Add noise around the baseline model during the MPC computation (for DP)
- Reveal DP protected model



- Each data owner first execute a local computation (feature selection)
- Both perform a common secret-shared MPC computation (logistic regression)
- Add noise around the baseline model during the MPC computation (for DP)
- Reveal DP protected model

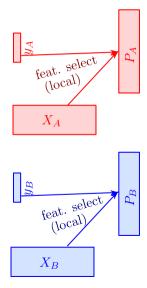


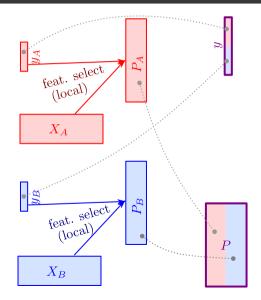
- Each data owner first execute a local computation (feature selection)
- Both perform a common secret-shared MPC computation (logistic regression)
- Add noise around the baseline model during the MPC computation (for DP)
- Reveal DP protected model



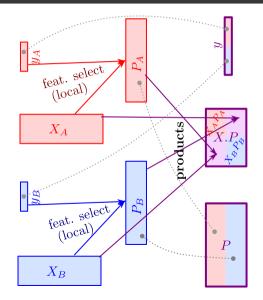
 Each data owner first execute a local computation (feature selection)

- Both perform a common secret-shared MPC computation (logistic regression)
- Add noise around the baseline model during the MPC computation (for DP)
- Reveal DP protected model

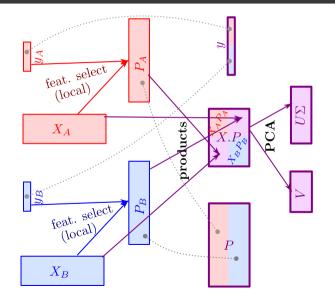




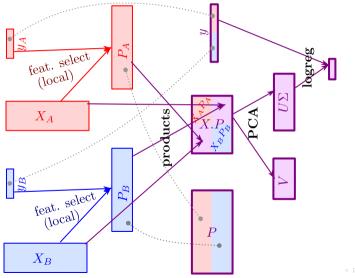
▲□▶ ▲御▶ ▲≣▶ ▲≣▶ ▲■ ● のへの



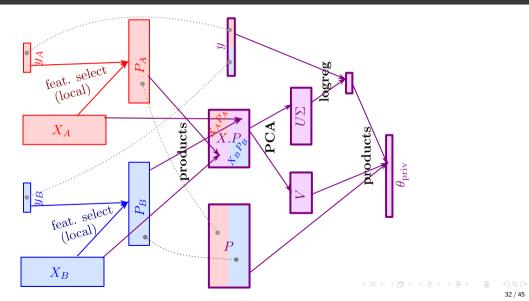
◆□ > ◆□ > ◆□ > ▲□ > ▲□ > ▲□ > ▲□ >

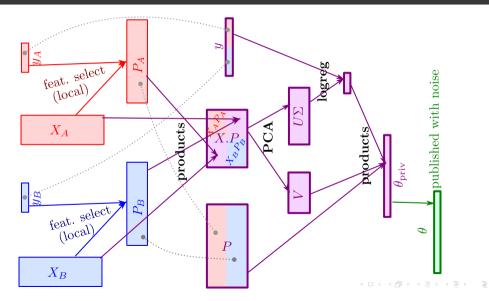


<□> < □> < □> < 三> < 三> < 三> < 三> のへぐ



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ





GenoPPML, Genomic Privacy-Preserving Machine Learning

MPC versus plain Federated Learning

Dataset A optimum

• Dataset B optimum

・ロト・白ト・山下・山下・ 小口・

GenoPPML, Genomic Privacy-Preserving Machine Learning

MPC versus plain Federated Learning

 start

partial gradients leak info on dataset A also they point to local dataset optimum

Dataset A optimum

• Dataset B optimum

ロアメロケメヨケメヨケ、日、シック

() inpher

33 / 45

partial gradients leak info on dataset A also they point to local dataset optimum

Plaintext FL: every published step must be protected with noise

start

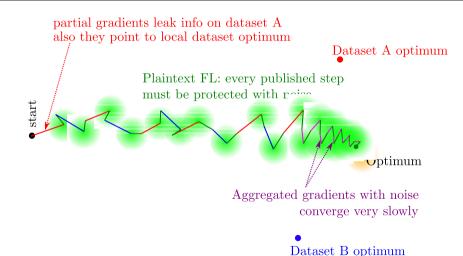
33 / 45

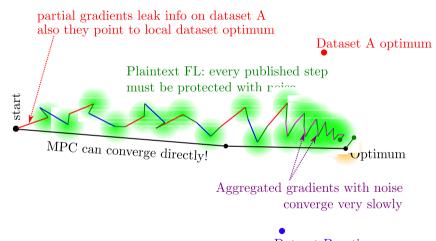
partial gradients leak info on dataset A also they point to local dataset optimum

Plaintext FL: every published step must be protected with noise

• Dataset B optimum

ロ ト 《 昼 ト 《 臣 ト 《 臣 ・ の へ ()・





Dataset B optimum

Main advantages of GenoPPML

Feature selection

- Each party implements its own feature selection which stays private
- Reduces dimensionality of dataset, speeding-up MPC step

Secret-shared MPC using Manticore

- No temporary variable, or partial gradient is published
- No restriction on the choice of aggregation function:
 - faster convergence method (IRLS): converge in 8-10 iterations
 - reduced number of communications rounds
- Operates over the full dataset
 - stable even if the datasets of player A and B are not i.i.d.

Main advantages of GenoPPML

Feature selection

- Each party implements its own feature selection which stays private
- Reduces dimensionality of dataset, speeding-up MPC step

Secret-shared MPC using Manticore

- No temporary variable, or partial gradient is published
- No restriction on the choice of aggregation function:
 - faster convergence method (IRLS): converge in 8-10 iterations
 - reduced number of communications rounds
- Operates over the full dataset
 - stable even if the datasets of player A and B are not i.i.d.

Numerical stability and DP Noise

Numerical stability

- L2 regularization of logreg
- Less over-fitting
- PCA dimension reduction inside MPC
- Mitigates influence of individual samples
 - i.e. less DP noise required

Where to add DP noise in projected logreg?

- No individual gradients leaked

 no noise here!
- Only final model is published => one-time DP noise
- Supports ϵ and (ϵ, δ) DP

Numerical stability and DP Noise

Numerical stability

- L2 regularization of logreg
- Less over-fitting
- PCA dimension reduction inside MPC
- Mitigates influence of individual samples
 - i.e. less DP noise required

Where to add DP noise in projected logreg?

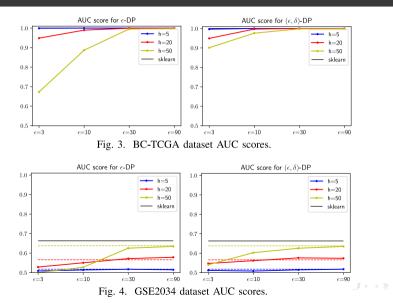
- No individual gradients leaked \implies no noise here!
- ${\scriptstyle \bullet}$ Only final model is published \Longrightarrow one-time DP noise
- Supports ϵ and (ϵ, δ) DP

・ロット (日) (日) (日) (日) (日)

TABLE I TRAIN AND TEST DATASET SIZES TOGETHER WITH POSITIVE TO NEGATIVE CLASS RATIO.

	#features	#samples		neg. to	
		train	test	pos. ratio	
BC-TCGA	17,814	471	119	0.12	
GSE2034	12,634	228	58	0.60	
BC12-TCGA	25,128	2,169	544	0.08	

Accuracy w.r.t. DP-noise



Accuracy w.r.t. DP-noise

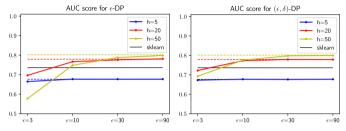
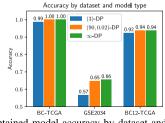


Fig. 5. BC12-TCGA dataset AUC scores.



Best obtained model accuracy by dataset and model type. () + ()

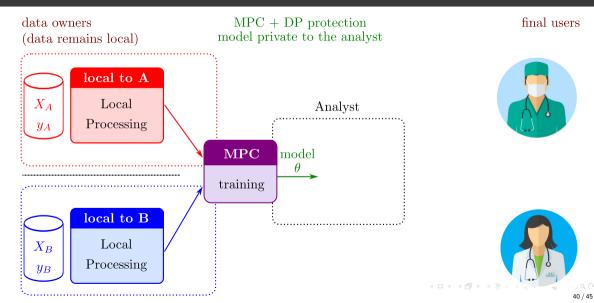
Benchmarks (Training Phase)

TABLE II Execution times (in seconds per player), RAM usage and network communication (in MB per player).

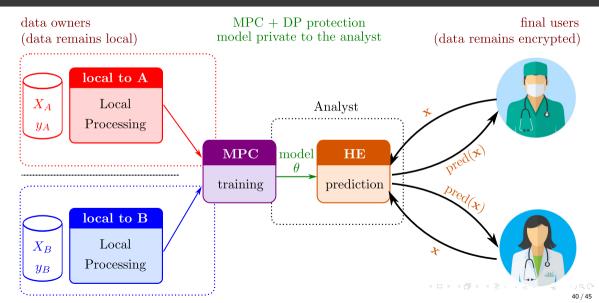
Dataset		h	5	20	50
BC-TCGA	Local	CPU	0.49	0.99	1.78
	processing	RAM	266	267	270
		CPU	0.91	1.30	2.17
	MPC	RAM	399	437	466
		Network	138	164	219
GSE2034	Local	CPU	0.12	0.29	0.51
	processing	RAM	161	161	161
		CPU	0.37	0.56	1.02
	MPC	RAM	167	180	276
		Network	50	68	106
BC12-TCGA	Local	CPU	4.10	6.30	11.31
	processing	RAM	1294	1294	1294
	MPC	CPU	5.87	7.43	11.47
		RAM	1892	1925	2005
		Network	854	909	1021

・ロト・日下・日下・日下・日 のへの

♦ inpher



🛇 inpher



TFHE library

- Open source FHE library https://tfhe.github.io/tfhe
- C/C++ distributed under Apache 2.0 license
- 128 bits of security (binary secrets) or 176 bits with ternary secrets

Building blocks

- \bullet Logreg is plaintext (logreg model) \times ciphertext (user data) dot product and a sigmoid evaluation
- Plaintext × ciphertext dot product:
 - TRLWE multiplication with IntPolynomial + TLWE Coeff Extract
- Sigmoid/Sign evaluation:
 - Programmable bootstrapping (blind rotate)

TFHE library

- Open source FHE library https://tfhe.github.io/tfhe
- C/C++ distributed under Apache 2.0 license
- 128 bits of security (binary secrets) or 176 bits with ternary secrets

Building blocks

- \bullet Logreg is plaintext (logreg model) \times ciphertext (user data) dot product and a sigmoid evaluation
- Plaintext \times ciphertext dot product:
 - $\bullet~\mbox{TRLWE}$ multiplication with IntPolynomial $+~\mbox{TLWE}$ Coeff Extract
- Sigmoid/Sign evaluation:
 - Programmable bootstrapping (blind rotate)

FHE Predictions – benchmarks

Space requirements

Keys:

- Secret key 128B
- Public key 48MB

Query:

- BC-TCGA 144kB (18 TRLWE) for 18k features
- GSE2034 104kB (13 TRLWE) for 12k features
- BC12-TCGA 200kB (25 TRLWE) for 25k features
- Result size:
 - 1 TLWE ciphertext 4kB

Fimings per query

- Encrypt/Decrypt pprox 10ms
- $\bullet~{\rm Logreg}~{\rm prediction}\,\approx~90{\rm ms}$

FHE Predictions – benchmarks

Space requirements

Keys:

- Secret key 128B
- Public key 48MB

Query:

- BC-TCGA 144kB (18 TRLWE) for 18k features
- GSE2034 104kB (13 TRLWE) for 12k features
- BC12-TCGA 200kB (25 TRLWE) for 25k features
- Result size:
 - 1 TLWE ciphertext 4kB

Timings per query

- Encrypt/Decrypt \approx 10ms
- Logreg prediction $\approx~90 ms$

GenoPPML, Genomic Privacy-Preserving Machine Learning

Eurocrypt 2024 Affiliated Event

May 26, 2024 Zurich, Switzerland

Tutorial & Practices on Hybrid Pets

TUTORIALS

Cat or Dog? What PETS Are and How to Choose Them Nigel Smart (KU Leuven, Zama) Introduction to FHE and CKKS performance improvements Damien Stehle (CryptoLab) Introduction to SMPC and hybrid privacy preserving applications Mariya Georgieva, Sergiu Carpov (Inpher)

PRACTICAL SESSIONS

Machine learning workflows using Inpher's XOR Platform Marc Desgroseilliers (Inpher)

Hybrid PETs

New FFT and arithmetic API for Fully Homomorphic Encryption Libraries

Nicolas Gama (SandboxAQ, Inpher)

Confidential smart contracts using threshold FHE and the Zama fhEVM Morten Dahl (Zama)

Thank you

- [Escudero et al'20] D. Escudero, S. Ghosh, M. Keller, R. Rachuri, P. Scholl, Improved primitives for MPC over mixed arithmetic-binary circuits
- [BGGJ20] C. Boura, N. Gama, M. Georgieva, D. Jetchev: CHIMERA: Combining Ring-LWE-based Fully Homomorphic Encryption Schemes.
- [CGGJ22] S. Carpov and N. Gama and M. Georgieva and D. Jetchev: GenoPPML a framework for genomic privacy-preserving machine learning.
- [Belorgey et al'23] M. Belorgey, S. Carpov, K. Deforth, N. Gama, D. Jetchev, J. Katz, I. Leontiadis, M. Mohammadi, A. Sae-Tang, M. Vuille: Manticore: A Framework for Efficient Multiparty Computation Supporting Real Number and Boolean Arithmetic.
- [BDGJM23] Mariya Georgieva Belorgey, Sofia Dandjee, Nicolas Gama, Dimitar Jetchev, Dmitry Mikushin: Falkor: Federated Learning Secure Aggregation Powered by AES-CTR GPU Implementation
- [BCGGJ23] M.G. Belorgey, S. Carpov, N. Gama, S. Guasch, D. Jetchev: Revisiting Key Decomposition Techniques for FHE: Simpler, Faster and More Generic.