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Privacy-Enhancing Technologies

Privacy-Enhancing Technologies (PETs)

Primary Goal:
They enable the computation of an arbitrary function without revealing the input data.

Examples of PETS
Fully Homomorphic Encryption (FHE)
Secure Multi-Party Computation (MPC)
Federated Learning (FL)
Differential Privacy (DP)
Trusted Execution Environments (TEEs)
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Privacy-Enhancing Technologies

PETs use-cases

Physics/Astronautics
Predict trajectories: are satellites on a collision course?
Iridium 33 and Kosmos-2251 Satellite Collision in 2009
Need to evaluate non-linear functions with high precision on secret trajectories

Medicine/Genomic

Predictive healthcare
Find the right dosage for a cure
Need to evaluate/train machine learning algorithms on secret medical data

Finance/Banking

Fraud detection, risk scoring
Investment Banking and Hedge Funds
Detect loops in transaction graphs
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Privacy-Enhancing Technologies

Input vs Output Privacy

Input Privacy
Allows forward computation from input data
without disclosing it.

Output Privacy
Privacy prevents backward inference from
disclosed output results.
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Privacy-Enhancing Technologies

PETs

*inspired by N. Smart 6 / 45
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Fully Homomorphic Encryption

Fully Homomorphic Encryption

Given ciphertexts (c1, c2, . . . , ck) = (E(m1), E(m2), . . . , E(mk))

The homomorphic computation consists of computing E(f(m1, m2, . . . , mk)) without decryption

A scheme that can homomorphically evaluate all function is said to be
fully homomorphic

Examples
Multiplicatively homomorphic : RSA
c1 = me

1 mod N et c2 = me
2 mod N

c1.c2 = (m1.m2)e mod N = E(m1.m2) mod N

Additively homomorphic : Paillier
c1 = gm1 rn

1 mod n2 et c2 = gm2 rn
2 mod n2

c1.c2 = gm1+m2 (r1.r2)n mod n2 = E(m1 + m2) mod n2
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Fully Homomorphic Encryption

Little history of FHE
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Almost all FHE are based on LWE/RLWE problems.

We distinguish two main families of
homomorphic encryption schemes

Bootstrapped constructions
Set the parameters, it is possible to
homomorphically evaluate any function.

✔ No depth limitations
✔ Fast single evaluation
✘ Slow multiple evaluations

Leveled constructions
Set the function, there exists parameters to
homomorphically evaluate it.

✘ The depth has to be known in advance
✘ Slow single evaluations
✔ Fast multiple evaluations
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Fully Homomorphic Encryption

Bootstrapping performance evolution

2009 2016

1 cpu cycle

2022 2023 2024

(1 nano second)

1hour

1s

10ms

1µs

1ns
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Fully Homomorphic Encryption

Fully Homomorphic Schemes

Strengths of FHE schemes
BGV/BFV: SIMD integer arithmetic
CKKS: SIMD fixed point arithmetic
CGGI(TFHE)/DM: single evaluation, boolean
logic, comparison, threshold, complex circuits
etc...

How to get all the benefits without the limitations?

Scheme Swiching: Chimera [BGGJ20]
Unified plaintext space
Switch between ciphertext representations
Implement bridges between TFHE, BFV and
CKKS

BFV: ideal lattices

BFV SIMD slots

(eval Poly mod p)

CKKS: connex region

CKKS SIMD slots

(eval Taylor Series)

(eval Real poly))

TFHE: non-linear logic

Boolean

Circuits

Automata/

Branching

Programs

Coeffs2Slots
Slots2Coeffs

Coeffs2Slots
Slots2Coeffs

C
oeff

extract

P
ack

Repack

Progr.
Boots

Func/.
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ex
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ac
t
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k
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Fully Homomorphic Encryption

FHE libraries

Library/ BGV BGV BFV CGGI’16 CGGI’17 CKKS CKKS DM Scheme
Scheme bootstr advanced API bootstr switching

TFHE-lib ✓ * *
TFHE-rs ✓ ✓
Lattigo ✓ ✓ ✓ ✓
HEAAN ✓ ✓
HELib ✓ ✓ ✓
FHEW ✓

OpenFHE ✓ * ✓ ✓ ✓ ✓ ✓ *
SEAL ✓ ✓ ✓

* experimental

Coming soon! SPQlios-arithmetic: a middle-ground arithmetic API for FHE (included in TFHE-lib)
Supports CRT and bivariate frontends at any depth [BCGGJ23]: allowing efficient implementation of Chimera

BlindRotate (CGGI bootstrapping in 6ms).
CKKS and BFV products (depth 30 in 0.3s)
Keyswitches and Automorphisms (depth 30 in 0.2s)

Running time is still bottleneck! → target for hardware developers!
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Secure Multi-party Computation

Secure Multi-party computation

Multi Party Computation
Allows a set of parties to compute a function on their private data without revealing the inputs.
Do this without putting all the data in the same room.
Computation is enabled via interaction: thus communication is the bottleneck

Participants
Input party: owns input data sources
Compute party: performs the MPC computation
Output party: receives the result
Dealer (optional): generates the triplets/masks

Security Models
Passive (honest-but-curious)–The players follow the protocol as prescribed.
Active (malicious)– Attackers can make players deviate from the protocol.
How many collusions are allowed? – Honest (nb coll< half)/Dishonest majority (up to all except one)
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Secure Multi-party Computation

Some building blocks

Linear Secret Sharing
Additive Secret Sharing
Shamir Secret Sharing
Replicated Secret Sharing

Non-linear operations
Mask and Reveal: e.g. Beaver triplets
Encrypt and Reveal

Garbled Circuit
Yao’s garbled circuit protocol allows a garbler to encode a boolean function into a garbled circuit that is
evaluated by a second party, called the evaluator.
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Secure Multi-party Computation

SMPC Schemes and Libraries

Library Backend Nb Players Security Model
Manticore A2k , B, Y n−PC passive with Dealer

full-threshold
ABY/ABY3 A2k , B, Y 2/3−PC passive, replicated SS

honest majority
MP-SPDZ Ap, A2k , B, Y n−PC active/passive, replicated SS/dealer/FHE

honest/dishonest majority
Scala-Mamba Ap, B, Y n−PC active

honest/dishonest (Ap) majority
Sharemind A2k , B, Y 3−PC passive, replicated SS

honest majority
FRESCO Ap, A2k , B n−PC active (A), passive (B)

dishonest majority
TinyGarble Y 2-PC passive

MPyC Ap n-PC passive
honest/dishonest (Shamir SS)

Computation domain (backend) : a range [0, L − 1]
L = 2 boolean backend (B)

L > 2 arithmetic backend (A)
if L a power of 2: "native" arithmetic (A2k )
if L a prime number: "field" arithmetic (Ap)

Garbled circuits: (Y )
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Secure Multi-party Computation

Zoom into Manticore [Belorgey et al.’23]

MM,ℓ =
M−1∑
i=ℓ

mi2i mod 2M , for mi ∈ {0, 1}

. . .

ℓ

. . .

M − 1
ModReal representation

Numerical window in Manticore is not fixed, so we can increase or decrease M or ℓ

thus improving on the sizes of the representation as well as the communication cost
Allows for automating the estimate of these parameters at compile time
Real number arithmeric with high numerical precision (≥ 7 digits after the decimal point )

Lift algorithm
Uses masking data precomputed in the setup phase and is without error probability.
Compared to [Escudero et al.’20] (logical right shift used in MP-SPDZ) provides better efficiency by
avoiding the use of 2 oblivious comparisons

18 / 45



Secure Multi-party Computation

SMPC Logistic regression benchmarks

Dataset Method Log-loss Exec. time Comm.
(sec) (MB)

Manticore 0.445 12.4 512
mp-spdz a 0.449 5.5 263

X mp-spdz b 0.449 35.4 1020
mp-spdz c 0.445 43.4 2697
mp-spdz d 0.445 414.9 25352
Manticore 0.445 12.5 512
mp-spdz a 8.549 5.5 263

X′ mp-spdz b 4.689 35.6 1020
mp-spdz c 17.102 43.5 2697
mp-spdz d 3.821 415.8 25352
Manticore 0.445 12.8 539
mp-spdz a 0.652 5.5 264

X|X mp-spdz b 0.695 36.3 1033
mp-spdz c 0.825 43.6 2698
mp-spdz d 0.819 415.2 25365

mp-spdz a uses a 5 piece-wise sigmoid approx. with 10 iterations,
mp-spdz b uses a 5 piece-wise sigmoid approx. with 100 iterations,

mp-spdz c uses exact sigmoid with 10 iterations,
mp-spdz d uses exact sigmoid with 100 iterations.

MP-SPDZ:
Mini-batch logreg (batch size 128)
Using edaBits and mod 2k plaintext space
Fixed-point parameters 16.16 (could not
compile with higher decimal precision)
Honest majority, 3 parties, non-malicious,
replicated secret-sharing

Manticore:
Full threshold, 3 parties, non-malicious
10 IRLS + 2 SGD iterations

Datasets (30k × 10)
X – random full-rank in the interval [−4, 4]
X ′ – re-scaled a column of X by 28

X|X – correlated features
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Federated Learning and Differential Privacy

Federated Learning

Problem: train a deep neural network on horizontally split data (same features) across multiple client devices

Federated Learning as an Edge Computing Framework
FL is NOT a privacy-preserving method, it is a framework combining different PPTs (MPC, FHE, DP etc.)
to support massively distributed ML computations

Challenges
Millions of clients with limited compute capabilities
Complex models (millions/billions of coefficients)
Several TB of model coefficients to communicate
Unstable connectivity of the clients (drop-out)
Synchronization of communication
Need for Adapted Optimization:
not just linear operations
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Federated Learning and Differential Privacy

Secure Aggregation

Leaking input data from client to server via model updates (inversion attacks)

Secure aggregation protocols
(Single-server or Multi-servers setting)

Differential privacy
Pairwise additive masking
Threshold (fully) homomorphic encryption
Secure multiparty computation
Trusted execution environments

[BDGJM23] Falkor: Federated Learning Secure Aggregation Powered by AES-CTR GPU Implementation
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Federated Learning and Differential Privacy

Differential Privacy

Goal:
Output does not reveal whether an individual was in the input database → output privacy
Adds small amounts of randomness to a dataset, a model, or an output to protect individual samples

Callenges
More noise yields better privacy but also degrades the utility of the result.
However, every query on the underlying private data results in some amount of information being revealed.
Given enough computations or queries on the same data, an attacker might be able to learn about the input.
Each application therefore needs a privacy budget.

Privacy Budget
Indicates how much information is allowed to be revealed cumulatively across all queries/computations.
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Outcome on PETs

Which privacy preserving technology will be the best?

FHE MPC secure FL plaintext + DP FL
data stacking any any vertical only vertical only
performance compute-bound network-bound medium fast
hardware req. large/specific medium to large normal/light normal/light
conv. speed fast fast medium slow

security encryption secret sharing/non-collusion agg. reveal individual grad. leakage
interactive non yes yes yes
precision medium/high high medium low
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Outcome on PETs

Chaining heterogeneous computations

In 2024, nobody believes anymore that there exists single best technology.
Most of the use-cases require to compose many PPC/PET technology out of MPC, FHE, DP, TEE ...
Chaining heterogeneous PPC computation to control the privacy of the data flow.

Challenges
Each input under which visibility:
plaintext, shares, or ciphertexts?
Transfers of visibility/ ownership
legitimate? (GDPR, ethical, etc...)?
What are the variables allowed to
reveal?
Do we need DP noise?
What are the allowed computations?
Privacy Budget?
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Outcome on PETs

Standardization

ISO/IEC AWI 28033 Fully homomorphic encryption (under development)
Part 1: General
Part 2: Mechanisms for exact arithmetic on modular integers (BFV/BGV)
Part 3: Mechanisms for arithmetic on approximate numbers (CKKS)
Part 4: Mechanisms for arithmetic based on evaluation of digital circuits, look-up tables and deterministic
automata (CGGI/DM)
Part 5: Mechanisms for Scheme Switching (Chimera)

ISO/IEC 4922-1:2023: Part 1: General (definitions, terminology and processes for MPC) (published)
ISO/IEC 4922-2:2024 Part 2: Mechanisms based on secret sharing (published)
ISO/IEC 4922-3 Part 3: Mechanisms based on garbled circuits (under development)
PWI 24836 Oblivious Transfer (under development)
NIST’s Multi-Party Threshold Cryptography standardization project
NIST’s Guidelines for Evaluating Differential Privacy Guarantees (initial public draft)
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Genomic Privacy-Preserving Machine Learning

28 / 45



GenoPPML,Genomic Privacy-Preserving Machine Learning

Introduction

Goal of GenoPPML framework
Secure machine learning on genomic data

Problem
Train a machine learning model on gene data, where data is owned by ≥ 2 parties.

breast tumors prediction, cancer relapse, tumor differentiation, etc.

DP federated learning for cancer prediction model.
Privacy preserving predictions keeping data private and model secure.

Solution [CGGJ22]
MPC for learning a breast cancer prediction model (Manticore)
DP for protecting the revealed model
HE for predicting on encrypted data (TFHE)
Idash 2020 – secure genome analysis competition
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GenoPPML,Genomic Privacy-Preserving Machine Learning

General overview
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GenoPPML,Genomic Privacy-Preserving Machine Learning

Implementation details

1 Each data owner first
execute a local computation
(feature selection)

2 Both perform a common
secret-shared MPC
computation (logistic
regression)

3 Add noise around the
baseline model during the
MPC computation (for DP)

4 Reveal DP protected model
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GenoPPML,Genomic Privacy-Preserving Machine Learning

Training algorithm
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GenoPPML,Genomic Privacy-Preserving Machine Learning

MPC versus plain Federated Learning

33 / 45



GenoPPML,Genomic Privacy-Preserving Machine Learning

MPC versus plain Federated Learning

33 / 45



GenoPPML,Genomic Privacy-Preserving Machine Learning

MPC versus plain Federated Learning

33 / 45



GenoPPML,Genomic Privacy-Preserving Machine Learning

MPC versus plain Federated Learning

33 / 45



GenoPPML,Genomic Privacy-Preserving Machine Learning

MPC versus plain Federated Learning

33 / 45



GenoPPML,Genomic Privacy-Preserving Machine Learning

MPC versus plain Federated Learning

33 / 45



GenoPPML,Genomic Privacy-Preserving Machine Learning

MPC versus plain Federated Learning

33 / 45



GenoPPML,Genomic Privacy-Preserving Machine Learning

Main advantages of GenoPPML

Feature selection
Each party implements its own feature selection which stays private
Reduces dimensionality of dataset, speeding-up MPC step

Secret-shared MPC using Manticore
No temporary variable, or partial gradient is published
No restriction on the choice of aggregation function:

faster convergence method (IRLS): converge in 8-10 iterations
reduced number of communications rounds

Operates over the full dataset
stable even if the datasets of player A and B are not i.i.d.
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GenoPPML,Genomic Privacy-Preserving Machine Learning

Numerical stability and DP Noise

Numerical stability
L2 regularization of logreg
Less over-fitting
PCA dimension reduction inside MPC
Mitigates influence of individual samples

i.e. less DP noise required

Where to add DP noise in projected logreg?
No individual gradients leaked =⇒ no noise here!
Only final model is published =⇒ one-time DP noise
Supports ϵ and (ϵ, δ) DP
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GenoPPML,Genomic Privacy-Preserving Machine Learning

Experiments
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GenoPPML,Genomic Privacy-Preserving Machine Learning

Accuracy w.r.t. DP-noise
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Accuracy w.r.t. DP-noise
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GenoPPML,Genomic Privacy-Preserving Machine Learning

Benchmarks (Training Phase)
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GenoPPML,Genomic Privacy-Preserving Machine Learning

FHE predictions
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GenoPPML,Genomic Privacy-Preserving Machine Learning

FHE predictions

TFHE library
Open source FHE library https://tfhe.github.io/tfhe

C/C++ distributed under Apache 2.0 license
128 bits of security (binary secrets) or 176 bits with ternary secrets

Building blocks
Logreg is plaintext (logreg model) × ciphertext (user data) dot product and a sigmoid evaluation
Plaintext × ciphertext dot product:

TRLWE multiplication with IntPolynomial + TLWE Coeff Extract
Sigmoid/Sign evaluation:

Programmable bootstrapping (blind rotate)
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GenoPPML,Genomic Privacy-Preserving Machine Learning

FHE Predictions – benchmarks

Space requirements
Keys:

Secret key – 128B
Public key – 48MB

Query:
BC-TCGA – 144kB (18 TRLWE) for 18k features
GSE2034 – 104kB (13 TRLWE) for 12k features
BC12-TCGA – 200kB (25 TRLWE) for 25k features

Result size:
1 TLWE ciphertext – 4kB

Timings per query
Encrypt/Decrypt ≈ 10ms
Logreg prediction ≈ 90ms
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