National Bureau of Standards/National Computer Security Center

National Computer Security Ccnference

Proceedings

U —
lHIhHﬂf'n".'l‘r'|’!‘.1§'l‘t”fl

“COMPUTER SECURITY...
from principles to practices.”

WELCOME

The National Computer Security Center and the Institute for Computer
Scienées and Technology are pleased to welcome you to the Tenth Annual National
Computer Security Conference. The past nine conferences have stimulated the
sharing of informqtion and the application of this new technology. We are
confident this year’s conference will continue this tradition.

This year’s conference theme -- Computer Security: From Principles to
Practices -- reflects the growth of computer security awareness and a maturation
of the technology of trusted systems. Our next major challenge is to understand
how to build secure applications on these trusted bases. The efforts of the
National Computer Security Center, the Institute for Computer Sciences and
Technology, computer users, and the computer industry have all contributed to the
advances in computer security over the past few years. We are committed to a
vibfant partnership between the Federal Government and private industry in
furthering the state of the art in Computer Security.

The great challenge of the future is for us to build upon the bases we are
now developing so that new applications can emerge. We must imderstana’ and
"record” how we build on these foundations in order to secure end products. To
be successful, we need your help as you take back to your places of work an

increased awareness of where we are and where we must go.

7645“““(A

AMES H. BURROWS PATRICK R.\GAi:,LA

> // /
: A
. GAL GHER, J -
Director Director
Institute for Computer Sciences National Computer Security Center

and Technology

TABLE OF CONTENTS

Network Security

1

15

Devélopments in Guidance for Trusted Networks
Alfred W. Arsenault, National Computer Security Center

Considerations for Security in the OSI Architecture
Dennis K. Branstad, National Bureau of Standards

A Mission-Critical Approach to Network Security
Howard L. Johnson, Information Intelligence
Sciences, Inc. .
J. Daniel Layne, Computer Technology Associates,
Inc.

Network and Distributed Systems

25

38

51

56

68

78

A Security Policy and Model for a MLS LAN
Peter Loscocco, National Computer Security Center

Security in Open Systems -- A Report on the Standards
Work of ECMA’s TC32/TG9
T. A. Parker, ICL Defence Systems, UK

Applying the Orange Book to an MLS LAN
Dan Schnackenberg, Boeing Aecrospace Company

Information Flow Control in a Distributed Object-

Oriented System with Statically Bound Object

Variables '
Arthur E. Oldehoeft and Masaaki Mizuno, Iowa State
University

The Architecture of a Distributed Trusted Computing
Base
Jon Fellows and Judy Hemenway, Nancy Kelem,
Sandra Romero, UNISYS

Specification and Verification Tools for Secure
Distributed Systems
J. Daniel Halpern and Sam Owre, Sytek Inc.

Management Practices

84

Specification for a Canonical Configuration Accounting
Tool
R. Leonard Brown, Aerospace Corporation

ii

91 RACF Implementation at Puget Power
Arturo Maria, Puget Power

98 Management Actions for Improving DoD Computer
Security ‘
William Neugent, MITRE Corporation

Risk Management

103 Risk Analysis and Management in Practice for the UK
Government -- the CCTA Risk Analysis and
Management Methodology: CRAMM

Robin H. Moses,- UK CCTA; E. Rodney Clark, BIS
Applied Systems, LTD

108 A Plan . for the Future
Sylvan Pinsky, National Computer Security Center

Verification Theory

109 m-EVES _
Dan Craigen, I. P. Sharp Associates Limited

118 The Bell-LaPadula Computer Security Model Represented
as a Special Case of the Harrison-Ruzzo-Ullman Model
Paul A. Pittelli, Department of Defense

122 Comparing Specification Paradigms for Secure Systems:
Gypsy and the Boyer-Moore Logic
Matt Kaufmann, William D. Young, University: of Texas

Architectural Issues

129 Locking Computers Securely
O. Sami Saydjari, Joseph M. Beckman,
Jeffrey R. Leaman, National Computer Security Center

142 UNIX and B2 - Are They Compatible?
W. Olin Sibert, Oxford Systems, Inc.
Deborah D. Downs, Kenneth B. Elliott III, Aecrospace
Corporation; Jeffrey J. Glass, MITRE Corporation;
Holly M. Traxler, Grant M. Wagner, National Computer
Security Center

SDNS: A Network on Implementation

150 The Secure Data Network System: An Overview
Gary L. Tater, Edmund G. Kerut

153 SDNS Services and Architecture
Ruth Nelson, GTE Government Systems Corporation

iii

158 SP-4: A Transport Encapsulation Security Protocol
Dennis Branstad, National Bureau of Standards
Joy Dorman, Digital Equipment Corporation
Russell Housley, Xerox Corporation
James Randall, International Business Machines
Corporation

162 SDNS Products in the Type II Environment
John Linn, BBN Communications Corporation

165 Access Control Within SDNS
Edward R. Sheehan, Analytics Incorporated

172 An Overview of the Caneware Program
Herbert L. Rogers, National Security Agency

Modeling and Verification Tools

175 Ina Flo: The FDM Flow Tool
Steven T. Eckmann, Unisys Corporation

183 A Gypsy Verifier's Assistant
Ben L. Di Vito, Larry A. Johnson, TRW Defense Systems
Group

193 Formal Models, Bell and LaPadula and Gypsy

Tad Taylor, Bret Hartman, Research Triangle Institute

Vendor Activities

201 TRUDATA: The Road to a Trusted DBMS
Ronald B. Knode, ORI/INTERCON Systems Corporation

211 The Sybase Secure Dataserver: A Solution to the
Multilevel Secure DBMS Problems
Patricia A. Rougeau, Edward D. Sturms TRW
Federal Systems Group

216 Computer Security at Sun Microsystems, Inc.
Katherine Addison, Larry Baron, Don Cragun,
Mark Copple, Keith Hospers,
Patricia Jordan, Mikel Lechner, Michael Manley,
Casey Schaufler, Sun Microsystems Federal, Inc.

Specific Threats

220 Taxonomy of Computer Virus Defense Mechanisms
Catherine L. Young, National Computer Security Center

226 Computer Viruses: ~Mpyth or Reality?
Howard Israel, National Computer Security Center

iv

231 What Do You Feed a Trojan Horse?
Dr. CIliff Stoll, Lawrence Berkeley Laboratory

238 Towards the Elimination of the Effects of Malicious
Logic: Fault Tolerance Approaches
Mark K. Joseph, University of California,
Los Angeles

Security in UNIX

245 The Setuid Feature in UNIX and Security
Steve Bunch, Gould Computer Systems Division

254 Networking of Secure Xenix Systems
Wilhelm Burger, IBM Corporation Federal Systems
Division

257 A Least - Privilege Mechanixm for UNIX
Frank Knowles, Steve Bunch, Gould Computer
Systems Division
DoD Computer Security R&D Programs
263 An Overview of the DoD Computer Security Research

and Development Program
Larry Castro, National Computer Security Center

Evaluation and Certification

266 Certification: A Risky Business
Martin Ferris, Andrea Cerulli, Department of the
Treasury

273 Security Evaluations of Computer Systems

David J. Lanenga, National Computer Security Center

277 An Expert System Approach to Security Inspection of a
VAX/VMS System in a Network Environment
Henry S. Teng, Digital Equipment Corporation
Dr. David C. Brown, Worchester Polytechnic Institute

282 The Application "Orange Book” Standards to Secure
Telephone Switching Systems
Capt. Paul D. Engelman, HQ AFCC/AIZ

288 The National Computer Security Center Technical
Guidelines Program
Phillip H. Taylor, National Computer Security Center

Training and Awareness

298 Getting Organizations Involved in Computer Security.:.
The Role of Security Awareness
Elizabeth Markey, U.S. Department of State

300 The Computer Security Training Base of 1985
Eliot Sohmer, National Computer Security Center

316 Department of the Navy Automated Data Processing
Security Program Training OPNAVINST 5239.14
Patricia A. Grandy, Navy Regional Data Automation
Center

Social Issues and Ethics
320 Social Aspects of Computer Security
Dorothy E. Denning, Peter G. Neumann, Donn B. Parker
SRI International
326 Security and Privacy: Issues of Professional Ethics
Marlene Campbell, Murray State University
Data Base Management Security
334 Data Integrity vs. Data Security: A Workable
Compromise
Ronda R. Henning, Swen A. Walker, National Computer
Security Center
340 Status of Trusted Database Management System

Interpretations
Michael W. Hale, National Computer Security Center

The Insider Threat

343 Insider Threat Identification Systems
Allan R. Clyde, A. R. Clyde Associates

ADA Verification Issues
357 ADA Technology/COMPUSEC Insertion Status Report
Kenneth E. Rowe, Clarence O. Ferguson, Jr.,
National Computer Security Center

362 The Use of ADA in Secure and Reliable Software
Mark E. Woodcock, National Computer Security Center

vi

366 An ADA Verification Environment
David Guaspari, C. Douglas Harper,
Norman Ramsey, Odyssey Research Associates

Contingency Planning

373 Computer Disaster Recovery Planning: A Fast Track
Approach
O. R. Pardo, Bechtel Eastern Power Corporation

379 Return to Normalcy: Issues in Contingency Processing
Thomas C. Judd, Federal Reserve System Contingency
Processing Center
Howard W. Ward, Germanna Community College

Small Systems Management
384 Advisory Memorandum on Office Automation Security: An

Overview
Alfred W. Arsenault, National Computer Security Center

vii

DEVELOPMENTS IN GUIDANCE FOR TRUSTED COMPUTER NETWORKS

Alfred W.

Arsenault

National Computer Security Center

Ft.

Abstract

The Technical Guidelines Division of the NCSC

has been working to produce guidance for
Trusted Computer Networks that would be
analogous to that provided for stand-alone
computer systems by the Trusted Computer
System Evaluation _Criteria. This paper

events in that develop-
ment: the Trusted Network _Interpretation
(INI), how the TNI came to be, what its
implications are, and what lies ahead.

discusses the latest

Introduction

The purpose of this paper is to discuss the
current status and future plans for guidance
in the area of trusted computer networks. The
National Computer Security Center ("the Cen-
ter") has been working on this problem since
late 1983; earlier stages in the development
can be seen in the proceedings of the New
Orleans Workshop [1] and in the draft Trusted
Network Evaluation. Criteria [2]}, or "Brown
Book". In April of 1987, the Center distri-
buted for review the draft Trusted Network
Interpretation {3], or "TNI". .

The New Philosophy

Comments received on the Brown Book led the
Center to believe that it did not reflect the
right approach to network security. There-
fore, it was necessary to reexamine some of
the early results, and to take a different
approach to developing network guidance. This
new approach is actually a marriage of some of
the early recommendations. It involves the
realization that, although not all networks
can be evaluated and assigned a single rating,
some can. Specifically, the working group
responsible for producing the TNI believes
that the reference monitor concept is
appropriate for certain network systems.
These systems fit what is called the "single
trusted system view" -~ that is, they can
accurately be regarded as an instance of a

George G. Meade, MD

single trusted system. Networks of this type
have a single trusted computing base, referred
to as the Network Trusted Computing Base
(NTCB) . The NTCB is partitioned among the
network components in a manner that ensures
the overall network security policy is
enforced by the network as a whole.

The implication of this is that these networks
can be evaluated, using the concepts embodied
in the Trusted Computer System Evaluation
Criteria ([4] (TCSEC) as the basis for the
evaluation. The words in the TCSEC may not
apply directly; they must be interpreted as
necessary for the network context. Addition-
ally, these requirements may need to be
augmented by other requirements, such as those
for "other security services" 1like Communi-
cations Integrity, Authentication, Non-
Repudiation, and Assurance of Service. How-
ever, 1t is important to realize that the
fundamental concepts of network evaluations
are those described in the TCSEC; new concepts
are introduced only where essential to
understand the TCSEC in the network context.

Networks for which no meaningful evaluation is
possible are addressed using the "intercon-
nected accredited Automated Information System
(AIS) view."2 The interconnected accredited
AIS view is an operational perspective that
recognizes that parts of the network may be
independently created, managed, and accre-
dited. Each AIS is accredited to handle
sensitive information at a single level or
over a range of levels. In this view, the
individual AIS may be thought of as "devices"
with which neighboring components can send and
receive information. An interconnection rule

must be enforced to 1limit the 1levels of
information communicated across the network.
The difference bhetween these two views is

simple, and it is a major one. When a "single
trusted system" (or a component, as will be
explained later) is evaluated, the result is a
technical statement about the strength of the
system. This statement is made (usually)
without regard to the specific environment in

lBy "reference monitor concept" we mean strictly the concept
of an abstract machine that mediates all accesses of subjects to

objects. We do not mean to

mechanism",

imply

"reference
"security kernel", or even "Bell and LaPadula model".

validation

2For the purposes of this paper, an AIS is any system which

is used to create,
electronic form.

prepare,

or manipulate

information in

http:COMPUT.ER

which the system will be operated, and all
systems with the same rating meet the same
criteria. No such statement can be made about
an "interconnected accredited AIS"; all that
can be provided is technical guidance to an
accreditor about certain rules to follow in
hooking up components. The technical state-
ment provided by an evaluation is much
stronger than any interconnection rule, and
leads to much more confidence that the systen
will behave properly when it is installed.

Why Is It an "Interpretation" 2

It ‘is a simple statement of fact that the
TCSEC actually contains two things. First, it
contains the general requirements for a
trusted system OF ANY TYPE. Second, it
contains an interpretation of those require-
ments for deneral-purpose operating systems.
In some ways, it is unfortunate that these two
things are so tightly interweaved throughout
the document, but that is the way the document
was written. Since the TNI is an interpre-
tation of the Ggeneral requirements for
networks, it is on the same 1level as the
interpretation for general-purpose operating
systems in the TCSEC. That is, it is much
more than a "Guideline". However, the TNI is
an "Interpretation" rather than a "Criteria"
because it interprets the general require-
ments, which have already been stated by the
TCSEC.

structure of the Document

The TNI is divided into two parts, plus three
appendices. Part I of the document contains
the TCSEC interpretations. For each require-
ment in each class, the requirement is stated
as it appears in DoD5200.28-STD. Then, the
interpretation of the redquirements is stated.
Finally, rationale is provided--an explanation
of why the interpretation is as it is. For
some requirements, examples of acceptable
mechanisms are also provided.

Part II contains the requirements for security
services such as Communications Field
Integrity, Non-Repudiation, Continuity of
Operations, and Network Management. Part II
includes discussions of general assurance

factors, documentation requirements, and how
to determine which services are needed in a
particular application.

Appendix A discusses the evaluation of
components. Appendix B provides the technical
rationale behind the partitioned NTCB
approach. Appendix C discusses considerations
involved in the Interconnected Accredited AIS
view. There is also a list of acronyms used
in the document, and a glossary of terms.

Relationship to ISO Work

An effort is underway to extend the ISO Open
System Interconnection (0SI) architecture by
defining security-related architectural
elements which can be applied 1in - the
circumstances for which protection of
communications 1is required (5]. There is
considerable overlap between the 0SI Security
Addendum and Part II of the TNI. Since at the
time of this writing both documents are
evolving, it is difficult to exactly define
the relationship. However, some of the
security services identified in the ISO
addendum are addressed in Part I of the TNI,
while others are addressed in Part II. The
principle difference is that the ISO work is
primarily concerned with Functionality,
somewhat concerned with Strength of Mechanism,
and rarely concerned with Assurance. The TNT,
like the TCSEC before it, is very concerned
with Assurance.

Part I: The TCSEC Interpretations

As 1its name suggests, Part I of the TNI
consists of the interpretations of the TCSEC
requirements. The working group has gone
through the TCSEC, c¢lass by class and
requirement by requirement, and asked, "What
does this mean when the context is a network,
rather than a general-purpose operating
system"? Part I first restates the
requirement, as it appears in DoD 5200.28-
STD. The interpretation of the requirement is
then stated, followed by the Rationale for the
Interpretation. In certain cases, the
Rationale also includes examples of mechanisms
that may be used to satisfy the requirement.
These examples are meant to be just that; they

are not meant to be prescriptive.

This interpretation makes explicit what is
implicit in the TCSEC: that the Criteria can
be applied to mandatory and discretionary
integrity policies, Jjust as it «can to
mandatory and discretionary secrecy policies.
That is, it is permissible for a network
system to support a secrecy policy, an
integrity policy, or both.

The evaluation system for Part I of the TNI is
identical to that for the TCSEC. A single,
digraph rating in the range D to Al is
assigned to the systen. This rating is a
technical statement of the amount of trust
that can be placed in the network system. It
carries the same meaning as the digraph rating
assigned to a general-purpose operating system
that has been evaluated against the the TCSEC.

Part II: oOther Security Services

Why Oother Security Services?

Part II cContains additional network security
concerns that are not reflected in Part I.
These concerns are what differentiate the
network = environment from the stand-alone
computer environment. Some concerns take on
increased significance in the network
environment; others do not exist in stand-
alone computers. Some of these concerns are
outside the scope of Part I; others lack the

theoretical basis and formal analysis
underlying Part I. Since introducing these
services into Part I would destroy the

cohesiveness of the criteria for a class, they
are treated separately in Part II.

Criteria Form: . Functionality, sStrength, and

Assurance

Functionality refers to the objective and
approach of a security service; it includes
features, mechanisns, and performance.

Strength of mechanism refers to how well a
specific approach may be expected to achieve
its objectives. Assurance refers to a basis
for believing that the functionality will be
achieved; it includes tamper resistance,
correctness, verifiability, and resistance
against circumvention or bypass.

© correction.

As an example, consider = communications
integrity protection . against message
modification. A functionality decision is to
select error detection only or detection. and
A strength of mechanism decision
would involve how strong an algorithm to use
in implementing whichever were chosen.
Assurance decisions would involve. what level-
of software engineering would be involved in
building the services, whether or not to use
formal verification, and what level of testing
to use.

For each of the security services described in
Part II, requirements are given for each of
Functionality, Strength of Mechanism, = and
Assurance. These requirements are .distinct
from one another, and may . be net
independently. For example, it may be decided
to implement a very strong mechanism with very
low assurance, or a very weak mechanism with
very high assurance. :

The Evaluation System

The security services described in Part II are
not. as strongly intertwined as are those in
Part I. It is not possible to assign one
rating (e.g., 'Z1') that adequately reflects
how 'well the system provides each service.
Furthermore, the services in Part. II are.
generally not provided by the NTCB, but are
provided by hardware/software that is external
to the NTCB. To try to assign them a rating
that is one of the digraphs assigned under
Part I of the TNI is not practical, since in
many cases the rating assigned is much more
subjective. Therefore, a gqualitative rating
system must be used, instead of - a
hierarchically-ordered system. The evaluation’
system used in this document involves a tuple.
A system is assigned three ratings for each
service: one each for Functionality, Strength
of Mechanism, and Assurance. Ratings normally
come from the set of {Not Offered, None,
Minimum, Fair, Good}; however, in specific
cases, ratings such as "present" or "approved

for use with data up to SECRET" may be
assigned.

The difference between "Not Offered" and
"None" 1is that a rating of None states that

the system sponsor attempted to ‘provide the

service (either Functionality, Strength of
Mechanism, or Assurance) and failed
completely. A rating of Not Offered merely

implies that the sponsor did not attempt to
provide the service, as (s)he did not consider
it important. Since either rating indicates
that a system does not adequately provide a
service, the only appreciable difference to
the potential customer is that a rating of
None may indicate a poor quality of work in
the systemn.

Selecting Security Services

Not .all security services will be equally
important in any specific environment; nor
will their relative importance be the same
among different environments. The system's
accreditor (or the potential customer) must
decide, based on the threats to be encountered
in his/her specific environment, which
security services are important, and which are
not required. (S)He can then decide whether
the rating achieved by a specific product is
adequate for the projected environment.

General Assurance Approaches

There are a number of factors that involve the

Assurance ratings of several security
services. These assurance factors include
such things as service design and
implementation, service testing, design
specification and verification, and
configuration management. When a service is
implemented, the rating for these general

assurance factors is combined with the rating
for the service-specific assurance factors to
produce one overall Assurance rating for the
service.

Supportive Primitives

There are two mechanisms/assurance techniques
that apply across a wide range of services.
These are encryption and protocols.
Encryption is a tool for protecting data from
compromise or modification attacks. The
analysis of encryption algorithms and
implementations is quite different from the
analysis of most of the other requirements in

. Facility Manual.

the TNI. The TNI. states that assurance of
encryption techniques will be provided by the
National Security Agency.

Protocols are a set of rules and formats which
determine the communication behavior between
entities in a network. Many network security
services are implemented with the help of
protocols. Failure in the protocol therefore
results in failure of the service. Protocols
influence all ratings; there are Functionality

factors, Strength of Mechanism factors, and
Assurance factors involved.

General Documentation Requirements
Documentation is required for security

services, just as it is for the NTCB. In
fact, in many cases, the documentation should
be contained in the same place. For example,
guidance to the systen or component
administrator concerning security services
should probably be placed in the Trusted
If a component supports
users, guidance to those users should be
placed in the Security Features User's Guide
required by Part I. Documentation concerning
the design and testing of a security service
may be placed with the Test Documentation and
Design Documentation required by Part I; if it
is not located there, then it must be provided
separately by the network sponsor.

Specific SBecurity Services

The three categories of security services
addressed are Communications Integrity, Denial

of Service, and Transmission Security.
Communications 1Integrity is further broken
down into: Authentication, Communications
Field Integrity, and Non~repudiation. Denial
of Service contains the requirements for
Continuity of Operations, Protocol-based
Protection, and Network Management.
Transmission Security includes Data
Confidentiality, Traffic Confidentiality, and

Selective Routing.

In Part II, Authentication is concerned with
what the IS0 work calls Peer Entity
Authentication or Data Origin Authentication,
depending on whether the service is

connection-oriented or connectionless. This

can be contrasted with the Authentication
required in Part I, which is strictly the
Identification and Authentication of human
users.

Communications Field Integrity refers to the
protection from modification of any or all
fields involved in communications. Non-
repudiation provides unforgeable and
undeniable proof of shipment and/or receipt of
data.

It is accepted that one can never completely
protect against denial of service.
Furthermore, the TNI does not attempt to
address protection against such attacks as
cutting a communications cable, or blowing up
one of the components. The TNI does state
requirements for detecting service levels that
have fallen below pre-established thresholds,
and for detecting the fact that access to a
component is unavailable.

Transmission security is a collective term for
a number of security services. These services
are all concerned with the secrecy of
information transfer between peer entities
through the computer communications network.
While physical security can also provide
transmission security, it is not explicitly
addressed in the TNI.

Appendix A: Component Evaluations

The main body of the TNI takes the view of a
network as a single trusted system. This view
can be extended somewhat, and a trusted
network can be regarded as a collection of
trusted components. This 1is an important
extension, as in the commercial marketplace it
is doubtful that many vendors will provide
complete systems. Thus, we would like to be
able to assess the trust provided by different
types of components. There are two advantages
to being able to do this: first, it allows
for the evaluation of components which in and

of themselves do not support. all of the
policies required by the TCSEC; second, it
allows for the reuse of the evaluated

component in different networks without the
need for a re~evaluation of the component.

Taxonomy of Policies and Components

For our purposes, there are four basic types
of policies that systems or components can
enforce. There are mandatory access control
peolicies, discretionary access control
policies, supportive policies, and application
policies. .

Application policies are those that apply to
specific programs; they provide security in
addition to that provided by the TCB or NTCB
partition. An example of an application
policy would be a database management system
that provided access control to the record or
field 1level, while the TCB provides access
control only to the granularity of a file.
Application policies are not relevant to the
TNI; thus they will not be addressed.

Supportive policies include identification and

authentication policies as well as audit
policies.
Given this taxonomy of policies, the TNI

breaks the universe of components into four

classes. One <class consists of those
components that support mandatory access
control policies; the TNI denotes these 'M
components'. A second class consists of those

components that support discretionary access
control policies; the TNI calls these 'D
components'. The third class supports
identification and authentication policies,
and these are called 'I components'. The
final class supports audit policies; these are
called 'A components'.

Evaluation System

'Whenever a component is to be evaluated, the

component sponsor is responsible for
completely defining a target network
architecture; that 1is, an ‘architecture in

which the component is expected to be used and
for which its security features will work as
stated. Once this is done, the component can
be evaluated against those requirements that
apply to it, in the context of the stated
target architecture and policy.
evaluated

A component is against

the

requirements in Part II as stated for any
service it provides. No further
interpretation is necessary.

A component is evaluated against some subset
of the requirements for a given class in Part
I. It is evaluated against all assurance
requirements, plus those feature requirements
that apply directly to the policy it enforces.
In general, the component is evaluated against
the Interpretation as stated in Part I of the
TNI. In some cases, it 1is necessary to
reinterpret the requirement to place it in the
context of a network component, rather than a
network systemn.

The range of ratings that can be assigned to a
component. depends on the policy(ies) it
enforces. For example, a M component can
receive a rating in the range Bl - Al. A D
component can be rated from Cl1 to C2+. (C2+
indicates that the component enforces the B3
DAC requirement, and provides C2 assurances.
It is not correct to assign a B3 rating to a D
component, as that connotes a 1level of
assurance that no D component can provide.)
An A component can receive a rating of C2 or
C2+, and an I component c¢an be rated Cl
through C2+.

Composition Rules

Since .a component is defined to be any part of
the system, some components are made . by
composing other components. For example, a
communications subnet is a component of a
larger system; it may be composed of packet
switches, front-end units, and gateways that
are . components themselves. (This is an
illustration of the fact that the definition
of component is a recursive one.) In general
it 4is not possible to guarantee that a
collection of evaluated components will result
in an evaluatable trusted system. However, it
is possible to define a set of composition
rules so that the result of composing trusted
components maintains the ratings assigned to
the original components.

An example of the composition rules provided
in the TNI is illustrated as follows. Suppose
that there is a D component that has been
given a C2 rating for D. Suppose that there

is an I component that has been given a c2
rating for I. We wish to compose these two
components to get one DI component that is
rated C2 for D and C2 for I. In order to do
that, we must insure that the DI component
preserves the Network DAC Policy of the D
component. Furthermore, the DI component must
preserve the Audit interface(s) used for
exporting audit information from both the D
component and the I component. If the DI
component provides
Identification/Authentication support services
to other components, the Identification
Interface of the DI component must be defined
and a protocol established for this interface
which is able to support the Network I/A
Policy. 1If the DI component does not provide
Identification/Authentication support services
to other components, it may only be composed

with other components which are - self~-
sufficient with respect to DAC.
The TNI gives composition rules for

interconnecting all possible combinations of
component types, most of which are similar to
the one above.

Appendix B: Rationale for the Partitioned

NTCB Approach

Implicit in the partitioned NTCB approach is
the view that a network, including the
interconnected hosts, is analogous to a single
trusted system, and can thus. be evaluated
using an interpretation of the TCSEC. Put
another way, networks form an .important and
recognizable subclass of ADP systems with
distinctive technical characteristics which
allow tailored interpretations of the Criteria
to be formulated for them. Appendix B
provides the background and rationale for the
partitioned NTCB approach.

Appendix C: - Thé "Interconhected Accredited

AISY View
The interconnected accredited Automated
Information System (AIS) view is an

operational perspective that recognizes -that
parts of the network may be independently
created, managed, and accredited. Each AIS is
accredited to handle sensitive information at

a single level or over a range of levels. 1In
this view, the individual AIS may be thought
of as "devices" with which neighboring
components can send and receive information.

The interconnected accredited AIS view differs
from the single trusted system view in that,
here, one does not regard a network as a
single trusted system, and therefore one does
not assign a single rating to the network. Aan
example of where the interconnected accredited
AIS view is necessary is a network consisting
of two Al systems and two B2 systems, all of
which are interconnected and all of which may
be accessed locally by some users. It is easy
to see that, if we regard this as a single
trusted system, it would be impossible for it
to achieve a rating against Part I of this
document higher than B2. This might not be an
accurate reflection of the trust that could be
placed in the two Al systems and
interconnections between them. Any single

rating assigned to this network would be
misleading.
Component Connections and the

Interconnection Rule

Networks like the one described above can only
be addressed in terms of whether or not they
obey an interconnection rule. Each component
that is connected to other AIS communicates by
means of-a particular I/0 device, which has a
device - range associated with it. The
interconnection rule involved is one that says
simply, for two way communication, the device
ranges of the +two I/O0 devices must be
identical. For one-way communication (i.e.,
with no acknowledgement whatsoever), the
device range of the receiving I/0 device must
dominate the device range of the sending I/O
device.

This interconnection rule must be enforced
locally by each component of the network.
Decisions on whether to send or receive
information can be made by a component based
only on its accreditation range and those of
its immediate neighbors. In many cases, it is
not necessary for a sending component to know
the accreditation range of the component that
is the ultimate destination of the message.
If the interconnection rule is enforced by

each component, +the overall network will
prevent information from being sent where it
shouldn't go. :)

The Global Network View

In many cases, networks enforce the
interconnection rule and still expose
information to an excessive risk of disclosure
or modification. There are considerations
other than the interconnection rule that the
accreditor may wish to take into account when
deciding whether or not to permit
interconnection of components. Most of these
considerations are based on a knowledge of all
the components in the network. As one
particular example of these <considerations,

can

let us consider something called the
"cascading problem". Cascading occurs when a
penetrator can take advantage of network

connections to compromise information across a -
range of security levels that is greater than
the accreditation range of any of the
component systems he must defeat to do so.

Consider the following example: there are two
class B2 systems, one (System A) processing
SECRET and TOP SECRET information, the other
(System B) processing CONFIDENTIAL and SECRET
information. A penetrator is assumed to be
able to overcome the protection mechanisms in
System A, causing TOP SECRET information to be
downgraded to SECRET; have it sent across to
System -B at the SECRET 1level; and then
overcome the protection mechanisms in System B
to downgrade it to the CONFIDENTIAL level.
TOP SECRET information has thus been
downgraded to the CONFIDENTIAL level.
According to the environments guidelines [6],
the risk of this requires at least a class B3
system; however, the penetrator has only had
to defeat two class B2 systems.

The TNI describes two heuristic algorithms for .
determining the presence of cascading
conditions. One, which is very simple, is
fairly conservative, and sometimes indicates
the presence of a cascading condition when in
fact none exists. The second is much more
complex, but it tends to be more accurate in
determining cascading conditions.

There are several ways of remedying potential

cascading conditions. In most cases, using a
higher level of trusted system will suffice.
In other situations, mechanisms such as end-
to-end encryption will solve the problem. In
extreme cases, the accreditor may wish to
actually disallow the connection.

Acknowledgements

The author would like to thank the members
of the TNI working group, without whose
efforts the TNI would not have been possible.
They are: Marshall Abrams and Jon Millen, of
MITRE; Roger Schell, of Genrini Computers,
Inc.; Stephen Walker, of Trusted Information
Systems, Inc.; Robert Morris, Chief Scientist
of the NCSC: Irv Chatlin, Ncsce; Jack
Moskowitz, NCSC; and Brian Snow, Department of

Defense. Acknowledgement is also due to
Leonard LaPadula, Bill Shockley, Steve
Padilla, and Jim Anderson, for their many and
valuable inputs; and to Patrick Mallett,
Albert Jeng, and Sam Schaen for review and
comments. Thanks are also due to all of those

who read and commented on various drafts of
this document.

References

1. DoD Computer Security Center, Proceedings
of the Department of Defense Computer Security

Center Invitational Workshop _on Network
Security, New Orleans, TA 19-22 March 1985.

2. DoD Computer Security Center, Draft
Trusted Network Evaluation Criteria, 25 July
1985,

3. National Computer Security Center, Draft

Trusted Network Interpretation, 8 April 1987.

4. DoD Standard 5200.28-~STD, Department of
Defense Trusted Computer System Evaluation

Criteria, December 1985.

5. M"ISO 7498/Part 2 - Security Architecture,"
IS0/TC97/SC21/N1528/WGl Ad hoc group on

Security, Project 97.21.18, September 1986.
6. DoD Computer Security Center, Computer
Security Regquirements--Guidance for Applying

the Department of Defense Trusted Computer

System Evaluation Criteria in Specific
Environments, CSC-STD-003-85, 25 June 1985,

For More Information:

The author can be contacted at the following
address:

Alfred Arsenault

National Computer Security Center
ATTN: C1l1

9800 Savage Road

" Ft. George G. Meade, MD 20755=-6000

http:97.21.18

CONSIDERATIONS FOR SECURITY

IN THE OSI ARCHITECTURE

Dennis K.

Branstad

Institute for Computer Sciences
and Technology
National Bureau of Standards
Gaithersburg, Maryland, 20899, USA

I. Introduction to OSI Security

The Open Systems Interconnection (0SI)
computer network architecture has given
computer network designers and implementors
a common vocabulary and structure for
bulldlng future networks. It has also
given network securlty de51gners a
foundation upon which desired security
services can be defined and built. This
paper discusses several goals of security
in the 0SI architecture as well as where
and how the security services that satisfy
them could be implemented.

A. Need for a Security Architecture

A standard security architecture is
needed in OSI in order to begin the task of
implementing security services in
commercial products so that not only can
one OSI system communicate with another,
but also it can do the communication with
the desired security. The security goals
and services discussed in this paper are
predicated on the assumptions that
sensitive or valuable data are being
transmitted between systems in the 0SI
network, that changes in the network
between the systems could be made by an
unauthorized person or persons in order to
obtain or modify the data, and that
security services are to be available in
the network to prevent the unauthorized
disclosure of sensitive data and to detect
(and report) the unauthorized modification
of data.

For this paper, security is defined to
be the protection of the confidentiality
and integrity of data. Privacy, often
combined with security or confused with
securlty, is a social issue regardlng
protectlon of personal information from
undesirable use and is not discussed in
this paper. Security is often defined as
including protecting the avallablllty of
data but is not included in the scope of
this paper.

B. Requirements for Security

A large number of potentially
desirable security goals in computer
networks have been identified in the
literature. The OSI Implementors Workshop
Special Interest Group in Security (0SI
SIG~SEC) is establishing a desirable set of
security goals for implementors of 0SI and
the resulting list of desirable services to
implement. This SIG is sponsored by the U.
S. National Bureau of Standards and is open
to anyone interested in OSI security.

NOTE: CONTRIBUTION OF THE NATIONAL
BUREAU OF STANDARDS..
NOT SUBJECT TO COPYRIGHT.

A minimum set of desirable security
goals in OSI identified by the author is:

1. Protection of data against
unauthorized modification.

2. Protection of data against
undetected loss/repetition.

3. Protection of data against
unauthorized disclosure.

4. Assurance of the correct identity
of the sender of data.

5. Assurance of the correct receiver
of the data.

-As a memory aid for these five basic
security goals, the following five terms
starting with the letter "sS" have been
selected to represent the security achieved
by satisfying these goals. They are,
respectively:

1. Sealed

2. Sequenced
3. Secret

4. Signed

5. Stamped

Achieving these security goals in the
0SI architecture will assure that data
being transmitted from one OSI system to
another will not have been modified,
disclosed, replayed, or lost in the network
without the sender and/or the intended
receiver being notified and that the
participating parties in the communication
have been correctly identified.

Other security goals that have been
identified [11] as being desirable include:
labeling of data according to its
sensitivity, source, etc.; not disclosing
the identities of the sender and recipient
of data, and the quantity of data
exchanged, except to each other; providing
security audit trails of network
communications; assuring the availability
of communications under adverse conditions;
assuring that data inside an 0SI system
cannot be transmitted using covert
information channels, even of very low
bandwidth; proving to an 1ndependent third
party that a communication did occur and
the correct contents were received;
obtaining explicit authorization for access
to a system before making a connection to
the system.

C. National Bureau of Standard's Role

The National Bureau of Standards (NBS)
has fostered the development of the 0SI
architecture and the implementation of
commercial products implementing the
standard protocols defined for the
architecture. NBS has had a program in

computer security since 1973 and has
fostered the development of numerous
security standards [7, 8, 9, 10] since that
time. It has assisted in the development
of several security standards in the
banking community [4, 5, 6] and the
information processing community [1, 2, 3]
through the American National Standards
Institute. It is now supporting the
development of an OSI security architecture
{11] via the IS0/ TC97/ SC21/ WGl and the
0SI SIG-SEC.

II. O0SI Network Security Perimeters

A useful notion in the development,
implementation and use of security in a
computer network is that of a security
perimeter. This logical structure in a
computer network is the equivalent to a
physical structure in a secure facility
such as a bank vault. 1In actuality there
are multiple security perimeters around
highly secure facilities where a principal
of "security in depth" is practiced.
Similar analogies can be drawn in computer
networks. For simplicity in this
discussion, a single security perimeter
concept will be used in which each 0SI
system will have a security perimeter.
overall goal of OSI security is to
communicate data from within one security
perimeter to another. Loss of security
within a perimeter is beyond the scope of
this paper.

The

A. One Security Perimeter around Network

If a security perimeter is drawn
around the entire network (Figure 1),
either because no sensitive or valuable
data are ever communicated in the network,
because no threats are believed to exist in
the network, or because security it
provided through non-0SI methods, then no
0SI security services are needed. Many
networks are presently being operated in
this manner. This is acceptable as long as
everyone and everything inside the
perimeter is "trusted." Trust implies that
no intentional or accidental event will
occur which will result in an undesirable
disclosure, modification or loss of data.

A simplified definition of trust is used in
this paper with trust being a binary valued
parameter (i.e., multi-level security is
not considered). Trust can also be assured
within the system through the use of a
"Trusted Operating System." This systen
assures that adequate security is provided
within the security perimeter.

P User Processes

Application Layer
Presentation Layer
Session Layer
Transport Layer
Network Layer
Link Layer
Physical Layer

PR WE G0
HROWROON W

Figure 1: One Security Perimeter around
network

10

8. Security Perimeter around each User
Process

A security perimeter could be drawn
around each user process which provides
high granularity security (?igure 2) since
each user process provides its own
protection and nothing within the OSI
architecture needs to be trusted. However,
this requires that all desired security
services be implemented in every user
process or program. While possible, this
approach is contrary to the goal of 0SI for
performing services in the layers of OSI
rather than in each user process.

P P

7 7

6 6

5 5

4 4

3 3

2 2

1 1
Figure 2: Security Perimeter around each

User Process

C. Security Perimeter around Upper
Layers

A security perimeter can be drawn
between these two extremes around ?he upper
layers of the OSI architecture. Different
granularities of security result from
selecting different placement of the

security perimeter. In actuality, a
hierarchy of security perimeters Vlll be
implemented, each providing security
against a different perceived threat. A
security perimeter has been drawn at the
transport layer (layer,4) of the 0SI
architecture (Figure 3) for subsequent
discussion in this paper

P P
7 7
6 6
5 5
4 4
3 3
2 2
1 1

Figure 3: Security Perimeter around
Upper lLayers

D. Negotiated Security

One goal of OSI implementors should be
to provide maximum flexibility for users of
an implementation. an implementation
should provide for negotiation between
users in selecting an optimum set of OSI
services, including security services. .
However, security may be somewpat unique in
this regard in that some orgaplzatlong may
not desire to negotiate certain sgcuylty
services, especially if the negotiation
could result in security less than some
predetermined minimum. Other organizations
may accept negotiating away all securlty
services if those services are temporarily
causing functionality or throughput to drop

below a minimum. Some organizations may
add to the basic security services provided
in standard implementations and not desire
other organizations to use or know about
the additional services.

An extensible security architecture is
desired which will provide for these
special services without causing an
unacceptable overhead on those not
requiring these services.

Placement of Security Services in
the 0SI Architecture

ITI.

A. Security Addendum to the 0OST
Architecture

A draft security addendum to the OSI
architecture [11] has been developed by Ad
Hoc groups of the American National
standards Institute (ANSI) and the
International Standards Organization (ISO)
TC97/ SC21/ WGl. The draft security
addendum presents a glossary of computer

security terms, describes a number of
"security services for 0SI, and presents a
matrix of where in the seven layer 0SI
architecture the security services may be
located (See Below). It then presents the
rationale for why the security services are
placed in those layers. Recent work [12]
defines an authentication framework for the
layer 7 directory service for which User
Agents are authenticated before they are
granted access to sensitive information in
the Directory.

While the draft addendum satisfies the
goals of defining a number of security
services and discussing where they could be
placed, the addendum is not adequate for an
implementor desiring to implement security
in the 0SI architecture. First, it would
be too expensive to provide all security

services at all possible layers allowed in-

the addendum. Second, if one implementor
chose to implement a service at one layer
and another implementor chose to implement
the same service at a different layer, the
goal of compatability between peer layers
of 0SI would not be achieved. Finally,
standards for implementing the services are
not currently specified.

B. 0SI Security Categories and Services

The following security categories and
services are defined in the draft security
addendum to the 0OSI architecture. The 0SI
layers in which the services could be
implemented are shown in the matrix next to
the services. The services need not be
implemented in all of the layers that are
specified.

11

OSI SECURITY SERVICE PLACEMENT PRIORITIES
High (H); Medium (M); Low (L)

OSI LAYER
12345867

CATEGORY OF SERVICE
SERVICE

1. IDENTIFICATION/AUTHENTICATION

| _|_iM|L|_|_|H|] A. Data Origin

[_|_ILIM|_|_|H#| B. Peer Entity

2. ACCESS CONTROL

{_1_IMIL|_|_|H| A. originator
Authorization
| _|_lL|M|_|_|H[B. Peer Entity

Authorization

3. INTEGRITY

1 I_I_15E[_I_1_1 A. Connection (w/wo
error recovery)

f_I_{H[M]_|_{_] B. Connectionless (wo
error recovery)

1 i_I_{H] ¢, Selective Field
Integrity

4. CONFIDENTIALITY

[_|_|_IH|_|_I_| A. Connection

I _|_iHi{M|_|_1_| B. Connectionless

[_t_I_I_I_IH|_} ¢€. 8Selective Field

IH| 1_1 1 |1t | D. Traffic Flow

I1_I_I_I1_IHl A,

Originator

{_1_J_t_1_|_IHl B. Recipient

C. Factors in Placing Security Services

Many factors must be considered in
selecting the layer(s) for implementing
selected security services. First, a basic
set of security services to be implemented
must be chosen. Second, a minimum number
of layers should be chosen in which to
implement the services to minimize the
number of layers affected by security.)
Third, use of existing services of a layer
may be utilized by the security service if
a proper layer is chosen. Fourth, the
overall cost of providing the selected
security services will be minimized if the
layer is properly selected.

Fifth, a set of primitive security
functions need to be defined and
implemented (hardware, software, firmware)
in such a way that they can be performed at
one or more layers of the architecture in
providing the desired security service.

D. Primitive Security Functions

0SI security services could be
implemented utilizing a set of primitive
functions similar to the ones below. The
primitive functions would be called with a
set of parameters enclosed in []
and return the results enclosed in {}
following execution.

I. AUTHENTICATE ([ID; AUTHENTICATOR]
{RESULT; STATUS}

This primitive verifies that the
AUTHENTICATOR does correspond with the
claimed ID by searching the local Secure
Management Information Base and responding
with the correct RESULT and STATUS.

AUTHORIZE [ID; TYPE; RESOURCE]
{RESULT; STATUS}

II.

This primitive verifies the
authorization of ID with the indicated TYPE
for access to the requested RESOURCE and
sets the correct RESULT and STATUS.

ITT. ENCIPHER [PT; LENGTH; KEYNAME] {CT:
LENGTH; STATUS}

This primitive enciphers plaintext
beginning at PT for the indicated LENGTH
into ciphertext beginning at CT for the
indicated LENGTH and sets the resulting
STATUS using the KEY associated with
KEYNAME.

DECIPHER [CT; LENGTH; KEYNAME] {PT;
LENGTH; STATUS}

IV.

This primitive deciphers ciphertext
beginning at CT for the indicated LENGTH
into plaintext beginning at PT for the
indicated LENGTH and sets the resulting
STATUS using the KEY associated with
KEYNAME.

V. COMPUTEMAC [DATA; LENGTH; KEYNAME]
{MAC; STATUS}

This primitive computes a Message
Authentication Code (MAC) on the DATA of
indicated LENGTH using the KEY associated
with KEYNAME and sets the resulting STATUS.
LENGTH; KEYNAME;

VI. VERIFYMAC [DATA;

MAC] {RESULT}

This primitive computes a Test Message
Authentication Code (TMAC) on the DATA of
indicated LENGTH using the KEY associated
with KEYNAME and sets the correct RESULT to
indicate if TMAC is identical with the
input MAC.

VII. SIGN [DATA; LENGTH; USERID;
KEYNAME] {SIGNATURE; STATUS}

This primitive computes a SIGNATURE on
the DATA of indicated LENGTH for the user
indicated by USERID using the KEY
associated with KEYNAME and sets the
resulting STATUS.

VIII. VERIFYSIGNATURE [DATA; LENGTH;
USERID; KEYNAME] {SIGNATURE;
{RESULT ; STATUS}

This primitive computes a Test
Signature (TSIGNATURE) on the DATA of
indicated LENGTH for the user indicated by
USERID using the KEY associated with
KEYNAME, compares it with SIGNATURE, and
sets the correct RESULT and STATUS.

12

E. Initial Recommendations for
Placement

Based on the simplifying assumptions
stated at the beginning of this paper, the
transport layer (4) of the OSI architecture
was chosen by NBS for initial
implementation of a selected subset of
security services. This layer was chosen
after several years of participating in the
development of standards for security at
layers 1/2 [2], layer 4 [13] and layer 6 of
the 0SI architecture by the accredited ANSI
Technical Committee X3T1l. The layer 1/2
standard was developed for protecting data
in each link of a network. However, it
does not provide security from one OSI
end-system computer to another through a
general network. A layer 4 standard was
drafted to provide security for all data in
a layer 4, class 4 connection. A layer 6
standard was drafted to provide security
for selected fields of data specified by an
application in such a way that it need not
be unprotected even at the intended
destination.

Early development of the layer 4
standard was facilitated by an early
definition of services at layer 4 and the
existence of standard protocols and
implementations of layer 4. It was also
facilitated by using existing services of
layer 4 for security purposes.

IV. Protocols for Transport Layer
Security Services

A. Integrity Service

A connection integrity service
protocol has been defined for class 4 of
the transport layer (4) of the OSI
architecture. The integrity service can
achieve two security goals, sealing and
sequencing, and assures that all data in a
connection are transferred from one OSI
security perimeter to another without being
intentionally or accidentally modified,
lost or repeated. Such security is
especially important in Electronic Funds
Transfer (EFT) transactions. EFT messages
are vulnerable to modification; deposit and
withdrawal messages are vulnerable to loss
or repetition. While present EFT security
standards specify security services at
layer 7 of the OSI architecture, a wide
variety of other applications could utilize
similar security services if they are
implemented at layer 4.

The integrity service protocol
utilizes the sequence number provided by
layer 4, class 4 service. This is a 31-bit
number defined as 4 octets in the header of
each layer 4 Protocol Data Unit (PDU). The
sequence number is provided by layer 4 for

resequencing the PDUs if they arrive out of
order and for flow control on a connection.
The integrity service also utilizes the
existing layer 4, class 4 mechanisms for
recovery from errors (i.e., lost or
modified data). Connectionless network
layer (3) services can then be used if a
class 4 integrity service is provided and
used at layer 4.

The PDU integrity protocol specifies
how an electronic data integrity seal,
called a Message Authentication Code (MAC),
is computed for each PDU. The seal covers
both the user data and the header
(including sequence numbers) for data
stream integrity. The seal is typically a
32-bit number that is computed using
cryptographic functions on the PDU to be
sealed so that its integrity can be
verified when it is received at the
corresponding security perimeter (layer 4
peer entity). If any part of the PDU has
been accidentally or intentionally
modified, including the address and
sequence number, the test value computed on
the received PDU will not match with the
seal computed by the transmitter on the
transmitted PDU and transmitted with the
sealed PDU. If the value is not correct,
the suspected PDU is discarded and a
retransmission is requested. If the value
is correct, the PDU is accepted. Sequence
numbers are also verified to assure data
stream integrity. '

B. Confidentiality Service

Data can be protected against
unauthorized disclosure in a network with
encipherment (encryption). The ISO/0SI
security addendum calls this a
confidentiality service. Enciphering is a
transformation of data into a form that is
not usable or readable while preserving the
information content. The resulting
ciphertext is transmitted. The authorized
receiver must perform the correct inverse
operation, called deciphering (decryption),
in order to obtain the original, usable,
readable form of the data. Typically, a
cryptographic algorithm, implemented in a
computer with either hardware, software or
both, and a cryptographic variable called a
key are :used to perform the two required
transformations. A requirement of this
service is that something be kept secret or
available only to authorized communicating
parties. Details of this service are
beyond the scope of this paper.

The confidentiality service requires
that the user data of a PDU be enciphered
before leaving the security perimeter of
the transmitter and be deciphered only
after entering the security perimeter of

the intended receiver. Other portions of
the PDU need not be enciphered since they
contain no user data. If enciphering is
performed only on the user data, the
addresses or identities of the
communicating parties are not enciphered
and hence a monitor in the network can
determine who is communicating and how much
data in being communicated, even though the
contents of the data cannot be determined.

The 0SI security architecture
specifies a traffic flow confidentiality
service at layer 1 to protect against
traffic analysis if this protection is
desired. Encipherment at this layer would
protect all data on a communication link,
including the addresses of the
communicating entities. However, it would
be unprotected in all intervening gateways.

13

C. Peer Authentication Service

The two communicating transport layers
are called peer entities and must perform
equivalent services in order to
conmunicate. Simplistically, what one does
the other must check and/or undo. The
security protocols that have been defined
to date at layer 4 will assure that the
peer layers are mutually identified and
that a connection between them is a current
connection and not a replay of a previous
connection. This protocol relies on
cryptographic procedures during the
establishment of a connection. Once a
connection is established, data intended
for the peer layer 4 can only be used by
that peer entity. It can be accidentally
or intentionally destroyed, delayed or
misrouted, but it cannot be used by the
unauthorized receiver if encrypted.

Peer authentication is performed by a
connection procedure often called a
three-way handshake. Using proper
cryptographic procedures, a
challenge-response~-verification is
performed by both peer entities of a
connection. Random numbers are used in a
standard procedure to assure that both peer
entities have the correct key and that a
replay of a previous connection is not
being attempted. The user data is not
signed with this technique. The personal
identities of the users of a connection or
the applications using a connection are not
involved in this service. It merely
assures that an entire stream of data is
‘not replayed to an unsuspecting recipient.

V. NBS Laboratory Implementation

A. Local Area Network Environment

The National Bureau of Standards

initiated an experiment in implementing
these security protocols in the transport
layer of several computer systems 1in a
local area network environment. The
experiment was to determine the adequacy of
a proposed ANSI standard for the sgcurlty
protocols, the ease of implementation and
impact on the operation of the network.

The network was based on one of the
IEEE 802 standards often called Ethernet.
Six personal computers Were.used for the
experiment. Ethernet circuit boards were
added to the computers and connected
together using coaxial cable. Software
gupplied with each Ethernet board was used
to provide layer 1, 2 and 3 functionality.
A transport layer protocol tha@ was
implemented on a time-shared mlnl-gomputer
was used as the basis of the experiment.
Null layers 5 and 6 were used. A simple
layer 7 application was used to demonstrate
connections and data transfers among the
computers.

The National Bureau of Standards Data
Encryption Standard (DES) was used for the
cryptographic functions. Six glrcult
boards each containing DES devices were
obtained from two companies and plugged
into the six personal computers. These
boards were used by the layer 4 security
services. Cryptographic keys for each of
the six computers were manua11Y.1nstalled
in the computers for demonstrations. No
automated key management was performed
during the experiment.

B. lLessons Learned

The difficulty of converting a
protocol designed for a time-shared,
interrupt driven mini-computer to a
single-user, event driven personal computer
was not anticipated. Even though the
programming language was the same on both
systems, it was found to be very difficult
to convert the program from one system to
another. A completely new system interface
had to be developed in order to use the :
services of the transport protocol.

It was found to be easy to integrate
the security services into the transport
protocol once the protocol was working.

The confidentiality service was the easiest
to implement. The integrity service was
the most difficult as it required more
modifications of existing layer 4
functions. The peer authentication service
was trivial after implementing the
integrity service. Since the system was
designed only for demonstration, there was
no attempt to verify the correctness and
trust of the implementing code itself which
would be necessary for operational systems.

It was difficult to effectively
demonstrate security of the network. Good
security implementations should have
minimal effects on the user and the
network. It was often impossible to tell
if the security services were being
performed since they caused negligible
overhead on the network. A network monitor
was finally designed to observe the data on
the network so that security services, or
lack thereof, could be observed.

It was acceptable to have special
applications to demonstrate the security
services and the transport services but it
was apparent that original equipment and
software implementors and vendors have to
support the enhanced security functions as
a basic feature of their product in future
products in order to gain the desired
security and user support. The interface
to security enhancements has to be trusted
and integrated into the product or security
will often be bypassed.

VI. Summary and Conclusions

A security architecture is needed as a
fundamental part of the 0SI architecture.
Standard security services must be defined,
standard security protocols must be
developed and standard security interfaces
for applications programs must be
specified. Optional security services must
be defined and standard implementations
must be available to be used on an optional
basis. All security services need to be
negotiated but with provisions for default
services and enhanced, user defined
services. The user should not be aware of
the operation of security services other
than the need for providing initial
information for the service (e.g., the set
of services required, specific parameters
for the service if default parameters are
not acceptable).

While only a small subset of the
possible desirable security services were
selected for discussion in this paper,
there is a need for research in providing
additional services and for standards
activities for specifying implementations
of them. The National Bureau of Standards
is seeking interest and assistance in
providing these necessary activities.

VII. References

[1] ANSI X3.92, American National
standard for Information Systems - Data
Encryption Algorithm, American National
standards Institute, New York, NY, 1981.

r2] ANSI X3.105, American National
Standard for Information Systems - Data
Link Encryption, American National
Standards Institute, New York, NY, 1983.

[3] ANSI X3.106, American National
Standard for Information Systems - Data
Encryption Algorithm Modes of Operation,
American National Standards Institute, New
York, NY, 1983.

[4] ANSI X9.8, American National
Standard for PIN Management and Security,
American National Standards Institute, New
York, NY, 1982.

[5] ANSI X9.9, American National
Standard for Financial Institution Message
Authentication - Wholesale, American
National Standards Institute, New York, NY,
1986.

[6] ANSI X9.17, American National
Standard for Financial Institution Key
Management - Wholesale, American National
Standards Institute, New York, NY, 1985.

[7] Federal Information Processing
Standard 46: Data Encryption Standard
(DES), National Bureau of Standards,
Gaithersburg, MD, 1977.

[8] Federal Information Processing
Standard 74: Guidelines for Implementing
and Using the Data Encryption Standard,
National Bureau of Standards, Gaithersburg,
MD, 1980. ’

[{9] Federal Information Processing
Standard 81: DES Modes of Operation,
National Bureau of Standards, Gaithersburg,
MD, 1980.

[10] Federal Information Processing
Standard 113: Computer Data
Authentication, National Bureau of
Standards, Gaithersburg, MD, 1985.

[11] 1ISO 7498: Proposed Draft Addendum
Number 2 - Security Architecture, ISO/
TC97/ SC21/ WG1l, 1986.

[12] The Directory - Authentication
Framework, ISO/CCITT Directory Convergence
Document #3, ISO/ TC97/ SC21/ WG4, 1986.

{13] Transport Layer Protocol Definition
for Providing Connection Oriented
End-to~End Cryptographic Data Protection
Using a 64-Bit Block Cipher, X3Tl Draft
Document forwarded to ISO TC97/ SC20/ WG3,
1986.

A Mission-Critical Approach to Network Security

Howard L. Johnson

Information Intelligence Sciences,

Inc.

15694 E. Chenango
CO 80015

Aurora,

J. Daniel Layne
Computer Technology Associates, Inc.

7150 Campus Drive,
Colorado Springs,

ABSTRACT

Computer networks supporting command and
control missions interconnect sensors,
operations centers, forces and other
heterogeneous systems. Such "systems of
systems™ must protect sensitive data from the
threat of compromise and must, in addition,
provide protection to mission critical data
and resources against loss-of-integrity and
denial-of-service. This paper presents an
approach to network security that treats
sensitivity (classified data protection)
issues independent of criticality (integrity
and availability) issues to gain archi-
tectural and economic advantage. Decompo-
sition of large systems into components is
reviewed. We discuss protection mechanisms to
counter sensitivity and criticality threats
and also address security interface policy
requirements between components and systems.
Finally, a network security architecture
concept 1s suggested.

INTRODUCTION

Networks and more
distributed systems present a more difficult
security problem than monolithic computer
systems due to lack of central control and a
heightened security exposure that 1s geo-
graphically dispersed and over a broader
range of levels. Communicating components
compound the problems with different security
policies and interfaces, incompatible
security architectures, and composite risks.
There is a lack of strong technology history
in network security.and external exposure of
communications media and facilities provides
greater opportunity for integrity and denial
of service attacks.

specifically

In communications systems we protect
data content exposure with cryptography, but
without additional protection (not presently
provided in computer security), false
messages can be initiated, important messages
can be deleted, and communications resources
-could be made unavailable. To make matters
more difficult, a probable profile of today’s
enemy is someone who has a security
clearance, has dedicated many years service
to the Government, and possesses detailed
technical knowledge of computer hardware and
software.

We examined DoD’s derived security
policy and found that it primarily addresses
monolithic computer systems in a protected
environment. It 1is not definitive where

15

Suite 100

CO 80918
complexity exists and deals principally with
information protection issues (not mission
protection issues) . Further, connecting
equipment in DoD installations appears to be
leading to the requirement for all highly
critical/highly classified systems to be
certified/accredited at least to the Al
(Orange Book [1]) level. This is a
technologically difficult goal that magnifies
development cost and can impose in its

solution unacceptable operational constraints
and risks.

This paper separates sensitivity
(protection of classified information) from
criticality (integrity of operations and
protection against denial of services). This

results in the ability to use
and covert channel protection
to solve the sensitivity problem
communications and data storage,
the criticality problem to be
addressed. Criticality can generally be
solved in networks with detection and
recovery approaches, existing primarily in
the host protected domain; which is far less
costly than resistive (formal model)
mechanisms. We believe this solution will
not only reduce operational constraints, but
will also provide a less expensive approach
to even a higher level of security.

decision
encryption
mechanisms
in host
leaving

SENSITIVITY AND CRITICALITY

into
the

The separation of network security
sensitivity and criticality follows
partial lead of Air Force Regulation (AFR)
205-16 [2]. Figure 1 illustrates the key
elements of sensitivity and criticality.
Sensitivity is generally well wunderstood
while criticality has two defining aspects,

o maintaining the integrity of the system
to ensure that senders and receivers are

as perceived, that processes (e.g.,
protection, communications, and resource
control) are as intended, and that data
(mission or <control) have not been
altered; and
This work was sponsored in part by the USAF
Space Command, under contract number F05604-
85-C-0019 awarded to CTA. However, the

statements herein reflect the opinions of the
authors, and do not necessarily represent the
views or policy of the Air Force.

Criteria Sensitivity Criticality
Topic (Existing Basis) (Proposed Enhancements)
i Mission Data
Protect Classified data Control Data, Processes
, Loss of Integrity
Threat Disclosure Denial of Service
Levels Unclassified Noncritical
Confidential Critical
Secret Highly-Critical
Top Secret (Compartments
(Compartments) possible)
Control Goal Need-to-Know Need-to-Modify/Execute
Protection Resistance Resistance
Mechanisms Detection/Recovery

; Figure 1. System Security Elements

protection against denial of
that occurs when unauthorized
prevents the system from
normal intended services
mission.

service
action
providing

and for the

Criticélity ana séﬂéitivity are duals in-

at least one sense. A mission can be
extremely critical and have no classified
data (an important unclassified sensor), or a
mission can deal with great amounts of
classified data and not be' nationally
critical (such as a classified library).

In
security,

the history of formal computer
integrity has only applied to the
trusted computer base and denial of service
was not seriously addressed. In networks,
integrity and availability concepts apply to
communication <control (e.g., key distri-
bution, . protocols), control processes, and
mechanisms (in a manner similar to the
trusted computer base). Network require-
ments further pertain to distribution paths
and options.

The entire control mechanism must be
trusted to some degree. The concepts of
detection and recovery apply to data and data
path alteration, as well as to inappropriate
or unauthorized resource use. The integrity
of protection mechanisms, concerned with
compromise of classified information, is a
sensitivity issue, whereas the integrity of
mechanisms that ensure authentication,
trusted communications processes, and
accuracy of control data is a criticality
issue.

Criticality
"the required
resources, whose
destruction, loss,
objectives will
accomplishment."
criticality
taken in
objectives.

is defined in AFR 205-16 as

level of protection of

compromise, alteration,
or failure to
jeopardize

When we

of a local mission,

the context of

mission
speak of
it must be
DoD overall

Level of protection against compromise
is commensurate with the information
sensitivity (generally having global and long:
term mission implications). The value of
protection against loss of integrity or
denial of service threat is commensurate with

meet’

16

the mission that might not be accomplished
and has current, short term, local
implications (where local pertains, for
example, to two parties attempting to
communicate or to operations affected by
resource unavailability).

The Trusted Base (system or component
where a computer is usually a component) may

consist of mechanisms for both sensitivity
protection and criticality protection,
however the degree of protection of the two
might differ. In certain cases, the same
mechanism can be used for both objectives
while in other cases distinct mechanisms must
be incorporated.

In criticality protection mechanisms,
detection and recovery become more applicable

than they are in sensitivity protection. 1In
fact, these may be more important (and
certainly more practical) than resistance.

When a crisis occurs, there may be a tendency
to treat sensitivity more lightly to enhance
operational knowlege and flexibility (e.g.,
releasing data from normally protected
intelligence sources for operational
decisions). However, in general, during a
crisis, criticality becomes increasingly:
important. i

In AFR 205-16 the levels of criticality
are dealt with more subjectively than
the levels of sensitivity. If we follow the
lead of Biba [4], specific graduated levels
are identified and dealt with in the system
with security mechanisms to protect the
levels according to a set of rules, similar
to the mandatory and discretionary policy in
sensitivity protection. The levels identified
in AFR 205-16 are: HIGHLY-CRITICAL, CRITICAL,
and NONCRITICAL. If an element or a piece
of data is necessary to a critical mission,
then it also is critical.

Criticality 1levels can be assigned to
external subijects, data, processes, and
devices. Security mechanisms must be put in
place to ensure that, commensurate with the
criticality level, there is a corresponding
confidence that threats against the integrity
of the system or its availability cannot
succeed (i.e., they are resisted), or if they
do succeed, they can be detected; and, if
required, 1lead to a complete and successful
recovery of adverse effects. We must protect

against deception of mission commanders or
users, disruption of mission execution, and.
usurpation of mission resources. The
principal concern in networks is that data

arrive accurately, timely, completely and in
the same order as transmitted.

Criticality levels are assigned to data,
processes or system elements based on a
criticality analysis that identifies perils
that might befall the mission, taking into
account required operational capability and
potential threat. Specific operations and
operationally critical assets must be
identified. Their importance to the mission

.and their necessity in mission accomplishment

are factors. It has been suggested at the.
New Orleans Workshop [3] that informal models
be used to accomplish this, namely mission
model, threat model, resources model, and
life cycle model.

In a formal integrity model (from Biba
[41), protection level differs from
sensitivity as follows: Where the object is
data, there is no read access restriction to
individuals at 1lower levels. However, a
subject must dominate the object’s
criticality 1level in order to originate or
modify the data. 1In the case of processes,
the invoking subject must dominate the
criticality 1level of the process. Biba
proposed that users and data originating from
them carry a set of criticality attributes
such that data may be moved only to subjects
(humans or processes) bearing an equal or
lower level.)

APPLICABILITY OF THE ORANGE BOOK

Trusted

The DoD Computer System
Evaluation Criteria (Orange Book} was
developed for wuse 1in evaluating trusted

.commercial components and as guidance for the
development and evaluation of trusted
computer systems. These criteria are
necessary in application to networks and
distributed systems, but are not sufficient.

Certain terms and concepts (e.g., user and
system) must Dbe reinterpretted to adapt to
the changing technologies. Other issues
include:

o The interconnected multi-system problem
is not adequately addressed in the
Orange Book

o A logical way to deal with the
complexity of distributed systems is to
divide them into manageable pieces,

address security for each of the pieces,
and then address the security issues
involved in connecting trusted pieces

importance of integrity and denial
threats to networks

o The
of service

o By treating sensitivity and criticality
as two separate issues we believe that
over a range of system implementations,
a far more cost effective approach to
network security can be achieved.

commonality between the
for an A division for

sensitivity, since
have been

We see much
protection criteria
both criticality and
vulnerabilities and mechanisms
previously encountered by developers through
Orange Book adherence. Many systems have
‘been developed with some criticality
protection mechanisms beyond that required by
the Orange Book. Off-the-shelf components
have not been evaluated against a criticality
criteria, but they may still be valuable in a
criticality role.

To assist in architectural definitions,
we developed a strawman Trusted System
Evaluation Criteria (an augmented Orange
Book), where the sensitivity level can be
specified as before, implying specific
mechanisms and levels of assurance (Figure 2,
.from [51). Our approach allows independently
.determining the criticality level required
(Figure 3) where the C level concentrates on
attack detection, B deals with detection and
recovery, and A specifies mechanisms and
assurance for resistance, detection, and
recovery.

Increasing Security Related Policies _]
Increasing Trustworthiness of Policies
Single Level Multilevel

Discretionary | Discretionary & Mandatory Policies
Increasing Audit Trail Requirements
Increasing System Architecture Requirements
DTLS FTLS
Formal - Proven Valid
Penetration Testing

[Informal

Configuration Management
Covert Channel Restrictions

|Distribu!ion
Figure 2.

Trusted System Evaluation Criteria: Sensitivity

Increasing Security Related Policies |
Increasing Trustworthiness of Policies

Detection

Detection and Recovery | Resistance

Discretionary Discretionary & Mandatory Policies

Increasing Audit Trail Requirements
Increasing System Architecture Requirements
DTLS
Formal Methods
Penetration Testing

Configuration Management

Figure 3.

Trusted System Evaluation Criteria: Criticality

The idea of complete and formal
criticality protection is new and untried, at
least in the command and control environment.
We suspect that due to the opposing nature of

the criticality/sensitivity duality, Al/A
certifications, for example, will be
technologically challenging. By way of .an

example, in the sensitivity policy we do
not want data flowing from a higher 1level
to a lower level. In a criticality policy,
flow is allowed, but modification is not.

DECOMPOSITION

Evaluation of systems that include

networks has three equally important parts:
evaluation of externally visible interfaces,
evaluation of the internal components, and

evaluation of the way in which the components
have been interconnected. The Trusted System
Base must be well defined and have well
specified interfaces. It must include (depend
on) the Trusted Base of the components and
the Trusted Base previously established for
network host systems. Note that this
approach has made it unnecessary to precisely
define either processor or networks in
general.

The Orange Book assumes the system is
monolithic, with a single security policy..
What is required in a distributed system (the
system equivalent to the Trusted Computing

Base) is the assumption that a system 1is
composed of components; in fact there is no
part of the system that is not part of
component. The reason for this
deviation from the previous approach is that
networked systems may be made up of systens
that are either trusted (accredited to handle
specific levels of sensitive (or critical)
information, where the 1level of trust is
according to some division/class of the
trusted system criteria) or untrusted.
Different components may have been accredited
to deal with different levels and under
different trust criteria.

A system is defined by the Designated
Approving Authority (DAA) as those physical
elements to Dbe accredited as a system (see
Figure 4). That decision will be made based
on engineering judgement, the scope of
authority, and the desire and ability to
bring subsystems under a single "umbrella of
trust.” The system may be geographically
isolated or it may be geographically
extended. It may be within a physically
protected environment or extend through
physically wunprotected and untrusted areas.
The elements may tend to operate autonomously
or as a single unit.

Elementary Component (OTS)

Elementary Component
(Trusted Base)

Interconnection Policy

Elementary Component (Build)
(No Externally Visible Internal
Interfaces or Paths)

¥

Steps:
- Define System Boundaries
- Decompose to Elementary Components
- Determine Interconnection Policy
- Show Components Secure
- Show Aggregate System Secure

Figure 4. System Decomposition

Once
we can
system

the system is defined by the Daa,
identify what is internal to¢ the
and what 1is external and interfaces
with it. The system security policy must
cover all of what is internal, plus the
external interfaces. This concept is similar
to the Orange Book’s use of primary external
interface as a human "user." In our Trusted
Sysgem approach we deal with "external
subjects” that may be humans, computers
(e.g., hosts), networks, or other systems.

The security policy must identify
of these external subjects. Access control
lists may be wused to determine what
controlled information can be received from
them and what controlled information can be
sent to themnm. There must be
consistency or a mapping technique must be
defined that ensures proper and complete
communication of policy. In some systems it
will be necessary to maintain accountability
to the wuser level, even though the user
interface 1is with an external system that
interfaces with our system. Sometimes the

each

a.
important

label

18

policy will require accountability only at
the interfacing system level.

For the purpose of illustration, assume
that "we" have a system. Sometimes data are
passed from one external system through our
system to another external systems. Oour

policy must ensure protection for us and for
the external system at the interface.
Further, protection may be required by the
two external systems to ensure policy
compatibility between them, and that is not
our reponsibility. (An example is when our
system 1is a network that receives encrypted
data and delivers encrypted data. If there
is a mandatory sensitivity or criticality
level separation or a discretionary "need-to-
know" or "need-to-modify" exists, appropriate
labels and access control 1lists must be
shared between the two external systems
communicating data; our network need not
necessarily be aware of these requirements or
require any action.)

After dealing with external subjects and

interfaces we turn our attention inside the
system. Our system can probably be
decomposed into subsystems and those can in
turn be further decomposed. Our goal is to

decompose (exactly) to the level at which we
have elementary components, where these
elementary components in aggregate comprise

Elementary components may
be of three types: 1) Components that are
themselves systems and are considered a
trusted entity under a single policy (this
includes the case where they are untrusted
with no policy), 2) components that are off-
the-shelf components that have been
accredited at some level of trust, and 3)
subsystems of the system to be built in which
there are no externally visible interfaces or
paths and for which a single policy <can be
determined. Because (at least at the higher
divisions) of the required mapping of formal
specifications onto an elementary component,
it is important that the definition be simple
from a security standpoint.

our entire system.

We can now, for security purposes, treat
the elementary components as separate systems
and, given the security policy of each
internally, consider the interconnection
policy between these elementary components at
their physical interface with each other, at
their informational (logical) interface with
each other, and with the outside world. We
must demonstrate that each of these
components i1s itself a "trusted component” in
the sense that its individual security policy
is 'supported, but that it also does not
violate system policy. In some cases this
demonstration will already have been
accomplished through a previous accredi-
tation. For elementary components that must
be accredited or reaccredited, this exercise

is identical to the process required by the
Trusted Computer System (Orange Book)
Evaluation. Interfacing components or users

are treated as "external subjects.”

Now we look at security policy from the
system level. At this level it must be
assured that all component policies are
supported throughout the system (including
data that eventually are passed Dbetween

components that do not interface directly).
Further, there may be policy dictated at the
system level that 1is over-and-above the
policy that exists at the individual
component level and it must be ensured that
policy is supported. Finally, there exists a
policy at the system 1level as to its
interface with the outside world, and it must
be ensured that this system level policy is
supported by the components that interface
with the outside world (e.g., external
subjects) .
When a component is upgraded,
decomposition can be used to reduce network
reaccreditation costs. Decomposition can
also be wused when subsequent expansion
(components), concatenation (two or more
systems plus a gateway), and extension
(addition of protocol layers beyond those
presently implemented) of the system occur.

SENSITIVITY AND CRITICALITY THREAT

An excellent discussion of sensitivity
threat and mechanisms can be found in Voydock
and Kent [6]. In studying sensitivity and
criticality threats, it is discovered that
they differ significantly (see Figures 5, 6,

and 7). Treating sensitivity and criticality
separately may have an economic advantage in
that when data are .stored and being
communicated, their sensitivity can be
protected with encryption. Once that is
accomplished, we can address criticality.
PROTECTION MECHANISMS
The mechanisms employed against

sensitivity and criticality attacks depend to
a great degree on the protection environment
afforded by physical protection, and the
clearance and access controls 1in place
(Figure 8). If encoding 1s wused as a
mechanism, the distance (link or node) must
be determined, or that part of the total
system over which it is employed. Finally,
although resistance is the primary choice for
sensitivity protection, detection, as well as
recovery must also be considered for
criticality or for the protection of the
integrity of sensitivity mechanisms.

Sensitivity mechanisms are generally
known so are not itemized here. For this
paper, it is important to identify mechanisms
enmployed against the «criticality threat.
These are presented in Figure 9, itemized
according to whether detection, recovery, or
resistance is the objective.

SECURITY CONSIDERATIONS

Traditional security factors considered
in monolithic computer systems also apply
when developing a distributed security
architecture. In addition,
practitioners in network security have
identified several factors ~that must be
addressed if we are to achieve an acceptable
solution to the network security problem.
This section reviews those. factors. :

The N-Squared Problem

The N-squared problem refers to the

researchers and.

19

Traffic Analysis
- Message Lengths
- Transmission Frequencies
Release of Message Contents - Source and Destination
- Leaking Message Stream Modification
- Inference
- Browsing - Authenticity
- Crosstalk (Misrouting, Inserting, Replaying)
) . . - Integrity
Protection Mechanism Integrity (Modifying Data, Overwriting)
) - Ordering
- Modify Data (Deleting, Duplicating,
- Overwriting Altering order of data or block)
Spurious Association Initiation Denial of Message Service
- Masquerading - Discarding Messages
- Delaying Messages
- External Physical Attack

Figure 5. Sensitivity Attacks . .
Spurious Association

- Masquerading

Figure 6. Criticality Attacks

Sensitivity:

- Continuous window

- Information stolen for enemy exploitation

- Detection difficult, no recovery once gone

- Sophisticated agent data processing/communications attack

Criticality:

- Malicious (up to creating an incident) continuous window
- Nullifying crisis response has a smaller window during crisis
- Sophisticated agent for integrity attack
- Nonsophisticated agent for denial of service threat
- Chance to recover exists, based on detection mechanisms
and availability/survivability design

Figure 7. Attack Characteristics

Physical Security Affects Choices Detection Mechanisms

Mechanism Application Point - Modification Detection Codes

(Message Integrity Codes,

- Link Level Message Authentication Codes)

- End-to-End - Critical Mission Model

- Association Level - Utilization Statistics Model

- System Failure Model
- Security Feature Denial of Service
(Mechanism Approaches)
Recovery Mechanisms
Resistance
- Isolation
- Trusted Functionality - Repeating Process
- Changing Process
Detection - Survivability
(Adaption, Self Healing,
- Automated Auditing Backup and Fault Tolerant)
- Local and/or Remote Reporting
Resistance Mechanisms
Recovery
) - Reference Monitor

- Unilateral Disconnection - Traffic Analysis Prevention

- Repeat Action (Spurious Traffic, Message and
- Alternate Action Traffic Padding)

- Survivability Stratcgics

Figure 8. Mechanisms in General .
Figure 9. Criticality Mechanisms

complexity that must be considered in access

control. In the extreme, each individual
user must know the identity and access
characteristics of each of the other wusers

(including himself), hence the name.

We have historically performed document
access control based on a S0 called
hierarchical N-squared system. At an office

level each person must know the authorization
of each person in that office because they
are in close proximity. Documents are passed
between offices through a local security
officer. At higher or-ganizational levels,
documents are again passed between organiza-
tional security offices. At an agency,
corporate, or service level, both documents
and security clearances/authorizations are
passed. At a national level, clearing
agencies exchange information. That is, an
N-squared problem is addressed at each level
of the hierarchy, but only with the elements
at that level.

Bridges
Networks or
individuals,
a starting

and gateways can link networks.
linked internets can connect
organizations, or agencies. As

point, information can be
controlled in the historical way. However,
the power of data processing allows the
number of hierarchical levels to be reduced
and perhaps eliminated completely, thereby
dealing with the N-squared problem.

The Cascading Problem

The networking of systems introduces the
cascading problem (see [7]), which 1s the
increase 1in exposure (the range between the
highest classification of data and the lowest
user clearance) in interconnected systems.
For example, 1if a TOP SECRET/SECRET system
passes . only SECRET data to a SECRET/
CONFIDENTIAL system, the TOP SECRET data has
now been exposed or contaminated at the
CONFIDENTIAL level instead of just the SECRET
level.
made, in general, the highest level will be
exposed at the lowest level. Therefore,
either all high level data must be protected

at a high (Al or B3) protection level or more
secure (but less flexible) modes of operation
(e.g., dedicated or system high) must be
used.

The Security Policy Problem

For each of the entities at each of the

.sensitivity and criticality levels i1in the
hierarchy, different policies might exist
(primarily because of different threat,
mechanisms, and objectives). For a trusted
base (or the untrusted protection
equivalent), policy is a statement
(mathematical or formally written) of
security motivated constraints (such as

‘discretionary and mandatory access controls).
These are the constraints to be placed on
the modification and/or dissemination of data
(including control data); the initiation,
control, or termination of processes; and/or
the assignment or use of system resources.
Policy mapping (see [8] for examples of
policy mapping) 1is the establishment of a
common interconnection policy between two
communicating entities, each with inherently
different policies. It identifies legal
communications, communications constraints,

As more and more interconnections are,

20

required labels, required transformation of
labels from the form used by the sending
system to that used by the receiving systen,

and an agreement as to mechanisms to be used

and their placement in the the communicating
systems.
Security Models

As discussed by Crosland and
Schnackenberg [91, the distribution of
security functions and features across a
network complicates the system design and
formal specification. In centralized
systems, TCB requests are mediated by a

single component, and thus can reasonably be
represented by a single state transition.
However, for a network the trusted base 1is
distributed and disjoint, so that actions at
one trusted base interface affect remote
trusted Dbase state and remote trusted base
interfaces. For example, when a host or
terminal wuser requests a connection for a
session, the local trusted base software
coordinates with the remote trusted base
supporting the destination device, and
possibly with network management to determine
if the session is authorized. The states of
two or three trusted bases are changed as a
result of a new session being created and the
session creation event is visible at the
external 1interfaces of two trusted bases.
Thus, a single TCB request can cause the
distributed Trusted System Base (TSB) to
undergo multiple state transitions. There
are two approaches that can be used: a)
ignore the concurrency and distribution of
functions, and treat state transitions as if
they all occurred atomically or b) describe
the interaction between the remote TCBs.

We have taken the latter approach with a
hierarchical modeling methodology. First,
model each elementary component using the
techniques developed for centralized
systems. Then model a system composed of
components dealing with only the subjects and

objects wvisible in the external communica-
tions. Reducing the complexity allows
modeling state transitions. When the system

itself becomes an elementary component, this
process 1s repeated. Mechanisms similar to
deadlock avoidance in "association”
mechanisms assure the absence of mutually
conflicting security state transitions.

Covert Channels

The covert channel analysis problem is

discussed in Crosland and Schnackenberg
[9]. In a stand-alone system the covert
channels tend to be between processes under
the control of an operating system. In a
network, however, there nay be few
interprocess covert channels. This is due to
the limited resources available to processes
that reside within the network servers. The
major covert channels are between processes
that reside in attached hosts and
workstations, and signal each other wusing
network resources. Although the network can
detect possible usage of this covert channel,
the network 1s not able to reasonably
eliminate it. The host along with the host
front end has the responsibility to restrict
access to (or close) the covert channel.

also

Protocol Issues

The International Standards Organization

interference with mission operations.

Figure 12 depicts an approximate

or 1ignore it. This is contrary to the DoD
idea of having continuous security protection
mechanisms in force that have minimum

21

Open System Interconnection (ISO/0SI) seven relationship between the ISO model and the
layer protocol reference model ([10] has commonly accepted protocols inherent to DoD
gained wide acceptance, unfortunately communications. The lack of strict
however, not before the Government had compatibility of layers at level 3 and above
already drawn up some very firm procedures is illustrated here, but in fact varies, not
for handling data 1in communications and only in people’s minds, but from applicgtion
networks. The DoD has made a commitment to to application. Summarizing the primary
move in the direction of the seven layered differences, DoD has historically divided the
approach in its future planning and network layer into sublayers and in addition,
development, while at the same time ISO has there have not been well defined layers above
begun to deal with some of the sticky the host-to-host interface.
problems that are typical to the DoD
applications (e.g., security). Layer
Figure 10 illustrates the functions Mechanism 1234567
‘present at various layers and how
intercommunication of these functions Confidentiality X X X X *
actually takes place at the next lower Access Control X X *
layer. The higher level protocols are Peer Entity Authentication X X f
-present at the communicating nodes where the Origin Authentication X X *
applications reside. The communicating nodes Nonrepudiation (Origin/Delivery) *
and devices within the network itself Criticality X X *
communicate to one another through the first Traffic Flow Security * * *
three layers.
iti . (x and * =ISO possible implementations,
Peer Enities 1. Physical Layer \Peer Entity * = Ideal from our perspective)
TRANSMISSION/RECEPTION DEVICES /
{EG. MODEMS) 2. Data Link Layer Figure 11.
PROCESSES SEE NETWORK AS A / \ Security Impleme_:ntation by Protocol_ Layer
TWO-ENDED MODEM
3. Network Layer
NODE PROCESSES SEE NETWORK / \ ISO Model Corr DoD Function DoD Protocols ISO Equivalent
AS NETWORK COMM PROCESSES 4, Transport Layer
/ ™~ 7. APPLICATION FIP, SMTP rAM. X400
RO osrs e 5. Session Layer 6. PRESENTATION | FrocsiAsmlicaions | LR VTP Tezminal
PROCESS WHOSE USERS ARE / . ™
APPLICATIONS PROGRAMS 6. PrEsentanon 5. SESSION o TGP, TACACS. UDP .
ayer ost/Host » y
TRANSLATION OF REQUESTS / P \ 4. TRANSPORT
THAT REQUIRE REMOTE RESOURCES 7. Application Internet 1P, ICMP HMP S0 -IT
INTO SESSION LAYER SERVICES Layer ™
. 3. NETWORK Network X-Zil;;:fe?a"ﬂ
Figure 10. The ISO/OSI Protocol Reference Model IEEE 802
) ADCCP -
Figure 11 illustrates the potential 2. DATA LINK Data Link Control | HDLC, X.25, BBN1822
security implementations as proposed by the RS232C, MILSTD 188C
ISO Draft Security Model [11]. End-to-end 1. PHYSICAL Physical MILSTD 188-114
encryption can be accomplished in the network RS4224, 4234, 449
layer (3), the transport layer (4), or the
presentation layer (6). If there is a Figure 12. DoD Protocols
choice, the higher the layer, the greater the
protection. In the protocol traffic analysis The specific standards written for
problem, 1if no mechanisms were employed, it military use are addressed in the third
would Dbe desirable to do the end-to-end column of Figure 12. This is a mixture of
encryption at the network layer (3) first, civil standards and military specifications.
the transport layer (4) second, and finally The military is migrating to the civilian.
the presentation layer (6). (Note that the X.25 and IEEE 802 standards, while at the
session layer (5) as defined by the IS0 same time commercial versions of TCP and IP
Reference model will not support encryption.) exist in the marketplace. ISO equivalent
standards (illustrated by the far right-
Network service requests might very well column) are striving to encompass the
be covert channels and therefore one would features and characteristics of the
want to minimize network services by equivalent military protocols while main-
interconnecting trusted bases where only taining a strict adherence to their model.
routing was required or enforce a limited The DoD has said that if the ISO efforts are
bandwidth in the use of those services. The successful, DoD will eventually adopt the ISO
Draft O0SI Reference Model on Security models.
proposes the availability of many network
services by which a user can employ security ARCHITECTURAL APPROACH

Based on the sensitivity and criticality
requirements in mission-critical networks,

and considering the above discussions of
threats, mechanisms and protocols we have
developed a functional description for secure
networks. The functions are highlighted in
this section.

The protocol layer choices we have
committed to in our architecture are
presented in Figure 13.

Function Peer Entity
1. Physical Layer
Traffic Padding]
..... 2. Data Link Layer].. |
Node Disconnect | — 3. Network Layer -~
Encryption 4. Tran: L
Component Authentication ° sport Layer -
Modification Detection
Message Padding/Spurious Initiation
DOS Model
Utilization Mode! ,! G \
Recove
it /" | 6. Presentation ‘
/ Layer
User Authentication ieati
Critical Mission Modet — 7. Application
Session Encryption Layer

Figure 13. Protocol Layer Choices in this Architecture
Encoding Replacesg Physical Protection

Cryptography has long been a major

COMSEC protection mechanism where it 1s known
that physical protection cannot be provided.
Today’s VLSI circuitry can provide encryption
protection that is potentially transparent to
the transmission and storage processes, and
does not impact performance.

Further, application of encoding
encompasses much more than simple encryption.
With cryptographic checksums (seals) and
other mechanisms, modification and replay can
be detected. With public key approaches,
senders and receivers can be authenticated,
and even the precise source of a message
be guaranteed days or years later.

Even within physically protected areas,
a strong mechanism against internal attack ‘is
use of encoding for both sensitivity and
criticality protection. Crypto checksums for
criticality can be used for all data at all
times. Encryption of sensitive data can be
employed at all times except during
computation on the data or its human
input/output.

Such emphasis focuses the burden on
covert channel elimination and/or protection
‘and detection mechanisms, since such an
encoding approach for sensitivity requires
that certain levels of protocol remain in the
clear.

Figure 14 shows our architectural
approach to networks, using these concepts.
To solve the sensitivity problem, mission
data are encrypted. To solve the criticality
problem, all data are encoded using
cryptographiz checksum and authentication.
The covert channel problem of data leakage
through header information is addressed in
the host systems rather than in networks.

can:

22

Multi Level Host

Network
System (Trusted) wor

TS Host System
(Trusted)

Protocol: || Data:
Encryption of Classified S
Data for Sensitivity Decryption
Decryption
#{ Profocol: [Data Lo
Critical b Encoding of Critical Data
ritical but iticali . .
hengn for Criticality Confidential Host
Unclassified S U
Routing data* ystem (Untrusted)
* Covert channel problem must be addressed in host systems
Figure 14. System Security Strategy
Security Automated Key Upgrade/Downgrade
Monitor Distribution Security Monitor
Identifier
Authenticator
e— - Secure Network
User Front End Controller
Host
Start/Restart
Module

Other Hosts on Network,
Gateway, or Bridge

Figure 15. Distributed Security

Distributed Security Mechanisms

Figure 15 illustrates an extension to an
important concept developed for the Blacker
program in which elements of the security
systems are themselves nodes on the network.
In the Blacker approach {12] there 1is a
front-end node for each of the system hosts
and internetwork gateways, and in addition
there are nodes for a security monitor
position, a centralized key distribution
function, and a central identification/
authentication database.

We have added additional functions
including an upgrade/downgrade position to
deal with high risk communications and to act
as a resource for wuse between nodes of
differing security policies. Also, a network
control function establishes secure
communication through gateways and across
network bridges. Although shown in the
‘figure with the secure front-end, all
elements depend on a hand-held start/restart
module when first coming up on the network or
when Dbeing removed, so 'security 1s not
violated. This was another important concept
implemented by the Blacker program.

Distributing these capabilities allows
of the network at minimal security

expansion ;
cost and impact. Backup security functions
are facilitated, since each capability can
exist redundantly on the network. It also
allows adaptation to the load, for example,
where several upgrade/downgrade ‘monitor

positions can exist to keep up with the
traffic in a high risk environment.

Multi-Risk Internet Communication

In our proposed architecture we needed
to reduce the risk of interdomain
communications where high exposure and/or

high-risk connectivity potentially exists.
concept was proposed in which three modes of
connectivity are established and supported by
the access control function (see Figure 16):

risk
access

0o A direct trusted exchange to low
domains controlled only by the
control rules

exchange where extra-domain authen-
must be performed manually by
allowing

risk

o An
tication
the security monitor prior to
an association in medium
connections

o A monitored and verified éxchange by a

manual (human) guard in an
upgrade/downgrade monitor position for
high risk connections
» Assign Domain Vulnerability
+ Adaptive Mechanism Based on Trust
+ Depends on One-Way vs RTTIT .
Two-Way Communications 'High Risk ~I
Upgrade/Downgrade . .Domain' o
Monitor Treeeent .
Network / Monitored/Verified Exchange
Controller TR
Security - Medium Risk’
Monitor *.. Domain_
CAccess N0 | T
Control Manually Authenticated Exchange

Dircct Trusted
Exchange

Figure 16. Multi-Risk Internet Communication

Association Level Services

In Blacker, once data are delivered to
the host, protection ceases to exist unless
provided by the host. We have proposed an
approach in our architecture that has, at a
minimum, the Blacker level of protection, and
for sensitivity and/or criticality,
protection all the way to the device
interfacing with the user. This assoclation
level ©protection (Figure 17) provides key
distribution for sensitivity encryption,
criticality encoding, identification, and
authentication right up to the microprocessor
that interfaces with the user, assuming the
appropriate enciphering hardware 1s present.

A communication, though initiated through a
host, can be protected from that host and its
other users. Associlated chips and/or
algorithms must be contained in the
microprocessor. All security services
(security monitor, identification authenti-

cation, key distribution, etc.) within the
network become part of this association level
protection.)

A.

23

Front Exﬂ——l Network

E Node Level Protection {

| Association Level Protection |

Remote

Host User

User

0 End to End Encryption by Classification Level and Node Pair

0 Association/Session Level Encryption available as a service
Must provide Classification Level and Node Pair in Clear Form
Labels and Headers Protected by Cryptographic Checksum

Figure 17. Association Level Services

SUMMARY
The proposed approach to network
security outlined in this paper separates the
sensitivity requirement (protection of
classified information) from the criticality
requirement (integrity of operations and
protection against denial of services). This

has resulted in the ability to use
and covert channel protection
to solve the sensitivity problem
communications and data storage
problems, leaving only the criticality
problem to be addressed. However, the
criticality problem can generally be solved
in networks with detection and recovery
approaches (existing primarily in the host
protected domain) which are far less costly
than resistive (formal model) mechanisms.

decision
encryption
mechanisms
in host

For interconnected hosts/networks, we
found that differences in security
and different levels of risk may be
head-on by means of
decomposition. Increased exposure must be
considered in assessing and determining
required protection levels. Interface policy
must be established and supported both from a
mandatory and a discretionary perspective.
The reference monitor concept must be used to
control access at the network, component, and
individual user levels.

have
policy
confronted

We
for computer
standardization,

have proposed architectural concepts
networks that emphasize
shared functions, and
operation with planned networks. Our
solution uses end-to-end protection for
criticality and sensitivity with association
level protection as an added service. The
proposed functions to be performed (a
superset of Blacker functionality) include
security monitor, identification authenti-
cation, key distribution, network control,
upgrade/ downgrade,; and start/restart.

ACKNOWLEDGEMENTS

This effort began with a complete survey
of the literature on network security,
especially the results of the New Orleans
Conference [3]. Most o¢of the concepts
presented here are a result of choosing a
compatible set of the the ideas resulting
from that conference, in combination with

much of the work that was done associated
with Blacker as well as the model of Biba.
In addition to papers referenced in the text,
we have borrowed ideas from C. Meyer and
S. Matyas [14], G. Popek and C. Kline [15],
M. Schaefer and D. Bell [16], D. Denning [17
& 18], and S. Walker [19]. We wish to thank
D. Branstad for review and assistance.

REFERENCES
1. DoD 5200.28-STD, "Trusted Computer
System Evaluation Criteria,”" December, 1985
2. AFR 205-16, Automatic Data Processing
(ADP) Security Policy, Procedures and
Responsibilities, Department of the Air

Force, August 1, 1984

3. Brand, S.L., ed., "Proceedings of the
Department of Defense Computer Security
Center Invitational Workshop on Network

Security,"” New Orleans, LA, March 18-22, 1985

4. Biba, K.J.,
for Secure Computer Systems,™

"Integrity Considerations
ESD-TR-76-372,

USAF Electronic Systems Division, Bedford,
MA, April 1977
5. Kaiser, W.G., "The Making of a B2

System, " Proceedings, 1986 AFCEA Symposium on
Physical/Electronic Security, pp. 21-1

6. Voydock, V.L.,.and S.T. Kent, "Security
Mechanisms in High-Level Network Protocols,”
ACM Computing Surveys, Vol. 15, No.2, June
1983, pp. 135-171.

7. Millen, J.X., "A Network Security
Perspective, " Proceedings, 9th National

Computer Security Conference, NBS/NCSC, 15

September, 1986, pp. 7-16

8. La Padula, L., "Some Thoughts on Network
Security: A Working Paper, " Proc. DoD
Computer Security Center Invitational
Workshop on Network Security, ©DoD Computer

Security Evaluation Center, Ft. Meade, MD,
March 19-21, 1985, pp. 2-49, 2-60

9. Crosland, M. and D. Schnackenberg,
"Application of Formal Techniques to a
Multilevel Secure Local Area Network, "

Proceedings, Symposium on Physical/Electronic
Security, August 1986, Philadelphia Chapter
AFCEA, pp. 2-1 thru 2-5

10. International Standards
Draft International Standard
Processing - Open System
Basic Reference Model, 1983

Organization,
7948 Data
Interconnection -

11. N1925, International Standards Organi-
zation, Working Draft Addendum to ISO 7948 to
Cover Security Architecture, ISO/TC 97/sSC
Copenhagen, June 19-28, 1984

12. USG Memo, "Computer Security Certifi-
cation Plan for BLACKER Phase 1," Appendix D
to Purchase Description C5-001, Blacker
COMSEC Development, Computer Security
Certification Requirements, October 18, 1984

13. "Department of Defense Trusted Network
Evaluation Criteria, DRAFT," July 29, 1985

14. Meyer, C.H., and S.M. Matyas, Crypto-
graphy: A New Dimension in Computer Data
Security, John Wiley and Sons, New York, 1982

15. Popek, G.J., and C.S. Kline, "Encryption
Protocols, Public Key Algorithms, and Digital
Signatures in Computer Networks, " in
Foundations of Secure Communication, ed. by
R. A. DeMillo, et al, Orlando, FL: Academic
Press, 1978, pp. 133-154.

16. Schaefer, M., D.E. Bell, "Network
Security Assurance," Proceedings of the 8th
National Computer Security Conference,
Gaithersburg, MD., September 30, 1985, pp.
64-69 .

17. Denning, D.E., "A Position Statement on
Network Security," Proc. DoD Computer
Security Center Invitational Workshop on
Network Security, DoD Computer Security

Evaluation Center, Ft. Meade, MD, March 19-

21, 1985, p4-47,4-56

18. Denning, D.E., Cryptography and Data
System Security, Addison-Wesley, 1982

19. Walker, S.T.,

Overview, " Proceedings
Security and Privacy,
April 1985, pp. 62-66

"Network Security
1985 Symposium on
IEEE Computer Society,

20. CTA, ‘“"Draft AFSPACECOM Trusted System
Evaluation Criteria," NCCS-86-03-383, March
1987

A SECURITY MODEL AND POLICY FOR A MLS LAN

Peter Loscocco

Office of Research and Development
National Computer Security Center

L BACKGROUND

The multilevel secure local area network (MLS LAN)
to which this security policy and model apply is a broadband

cable bus LAN that uses Transmission Control
Protocol/Internet Protocol (TCP/IP) and Carrier Sense
Multiple Access (CSMA/CD). The LAN is capable of

having hosts that range from single-level, untrusted machines
to MLS systems with classified and compartmented data.
Every host on the LAN will be connected to the bus via a
Bus Interface Unit (BIU).

The LAN is still only in the design stage. As the
design changes, the security policy or model may also require

changes. Both were written with this in mind and should
be flexible enough for most situations. As it stands now,
the model does not totally describe some aspects of

communications on the LAN. These shortcomings have been
noted and will be corrected in future versions.

II. SECURITY POLICY

The MLS LAN will implement a security policy based
on the Department of Defense (DoD) Security Policy [1].
That policy states that a person, or machine, may not be
granted access to classified data unless that person, or
machine, has the proper security clearance and has a need to
know that data. There are also provisions for special
handling restrictions (or caveats) to be added to data, these
restrictions must be obeyed whenever the data is accessed.

In the context of the MLS LAN, this policy pertains
to the BIU sending and receiving a packet. All data on the
LAN is transmitted in the form of a packet. A packet
contains the data to be communicated as well as that data
needed to deliver it. This includes everything from addresses
and other header information to the security label. There
are five basic rules the LAN must enforce to assure the
DoD policy is followed.

Rule 1: Packets on the LAN must be properly labeled
to reflect their security level

Rule 2 A BIU may not transmit a packet unless it
is authorized to do so.

Rule 3: A BIU may not deliver a packet to a host
unless it is authorized to do so.

Rule 4: Packets delivereded to a host must not have
been altered.

Rule 5: All security-related events must be logged to
provide an audit trail of any security

violations that might occur.

Rule 1 states that all packets must have a security
label while they are within the security perimeter of the
LAN. Within this perimeter are the BIUs, the cable bus
itself, and a special host called the access controller (AC)
whose function will be explained below (see Figure 1). The
security label must correctly reflect the packet’s classification
and any compartments or handling restrictions that might
apply. Clearly, many of the BIU and AC functions must
contain a high level of trust.

It is the pb of the BIU to enforce Rule 1. The BIU
must always know the certified level of trust of the hosts to
which it is attached It must also know the §ccurity le_vel

25

of its current connections.

When the BIU receives a packet
from a host, it will

first check the level of trust of the

host. If the host’s level of trust checks, the BIU will use
the security label provided by the host. If not, the BIU
will assign a label that reflects the level of the current

connection.

Rules 2 and 3 together state that all communication
with the LAN will be in accordance with the DoD security
policy. Rule 2 prevents a BIU from transmitting data from
a host whose security level is either too high or too low.
It also assures that a packet from a host only gets sent to
hosts who are cleared and have a need to reccive it. Rule
3 prevents a BIU from delivering packets to an attached
host who has neither the required clearance or need to
know. Furthermore, this rule allows hosts to have a
minimum security level placed on them for incoming packets
and guarantees that packets are only delivered to the hosts
to whom they are sent.

A BIU can only enforce Rules 2 and 3 if it is able to
make decisions on whether or not to send a packet to, or
receive a packet from, another BIU based on the address of
that packet, its security level, and the clearance and need to
know of each of the BIU’s. The security label of a packet
identifies its security level and must correctly reflect the
packet’s classification and any applicable compartments or
handling restrictions that might apply, A BIU’s clearance
and need to know are determined from access control tables.

The access control tables contain the mandatory and
discretionary access control (MAC/DAC) [2] information for
cach BIU and BIU pair. They reside on the AC and are
set up and maintained by the Network Security Officer
(NSO), the only user permitted to actually sign onto the
AC. The NSO is responsible for ensuring that each host’s
entries in the tables properly reflect the security levels,
compartments, and handling restrictions of data that reside on
that hostt He 1is also responsible for ensuring that the
tables properly reflect which hosts can communicate at what
levels to provide which services.

To start communicating, one host (HI) would send a
request addressed to another host (H2) specifying the security
level and type of connection wanted Hi's BIU will
recognize this as a connection request and reroute it to the

AC. Based on the access control tables, the AC wil
determine whether the connection should be approved. HI
HOST HOST HOST HOST
1 2 3 4

FIGURE 1: SECURITY PERIMETER

is notified if the connection is not in accordance with the
MAC/DAC policy, and H2 is not contacted If the
connection is in accordance with the policy, however, the AC
sends the request to H2 for approval or disapproval. H2
then sends either a connection acceptance oOr rejction
addressed to HI1. However, H2's BIU reroutes this back to
the AC. If the connection is to be opened, the AC logs
the opening in a table, notifies HI1, and instructs the two
involved BIU's to set. their current connection status to
reflect the proper hosts and levels.

The security of the connection now rests with the BIU.
The AC is not contacted again until the connection is closed
or a security-relevant event occurs. A packet reaching a
BIU, ceither {rom one of the hosts or the LAN, is accepted
or rejcted according to the levels of the connection as set
by the AC. In this way, the LAN guarantees that only
authorized packets enter and leave the security perimeter.

Rules 2 and 3 cannot be properly enforced without
Rule 4, and both depend on communications with the AC.
It is imperative that these packets not be tampered with
because unauthorized ‘connections could otherwise occur.
Fortunately, Rule 4 can be enforced using the proper
authentication and encryption techniques.

Rule 5, strictly speaking, will not increase the security
of the LAN, Rather, it is included to increase the
confidence that the LAN is secure and the probability that a

security breach will be detected and the responsible party(ies)
identified.

The auditing capabilities of the LAN will be in the
BIU and the AC. The BIU will report to the AC, and the

information will be stored there for later review by the
NSO.)

III. SECURITY MODEL

This model is a mathematical description of the secure
operation of the MLS LAN. A model of the LAN must
include three separate things: a BIU, the AC, and the
communications between a collection of BIU's and the AC.
The operation of the LAN is said to be secure if the five
rules given above are being enforced at all times.

The ‘model is in two parts. The first part introduces
some concepts and functions needed to mathematically restate
the rules given above and ultimately does so. Some of the
concepts were borrowed from the model specified by the
Worldwide Military Command and Control System
(WWMCCS) in “The Formal Model for Secure Data
Distribution in the WWMCCS Information System (WIS).*’[3]
These concepts have been modified to reflect the actual
differences between the operations of a system-high network,
such as WIS, and a truly multilevel network with hosts of
varying security levels. The second part of the model
describes the BIUs and the ‘AC with a system of
intercommunicating state machines.

A. Mathematical Restatement of Security Rules

Before the rules can be
some definitions need to be introduced.
of Rule I have to be formally defined.
required to describe Rules 2 and 3.
send-packet, receive-packet,
To be complete,
more functions,

stated = mathematically,
The security labels
Four functions are
These functions are:
connect-open, and connect-close.
one must postulate the existence of two

unaltered and audited, that guarantee the
enforcement of Rules 4 and 5, respectively.
Assume there is a set, P, of packets which

cgntains all the potential packets on the LAN. Rule I
dictates that a classification level must be assigned to each

p, an clemer}t of P, to identify its security level. This label
can be described as a 3-tuple as follows:

Level = (S,CH)

where

26

S = sensitivity level,
C = compartmented information set, and
H = handling restriction set.

It is the sensitivity level, S, which indicates the
data’s classification. The range of possible values for §
come from a set, ES. There exists a ranking function, R,
which places a definite ordering on the eclements of ES.
The possible “sensitivities, as ordered from lowest to highest
by R, are: Unclassified (U), Encrypted For Transmission
Only (EFTO), Restricted (R), Confidential (C), Secret (S),
Top Secret (TS), and Program and Control (PROG).

It is the compartment set, C, that contains the
need-to-know access control information. All possible
elements of C are drawn from a set, EC. Unlike ES, this
set is not hierarchical Each element, Ci, represents a
compartment into which a given data unit can to be placed.
A null C represents data which is not compartmented.

The handling restrictions set, H, also draws its
elements from a nonhierarchical set, EH As its name
implies, this set contains a set of restrictions which must be
adhered to when handling a given data unit. As with C, a
null H represents no handling restrictions.

All possible data security levels come from what
is called the Classification Set Space, denoted C-Space. C-
Space is derived from the three sets: ES, EC, and EH. It
is defined as the Cartesian product:

C-Space = ES X P(EC) X P(EH)
where P() represents the power set or set of all possible
subsets of the respective sets.

A partial ordering of C-Space can be ach}cvcd by
introducing the concept of security dominance. Given any
two security labels, Lx and Ly, such that

Lx = (Sx,Cx,Hx) and Ly = (Sy,Cy,Hy),
Lx is said to be dominated by Ly if and only if

R(Sx) is less than or equal to R(Sy),
Cx is a subset of Cy, and
Hx is a subset of Hy.

Let there be a function, - dominate(Lx, Ly) where
Lx and Ly are elements of C-space, which returns true if
and only if Lx dominates Ly.

Let there be two functions, label(p) and s-
label(p,1) where p is -an element of P and 1| is an element
of C-space, that read a label from, or set the label of, a
packet.

Several concepts and
introduced before send-packet,
and connect-close can be defined.

need to be
connect-open,

functions

receive-packet,

There exists a set, B, defined as:
B={b]|bis a BIU on the LAN }.

B is necessarily nonempty. It must at least contain an
element, B-AC, which represents the AC's BIU.
id(),

Let there be a function, that returns a b,

an element of B, which is the BIU that exccut‘ed the
function. This function allows a BIU to determine its own
identity.

Two functions exist, mode and s-mode, which are
defined as follows:

mode(b) - returns current operating mode of b, an
element of B
0 if packet labels from the attached host can
be trusted
1 if packet labels from the attached host
cannot be trusted

s-mode(b, m) - sets current BIU operating mode
b = BIU to be set - an element of B
m= 0 or |l
0 if labels from host are to be trusted
1 if labels from host are not to be trusted

be either =zero or one.
to be executed may only come

A BIUs operating mode must
Authorization for s-mode
from the AC.

For each b, an element of B, there is an access
control set (ACS). ACS’s reside on the AC and are
uniquely identifiable by b, The ACS contains all of the
MAC information that the AC will need to determine if b’s

" participation in a given connection will violate the MAC
policy. Mathematically, an ACS is a subset of ACS-space
defined as the Cartesian product:

ACS-space = (T X AI X Al
where T is the set of all connection types and Al is the
set of all access intervals. T and AI are defined as follows:

T = { t}|tis a connection type } and
= { (al,a2) | {al,a2} is a subset of
c—space and dominate(a2, al)}.

At present there are only four elements in T.
They are remote access, R; file transfer, F; mail, M; and
control, C. Type C is reserved for communication with the
AC. As the need arises, more elements may be added
without effecting the model

The components of each access interval are the
minimum and maximum security levels that a packet

belonging to a particular connection may be and still' pass
through the BIU,” The second and third components of each
element of the ACS represent the two directions, going out
of and coming into the host, that packets may flow through
a BIU. Each element of an ACS represents a different
range of security levels at which a given host may participate
in a connection of a given type. In practice, the minimum
level of all incoming packets will usually be (U,{},(}).

-Two functions exist, min{) and max(), which take
an access interval as an argument and return its respective

minimum and maximum security levels. They are defined as
follows:

if (al,a2) is an element of Al,
then min((al,a2)) = al and max((al,a2)) =

For each b, an element of B, there is also a
discretionary access set (DAS). DAS’s also reside on the
AC and are uniquely identifiable by b. The DAS contains
all of the DAC information that the AC will need to
determine if b’s participation in a given connection will
violate the DAC policy. Mathematically, a DAS is a subset
of DAS-space defined as the Cartesian product:

DAS-space = (B X T),
where B and T are as above. If a BIU, bl, has a DAS
that contains an element (b2,t), discretionary access of type,
t, to BIU, b2, could be granted to bI.

With the ACS’s and DAS’s, the AC has all of
the necessary access control information to ensure that the
sccunty policy is not violated. @~ The NSO must take great
care in specifying the ACS’s and DAS’s to insure that the
MAC/DAC policies are properly enforced.

Two functions are defined to describe the access
checking done by the AC for one BIU. These functions,
mandatory-access and discretionary-access, are as follows:

mandatory-access(bl,
discretionary-access(bl,

type, aio, and

b2, type),

aii)

where

bl = the BIU for which the checking is being
done - an element of B,

type = the type of connection in gquestion -
an element of T,

aio = the outbound access interval of the
connection in question - an elemeént of
Al, and

aii = the inbound access interval of the

connection in question - an element of
AL

Mandatory-access(b, type, aio, aii) returns true if and only if
there exists an element of b's ACS,

= (t, (minl, maxl), (min2, max2)),

such that

t = type,

dominate(min(aio), minl),
dominate(maxl, max(aio)),
dominate(min(aii), min2),
dominate(max2, max(aii)).

Discretionary—access(bl b2, type) returns true if and only if
there exists an element in bl’s DAS,

a= (b 1),
such that

b = b2 and

t = type.

Using mandatory—access and dxscrcnonary-access, it
is possible to more completely describe what is meant by an
authorized connection. A connection of a given type may
be authorized between two BIU's at given access intervals if
the mandatory and discretionary access checks succeed for

each host. A new function, open-ok, returns a true value
when it is possible to authorize a connection. - It is defined
as follows:

open-ok(bl, b2, t, ail, ai2),
where

{bl, b2) is a subset of B,
t is an element of T, and
(ail, ai2} is a subset of Al,

returns true if and only if

mandatory-access(bl, t, ail, ai2),
discretionary-access(bl, b2, t),
mandatory-access(b2, t, ai2, ail), and
discretionary-access(b2, bl, t).

It is important to note that a return value of true here
does not mean that a connection has been established
between bl and b2 but only that such a connection would
not violate the MAC/DAC policy.

A packet may exist on the LAN only if it was
transmitted through an authorized connection. In managing
all of its hosts connections, a BIU assigns a currently
unassigned connection number to each connection it
establishes for its host. It is important to note that the two
BIU's involved in a connection may refer to that connection
with a different connection number. These connection
numbers are elements of a set, Connections, denoted by CN.
Each of a BIU's connections may be uniquely identified by
an ordered pair, (b, cn), where b is an element of B and
cn is an element of CN.

Let tnere pe- a luncuon new-cn(b), where b IS an
element of B, that assigns an unused connection number to
the BIU, b. This function is used in the opening of
connections.

There is certain information kept at every BIU for
each possible connection. This includes the connection type,

the other BIU involved, and the access intervals,
following functions exist to retrieve this information:

The

ct(b, cn) - returns the current connection type
t : an element of T if the connection exists
NULL : if there is no connection

cb(b, cn) - returns the current BIU connected to
bl : an element of B if the connection exists
NULL : -if there is no connection

cen(c, c¢n) - returns the connection number used by
the other BIU

an element of CN if the connection
exists

NULL : if there is no connection

cnl :

caio(b, cn) - returns current outbound access
interval
ai : an element of Al if the connection exists
NULL : if there is no connection

caii(b, cn) - returns current inbound access
interval
ai : an element of Al if the connection exists
NULL : if there is no connection

where
b = the BIU in question - an element of B and
cn = the connection number in question -
an element of CN,
Five functions exist to set this connection status
‘information in a BIU. Each of these functions has three
arguments: the BIU, the connection number, and the

information to be set. They are ecxecuted exclusively at the
request of the AC and return true if and only if the
information is properly stored. The five functions are
defined as follows:

s-ct(b, cn, t) - sets the current connection type
b = BIU to be set - an clement of B
cn = connection number on the BIU to
be set - an e¢lement of CN
new connection type - an eclement -
of T or NULL

t =

s-cb(bl, cn, b2) - sets the current BIU
connected to

b = BIU to be set - an element of B

cn = connection number on the BIU to be set -
an element of CN

b2 = other BIU - an element of B or NULL

s-cen(b, cnl, cn2) - sets the connection number
of the other BIU

b = BIU to be set - an eclement of B

cnl = connection number on the BIU to be set -
an element of CN

cn2 = connection number on the other BIU - an
element of CN or NULL

s-caio(b, cn, ai) - sets the current outbound

access interval

b = BIU to be set - an element of B

cn = connection number on the BIU to be set -
an element of CN

ai = new outbound access interval - an element

of AI or NULL

s-caii(b, cn, ai) - sets the current inbound
access interval

b = BIU to be set - an element of B
cn = connection number on the BIU to be set -
an element of CN
ai = new inbound access interval - an element
of Al or NULL
NULL values indicate that the connection is being
terminated.

28

Let there be a function, set-state-info(), that is to
be used as a convenient way to set and reset the state
information described above. It is defined in terms of the
last four functions defined above and is executed exclusively
at the request of the AC.

Set-state-info(bl,

cnl,
true if and only if

b2, ¢n2, t, ail, ai2) -»

s-ct(bl, cn, t), s-cb(bl, cnl, b2),
s-cen(bl, cnl, cn2), s-caio(bl, cn, ail), and
s-caii(bl, cn, ai2)

and if
t = NULL, b2 = NULL, cn2 = NULL, ail
= NULL, or ai2 = NULL then t = NULL,
b2 = NULL, cn2 = NULL, ail = NULL,
and ai2 = NULL.

The second condition exists so that all of the status

information is reset whenever any part of the status

information is reset.

The AC must keep track of all open connections.
When a connection is opened, the AC records the event by
entering all of the pertinent information in the connection
table (CT). The CT is defined as a subset of Connection-
space which is the Cartesian Product:

Connection-space=(B X CN X B X CN X T X AI X Al).

The AC uses the function add-connection to
record the opening of a connection in the CT. This
function makes two entries into the table, one for each BIU
involved. Both entries contain the same information but
rearranged so that each BIU’s status information is reflected.
The definition is as .follows:

add-connection(bl,

cnl,
returns true if

b2, cn2, t, ail, ai2)

(bl, cnl, b2, en2, t, ail, ai2) and
(b2, cn2, bl, cnl, t, ai2, ail)

bavc been added to the CT. The reason that the access
intervals are reversed in the two tuples is that if two BIUs

are communicating; one's outgoing traffic will be the other's
incoming.

The AC uses the function del-connection to declete
entrics in the CT. Unlike add-connection, this function only
effects one entry in the CT. When a BIU notifies the AC
that it is through with a connection, the AC calls this
function to remove that BIU's entry. This function must be
called twice to completely close a connection. del-
connection(bl, cnl) returns true if a tuple in the form of
(bl,cnl,b,en,t,ail,ai2) is removed from the CT, where b, cn,
t, ail, ai2 need not be specified. Since the ordered pair
(bl, cnl) uniquely determines one of bl’s connections, it is
unnecessary to completely specify the tuple.

It is now possible to define send-packet() and
receive-packet(). Both of these functions return true only
when their respective tasks have successfully been completed.
Each takes five arguments defined as follows:

sb = source BIU - an element of B

scn = source BIUPs connection number -
element of CN

db = destination BIU - an element of B

den = destination BIU’s connection number -
an element of CN

packet = the entire packet
received - an element

of P

an

being sent or

It is implicit in the definition of both functions that sb, scn,
db, and dcn properly reflect the source and destination
address of the - packet. They are passed as separate

arguments for easier reference and understanding.
Definition of send-packet(sb, scn, db, den, packet):

If [
[mode(sb) = 0 and
cb(sb, scn) = db and
cen(sb, scn) = den and
dominate(label(packet), min(caio(sb, scn)))
and dominate(max(caio(sb, scn)),
label(packet))]

or [mode(sb) = 1 and
cb(sb, scn) = db and
cen(sb, scn) = den and
s-label(packet, max(caio(sb)))]

or db = ’B-AC
or sb = 'B-AC

]
Then send-packet(sb, scn, db, dcn, packet) -> True
Else send-packet(sb;, scn, db, dcn, packet) -> False

Definition of receive-packet(sb, scn, db, den, packet):

If{ id() = dh and
unaltered(packet) and
[[cb(db, den) = sb and
cen(db, den) = scn and
" dominate(label(packet), min(caii(db, dcn))) and
dominate(max(caii(db, dcn)), label(packet))]

or

sb = *B-AC
or

db = *B-AC]],

then recqive-packet(sb, sen, db, decn, packet) -> True
else receive-packet(sb, scn, db, den, packet) -> False

where 'B-AC’ is the AC’s BIU and unaltered is the function
which returns true if and only if the packet arrived
unaltered.

Finally, it is possible to define connect-open and
connect-close. Each returns true when a connection has
actually been opened or closed. Both functions are defined
recursively in terms of each other.

When opening a connection between two BIUs,
what actually happens depends on which BIU’s are involved.
When the B-AC is the requesting BIU, it generates a new
connection number and informs the other BIU that a
connection is being opened. The other BIU generates its
own new connection number, sets its state information, and
transmits its connection number in the .process of notifying
the B-AC that it is ready The B-AC now has the
necessary information to set its own state information.
When finished, the B-AC notifies the AC that the
connection has been opened so that the AC may add it to
the connection table. Any BIU wishing to open a
connection with the B-AC sends an open request to the B-
AC, and the B-AC then proceeds as if it initiated the open
request, following the steps given above.

No BIU can go directly to another BIU to request
an open connection, The AC, through the B-AC, must be
consulted for all such requests. The requesting BIU (bl)
must open a connection with the B-AC to ask the AC for
permission to open a connection to another BIU (b2) (for
which bl has already assigned a connection number). If the
AC denies the request, then B-AC closes the connection. If
the AC approves the request, then B-AC opens a separate
connection with b2 who is informed of the bl request. If
b2 regcts the request, the B-AC notifies bl and both
connections are closed. If the request is accepted, however,
b2 is instructed to generate a connection number, set its
status information, and report back to the B-AC. B-AC
sends the b2 connection number to bl with instructions to
set its status information and - report back to the B-AC.
Since they now consider the connection between them open,
bl and b2 both close their connection with the B-AC. and

the AC adds the connection to' the CT.

In closing a connection, the action taken also
depends on which BIU’s are involved. A BIU considers a
connection closed when its half is closed. The B-AC closes
its connections Dy resettting its status information and
notifying the AC to delete the connection from the CT. It
has been -assumed that the other BIU would initiate the
close of all connections involving the B-AC.

A BIU closing a connection with the B-AC must
notify the B-AC so that instructions may be issued to reset
the BIU’s status. When confirmation has arrived that the
other BIU has been reset, the B-AC resets its status
information and notifies the AC to delete the connection
from the CT. A BIU closing connections that do not
involve the B-AC must open a connection with the B-AC to
notify the AC that the connection is closing, reset its status
information when instructed to do so, and close the
connection - with the B-AC. The AC deletes each half of
the connection as it is closed.

The following constants are used in connect-open
and connect-close:

B-AC = The AC’s BIU.

C = A type of connection used for control
information.
Control-AI = The access interval used in a

connection of type C.

SET-STATE-INFO = Packet instructing a BIU
to set its state information. The state
information is contained in- the packet.

OPEN-REQ = Packet requesting the opening
of a connection. The necessary
information is contained in the packet.

OPEN-ACK. = Packet notifying receiver that
the proposed connection has been accepted.

OPEN-NAK = Packet notilying recciver that
the proposed connection has been refused.

OPENED = Packet notifying receiver that a
connection has been opened.

CLOSED = Packet notifying. receiver that
current connection is closing.

The parameters of connect-open are:
bl = biu requesting connect-open - element of
B

cnl = parameter in which connection number
for bl is to be returned - element of CN.

b2 = biu connect-open requested of - element
of B.

cn2 = parameter in which connection number
for b2 is to be returned - element of CN.

t = type of connection - element of T.

aio = outbound AI for bl (inbound for b2) -
element of Al

aii = inbound AI for bl (outbound for b2) -
element of Al

The definition of connect-open follows:
connect-open(bl, cnl, b2, cn2, t, aio, aii)

/* Connection from the B-AC to any BIU */
IF (bl = ’B-AC)
THEN
cenl = new-cn(bl)
send-packet(bl, cnl, b2, cn2, ’SET-STATE-INFO’)
receive-packet(bl, cnl, b2, cn2, ’SET-STATE-INFO’)
cn2 = new-cn(b2)
set-state-info(b2, -¢n2, bl, cnl, °C,
*CONTROL-AT, *CONTROL-AT)

set-state-info(bl, cnl, 'NULL, "NULL, 'NULL,
*NULL, *NULL)

del-connection(bl, cnl)

connect-close(b2, cn2, bl, cnl)

send-packet(b2, cn2, bl, cnl, ’OPENED’)
receive-packet(b2, cn2, bl, cnl, ’OPENED’)
set-state-info(bl, cni, b2, ¢n2, 'C,
*CONTROL-AT’, *CONTROL-AT)
add-connection(bl, cnl, b2, cn2, 'C,
'CONTROL-AYT’, *CONTROL-AT) ELSE
send-packet(bl, cni, b2, cn2, 'CLOSED’)
receive-packet(bl, cnl, b2, cn2, *CLOSED’)
connect-open(bl, cn3, 'B-AC’, cnd, 'C,
*CONTROL-AI’, *CONTROL-AT")

/* Connection from any BIU to the B-AC */
ELSE IF (b2 = 'B-AC)
THEN

send-packet(bl, *NULL’, b2, 'NULL’, 'OPEN-REQ’)
receive-packet(bl, 'NULL’, b2, 'NULL’, 'OPEN-REQ’)
connect-open(b2, bl, 'C’, *CONTROL-AT’, *CONTROL-AT)

ELSE /* Connection for any other two BIU's */

connect-open{bl, cn3, 'B-AC’, cn4, *C,
'CONTROL-AT’, *CONTROL-AT)
send-packet(bl, cn3, *B-AC’, cnd4, 'OPEN-REQ’)
receive-packet(bl, cn3, 'B-AC’, cnd4, ’OPEN-REQ’)
IF (open-ok(bl, b2, t, ail, ai2))
THEN
connect-open(’B-AC’, c¢cn5, b2, cn6, 'C,
*CONTROL-AY, 'CONTROL-AT)
send-packet("B-AC’, cn5, b2, cn6, "OPEN-REQ’)
receive-packet(’B-AC’, cn5, ‘b2, cn6, 'OPEN-REQ’)
send-packet(b2, cn6, 'B-AC’, cn5, RESPONSE)
receive-packet(b2, cn6, 'B-AC’, cn5, RESPONSE)
IF (RESPONSE = 'OPEN-ACK’)
THEN
cnl = new-cn(bl); cn2 new-cn(b2)
send-packet(’B-AC’, cn5, b2, cn6, 'SET-STATE-INFO”)
receive-packetCB-AC’, cn5, b2, cnb,
*SET-STATE-INFO’)
set-state-info(b2, cn2, bl, cnl, t, aii, aio)
send-packet(b2, cn6, *B-AC’, cn5, ’OPENED’)
receive-packet(b2, cn6, 'B-AC’, cn5, 'OPENED’)
send-packet(’B-AC’, cn4, bl, cn3, *SET-STATE-INFO'
receive-packet(’B-AC’, cn4, bl, cn3,
*'SET-STATE-INFO’)
set-state-info(bl, cnl, b2, cn2, t, aio, aii)
send-packet(bl, cn3, 'B-AC’, cn4, *OPENED")
receive-packet(bl, cn3, B-AC’, cn4, *OPENED’)
add-connection(bl, cnl, b2, cn2, t, aio, aii)
connect-close(bl, cn3, *B-AC’, cn4)
connect-close(b2, cn6, 'B-AC’, cn5)
ELSE
connect-close(b2, cn6, 'B-AC’, cn5)
send-packet(’B-AC’, cnd, bl, c¢n3, *OPEN-NAK’)
receive-packet(’B-AC’, cnd, bl, cn3, *OPEN-NAK’)
connect-close(bl. cn3, 'B-AC’, cnd)
ELSE
send-packet('B-AC’, cn4, bl, cn3, OPEN-NAK’)
receive-packet(’B-AC’, cnd, bl, c¢n3, *OPEN-NAX’)
connect-close(bl, cn3, ’B-AC’, cnd)

The parameters of connect-Close are:

connect-open(b2, cn5, 'B-AC, cn6, 'C,
'CONTROL-AT’, *CONTROL-AT’)

send-packet(bl, cn3, 'B-AC’, cnd, 'CLOSED’)

send-packet(b2, c¢n3, *B-AC’, cn6, ’CLOSED’)

receive-packet(bl, c¢n3, 'B-AC’, cnd4, *CLOSED’)

receive-packet(b2, cn5, *B-AC’, cn6, *CLOSED’)

send-packet("B-AC’, cnd, bl, cn3, SET-STATE-INFOQ)

send-packet(’B-AC’, cn6, b2, cn5, 'SET-STATE-INFO’)

receive-packet(’B-AC’, cn4, b1, cn3, 'SET-STATE-INFO’

receive-packet(*B-AC’, cné, b2, cn5, ’SET-STATE-INFO’

set-state-info(bl, c¢nl, NULL’, *NULL’, '"NULL’,
*NULL', *NULL’)

-set-state-info(b2, c¢cn2, *NULL’, 'NULL’, 'NULL’,
"NULL’, *NULL")

send-packet(bl, cn3, 'B-AC’, cnd, 'CLOSED’)

send-packet(b2, cn5, 'B-AC’, cn6, 'CLOSED’)

receive-packet(bl, cn3, 'B-AC’, cnd, *CLOSED")

receive-packet(b2, cn5, *B-AC’, cn6, 'CLOSED’)

del-connection(bl, cnl)

del-connection(b2, cn2)

connect-close(bl, cn3, *B-AC’, c¢nd)

connect-close(b2, cné, 'B-AC’, cné)

Let there be a set, E, which is the set of all
possible events that occur on the network. Some elements
of E would be things such as- opening a connection,
delivering a packet, or a new host added to the LAN.
Some of these events are security related and, as such, need
to be audited. These might occur at the BIU (an
improperly labeled - packet arrives at the BIU) or at the AC
(a connection request is denied).

Let there exist a function, security-relevant(e),
where e is an element of E that determines if an event is
security relevant. Let there also be a function, audit(e),
that causes the time, place, and involved parties of that
event to be logged in audit files located on the AC.

It is now possible to present mathematical
conditions that must hold true if the five security rules are
being enforced. Strictly speaking, Rule 4 is unnecessary
because it can be implied from Rule 3. It has been
included to emphasize the importance of packets arriving at
their destination unaltered. The five security rules are as
follows:

. . . . Rule 1: For all p, an element of P, there exists an
bl = BIU wishing to close its portion of a connection 1, an element of C-space, such that label(p)
enl = bl’s connection number to be closed = 1
b2 = Other BIU involved in connection
cn2 = b2’s connection number Rule 2: For any b, an element of B; cn, an element
. of CN; and p, an e¢lement of P; b may
The definition of connect-close follows: transmit p on cn if and only if send-
acket(b, c¢n, cb(b, s A s -
connect-close(bl, cnl, b2, cn2) %ruc,((b, cn), cen(b, cn), p) ->
1F ’I(‘II—DIIEI\-I_- "B-AC") Rule 3: For any b, an element of B; cn, an element
) , ., . s of CN; and p, an element of P; b may
SCt-Sta’tC-lﬂfo(,bl; Cnl,,NULL’ NULL’, 'NULL', deliver a p received on cn if and only if
NULL’, "NULL") receive-packet(cb(b, cn), cen(b, cn), b, cn,
del-connection(bl, cnl) p) -> True.
ELSTIIi{lEIII\:I (b2 = 'B-AC") Rule 4: For any bl and b2, elements of B; cnl and
s N cn2, elements of CN; and p, an clement of
send-packet(bl, cnl, b2, cn2, CPOSED) , P: if receive-packet(bl, cnl, b2, cn2, p) ->
receive-packet(bl, cnl, b2, cn2, 'CLOSED’) True, then unaltered(p) -> True.
send-packet(b2, cn2, bl, cnl, 'SET-STATE-INFO’) 4
receive-packet(b2, cn2, bl, cnl, *SET-STATE-INFO’) Rule 51 For all e, elements of E, if security-

send-packet(bl, cnl, b2, cn2, 'CLOSED’)

receive-packet(bl, cnl, b2, cn2, 'CLOSED’) relevant(e) -> True, then audit(e) -> True.

30

B. The LAN Model

In modeling the secure operation of the LAN, the
secure operation of the BIU and the AC needs to be

described. Each will be described as a collection of state
machines. The states and the events that cause transitions
between them will be described. The communications

between these devices will then be modeled to complete the
description of the total operation of the LAN. At t}xat
point, there should be a model from which the security-
relevant points can be proven.
1. The BIU

The first device to be described is the BIU.
The main function of the BIU is to send and receive
packets for the attached host. To do this, the BIU must be
able to establish, maintain, and close connections. It must
be able to distinguish to which connection a packet belongs
as well as whether that packet is permitted to be sent or
received. The BIU must be able to do this for any number
of connections, limited only by its own physical resources of
those of the attached host. It must be able to communicate
with the AC through the B-AC and respond to NSO
commands issued through the AC. Finally, the BIU must
realize when a security-relevant event has occurred and
record that event in an audit log

The behavior of a BIU is modeled by
describing the life of each connection, from birth until
death, that a BIU manages with a separate state machine.

Each of these state machines, «called Connection State
Machines (CSM’s), models those functions in the BIU that
establish, . maintain, and then close a particular connection.
Included in this functionality is all of the security checking

that is done for that connection. :

These CSM’s, however, do not model the
entire operation of the BIU. Some functionalities not
modeled .are the BIUs ability to communicate with the
network or attached hosts and its audit capability. A

separate state machine, called the BIU State Machine' (BSM),
does this for each of the CSM’s. The BSM takes the input
to the BIU and decides to which connection it belongs and
then passes it to the CSM handling that connection. If a
CSM is not currently active to handle the input, the BSM
initiates one that can.

The real purpose of the BSM is to model
the physical operations of the BIU. When input comes into
the BIU, the BSM checks that input, sends it to a CSM. for
a decision on what action to take, waits for a response, and
takes action appropriate to that response (see¢ Figure 2).

‘connection connection! connection!
state state . s state
machine machine maching
#1 #2 #n
-— BIU STATE
HOST COMMUNICATION MACHINE NETWORK COMMUNICATION w5,
a. The states for the BSM are as follows:
(I) wait - The BSM waits for input
to the BIU from the network, the attached host, or one of
the CSM’s.
2) check-external-input - The BIU
examines input from the network or the host. It rejects the
input if it is not addressed for the BIU or has been

damaged in some way. It is here that the BIU, if operating
in mode one, inserts security labels into the packet headers.

(3) pass-to-CSM - The input is passed
to the appropriate CSM. If there is no CSM available to
handle the input, a state is entered that will spawn one.

(4) spawn-CSM - A new instantiation
of a CSM is created to which the input is passed.

31

(5) audit - Security-relevant events are
logged in the BIU.

(6) deliver - Packets are delivered to
the attached host.

(7) send - Packets are transmitted out
on the bus.

(8) change-mode - The operating
mode of the BIU is changed.

(9) report-faiture - An attempt is

made to report any BIU-detected failure to the AC. This
attempt may or may not succeed depending on the nature of
the failure.

(10) disconnect - The BIU is
electrically disconnected from the bus. This should happen
after any failure is detected regardless of whether or not it
has been successfully reported to the AC.

b. Most of the events that cause BSM
state transitions are the result of some output from one of
the CSM’s. The events are as follows:

@) external-input
arrived from the host or network.

(2) new-CSM - The packet that just
arrived requires a new CSM to handle it.

A packet has

(3) auditreq - A CSM has signaled
that some event needs auditing.

(4) audit-full - The event just audited
caused the audit files to Dbe larger than some threshold
value.

(5) deliver-req - A CSM has signaled

that a packet is ready to be delivered to the host.

(6) send-req A CSM has signaled
that a packet is ready to be sent out on the network

(7) .change-mode-req A CSM has
signaled that the AC has requested a mode change for the
BIU.

(8) disconnect-req A CSM has
signaled that the AC has requested that the BIU electrically
disconnect itself from the bus.

(9) done - The action of the current
state has been successfully completed.

(10) rect - The packet that just
arrived f{rom the host or network was damaged or not
intended for the BIU.

(1 failure - The action of the
current state has not been successfully completed, or the

BIU has detected some hardware [ailure.

This may happen
in any state.

(12) reset The BIU has just been
connected to the network and begun operation.

(See Figure 3 for a BSM state diagram and Figure 4 for a
BSM state transition table.)

c. There are three possible ways for a BIU
to be involved in a connection. It can be attached to a
host that is initiating a connection, attached to a host that is
the recipient of a connection, or attached to the AC. The
CSM manages individual connections and must, therefore, be
able to handle all three cases. As a result, the CSM is
considerably more complicated than the BSM. Its states are
as follows:

(1) birth - This is the initial state of
the CSM. What role the BIU is to play in the connection

2} CHECK
EXT INPUT Dong
10) DIS- \D, 3) PASS TO
CONNECT ;{\S¢ gl B CSM
E ONN T é E N
E N
& g NN © w
o/, Er R I SM
& aT| Y
9) REPORT FAILURE 1) WAIT DONE 4) SPAWN
FAILURE E Ay SM
bE Dy T
MC o OdNT Re o /it
E Q
che oNEEQ , Xty /e
R N\ E
8) CHANGE o/ /nF EONN 5) AUDIT
MODE N o e A
s® D Q
7) SEND 6) DELIVER
FIGURE 3: BSM STATE DIAGRAM
E|IN|A[A|D|S|C|D|D|R|E|R
x|e|ulUlElEIH|I |O| E} Al E
T|WD|{D|L|N|A|SIN|J|I|S
E 1|11 |[DIN|C|E|E{L|E
E{rR|c|T|T|V] [GlO clujT
v|N|S E|RIE|N|] |TiR
A|M[RIFIRIE] |N E
ElLIE|U| |o|ME
N Q|LIR| {O|C
T|1 L|E E T
? A lr
U R|E
T E|Q
Q
STATE 1) 2|314]5]6]7][8]9]10[11/12
WAIT 1j2 5 6| 7| 8]10 9
CHECK EXTERNAL INPUT 2 31119
PASS TO CSM 3 4 1 9
SPAWN CSM 4 i} 19
AUDIT 5 4 1 9
DELIVER 6 1 9
SEND 7 1 9
CHANGE MODE 8 1 9
REPORT FAILURE 9 10] |10
DISCONNECT 10 1
FIDURE 4: BSM STATE TRANSITION TABLE
determines the next state of the CSM.
2) send-open-req - The BIU just

received a connection open request from its attached host.
The BSM is signaled to forward this request to the AC for
approval.

(3) deliver-open-req - The BIU just
received a connection open request that the AC has
approved. The BSM is signaled to deliver this request to

the attached host.

(4) wait-open - Either the originating
BIU is waiting for a response from the AC, or the receiving
BIU is waiting for a response from the attached host.

(5) notify-AC-open-ack - The receiving
BIU has just received approval from the attached host that
the connection may be opened. The BSM is signaled to
notify the AC.

(6) notify-host-open ack The
originating BIU has just received approval from the AC that
the requested connection may be opened. The BSM is
signaled to notify the attached host.

N notify-AC-open-nak The
receiving BIU has just received word that its attached host
has refused the proposed connection. The BSM is signaled
to notify the AC.

(8) notify-host-open-nak - The
originating BIU has just received word that the proposed
connection, for some unknown reason, has been refused.

The BSM is signaled to notify its attached host

32

9

wait-set-status-req - A host-to-host

mnection is about to be opened or closed. The CSM is
waiting for the AC to instruct it to set or reset the
connection status information.

(10) set-status - The AC has
instructed that the connection status be set, and this is
done,

(1 notify-AC-status-set - The

mection status of the CSM has been successfully set

The BSM is signaled to notify the AC.

(12) audit One of four auditable
events has jst occurred in the CSM: a packet has arrived
that cannot be delivered, a packet has arrived that cannot be
sent, a connection has been opened, or one has been closed.

All four events must be audited, and the BSM is signaled
to do so.

. (13) wait-input A connection is
presently in progress. The CSM is waiting from input from
the network or the host.

(14) check-net-send A packet has
arrived at the BIU from the attached host. The packet is
checked with respect to security to determine if it may be
sent out in this connection.

.) (15) send - A packet has been
determined fit to send in this connection. The BSM is
signaled to send it out on the network

(16) check-host-delivery - A packet

has arrived at the BIU from the network. In this state, the
packet is checked with respect to security to determine if it
may be delivered in this connection. The packet is also
checked to see if it is a close connection request.

(17 deliver A packet
determined fit to deliver in this connection.
signaled to deliver it to the attached host.

has been
The BSM is

(18) notify-host-closed - The BIU has
received notice, either from a host or the AC, that the
current connection has been closed. The BSM is signaled te
notify the attached host

(19) -
connection has been closed.
BIU status may be reset.

notify-AC-closed The current
The AC is notified so that the

(20) notify-host-not-authorized - The
host has attempted to send unauthorized information out on
the network. The BSM is signaled to notify the host of
the error.

20 send-audit The BIU has
received a request from the AC to begin sending its locally-

stored audit data. The BSM is signaled to send a packet of
audit data.

(22) wait-ok-to-send-audit The BIU
is rcady to send the AC audit data The CSM is waiting
for confirmation that the AC is rcady to receive it

The BSM
The CSM

(23) notify-AC-audit-full -
has realized that its audit files are necarly full

signals the BSM to notify the AC.

(24) notify-AC-audit-sent - The audit
files have been completely sent to the AC.. The BSM is
signaled to notify the AC.

(25) chmod - The BIU has received
a request from the AC to change its operating mode. The
BSM is signaled to do so.

(26) notify-AC-mode-changed - The
operating mode of the BIU has just been changed. The

BSM is signaled to notify the AC.

(27) disconnect - A disconnect request
has arrived at the BIU from the AC. The BSM is signaled
to electrically disconnect the BIU from the network

(28) death - The connection has been
completely closed and the CSM is no longer needed. The
CSM is terminated.

d. The events that cause CSM state
transitions are as follows:

(@8] host-AC-open - The BIU has

received a message from its host requesting a connection to
be opened. This is one of the entry events to the CSM.

2) AC-host-open - The BIU has
received a packet from the AC informing it that another
host wishes to open a connection to it. This is one of the
entry events to the CSM.

(3) host-AC-open-ack - The BIU has
been notified that its host has accepted the proposed
connection.

(4) host-AC-open-nak - The BIU has

been notified that

its host has not accepted the proposed
connection.

(5) AC-host-open-ack - The BIU has
been notified that its host’s connection request has been
approved and will be opened.

(6) AC-host-open-nak - The BIU has
been notified that its host’s connection request has not been
approved and will not be opened.

(7) set-stat-req - A packet has arrived
at the BIU from the AC requesting that the BIUs
connection status information be changed.

(8) from-host - While involved in a
connection, the BIU has received a message from its host
addressed to that connection.

: (9) from-net - While involved in a
connection, the BIU has received a packet from the network
addressed to that connection.

(10) not-authorized - Either a packet
from the network or a message from the host arrived at the

BIU and cannot be passed through it.

(11) closed - Three things can cause
this event: a host notifies its BIU that the current
connection is over, a packet arrives at the BIU signifying the
end of the connection, or the closing of the connection was
just audited by the BIU.

(12) kill-con-req - A packet from the
AC just arrived at the BIU instructing it to close that
connection.

(13) BIU-AC-start - A packet just

arrived at the B-AC f{rom some other BIU requesting a
dialogue with the AC, usually regarding the opening or

closing of a connection. This is one of the entry events to
the CSM.

(14) AC-BlU-start - A message just
arrived at the B-AC from the AC initiating a dialogue with
some other BIU, usually regarding the opening or closing of

a connection. This is one of the entry events to the CSM.

(15) BIU-AC-end - The BIU-to-AC
communication has ended.
(16) AC-BIU-end - The AC-to-BIU
communication has ended.
(17) done - The action in the current

33

state has been successfully completed.

(18) audit-full - The BSM has
realized that the audit files are nearing capacity and is
requesting that they be sent to the AC. This is one of the
entry events to the CSM.

(19) audit-req - A packet has arrived
at the BIU from the AC requesting the BIUs audit
information be sent to the AC. This is one of the entry
events to the CSM.

(20) more-audit - Audit information
has been sent from the BIU to the AC, but there is still
more to send.

21 chmod-req - A packet has
arrived at the BIU from the AC requesting that BIU to
change its operating mode. This is one of the entry events
to the CSM.

(22) disconnect-req - A packet has
arrived at the BIU from the AC instructing it to disconnect

itself from the bus. This is one of the entry events to the
CSM.

(See Figure 5 for a CSM state diagram and Figure 6 for a
CSM state transition table.)

NOTE: There is a significant deficiency in the CSM as it
has been described. It has been assumed that a connection
already exists when communications occur between the B-AC
and another BIU, but in reality, a connection would actually
have to be opened and then <closed for such a
communication to take place. This is, however, reflected in
the definitions of connect-open and connect-close and docs

not cause any of the total LAN functionality to be lost.

2. The Access Controller

The second device to be described is the
AC. The AC has the primary responsibility to ensure the
secure operation of the LAN. Since the BIU’s turn to the
AC for decisions regarding the permissibility of host-to-host
connections, the AC must be capable of making those
decisions. The AC must, therefore, know what is happening
on the LAN at all times.

The AC maintains the MAC, DAC, and
connection tables and is responsible for setting and resetting
the connection status in the BIU’s. It handles the LAN
audit files;, The AC is also the machine through which the
NSO issues commands such as instructing a BIU to change

operating modes, send audit data, break connections, and
actually disconnect itself from the bus.
The AC is modeled similar to the BIU.

There will be a state machine,
State Machine (ACSM), that describes the actual operations
of the AC (Figure 7). These generic operations (such as
sending and receiving data from the network, auditing, and
accessing tables) are described independent of any particular
network connection or NSO command.

called the Access Controller

There will also bLe instantiations of another
state machine, the Connection State Machine - Access
Controller (CSM-AC), to manage specific individual
communications with a BIU or the NSO. These CSM-AC's
signal the ACSM when they need some action performed.

a. The states for the ACSM are as follows:

(1) wait - The AC waits for input
from the network, the NSO, or one of the CSM-AC’s.

(2) pass-to-CSM-AC Input is
checked for proper format. The data is then passed to the
appropriate CSM-AC. If there is no CSM-AC available to
handle the input, a state is entered that will spawn one.

22 WAIT OK TO Y20 N E
SEND AUDIT

23 NOTIFY AC D oM S /26 NOTIFY AC _ CSM-AC
AUDIT FULL) (25 CHMOD) MODE CHANGED, cs;ll 1A° - #n
Q
b, &

A R A Ay
UD Mo UD T
ol o
|T RE |T FUL 5
L nECT
AUDIT Qgq >
@‘\y s <« —————| ACSTATE | —— 0 ——
AC_HOEN e NETWORK COMMUNICATION y | MACHINE NSO COMMUNICA =
3 DELIVER e
OPEN REQ A s
FIGURE 7: ACSM COMMUNICATIONS
<om . s 1o la (3) spawn-CSM-AC - A npew ¢
s 3 £ NN instantiation of a CSM-AC is created, and the input is
N N NEgl 13 WAIT INPUT INO0y passed to it
: LE — (4) audit - Security-relevant events

occurring in the AC are logged in audit files. This includes
entering audit data received from individual BIUs,

D
‘&—ﬁ/t 15 SEND K
E
Z

(5) - access-tables - Either the MAC,
DAC, or connection tables are read from or written to.

OMA ZOO rr—x ~\omnor o

(6) net-output - Data is sent to the
B-AC for transmission.

(7N NSO-output - The NSO is
notified of some event, either the completion of one of his
requests or some problem with the LAN.

18 NOTIFY
HOST CLOSED

(8) disconnect - The AC is no longer
in control of the network Either the LAN continues
operating as it was when the state was entered with no
further opens or closes, or an alternate AC is notified to
assume the AC's responsibilities in the case of a redundant
AC. In the second case, the assumption has been made
that the two, or maybe more, AC’s have been kept
identical,

9 WAIT SET
STATUS REQ

\ b. The events that cause ACSM state

24 NOTIFY AC o "
transitions are as follows:

AUDIT SENT

FIGURE 5: CSM STATE DIAGRAM (1) input - A message has just
arrived at the AC from either the AC or the NSO.

Al H H A] Al S|FIFIN|C|K|B|A|B|A{D[AJAIMIC|D .
gCOOCCEYO{ROLIICICOUUOHIS (2) new-CSM-AC - There is no
~| 8|8~ -!T| OIT|{OlL| U ~|U}l=|N|{D{D{R [M . H H .
A EREEENE OIEI Y5 Y 5l BIPIPIR|MEl CSM-AC currently expecting the last received message;
el-10|-t-|ol 9 slul |a|E| [al1]|a{1]| |T|T| [D]jO therefore, a state must be entered to spawn one.
AlS|AlA[S| S| T o N|U|D|C} C|U|C| U A N
Vic|r|cieiT|T| ASIE|T| (ol s|slelel |E|R[UIR|N
clelelelelel g T (el [Ny |LI8lT gl ¢ (3) access-req - A CSM-AC has
r|E|E|E{E B B R Rl IRIRRI®|® [T 7|T| || signaled a requirement to access one of the tables kept by
I N N R
N :ﬁiNQ % o TiT E the AC.
% Q Ic<: 2 D © (4)
K (4 audit-req - A CSM-AC has
STATE 11213141 5|61 7 8 9)10111213/14/15]16117)18/19120121|29 gjgngled that some event needs to be audited or that a
BIRTH Hats 16}14 23121 1251270 BI{Ps audit information needs to be saved.
SEND OPEN REQ 2
DELIVER OPEN REQ 3 4 . .
WAL OPEN . RN 4 dit fil(5)t autght f]ull - 'I‘};‘c last eventhau%xtclg
NOT. AC OPEN ACK | 3 S cause e audi es to be larger than some thresho
NOT HOST OPEN ACK | 6 9 ’ value.
NOT. AC OPEN NAK | 7 28
NOT. HOST OPEN NAK| 8 28 (6) net-output-req - A CSM-AC has
WAIT SET STATUS REQ 9 10] signaled that some message needs to be sent to a BIU.
SET STATUS 10 11
NOT. AC STATUS SET |11 12 (7) NSO-output-req - A CSM-AC has
AUDIT 12 28 13 signaled that some message needs to be sent to the NSO.
WAIT INPUT 13 1416
CHECK NET SEND 14| 20! 15 .
- rrent
SEND ¥ " s has b (fS%1 donc1 (’il"hc action of the cu
CHECK HOST DELIVERY1§| 12018] 18 17 state has been successfully completed.
DELIVER 17| 28} 113 . .
NOT. HOST CLOSED _ |18 1] (9) regct - The input to the ACSM
NOT. AC CLOSED 19) 9 was unreadable.
NOT. HOST NOT AUTH{20 12
SEND AUDIT 21 24 22 (10) AC-disconnect - The AC has
WAIT OK SEND AUDIT| 22 21 instructed the B- AC to disconnect itself from the network
NOT. AC AUDIT FULL }23 22
NOT. AC AUDIT SENT [24 2§ (1 failure - A majr failure has
CHMOD 25 > .
NOT. AC MODE CHG 126 28 occurred in the AC.
DISCONNECT 27 28 j b
DEATH 2s] [T [T 117 (12) reset - The AC has just beer

i i ming control of the LAN.
FIGUE 6: CSM STATE TRANSITION TABLE activated and is assuming

(See Figure 8 for an ACSM state diagram and Figure 9 for
an ACSM state transition table.)

34

2 PASS TO Yy
csM-AC S Ew

D SM
(o] -
e AWN
5 ACCESS 1RL 3 SP
TABLES _Ad'c, w7 CSM-AC
D Es ¥ g NE
ONE N R i oy FuL o,
- NSO OUTPUT REQ EQ ‘}$ AUD!T REQ L !
7 NSO 1 WAIT 4 AUDIT
OUTPUT soNE & —oone
T('JJT z FA Es
& N 0 Er
N ° u
@ Fe 8 DIS
ONNECT -
O?J%EJT he iRt CONNECT
FIGURE 8: ACSM STATE DIAGRAM
iIn]alalAININ| D[R A} F| R
NiE|clulUlE|S|olElC| Al E
p|W|C{D|D|T|O|N}J 118
U E[I I E|{E|D|L| E
E|TiC|S|[T|T{O]O cli1{y T
v] Isis ulul| |Tis|r
M R|F|T|T C|lE
Ef |[J|r|E|U|P|P 0
N| 1A|EloiL{U|U N
Tl lciol T|L|T|T N
E
R|R c
E|E T
QlQ
STATE 1| 21374 56| 7]8]|9][10{11}12
WAIT 1 514 617 8
PASS TO CSM-AC | 2| |3 111 8
SPAWN CSM-AC | 3 1 8
AUDIT 4 3 1 8
ACCESS TABLES | 5 1 8
NET OUTPUT 6 1l 1s|8
NSO OUTPUT 7 1 8
DISCONNECT 8 8|1

FIGURE 9: ACSM STATE TRANSITION TABLE

The states for the CSM-AC are

C. as

follows:

(1) birth - This is the initial state of
the CSM-AC. What action the AC takes on entry into the
CSM-AC is determined by the reason it was spawnd.

(2) get-MAC/DAC-info - The AC
needs to make a decision about a connection open request
and must consider the pertinent MAC and DAC information.
In this state, the ACSM is signaled to retrieve this
information.

(3) check-open-req - The open
request just received is checked against the MAC and DAC
information just retrieved.

(4 forward-open req - The open
request has been approved by the AC, and the ACSM in
signaled to forward the request to the recipient host.

(5) wait-open - The AC is waiting
for a response to the forwarded open request from the
recipient host.

(6) notify-host-open-nak - The open

request in question has been denied either by the AC or by
the recipient host, and the ACSM is signaled to notify the
requesting host.

n send-status-info - A connection
between two hosts is about to be opened or closed, and the
BIU's need to be instructed to change their connection status
information. The ACSM is signaled to instruct each one of
the BIU’s to change this information. This state’ will be
entered twice during a connection opening, the first to set
the recipient host's BIU and the second for the requesting
host’s BIU. During a close, each BIU will notify the AC it

35

is closing. Therefore, two separate CSM-ACs will be
spawnd, each entering this state only once.
(8) wait-status-set - After instructing

the BIU to change its status information, the CSM-AC waits
for confirmation that the information has been changed.

9 notify-host-open-ack - The -AC
and the recipient host have approved a host’s open - request,
and the status information in the recipient h0§t’s_BIU has
also been' set for the connection. The ACSM is signaled to
notify the requesting host of this and to expect its status to
be set for the connection.

(10) update-connection-table - A
connection has just been opened or clo§cd, and the AC’s
connection tables are updated to reflect this.

(1) audit - The action performed
during a CSM-AC’s life must be audited before its death.
The ACSM is signaled to record some auditable event in the
AC's audit files.

(12) notify-BIU-send-audit - A
condition has arisen, either a BIU message or an NSO
request, that requires a BIU to send its audit data to the
AC. The ACSM is signaled to notify the BIU that the AC
is ready to receive the audit data.

(13) wait-audit-data - The CSM-AC is
waiting for a BIU to transmit some audit data.

(14) store-audit-data - The ACSM is
signaled to store a BIU'S audit data in the AC'S audit files.

(15) notify-BlU-change-mode - A
request has come from the NSO to change the operating
mode of a BIU. The ACSM is signaled to instruct the BIU
to change its operating mode.

(16) wait-mode-changed - The CSM-
AC is waiting for confirmation that the BIU changed its
operating mode.

n notify-BIU-disconnected - A
request has come from the NSO to disconnect a BIU f{rom
the LAN. The ACSM is signaled to instruct the BIU to
disconnect itself.

(18) notify-NSO-BIU-disconnected - The
ACSM is signaled to notify the NSO that the BIU has been
instructed to disconnect itself {rom the LAN. There is no
actual confirmation from the LAN that the disconnect

actually happened; therefore, the NSO should probably verify
the disconnect for himself.

(19) notify-NSO-AC-audit-full - The
ACSM has noticed that the last piece of audit data caused
the ACS audit storage area to grow larger than some
threshold value. The ACSM is signaled to notify the NSO
of this fact.

(20) update-DAC-table - The NSO
has instructed the AC that a host's DAC table is to be
updated, and the ACSM is signaled to make the. changes.

21 update-MAC-table - The NSO
has instructed the AC that a host's MAC table is -to
updated, and the ACSM is signaled to make the changes.

(22) notify-NSO-table
ACSM is signaled to notify the NSO that
changes have been made.

updated - The
the. requested

(23) notify-BIU-connection-killed - The
NSO has instructed that a connection be terminated. The
ACSM is signaled to notify one of the BIU's to kill the
connection at its end. To completely kill an active
connection, two separate CSM-AC’s need to be spawnd - one
for each BIU.

(24) wait-closed - The CSM-AC
realizes that a connection was just killed and is waiting for a
BIU to send the connection closed response to the AC.
(25) death - The task that the
CSM-AC was spawned to perform has been completed and
audited, and the life of the CSM-AC is terminated.

d. The events that cause CSM-AC state
transitions are as follows:

N host-AC-open-req - A host is
requesting permission to open a connection with another
host.

(2) host-AC-open-ack - A host has
just accepted a connection open request that had been
forwarded by the B-AC.

(3) host-AC-open-nak - A host has
just refused a connection open request that had been
forwarded by the AC. .

(4) not-authorized - A connection
open request failed to pass the MAC and DAC checks.

(5) stat-set-#1 - The AC has received
confirmation that the status information of a BIU was
successfully set. This event occurs when the BIU in
question was the recipient of the open request.

(6) stat-set-#2 - The AC has received
confirmation that the status information of a BIU was
successfully set. This event occurs when the BIU in
question was .the originator of an open request or is in the
process of closing its end of a connection.

(7) closed - A BIU has notified the
AC that its end of a connection has been closed. This
could happen as the result of a normal close or from the
request of the NSO.

(8) NSO-kill-connection - The NSO
has requested that a BIU close its end of a connection.

(9) BIU-AC-audit-full - A BIU has
notified the AC that its audit files are full and need to be
sent to the AC

(10) NSO-audit-req - The NSO has
requested that a BIU send its audit files to the AC.

(1) audit-data - The input just
received was BIU audit data.

(12) audit-sent - The BIU has
informed the AC that all of its audit data has been sent.

(13) NSO-disconnect-BIU - The NSO
has requested that a BIU be disconnected from the LAN,

(14) NSO-update-MAC-table - The
NSO has requested that a change be made to a host’s MAC
tables.

(15) NSO-update-DAC-table - The
NSO has requested that a change be made to a host’s DAC
tables.

(16) NSO-change-BIU-mode - The
NSO has requested that a BIU’s operating mode be changed.

(17) BIU-mode-changed - The AC has
received confirmation that a BIU’s operating mode has been
changed.

(18) AC-audit-full - The ACSM has
just signaled that the AC’s audit data storage area is nearing
capacity and that the NSO needs to be notified.

(19) done - The action in the current
state has been successfully completed.

(See Figure 10 for a CSM-AC state diagram and Figure 11

for a CSM- AC state transition table.)

NSO UPDATE MAC TABLE
NSO UPDATE DAC TABLE

-l

17 NOTIFY BiU
DISCONNECT

23 NOT. BIU
CON. KILLED

\

mzoo
om®noro

12 NOT. BIU
SEND AUDIT

14 STORE

c
L
AUDIT DATA g
E
D

mzov

fc Y

o 7 SEND OST-AC
AT Y STATUS INFO /oo Aok

13 WAIT
AUDIT DATA
Y

18 NOTIFY NSO

BIU DISCON 5

\ 7

20 UPDATE T
DAC TABLE s

o E

/ 8y
E T

21 UPDATE
MAC TABLE

22 NOT. NSO
TAB UPDATED

FIGURE 10 CSM-AC STATE MACHINE

15 NOTIFY BIU
CHANGE MODE

OMN-DOI~CY -H0Z

m z o ©

H| 1 7] N[s [S| C[N| BTN| Al A[N| N[N| N[B[A D
ool o| o{E| E|L{S|{T|s|ulU|sis|s|s|i|c|o
s|sls|TT Tgoqu?oooouAN
T[T T k|-ta uj Ul € E
E|-| -] -{als|s|El} AUTT?PPHOS
v|AalalafUTITIDIL| D s| D| D{AID{]
o) TIA| A L| A1 D] S Al AN
E c|C Cc E|lT
HT| T uT|AE & T TGl e
NjOlojololgl el |SID " |TIN X E E[E]GF
Pip(P|R O T(RIA[T B{HuU
T 12 N R M D Al
ElE(E|!] T|E Bl ala| IR
NIN|N é Ig FlQ 1 cle I\I;‘[G L
Rla|N|§ ciu Y1 1|5l E
Elcla T|L A Alp|D
Qlx |k L Bl BlE
STATE 1| 2| 31 4] s 6| 7] 8] 91 14{15116/17|18]19
BIRTH 12 7|23[12]12 2120015
GET MAC/DAC INFQ 2 3
CHECK OPEN REQ 3 6 4
FORWARD OPEN REQ 4 s
WAIT OPEN s| l7ls
NOTIFY HOST OPEN NAK__| 6 11
SEND STATUS INFO 7 8
WAIT STATUS SET 8 9[10
NOTIFY HOST OPEN ACK 9 7
UPDATE CON. TABLE 10) 11
AUDIT 11 29
NOTIFY BIU SEND AUDIT |12 13
WAIT AUDIT DATA 13
STORE AUDIT DATA 14 12]
NOT. BIU CHANGE MODE |15 16
WAIT MODE CHANGED 16
NOT. BIU DISCONNECTED |17, 18
NOT. NSO BIU DISCON. 18 t1
NOT. NSO AC AUDIT FULL |19 11
UPDATE DAC TABLE 20 22
UPDATE MAC TABLE 21 22
NOT. NSO TABLE UPDATED|22 11
NOT. BIU CON. KILLED 23 24
WAIT CLOSED 24 7
DEATH 25

FIGURE 11: CSM-AC STATE TRANSITION TABLE

NOTE: The same deficiency exists in the description of the
CSM-AC as that in the CSM. The CSM-AC does not
account for the opening of connections with BIUs with
which it communicates.

3. The Bus

: The bus is the last part of the LAN that
needs to be modeled. The bus is the cable that connects
all of the BIUs on the LAN. When a BIU wishes to
transmit a packet, it broadcasts it on the bus. If all goes
well, it arrives at every BIU on the bus, including the
sender. The destination BIU accepts the packet, and the
rest ignore it. The bus never guarantees that the packet
sent is the one received. That is the BIU's problem.

The bus is modeled with the assumption
that there is a buffer at each interface to the bus. When a
BIU wishes to send a packet, it writes that packet into the
buffer at its bus interface. The property of the bus is to
copy the contents, not necessarily correctly, to every other
buffer. When something is written into one of those
buffers, the BIU at that interface treats that as a received
packet. It is up to that BIU to determine if that packet is
correct or even addressed to it (see Figure 12).

BIU 1 BIU 2 BIU 3 BIU N
v ' ' !

BUFFER [BUFFERJ | BUFFER I I BUFFERJ

. l__l_:;l L L L

(o _raceers 1 7

FIGURE 12: THE BUS

C

IV. SUMMARY

This paper is a first attempt at specifying and then
modeling a security policy for an MLS LAN. It describes a
policy that gives the reader an intuitive feeling of what it
means for a LAN to operate securely by putting forth a list
of rules that must be obeyed along with motivation for each
rule. It then tries to formalize these rules. Finally, a
fairly lengthy description of the LAN was presented by
describing each device on the LAN with intercommunicating
state machines.

Since this a first attempt at the model, there are
naturally some aspects of the LAN that have not been fully
specified in the model. Also no formal proofs have been
attempted. What is hoped, however, is that there is now a
foundation which will evolve into a fully-specified MLS LAN
model that is provably secure.

REFERENCES

[1] DoD 5200.1R, The Department of Defense Information
Security Program Regulation, July 1982,

[2] Department of Defense Trusted Computer = Security
Evaluation Criteria, CSC-STD-001-83, 15 August 1983.

{3] CDRL 145, “Formal Draft Subsystem Design Analysis
Report - Engineering Reportt LAN Interfaces.” GTE
Contract No. F19628-84-C-0052, 10 August 1982,
Volume 4, Appendix C.

37

SECURTTY TN OPEN SYSTEMS

A REPORT ON THE
STANDARDS WORK OF ECMA'S

TC32/TG9
T A Parker

ICL Defence Systems UK

ABSTRACT

TC32/TG9 is a recently formed Task
Group within the European Computer
Manufacturers Association standards
kody (ECMA). It has been tasked
with defining an application-layer
framework for Security in Open
Systems, a framework which will
ultimately lead to the definition
of standard security support
applications that communicate in
the OSI environment using standard
application-layer protocols.

This paper reports on some of the
early work of TG9 completed mainly
during 1986. It describes an
informal secure systems model or
framework, in which security is
supported by a number of discrete
security "facilities". The paper
then goes on to report on some of
the detailed work that has been
started on analyzing requirements
for the passing of security data
around a distributed system. It
addresses the topic of access
authorization and offers a . .uniform
approach which caters for a
spectrum of access control schemes’
ranging from capability systems to
access control lists.

ACKNOWLEDGEMENTS

The other major contributors to the
work of TG9, of which this paper is
only a part, have been J Kruys
(NCS, Netherlands, and TGS
convenor), D Roberts (British
Telecom, UK), N Pope (GEC, UK), D
Pinkas (Bull, France), and A C Gale
(ICI< UK).

0. CONTENTS
1. INTRODUCTION

2. THE SECURE SYSTEMS
MODEL

3. SECURITY FACILITIES

38

4. WALKTHROUGH

5. ' THE AUTHORIZATION
MODEL

6. RELATIONSHIP TO THE
DoD EVALUATION
CRITERIA

7. CONCLUSION

8. "REFERENCES

1. INTRODUCTION

TG9 is a Task Group of Technical
Committee 32 (TC32) of the European
Computer Manufacturers Association
(ECMA). Its responsibility is to
develop a framework for the
provision of logical security in an
Open Systems environment and to
develop standards for security-
related services and protocols, or
protocol elements, as required for
this environment.

The work of the TG9 group addresses
the ISO application-layer view of a
distributed system. It is aimed at
developing standard security
applications and standard
communications protocols both

‘between the applications themselves

and between them and the productive
applications with which they share
the system. In some cases it is
envisaged that standard protocol
elements will be developed with
which existing application-layer
protocols can be extended.

The world of the TG9 framework is
one of end users in control of
entities that communicate via
Application Service elements (Ref
l1). The generic term application
is used in the text that follows,
to denote one of these entities; so
in TG9 terms a file service, an

office mailbox, a print spooler, or
a UNIX operating system offering
general purpose computing
facilities to its users are all
examples of applications.

The TGY9 group is primarily
concerned with the ways in which
applications interwork rather than
how they are constructed
internally. TG9 therefore
concentrates its efforts on
network-wide aspects of security,
only looking inside applications in
order to establish what externally
communicated security data they may
need (or at least benefit from) in
order to do their own job. This
split between views of security
external to and internal to
applications is fundamental to the
approach and is further discussed
in Section 2.

In either view, security is
obtainable only via the
implementation of a variety of
control and monitoring functions,
the requirements for which are
determined according to whatever
security policy is defined for the
view. TG9's secure systems
framework identifies a general set
of these functions and divides them
into elements, each one having a
single coherent role to play in the
provision of the total security
picture.

These elements are referred to as
Security Facilities and they are
described in Section 3. The
framework must also show how these
elements interact with each other
and consequently which combinations
of elements are appropriate to form
standard security support
applications; this is a major area
of current activity for TG9. A
walkthrough of interactions that
could occur when a user logs on to
a system and attempts access to an
application is given in Section 4.
The walkthrough should be taken as

39

illustrative rather than
definitive; it leads naturally into
the second part of this paper
(Section 5) which covers one major
aspect of the detailed work being
done within TG9. The topic is that
of access authorization.

Whereas authentication relates to
the process of proving claims of
identity, authorization relates to
the process of controlling access
by already identified subjects to
already identified protected
objects*. - The paper aims to show
that existing ad hoc authorization
methodologies can be fitted into a
unifying framework in which
apparently gquite different
techniques appear as different
parts of a continuously varying
spectrum. In particular the two
authorization approaches
characterized by capabilities and

access control lists are shown to

be extremes of this spectrum, each
of which has its advantages and
disadvantages. See also References
3 and 6.

*Following normal security
conventions, active entities
requesting access to other,
protected entities in the system
are referred to in this paper as
subjects and the protected entities

as objects.
2. THE SECURE SYSTEMS MODEL

2.1 Overview

In terms of the Open systems
Interconnection (0SI) model, the
level of view addressed here is
application layer. The security
entities described communicate
using OSI services of sufficient
security to satisfy their needs
(Ref. 2). These needs take the
form of guarantees, to some
acceptable level, that
communications between them and
with their peers are confidential

and unmodified, and that each
communication is with a known and
identified peer entity.

Section 2.1.1 introduces the two
level view of security necessary to
distinguish properly between the
network-wide security policy for a
distributed system and the .
individual security policies
support by the applications
residing in the nodes of the
network. Section 2.1.2 shows how
the concept of a "subject" can
change according to the nature of
the accesses that are taking place.

2.1.1 Internal and External
Application Views

There are two fundamentally
different levels at which the
security requirements of a
distributed application network can
be addressed:

- at the application access
level, concerned with
access to protected network
cbjects like productive and
supportive applications;

- at the application-
specific level, concerned
with access to objects
supported by network
applications, like files
or documents.

These two levels of view have quite
different requirements, reflected
in different security policies
tailored to the different kinds of
protected objects involved and the
different components of the network
that are responsible for their
support. Indeed entities that are
considered protected objects at one
level can become accessing subjects
at another. This is illustrated in
figure 1.

L _b__.__ I
/ \ / ; S AFPLICATION 3

[ER 1
' APPLICATION 1 I APPLICATION zJ 3
[

. ASSP
-i —

40

Figqure 1 Network and Application
Security Policies

Figure 1 shows a number of end-
users wishing to access a number of
network applications, policed by an
Application Access Security Policy
(AASP in the Figure). One of the
applications is shown with its
internal details revealed; it is
supporting a number of protected
Application=-specific Objects (AS01
to AS03 in the Figure) being
accessed both by end-users directly
and by other applications in their
own right, (viz: User 3 and
Application 2) both being
constrained by the same
Application-Specific Security
Policy (AASP in the Figure).

It is the support of the AASP that
is the prime concern of TGS, since
it is in this area that the
distributed nature of a system is
most apparent, and standard
protocols are required to
communicate security related
information (e.g. the subject
identity and access privileges
discussed in Section 5) between
applications running on end systems
of different kinds and origins.
2.1.2 Indirect Access and
Proxy

In some cases an application may be
accessed by another application
(for example Application 2 in
Figure 1) rather than directly by a
user. There are two possible
extrenes:

- the initiating application is
acting on its own behalf;

- the application is acting
on behalf of another subject
(e.g. a human user).

The first situation may be used for
example to restrict access to
objects held on one application
(say a File Service application) to
requests coming via another (say a
Database Service application). It
is entirely appropriate for the
Database Service to act with
respect to the File Service as a
subject with its own identity and
access privileges. In this way
end-user access to a protected
object (in this case the database
files) can be controlled in terms
of the route and method used to
access it. This kind of contrel is
important to commercial
organizations (Ref 9).

The second situation might occur
for example when a user wishes to
transfer a file directly from one
application to another. The user
requests one of the applications to
initiate the transfer on his or her
behalf. This application is acting
as the user's proxy and must
convince the other application that
it is legitimately so doing before
the transfer will succeed.

Hybrid cases can also exist in
which the initiating application
uses its own privileges in
combination with those given to it
by the calling user.

References 6 and 7 discuss proxy in
more detail. Reference 7 examines
the protocols involved in such
situations.

3. SECURITY FACTTLITIES

At this stage no assumptions should
be made about the degree of
distribution of the facilities;
this might vary from being a single
central network application to
being an aspect of every
distributed supportive or
productive application. Neither is
it suggested that all of these
facilities need be available on

41

every secure network. They should
be viewed as a shopping list of
items from which a choice can be
made appropriate to the security
policy and level of security
quality required for the network.
However, by identifying the full
list, the framework causes
omissions to be made evident and
any resulting security weaknesses
intentional rather than accidental.

The following security facilities
have been identified:

3.1 User Sponsor

When a human user logs on to a
distributed computer system using a
(possibly remote) authentication
facility (see 3.2) there is a
requirement for local functionality
that sponsors that user to the
system, which controls the user's
access to local applications and
which monitors subsequent activity.
The User Sponsor is the entity that
provides these services.

There are two major security
responsibilities that fall outside
the ambit of particular productive
applications. Firstly the User
Sponsor is responsible for the
monitoring of a user's access to
local applications and which
monitors subsequent activity. The
User Sponsor is the entity that
provides these services.

There are two major security
responsibilities that fall outside
the ambit of particular productive
applications. Firstly the User
Sponsor is responsible for the
monitoring of a user's continued
presence: no single application is
in a position to time-out a user
after a period of prolonged
inactivity since the user may well
have been fully active in other
areas.

Secondly, the User Sponsor also

serves the user: it organizes the
user's relationships with the
various security facilities that
come into play before, between and
after his direct use of individual
productive network applications.
There is one instance of a User
Sponsor for each active end-user.

User sponsors are further discussed
in Reference 8.

3.2 Authentication

The Authentication Facility accepts
and checks subject credentials,
communicating its conclusions to
other interested security
facilities. The subject involved
will either be an end-user via his
or her user sponsor, a non-security
application acting as a subject, or
a non-security application coming
on-line and making itself available
as an accessible network object.

Notice that the authentication
result is a proof of identity at an
instant in time. Assurance of the
continued validity of the mapping
of this identity must be provided
either by other means (e.g. time
out by the User Sponsor), or by
continued reauthentication in each
subsequent data transfer.

3.3 Association Management

When a subject accesses an object
a data exchange takes place. To
provide the means by which this can
happen, an association is
established between them, and this
must be established and maintained
in a secure way. There are three
aspects to this:

- Association management is
responsible for ensuring
that the underlying
communications are as
secure as is required by
the communicating

42

entities, including assurance of
their identities.

- The subject must have been
authorized to communicate
with the object. Association
management must be sure either by
the context within which the
request was made, or by
explicitly involving appropriate
authorization facilities (see
3.6), that this is the case.

- Any security weaknesses
inherent in the communications
route chosen must be reflected in
the access privileges of the
subject. For example links on
which there is no cryptographic
protection should not be used for
highly confidential data traffic,
even though the accessing subject
may be cleared to access such
data.

3.4 Security State

The security state of a distributed
system represents the current
condition of the subjects and
objects in it.

If a user is successfully
authenticated then his or her
condition, as recorded in the
security state, changes: the same
happens when a current file access
is authorized or revoked or when a
user logs off. The Security State
Facility (SSF) is a passive
facility that serves to hold a
record of the current security
state.

The SSF should not be confused with
audit trail collection: SSF keeps
the current state, not a record of
state changes; however changes of
security state will often be also
recorded in an audit trail using an
Audit Facility (see 3.8).

The SSF is an abstraction
representing the state information
of all of the elemental security
facilities. It is therefore
clearly likely to be highly
distributed, with components in
every node of the distributed
systen.

3.5 Security Attributes

The Security Attribute Facility
provides appropriate subject-
related access privilege data (such
as a user's security clearances and
group memberships) for already
authenticated subjects, an object
related access control data (such
as

its classification and access-
control-list entries) for protected
objects. A close relationship

between the authentication facility.

and the security attribute facility
is envisaged, particularly with
respect to subject related
privilege attributes. The data
structures needed for both
facilities are very similar, both
being related to the structures
defined by CCITT and ISO for
Directories (Ref 10). TG9 has
provided input to this work in
connection with its proposals for
security controls (Ref 11).

3.6 Authorization

The Authorization Facility uses
access context, subject access
privilege attributes and object
access control attributes to
authorize or deny requested
accesses by subject to objects.

The concept of authorization using
privilege and control attributes is
further discussed in Section 5. .

3.7 Inter-Domain

If a security domain is defined as
that part of a distributed system
to which a single security policy
applies under the responsibility of

43

a single security management
entity, then special requirements
arise when communication takes
place between two security domains.
In particular if a subject in one
domain wishes to access a protected
object in a second domain,
additional rules are required which
reflect the complex and varied
trusted relationships that may
exist between the different
security domains. Domain A may or
may not trust Domain B to
authenticate its subjects, or may
do so only to a limited degree.
Some objects protected by Domain A
may be so sensitive that no extra-
domain access is permitted under
any circumstances (Ref 4). Also
Domain A's view of the meanings of
particular security attributes may
differ from that of Domain B, and
finally, there may be a need to
change cryptolographic keys at the
border between the domains. All of
these matters require the support
of an Inter-domain facility.

3.8 Security Audit

This facility provides security
administrators with a record of the
use of the security facilities of
the system.” It is the
responsibility of other active
security facilities to transmit
audit information to the Security
Audit Facility according to the
audit policy for the system.

3.9 Recovery

This facility is available to a
system administrator to take
immediate corrective actions.
These actions may come from a
specific demand from the system
administrator himself, or may be
the result of events coming from
the audit facility (alarms or
security violations) or from other
security facilities.

3.10 Cyptographic Support

Provides application layer
cryptographic functions used both
by other security support
facilities and by productive
applications to secure data in
storage and transit in the
following specific ways (see Ref
2):

- communications confiden-
tiality

- communications integrity

- data origin authentication

- non-repudiation of origin

- non-repudiation of receipt

4., WALKTHROUGH

The following gives an example
walkthrough of a user approaching
the system and accessing an object
controlled and supported by a
productive application. The
walkthrough is provided for
illustrative rather than definitive
purposes and not all the facilities
are involved.

At the beginning of this
walkthrough it is assumed that the
system's security facilities are up
and running with secure links
established between them. The
productive application of the
example is already in service and
authenticated as an accessible
application object. The terminal's
User Sponsor is also authenticated
as legitimate (but no user is yet
present). This implies that
identities and addresses of these
entities are now known to the
Security State Facility.

A human user sees that there is a
computer system in front of him or
her. No other information is
available (in this example). The
user depresses a terminal key, puts
in a magnetic badge or otherwise
stimulates the system.

44

1. The User Sponsor is activated
which connects the user to an
Authentication Facility and
mediates the authentication
dialogue between them. The choice
of Authentication Facility may or
may not be made by the user. The
user authenticates himself or
herself and the Authentication
Facility notifies this to the
Security Audit Facility.

Similar notification actions
occur also at other points in this
walkthrough but are, from here on,
omitted for reasons of clarity.

2. The Authentication Facility
informs the Security State Facility
of the successful Log-on, naming
the User Sponsor involved. The
Sponsor's identity is sufficient
information to locate it.

3. The Authentication Facility
asks the Attribute Facility for the
authenticated user's access
privilege attributes (possibly
tempered by the authentication
method used) and passes them to the
Security State Facility to be
remembered.

4. The user selects the required
application.

5. The Association Management
Facility is prompted by the User
Sponsor to set up an association
between the local and remote
application entities on behalf of
the user.

6. To do this, Association
Management refers to the Security
State and the Attribute Facility to
obtain privilege and control
attributes relating to the user,
the service and the quality of
association.

7. Assocliation Management calls
an Authorization Facility to check
the user's right to access the

remote service. Association
Management then sets up the
association with the required
quality of underlying security.

8. Having set up the
association, appropriate changes
are made by Association Management
to the Security State. These
changes may include further
tempering of the user's privilege
attributes based on the security
quality of the association.

9. The User Sponsor informs the
user that the connection to the
application has been made.

10. The user uses the newly
established association to transmit
a first request to the application
to access an object supported by
it.

11. An Authorization Facility in
the productive application refers
to Security State, specifying the
association, so as to obtain both
identity and access privilege
attributes.

12. It then obtains the access
control attributes associated with
the object in question using an
Attribute Facility within the
application and uses them, in
conjunction with the accessing
user's privilege attributes to
check the legitimacy of the access.
The access is shown to be
legitimate.

13. The user accesses the object!

45

Figure 2 shows the conversations,
between the security facilities
numbered using the numbering of the
walkthrough description. The
arrows point from initiator to
responder in each case. All
facilities may converse with an

i
4,16,13) is)

USER
SPONSOR

5)

N S
AUTHENTICATION ASSOCIATION
FACILITY MANAGEMENT

3a) 6b) 2,3b) 63,8) 7

e N AN

KTTRIBUTE FACILITY SECURITY STATE AUTHORIZATION

(application FACILITY FACILITY
access level) {application

T access level)

1)

11)

[

ATTRIBUTE FACILITY AUTHORISATION

(application FACILITY
pegific) {application

12) specific)

Figure 2 - Conversations between Security Facilitjes

Audit Facility or Recovery
Facility.

5. THE AUTHORIZATION MODEL
5.1 Fundamentals

In the real world, authorization
rulings are made in the context of
characteristics possessed by the
parties involved, the state of the
world at the time, and the kind of
access requested.

In the computer world we use
similar concepts. The
characteristics of the parties
involved are represented by data
which can be categorized as
follows:

5.1.1 Authorization attributes
associated with the subject
(privilege attributes)

For example the subject's name(s),
its role in the system and its
trustworthiness. Indeed any
attribute is a candidate for this
category, provided that it is
associated with the subject; in
particular a name of an accessible
object can be an attribute
associated with a subject.

5.1.2 Authorization attributes

associated with the object (control

attributes)

For example the object's name(s),
its role in the system and its
degree of sensitivity or required
integrity. Once again any
attribute is a candidate for this
category, provided that it is
associated with the object. 1In
particular a name of an accessing
subject can be an attribute
associated with an object. -

5.1.3 The context within which the
request is being made

For example the time of day, the
communications route involved, or

the accesses currently being made

to other objects by this
subjects. Y and other

Acce§s contexts are not further
considered in this paper, but are
under study within the TG9 group.

5.1.4 The kind of access being
requested

For example: read, modi
know-about. ' £Yr use,

46

The rules of the authorization
policy are applied to values from
these four categories and the
result is essentially either
"access permitted" or "access
denied". The algorithm-
representing the rules is ‘typically
complex, involving complex
combinations of multiple elements
from each category. One of the
tasks of the standardization
process is to bring some structure
to this complexity in a way that
preserves as far as possible its
general applicability.)
Notice that authorization
attributes can be long lived or
short lived. For example
clearances and classifications tend
to be static in nature, and
therefore long lived. A capability
on the other hand may be granted to
a subject for the duration of a
session, part of a session or for a
single access.

Typically, authorization attributes
are held as tuples, of which one
part is the attribute's value and
the other is one or more access
types associated with that value.
For example, if an object has
associated with it an attribute
containing the name of a particular
subject, paired with an access-type
value of "read", there is an
obvious authorization rule that
could be chosen to apply, under
which presence of the attribute
grants the subject read access to

the .object. Such an attribute
would look remarkably like an
access control list entry.

Not all attributes require this
treatment however; for example a
subject may have an attribute which
defines its security clearance.
Such an attribute will under many
policies automatically be
associated with read access since
this is fundamental to the concept
of security clearance. Such an
association could therefore be made
implicit.

5.2 Illustrative examples

5.2.1 If we imagine an object-
name/access-type tuple as a
privilege attribute (i.e.
associated with a subject), with
object-names also being associated
with objects as control attributes,
and couple these with an
appropriate and obvious
authorization rule we obtain what
is essentially a capability.

5.2.2 If we imagine a "“clearance"
privilege attribute and a
"classification" control attribute,
and couple these with an
appropriate authorization rule we
have a label-based scheme which is
appropriate for supporting a real
world National Security Policy.

5.2.3 If we imagine subject name
as a privilege attribute and a
subject-name/access-type tuple as a
control-attribute and couple this
with an appropriate authorization
rule we obtain what is essentially
access via an Access Control List
entry.

5.2.4 It is easy to devise more
sophisticated variants of example

5.2.1 in which the object-name
becomes an object type with more
than one object possessing a given

'type' attribute, giving the
capability a wider applicability.
It is a small step further to
consider this 'type' attribute as
becoming a security label, and so
arrive at example 5.2.2. A simjlar
bridge could clearly be made
between 5.2.2 and 5.2.3.

Thus clearances are revealed as
generalizations of capabilities and
classifications as generalizations
of access control list entries.

Figure 3 illustrates this gradual
merging of one concept into
another. It includes also a bridge
between 5.2.2 and 5.2.3.

EXAMPLE SUBJECT PRIVILEGE ATTRIBUTE OBJECT CONTROL ATTRIBUTE
REE

NORMAL
BESCRIPTION

5.2.1 OBJ NAME | Access j Capability

(GBI T¥PE) Generalised
capability

5.2.4 (CBJ TYPE | Access]

5.2.2 ASSUMED READ] CIASE'N] ASSUMED READ] Security Label

SUBJ_GROUP | _ACCESS Generalised
(5.2.4) SUBJ_GROUP Fraberas

t.
5.2.3 [(SUBJ NAME | ACCESS ACL entry

Fiqure 3 : The Authorisation Attributes Spectrum

5.3 Observations on the
examples

5.3.1 The ease with which a
capability mechanism can be
transmuted into a
clearance/classification mechanism
and then into a conventional access
control list mechanism argues for
the usefulness and appropriateness
of the underlying attribute
framework.

47

5.3.2. When subject names are held
at op]ects for use as control
attributes (e.g. in ACL entries),
day to day maintenance of the
authorization policy is made
difficult for systems with a
volatile population of subjects.
Conversely, when object names are
held as privilege attributes
associated with subjects (e.g. as
Capabilities) maintenance is
dlfficult for systems with volatile
object populations.

Maintenance is therefore clearly a
fac?or which should influence
choice of expression of policy, and
to define a standard for all
systems based on one or other
approach is consequently
inappropriate.

Furthermore, a practical system is
likely to require an authorization
policy which uses multiple
positions on the attribute
spectrum. Figure 4 illustrates the
point

Policy Check Final
R

Subject Attribute Object Attribute esult Result

Subject-name L. Yes /No

Combination
Privilege-attribute ----Control-Attribute---->Yes/No --> Yes /Ko
Algorithm

Capability Object N Yes/No

Figure 4 : Attribute Cowbinationm

Typically, high security systems
might use an ACL appreoach for their
discretionary authorization policy
and a clearance/classification-
attribute approach for the
mandatory policy. A subject
passing these tests can then (for
performance reasons) be given a
temporary capability which
subsequently independently grants
the requested access.

5.3.3 In a large distributed
system, responsibility for control
of an authorization policy might be
devolved to a number of different
centers. In particular, it will
often be the case that control over
the introduction of users to the
network will be exercised by a
different authority from those that
administer the individual services
on the network. The former could
be considered to be the subject
administrator of the network, and
the latter the object
administrators. On system with
multiple cooperation authentication
services there may be more than one
subject administration authority.

It is useful to examine the
authorization attributes that each
authority controls. In general it
seems obvious that subject
administrators should be
responsible for privilege
attributes, with temporary
attributes of either kind being
allocated by object access coptrol
logic as implementation expedients.
This fits in reasonably well with
the real world perceptions of these
attributes. It is entirely
appropriate for a subject
administrator to allocate user
clearances, define which roles a
user may assume and specify which
department he or she belongs to.
It is also appropriate for an
object administrator to determine
an object's ACL entries and
security classification.

5.3.4 There are three levels at
which standardization might be
appropriate:

Level 1 - Define standard protocols
for the passing of subject-related
privilege attributes, confirming
the definition to include only the
means of protection and
certification, the occasions when
attributes are transmitted, and how
they are obtained.

Level 2 - The definition of a set
of standard attribute types within
which the values used in real
systems will fit (Ref 5).

Level 3 - A set of standard
attribute values common to all
conformant systems.

Level 1 standards would seem to be
generally useful. There are
parallels for Level 2 standards
within the Directory proposals of
OSI and CCITT (Ref 10), and a
degree of commonality with these
would be of value. Level 3
standards may be appropriate for a
few widely used attribute types,
particularly as used in protocol
interactions with and between
security support services.

5.4 Mandatory versus
Discretionary
authorization policies

A mandatory authorization policy is
often defined as a policy based on
security labels, with users
possessing clearances like SECRET,
and protected objects possessing
similarly named classifications
(e.g. Ref 13).

48

A discretionary authorization
policy is in contrast thought of as
a policy based on individual user
identity, with users being granted
or denied access on the basis of
who they are rather than what
clearance attributes are associated
with them.

Under the authorization framework
of this paper these differences are
revealed as superficial; the labels
of the mandatory policy and the
subject-user identity attributes
associated with capability or ACL
approaches are merely variations on
the same theme. Indeed, if under a
mandatory policy users possessed
unique non-hierarchic individual
caveat clearances, the clearances
become equivalent to user-id's and
the corresponding classifications
simplified ACL list entries.

Another distinction drawn between
mandatory policies are centrally
controlled, in contrast to the
discretionary policy approach of
control by ownership. In terms of
the concepts of this paper, the
difference lies in the allocation
of access to the privilege and
control attributes treated as
projected objects. Looked at in
this way, it becomes apparent that
a variety of choices of
devolution/centralization of
control is possible, depending on
the authorization policy associated
with the attributes. This reflects
the real world requirements
exenmplified by security manager,
sub-manager, department manager,
team leader, or individually based
control policies.

A third difference drawn between
mandatory and discretionary
policies is that of rigor. 1In
general, mandatory policies are
expected to provide stronger
protection for two main reasons:

- mandatory policies are usually
implemented within an architecture
which makes a clear distinction
between trusted code and untrusted
code. Policy control is ensured to
be exercised only via trusted code,
making evaluation easier and the
level of assurance consequently
higher.

- mandatory policies incorporate
the concept of flow control
(exemplified by the *-property of
Ref 14, but more generally treated
in Ref 15). This protects the
system from malicious leakage of
sensitive data to less sensitive
environments by untrusted 'Trojan
Horse' code.

In principle however there is no
reason why a discretionary policy
should not incorporate such
features; in practice it is
operational flexibility that
determines the acceptability of
constraining the software contexts
within which control over the
policy is exercised, and it is the
granularity of the authorization
policy that determines the ease or
difficulty of policing information
flows in a way which retains an
acceptable degree of usability.

6. RELATIONSHIP TO THE DoD
EVALUATION CRITERIA

(Ref 13)

It is not the task of the ECMA
group to lay down criteria for
assessing the strength of security
in a distributed system, but the
framework does provide a basis upon
which such standards could be
constructed. The major aim of the
work however, is the definition of
standards which will make
independently designed network
components able to work together in
a secure manner.

The authorization model shows that
the concept of mandatory versus

discretionary control is an
oversimplification; there is a
complete spectrum of approaches of
which the policies described in the
DoD criteria are only two examples.
Reference 9 lends further weight to
this point.

In other respects, the framework
and the detailed standards that
grow from it will where relevant be
developed to be compatible with the
DoD criteria. The ECMA group
regards the DoD criteria's
requirement to separate trusted
code from untrusted code as being a
fundamental one, and the framework
helps to define this separation by
enabling trusted code functions to
be identified and categorized.

7. CONCIUSIONS

The paper has described an
application layer security
framework which enables a
distinction to be drawn between
network-wide and local application
security policies. A set of
elemental security facilities has
been defined and an example given
of how these can work together.

49

Reference 12 includes a section by
TG9 which sows some of these
facilities combined into possible
standard security applications.
This work is continuing within TG9,
and the group is looking towards
the definition of standard
communications protocols to and
between standard security
applications.

The paper has also described an
authorization data structure which
supports a variety of authorization
mechanisms ranging from
capabilities through label-based
schemes to ACLs. It forms a basis
for moving forward to develop
standards relating to the kind of
authorization data that is required
to be passed between application

entities in order to.support their
access control policies.

6.

REFERENCES

1. "Application Integration:
The Nature and Organization
of Application Layer
Standards" B. Wood,
Proceedings of ONLINE '86
(Sept-0Oct 1986).

2. "ISO 7498 Addendum-Security
Architecture" ISO/DP 7498/2
(31 Oct 86).

3. - "Issues in Discretionary
Access Control" D. Downs et
al., Proceedings of the 1985
IEEE Symposium on Security
and Privacy.

4. "Non-Discretionary Controls
for Inter-Organization
Networks" D. Estrin,
Proceedings of the 1985 :
IEEE Symposium on Security
and Privacy.

5. "Attribute Transfer" T. A.
Parker, ECMA/TC32-TG9/87/8
(Jan 1987).

6. "Authentication and Discre-
tionary Access Controls in
Computer Networks" P.
Karger, Computers and
Security 5. Pages 314-324
(19886) .

7. "Third Party Transfer
Security" T. A. Parker,.
ECMA/TC32~-TG9/87/7.

8. "User Sponsors in A Secure
System" A. C. Gale, ICL
submission to ECMA TGY,
(March 1987).

9. "A Comparision of Commercial
and Military Security
Policies" D D Clark and
D R Wilson, Proceedings of
the 1987 IEEE Symposium on
Security and Privacy.

50

10.

11.

12.

13.

14.

15.

"Information Processing
Systems - OSI -~ The
Directory" ISO/DP9594/1-9
(23rd oct 1986).

"Security of Directories"
ECMA/TC32-TG9/87/12
(February) .

"Framework for Distributed
Office Applications"
Final Draft ECMA/TC32-
TG5/86 (December 1986).

"Department of Defense
Trusted Computer System
Evaluation Criteria" DoD
5200-28-STD (December 85).

"Secure Computer Systems:
Unified Exposition and
Multics Interpretation"

D E Bell and L J LaPadula,
ESD-TR-75-306, Mitre
Corporation (March 1976).

"Cryptography and Data
Security"™ D E Denning,
Addison Wesley (1982).

APPLYING THE ORANGE BOOK TO AN MLS LAN

Dan Schnackenberg

Boeing Aerospace Company
Mail Stop 87-06
P.O. Box 3999
Seattle, WA 98124

This paper presents an overview of Boeing’s multilevel
secure (MLS) local area network (LAN) and a discussion of the
issues that have arisen from applying the DOD Trusted
Computer System Evaluation Criterial (commonly called the
"Orange Book") to this MLS LAN. Our MLS LAN has been
designed and developed to meet the Al criteria of the Orange
Book, interpreted for a local area network, and is currently under
developmental product evaluation with the National Computer
Security Center (NCSC). A three node system is operating in
our development laboratory to support integration, testing, and
addition of new capabilities. This three node system utilizes
prototype hardware, however, the initial product package is
currently under development.

Our developmental product evaluation with NCSC began
in late 1985 using the Orange Book as guidance in lieu of a
network criteria. The current evaluation approach is to use the
draft Trusted Network Interpretatioris (T NI)2. In applying these
interpretations, ensuring data integrity and preventing denial of
service become issues.

MLS LAN OVERVIEW

Our MLS LAN is unique because of the number of
services provided within the LAN. Figure 1 illustrates the
objectives of the MLS LAN program. The MLS LAN provides
both a back-end (host-to-host) network and a front-end
(terminal-to-host) network, as well as interfaces to analog video
and high bandwidth digital stream (e.g., digital sensors) devices.
Wavelength division multiplexing is used on the fiber optic trunk
to support simultaneous transmission of digital, analog video, and
stream data.

The current capabilities include-
e Interterminal communication
¢ Terminal-to-host communication
e Reliable host-to-host communication
e Host-to-host datagram service
e Control of the physical circuit switching for analog
video and high speed digital devices
¢ Comprehensive network management

y
Secure
Network
Server

Terminals Other

Secure networks

Network
Server

~

=

Phones g@

w3 Workstations

.
! 1
1]
! 1
: i
1
i !
: '
H 1
H ! e
; E
! _AEEEm— i 1
Host i Secure Secure ; s
computers f— getwork Network ! ,ﬁ?
! erver Server ! a
: E ﬂ—j Phones
: 1
Video i : :
monitors H ! ‘ Video
i ! monitors
! Secure '
Cameras i Network ! .
E Server E\ ,,E Camera
Phones ; SRR LSS e e R :
i R '
. D i l- Network H
3 _ !
Printer @\i) Manager |
Tape R — Network o— i
P ¥ /i Server Server - Securit '
Data base ——] i adm‘;nigtrator:
system — e e J:

Figure 1: MLS LAN System Diagram

51

Future products are in varying stages of development.

They include-

e File transfer support

e Simple Mail Transfer Protocol

e End-to-end encryption

e Gateway to the Defense Data Network

e MLS LAN bridge

e Alternate media access methods

e Extensive voice services

e Network mail

e File server

e Database server

e Printer server

The system is based on the DOD protocol suite, with full
protocol support within the LAN for TELNET, Transmission
Control Protocol (TCP), User Datagram Protocol, and Internet
Protocol (IP). The IEEE standard 802.4 token bus protocol is
used at the link layer.

The MLS LAN provides controlled access to the network
medium by a variety of devices, including terminals, hosts,
workstations, and video and stream devices (and eventually voice
devices, printers, tapes, and disks) all within a multilevel
environment. Our network management workstation provides
centralized management of the network, while the Secure
Network Servers (SNS). provide protocol processing and access
control for the attached subscriber devices. Each device can be
configured to operate within a range of sensitivity levels; and
terminal, workstation, and host interfaces can be configured to
support multiple concurrent sessions each operating at a different
sensitivity level.

Within each SNS, a significant amount of software is
required to support the range of user and security services. One
of the Al design objectives is to minimize the size and
complexity of the network trusted computing base (NTCB). To
meet this objective, the software within the SNSs is partitioned
into both NTCB and non-NTCB components. Non-NTCB
software provides protocol services, including TELNET, most of
TCP, and most of the host-to-SNS protocol. Non-NTCB
protocol functions provide many of the data integrity features
addressed in the TNI. The NTCB functions ensure that non-
NTCB processes supporting different user sessions cannot
interfere with each other. Reference 3 provides a more detailed
description of the software security architecture.

APPLYING THE TNI

In applying the criteria, our MLS LAN is evaluated as a
single component. The MLS LAN comprises multiple devices:
one or more SNS and a network management workstation. Each

SNS contains one or more microprocessor. None of these

52

devices meets the Al criteria by itself, however, the MLS LAN
as a whole provides the features necessary to meet the Al
criteria. Most of the Al criteria apply directly, without
significant interpretation, to our MLS LAN. The following
paragraphs discuss issues arising from the application of those

criteria requiring interpretation.

Discretionary Access Control

In formally mapping the features of a packet-oriented
network to a Bell-LaPadula-like model®, discretionary access
control maps nicely to the requirement for correct addressing and
delivery: only the sender of a packet and his protocol processes
are permitted to write the packet, and only the addressee
designated by the sender and his protocol processes are permitted
to read the packet. The packet source and destination map to the
discretionary access control matrix of the model for the packet
object. In a connection-oriented system, the connection can be
both
participants in a TCP connection or TELNET session (and their

viewed as the object. For duplex communication,
protocol processes) are permitted read and write permission to
the connection object. One-way communication is achieved by
providing one of the participants with read-only access to the
connection. This approach is used in our network to provide
data transfer from lower security levels to higher security levels.

TCP’s fully specified passive open provides an additional
discretionary access control mechanism. The process requesting
a passively opened socket may specify a remote socket,
indicating that the
communicate with the remote process connected to the specified
Our network supports this feature and also

requesting process wishes to only
remote socket.
permits the requesting process to specify the remote host without
specifying the full remote socket. This is an extension to the
TCP upper layer protocol interface supporting a capability
similar to the specification of user groups for discretionary access
control in operating systems. The NTCB services passive and
active open requests, and provides the addressing and delivery
functions at the link, network, and transport layers, which meets

the interpreted requirements for discretionary access control.

For our physically circuit-switched services, we provide
standard discretionary access control mechanisms. Users control
circuit-switched devices and channels through the network’s
terminal interface. Users may request ownership of devices and
channels, and may request that devices be connected to channels.
When a channel is allocated to a user, the user is given the
opportunity to specify a discretionary access control list for the
channel. This list identifies the set of users permitted to connect
receiving devices to the channel. This mechanism is similar to
providing an access control list for files in an operating system,
except that the only right that can be passed to other users is the
right to receive.

Object Reuse

Within our LAN, we meet the standard requirements for
object reuse: each storage object is set to a predetermined initial
state before allocation to a non-NTCB process. The more
difficult aspect of object reuse in our §ystem is controlling reuse
of -distributed objects. One of the objects supported by our MLS
LAN is the TCP connection.
distributed between the two SNSs providing the connection

A connection is necessarily

object. From one connection to the next, the connection name is
reused. For example, if a connection between sockets A and B
is closed, and a new connection between the same sockets is
opened, the new connection will have the same connection name
as the old connection. The problem is ensuring that prior to
reuse of the connection name, all remnants of the old connection
are removed from the system ensuring that old connection data
does not enter the new connection. This problem has led to the
development of a session management protocol for initiating and
terminating connections. This protocol is used between session
managers at the two SNSs involved in the connection. Session
"managers are NTCB processes that control access to the
connection objects. The major in
supporting this type of distributed object are (1) bit errors cause

lost packets between the session managers; and (2) remote SNSs

complicating factors

may have been shut down or reinitialized during the execution of
the the
synchronization. Our session management protocol addresses

protocol, causing session managers to lose

these problems.

Identification and Authentication

Identification and authentication of network users are
required at the terminal interfaces to the LAN, however, users
gaining access to the LAN through host computers are assumed
authenticated by the hosts. Identification and authentication of
in the LAN
An SNS attached to a host will likely be
collocated with the host, so that physical security for this

hosts was determined to be not essential
environment,

interface can be assumed. Host identification can provide some
protection against cabling errors, however, authenticating the host
provides little assurance that the host is the expected host and
has neither been penetrated, nor replaced.

A more reasonable requirement is for the network to detect
disconnection of hosts and SNSs, and to forward this information
to the network management

workstation - for display to

operational personnel. Our network meets this requirement,
providing network operational personnel assurance that they will
be notified if the network configuration changes. This capability,
plus physical security measures, provide reasonable assurance of

the authenticity of a host’s identity.

53

Trusted Path

The draft TNI requires' a trusted path only from users to
the NTCB. This is supported at our terminal user interface,
ensuring that users are not spoofed by an application program
masquerading as the NTCB. For host interfaces, there is a
similar problem: the host needs
communication with the NTCB. This mechanism must support

mechanisms ensuring
communication of labels,. user identity, and addressing data
between the host and SNS.
interface ana user sessions are communicated using this "trusted
path.," The NTCB software that demultiplexes packets from the
host implements this trusted path by scanning the protocol header
to determine if the packet should be sent to a NTCB or a non-

Initialization and closing of the

NTCB process. By sending packets with appropriate headers,
the host is assured that the packet is received by the NTCB.
These headers are also used by the SNS to mark packets from
the SNS’s NTCB. The SNS NTCB fills the headers preventing
non-NTCB software in the SNS or a remote host from spoofing
the host.

Audit

Audit requirements in a network differ significantly from
those in hosts. The Orange Book requirement that "introduction
of objects into a user’s address space” be audited must be
liberally interpreted to make sense in networks. For our
connection-oriented services, the user’s address space could be
interpreted as including the address space of processes supporting
This would imply that all

packet deliveries would have to be audited, creating significant

the user connection in the SNSs.

audit overhead for the network. A more reasonable approach has
been taken, requiring that connection events (creation and
termination) must be audited, but not individual packet delivery.

System Integrit

For operating systems, off-line diagnostics are sufficient to
meet the Orange Book system integrity requirements. System
integrity requirements have been extended in the draft TNI to
include mechanisms detecting loss of components. The 802.4
token bus protocol used in our MLS LAN provides the capability
for SNSs to detect loss of a neighboring SNS. This information
is forwarded to the network management workstation and
Each SNS is
These
capabilities support both the system integrity requirements and

displayed to network operational personnel.
responsible for detecting loss of subscriber devices.

the communications integrity requirements of the draft TNL

Communications Integrity

Our MLS LAN provides several communications integrity

Each SNS
incorporates mechanisms providing assurance that (1) the remote

features to protect against transmission errors.

session manager initiating the session is valid, (2) delivered
packets do not contain errors, (3) packets for connections are
delivered in order, and (4) packets are not lost.

Remote session manager authentication is implicit.
Because the network can detect loss or addition of an SNS in the
link layer protocol, each SNS that is currently on-line can be
presumed valid. The security and network administrators are
notified when SNSs enter and leave the token bus. An SNS
This
mechanism provides network administrators the capability to

must be on the token bus to transmit data intelligibly.

monitor the network configuration and identify the introduction
of bogus SNSs.
control the addition of SNSs to the token bus and physically
validate the authenticity of SNSs whén they are brought on-line,

If network operational personnel adequately

then the risk of a bogus SNS (and session manager) is minimal.

Protection of user data against modification is provided
partially within the NTCB and partially in non-NTCB
communication software. Our implementation of TCP places the
communication integrity features outside the NTCB, including
checksum, timeouts, retransmission, and packet sequencing.
These features provide high assurance that the user data
delivered is the same as the data transmitted, assuming that
active wire-tapping is not present. Additional features are
provided by NTCB hardware and software, including a 32-bit
cyclic redundancy check at the link layer, the IP header
checksum, and error-detecting memory in the SNSs, as well as
features in the NTCB-to-NTCB protocol to ensure that NTCB
data is delivered with high integrity. ' ‘

Currently no protection is provided against active wire-
tapping threats (e.g., playback and message modification) within
our MLS LAN. The SNSs and transmission medium are
assumed to be physically protected. We plan to address wire-
tapping threats in future products through involvement in NSA’s
Commercial COMSEC Endorsement Program (CCEP).

Denial of Service

Denial of service protection within our MLS LAN includes
mechanisms for (1) identification of the loss of components,
(2) continued operation in the presence of component failures,
(3) notification of network
component failures are detected, (4) on-line reconfiguration of
the network, and (5) network management controlled limitations
of resource utilization to ensure that one user does not consume

operational , personnel when

excessive amounts of critical resources denying service to other

users.

Detection of the loss of components was discussed in the
system integrity paragraph. Loss of a component affects only

the users of that component. The remainder of the network
recovers automatically and continues operation. The exception is
When SNSs

cannot communicate with the network management workstation,

loss of the network management workstation.

they are designed to automatically shut down, which is required
to meet the Al criteria. The security administrator is provided
the capability to override this feature and permit the network to
continue in degraded mode when the network management node
fails. This can be used in environments where continued
operation is more critical than loss of audit data. Audit, terminal
user login, circuit-switched services, and name service are lost
when operating in degraded mode, however, terminal and host
users can still communicate over existing sessions and can
initiate new sessions provided the user does not require the name
service feature. Design of a hot spare approach for network
management, with automatic switch-over is in progress, but is

not planned to be part of the initial product.

Several mechanisms are used to ensure that no user, or
group of users, consumes an inappropriate share of the network’s
critical resources. At the lowest levels, within our MLS LAN’s
executive, a time-sliced scheduling discipline is enforced for
non-NTCB processes. This ensures that each process has
sufficient access to the CPU. NTCB processes are given as
much time in the CPU as they need, while non-NTCB processes
(i.e., those supporting user connections) are provided an equal
share of the CPU. Each memory manager within an SNS uses
memory quotas to prevent processes from using memory
exhaustion to deny access to other users. Because multiple
subscriber devices can be connected to a single SNS and the

SNS has a maximum number of concurrent sessions that it can

' >support, each subscriber device is allocated a maximum number

54

of sessions that can be used by that device. Terminal users also
have quotas limiting the number of concurrent sessions they are
permitted. Finally, each SNS is provided a limit on how long it
can transmit when it has the token, ensuring that no SNS
transmits continually, denying access to the trunk to other SNSs.
This "token hold time" can be used to allocate priorities to SNSs.
An SNS is given access to a higher percentage of the trunk by
being assigned a larger token hold time. The token bus protocol
ensures that each SNS is provided an opportunity to transmit.
Each of the quotas (memory, sessions, and token hold time) are
set by the network administrator and can be modified on-line to
reflect changes in priorities. Loss of service (denied access)
because of resource exhaustion is an auditable event, which can
be monitored by administrative personnel. These mechanisms do
not prevent denial of service, but they do alert administrative
personnel to denied access and provide administrative personnel
the capability to prevent resource exhaustion by single users.

Network performance data is also accumulated and
displayed to the network administrator. This provides the
capability to determine when components of the system are

becoming overloaded causing degraded service to users. The
network administrator can resolve the problem through
reconfiguration of the network or modification of quotas to
provide the affected users a larger share of the network

resources.
STATUS

The developmental product evaluation of our MLS LAN is
nearing completion. Most of the required documentation has
been delivered to the NCSC, and with the release of the draft
TNI, many of the uncertainties in the evaluation have been
eliminated. The major issue remaining for the evaluation is to
determine the impact of the latest TNI version.

The product development is also nearing completion. The
major remaining tasks are (1) completion of the product from the
existing advanced development models; and (2) completion of
product testing. Pro&ﬂctjon prototypes are expected to be
completed during the first quarter of 1988. The product testing
effort is underway.

REFERENCES

[1} "DOD Trusted Computer System Evaluation Criteria,"

DOD 5200.28-STD. National Computer Security Center,
Ft. George G. Meade, Maryland. December 1985. pp. 41-
50.)

[2) "Draft Trusted Network Interpretations,” National
Computer Security Center, Ft. George G. Meade,
Maryland. April 1987.

[31 D. D. Schnackenberg, "Development of a Multilevel
Secure Local Area Network," Proceedings of the gt
National Computer Security Conference, September 1985.

[4] D. Bell and L. LaPadula, "Secure Computer Systems:
Unified Exposition and Multics Interpretation," MTR-2997,
The MITRE Corporation, Bedford, MA, July 1975.

55

INFORMATION FLOW CONTROL
IN A DISTRIBUTED OBJECT-ORIENTED SYSTEM
WITH STATICALLY BOUND OBJECT VARIABLES

Masaaki Mizuno and Arthur E. Oldehoeft
Department of Computer Science
Towa State University
Ames. Jowa 50011

A. INTRODUCTION

The modular approach to the design of computer systems has
been the subject of considerable attention in the study of operat-
ing systems and programming languages. Fundamental charac-
teristics to be enforced by modularization include encapsulation,
data abstraction, synchronization of concurrent access. protec-
tion and reliability. Such characteristics are of special interest
in an distributed network environment since access to common
control data is not generally feasible.

For our work on protection. we have adopted a general ob-
ject-oriented model. An object is an instance of an abstract data
type in that it encapsulates object variables and operations on
these variables. The object variables have an indefinite lifetime
and may be shared by a community of users. Operations on
these object variables are performed through the invocation of
procedures which are exported by an object. This is the only
means of inter-object communication. For purposes of this dis-
cussion. a underling reliable multilevel security message passing
system is assumed to exist.

Two types of securities are commonly considered: access con-
trol and information flow control. An access control policy spec-
ifies authorization for access to objects based on the identity of
subjects. Information flow policy regulates the flow of informa-
tion between classified objects. While a significant amount of re-
search has been done on information flow control 12,8, the focus
of attention in this paper is on the manner in which information
flow policies can be enforced in an object-oriented distributed
environment.

Since the various objects of program may be geographically
distributed or constructed at different points in time. it may
not be feasible for one object to access protection information of
other objects. Instead, it is desirable to establish the “internal”
information flow security of each procedure in an object inde-
pendent of other procedures and other objects. Since this does
not accounti for inter-object flow of information, the security of
a program must be partially certified at run time. To be useful,
this certification must be also efficient.

The method presented in this paper is a combined approach
of compile-time and run-time information flow certification. The
compite-time mechanism establishes the internal cecurity of in-
dividual procedures and creates the necessary information struc-
tures to allow for efficient run-time certification of inter-object
communication. The run-time mechanism completes the certifi-
cation of the entire program at message passing time by verifying
the information flow caused by procedure invocations.

56

B. A DEFINITION OF FLOW CONTROL

The underlying theory of information flow control is based on the
lattice model (SC, <. @, &) introduced by Denning '3 . where

T

1. SC is a finite set of security classes;

. < is a binary relation which induces a partial ordering on
the security classes in SC;

3. ¢ s an associative and commutative binary operator on
SC, denoting the least upper bound, eg. A & B is the

least upper bound of security classes A and B; and

. & is an associative and commutative binary operator on
SC. denoting the greatest lower bound, e.g. A ® B is the
grealest lower bound of security classes A and B.

. SC has the greatest lower bound LOW and the least upper
bound HIGH such that LOW < A and A < HIGH for all
A in SC.

For notational convenience, if x is a variable, then the security
class of x will be denoted by x.

An example of the use of such a security lattice occurs in
military organizations where a security class is commonly desig-
nated as an ordered pair (classification, department). if a and b
are classifications of information (e.g. UNCLASSIFIED. CON-
FIDENTIAL, SECRET, TOPSECRET) and x and y are com-
partments (representing need-to-know). then the partial order
of the security classes is defined by

(a.x) = (b.y) ifand only if a = band x & v.

The policy governing secure information flow is determined by
the security lattice. For simplicity, the examples in this paper
assume a linear lattice of security classes consisting of UNCLAS-
SIFIED (= LOW). CONFIDENTIAL, SECRET. TOPSECRET
(= HIGH).

A program variable may be either statically or dynamically
bound to a security class. A “statically bound variable” is as-
signed a fixed security class at the time of its definition. The
security class of a “dynamically bound variable™ changes with
the class of its associated information. An information flow from
variable A 1o variable B is denoted by A > B. If B is a stat-
ically bound variable, then such a flow is secure if and only if
Otherwise, a

the relation A < B is implied from the lattice.

security violation occurs. Note that if B is a dynamically bound

http:associat.ed

variable, B becomes A.

Flows can be classified as explicit or implicit. An explicit flow
from variables ay,...,a, to variable x occurs when an execution
directly assigns information derived from a;,...,a, to x. An
implicit flow from variables a,,...,a, to variable x occurs when
an execution of a statement which assigns some information to x
is conditioned upon values derived from ajy,. ..

the statement

.a,. For example,

ifa > 0then x:= yelsey:=z

causes an explicit flow from y to x only when a > 0, and from z
to y only when a < 0. The statement also causes an implicit flow
from a to both x and y regardless of the value of a. Note that
implicit flows occur even in absence of execution of statements.
This will be illustrated in section D.

C. A REVIEW OF PREVIOUS INFORMATION
FLOW MODELS

Information flow models can be characterized by

1. their ability to handle statically bound or dynamically
bound variables, and

2. whether or not security is verified at compile-time or run-
time.

Denning developed a compile-time certification procedure
for programs with statically bound variables 4,5;. Certifica-
tion rules are given for each statement type (e.g. assignment,
if statement, while statement. etc.}). One major difficulty of
this approach, however, lies in handling of procedures. Since
the class of all parameters must be statically declared, a differ-
ent version of a procedure is required for each different security
class of a parameter. This may not only be inconvenient but also
severely impairs the flexibility of resource sharing. One possible
solution for this problem is to disallow access to global variables.
Under these restrictions, the output parameters are functions of
the input parameters and the security of a procedure can be
established by verifying

QB Ban < ® &b,

where aj,---,a, are actual IN parameters and b;,---,b, are
actual OUT parameters of the call. The inability to effectively
handle object variables is considered to be a major restriction.

In another model for dynamically bound variables, Denning
extended Fenton’s run-time approach [6,7] to account for im-
plicit flows occurring even in the absence of the execution of
statements [4]. The certification procedure relies on a hardware
support mechanism which includes a tag field in each memory
cell and a stack HS which contains the security class on which
the currently executing statement is conditioned (to account for
implicit flows). The class on the top of HS is denoted by HS.
The operation “push(e)” places "HS & e” at the top of HS and
the operation “pop” removes the class from top of HS. When an
assignment statement

x = Flay. . ap)
is executed, the hardware automatically updates x to
ay 79 aq T HS.

In order to account for implicit flows which occur in the absence

of the execution of statements, the compile time mechanism
must also insert into the source program “update b™ operations.
which update HS to “b & HS". For example, the statement

if e then St else 82
is transformed to the code

push(e):

if e then S1 ‘else S2;

for x in (V1 UV2) (Vi
pop:

Vv2)) do update x:

where V1 and V2 are sets of variables to which values are as-
signed in S1 and 82, respectively. The model relies on a compile-
time analysis to insert push, pop and update operations and on
run-time hardware to maintain the stack 1S and tag fields in the
memory cells. The drawback to this approach is that it requires
special architecture and incurs significant run-time overhead.

Andrews and Reitman’s developed a compile-time certifica-
tion technique based on program verification |1]. Implicit flows
are classified into two types: local flow and global flow. A lo-
cal flow is an implicit flow within a statement. A global flow
includes an implicit flow from the conditional variables of an it-
eration statement to all subsequent statements and also a flow
caused by process synchronization. For example, the sequence
of statements

x := 0;
while y > 0 do:
x = 1t

causes a global flow from v to x since the last statement is con-
ditionally executed, depending on the value of y.

In order to handle these two types of flows, special certifica-
tion variables, local and global, are introduced. A value in local
becomes)

local @ exp

within a conditional statement, where exp denotes the class
of the conditional expression. Upon completion of the condi-
tional statement, the value in local reverts to its previous value.
Global. on the other hand. represents an accumulation of classes
of the conditions which would be in effect upon completion of
the execution of body of a while statement or wait statement.
For example, global becomes

exp + local & global

immediately after a while statement. Note that global accu-
mulates not only exp but also local in order to account for the
case in which the while statement itself is nested within other
conditional statements.

By using these certification variables. proof rules are pre-
sented for various types of statements, including synchroniza-
tion statements {e.g. wait and signal). Variables may be either
statically or dynamically bound. The verification of a procedure
invocation requires previous verification of the body of the called
procedure and previous establishment of the pre/postconditions.

Andrews and Reitman’s model seems too restrictive for gen-
eral distributed object-oriented systems in which dynamic link-
ing is allowed. Also, the manner in which self/mutual recursive
calls are verified is not clear. For our model, we need a certifi-
cation mechanism which can verify the “internal” security of an
object independent of other called objects, some of which may

not yet be certified or for which security information is not vet
available.

D. THE INFORMATION FLOW MECHANISM
1. Overview

The method presented in this'papor assummes dynamic run-time
linking of inter-object procedure calls. Object variables are as-
sumed to be statically bound while other variables may be either
statically or dynamically bound. For most practical applica-
In addition. we seek an
efficient method that performs as much of the certification work
as possible at compile time and one which does not rely on spe-

tions, this is a reasonable restriction.

cial architectural features.
We assume the following syntax for a procedure invocation
statement:

procedure PROC (IN 1, Ym)

where the IN parameters are “call by value™ and the QUT
paramneters are “call by result”.

Qur method incorporates and extends ideas from both Den-
ning's and Andrews and Reitman’s approaches. Its salient fea-
tures are:

1. Object variables are statically bound. The classes of other
program variables can either be dvnamically or statically
bound in order to eliminate the need for more than one
version of an exported procedure.

V]

Each procedure. exported by an object, can be compiled
and its “internal” security established independent of other
procedures.

(&%)

For efficiency, run-time information flow security checks
are performed only at message passing time.

. Since object variables of an object have a lifetime which
may exceed that of individual programs that call a proce-
dure cxported by the object, information flow control takes
into account the security classes of these object variables.

. OUT parameters of an exported procedure are not as-
sumed to be a function of only IN parameters. that is each
OUT parameter might actually be a function of some sub-
set of the IN parameters and the object variables of this
and other objects which are subsequently called.

In order to achieve these objectives. we use a combined compile-
time and run-time method. At compile time, the internal se-

curity of individual procedures are established and the data
structures used for efficient run-time certification of inter-object

communication are generated. The certification of the entire
program is completed at message passihg time by verifving the
information flow caused by procedure invocations.

Prior to explaining the method. we first identify all possi-
ble input and output values to,/from a procedure in an object.
We define the term “input variables” and “output variables” to
stand for variables which carry input values to the procedure
and output values from the procedure, respectively.

Possible input variables of a procedure PROC are:

(1) formal IN parameters of PROC.

(2) the object variables read by PROC. that is the values of the

58

object variables when the call is instantiated. and

(3) actual OUT parameters returned from external procedures

that are called by PROC.
Possible output variables of PROC are:
(4) formal OUT parameters of PROC,

(5) the object variables written by PROC, that is the values of
the object variables when the call terminates, and

(6) actual IN parameters to exported procedures in other ob-
jects that are called by PROC.

The purpose of the compile-time algorithm is to generate
equations that express the potential run-time information flow in
symbolic form. In order to do this, “symbolic class expressions”™
are generated for variables in terms of the classes of the input
variables (1) (3).
class of information in terms of the classes of variables from

A symbolic class expression represents the

which it is composed. For example. the class of information in
the expression

A+B+xC-D E

is symbolically denoted by

AeaB&e&CeDeE

The classes of dyvnamically bound input variables cannot be de-
termined until run time. During compilation. the classes of these
input variables are established as “security variables™. Security

variables are symbolically denoted by

1. procedure-name.variable-name
{for formal IN parameters of the procedure bheing com-
piled), or

2. object-name.procedure-name. variable-name

(for actual OUT parameters of external procedures).

For example, if the procedure being compiled is F(IN a, b), then
the classes of “a” and “b" are symbolically denoted by F.a and
F.b, respectively. Also, if this procedure invokes a procedure G
of an object O as O.G(IN x, OQUT vy, z), the classes of y and z
are symbolically denoted by O.G.y and Q.G .z, respectively.
Based on these symbolic class expressions, the compile-time

algorithm generates two types of syvimbolic equations: a “sym-
bolic class equation”™ and a “symbolic flow equation”™. A sym-
bolic class equation is used to calculate the outgoing security
classes of an output variable. One such equation is created for
each actual parameter in (4) and (6). regardless of whether it is
dynamically or statically bound. The equation has the form

variable = “symbolic class expression”

which states that the information in “variable™ has a security
class given by the “symbolic class cxpression™. A symbolic flow
equation is used to check flow violations. One such equation
is created for each statically bound variable (including object
variables). The equation has the form

variable = security class — “symbolic class expression”

which states that the class of “variable” is statically bound to
“security class” and the information whose class is given by
“symbolic class expression” flows to “variable” during the ex-

«“;

ecution. Both types of symbolic equations are stored in an “in-

http:writt.en

formation flow template” in the object.
The distinct parts of an information flow template are:

EXPORT : This consists of symbolic class equations for the
formal QUT parameters of the procedure.

IMPORT : This consists of symbolic class equations for the ac-
tual IN parameters of external procedures called by this
procedure. Since there may be more than one externally
invoked procedure. this part of the template consists of
a list of all such procedure names, each of which is fol-
lowed by equations for associated actual IN parameters.
If the same procedure is invoked from N different places
in the text, then N distinct procedures are assumed since
the same procedure from different places could carry dif-
ferent sets of IN parameters, and consequently different
security classes of the actual parameter values. {The for-
mation of N distinct names could simply be carried out by
a preprocessor prior to compilation.)

STATIC : This consists of symbolic flow equations for stati-
cally bound variables.

A sccurity class is not assbci‘ated with an object itself since
flows are checked at the times that its exported procedures are
invoked. Therefore, if an object is passed as a parameter or
its identifier is stored in an object variable. the compile-time
mechanism does not need to generate a symbolic class equation
or a symbolic flow equation associated with the object. -Flow
control is carried out when exported procedures of the object
are called.

An “information flow instance”, based on the information
flow template, is created at run time for each procedure invoca-
tion. The run-time certification mechanism completes the verifi-
cation work when procedure invocation takes place. It is done by
replacing the security variables in the information flow instance
with actual security classes of the corresponding parameters car-
ried by the message. If a procedure F calls another procedure G
in another object, part of the verification of F may have to be
deferred until G completes.

2. The Compile-Time Algorithm

a. Compile-Time Data Structures.
the compile-time algorithm is to generate information flow tem-
plates for exported procedures and the initialization procedures

of objects. At the outset, the symbolic class expression for each

The purpose of

program variable is initialized as follows:

1. For a statically bound variable (including a parameter),
the class expression is defined to be its fixed security class.

. For a dynamically bound local variable or formal OUT
parameter, the class expression is defined to be NULL.

. For a dynamically bound formal IN parameter, the class
expression is symbolically represented by the correspond-

3V

ing security variable.

For efficiency purposes. reductions are performed on each sym-
bolic class expression in order to yield a minimal form. Such
a minimal form is either NULL or consist only of a fixed secu-
rity class and zero or more security variables connected by “@&”
operators. Three reduction rules are involved:

59

1. Replace a symbolic class for a local or output variable
in a symbolic class expression with the class expression
representing the class of the variable.

2. Delete all duplicate security variables. For example.
adb®a=2a&bh
3. Delete a fixed security class if a higher or equal class exists

in the expression. For example,

NULL@a=2a
LOW @& HIGH ¢ LOW = HIGH
SECRET @ TOPSECRET = TOPSECRET.

The following example illustrates the reduction to minimal
form for two successive assignment statements:

statement symbolic class equation
c:a+bh-<a c=adbda
=a®b
d:-a - ¢ d=aa@c
adadhb
ad@b

The algorithm requires two special compile-time variables:
a stack type variable STACK and a simple variable GLOBAL.
STACK contains the security classes of the expressions on which
the statement currently being analyzed is conditioned. Thus,
STACK accounts for implicit flows (local flows. in Andrew and
Reitman’s model). As in Denning’s notation. STACK denotes
the class on the top of STACK. and the "STACK.push{e)” op-
eration adds

STACK & e

to the top of STACK. The “STACK.pop™ operation removes the
class on the top of STACK. GLOBAL holds a class of conditional
expressions 10 reflect

1. implicit flows which will be in effect after completion of
execution of “while” statements in the same manner as
Andrew and Reitman’s global, and

. the implicit inter-object flow which will be flowing from a
caller of a procedure PROC being certified
(this implicit inter-object flow is denoted by security vari-
able PROC.implicit and is explained in subsection D.2.c).

The class contained in GLOBAL is denoted by GLOBAL and is
initialized to PROC.implicit.

The algorithm also uses compile-time array variahles SC and
EXP to form symbolic equations. The domain of SC is the set of
all the variables which are used in a procedure heing certified.
The domain of EXP consists of all the statically bound vari-
ables used in the procedure. For a dynamically bound variable
x. SCx! is the ssmbolic class expression for x. The algorithm
constructs the symbolic class equation -

x SO x.
If x is a formal QUT parameter of the procedure being compiled.
the equation is placed in the EXPORT category. If x is an actual

IN parameter of a procedure to be invoked in another object. the
equation is placed in the IMPORT category of the information
flow template. If a variable is statically bound, SCix| contains
its fixed security class and EXP[x] contains the corresponding
symbolic class expression. The algorithm combines these two to
construct the symbolic flow equation

x = 8Cx, — EXPix|

and places it in the STATIC category of the information flow
template.

The compile-time algorithm is given in the Appendix. Sub-
sequent subsections discuss some special semantic details.

b. Information Flow Semantics of Assignment.
sume an assignment statement of the general form

As-

x:=f(ar,--..am).

If x is 2 dynamically bound variable, the algorithm generates

SCix] = SCla;] @+ SClan] ® STACK & GLOBAL.

If x-is a statically bound variable, the algorithm updates EXP|x]
as ’
EXPx] = EXP[x| & SCla;| &---

@ GLOBAL.

& SClam| & STACK

The following example explains why updating {instead of re-
placing) of class expressions is necessary for statically bound
variables. Suppose A is a statically bound variable and initially
SC'A1-CONFIDENTIAL and EXP'A- NULL.
ment S, assigns the value of variable X to A and.

Assume state-
later in the
text, statement S, assigns the value of Y to A. Using simple re-
placement. the symbolic class expressions generated for S, and
S; would be v

EXPiA]| = CK & GLOBAL. and

EXPA] = CK 6 GLOBAL. respectively.
If “STACK & GLOBAL™ is PROC.implicit for both S; and S;

and there are no other statements that assign values to A after
S;, the flow equation

A - CONFIDENTIAL —- Y ¢

- X @ 8TA
Y & STA

» LOW 3 PROC.implicit

would be constructed and placed in the STATIC category of
the template. Assume. at run time. the classes of X .Y and
the implicit inter-object flow are SECRET. CONFIDENTIAL
and LOW. The run-time certification algorithm
would replace Y and PROC.implicit in the symbolic flow equa-
tion for A with CONFIDENTIAL and LOW, respectively and
would certify the flow. Even though A holds CONFIDENTIAL
information at the end of the execution. the program violates
the flow policy by storing SECRET information (class of X) in
variable A during the time period between the executions of S;

respectively.

and S;. Therefore, instead of replacement, the class expréssions
for statically bound variables must be accumulated using the &
" operator in order to account for all possible information flows.
The correct symbolic flow equation for A in the above example
1s

A = CONFIDENTIAL

« X &Y & LOW @ PROC.implicit.

c. Information Flow Semantics of Conditional. For
sclection statements. the compile-time algorithm accounts for

the possibility of executing either alternative. For example, in

60

the statement

ifa > 0 then x := belse x : = c.

the a]g'orithm constructs the symbolic class e\'pression “x
c&a

b =
, accounting for the 1mphc1t flow from “a” and the exph(ll
“b" and ~ If & procedure call to another
is conditioned upon some variable(s). then there is
“implicit inter-object”
statement

flows from both
object *R1”

an information flow. For example. in the
i

ifa > 0 then b - RI.f(x),

there is a flow from “a” to the local variables and object vari-
ables encapsulated by R1 (and objects called by procedures in
R1. etc.). Since information flows across object boundaries are
certified at run time, special treatment of these implicit flows is
required.

To handle this implicit flow. the compile-1ime algorithm con-
structs a special symbolic class expression, denoted by implicit,
which represents the accumulation of classes on which the pro-

cedure invocation is conditioned. Implicit is actually the class

of outgoing implicit inter-object flow and it has the form

SV, & @ SV, @ PROC implicit
where SV; denotes the ith variable on which the invocation is
locally conditioned and }’BQ(lmpllc1t denotes the class for the

implicit inter-object flow incoming to procedure PROC from the

previous calling object. Implicit is stored with the correspond-

ing procedure name in the IMPORT category of the template.
(Thus, an entry in the template for each external procedure has
a symbolic class equation for implicit as well as a symbolic class
equation for each of its actual IN parameters.) At run time,
a requesl for a procedure invocation causes the run-time algo-
rithm to evaluate the corresponding implicit as the class of the
outgoing implicit flow. This value, as well as the security class
of cach parameter, is attached to the message. Upon receipt of a
message by a receiving object R1 for the procedure call request
f, an information flow instance is created and the security class
in the message for the implicit inter-ohject flow (now denotes in-
coming implicit flow) replaces security variable f.implicit in sym-
bolic class expressions in the information flow instance. Since
implicit of each procedure entry in the IMPORT category con-
tains f.implicit, subsequent procedure invocation requests from
this obj;_ctwto‘yet other objects carry an accumulated class of
the implicit flow in implicit.

Implicit flows across oP.;jom boundaries occur even when pro-
Failure to check for such im-
This can
be clearly illustrated in a program with dynamically bound ob-
The example program in Figure 1 is adapted

cedure invocations are skipped.
plicit flows can lead 1o undetected security violation.

ject variables.
from ‘2. Assume that actual IN parameter x to procedure
h is bound to SECRET and takes a value either one or zero.
dvnamically bound formal OUT parameter ¥ of h is initially
bound to UNCLASSIFIED. and dynamically hound object vari-
able 7 in R and W in Q are initially bound to UNCLASSIFIED.
FFirst. assume x takes value the one. Since the invocation R.{() is
<kipped. the value and the class of Z in R remain zero and UN-
CLASSIFIED. The invocation R.g(OUT a) from h returns true
and UNCLASSIFIED for a. Therefore, Q.k() is invoked and W
in Q becomes one and UNCLASSIFIED. Then, Q. m{OUT y)
returns one and UNCLASSFIED for y. Now assume the value of
X is zero. Since R.f() is invoked, the value and the class of Z in

http:kipped.1h
http:GL.OJ.HV

object P object R object Q
procedure h (IN x:integer. state state
OUT y:integer): Z:integer: W:integer:
begin procedure f() procedure k();
var a : boolean; begin begin
y:=0; Z: 1t W= 1;
if x = 0 then R.{(): end; end;
R.g(OUT a); procedure g{OUT y : boolean) procedure m(OUT x : integer);
if a then Q.k(); begin begin
Q.m(OUT y); if Z = 0 then v := true x = W,;
end; else y :- false: end;
end P; end: initialize
initialize begin
begin W := 0;
Z:=0; end;
end; end Q.
end R.

Figure 1. Implicit Flows Across Object Boundaries

R become one and SECRET. Thus. the invocation R.g(OUT a)
returns false and SECRET for a. Since Q.k() is skipped, W in
Q remains zero and UNCLASSIFIED. Therefore, Q. m(OUT y)
returns zero and UNCLASSIFIED for y. Note that after execu-
tion of h, y becomes equal to x. However, y erroneously remains
UNCLASSIFIED. ‘

In our model, the errors described in the previous paragraph
can be prevented since all the object variables are statically
bound to security classes. However, when procedures are in-
voked, the run-time algorithm must perform the following when
an information flow violation is detected:

1. The violating procedure invocation is skipped,

2. The execution continues as if no flow violation were de-
tected. and

[3V)

The flow violation is not reported to the user. In this way,
the user cannot discern between a skipped invocation and
one that is in violation.

Suppose that in the above example. Z in object R and W in
object Q are statically bound to class LOW. Then, the STATIC
categories of the information flow templates for R.f() and Q.k()
have the symbolic flow equations

Z = LOW « LOW & f:implricil. and

W = LOW - LOW :’E k.implicit, respectively.

Let x have class HIGH and value one, and let y have class LOW.
Then, R.{() is not called, and the invalid flow of x = Z is not
detected. Thus, R.g(OUT a) returns true and LOW for a. and
Q.k() is invoked with implicit = LOW. Since no flow violation
is detected when Q.k() is invoked, W in object Q becomes one
and consequently, Q. m(OUT y) returns one in y. If x has value
one, then R.f() is invoked with implicit = HIGH. This invoca-
tion causes a flow violation. The invocation to R.f() is skipped,
but the execution continues without reporting the violation to
the user. As a result, Z in R remains zero and LOW, and con-
sequently, y has value one. Therefore. the value of x cannot be
deduced from the value of y. In general, Fenton proves that if

61

all variables are statically bound, security can be guaranteed by
verifying only flows caused by execution of explicit assignments.
However, the run-time algorithm must do the following when a
flow violation is detected |7]:

1. The violating statement is skipped

2. Execution continues as if no flow violation were detected.
3. The flow violation is not reported to the user.

d. Information Flow Semantics of Iteration. Itera-

tive constructs also require special consideration. Consider the
example

aox:
while a -~ 0 do
begin

R111{IN a. OUT b):
R2.f2(IN b, OUT a):
end;

The first time the body of the loop is executed, the security
class of actual IN parameter “a” for R1.f1 is x. However. in
subsequent iterations, the class of “a” is the security class of
the OUT parameter value from R2.f2 determined in the previ-
ous iteration. Since the number of times the loop hody will be
executed is unknown at compile time. the compile-1ime mecha-
nism must provide for verification of worst case information flow.
This requires the simulation of iterations until the symbolic class
expressions stabilize.

Without special provisions, the symbolic class equation for

w

a” would be
a=x@®R2f2a

and the run-time mechanism would simply replace R2.f2.a with
the class of the OUT parameter value when the object receives a
return message from the first invocation of R2.f2. But this would
be incorrect since the security variable R2.12.a would then disap-

pear from the symbolic class equation for “a” and the equation
would not reflect the actual information flows from subsequent
invocations. of R2.12. In order to correctly account for flows
from procedure calls across all iterations, the run-time mecha-
nism must add the classes of the return values to the symbolic
class expression instead of replacing the security variables. In
order to identify the procedures invoked within loops. the com-
pile time mechanism attaches an accumulation flag (denoted by
(#)) to the security variables for such procedures. Thus, the

symbolic class equation for “a” in the above example is

=x © R2.42.a(+).

3. The Run-Time Algorithm

The run-time algorithm is invoked whenever an object sends or
receives a message. Messages which are received by an object O
are:

1. requests to invoke procedures which are exported by O
and

. return messages from the external procedures invoked by

0.
Messages which are sent by an object O are:

1. requests to invoke external procedure in another object
and :

return messages from exported procedures which termi-
nate in O.

When object O receives a request to invoke an exported pro-
cedure PROC, the run-time algorithm creates an information
flow instance, which is a copy of the information flow template
for PROC, and replaces security variables for the inter-object
flow and all formal IN parameters with the corresponding ac-
tual security classes carried by the message. Note that-if the
security variable is marked with (*), the algorithm adds the ac-
tual security class to the class expression containing the security
variable (rather than replacing it). The algorithm then checks
for a flow violation in each flow equation in the STATIC cate-
gory. If all the equations are certified to be secure, the request
is accepted and a new process for PROC is initiated.

If PROC invokes an external procedure, say “O1.funcl”, ex-
ecution of PROC is suspended, The run-time algorithm then
looks up the entry corresponding to Ol.funcl in the IMPORT
category of the information flow instance and places the security
classes of the corresponding actual IN parameters and implicit
in the outgoing message.

In general, the symbolic class equation in the information
flow instance corresponding to parameter x of O7.funcl has the
form

x =SV &5 SV, SC

where SV (1 <,1 < m) stands for the ith security variable and
SC stands for a fixed security class. The security variables are
ignored since they denote the security classes of variables which,
at this point. are not yet flowing into x. Therefore, the algorithm
only uses SC to determine the security class of actual parameter
x. The assignments to x from the input variables corresponding
to the security variables may occur later (in the case of loops)

62

or they have already been skipped and will never occur in this
particular execution (in the case of if statenments or already ter-
minated loops).

When object O receives a return message from another (pre-
viously invoked) object, the algorithm replaces (in the informa-
tion flow instance) every occurrence of the security variables for
the actual OUT parameters with the corresponding security
classes carried by the message. Then it checks for flow viola-
tions in each symbolic flow equation in the STATIC category. If
no flow violation is detected, the message is accepted and the
(suspended) calling process is resumed.

Upon normal termination of PROC, the algorithm looks up
the EXPORT category of the information flow instance and at-
taches the security classes to the corresponding formal OUT
parameters. After sending the return message to the calling
object, the algorithm erases the information flow instance.

E. A PROGRAM EXAMPLE

A program, consisting of classes C1, C2 and C3, and the cor-
responding information flow templates are shown in Figure 2.
Objects O1, O2 and O3 are instances of C1, C2 and C3, re-
spectively. Class C1 defines a general program in the form of
an initialization procedure. The object variable S1 is statically
bound to the security class CONFIDENTIAL. The initialization
procedure invokes f and g in objects O2 and O3, respectively.
Since the initialization procedure is automatically invoked at
object instantiation time, it does not have a formal caller and
consequently the information flow template has no entry in the
EXPORT category. Note that the symbolic class expressions in
both the IMPORT and STATIC categories contain a term for
accumulating the implicit inter-object flow from the object that
instantiates O1. For this example. we will assume that the class
of this implicit flow is LOW. Since 02.f is called within a loop.
the security variable QO2.0. corresponding to OUT parameter i.
is marked with an (+).

Class C2 defines exported procedure f and object variable 82
which is bound to CONFIDENTIAL. f replaces the value in 82
with IN parameter x and returns the old value of 82 for OUT
parameter y. Class C3 defines exported procedure g and object
variable 83 which is bound to SECRET. g adds the square of IN
parameter a to S3 and returns this value for OUT parameter b.

Assume that S1 and 82 have initial values 70 and 0. respec-
tively. When O1 is instantiated, the information flow instance
for the initialization procedure is created which is a copy of the
information flow template for the procedure and the initializa-
tion procedure is automatically invoked. O2.f is called in the
body of the while loop with actual IN parameter a {--140).
The run-time algorithm determines the classes for the implicit
inter-object flow and actual IN parameter a from the informa-
tion flow instance (in this case, both are CONFIDENTIAL) and
then attach these classes to the message. The underlying mes-
sage passing system sends the message to object 02.

When O2 receives the message, the algorithm instantiates
a new information flow instance based on the information flow
template and replaces all the occurrences of f.implicit and f{.x
in the instance with CONFIDENTIAL. The information flow
instance at this point is as follows:

CLASS C1
state
S1 : integer of security class CONFIDENTIAL;
initialize
var i, a : integer;
begin
1:= S1;
while 1 < 100 do
begin
a:=t i+ 2;
O2.f (IN a, OUT i)
end;
if i > 150 then 03.g (IN i, OUT S1);
end initialize;
end C1;

CLASS C2
state
S2 : integer of security class CONFIDENTIAL;
procedure f (IN x : integer; OUT y : integer);

begin
y 1= 82
S2:=x
end f;
end C2;

CLASS C3
state
S3 : integer of security class SECRET;
procedure g (IN a : integer; OUT b : integer);

The information flow template for Cl.initialize
EXPORT
IMPORT
02.f (IN a, OUT i)
implicit = CONFIDENTIAL & 02.£i(x)
@ init.implicit
a = CONFIDENTIAL @ 02.1.i(+) @ init.implicit
03.g (IN i, OUT §1) B
implicit = CONFIDENTIAL @ 02.£i()
i = CONFIDENTIAL & 02.£i(+) ® init.implicit
STATIC
S1 = CONFIDENTIAL « CONFIDENTIAL
@& 02fi(+) & 03.g.51
@ init.implicit

The information flow template for C2.f
EXPORT
{ (IN x: OUT y)
y = CONFIDENTIAL @& f.implicit
IMPORT
STATIC
§2 = CONFIDENTIAL « CONFIDENTIAL
@ f.x @ f.implicit

The information flow template for C3.g
EXPORT
g (IN a; OUT b)
b = SECRET & g.implicit
IMPORT -
STATIC
§3 = SECRET ~ SECRET @& g.a & g.implicit

Figure 2. An Example Program

begin
S3:= 83 + axa;
b := §3;
end g;
end C3;
EXPORT

f(IN x; OUT y)
v = CONFIDENTIAL
IMPORT
STATIC
S2 = CONFIDENTIAL < CONFIDENTIAL

Since the flow equation for S2 in the STATIC category guaran-
tees this to be a secure invocation, the execution of { is initiated.
The value of 52 becomes 140 and OUT parameter y becomes 0.
Also, the class of y (= CONFIDENTIAL) is determined from
the information flow instance. Upon the termination of the ex-
ecution. the algorithm erases the information flow instance and
the message passing system sends the return message to O1.
When O1 receives the return message. the algorithm adds

CONFIDENTIAL (the class of the return value i) to all the

63

symbolic class expressions which contain O2.fi(:) in the infor-

mation flow instance forming

EXPORT
IMPORT
02.f(IN a, OUT i)
implicit = CONFIDENTIAL @ O2.£i()
a = CONFIDENTIAL @ O2.f.i(+)
03.g(IN i. OUT S1) '
implicit = CONFIDENTIAL & 02.f.i(+)
i - CONFIDENTIAL & O2.fi(+)
STATIC
S1 - CONFIDENTIAL <« CONFIDENTIAL
® 02.£i(+) & 03.g.51

and the information flow is certified. (Note that if the class of

OUT parameter y of the return message had been SECRET,
the flow equation for S1 would have become

S1

= CONFIDENTIAL « SECRET & O2.{.i(+) & 03.g.51

and the run-time algorithm would have detected the flow viola-
tion.)

After the resumption of the execution in O1, i becomes 0 and
the body of the while loop is again executed. This time, O2.f is
called with actual IN parameter a (= 0). The message carries
the value of a, the class of a (= CONFIDENTIAL) and the class
for the implicit inter-object flow (= CONFIDENTIAL).

The algorithm certifies the information flow to procedure f
of 02 and upon completion of execution. { returns y (= 140)
and its security class (= CONFIDENTIAL) to the initializa-
tion procedure of O1. Since the conditional expression of the
while statement is false. the loop terminates. Finally, since the
conditional expression of the if statement is false, the execution
terminates normally.

As a second example, suppose the initial value of S1 is 80.
Again, the while statement terminates normally after the second
iteration. However, i has the value 160 in the if statement and
03.g is invoked. The algorithm places the class of i (= CON-
FIDENTIAL) and the class of the implicit.inter-object flow (=
CONFIDENTIAL) in the message. Upon a receipt of the mes-
sage at O3, the algorithm instantiates the information flow tem-
plate for g and replaces all the occurrences of g.a and g.implicit
with CONFIDENTIAL forming '

EXPORT
g(IN a: OUT b)
b = SECRET
IMPORT
STATIC
S3 = SECRET «- SECRET.

Since the flow to S3 is certified. the execution is carried out.
After g terminates normally. the return message is constructed
which contains the value of OUT parameter b and its security
class SECRET and the message is sent to O1.

In O1, the algorithm replaces 03.g.51 with SECRET and
the information flow instance becomes

EXPORT
IMPORT
02.{(IN a, OUT i)
implicit = CONFIDENTIAL & 02.£i(+)
a = CONFIDENTIAL & O2.0i(:)
3.g(IN i, OUT S§1) T
implicit = CONFIDENTIAL & 02.£i(+)
i - CONFIDENTIAL & O2fi(+)
STATIC S
S1° CONFIDENTIAL - SECRET =
O2.1.i(+) (+ + flow violation # & «)

The algorithm detects a flow violation. However, as mentioned
in section D, the system cannot report the error to the user and.
since the invocation causing the error is the last statement of the
initialization procedure of O1, the execution must be terminated
as if nothing has happened. Otherwise, one bit of information
(the truth or falsity of the conditional) is sent to the user ter-
minal {output file). This could be an undetected flow violation
depending on the class of 1 and the clearance of the user.

64

F. CONCLUSION

This paper has presented an information flow certification mech-
anism for an distributed object-oriented system. The mechanism
is a combination of compile-time analysis and run-time certifi-

cation with the following salient features:
+

1. Information flow security checks are done only at message
passing time.

. Object variables encapsulated by an object are statically
bound to security classes. Other program variables can be
either dynamically or statically bound to security classes.

. Each exported procedure in an object can be compiled
and its “internal” security established totally independent
of other exported procedures.

Information flow semantics were presented for selected pro-
gramming constructs. Work in progress consists of extending
the algorithm to allow for dynamically bound object variables.
We are also investigating different ways to cope with the proh-
lem of illegal information flow from variables in a conditional
expression 1o the user, caused by system generated error mes-
sages.

References
i1} G. R. Andrews and R. P. Reitman. An axiomatic approach
to information flow in programs. ACM Transactions on Pro-
gramming Languages and Systems, 2(1):56- 76. 1980.

21 D. E. Denning. Cryptography and Data Security. Addison-
Wesley. 1982.

131 D. E. Denning. A lattice model of secure information flow.
Communications of the ACM. 19(5):236- 243, 1976.

{4} D. E. Denning. Secure Information Flow in Computer Sys-
tems. PhD thesis, Purdue University, 1975.

[5] D. E. Denning and P. J. Denning. Certification of programs
for secure information flow. Communications of the ACM.
20(7):504- 512, 1977.

6! J. S. Fenton. Information Protection Sysiems. PhD) thesis.
University of Cambridge. 1973.

{7 J. S. Fenton. Memoryless subsystems. Computer Journal,
17(2), 1974.

{8] C. E. Landwehr. Formal modecls for computer security. Com-

puting Surveys, 13(3):247-278, 1981.

APPENDIX: The Compile-Time Algorithmn

This section describes the compile-time algorithm

form.information flow template

which generates an information flow template for exported pro-
cedures of an object. The following programming constructs are

assumed:

1.

7.

This

declaration statement {the declaration of exported proce-
dures and local variables),

. assignment statement,
. compound statement,

. if statement,

while statement
procedure invocation statement, and
end statement of the procedure declaration.

algorithm is applied to each statement of a procedure be-

ing compiled. STACK, GLOBAL, STATIC and TEMPLATE
are global compile-time variables. The following initialization
is done prior to its application to an exported procedure in an
object:

1.

The entries in SC and EXP for each object variable y are
created and initialized as

SCly] = security class of the object variable
EXPly| = NULL
STATICy| = true.

. The preprocessor renames invocations of the same exter-

nal procedure from different places in the text in order
to make all calls distinct. Then entries corresponding to
all the externally invoked procedures are created in the
IMPORT category of TEMPLATE. For example. if the
procedure being compiled is PROC and an external pro-
cedure O.g(IN z;,....2, OUT Ip.q,..
in PROC, then these entries are

.. In) is invoked

O.g(IN zy,....Zpm, OUT zp51,..
implicit = NULL

ey = NULL

= NULL.

)

rH [

. GLOBAL and STACK are initialized to PROC.implicit

and LOW . respectively.

65

The algorithm is stated below.

procedure form information flow template

(S : statement;
var SC. EXP : array of symbolic class expression:
var V : set of variables: LOOP : boolean):

var
Vi, V2.
SC1. 8C2. EXP1 : array of symbolic class expression:
CHANGED : boolean;
CE, temp : security variable;

set of variables;

begin
case S of
S = “procedure PROC
(IN z, : var.type of security class (', :
1 vardype of security class (7 :
OUT y; : var type of security class €, :
Ym @ var type of security class ¢,)"
begin
fori:= 1tok do
if z; has a “C,,” declaration part
then
begin
SClzi| 1= Cui;
EXP|z,| := PROC.z;;
STATIC|z;} := true
end
else
begin
5CIr := PROC.z:
STATIClz;] := false
end;
fori:=1tomdo
if y; has a "C,;" declaration part
then
begin
SCly = Cus
EXPly,! := NULL:
STATIC!y;| == true
end
else
begin
SCly;: == NULL;
STATICly;] := false
end;
end;

S

“var a, . var tvpe of security class (7, :

a, : var type of security class ¢, "

begin
fori:- 1tordo
if a; has a *C,” declaration part
then
begin
SCia;; := Cuis
EXPla;] := NULL:
STATICla;] := true
end
else
begin
SCla;} := NULL:
STATICla;] := false:
end;
end;
S = “b:=1(ay,....am)V"

/* Assignment Statement */

begin
if STATIC Db
then
begin
V= 0
EXPb} := EXPb! 3 SCay: +...= 5Cla,,
% STACK 5 GLOBAL
end
else
begin
V= {b}:
SC'b] := SCla;y: &...4 SClamn]
& STACK & GLOBAL
end;
end;

S = “begin S;;---; 5, end”
begin
V- 0;
fori:=1tomdo
begin
form_information flow template
(S:, SC, EXP, V1, LOOP);
V.=V UVl
end;
end;

66

S = “if E then S {else 5;}”

S

begin
STACK . .push(E);
SC1 := SC;
form information_flow_template
(81, SC1, EXP, V1, LOOP);
ifS2 <> 0
then
begin
SC2 :— SC;
form information flow template
(S2.5C2, EXP. V2. LOOP}):
end
clse
V2. O
ifxisin (V1 V2)
then SCx' = SClix" 5
else
ifxisin (V1 — (V1 7 \V2)
then SCix] := SCI'x & SCixj
= SC2x} & SC'x :

SC2x

else SCx]
STACK.pop
end;

= “while E do §;”
begin
CE = NULL;
repeat
CHANGED := false;
if CE «.» (CE & E)
then
begin
CE:- CE® E;
CHANGED := true
end;
STACK.push(CE);
SC1 := SC;
EXP1 := EXP;
form_information _flow template
(S, SC1, EXP, V, true);
if SC <> (SC @ SC1)
then
begin
SC ;= SC & SC1;
CHANGED := true
end:
STACK.pop:
until EXP - EXP1 and not CHANCGED:

end;

S *O.g(IN zy,....2..OUTy;...., Ym)”
begin
On O.g entry in the IMPORT category
begin
add “@ STACK & GLOBAL” to implicit;
for all x in IN parameters of O.g do B
if not STATICx]
then
add “3 SCix|” to the symbolic
class expression for x: '

else
if the entry for x is “x = NULL"
then replace that with “x -2 SC[x|”;

end;
Vo= 0
for all y in OUT parameters of O.g do
begin
if not STATIC|yj then V := V U {y};
if LOOP
then temp :-= O.g.y(#)

else temp := O.g.y;
if STATIC]y]
then EXPly| := EXPly] @ temp & STACK
@& GLOBAL
else SC|y| := temp & STACK 4: GLOBAL;
end;
end;

S = “end PROC”
begin
for all x such that "STATIC x! = truc” do
if EXPxi -+~ NULL then
place “x - SCix: - - EXPx”
in the STATIC category
of TEMPLATE:
for all x in OUT parameters of PROC do
place “x = SClx™ in the EXPORT category
of TEMPLATE:
end: -
end case:

end form_information flow template.

67

THE ARCHITECTURE OF A DISTRIBUTED TRUSTED COMPUTING BASE

Jon Fellows, Judy Hemenway, Nancy Kelem, and Sandra Romero*

Unisys *%
2525 Colorado Blvd.
Santa Monica, CA 90405

ABSTRACT

This paper explores the differences between
monolithic and distributed Trusted Computing
Bases, using as an example an actual system
now in the final stages of development. For
each of the differences discussed, the
approach taken in the system is briefly
described and motivated. The paper includes
a description of the security policy of the
system and its correspondence to the Bell and
LaPadula model.

1. BACKGROUND

The need for trusted computing systems
which process data at multiple security lev-
els is widespread in defense related pro-
grams. Such systems have been an active
research area for over ten years, with the
result that worked examples of tightly cou-
pled#*** multi-level secure systems have been

demonstrated ([Fra83, Whit74]. A set of cri-
teria for the architecture of multi-level
systems has been established by the DoD Com-

puter Security Center [DoD85]. These cri-
teria, known popularly as the "Orange Book",
also address the assurance that must be pro-
vided that the architectural criteria have
been met. At the highest Orange Book
category, Al, formal specification and verif-
ication are required at the design and policy
levels.

The requirement for handling data at
multiple levels goes beyond the usual operat-
ing system concern of local users sharing
local resources; it is also being imposed on
a current generation of embedded distributed
systems. Even though no . worked examples of
secure distributed systems exist, the same
criteria are being applied in the belief that
such systems are a natural extension of the
previous work on tightly coupled operating
systems. This paper reports on the. security
architecture of one of the first secure dis-
tributed systems to be attempted: the issues
raised, the approaches taken, and the lessons
learned.

1.1 Terminology and Basic Concepts

A Multi~Level-Secure (MLS) computer sys-
tem protects information on the basis of
security labels which are attached to the

* This paper presents the opinion of its
authors, which is not necessarily that of
Unisys or of the Department of Defense.

**% Formerly System Development Corporation
*%% Tightly coupled is used here in the sense

that the system can be modelled as a
single state machine.

68

components of the system. System components
include both data objects and active com-
ponents of the system; but a given component
may play both roles at different times in its
lifetime. For the purposes of this discus-
sion labels are assumed to be associated with
a component at the time it is created and to
retain their initial values for the life of
the component. As is usual, components them-
selves have components, leading to a
hierarchical structure that spans 'system' to
individual variables and program statements.
The granularity with which a system protects
information is determined by the level(s) of
components: that carry labels. All current
MLS systems cease explicit labelling at some
point in the component hierarchy, with the
result that lower level components inherit
implied labels.

Each active component of the systenm,
e.g. a process, a service, a subsystem, has a
domain of execution which defines the set of
data objects to which it may potentially be
granted access. "Access" has system-specific
meaning, but current systems focus on "read
access" and/or "write access". Read access
describes any system defined interaction
between components in which information flows
from a data component to an active component,

while write access describes the converse.
The domain of an active component can be
further broken down into read and write
domains, which will normally be expected to
overlap. Active components interact either
by sharing data objects across domains (e.g.
a shared file), or by exchange of data

objects between domains (e.g. a message sys-
tem or input/output).

A system is MLS if all interaction
between components preserves, with some level
of assurance, the confinement of data objects
to the read and write domains of active com-

ponents with compatible labels. A confine-

ment failure is known as a compromise. The
compatibility of active component labels and

data component 1labels is determined by the

following domain confinement rule:
A component (either active or data)
potentially receive
another component marked at any level
"dominated by" its own 1label, where
"dominates" is a system specific partial
ordering, of labels. This implies that
the label of an active component must
dominate the labels of each data com-
ponent in its read domain; and also that
the label of an active component must be
dominated by the label of each data com-
ponent in its write domain.

The domain confinement rule restates the

basic properties of the well-known Bell and

LaPadula model [BLP761: the simple security

property and the *-property.

nay
information from

It is important to note that the domain
confinement rule constrains the domains of
active components from containing ‘data com-
ponents with the potential for compromise,
regardless of the actual compromise that the
component might cause in a less constrained
domain. The actual behaviour of the com~
ponent could be compromise free in the less
constrained domain, depending on it's inter-
nal logic and its actual (as opposed to
potential) pattern of references to other
components. It would even be possible for a
component to be compromise-free with respect
to its domain in one given state, while caus-
ing compromise in domains with other states.
An active . component is called compromise
correct if it is compromise free in all pos-
sible domains in which it can function as
part of the overall systen. Compromise
correct components can be exempt from the
domain confinement rule without changing the
MLS-ness of the system.

A Trusted Computing Base (TCB) 1is the
set of system components which, in order for
the system to be MLS, must function correctly

in the roles they play in the system archi-
tecture. 1In principle the TCB can encompass
all of a system's components, but it is very

costly to provide assurance of confinement
using this approach; since each component,
and each interaction between components, must

be examined. In other words, each component
must - be compromise-correct. In practice,
this approach is limited to small dedicated

systems with a static set of components. For
larger systems, particularly those which are
open to the introduction of new components by
untrusted users, a better approach isolates a
" small subset of components into a Reference

Monitor [And72] which enforces the domain
confinement rule. The TCB then becomes the
reference monitor components and a small set

of trusted components which

correct.

are compromise

In order to prevent untrusted components
from interfering in the correct execution of
reference monitor code, ‘it is customary for a
reference monitor to have a privileged
domain of execution which includes not only
the domains of all subjects but additionally
contains objects not in the domain of any
subject in the system. These reference moni-
tor private objects normally contain signifi-
cant portions of the system security state
such as labels, clearances and passwords. In
some implementations, reference monitor
private objects are not themselves labelled.

2. WHY DISTRIBUTED TCBS ARE DIFFERENT

This section discusses the difference
between a traditional monolithic TCB, where
all TCB components share a domain and commun-
icate by shared variables and procedure
calls; and a distributed TCB, where TCB com-
ponents are distributed over a network and
communicate by exchanging messages. All of
the classical TCB security issues must be
addressed by a distributed TCB; but some
issues, such as formal verification of
correctness, are made more difficult by dis-
tribution of 'TCB components. Other issues,

69

such as trusted paths between TCB components,
are new to distributed TCBs (or at least have
been implicit in previous models).

The increase in complexity that results
from distributing a TCB forces increased
reliance on architectural arguments for secu-~
rity assurance, due to the weaker assurance
possible from formal arguments. Perhaps this
is only more evident for the distributed TCB
case than has been the case for single domain
TCBs. We have always relied on architectural
arguments for hardware assurance of domain
separation, and for locally reliable storage
and transmission of data. Analagous func-
tions in a distributed TCB may be implemented
in software, but they are no less complex nor
easier to verify.

The following subsections explore the -
five primary differences that we have been
able to identify as requiring extra attention
when building a distributed TCB. Briefly,
they are fragmentation of the TCB domain,
trusted paths, trusted protocols, hierarchi-
cal TCBs, and fault tolerance.

2.1 Fragmented TCB Domain

In a monolithic TCB the . concept of a
secure state can be expressed by an
integrity constraint on the values held by
security relevant data objects within the
TCB's ‘domain, for example that current
accesses of subjects to objects are con-
sistent with a security policy based on the
security labels associated with those sub-
jects and objects. All components of the

security state are immediately available and
stable in their values. It is possible for
the monolithic TCB to guarantee that the
security state changes one well- defined
step at a time and that after each change the

security state meets it's integrity con-
straints.
In a distributed TCB the security state

of the system, rather than being collected
into a single protected domain, is distri-
buted across various devices of the system.
Maintaining integrity constraints on a dis-
tributed security state is complicated in the
following ways:

It is difficult to check the systenm
security integrity constraints at a sin-
gle device, since remote components of
the system security state are not
obtainable without delay and are not
guaranteed stable. It may still be pos-
sible to assert meaningful integrity
constraints, but this situation causes
an overall weakening of the constraints
that can be asserted.

a.

Instead of a totally ordered sequence of
state transitions, a distributed TCB's
state history is only partially ordered
due to the possibility of concurrent
transitions at different devices.
Again, it 1is still possible to state
meaningful integrity constraints, but a

careful anhalysis of potential interfer-
ence between concurrent transitions 1s
needed.

c. Parts of the security state may be
replicated at several devices in order
to increase system availability. The
system security constraints must then
assert consistency of wvalues for all
replicated components of the security
state regardless of where they are
stored.

Although not normally viewed as part of
a system's security state, the types and
operations defined within the TCB can be
viewed as data values of a distributed TCB
which ‘are replicated everywhere they are
used. The best example of this is the type
that defines the values held by security
labels; - if this definition varies from site
to site within the TCB then a meaningful
definition of policy enforcement is not pos-
sible. Likewise the operation that computes
the partially ordered comparisons between
labels must be implemented with the same
semantics at each site. This view of types
and operations as data is derived from an
object oriented [Gold83] model of computation
and it reduces the distributed TCB concern
that similar things be accomplished in simi~-
lar ways to yet another data consistency con-
straint. This data changes so slowly that an
automated protocol is not usually used to
guarantee consistency, but rather consistency

is' addressed by trusted distribution of

software. :

2.2 Trusted Paths between TCB Components
Within a single domain TCB, it can

always be assumed that TCB local data have

been defined by trusted code and that parame-

ters passed in a procedure call have been
sent by trusted code. When reasoning -about
the correctness of a single domain TCB, one

need not question whether internal communica-
tions is being spoofed.

A distributed TCB must provide trusted

paths ‘between its distributed domains in
order to achieve similar 'assurance. This
usage of the term '"trusted path" is a

strengthening and generalization of its usage
in " [DoD85]. As used here, a trusted path
offers the following guarantees:

a. A message received from a trusted path

originates from a trusted source. This
property can be supported -in stronger
form -'by authentication of the exact

identity and security attributes of the
originating component.

b. A message received from a trusted path
contains the same value that was sent.
This guarantees that message data have
not been modified by untrusted entities.

¢c. If messages have security labels, then
" the label on a received message has the
same value that was sent. This guaran-
tees - that message labels have not been
modified by untrusted entities.

d. An optional property is the preservation

of message order on pairwise trusted
paths. (This property also prevents
replay of messages.) It is optional

70

because it may be expensive to implement
and difficult to wverify. Further, it
may not be required to support TCB
correctness.

Trusted Protocols

A distributed TCB will need to trust
some of its protocol interpeters, possibly at
several different ISO levels, for any of the
following reasons:

a. To implement the trusted path concept of
the previous section. Trusted path
could be incorporated into the services
offered by interpreters of standard pro-
tocols at the transport level and below.
In the absence of such a standard, a
system, specific end-to-end protocol
layer can be inserted at the transport
level using cryptographic authentication
techniques. An example of the latter
approach is given later. The design
verification costs for these two
approaches vary considerably: verifica-
tion of standard protocols is quite dif-
ficult, but given an acceptable formal
model of encryption, end-to-end imple-
mentations of trusted path that do not
guarantee delivery are substantially
easier to verify.

To implement system level atcmic state
transitions. If the system's security
relevant integrity constraints are not

very strong, this may not pose a prob-
lem. Otherwise it may be necessary to
design application level protocols with

the goal of taking the entire systenm
from one consistent state to another.
We will see examples of both cases later
in this paper. Application level proto-
cols defined for this purpose can be
exceedingly difficult to verify.

¢. To provide system level concurrehcy con-
trol. Protocols such as the two phase
commit can be viewed as implementing a
‘distributed lock mechanism. For the
most part, concurrency controls are use-
ful to help in achieving security
relevant atomic state transitions, but
they are frequently also useful in con-
trolling non-security relevant transis-
tions in the system. (Recall that our
definition of security does not address
denial of service.)

2.4 Hierarchical Trusted Computing Bases
Distributed TCB components may be imple-
mented as applications software on devices

which also support untrusted applications, in
which case a 1local reference monitor is
required to prevent interference with trusted
operations. .In addition, if the distributed
TCB components handle multi-level data, . the
local reference menitor must provide a
multi-level-secure environment. So a distri-
buted TCB may be implemented as a hierarchy
of TCBs in which the system level TCB relies
upon correct policy enforcement of local TCBs
for its own correct policy enforcement.

The relationship between the systen
reference monitor and the reference monitors
of individual devices can be subtle. The
local TCB's interpretation of subjects and
objects bears no necessary relationship to
the distributed TCB's interpretation. This
is particularly true if the system TCB does
not view reference monitor data structures as
as objects which are labelled and subject to
access controls. In a distributed TCB, sys-
tem level reference monitor data is likely to
be application level data to the local refer-
ence monitor. Another example of the cogni-
tive gap between local and system TCBs is
that active components viewed as untrusted
with respect to local policy may well be
trusted with respect to the system policy,
e.g. system level access control decision
making and system level audit data recording.

Clearly there is a need for some "glue"
to tie the various components of a distri-
buted TCB into "a consistent system level
reference monitor. One of the most important
such adhesives 1is the globally consistent
representation of security labels and their
comparisons. This was identified earlier as
a form of integrity constraint over repli-
cated data. Consistent labelling need not
mean identical -‘labelling, except for the
external representation of labels that are
exchanged over a network. Labels internal to
a device may have increased granularity as
long as homomorphism is maintained between
internal and external forms; i.e. a well
defined mapping between labels exists that
preserves the dominance relation. This free-
dom to increase 1label granularity can be
quite useful, particularly in the area of
added compartments and subcompartments.

2.5 Fault Tolerance

.Unlike a monolithic TCB, which is either
in service or out of service, a distributed
TCB continues to enforce a security policy

when some of its components are not in ser-
vice. The normal case for a distributed sys-
tem is that something is broken somewhere.

In consequence, a distributed TCB must sup-
port "fail-secure" properties in its design,
verification, and architecture. Fail secure
properties assert that no compromise occurs
even when some components are unavailable.

Desirable security properties are fre-
quently "safety" properties; i.e. properties
that assert the preservation of a secure sys-
tem state. As long as the failure states of
the computation are secure, one need not show
that a computation makes progress in order to
show that it is secure. This observation
allows the sidestepping of a number of known
difficult verification problems, such as ter-
mination. In a distributed TCB, the granting
of an access request may invelve a chain of
actions by different components. If the
chain is broken by component failure or com-
munication failure the result is denial of
service, not compromise. End-to-end checks
which do not require reasoning about the con-
current interaction of components may suffice
to demonstrate fail-secureness without
guaranteeing actual delivery of a service.

71

Although not required by the security
policy presented in this paper, denial of
service is of serious concern to many end
users of trusted systems, in some cases of
higher concern than security policy enforce-
ment. A trusted distributed system cannot be
allowed to shut down when one of its com-
ponents fails. The system must continue to
provide at least partial policy enforcement
for as long as possible.

The classical reliability technique of
replicating data and processing can be
applied to distributed TCBs. As mentioned

previously, one result of such replication is
the necessity for synchronizing protocols to
manage updates to replicated security
relevant data. Another complication is that
device level secure initialization and/or
recovery becomes complicated by the necessity
to synchronize the state of the local TCB
data with the system TCB state.

3. A REAL EXAMPLE OF A DISTRIBUTED TCB

Each of the issues raised in the previ-
ous section has been addressed in the design
for a classified system now in the final
stages of development. For the purposes of
this paper we will call this system NRM,
which stands for Network Reference Monitor.
The following description is greatly simpli-
fied in order to focus attention only upon
the security architecture of the NRM.

NRM consists of a family of devices
which, when added to a packet switched net-
work, collectively enforce a security policy
on the exchange of messages between hosts on

the network. Encryption is the basic domain
separation mechanism of NRM. The device
types in this family consist of the follow-
ing: :

a. Secure Network Interface (SNI): One of
these devices interfaces each network
host to the network. It is transparent
because it presents a host interface to
the network and a network interface to
the host. This device only passes mes-
sages to or from a host after a NRM

security policy check described below.
A SNI encrypts a message before sending
it to the network or decrypts a message
delivered from the network using a key
that 1is shared only by the socurce and
destination hosts of the message. This

key, in association with other security
related data, establishes a bidirec-
tional cryptographic connection between

the two hosts. A SNI can manage a large
set of cryptographic connections.

b. Key Contrpl Center (XCC): This device
generates a new key to be used for each
new cryptographic connection and

securely distributes a copy of this key
to the source and destination hosts
associated with the connection.

When a

c. Security Controi Center (SCC):

host sends a message through a SNI, and
the SNI does not currently manage a
cryptographic connection between the

source and destinaton hosts of the mes-
sage, the SNI requests the establishment
of a new cryptographic connection by
sending a request message to an SCC.
The SCC mediates this request by check-
ing for inclusion of the candidate
message's security level in the security
ranges of both the source and destina-
tion hosts. SCC mediation also includes
a check that the message's source and

destination hosts are included in each
others discretionary access control
lists. If both of the above checks are

passed then the ScC directs the KCC to
establish a cryptographic connection
between the two hosts.

3.1 NRM SYSTEM SECURITY POLICY

The NRM System Security Policy has com-

ponents that Jjointly control the establish-
ment and use of crypto connections between
pairs of hosts. For the NRM System, the

range of security levels associated with each

host indicates the range within which that
host can communicate (i.e., send or recelve
messages) . Each crypto connection - esta-

blished by the NRM System has associated with
it a single security level. Thus, a connec-
tion must be established for each level at
which a pair of hosts wishes to communicate.

By first controlling access of hosts to
connections, and then controlling the use of
those connections by the hosts, the NRM Sys-
tem effectively controls the flow of classi-
fied information between hosts. To accom-
plish this, a security policy has been
defined with mandatory and discretionary com-

ponents to control the access of hosts to
connections, and an entelechy* component to
control the use of those connections. A

fourth component, the delta component, writ-
ten /\-component, limits changes to the ScC's
security relevant databases.

The mandatory component of the NRM Sys-
tem Security Policy states that:

A host may have current access to a
crypto connection only if the security
level of that connection falls within

the security-level range of that host.

The discretionary component of the security
policy states that:
A host may have current access to a

crypto connection only if that host had
discretionary permission for that con-
nection when the access was first
approved.

The entelechy component of the security pol-
icy states that:

- A host may send or receive messages over

a crypto connection only if it has
current access to that crypto connec-
tion.

* Entelechy: the realization of form-giving
cause as contrasted with potential
existence. (Webster's New Collegiate
Dictionary)

72

Finally, the /\-component states:
only the System Security Officer can
change the security relevant data in the
SCcC's databases.

MODEL AND CORRESPONDENCE

In order to meet the Orange Book
requirements for an Al class of certifica-
tion, it is necessary to demonstrate that the
design of the system ,as expressed in both
the Formal Top Level Specification and the
Descriptive Top Level Specification, is con-
sistent with a formal mathematical model of
security. For the NRM system, the model that
was chosen is the Bell-LaPadula model, modi-
fied where necessary to more precisely
express the NRM security policy. This sec-
tion describes the correspondence between the
model and the NRM system design.

3.2.1 Subjects and Objects

The subjects in the NRM System are
hosts. A host 1is defined to include sub-
scriber hosts which are directly attached to
SNIs, NRM control nodes (i.e., SCCs and
KCCs), or the internal host within each SNI

whose function is to coordinate with the con-
trol nodes.

The NRM System objects are the connections
between pairs of hosts. A connection indi-
cates the potential for two hosts to communi-
cate with each other by sending and receiving
messages via their SNIs. Each connection is
uniquely identified by a host-pair and a
security label, e.g.
({hostl,host2},label)

3.2.2 Security Level

In the NRM system, security 1level is
defined exactly as it is in the Bell_LaPadula
model. That is, a security level is a pair

(classification, set-of-categories)
where classification is totally ordered, and
categories are not ordered. Security levels
are partially ordered by the 'dominates'
relation.

3.2.3 Access Modes
The Bell-LaPadula model identifies four

types of access which a subject may have to
an object: read, append, write, and execute.*
In the NRM system, sending a message via a
connection is viewed as an append to the
connection-object, while receiving a message
via a connection is viewed as a read from the
connection~-object. Since all connections in

NRM are two-way (send and receive), write
access, which includes both 'read' and
'append! capabilities, is the only mode of
access applicable to NRM connections.

* Note that 'read' means read-only,
'append' means write-only, and 'write'
means read-and-write. This awkward usage
has historical origins.

Consequently, write access is the only access
mode implied in the NRM System's current
accesses and discretionary permissions.

3.2.4 Current Access Set

Rather than being stored in one central
location, the NRM System Current Access Set
is distributed among the SNIs, and is imple~-
mented as connection state records stored at
each SNI.

3.2.5 Access Permission Matrix

In the NRM system, discretionary permis-
sion is defined for pairs of hosts, e.g.

(hostl, host2)
This represents discretionary permission for
hostl to have write access to any connection
object which has hostl as one end point and
host2 as the other endpoint. This form is
equivalent to a set of discretionary permis-

sions as represented in the Bell-LaPadula
model: for a permission, (hostl, host2), the
equivalent entries in the Bell_laPadula

model's Access Perm1551on Matrix would be all
entries

(hastl, ({hostl,host2},label), write)
where label is any security level defined
the system.

in

The Access Permission Matrix is
represented in a SCC data base as a set of
Access Control Lists which represent
sion or exclusion by host name and inclusion
or exclusion by named group. For a NRM system
which consists of a single domain, the Access
Permission Matrix is centralized, since each
SCC in the domain has a complete copy of the
discretionary permission databases. However,
in multi-domain systems, the matrix is dis-
tributed across domains, with each domain
having only those entries of concern to the
hosts in that domain.

3.2.6 Level Function

The Level Function (£f) of the

Bell=-
LaPadula model is a triple of functions: '

fS = Maximum security level of a subject
fC = Current security level of a subject
fO = Security level of an object

Two of these functions are meaningful in the
NRM System: the £S function and the £fO0 func-
tion. Rather than store only a maximum level
for a host, and then also store an attribute
which indicates if the host is trusted, the
SCC data base contains a range of levels for
each host. Untrusted hosts have single level
ranges and trusted hosts have multi-level
ranges. There is no concept of hosts chang-
ing their "current" level, so the f£C function
is defined to be the same as the f£S function.
For objects, the f0 function indicates the

level of a connection, i.e., the 1label com-
ponent of a connection identifier
({hostl,host2},label).
3.2.7 Security Policy
As described above, the NRM security

policy has a mandatory component, a discre-
tionary component, a /\-component, and an
entelechy component. The mandatory and

inclu--

73

discretionary components satisfy the Bell-
LaPadula security properties, while the /\~-
component and the entelechy components have
no direct counterparts in the Bell-LaPadula
model.

Simple Security Property
Since the mandatory component requires that
the connection-object label must be within
the range of the host, the maximum 1level of
the host's range (1 e., £S for that host)
dominates the level of the connection-object,
thus satisfying the simple security property.

*-Property :
By the mandatory component, subjects which
have single-level ranges can only have

current access to connection-ocbjects at that

level. This is sufficiently restrictive to
satisfy the Bell-LaPadula *-property. How-
ever, note that subjects which have multi-
level ranges can have current access to
connection-objects at any level within their
range, which is a violation of *-property.

In other words, multi-level hosts are trusted
subjects. The NRM mandatory component is
somewhat more restrictive than the *-property
in that the *-property allows trusted sub-
jects to have write access at any level dom-
inated by the subject's level, whereas the
NRM mandatory component limits such access to
only those levels which are in the subject's
range.

Discretionary Policy

This component of the NRM security policy is
expressed in such a way that it is only at
the time the access is granted by the ScCC
that the system ensures the existence of dis-
cretionary permission. After this point it
is possible that the discretionary permission
can be invalidated in the 8cC, while the
current access is still active (i.e., a per-
mission still exists in the SNI's table).*
Other than the revocation issue, this com-
ponent of the NRM policy is identical to the
Bell-LaPadula discretionary property.

/\-Property
Although the Trangquility Principle focused
solely on changes to an object's security
level, a more general statement of the prin-
ciple would be that changes to the security-
relevant data of the TCB cannot be made
except by agents which are trusted to violate
tranquility.** This is in fact what the /\-
component addresses. In the NRM system, the
only agent trusted to change the security-
relevant data is the System Security Officer.

* Note that this is very similar to the
situation which exists in some operating
systems, where a user's current access to
a file is not revoked when and if the
discretionary matrix entry is deleted.
Instead, the user will not be aware that
discretionary permission has been revoked
until he tries to access the file at a
later time after giving up his current
access.

% Note that inclusion of such a principle
as a required property of the model would
address the problems pointed out by
McLean in System-2Z.

Entelechy
The entelechy property was added to the NRM

security policy primarily because of the dis-
tributed nature of the system, because the
decision-making described in the property is
implemented in software, and because this
decision-making is crucial to the enforcement
of security in the system. In an Al operat-
ing system, the analogous mechanism would be
the memory-mapping hardware, which is usually
considered to be outside the scope of the
Bell-LaPadula model and formal specifications
thereof. In the NRM system, the enforcement
of entelechy is the primary charter of the
trusted software within the SNIs, and without
the correct enforcement of this property, the
decision-making of the SCCs would be of lit-

tle, if any, value.
3.2.8 Rules of Operation

In the Bell-LaPadula model, the possible
state changes of a system are described by

'rules' which correspond to specific actions
which are performed by the NRM system. This
section identifies and briefly describes

those actions.

3.2.8.1 Modifications of the Current Access
Set

In the NRM system, modifications to the

current access set are accomplished by each
SNI as wupdates to its connection ‘table.
Adding a connection to the table is

equivalent to adding an access to the Current
Access Set. Removing a connection from the
table is equivalent to removing an access.
The SNI adds connections to its table only if
they have arrived via a trusted path from the
scCc via the KCC. Removal of permissions is
done either in response to a command received
from the SCC (again, on a trusted path), or
as part of an LRU replacement mechanism when
the table is full. . :
3.2.8.2 Modifications of Subjects, Objects,
and Levels

In the
which the

scc, two of the transactions

Security Officer may perform are
Create-Site and Delete-Site. Create-Site
accomplishes the addition of a subject host.
The addition of a new subject to the system
implicitly adds to the system all connection
objects which have that subject as one of the
endpoints. Conversely, the transaction
Delete-Site involves the removal of subject
hosts (and implicitly their associated
objects) from the SCC's database. The secu-
rity range of a subject is established when
the subject is added to the system, and can-
not be modified once it is established. The
only way that a subject's range can be
changed is to delete the subject, and then
add the subject with a different range speci-
fied.

The level of a connection is an integral
part of the identity of the connection, and
all possible connections between subjects are

viewed as existing as long as both subjects
exist. Thus, it makes no sense to change the
level of an ocbject, and no provision is made

in the system for accomplishing this.

74

3.2.8.3 Modifications of the Discretionary
Matrix
In the 8CC, transactions have been

defined for adding or removing entries from a
set of relations which implement discretion-

ary Access Control Lists: Include-Host,
Exclude-Host, Group, Include-Group, and
Exclude~Group. From the point of view of
modifying the discretionary matrix, these

transactions are somewhat obscure in their
results. For example, adding a host pair to
the Include-Host relation will result in that
host pair being added to the (abstract) dis-
cretionary matrix only if the same host pair
is NOT an entry in the Exclude-Host relation.
Identifying a host as a member of a group may

add or delete entries from the (abstract)
discretionary matrix, depending on what
entries are currently present in the

Include-Group and Exclude-Group relations.

3.2.9 The Basic Security Theorem and Induc-
tion Hypothesis
The formal specification methodology

is the Formal
developed by
[Sch85]. The

being used for the NRM system
Development Methodology (FDM),

System Development Corporation
FDM specification language, Ina Jo, permits
the description of a system as a state
machine. The theorems generated by FDM
demonstrate that the system starts in a
secure state, and that each state transforma-
tion preserves security, as defined in the
criteria and constraints of the specifica-
tion. This 1is very similar to the approach
described by Bell and LaPadula in their dis-

cussion of the basic security theorem. 1In
[BLP76], Bell and LaPadula state that "...the
basic security theoren establishes the
'inductive nature' of security in that it
shows that the preservation of security from

one state to the next guarantees total system

security." (p. 20) Based on this, it can be
argued that verification of the NRM specifi-
cations demonstrates that the NRM system
design is secure, as defined in the Bell-
LaPadula model.
3.3 FAULT TOLERANCE

The NRM system has several strategles

for continuing to provide service to applica-

tion components when a NRM component has
failed. These strategies include locad shar-
ing, redundant security data bases, the con-

tinuation
of a control center,
failed components.

of existing service in the absence
and secure recovery of

NRM is organized intc control domains
which partition the SNIs of the system; i.e.
each SNI belongs to a control domain and no
SNI is in more than one control domain. Each
control domain has several redundant S¢Cs and
several redundant KCCs. The SCCs of a domain
share the domain workload according to a
static assignment of SCCs to SNIs as a pri-
mary server. In the event of an SCC failure,
the SNIs which view the failed SCC as thgir
primary server will redirect their service
requests to an alternate SCC, again according
to a static assignment of secondary servers.

Since domains are disjoint, minimal data
base information 1s shared across domains
(primarily the identities of other domains
and their control centers). Inconsistency of
this small amount of data across domains
results in denial of service, not compromise.
Within a domain, SCCs maintain identical data
bases which must be updated concurrently. In
order to assure data base consistency across
SCCs, a two phase commit protocol [Gray78] is
used for data base updates which synchronizes
update requests. No updates are allowed
unless all SCCs are available. This pro-
cedure prevents most possible causes of data
base inconsistency, but is not proof against
awkwardly timed failures during the execution

of the data base update protocol. We assume
that such failures are disabling, and that
the potential inconsistency will be identi-

fied during a secure recovery procedure which
compares data bases with other SCCs. A much
more detailed discussion of the SCC design to
assure data base consistency is in prepara-
tion.

In the case where all SCCs of a control
domain have failed, the NRM system continues

to serve application hosts wusing in place
crypto connections, but no new connections
can be established*. For important or fre-
guently used connections, the SCC keeps a

list for each SNI of a set of connections to
be established at the time the SNI is ini-
tialized.

Perhaps more difficult . than continuing
to serve in a degraded configuration is the
problem of recovering a failed component
without disturbing the system. NRM has been
designed so that each control center estab-
lishes consistency with the other control
centers in its domain before beginning to
honor service regquests.

3.4 CONCURRENCY ISSUES

A NRM domain can be viewed as having
several critical regions with respect to con-
current activities in the domain. This means
that the NRM system operations must not over-

lap each other in time when they involve the
same critical region. Actually, in the
interest of improving system efficiency, the

NRM design allows certain race conditions in
regions that are fail-secure.

The most common critical region in a
domain is a crypto connection: SNIs at each
end can concurrently request establishment

from different SCCs. The resulting race has
four cases, two of which permit communication
over the connection and two of which do not.
It was decided that synchronization of SNIs
to prevent this race had too high a cost in
network traffic and reduced domain workload
capacity. Instead the broken connection is
repaired in the same way as any other: by
repeating the connection request.

* The actual system upon which NRM is
modelled has an alternate service
capability in this situation. This
capability is not described here.

75

The more critical region is the SCC data
base, in which only a single data base update
is permitted at a time. A two phase commit
protocol serves as a distributed 1lock to
assure this. It would have been possible to
define finer granularity regions in the scc
data base, say at a file or record level. We
decided not to do this because the SCC update
rate is very low and there is 1little +to be
gaiped from increased concurrency in the
region.

Beyond the synchronization concerns of a
domain, there remains the difficulty of
assuring the correctness of a domain level
operation that is distributed over several
devices. Crypto connection establishment is
the most important of these, and the NRM
design relies upon control over cryptographic
variables as an end-to-end check upon connec-
tion establishment in which all known failure
cases are compromise free.

] Revocation of existing connections is a
dlffgrent matter. For the reasons given in
Section 2, it is not possible to verify revo-

ca?ion in the presence of all network
fa}lures. Instead a number of increasingly
painful heuristic procedures are employed.

3.5 Fragmented TCB Domains

'The NRM depends for its correctness on a
consistent interpetation of security relevant

types, operations, and data across all dis-
trlbuﬁed‘ components. The NRM method for
assuring this consistency begins with the

controlled distribution of software releases.
Eacp software release has a cryptographically
derived checksum which is checked when it is
installed at a NRM site. Operational
software has access to the version number of
the release currently in executien, and
release numbers are compared between sibling
SCCs when an SCC is initialized.

3.6 LOCAL TCBs
. One of the most subtle issues in the NRM
design - revolved around the decomposition of

the system TCB into sets of trusted com-
ponents that execute on different NRM proces-
sors. Each such processor needs a local TCB
to provide isolation between the trusted and
untrusted functions that it supports and to
provide controlled sharing of data between
trusted components.

One of the earliest NRM design decisions
was that communications between distributed
NRM components would take place over NRM
crypto connections. One of the consequences
of this decision 1is that message traffic
between NRM components carries security
labels just like those carried by subscriber
host messages. All dialog between a SCC and

a SNI is conducted at the highest 1level
authorized for the subscriber host attached
to the SNI. This convention requires that
the local TCB be able to send and receive

messages at multiple security levels, and to
keep message data separated by level within
the local processor.

The security kernel for the SCC and KCC
processors has a traditional security archi-
tecture based upon a secure MULTICS model.
In addition, this kernel defines and enforces
an integrity policy [Biba77] which is iso-
morphic to a dual of the traditional comprom-
ise policy, i.e. the integrity labels are

drawn from a completely disjoint set of
labels. The ordered part of the integrity
label 1is wused to support internal trusted
path arguments which assert that high

integrity trusted components can receive data
only from other high integrity trusted com-
ponents. The SCC/KCC kernel does not define
a discretionary policy, but the unordered
integrity compartments are assigned in such a
way as to create incomparable integrity
domains for different TCB subsystems. This
convention enforces a least privilege discip-
line on the application design.

3.7 TRUSTED PATH PROTOCOL

Originally, the NRM design was based on
the use of TCP for transport of messages
between distributed trusted components. We
found TCP 1lacking for a number of security
related reasons which are described in this
section.

TCP is not a message stream, but a byte
stream which may deliver bytes in different
blocks than those that were sent.
design adds another transport layer called
Network Support Protocol (NSP) whose purpose
is to block and unblock messages. NSP imple-
ments a message stream.

TCP connections are single level. The
NRM design adds a security label to all out-
bound messages which is bound to the message
text by a cryptographic checksum. Upon
receipt of a message, the checksum is recom-
puted and, if it compares with the transmit-
ted value, the message 1s assigned the
transmitted 1label. The processing to accom-
plish this is organized into yet another
transport layer protocol called the Trusted
Path Protocol (TPP). TPP transforms NSP's
single 1level message stream into a multi-
level message stream.

The security label added to messages by
TPP includes an integrity component so that a
high integrity receiver of a TPP message can
know with high confidence that the sender of
the message was labelled high in integrity.
This satisfies the source authentication
requirement for trusted paths.

The cryptographic checksum applied to
messages by TPP i1s computed using a variable
which is protected in a 1local TCB kernel
domain. This variable is shared by all NSP
hosts which communicate wusing TPP, and is
initialized and wupdated by trusted manual
distribution. The check made upon receipt of
a TPP message detects, with a high degree of
confidence, unintentional or malicious modif-
ications to message datax*.

* Since TPP is at a higher level than TCP,
which computes its own untrusted
checksum, detection of unintentional
modification should be quite rare.

The NRM -

4. FUTURE ISSUES

The NRM system design surfaced and dealt
with a number of important issues. that dis-
tinguish distributed from monolithic TCBs.
There are a number of issues that were not
dealt with in the NRM design, either because
they do not arise in the NRM application
domain, or because the NRM design sidestepped
the issue. The following sections provide a-
brief overview of some of these issues.

4.1 Alternate Connection Models

The NRM model has been influenced by
current communication protocols which rely
upon positive acknowledgement and retransmis-
sion as the fundamental mechanism for assur-
ing reliable delivery of messages. This
mechanism requires data flow in both direc-
tions between the hosts involved in the
exchange of a message. This is the fundamen-
tal motivation for the NRM .convention that
read/write 1is the only mode of access of a
host to a crypto connection.

In anticipation of applications which
use: a different set of protocols, such as a
trusted reliable network layer, it would be
possible to define read-only and write-only
access modes to a crypto connection in direct
support of one-way connections.

4.2 Globally Shared Local Resources

The NRM design considers subscriber
hosts to be the subjects of its policy. 1If a
host is multi-level, it is responsible for
the separation and labelling of its internal
storage objects. NRM will assume that mes-

sages from such a host are correctly
labelled. When a distributed system is con-
sidered in which the subjects are local sub-

jects executing on a given host, such as a
user or a process, and the objects are local
resources on a possibly different host, such
as a file or memory segment, a new set of
issues arise. Foremost among these issues is
the requirement for local TCBs at each of the
distributed hosts which must coordinate pol-
icy decisions with each other. A trusted
multi-level network such as NRM must be
assumed to connect the local TCBs. Correct
policy enforcement must rely on end to end
arguments involving both the local policies
and the network policy.

In this environment, a number of tradi-
tional issues become more difficult:

a. Subject naming conventions.

b. Object naming conventions.

c. Identification and authentication.
d. Audit.

4.3 Multiple TCB Interaction

In a distributed world, it is possible
to view the world as a partially ordered set
of abstract services, which is exactly whgt
has been done for communication protocgls in
the ISO model. For each abstract service a

set of data objects and end-point entities
can be defined for which it might be reason-
able to define a security policy. NRM, for
example, is essentially a security policy for
ISO Level 3 network service (as closely as
one can map IP into the ISO model). It would
be absurd to define a security policy for
each abstract service, but it is probably not
possible to adequately address the security
needs of distributed applications at the
level of a single abstract service.

In the end, the security architecture of
a distributed application will require both
vertical integration of TCBs that are nested
and rely on the policies of lower level TCBS,
and horizontal integration of TCBs that
interact with each other as peers in provid-
ing true end-to-end enforcement of an appli-
cation level policy.

5. ACKNOWLEDGEMENTS

Unfortunately it 1is not possible to
recognize each individual contribution to the
NRM program. Over its long lifetime, NRM has
been influenced by a unique team of individu-
als from both private and public organiza-
tions. Key contributions were made by the
following. Clark Weissman of SDC has been
the overall manager and technical inspiration
of the NRM security team. Dan Edwards,
recently of the DoDCSC, provided guidance for
many of the NRM security features. The sys-
tem level NRM security design was influenced
by Jon Fellows, David Golber, Tom Tahan, Bob
McGarity, Doug Paul, Francis Pawl, Doug Roth-
nie, Mark Biggar, Mary Smyrk, and Dan Faigin.
The contributors to the system level NRM for-
mal modelling and verification were Judy
Hemenway, Nancy Kelem, Sandy Romero, Peter
Montgomery, and Mary Smyrk.

REFERENCES

[And72] Anderson, J. P., "Computer Security

Technology Planning Study," ESD-

TR-73-51, ESD/AFSC, October 1972.

[BLP76] Bell, D. E. and LaPadula,
"Secure Computer System:

. Exposition and Multics
tion," ESD-TR-75-306,
poration, March 1976.

L. J.,
Unified
Interpreta-
Mitre Cor-

[Biba77] Biba, K. J., "Integrity Considera-
tions for Secure Computer Systems,"
Mitre TR-3153, Mitre Corporation,
April 1977.
[DoD85] "Department of Defense Trusted Com-
puter System Evaluation Criteria,"
DOD 5200.28-STD, December 1985.
[Fra83] . Fraim, L.J., "SCOMP: A Solution to
the Multilevel Security Problem,"
TEEE Computer, July 1983.
[Gold83] Goldberg, A. and Robson, D.,
“Smalltalk-80: The Language and Its
Implementation," Addison Wesley,
1983.

77

[Gray78]

[McL87)

[Sch85]

[Whit74]

Gray, J. N., "Notes
Operating Systems," in "Operating
Systems: an Advanced Course, "
edited by Bayer, R., Lecture Notes
in Computer Science, Vol. 60,

Springer Verlag, 1978.

on Database

McLean, J., "Reasoning About Secu-
rity Models," Proc. IEEE Symposium
on Security and Privacy, IEEE Com-
puter Socilety Press, 1987.

Scheid, J.
Ina Jo

and Anderson, S.,
Specification Language
Reference Manual," TM~ (L) -
6021/001/01, System Develoment Cor-
poration, March 1985.

"The

Whitmore, J.C. et.
Multics Security
ESD-TR-74-176,
tion Systems,

al., "Design for
Enhancenents, "
Honeywell Informa-
1974.

Specaitrication and Verification %ools for
Secure Distributed Systems

J. Danjel Halpern
Sam Owre

sytek, Inc.
1225 Charleston Rd.
Mountain View, CA 94043

Introduction

This paper reports on a three year project
which at the time of this conference will be
precisely one year old. 7The project is an
ambitious effort in the fields of formal
specification and verification, software
engineering support, and security. There
are two primary goals or the project. The
first is to build a short term workbench to
support tformel specification and verifica-
tion of secure distributed systems in a
software engineering environment, drawing on
existing tools and technigues wherever pos-
sible. The second goal is to design a long
term workbench which significantly advances
the state-of-the-art in providing integrated
support for the design of secure distributed
systems. The project is structured in three
phases: studies, short-term workbench and
long-term design.

Background

E&DC motivation

The project is meant to f£ill a gap in the
develomsent of formal systems that was per-
ceived bv the RADC secure systems community
in early ivu6. At that time there was ongo-
ing work devoted to the design of secure
distributed databases and secure distributed
operating systems but there were no projects
devoted to the development of formal specif-
ication and verification tools to facilitate
the building of such systems.

State of verification technology

Existing formal tools were deficient in a
number of ways:

1. PFor the most part, the paradigms for
formal specification and verification
were divorced from other aspects of the
software development process. HDM [1-
3] is a notable exception. It tries to
match the needs of software development
in a number of ways. Most importantly
it has a concept of hierarchical
development that matches the software
engineering layering approach to com-
puter and network architecture. But

This work was supported by Air Force Systems
Command, Rome Air Development Center (RADC)
under Contract“F30602-86—C-0263.

78

this concept was not fully developed,
let alone integrated, into conventional
software development processes such as
testing and configuration management.

2. The limitations of existing tools was
especially unacceptable in the context
of the development of large distributed
systems.

3. Fault tolerance and real time perfor-

mance are issues which were not
addressed in existing systems.

Team assembled

The project is a joint effort of four com-
panies which bring an interesting mix of
talents and experience:

Sytek specification and verification
of secure systems such as the
NASA RAP [4,5]

Muse tool enhancements to clas-
sical HDM [6,7]

mathematical talent

CRA experimental Ulysses verifica-
tion system

Ada verification contributions
SDOS specification and verifica-
tion [8&]

extraordinary depth of mathemat-
ical talent

cca distributed database work (SDD-
1, MULTIBASE, LDM/DDM)

design support and software
development tools (DDEW, PV)
RCA-ATL Verl angen verification system
(9,101

software development experience

Organization of the

The project is divided into tasks as fol-
lows:

1. Temporal properties study

2. Database consistency study

3. Fault tolerance study

4. survey of existing tools and metho-

dologies and exploration of enhance-
ments :)

5. Short term workbench
6. Long term tools design
7.

Adaptive policy specification

Devel opments to date

As of this writing, June 1987, study tasks
1, 2, and 3 are completed and work under
Task 4 is in progress.

Tagk 1: Temporal Properties Study

Task 1 was led by Edaward Schneider of ORA.
Tanja de Groot and Dianne Britton of RCA AfIL
Labs contributed to the. study. We summarize
below some of the highlights of the report,
“pemporal Properties of Distributed Systems"
[11].

Our model of computation consists of a col-
lection of processes that interact only by
passing messages. The only state shared
between any two processes is the communica-
tion channel between them. A process is a
sequence of actions consisting of a mixture
of communications and internal computing.
The model presumes that the communication is
synchronous. A process will be described as
a set of traces, where each trace is a pos-
sible behavior of the process as observed
over & finite period of time. Thus a trace
of a process in an environment is a tinite
sequence of input and output actions.

The various kinds of temporal properties
have been grouped into 5 categories:

©
©

Security

Progress (deadlock, livelock,
tion, liveness, fairness)
Determinism (Concurrency control and
race conditions)
Real-time pertformance
cation and scheduling)
rault-tolerance (restart,
reconfiguration)

starve-
®©

® (resource allo-

o recovery,

Security We have developed a non-
interference model of security in the con-
text of a Rated Event System (RES). An RES
has as its ingredients a set E of events, a
set 1" of traces, a partially ordered set L
of security levels, and a function 1lvl which
maps E to L. Basically the model says that
for an arbitrary trace t and level 1 the
events in the trace of level 1 or less are
not affected by other events in the trace.

Verification of security is complex in a
system with many processes. This complexity
is managed by inferring noninterference for
the entire system from proofs about each of
its constituent processes. In order to make
this inference from constituent processes to
the whole system, each process must satisty,
in addition to noninterference, two adéi-
tional properties: Determinism and Univer-
sality. Determinism asserts: that the output
of a process is uniquely determined by the
state at the time of its invocation and
Universality asserts that for any state
either all inputs are accepted or none are
accerted.

79

Both the near-term and the long-term tools
should be able to handle security proofs.
The major requirements. for these proofs is
to identify the sets of events and traces
tfor each process. The set of events should
include error messages, such as the failure
to meet a real-time requirement.

Any schecdulers that arbitrate among non-
Geterministic choices must be trusted. Nor-
mally these schedulers should not receive
any classified information on which to base
their scheduling decisions. However the use
of scheduling priorities and time-
requirements in a real-time system will
sometimes use such information. Such
schedulers must be shown not to leak this
information.

Progress We've been successful in specify-
ing liveness in the context of Verlangen.
The resulting constructs are simple and the
theorems are as amenable to prooif as are the
theorems we've encountered in formal specif-—
ication of security. Thus both the near
term and long term tools can be expected to
deal with this aspect of progress at the
highest level of specification. Other
aspects of progress such as fairness pose
greater problems. We expect the specifica-
tion language for the short term tools to
support specification of fairness but sup-
port for veritying such properties may have
to await the lono term tools. Such support
will probably involve enhancement of the
underlying logic with temporal constructs.

Nondeterminism Regquirements tend to be
deterministic ané a nondeterministic pro-
perty can usually be transformed to a deter-
ministic property by adding the conditions
under which the property is to hold., The
biggest challenge presented by nondetermin-
ism is in specifying and verifying deter-
ministic transactions in the nondeterminis-
tic environment of a system of concurrent
processes. Mechanisms of serializability
from the database worla seem appropriate for
dealing with this problem and we expect the
paradigm andé tools of the short term work-
bench to support these mechanisms. The long
term design may go further in supporting the
mocel of serializability as well as particu-
lar mechanisms.

To the extent that race conditions might
lead to unpredictability where predictabil-
ity is needed, they need to be avoiced by
use of appropriate concurrency control
mechanisms. At the design level, it would
be useful to have support for identifying
potential race conditions.

Real-Tjime Requirements Real time require-
ments of distributed systems can be qealt
with only minimelly at the specification
level. One can introduce constructs to
express the time reguirements., Verification
that these reguirements will be met can only
be determined at a very low level of imple-
mentation. “Thus if these reguirements are

taken into account in the theory of the
specification they have the effect of intro-
ducing more nondeterminism and thus nega-
tively impacting the verification of secu-
rity.)

Fault-Tolerance Reguirements Fault toler-
ance can be designed into a system. The
issues that need to be considered in such a
aesign are:

1. The failure model - the type and amount
of failures that the design is to

tolerate.

Failure detection - schemes to detect
failures

Fault confinement - limitation of the
effect of a fault

Verification
scheme,
tion model, assurance that the imple-~
mentation meets the reliability
requirements of the failure model.

~ the correctness of the

task 2: Datapase Consistency Study

This study was led by Alejandro Buchmann of
CCA. Barbara Blaustein and Uspen Chakra-

- varthy of CCA contributed to the study as
¢id Dan Healpern and Sam Ovre of Sytek. A
few highlights of the report, "Database Con-
sistency and Security" [12] follow.

The study involved interaction between secu-
rity and verification at Sytek and database
design at CCA. We discovered that at the
specification level consistency, integrity,
ana security can be expressed using the
specification analog of database con-
straints. 1In another respect the require-
ments of specifying database concerns such
as serial izability has led to a productive
development in our adaptation of HDM. Seri-
alizability is a property involving the
order of executing transactions and is thus
intrinsically procedural.

Multilevel specifications In the HDM para-
digm, the place for cdealing with procedural
constructs is in the mappings between levels
of a multilevel specification. Unfor-
tunately, although HI} has an interesting
idea of multilevel specification, the con-
cert has not been worked out in sufficient
detail to support the development of such
specifications. There are two important
issues in a2 multilevel specification where
the lower level implements the upper level.

1. fThe procedural aspects of the implemen-
tation mappings need to be expressible
in the (declarative) language of the
lower level specification ana

2. 7The presumption of atomicity as regards

the upper level state-changing opera-
tions needs to be justified in light of
its violation in the lower level
specification.

consistency with the specifica--

80

As part of our work in this study we experi-
mented with constructs to specify database
serializability wusing a two level specifi-
cation. We introduced the concept of a
state machine trace or history to solve 1.
Wwe found that the required justification in
2 was similar to database serializability.

Consjistency and Security As mentioned ear-
lier, a unified approach to database con-
sistency and security was established. Both
can be expressed in terms of database con-
straints. Thus security requirements can be
specified and evaluated with constraint
mechanisms already available in some data-
base management systems. ;

We explored various issues involved in the
maintenance of consistency of a distributed
database in a perilous environment and the
conflicts between concerns for consistency
and concerns for security. We proposed the
concept of flexible evaluation of database
constraints as a means of addressing both
problems. We suggest three kinds of flexi~
bility: deferred evaluation of constraints,
alternative actions in response to a viola-
tion, and a more general notion of a con-
straint - one which allows for exceptions.

In the case of deferred evaluation of con-
straints some updates are allowed without
consistency checking. The new data is
marked as unreliable. At some later time a
process checks for consistency and restores
it if necessary by deleting some or all of
the marked data. This approach could be use-
ful in resolving conflict between the needs
of security and consistency when consistency
constraints span security levels. The
potential flow of information between secu-
rity levels would be avoided or reduced by
deferring evaluation from update time to
say the end of the day. ‘The same mechanism
could be useful in battle situations where
security leaks are of secondary concern com—
pared with real time requirements. In this
case the checking of security constraints
would be deferred. ’

Task 3 Fault Tolerance

This task was led by Douglas Weber of ORA.
A few hicghlights of the report, "verifica-
tion of Fault Tolerance" [13], follow.

In this stuuy we were concerned with a
declarative, rather than procedural, defini-
tion of fault tolerance and what steps must
be taken to prove that a system design in
fact has such fault tolerant properties.
Mean time to feilure, a common measure of
fault tolerance, was not appropriate in this
context since it depends on the operating
environment of the system, not the design.
We dealt instead with the concept of "fault
scenario."™ A fault scenario is a history of
a system's interaction with its environment

"whicn includes not only its inputs and out-
.puts, but also a description of failures. A

system's environment will determine whether

or not a particular fault scenario occurs,
usually in a random way. Therefore, a
system's environment "assigns" probabilities
to each fault scenario. Mean time to
feailure is determined by the probabilities
of fault scenarios for which the system is
not "tolerant."

Our treatment of fault tolerance in this
study was only minimally concerned with
strategies, designs,
implement fault tolerant systems, and only
then as examples to show why a particular
definition of fault-tolerance is relevant.
We considered verification of fault toler-
ance to be a proof that a system design sup-
ports a given set of fault scenarics. We
have not dealt with the problems of insuring
that a system meets the requirements of its
design.

Our definition of fault tolerance is similar
to the noninterference definition of secu-
rity. 1In essence it says that the system
behavior in the presence of a given fault
scenario is the same as the behavior in the
absence of the faults of that scenario,
wheré behavior is defined in terms of inputs
anad outputs.

lMethods for implementing fault tolerant sys-
tems are different from the access control
methods for implementing security because
faults are not external events and therefore
it is not possible for a system to dGecide
immediately whether they are fault events or
not.

Fault tolerance is usually implemented by
redundancy. Therefore one simple way to
specify fault tolerance is to specify the
redundancy of state information in the
design. A design is fault tolerant if it
correctly maintains the redundancy as an
invariant even in the presence of the speci-
fied faults. ‘

Our approach to specifying fault tolerance
involves specifying a set C of fault
scenarios, With this approach it would be
useful to have a way of specifying a grace-
ful degradation property to the effect that
fault scenarios only slightly worse than
those specified will not reduce the system
to chaos. Graceful degradation can be
defined in terms of limited interference.
Then we can use the same approach to speci-
fying graceful degradation as teo fault
tolerance. A set of faults C' that includes
the faults close to those in C is defined.
An appropriate invariant for C' will result
from a weakening of the invariant for C. -

We experimented with modeling an example
using HDM, It was possible to specify a
particular redundancy design but it was also
clear that more support for the concept of
history or trace was called for.

and alogorithms used to-

: 4 Existing fools anc Methodologies

This task is led by Dan Halpern of Sytek.

v All members of the team are contributors to

81

the study. We report here mainly on work
aone at Sytek.

A Formal Specification Language for Distri-
buted Systems For the short term tools we
expect to develop a distributed system
specification language (DSL) to deal with
the issues which confront us: object-
oriented design, concurrency, ané hierarchi-
cal design. We are familiar with HDE as
enhanced by the Muse tools [7] and with Ver-
langen [1C] and these will serve as a basis
for our development of DSL.

Aspects of object-oriented design and
specification of concurrency have been
worked out in Verlangen. We have thought
about how to modify the concept of an HDM
mocdule to be compatible with Verlangen's
class and process concepts. Such an evolu-
tion of HDM seems natural and nonprob-
lematic.

We are experimenting with the HDM concept of
specification levels. HDM envisages a
hierarchical development where each level of
the hierarchy represents a state machine.
In the HIM concept a lower level machine
implements the next higher level. The con-
cept is similar to what is used in computer
and network architecture. Levels are to be
tied together by implementation mappings.
These mappings preserve the specification
constructs, i.e. types are mapped to types,
state-variables to state variables, opera-
tions to operations, etc. Mappings for
operations involve procedural constructs;
all the other mappings are expressed in a
declarative language. Typically the mapping
images of the nonprocedural parts of the
specification will be characterized by
decreasing levels of abstraction. Theoreti-
cally, the lowest level of specification
will involve types and other constructs
which correspond directly to the ingredients
of the target higher—order lanquage (HCL).
If the mappings are also expressible in the
H,, the multilevel specification could be
converted directly into code in such a2 way
that the layers of the specification become
layers of the implementation. In practice,
this perfect mapping from specification to
code is unlikely for at least three reasons:
1. Restricting the specification of map-
pings to implementable constructs may
be too constricting.
2. The specification is likely to follow
the imperatives of formal specification
and verification and these are not the
same as the imperatives of efficient
code construction,

Furthermore, the HDNM concept that the
specification is composed of levels
which are complete machines seems to be
unnecessarily rigid.

Nevertheless, the introduction of procedural
constructs into the specification should
allow the specification to get closer to the
code level than it could without such con-
structs. Thus some implementation issues
can be addressed with such specifications.

Formal Yechnigues and Software Engineering

We understand and subscribe to the widely
held belief that the economical development
of reliable software depends on a develop-
ment process which pays attention to mainte-
nance, reusability, and extendibility. We
believe that object-oriented design is
currently the best design paradigm for sup-
porting these goals directly. A persuasive
case is made by Bertrand leyer [14] .

We also subscribe to the belief that reusa-
bility of code implies specification
reusability and in turn, that this regquires
formal specification of interfaces. Thus we
see two somewhat different requirements for
‘formality: those of formal verification and
those of formal specification of interfaces
to support evolution of software. We also
believe that formal verification plays only
a small part in the development of reliable
systems., Certainly, given the current state
of formal verification, the other-parts of
the development process are more important
in the sense that if these are faulty the
verification can be rendered useless, but if
these are done well, a faulty vexification
will not degrade their impact. The result
of these beliefs is a commitment to pay much
attention to software engineering not only
for the usual reasons but also as an
integral adjunct of formal verification and
as a process that can benefit directly from
formal methods.

Therefore, in this task, besides reviewing
existing verification systems such as Gypsy
[15], EDM~-Muse, FDM [16], and Verlangen and
specification paradigms such as CSP [17] we
are exploring different aspects of software
engineering. ORA is looking at Ada support
environments. CCA is investigating DBMS
design systems. RCA is looking at confi-
gur ation management.

Sytek is involved in a survey of software
engineering environments. Many of the tools
we have investigated concentrate on direct
support for the development of code. The
production of specitfication is only inciden-
tal to code development. We need a paradigm
which emphasizes the specification as an end
product and preferably one that permits a
gradual hierarchical development from
specification to code. Eiffel [18]
developed by Interactive Software Engineer-
ing of Santa Barbara appears to be an ideal
choice. It achieves the desired development
goals by supporting a rich version of object
oriented design and programming. Further-
more, it achieves a crucial form of flexi-
bility in that it has a form of target
language independence. The system can
accommodate any programming language that
can be called from C. Thus an Eiffel
specification/program has an interesting

82

reusability feature - namely it can be
reused with aifferent degrees of complete-
ness. If one needs or wants to use a qif-
terent programming language but likes the
specification and structure of an Eiffel
program, it is only necessary to rewrite the
low level code in the new language. 7The new
implementation will have the same runtime
and testing support from Eiffel as did the
original. Thus Eiffel can be used as a FPFDL
for Ada programs.

This kind of partial reusability appears to
offer greater promise than a more rigid form
of reusability. One obvious limitation on
reusability of code is the multitude of pro-
gramming languages. Although this proli-
feration is decried by some and attempts
have been made to enforce a standard such as
Ada, there is good reason to believe that
programming languages, like natural
languages, are destined to be with us in
abundance. The Eiffel paradigm attempts to
live with this reality and in so doing
offers possibilities of more success than
paracigms which assume that reality will
change to accommodate them.

For us, Eiffel suggests an intriguing direc-
tion for the scenario outlined above. Our
development of DSL will involve numerous
cdesign choices concerning such things as
multiple inheritance, generic types,
polymorphic types, and static type checking.
These choices have already been resolved in
the design of Eiffel. Furthermore, Eiffel
contains the rudiments of formal specifica-
tion and a paradigm that uses inheritance to
support hierarchical development from
specification to code. To the extent that
we can abide by the decisions made in Eif~
fel, our language could eventually be incor-
porated into Eiffel as an enhancement. Of
course, things are not likely to go so
smoothly so a combined system, DSL and Eif-
fel, is likely to involve changes to Eiffel
as well. Nevertheless, if the marriage goes
well, we will have a short term workbench
and perhaps a long term design far more
valuable than we had a right to expect when
we wrote our proposal in April of 1Y&6.

Conclusion

Underlying this project is the belief that
an environment for developing secure distri-
buted systems which includes both formal
methods and traditional software engineering
can be developed. 2Although the belief is
still far from vindicated, our initial work
supports optimism in this regard. Further-
more, it appears that the attempt at this
type of development in the context of
addressing the needs of secure distributed
systems can have a beneficial impact on the

. state-of-the-art in formal specification.

[1]

[2]

[31]

[4]

[5]

(6l

(7]

[&]

[9]

[101]

[11]

(121

[13]

[141

[15]

REFERENCES

L. Robinson, K.N. Levitt, and B.A.
Silverberg. "HDM Handbook," Volumes
I-II1I, SRI Computer Science Labora-
tory, June 1Y7Y.

B. A.

Silverberg. "An werview of the

SRI Hierarchical Development Methodol- |

ogy," SRI Computer Science Laboratory,
July 1980.

B.A. Silverberg, W.D, Elliot, and D.F.
Hare. "Revisions to HDM and its
Tools," SRI Computer Science Labora-
tory, October 1981.

N. Proctor, "The Restricted Access
Processor, An Example of Formal Verif-
ication," IEEE 1985 Symposium on Secu-
rity & Privacy, April 1985.

N. Proctor and S. Owre, "Restricted
Access Processor Verification Results
Report, " TR-84002, Sytek Inc., July,
1985.

S. Owre and J. D. Halpern, "Muse: The
Sytek Proof Processing System," TR-
85007, Sytek Inc., July 1985.

J.D. Halpern, S. O+#re, N. Proctor anda
W.F. Wilson, "Muse: A Computer
Assisted Verification System," IEEE
1986 symposium on Security & Privacy,
April 19&6.

BEN Laboratories and Cdyssey kesearch
Associates, "The Secure Distributed

Operating System Project,
tories Incorporated, July 189.

D.E. Britton, "verlangen: A verifica-
tion Language for Designs of Secure
Systems," Proceedings of the 8th
DOD/NBS Computer Security Conference,
September 1985,

RCA, "Verlangen Langquage Guide," RCA
Aerospace and Defense Advanced Tech-
nology Laboratories, October 1986.

ORA and RCA, "Temporal Properties of
Distributed Systems," Technical Keport
TR87003 DS, Sytek, Inc. April, 1987.

CCA, "Database Consistency and Secu-
rity," Technical Report 1R87004 DS,

Sytek, Inc. May, 1987.

ORA, "verification of Fault~
Tolerance," Technical Report TRE7002
bS, Sytek, Inc. - April, 19%7.

Bertrand Meyer, "Reusability: The case

tor Object Oriented Des1gn,“ IEEL
Software, March 19&7.

D. Good, "Revised Report on Gypsy
2.1," Institute for Computing Science,
the University of Texas at Austin,
1984.

" BBN Labora-

83

[lel

[171

[181]

R. Kemmerer, "FDM - A Specification
anda Verification Methodology," Systen
Development Corp., November, 1980.

C.A.R. Hoare, "Communicating Sequen-
tial Processes,™ Prentice-~Eall Inter-
national, UK 1985.

B. Meyer, "Eiffel: Programming for
Reusability anad Extendibility,"
Interactive Software Engineering,
Inc., January, 198&7.

K

SPECIFICATION FOR A CANONICAL CONFIGURATION ACCOUNTING TOOL

R. Leonard Brown
Computer Security Office, M1/055
The Aerospace Corporation
P.O. Box 92957
Los Angeles, CA 90009

The Trusted Computer System Evaluation Criterial includes the requirement that
design documentation and source code of a B2 or higher class computer system be
kept under configuration management during development and maintenance of the
system. Furthermore, new releases of evaluated systems that are submitted to the
National Computer Security Center (NCSC) for re-evaluation as the same class
(maintenance of ratings evaluation) must have been kept under configuration
control since the previous evaluation. As an aid to evaluation of other
configuration accounting systems for use in development of a secure system, a
canonical Text and Code Control System (TCCS) has been defined. This paper
describes the system. This system is not intended to be built, since it is not fully
defined here or in the draft guideline, nor does it have all the functionality of some
existing systems. Rather, the TCCS is presented as a reference standard that a
product that is under consideration for development or purchase can be compared
against. The use of TCCS, or a similar tool, as an integral part of the software
development cycle is described.

1. Introduction

The Aerospace Corporation has prepared a draft guideline? on configuration
management for operating system software and computer hardware that describes
the minimum configuration management effort required at the B2, B3 and Al
classes of the Trusted Computer System Evaluation Criterial. This guideline also
recommends higher levels of effort for all systems submitted to the NCSC for
evaluation. As part of the research conducted during preparation of the draft
guideline, several existing automated configuration accounting systems were
examined. Two were found to be in common use and also sufficient for the
recommended level of configuration accounting. These were the Source Code
Control System (SCCS) which runs under the Unix” operating system, and the
VAX DEC/CMS (Code Management System)™*online library system, which runs
under the Digital Equipment Corporation VMS operating system. Both require
the use of additional programs, make in the case of SCCS and VAX DEC/MMS
{Module Management System) in the case of CMS.

Major features of these utilities are incorporated into the specification of TCCS.
TCCS is intended as a reference standard against which one can compare
prospective configuration accounting tools. If one can perform the same
operations as are performed by a function in TCCS by using at most a few basic
functions of the proposed system, and if the database entries contain
approximately the same information that a TCCS directory and its files contain,
then that system would allow an appropriate level of configuration management to
be applied to development of a secure computer system.

1.1 Organization of Paper
The paper consists of the following sections. Section 2 describes the functionality
of SCCS with make, and then that of VAX DEC/CMS with DEC/MMS. A
recommended feature that neither system includes is described at the end of
section 2. Section 3 has two subsections. The first describes the syntax and
functionality of the basic calls of TCCS. The second gives implementation notes
for the system. Again, this is not-because it is intended that TCCS be
implemented, but if a product is being evaluated for use with a particular
development machine and its operating system, one would have to hypothesize
“how TCCS would be implemented on that machine and operating system in order
to compare it to the product being evaluated. Section 4 describes

"Unix is a Trademark of Bell Laboratorics

**VAX is a trademark of Digital Equipment Corporation

how TCCS would be used during the development of a project which was subject
to the requirements of DOD-STD-21673, Defense System Software Development.
This does not mean that the NCSC will require that secure computer systems be
developed to this government standard, but this standard is well known and is
similar to the software development cycle used by many vendors. The Appendix
contains the Backus Naur Form for the simple grammar of TCCS; these calls
would typically invoke a particular interactive function which would then prompt
the user for the information required to complete the operation. On some systems,
a command processor would have to be invoked first; on other systems, the
functions could be called from the top level command interpreter. The intent of
including the syntax specification is to show what parts of an instance of TCCS
are dependent on its implementation and which depend on the operating system.

2. Existing systems

A number of software developers have created the kind of automated document
control facility that proper configuration accounting requires. Text, both from
source code and from the other documents involved in the development of
software and hardware, can be entered and modified only through use of the
automated system, although any programmer can get a working copy of the
current developmental configuration for purposes of modifying the source code or
documentation, or testing the latest version of the software. Updating the source
code or document must be done only by personnel with permission to make such

updates. The examples discussed below are partially dependent on the
discretionary access control mechanisms of their existing system, but each system

records who made each update; in addition, a reason for update may be asked for.
In addition to the existing systems described here, most commercial database
management systems (DBMS) can be used for configuration accounting by
creating a front end processor that interfaces to the query language processor of
the DBMS. If a DBMS is used, then it must have only read or write access to the
records, and all updates must be made through its query language.

To motivate the list of general functions given below in section 3.1, a description
of two similar systems is given here. Under the Unix™ system, the make utility,
and the elements admin, get, prs and delta which comprise the Source Code
Control System provide a basic configuration accounting system. The Module
Management System (VAX DEC/MMS) and Code Management System (VAX
DEC/CMS) which run under the DEC VMS operating system provides similar
facilities. In fact, MMS is modeled after make and has an almost identical syntax.

2.1 Unix™ sCCS

The SCCS system runs under the Unix™ operating system. There are several
good references on it, including an overview? and a manuat®, The steps of
configuration accounting corresponding to the life cycle steps described in DOD-
STD-2167 require a series of function calls from the operating system shell.
Initially a directory is created using the mkdir function. At this point, it is possible
to use the owner, group, world protection scheme provided by Unix™ to protect
the directory. In addition, a list of login identifiers is created to specify who may
update each element to be processed by SCCS. Some protection strategies are
discussed below.

For notational purposes,.each entry in the directory is referred to as an element.
Following directory initiation, each document is entered initially using the
function admin -n (the -n modifier specifies this is a new element). Aseach
update is made to an element, a new generation of that element is created. SCCS

calls each new generation a delta. Each element is stored in a file by SCCS, and
the filename is prefixed by s.; any files added to the directory that do not meet this
requirement are ignored by the SCCS function calls. A number of arguments may
be specified when admin is called. These arguments specify parameters that
affect the file, and may be changed by a subsequent call to admin. For example,
one such parameter indicates whether branches may be created for an element.
The alogin argument is used to create the equivalent of an access control list by
listing login names of users who can apply the deita function to the element, thus
creating either a new generation (delta) or a variant branch. Setting the v flag
causes a prompt for MR (Modification Request) numbers to be issued on any
update. The admin function is also used to change any flags or parameters.

During the initial writing of source code, the programmer keeps the code in his
own directory until it will compile and pass a few simple unit tests. The initial
release, or initial delta, of each code module is inserted into the SCCS directory by
means of the admin -n function. The programmer may update each such module
by using the get -e function which indicates that the module will be edited, and
then the completed document will be reentered into the directory using the delta
function. As long as the module being edited was extracted from the SCCS
directory using get -e, it can be returned to the library using delta, and all
necessary update information will be entered with it, including the MR number if
admin v has been called to set the v flag. The get function can be used to extract
a copy of any document, but after it is edited it cannot be reentered into the
directory. Get is useful for printing out copies of documents, running test
compilations when some other module is being modified, or to allow more than
one team member to work on the same document since the project manager can
then use get -¢ and delta to enter the final, approved changes.

When the code is to be tested, make can be used to generate a test build. This
function looks for a file named makefile in the current directory and tries to create
a new version of the file named on the first line. Since this is usually an

executable file, it checks to see whether all the object files needed by the loader to
create this executable file are up to date, which is only true if the source files are
up to date. In other words, the makefile gives the dependencies of an executable
file, and makes sure the last modified date of any file is the same or earlier than
that of any file that depends on it. When such is not the case, the contents of
makefile specifies what action to take, or if no action is listed, searches a list of
default actions. For example, if kernel.o, an object file, must be updated because
kernel.c is newer, then make will automatically run the C language compiler on
kernel.c. If the source files are kept in the SCCS directory, then make must get
the needed source files from there. A .DEFAULT entry in the make file can be
used to apply get to all needed source files if any of the object files require
updating.

Another concept that is useful in integrating and testing software is that of the
software build. During the testing phase of software development, a subsystem of
modules can be integrated into a single executable load module and tested.
However, while this testing goes on some of the source files may still be under
development. Testing a software build requires a stable set of files. SCCS and
make can handle this in one of two ways: cutoff specification and branching. If no
source files will be modified during the testing, even to correct minor syntactic
errors, then the makefile that creates the build can specify on the get function that
only deltas made by the testing start date are to be included. Thus, the same
versions of the source code are always retrieved. Alternatively, if some minor
debugging will be allowed during the testing, while the development team
continues to work on the source code so it will interact correctly with a later test
build, then each element of the source code can be split into two or more

branches. One branch will only contain the minor debugging changes made by
the testing team, while the other branch will contain changes made by the
development team. When testing is finished, all changes made during testing
must be incorporated with the current development team code.

85

SCCS provides the capability to specify a software build by the way it assigns an
SCCS Identification number (SID) to each output of the delta function. Then one
can gel any version of a text or source code file by specifying the appropriate SID.
The form of the identifier is R.L[.B[.S]] where each of R, L, B and S is an integer.
R stands for the Release number, which is initially 1 and must be forced to
increment by a specific user action. L stands for Release Level. The project
manager may decide to aliow several branches to be created within the same file,
either with the intent of later incorporating these branches into the same
document, or of having a different branch for each possible hardware
configuration, or each possible subset of peripheral devices, or for some other
reason. In that case, the optional B stands for the branch designator and, for each
branch, the S stands for the sequence number. Straightforward rules define how
to specify the particular SID desired when get is called. If no SID is specified
then the latest release and level is provided. A branch must be explicitly named as
an argument to get for it to be retrieved. The SID of the resulting call to delta is
also affected by the SID used when get -e is called. A table showing these rules is
provided in the description of the gef function in the Unix™ Programmer’ s
Manuals,

Two versions may be incorporated using the get -i list function, specifying the
most recent sequence number of each branch. The user who executes this will be
notified of any conflicting modifications and must handle these interactively.

The function prs allows for configuration audit, since it extracts information from
the s. files in the SCCS directory and prints them. Prs can be used to quickly
create reports which list one or two important values, such as last modified date,
for many SCCS files, or many values for one or two files. Larger reports can also
be created and processed using an editor.

2.2 VAX DEC/CMS and DECMMS

The configuration accounting system called VAX DEC/CMS? is also used to track
a history of each text file stored in a CMS directory, but CMS does significantly
more auditing and cross checking than SCCS does. For example, if an editor is
used directly to modify a file in a CMS directory, any further use of that file by
CMS generates a warning message. Any files entered into a CMS directory by
other than the CMS utility will cause CMS itself to issue a warning message when
it is invoked for that directory. Otherwise, the process of configuration

accounting is similar to that used with SCCS.

The CMS CREATE LIBRARY function causes a directory to be set up, and initial
logging to start. The project manager enters each element into the directory by
using the CMS CREATE ELEMENT function. One must RESERVE an element
of a library to modify it, and it can be put back into the library only by using the
REPLACE function. If someone else has RESERVEd an element between the
original programmer’s RESERVE and REPLACE calls, a warning is issued to
both programmers and the occurrence is logged. To get a sample copy of text,
such as a program source, the FETCH function will generate the latest generation,
or any specified generation, of an element, but will not allow a modified copy to
be reinserted into the library. The SHOW function can be used to audit the
information about each element in the library.

MMS is almost identical to make, even down o using the default name makefile
if its first default description file DESCRIP.MMS is not in the current directory.

Differences between SCCS and DEC/CMS appear concerning software builds. In
Unix™ a build must be either described in a makefile, or else each element to be
used in a build must be retrieved from the SCCS directory using get, placed in
another directory, and the makefile then may refer to these source files to create
the executable build. In CMS, the process of selecting only a subset of source
files, including some which are not the most current, is automated by the use of
the class and group mechanisms. To see how this works, one must understand the
CMS concepts of generations and variants. Each generation of a file corresponds

http:R.L[.B[.SJ

10 2 Unix™ delta. Generations are normally numbered in ascending order. CMS
also has the capability of creating a variant development line to any generation by
specifying in the REPLACE function a variant name. For example, if one
RESERVE;s generation 3 of an element, then performs a
REPLACE/VARIANT-=T, this will create generation 3T1 which may then be
developed separately from generation 3. The first time this is used, the equivalent
of an SCCS branch delta is created. Branches themselves can have branches, a
capability that SCCS does not have.

A group can be defined within a CMS directory, using the CMS CREATE
GROUP and CMS INSERT ELEMENT functions. A group is composed of all
generations, including variant generations, of all elements inserted into the group.
Groups can be included within other groups. Groups can be defined with a
non-empty intersection so that they have overlapping membership. The
DESCRIPTION file used by MMS can specify the groupname in a CMS FETCH
function on the action line of a dependency rule. This would then fetch the most
recent generation of each member of the group, including all variants. This is not
all that useful during development since, as was mentioned above, the most recent
generation may be changed by the development team during the course of testing
a build. However, once all variants are removed and the CMS library has
stabilized, a CMS FETCH function on a group name might be useful.

A more interesting case is the CMS class, which consists of specified generations
of some subset of elements. The CMS CREATE CLASS function, together with
the CMS INSERT GENERATION function can be used to specify the exact
elements of a software build, and the DESCRIPTION file can then refer to the
entire class by using the /GENERATION=([classname] qualifier on either the
source or action line of a dependency rule. This makes the dependency
description files quite simple when using MMS with CMS since the build can be
defined within the CMS directory and controlled by the program manager or
quality assurance team. The makefile required by Unix SCCS can be much more

complex when it is required to describe a software build for intermediate testing.

2.3 The Bind Concept
One thing that SCCS and DEC/CMS lack is a way to enforce that a change to one

part of the library requires a change to other elements. For example, if approval is
received to change the algorithm which implements a particular function,
including a change in the code, more than just the code element itself must be
changed. Since no change has been made in the functional requirements of the
system, the top level documents need not be changed. But the code element, the
Top Level Design entries, any intermediate entries involving a description of how
the system functional specifications are met by software, any documents that
address how the system functions internally, and especially the test documentation
and test code itself must be changed. In existing software lifecycle models this
requirement is met by mapping each major function of the system down to each
lower level in the top down development of the system. This can be done
manually, but could be incorporated into the configuration accounting system as a
series of links between elements; change in one element would not only prompt
for the change authorization number that required the change, but would then lead
the manager or librarian who is making the changes to update every higher and
lower level document, prompting for the authorization number any time the
element is accessed until a response is incorporated into the element. Current
system can do this only by adding comments to elements that are intended to
remind the manager or librarian to make the responses.

3. A Canonical System

The TCSEC requirements and the standard texts in software configuration
management® 2 describe the functions that an automated configuration accounting
system should provide. Inspection of the two popular systems described in the
previous section suggests a workable syntax for an interactive system. These
features could be implemented as part of a new operating system under

86

development, or through macros in a DBMS running on the development system,
If the development staff is considering buying a system for configuration
accounting, this provides a checklist of functions to look for.

3.1 TCCS Functional Specification

The functions of the Text and Code Control System (TCCS), and their SCCS and
CMS equivalents, are summarized in Table 1. A more complete description of
each function is given below. The function name is in bold type, and arguments
are in italics. No control arguments are specified, both because different systems‘
implement these using different syntax styles, and because the basic TCCS system
described here is a minimal system, sufficient for configuration accounting but
with no added functionality. However, if TCCS were actually implemented,
considerations of efficiency and portability might require additional arguments.
o setup directory_name - Create a directory, or its equivalent in the

current operating system environment, including access control

information. The initial access control should be set with only read

access to the project manager, or the entire group if the operating

system allows for the group concept. Only the TCCS kernel should

have direct write access to the files. The creator of the directory, and

those team members whose names appear on the access control list

within each element, should be allowed to use the save function.

o enter element filename - Move an existing file into the configuration
accounting directory as the initial text of a document, source code, or
binary data element. Initially only the program manager would have
save capability to the file. The enter function should prompt for the
user identification of all team members who will also have save
capability. If the operating system does not have a group mechanism,
then enter should also prompt for all users who have read (actually
copy) access. The enter function may be reused without the filename
argument to update this information.

o edit element_specifier filename - Retrieve a copy of the specified
version of the element, and place it in a file of the same name in the

user’s current directory for editing. The default when only the
element name is specified is the latest version of an element. One
may also specify an earlier version or a branch version. The syntax of
an earlier or branch version depends on the naming convention used
by the save function. If more than one editor is available on the
system, this should act as a sort of preprocessor which reconstructs
the desired version without any of the TCCS header material
normally stored with it.

e save list_of _elements - save the file that was extracted with the edit
function back into the TCCS directory. If list_of elements is a single
element name, then save should inform the user of the version
number to be given to the new version and then prompt for any
modification to that default. This is how a new branch would be
initiated. If list_of elementsis a particular version specifier, save
will determine that it does not already exist, and that it is a valid
descendant of the element named in the corresponding edit function,
and assign that version specifier to the new version. If two or more
branches are to be merged, then all versions of element are specified
in list_of elements, all changes from the latest common root version
are applied, and any contradictions are signaled to the user. If the list
contains version specifiers that do not arise from the same element,
then an error condition is signalled and no other action is taken.

e copy element_specifier - create a printable or compilable file, based
on the specified version of element, which does not have sufficient
information to be edited and reentered into the library.

« audit element_list - The project manager, or anyone with read
privilege to the TCCS directory, can direct information about the
elements specified to be written as a report to the terminal, a standard
output device, or a file. The element_list can be a buildname or
bindname. The audit function prompts the user for the information
required and uses a default format for the output. One useful report

would be the list of elements specified in the buildname or bindname.
The format can be dependent on the output device. If sent to a file,
the report can be processed with a word processor or formatter.
There should be a default format, easily specified by the user, which
will produce a report in the same form as that produced by generate
(see below). This will allow the system to meet the TCSEC
requirement for an automated tool for comparing a newly generated
version with a previous version of the system.

o build buildname - specify a subset of versions of elements that can
then be named with a single buildname. The descriptive information
is kept within the TCCS directory, rather than externally.

o link bindname - create a list of elements which all must be changed,
or at least annotated, whenever one element is changed. In atop
down, tree structured development, this is the equivalent of a subtree
of the code structure. This is in contrast to a build, which is a
snapshot of a subset of nodes, none of which is a descendant of any
other, at a particular point in the development cycle. Also, a bind
includes the corresponding subtree of the documentation tree: design
documents, any related CM plan document(s), user or maintenance
manual entries, test documents such as functional and acceptance test
plans. It should also include the test code itself. Ata minimum, one)
bindname the designates the entire development tree should be
identified. Subsidiary binds could be identified for various subgroups
of the development team, or for test builds, or for variant versions that
are dependent on different hardware configurations.

o generate makefile - create a new load module using the precedence
information in makefile. This file could specify a buildname as the
source for a target executable module, indicating any versions of
source files within the build that are newer than the target must be
recompiled. If no makefile is specified, then all source language files
within the TCCS directory would be used to create a default
executable file, if that is possible. As a side effect, a report of which
source modules were recompiled, and which library or object
modules had been modified since last generation, is produced.

-7 % 3.2 Implementation Details
"'l 3.2.1 File Structure The implementation of TCCS depends on the underlying
.- operating system and its file structure. If the file system allows for creation of a
subdirectory, then each TCCS database would be in its own subdirectory. If
access control can be applied at the directory level, then the TCCS directory
should have read permission granted to anyone who needs access to the data, but
-’ write permission denied to everyone. Files within the TCCS directory should only
" be modified by the TCCS functions. Some systems allow this by giving the
: TCCS functions special privilege, similar to superuser privilege on Unix. Other
systems may not allow this, so the write permission would have to be placed on
the individual files.

Since the TCCS is meant for storing both source code and documentation, the files
should be able to handle all ASCII characters. Although it is intended that object
modules be kept outside the TCCS directory, using the generate function to
retrieve the source from the directory before compilation, there should still be a
way to store binary data. This would allow for documentation that includes the
output of graphic systems, such as files for a laser printer or output from a
graphics workstation or CAD system. If the filing system does not have a feature
that handles binary data other than object files, the TCCS should include this
functionality. Several techniques are available for this.

What files are stored in the TCCS directory also depends on what the operating
system allows. A suggested set would include exactly one file for each named
element. Information on how the various generations and updates might be
handled in given below. Each buildname would be stored in a separate file which
would include the element name and specific information on which generation of
which branch is to be included in that build. This would be created by the call to

build, and processed by generate. Since the concept of a build is new, possible
implementations for the build descriptor are given below. If the operating system
directory block does not contain sufficient information about files to maintain the
full functionality of TCCS, then a directory data file would be maintained within
the the TCCS directory. Intermediate files created while elements are being
processed would also be kept within the TCCS directory, and deleted after use.
Journaling, or audit, data could also be kept in a file. To minimize problems due
to system crashes, whenever an element file is being processed the actual
processing should be done to a temporary copy of the file, then the name changed
at completion of processing. This would also allow any function to be aborted
before completion.

3.2.2 Element File Contents The actual contents of each element file must allow
the recreation of all versions of an element, including earlier ones. If the system is
used only when a major, and approved, change need be recorded, then the
inefficiency that results from this requirement is not important since TCCS would
use only a small percentage of total development resources. The element file
requires some kind of delimiting character to differentiate the required variable
length fields. Using a single non-printing character, such as octal 001 (SOH), at
the beginning of each new section rather than different characters for each section
will minimize problems caused by having multiple reserved characters.

A number of fields are required. The original text, as entered by enter, should be
delimited. A field containing a list of users who are allowed to save this file
should be included unless the operating system access control is sufficient for this.
For each call to save, the information required to create the new variation from a
base text is required. This has been commonly implemented by specifying which
lines are to be deleted, and where to add lines that have been added i.e.
instructions for a line editor to change the base text to the current text. If the way
that build numbers variations makes it obvious which was the base text, then it is
assumed that this field describes changes to that text. If it is not so obvious what
the base text is, which might occur if users are allowed to create names for
variations, then the branch and generation that this new generation is based on
should be named. When the edit or copy function is used, each delta is applied in
order to the original text to create the new text, and when save is used the new file
should be compared to the base text and a new delta field created. A checksum
field can be used for data integrity.

3.2.3 Bind Specification Two methods of specifying the bind are possible: the list
method and the dependency method. In the list method, a list of all documents
related to a particular element is created. When the manager invokes the link
command with a new bindname, it prompts for the contents of the bind. If the
bindname already exists, it prompts for additions. An appropriate format would
be

namel

:: name2,name3, name4,name5;
where the right hand side lists all elements that might have to be changed if a
change is made in the element on the left hand side.

In the dependency method, a notation similar to that of the makefile syntax is used
to show that a change in an element may be propagated. Unlike a makefile,
however, such propagation may occur in both directions. For notational purposes,
define up to be towards the root System Requirements Specification, and down
toward code, then sideways can be considered an element at the same level on
another branch of the tree. Consider the example of a change in the algorithm
described or listed in a Top Level Software design document. A change in it
would propagate up to the Software Requirements Document, and down the tree
to the code document. However, a change in the test code would only propagate
sideways to the test documentation, and a change in the test documentation would
propagate sideways to the test code, and also up to the software test plan. An
appropriate format for the dependency in a bind would be

87

Figure 1 - Sample Document Dependency Graph
namel<->name2

namel->name3 ::éﬁ::::en“‘ < 5 R:g:::mts < N Rz:gware]
Specif’tion f{a> Specif’tion |b> Specif’tion o
namel<-name4
where each actual inter-element dependency requires only one entry. In the first T L l
example entry, a change in either element may require a change in the other; in the v v v
second entry a change in name1 may require a change in element flame2.but not z:;f;t;::e B ;y:;:: - N cﬁaﬁ::“
the reverse; the third entry shows that order can be reversed by using a different L —
symbol. See figure 1 for the partial graph of a simple project involving CPCI 1.1. ’ v : 3
Table 2 shows both the list method and dependency method entries in a bind P—— . — v
description for CPCI 1.1. Software Quality <—{ouality
Design Evaluation Assurance
Specif’tion Plan Plan
Thereafter, whenever an element of the bind is modified, all related elements are I) I
marked with the MR number and any invocation of that element will result in a v : !
message that MR number has not been incorporated into the element yet. If an - .
element is a member of multiple binds, the person modifying the element is g:;:;eg g::z;eg . :::::";;:n
queried to see which ones are appropriate to activate. For example, if the MR that]— .
Ied to a CCB approved change is known to affect only the subsystem of which the e T
element is a part, and a bind has been defined for that subsystem, then that bind v v v v
and not the total system bind can be named. CeCI 1.1 P CPCI 1.2 :; :1:: . 1 ;::2 ,
4. Use of Automated Tools in the Software Development Cycle J, ! VT l
. Unit Test Unit Test Integration
DOD-STD-21673 describes a standard reference software development cycle 1.1 1.2 test descr.
which a software developer should strive to emulate. This process can be assisted - >
by the use of a tool which implements the functions of the canonical TCCS v v
described above. The following sections describe how such a tool would be used System user [£> |System user £>|system user Software
during software development of a secure computer operating system. Document documeat 1.1 document 1.2 s d<1><=~ chapter|—> g:z::e .
names in italics are documents specified in the standard, and described in related
Data Item Descriptions. Hardware documentation and any drawings generated by Table 1 Equivalent TCCS, CMS, and SCCS functions
CAD equipment could also be included in the configuration accounting, but for
reasons of brevity, and because the example DOD-STD-2167 is a software TICCS cMS Sces
standard, their use is not described here.
setup CREATE LIBRARY mkdir
4.1 Requirements Development Phase enter CREATE ELEMENT admin -n
The system project manager initially sets up accounts for each programmer or edit RESERVE get-e
analyst involved in the project, and each programmer or analyst is given access to save REPLACE delta
a directory of text files, an editor and word processor/foﬁnatter. Sharing of work copy FETCH get
among team members should be easy to accomplish. During requirements audit CMS SHOW prs
development, each team member writes specific sections of the requirements build CREATE CLASS delta -rsid
document, following the format shown in the Standards and Procedures Manual. generate MMS make
If such a manual does not already exist, a draft version of it should be written by a link N/A n/a

small committee of experienced team members. If it addresses only code and not
the format of other documents, then the team leader should develop a format
consistent with the way the configuration accounting tool will store the eventual
text files. The Standards and Procedures Manual is the only document that need
not be entered into the TCCS database, although having an online copy, complete
with blank format examples, is desirable. List Method:

CPCI 1.1 :: CPCI 1.2, Unit Test 1.1

Table 2 - Bind Specification for CPCI 1.1 in a Simple System

For B3 and Al systems, the formal security policy model and the consistency CPCI 1.2 :: CPCI 1.1, Unit Test 1.2
proof are among the requirements documents generated at this phase. If an

existing model is being used, then this can be replaced by a reference to the Unit Test 1.1 :: Test Description 1
existing description. Unit Test 1.2 :: Test Description 1

. R Detailed Design 1 :: CPCI 1.1, CPCI 1.2
Once the project manager sees that each section of the document has been

completed by the assigned analyst, although still subject to change by the manager

or as the result of interaction with other team members, the manager uses the Dependency Method:

setup function to create a database. Each element of the requirements CPCI 1.1 <-> CPCI 1.2
documentation is placed in the database using the enter function. Documents that
depend on one another should be represented as a bind suing the link function.
Once this database has been created, the manager and team revise the documents, CPCI 1.1 -> Unit Test 1.1

88

CPCI 1.1 <- Detailed Design 1

http:Detail.ed
http:Eva~uati.on

possibly by letting other team members revise portions of each document. The -
process involved in doing this is straightforward. The manager allows all team
members who will revise a section to have read access to the appropriate
elements. Then the team member uses copy to get a copy of the element, an
editor to do the rewrite, and gets approval of the manager to reinsert the
document. The project manager uses edit to retrieve the document, uses the editor
to replace the changed sections with the approved files from his directory, then
saves the modified document. During the edit/save operation the database is
locked so that no one else can execute an edit function on that element. If every
team member were allowed to use edit then each document would have to be
broken into many smaller documents so that several team members could each
work on one section at a time. This is feasible for source code, but not desirable
for documentation. When the new section is saved, the automated tool
automatically notes what changes were made and who made the changes.

Once the documents are ready, the Configuration Control Board (CCB) reviews
the requirements documents. Any changes they require can be entered by the
team manager by using edit and save, giving the minutes of the CCB meeting as
the reason for the change.

4.2 Functional Specification

At the next phase of development, several documents are created. In each case,
the same procedure may be used for text documents as was used for the
requirements document. Thus, new database elements are placed in the system for
the Software Requirements Specification, the Interface Requirements
Specification, the Software Configuration Management Plan, and the Software
Quality Evaluation Plan. Atthe Al level, the Verification Plan is included. Each
element should be linked to its appropriate binds by the project manager. In each
case, enter, copy, edit, and save are used as above. Every use of save prompts
for a MR number if the document has previously been approved by the CCB.

4.3 Developmental Phase

During the developmental phase, the modules identified during the functional
specification phase are filled out, first with either graphical representations of the
algorithms to be used eg. flow charts, or textual representations such as
Programming Design Language (PDL). In the case of textual representations, the
same techniques may be used as for other documents. For graphical
representations, especially those produced on a separate device such as a CAD
workstation, the copy, edit, and save functions can be used over a
communications line connecting the workstation with the main computer. If such
a communications line is not feasible, then some kind of common medium such as
a floppy disk or tape will be used. In either case, the graphical representations
may still be kept under configuration control by the automated tool.

When coding starts, Configuration Identification comes into play with the naming
and numbering of modules. This can easily be enforced by the project manager
using the enter function. Each new element should also be linked into its
appropriate binds. Test modules are also generated for the simple tests used by
the programmers to unit test these modules. A typical sequence of interactions
with the TCCS database would proceed as follows. The manager enters a code
segment, giving the first line of the module including the module name and calling
sequence as described in the interface document. The manager also enters a blank
unit test module. He links them together, and links the code module to its
description. The programmer creates a copy of the document, fills out the code
with reference to a copy of the flow chart or PDL representation of the module.
He writes a unit test procedure that calls the module. He compiles both pieces of
code, executes the simple test, and continues the familiar debugging cycle. Once
the code passes the programmer’s unit tests, the project manager calls edit to
place the initial version of the module and unit test code into the database, or else
gives the programmer temporary permission to perform the same operation.

Once sufficient code has been generated, the test plan included in the Software

89

Quality Evaluation Plan will include some intermediate testable builds. The
Quality Assurance team members create makefiles that describe these builds, and
write the required tests using a procedure similar to that described above. The
generate function is used to create these intermediate builds. The build function
can be used to simplify the makefiles by creating buildnames for the test builds.
Once the whole build compiles and loads, the tests are run and any errors or
inconsistencies are noted.

Erroneous test results require debugging and modification. Since all the modules
are under conﬁguration control, debugging is not as simple at this stage as at
earlier stages. Each programmer must make sure that any changes made do not
affect other modules. Again, copy, edit and save are used to reprogram, unit test,
and replace modules. Once a build has successfully met its tests, the CCB meets
and approves all modules involved. Any further changes to a module requires
CCB approval and a MR number as justification.

4.4 System Integration and Testing

Once all intermediate builds are finished, the entire system may be tested. If the
system is to run on the development system, this is fairly easy. Itis slightly more
difficult if the system is being cross compiled to another computer. The Quality
Assurance team uses build or generate to create a test system, including
compiling the test routines. The tests are run, any anomalies are noted, and the
reports are sent back to the manager for disposition. This should be the first time
that requirements and functional specifications are considered for modification.
Some major requirement, such as timing or capacity, may not be met by the
system. In such a case, either the requirement must be loosened, or a major
redesign may be required for the system. Any change to requirements, design or
code must be approved by the CCB. Any change to requirements or specification
must be propagated through the design and code; any change to the specification
or design must be propagated through the code. The TCCS makes this propagation
easy since requirements can be traced up and down the chain of documentation by
cross references to other documents and code segments within each database
element.

4.5 Production Phase

Once the final build passes all tests, and after the NCSC team completes testing
and approves the design and implementation the configuration accounting
database is archived for reference purposes. A clean copy, without any historical
data, is made of all relevant documents. All design documents, such as flowcharts
and PDL descriptions, and all source code modules are also copied in a form
stripped of all historical data. Generate is used to produce production copies of
the system from this. However, Configuration Control does not end here; it
continues from this checkpoint. The clean copies of all code and documentation
are stored in a new database kept by the configuration accounting tool, and during
the maintenance phase any changes to code, specifications, design, or possibly
even requirements, if approved by the CCB, are entered into the database using
edit. The link function is used to describe the relationships between the user
manuals and maintenance manuals, the operational test suite, and the code source.

The functions audit and generate can be used to provide the facility to ascertain
that only intended changes were made to the system version being produced. The
audit function can be invoked to list all elements that have been added to the code
since the last version. All of these changes must have been controlled by the CCB
and only entered by appropriate personnel. Then when generate is used to create
an object tape of the system, it will create a report of which source modules had to
be recompiled due to changes since the last version. A comparison of these
reports would show any discrepancies if either the makefile had been tampered
with, or an unauthorized change had been made to a source file after
circumventing the TCCS system.

References

1. National Computer Security Center, ‘“Trusted Computer System
Evaluation Criteria’’, Tech. report DoD 5200.28-STD, United States
Department of Defense, December 1985.

2. R. L. Brown, ‘‘Configuration Management for Development of a Secure
Computer System’”, Tech. report in preparation, The Aerospace
Corporation, 1986.

3. Department of Defense, ‘‘Defense System Software Development’’, Tech.
report DOD-STD-2167, United States Department of Defense, 1984.

4. Kaare Christian, The Unix Operating System, John Wiley & Sons, 1983.

5. Computer Science Department, ““Unix Programmer’s Manual’’, Tech.
report 4.2 bsd virtual VAX-11 version, University of California at
Berkeley, 1983.

6. Digital Equipment Corpofation, “VAX DEC/CMS Reference Manual’’,
Tech. report AA-L.372B-TE, Digital Equipment Corporation, 1984.

7. Digital Equipment Corporation, ‘‘VAX DEC/MMS User’s Guide”’, Tech.
report AA-P119B-TE, Digital Equipment Corporation, 1984.

8. Bersoff, Edward H, Vilas D. Henderson, Stanley G. Siegel, Software
Configuration Management, Prentice-Hall, Inc., 1980,

9. 1. K. Buckle, Software Configuration Management, MacMillan Press Ltd.,
1982.

APPENDIX - Backus-Naur Syntax of TCCS
Implementation Independent Definitions
<session> =

<session body> end
<session body> = <empty>

| <session body> <function invocation>

<function invocation> 1= <setup invocation>
|<enter invocation>
|<edit invocation>
|<save invocation>
|<copy invocation>
|<audit invocation>
|<build invocation>
|<generate invocation>
|<link invocation>

<setup invocation> 1= setup <directory name>
<enter invocation> 1= enter <element> [<filename>]
<edit invocation> = edit <element specifier> [<filename>]

<save invocation>

1= save <list of elements>

<element> = <names>
<element list> = <list of elements>
| <buildname>
| <bindname>
<list of elements> i= <element specifier>

|<list of elements> <element specifier>

90

<copy invocation> - = copy <element specifier>
<audit invocation> _ ::= audit <element list>
<build invocation> ::= build <buildname>
<buildname> = <name>

<generate invocation> 1= generate <makefile>

<makefile> = «<filename>
<link invocation> 1= link <bindname>
<bindname> - . 1= <name>

Implementation Dependent Identifiers
<directory name> is a single identifier that satisfies the local operating system

syntax for naming a common group of files. In a tree style directory filing system,
this would be the name of a subdirectory. In aflat file system, this would be the
common prefix that all files in the group use.

<filename> is a single identifier capable of specifying a contiguous text or binary
file. In a tree structured directory filing system, this would be a (possibly
abbreviated) pathname. In a flat filing system, it would be the full name of the file
unless the operating system allowed part of the prefix to be assumed.

<name> is a default text string that the operating system command processor
would recognize as a valid argument to a function call. The name should be
passed intac. as a text string identifying the TCCS element or buildname to be
processed.

<element specifier> is a valid name, as above, plus whatever additional text is
required to specify a particular release or level of a main or side branch of an
element.

RACF IMPLEMENTATION AT PUGET POWER
Arturo Maria, PhD
Information Systems Consultant

Abstract

This document describes the approach
taken at Puget Sound Power and Light
Company to implement IBM’s Resource
Access Control Facility.

Introduction

During the past ten years, a very signif-
icant shift of focus has occurred in the
information processing industry. " This
shift of focus has emphasized not only
output and information deliverables, but
internal controls as well. Several forces
have contributed to this shift of focus
including federal statutory requirements,
state and local government regulations,
accounting and audit firms interpreta-
tions of data security/internal control
regulations and the micro-computer rev-
olution which has brought tremendous
computer power at a relatively low cost
-- power which can be used for legiti-
mate and illegitimate purposes.

To illustrate this shift of focus, the im-
pact of the Foreign Corrupt Practices
Act (or FCPA) should be highlighted.
This important Federal legislation en-
acted in the late 1970’s attempted to
bring accountability for un-ethical busi-
ness practices to corporate directors and
officers. However, amendments to this
act and interpretations by legal and au-
diting national firms extended this act to
cover not only un-ethical business prac-
tices but crimes involving computer re-
sources when these resources are not
properly protected. Thus, the impor-
tance of internal computer controls was
brought out of the technical realms and
into the boardroom where it became a
legitimate business concern -- the proper
place for this issue.

Data security and internal controls have
become corporate business problems and
not technical problems. Thus, our im-

91

plementation of information resources
controls had to be addressed first at a
corporate level and secondarily at a
technical level.

In our company, the need for a security
package was highlighted by our external
and internal auditors who commented
on the need to install security packages
and improve controls. This need was
further highlighted by federal and state
legislation such as the Privacy Act and
the Washington Computer Trasspass
laws (RCW 9A.52.110) which further
define Corporate responsibility -and
computer crimes.

These combined factors and cost/benefit
opportunities prompted management to
authorize the purchase of a data security
package and the creation of an Infor-
mation Systems Access Administration
group to manage the implementation of
the package and the daily management
of access requests and profiles.

This document describes the approach
taken at Puget in installing our data se-
curity package and the
problems/solutions associated with such
an implementation. A special note of
appreciation is extended to our Manager
of Information Systems Quality Assur-
ance, Jim Hall, for his support during
the early stages of this project. In addi-
tion, Roger-Deitz of Technical Support
significantly and enthusiastically con-
tributed to the success of this project by
developing/installing systems interfaces
and providing valuable input where
philosophical decisions were required.

Defining Corporate Policy and
Procedures

Since internal controls and data security
issucs are management issues, it was
imperative that our corporate manage-
ment clearly stated official corporate

policy on these issues. OQur corporate
policy on these issues is stated in our

Corporate Policy Guide Section 34
”Information|Data Security” which
states:

“All employees are responsible for
protecting, utilizing, and releasing
information resources of the Com-
pany in a manner consistent with the
direction and standards set by the
Internal Control Review Commit-
tee”.

In addition, CPG-34 further clarifies the
intént of this policy by stating that:

“Information Resources within any
company organization are property
of the company. The Company,
through its employees, has a respon-
sibility to balance the requirements
for information with the need to se-
cure its information resources from
the threat of willful or accidental
destruction, modification and unau-
thorized disclosure. Responsibility
for the security of information rests
with the individuals having pos-
session or knowledge of the infor-
mation”.

A major/key concept in this policy sec-
tion is the definition of Information Re-
source Administrators (IRAs) who are
directors and managers who have au-
thorized the creation and maintenance
of corporate data. These IRAs deter-
mine who can and can not access their
data. Therefore, Corporate Information
Systems became a custodian (and not
owner/administrator) of the data. If a
corporate employce needs access to a
specific resource, Access Administration
coordinates the signature approval proc-
css and forwards these requests to the
proper IRAs who subsequently approve
and/or deny these requests. Thus, Cor-
porate Information Systems became a
coordinator of access and not a decision
maker.

92

It should be noted that improper handling
andjor disclosure of information is sub-
Jject to disciplinary action as outlined in
our Corporate Policy Guide section 11
Ethics.

Access Request Procedures

Procedures delineating steps required to
request/grant access are described in our
Standards and Procedures manual: In-
Sformation Systems Guide section 102.

ISG-102 was created in order to docu-
ment procedures to be followed when
requesting access to online systems -- i.e.
TSO, ROSCOE, CICS, VM/CMS,
Model 204, etc. -- or other Information
Systems resources under the
custodianship of the Corporate Infor-
mation Systems department.

As discussed in CPG-34, the Company,
through its employees, has a responsi-
bility to balance the requirements for
information with the need to secure its
information resources from the threat of
willful or accidental destruction, modifi-
cation and unauthorized disclosures.
Central access controls are therefore re-
quired to secure these information re-
sources and protect them.

It should be noted that responsibility for
the security of information rests with the
individuals having possession or know-
ledge of the information. Therefore, ac-
cess control services are provided in
order to minimize improper handling or
disclosure of information.

Selection of a Package

A technical task force was formed in the
Summer of 1985 to evaluate access con-
trol software systems generally available
in the market. This task force was
composed of Quality Assurance, Data
Administration, Computer Operations,

Financial Systems, Applications Devel-
opment, Customer Services, Client Ser-
vices, Internal Audit and Technical
Services. The mission of this task force
was to develop a criteria which would
be used to evaluate access control soft-
ware packages that are currently avail-
able that would run in the VM
environment and the MVS/XA environ-
ment.

The overall strategy called for each re-
source manager/technical task force
member to provide a set of issues and
requirements for their specific area of
responsibility. These requirements
would then be used in order to evaluate
access control packages and make a re-
commendation to management.

The task force defined the original crite-
ria for selection based on requirements
that the selected software package must
have sufficient market share in order to
ensure that the vendor selected would
be able to support a multiple vendor
software environment. In addition, the
selected software package must run in
the MVS/XA environment and in the
VM/SP environment in order to ensure
protection for our overall environment,
restrict access to systems interfaces and
ensure that physical modifications to
shared resources would be recognized
across operating environments.

Based on these initial requirements, the
task force reduced the number of pack-
ages to three. They were ACF2, RACF
and TOPSECRET.

During the task force evaluation ses-
sions, it was noted that at the time
TOPSECRET was running in the VM
environment only in selected beta sites
environments and that the VM compo-
nent was not scheduled for general re-
lease availability until late 1985/early
1986. In addition, our external auditors
suggested that our environment should
not consider access control software
packages that are running in production
environments for less that one year.

Based on this criteria, the packages un-
der consideration were reduced to two:
ACF2 and RACF.

The task force developed a set of re-
quirements which were used to evaluate
both packages. It was found that both
ACF2 and RACF met all the technical
and end-user requirements formulated
by the task force. Several changes had
occured in the last 18 months
(1984/1985) which made RACF and
ACF?2 very similar in ease-of-use char-
acteristics and flexibility.

In addition, IBM had changed the
source code distribution policy for cer-
tain products under MVS/XA where the
source for operating systems modules
and other selected products is not re-
leased. Since ACF2 relies on non-
standard interfaces and front-end
modules, several ACF2 users speculated
that this change in IBM policy had
caused a problem for current and up-
coming releases. In addition, some
ACF2 customers and other industry
specialists implied that products such as
ACF?2 are in a period of transition since
most of their interfaces to the operating
system would have to be rewritten
and/or modified in order to accomodate
changes in MVS/XA.

With Release 1.7 of RACF, the differ-
ences in product philosophy and capa-
bilities are almost non-existent. This
was not the case in previous releases.
The net effect is that today, there is very
little difference between the products.
In addition, IBM declared RACF as a
strategic product and as such, an inte-
gration of the data managment, operat-
ing system capabilities and access
control facilities, we felt, is inevitable.

Therefore, the technical task force
unanimously recommended that RACF
should be selected as our access control
software package. A summary of re-
quirements developed by the task force
are included in the document entitled
“Access Control Software Technical

93

Evaluation” (August 22, 1985) available
upon request.

SYSTEMS IMPLEMENTATION

SYSTEMS SOFTWARE
INSTALLATION

Installation of the Operating Systems
components for both environments
(VM/SP and MVS/XA) is, in general
terms, a ‘by-the-book” process. Essen-
tially, IBM’s SMP procedures and VM
installation procedures are followed and
the components are properly instalied.

It should be noted that we we elected
not to implement a shared database en-
vironment, since the VM/SP and
MVS/XA environments are are not
totally integrated. In addition, we felt
that the risks associated with installing
a shared environment outweighted the
possible benefits associated with such an
implementation.

USER IDENTIFICATION

Once the operating system components
are installed, the next logical step is to
identify all system users. This procedure
necessitates a common method of iden-
tification. We elected to use a Zxxxxx
standard where xxxxx= employee num-
ber. By using the employee number,
RACF identification would remain con-
stant even if the employee changed
names, working locations or job titles.
By being unique, the employee number
also provided an excellent identifier that
could be used in tandem with Human
Resources supporting systems.

Once this standard was adopted, non-
standard userids had to be converted to
meet the Zxxxxx syntax. The first set of

systems users to be defined were our
TSO clients. TSO users were chosen
because the vast majority of them are
data processing professionals and the
TSO environment is supported by
RACF with minimal modifications.
This implementation was conducted in
a smooth and professional manner.

The second online system to be imple-
mented was the ROSCOE development
environment. Since ADR (ROSCOE’s
supplier) does not provide a RACF
interface, one had to be developed
internally to RACHECK userids re-
questing access. This ROSCOE signon
interface had to be
designed/implemented so it would work
with additional ROSCOE interfaces
which would perform submission of jobs
and data-set-access validation services.

Again, the implementation of this major
development sub-system was conducted
in a very smooth and professional man-
ner.

In conjunction with the implementation
of the ROSCOE/RACF environment, a
forced-signon policy was enacted. In es-
sence, our Company uses the NET-
WORK DIRECTOR product from
Northridge Software which manages
VTAM network access. This product
provides the capability to require a user
to logon to the system prior to being
presented an applications menu which
contains the major subsystems to be se-
lected -- i.e. ROSCOE, TSO, etc.

The NETWORK DIRECTOR performs
RACF validation and properly inter-
faces with all other online subsystems.
By requiring users to logon to the sys-
tems prior to being able to make a sub-
system selection, Access Administration
achieved a single systems image view of
online access requests -- a good place to
be.

The last two major subsystems provided
interesting challenges. IBM’s CICS has
a RACF interface. However, since the

94

NETWORK DIRECTOR performs
RACF validation for all CICS users,
CICS essentially relies on this validation
if a signon-table defined user requests
access.

Initially, Model 204 did not have a
RACEF interface. Therefore, Model 204
users were required to change their
Model 204 passwords when a RACF
password change was performed. We
expect this requirement to be eliminated
with the installation of the CCA/RACF
interface by Fall 1987.

SYSTEMS INTERFACES AND
EXITS

Once all online system users are identi-
fied, then all batch jobs can/should be
properly identified. TSO users are au-
tomatically supplied appropriate
userid/password parameters at submit
time via address-space authorization
propagation facilities in Release 1.7.
However, a need existed to insert these
parameters in the job card of ROSCOE
submitted jobs. This insertion was per-
formed by a locally developed interface
which provides
identification/notification services for
ROSCOE users submitting jobs.

In essence, all jobs submitted to the sys-
tem via TSO and/or ROSCOE are
properly identified with a valid RACF
userid and password. However, this was
not true of production jobs submitted by
Computer Operations/Operations Sup-
port. An interface had to be locally de-
veloped which would supply valid
production uscrids and passwords to
production jobs submitted. This inter-
face was locally developed and supplies
these parameters to production jobs
based on a batch control interface table
which has these parameters encrypted.
Since these parameters are supplied dy-
namically and available to the system
only, the need is satisfied and at the
same time the parameters are not uni-
versally readable.

An additional interface was developed
which provides RACF validation ser-
vices to ROSCOE users
importing/exporting datasets. In es-
sence, all dataset access requests are
properly RACHECKed prior to being
performed.

Other system interfaces, such as the
DMS/OS RACF interface, were
purchased/installed in order to provide
appropriate backup/recovery validation.

PROTECTION OF OPERATING
SYSTEM RESOURCES

Operating System libraries (SYSI,
SYS2, PUG) were subscquently RACF
defined and protected. These libraries
are universally readable but a RACF
exception occurs when someone outside
of Tech Support attempts to update
these resources.

As part of this implementation phase,
our Change Control environment and
Operations Support environment were
subsequently RACF protected in order
to prevent unauthorized access to these
resources.

PROTECTION OF PRODUCTION
APPLICATION SYSTEMS

Protection of the Personnel System

Our Personnel System was the first ap-
plication system whose access was con-
trolled in background and foreground
mode by our RACF profiles. As such,
this system served as a pilot project
which applied access control policy con-
cepts contained in our then recently ap-
proved CPG-34 Information|Data
Security.

In order to facilitate the protection of
these resources and minimize impact,
RACF profiles were defined in WARN

95

mode and monitored for approximately

one month. During this period, access
attempts were reviewed and researched.
Valid access requests were subsequently
granted and RACF profiles were modi-
fied. Subsequently, these profiles were
implemented in FAJ/L mode which de-
nied access to entities not defined in the
profiles access list. The result of this
implementation was a protected envi-
ronment for the Personnel System
(SPER) which allowed Human Re-
sources Department personnel appropri-
ate access to systems resources while at
the same time excluding non-authorized
users. This access management struc-
ture protects our company from unau-
thorized penetrations and willful and/or
accidental destruction of sensitive cor-
porate records.

In accordance with CPG-34, Vice Presi-
dent Human Resources, acting as the
Information Resource Administrator for
this system, was the approving entity
for access definition profiles.

Protection of the Payroll System

Our Payroll System was the second ap-
plication system whose access was con-
trolled in background and foreground
mode by our RACF controls. As such,
this system incorporated policy concepts
contained in our then recently approved
CPG-34 Information/Data Security.

Again, in order to facilitate the pro-
tection of these resources and minimize
impact, RACF profiles were defined in
WARN mode and monitored for ap-
proximately one month. During this
period, access attempts were reviewed
and researched. Valid access requests
were subsequently granted and RACF
profiles were modified. Subsequently,
these profiles were implemented in
FAIL mode which denied access to en-
tities not defined in the profiles access
list. The result of this implementation
was a protected environment for the

Payroll System which allows
Accounting/Payroll Department person-
nel appropriate access to systems re-
sources while at the same time excluding
non-authorized users. This access man--
agement structure protects the Company
from unauthorized penetrations and
willful and/or accidental destruction of
sensitive corporate records.

In accordance with CPG-34, Manager
General Accounting, acting as the In-
formation Resource Administrator for
this system, was the approving entitity
for access definition profiles.

Protection of the Customer Environment

Our Customer Services System (CSSR)
supports the Customer Services and Ac-
counting Departments. Information
provided by this system is vital to the
business functions of our company. En-
suring the integrity and control of this
data therefore is vital to day-to-day
Company operations.

In order to facilitate the protection of
customer services resources and mini-
mize impact, RACF profiles were de-
fined in WARN mode and monitored
for approximately one month. During
this period, access attempts were re-
viewed and researched. Valid access re-
quests were subsequently granted and
RACF profiles were modified. Subse-
quently, these profiles were implemented
in FAIL mode which denied access to
entities not defined in the profiles access
list. The result of this implementation
was a protected environment for the
Customer Services and Accounting de-
partments.

In accordance with CPG-34, Director
Customer Services and Manager Gen-
eral Accounting acting as the Informa-
tion Resource Administrators for these
systems, were the approving entitity for
access definition rules.

96

GENERIC PROFILES

All RACF profiles defined during this
implementation were GENERIC in or-
der to minimize resource consumption.

EXCEPTION REPORTING
SYSTEMS

Our Exception Reporting System (ERS)
reports violations and access to RACF
defined resources. These reports are es-
sential to Information Systems Access
Administration since they constitute our
primary source of access information
and provide information on the effec-
tiveness of RACF protection of Corpo-
rate Information Systems resources.
Daily Exception Reporting System
(ERS) runstreams execute SAS pro-
grams which scan SMF Data produced

in the MVS/XA system. These pro-
grams report RACF SMF records ac-
tivity and summarize information

provided by th RACF Report Write
(RACFRW). The consolidated excep-
tion reports detail access exceptions and
security violations which are reviewed
daily and microfiched.

- Daily Exception Reporting System
(ERS) runstream in the VM/SP envi-
ronment perform a similar function by
scanning VM data produced by the
VM/SP accounting system, and produc-
ing reports which highlight VM/SP re-
cords activity. These reports are
reviewed daily and microfiched.

Our weekly synchronization runstream
read the M204 personnel database and
compare its contents with the RACF
database profiles. Differences are re-
ported for further action by Information
Systems Access Administration.

Profile Synchronization
Procedures used to request/grant access

to Information Resources (see CPG-34)
require maintenance and update to a

variety of systems. Most, but not all of
these systems, are managed by our Ac-
cess Control Facility (IBM'S RACF).
However, a repository of information
indicating all access -- including
non-RACF such as Walker Interactive
access, M204 access etc. -- is required.
As a result, a RACF Users Database
System (RUDS) was developed. RUDS
is a SAS/FULL SCREEN PRODUCT
application which is used by Informa-
tion Systems Access Administrator to
track levels of access granted to all
RACEF defined users. Levels of access
granted include CICS security keys,
ROSCOE, TSO, and M204 capabilities
and other access authorities. RUDS re-
cords are updated by the RACF Ad-
ministrator as access authorization
forms are processed. The main objective
of RUDS is to have a central repository
that can be used as a reference point by
Information Systems Access Adminis-
tration and Internal Audit.

Summary

We believe the implementation of our
data security package (RACF) has been
a success because it addressed access
controls at a corporate level first and
secondarily at a technical level. As a
result, we have today a Corporate Policy
on Information/Data Security, request
procedures, and technical capabilities
which direct and control the company’s
information resources and manage ac-
cess requests and profiles modifications.
These achievements are highlighted by
RACF protected systems and applica-
tion environments, such as Payroll, Hu-
man Resources, and Customer Services
where appropriate access to systems re-
sources is granted to legitimate users
while at the same time excluding non-
authorized users. This access manage-
ment structure protects our company
from unauthorized penetrations and
willful and/or accidental destruction of
sensitive corporate records.

97

MANAGEMENT ACTIONS FOR IMPROVING DoD COMPUTER SECURITY

William Neugent
The MITRE Corporation
HQ USAREUR,
APO New York 09063

Tel.

Abstract: More attention should be
focused on current computer security prac-
tice in the field. Environmental factors
underlying current practice are (1) a
dedicated mode philosophy and (2) occa-
sional ineffective use of computer
security safeguards. To offset these fac-
tors, improvements are needed in both
training and field support. Technological
improvements can be harmful if they result
in a false sense of security.

INTRODUCTION*

During the last five years the focus
of attention in Department of Defense
(DoD) computer security activities has
been on redefining and expanding policy
and on encouraging the advancement of
technology. This is important work, and
it has greatly improved understanding of
computer security. The resulting improved
foundation of policy and technology should
lead to continued improvement of our com-
puter security defenses.

Now that we have a better under-
standing of where we want to be, it 1is
time to look more closely at where we
are., Only by doing so can we best plot
our course. Furthermore, the bottom line
is not policy or technology, but practice.
In order to better improve current prac-
tice, we must first scrutinize 1it.

REPORT FROM THE FIELD

A common perception in the DoD is
that system high operation is the normal
current security mode of operation. Much
attention is now focused on ways to
advance beyond system high operation into
multilevel secure (MLS) operation. Fron
the field, however, comes a different
view. In fact, the vast majority of
systems still operate in the dedicated
security mode of operation. This does not
necessarily reflect negatively on DoD
security. Rather, 1t is an important
aspect of DoD computer security that needs
to be understood.

A second aspect of current practice
is occasional ineffective use of computer
security safeguards. While there has been
no recent definitive review of DoD com-
puter security practice, there are cases
of systems in which:

¥This paper is derived from work per-
formed under contract F19628-86~C~-0001
for the United States Army, Europe
(USAREUR), Office of the Deputy Chief
of Staff, Operations (ODCSOPS).

98

ODCSOPS

011-49-6221-372710

Group passwords are used.

Passwords are not often changed and
are not well protected.

* Audit trails are not checked or
even kept.

File protection features are used
haphazardly or not at all.

* Copy commands are trusted to copy
unclassified files from classified
disks to unclassified disks.

Some systems are operating without having
been accredited. One report addressing
computer use by Defense contractors

lists operation without accreditation as
the most common deficiency, and notes that
the finding is probably equally applicable
to government computers'. Some systems
have not been certified by any systematic
process, other than the implicit certifi-
cation that comes from operational use.

Occasional cases are not sufficient
cause for alarm, and do not imply inade-
gquate protection of classified infor-
mation. Nevertheless, prudence suggests
the need for closer examination of the
current situation.

It is important to recognize that MLS
technology does not address these matters.
Indeed, the insertion of MLS technology
into this environment could create a
problem. In a dedicated mode system,
whatever human errors are made, the person
who ends up seeing the data is still fully
cleared and authorized. This is true
because, by definition, all users of a
dedicated mode system must be cleared and
authorized for all data in the system. In
an MLS system, often there is no longer
such protection against human error. If a
user accidentally labels Secret data as
unclassified, uncleared users might be
able to access the data. Furthermore,
some users tend to view MLS products as
magic, plug-in solutions. They are some-
times surprised to learn that these pro-
ducts need to be adapted for their
specific applications. If users do this
adaptation themselves, it is possible that
in doing so they will unwittingly subvert
some of the protective features of the
product.

Technology alone cannot be relied on
to satisfy the security needs of most DoD
users. Technology is merely one element
in a set of safeguards, of which the most
important element continues to be user

practice. Before technological safeguards
can be inserted into an environment, their
impacts must be examined in the context of
past and anticipated user needs and prac-
tices.

So, both to better understand our
current requirements and to better employ
technological improvements, it is
desirable to conduct a closer examination
of current practice. The next section
provides the first step towards such an
examination.

THE WORLD ACCORDING TO USERS

As noted above, two key factors
characterize the environment of many DoD
computer users:

° Dedicated mode philosophy

* Occasional ineffective use of com-
puter security safeguards

Probably the main reason so many DoD
computer systems operate in the dedicated
mode is that that is how the manual system
operated before the computer was intro-
duced. Much of the DoD has a dedicated
mode philosophy. In financial systenms,
separation of duties and knowledge are
usually considered to be the most impor-
tant security principles, and the compart-
mentation of knowledge practiced by
terrorist cells is well known. The DoD
does follow this principle, but the cells
sometimes tend to be large. DoD security
policy strongly advocates the importance
of need-to-know separation. For example,
Army Regulation (AR) 380-380 states that
"a serious violation potential exists if
all users are authorized access to all
data"2., Sometimes this emphasis is not
well reflected in the way mission re-
sponsibilities and knowledge are parti-
tioned and assigned, however.

This lack of mission-driven emphasis
on separation of duties and knowledge is
unfortunate, because computers change the
mission equation and can increase the
risks involved:

* An office of 20 people might
reasonably employ a dedicated
mode philosophy for most of its
work. A computer network of 500
people cannot.

" It takes awhile and might appear
suspicious to reproduce a large
classified document on a copying
machine. Disks can be copiled
quickly and without attracting
undue attention. Disk contents
can be quickly and easily trans-
mitted anywhere in the world
using equipment commonly found in
homes.

Often dedicated mode is unquestion-
ably the correct operating mode. This is
the case for many personal computers and

99

for systems that truly have no require-
ments for need-to-know separation. Where
dedicated mode is appropriate, it can
offer advantages. For example, in a de-
dicated mode system there is no need to
manage security access tables that, if
improperly managed, can deny access to
authorized users.

On the other hand, with the
increasing amount of information being
stored in computers and the increasing
number of users being granted access
through networks, dedicated mode operation
is becoming more risky. The management
challenge is to recognize when dedicated
mode is appropriate and when it is not.
The point of this paper is not that dedi-
cated mode operation is inherently
desirable or undesirable, but that the
decision must be made wisely.

The second factor characterizing the
environment of many DoD computer users is
occasional ineffective use of computer
security safeguards. Perhaps the one
thing worse than inadequate security is to
have inadequate security and not realize
it. Computers can contribute to this
misapprehension, because it is easy to
forget that computer security is dependent
on the people who use and administer the
computer. The discussion earlier in this
paper notes the existence of cases in
which safeguards are not used or are used
improperly. This is an aspect of DoD com-
puter misuse that cannot be ignored or '
assumed away.

Where safeguards are not effectively
used, reasons include the following: (1)
people make errors and take shortcuts, (2)
people have not been adequately trained to
use the safeguards, (3) people do not
appreciate the importance .of computer
security safeguards, (4) security resour-
ces are insufficient, and (5) technical
computer security safeguards can be
penetrated. Several words of explanation
are warranted to illustrate why insuf-
ficient security resources can lead to
ineffective use of safeguards.

Whereas industry is free to grow, the
DoD is not. In the DoD, it is easier to
buy an additional computer than it is to
hire an additional person. One argument
for buying computers has been that they
reduce the number of people needed.
Unfortunately, some DoD offices purchase
computers only to discover that the oppo-
site is often true. In the security area,
policy (e.g., AR 380-380, 1985) states the
need for additional security resources by.
mandating the creation of new roles such
as:

* Network Security Officer (NSO)

Automatic Data Processing Systenm
Security Officer (ADPSSO)

* Terminal Area Security Officer
(TASO)

People assigned these roles are respon-
sible for such tasks as establishing and
maintaining security databases (e.g., user
clearances, passwords, and access capabi-
lities; facility security profiles) and
maintaining and reviewing system audit
information. The problem is that these
roles are almost always assigned as addi-
tional duties and that the people assigned
the roles sometimes have insufficient
incentives, time, and training to fulfill
them. The impact is that computer
security safeguards can become ineffec-
tive.

Where the use of internal computer
security safeguards is ineffective, the
options are either to use the safeguards
more effectively or to place less reliance
on them. The management challenge is to
decide which option is appropriate. In
many cases, the latter approach is chosen
and the system is operated in dedicated
mode. There are many cases, however, when
dedicated mode operation will not suffice.
Furthermore, even with dedicated mode
operation, many information, personnel,
physical, communications, and emanations
security safeguards are needed. The
remainder of this paper presents manage-
ment actions for improving DoD security in
light of the user environment described
above.

MANAGEMENT ACTIONS

The management actions for improving
DoD computer security are fundamental and
can be simply stated: improve both
training and field support. Improved
training will help DoD personnel to better
manage and use systems. Improved field
support will enable improved independent
checks of field practices, and thereby
should also improve system management and
use. These actions are not a complete
management program - that is beyond the
scope of this paper. Nevertheless, the
actions are key steps that should be
taken.

Training improvements are needed both
in computer security training and in
overall security training. The need for
improved overall security training is fun-
damental. DoD mission training should
provide more emphasis and guidance on
separation of duties and knowledge. As
more people recognize the importance of
need-to-know separation, it will become
easier to justify the acquisition and use
of need-to-know controls (e.g., discre-
tionary access control mechanisms).
Meanwhile, some shared computers offer no
more protection than the shared safes of
the paper world.

The need for improved computer
security training in the DoD is pervasive.
It applies equally both to young enlisted
personnel {(who are often the users, opera-
tors, and maintainers) and to senior offi-
cers (who are often the planners and

accreditors, and sometimes the users as
well). Some DoD personnel still do not
know that there is more to computer
security than TEMPEST. They do not
understand the difference between dedi-
cated and system high mode. Some who know
a little about security think that the
problems will be solved by end-to-end
encryption. Others who have heard about
the Orange Book know nothing about the
advantages of volatile memory or remova-
ble hard disks3.

This lack of knowledge could give
rise to problems. For example, volatile
memory and removable hard disks can pro-
vide a periods processing capability (to
alternate operation between multiple
security levels) and can simplify physical
security requirements for the data (since
the disks can be locked in safes). ITf
procurements ignore these features, some
users might find it difficult to satisfy
their security requirements.

The key to a successful computer
security training program is to include
computer security training as an integral
part of both mission and system training.
This training will have to overcome the
skepticism that some people feel towards
computer security requirements, which
defend against threats that the people do
not consider significant. To overcome
this skepticism, training should present
convincing examples of why computer
security safeguards are needed. These
examples should involve easily understood
threats such as human error, rather than
arcane threats such as Trojan horses or
confinement channels.

Personnel turnover in the DoD is
high, due to frequent relocations. There
is a continuing need to quickly train new
users. To accomplish this, computer
security fundamentals should be stressed
during system familiarization and opera-
tion. For example, before being granted
initial access to a system, new users
should receive a computer security
briefing from the ADPSSO. As part of the
briefing, users should study and sign a
one or two-page statement summarizing the
major computer security rules for that
specific system, such as the following:

* I understand that the system is
authorized to process only data
classified Secret or below, and
that no Proprietary or Contractor
Excluded data may be processed.

* I understand the need to protect my
password and agree (1) not to write
it down and (2) to change it at
least every three months.

* I understand that all output must
be treated as Secret; until an
approved review procedure deter-
mines otherwise.

I .understand that floppy disks may
not be removed from the secure
area.

* I understand the Red/Black separa-
tion requirements for the system.
(Simple Red/Black separation guide-
lines were recently declassified,
and should be posted near the
system.)

More widespread emphasis on such simple
rules would improve computer security
practice in the DoD, especially in those
situations where users must begin using a
system without first having had any formal
training. Users cannot be expected to
know the prodigous number of rules that
constitute DoD computer security policy.
Therefore, emphasis should be placed on
those few rules that counter the major
risks.

The second management action fun-
damental to improving DoD computer
security is improved field support. The
day~to-day computer security war is being
~fought in the field. Yet, with the
increasing number of computers being
introduced into the DoD, the people in the
field are fighting a difficult battle and
need reinforcements.

The key people in the field are the’
computer security managers assigned
throughout the DoD. Thelr role is to
oversee the implementation of policy.
Unfortunately, the staffing of these offi-
ces has not increased commensurate with
the increased number of computers being
used for classified processing. Some
Major Commands with thousands of
classified systems have only one person
assigned to oversee computer security.

An important part of a computer
security manager's job is to coordinate
system acecreditations. Their review of
accreditation packages is often the only
independent examination of a system's
security. Yet some computer security
managers do not have the training or
resources to do their job. Since these
people could not begin to do the larger
job of system certification, typically
system buyers, developers, and integrators
are relied upon to evaluate their own
work.

The result is that every year some

DoD computers are placed into operation
without adequate security oversight. Some
systems are operating with no accredita-
tion at all. The accreditation process is
definitely not a meaningless paper pro-
cess. Computer security managers often
find problems during their accreditation
review, and system security is usually im-
proved through preparation of an accredi-
tation request. The accreditation process
might benefit from some streamlining, but
it is an essential process nonetheless.

Several steps can be taken to improve
the plight of computer security managers:

* Ensure that all system planners
are trained in computgﬁ/security
and that they know to consult with
computer security personnel early
in the system planning process.

If more systems follow the rules,
the job of enforcing the rules
becomes easier.

* Increase the staffing of field com~-
puter security offices. This will
be a difficult step, but it is a
necessary one.

Ensure that computer security
managers are adequately trained,
and give them frequent oppor-
tunities to update their training.

* Give computer security managers
the rank and recognition their
position warrants. Support them
in taking punitive action against
systems that operate without
accreditation or that do not com=
ply with approved approaches.

Some of these improvements in
training and field support will be dif-
ficult to implement, but efforts must
begin. There is a final recommendation
that is easier to implement and that
should produce near-term improvements:
the National Computer Security Center
(NCSC) should expand upon its continuing
assistance to field support personnel.
The NCSC is already providing substantial
assistance to the field via such means as
travelling training teams. The NCSC could
provide further assistance, however, by:

* Conducting a six-month study of
field computer security management
offices to determine (1) the state
of computer security in the field,
and (2) what field computer
security managers believe 1is
needed (by both themselves in
particular and the DoD in general)
to improve DoD computer security.

* Sponsoring the development of
additional simple management and
training tools to improve computer
security practice. (The NCSC has
already made some useful contri-
butions in this area, such as a
one-page summary of personal com-
puter security rules.) .

* Encouraging field computer
security management people to
attend annual NCSC conferences in
order to meet each other and to
present their views and exper-
iences.

Just as field personnel can benefit from
NCSC knowledge, so can NCSC personnel
benefit from field experience.

A brief examination of user environ-
ments in the field shows that:

* Dedicated mode operation is the
most common mode.

* There is occasional ineffective
use of computer security safe-
guards.

These findings suggest the need for a more
thorough study of the state of computer
security in the field. Furthermore, the
findings must be taken into consideration
before new policies or technologies are
applied in the field. 1In some cases the
findings represent problems that can
readily be solved, but in other cases they
might represent fundamental environmental
limitations on what is achievable. System
managers must be able to distinguish these
cases. Technological improvements can be
harmful if they result in a false sense of
security.

DoD computer security can benefit
greatly from improvements in training and
field support, which would help us to
better manage and use systems. DoD per-
sonnel at all levels should be made more
informed about computer security, and com-
puter security managers in the field
should be given the resources they need to
do their job. Now that an improved foun=-
dation of computer security policy and
technology has been established in the
DoD, more attention should be placed on
ways to improve practices in the field.

ACKNOWLEDGMENT

The author is grateful for the review
and comments provided by LTC L. Steffensen
of Headquarters, USAREUR.

REFERENCES

[1)} DoDSI No. 5-86 (September 1986),
"ADP Security Deficiencies,"
Security Awareness Bulletin, DoD
Security Institute.

{2} AR 380-380 (8 March 1985), Automa-
. tion Security.

{31 DoD 5200.28-STD (December 1985),
Department of Defense Trusted Com-
puter System Evaluation Criteria.

RISK ANALYSIS AND MANAGEMENT

IN PRACTICE FOR THE UK GOVERNMENT

THE CCTA RISK ANALYSIS AND MANAGEMENT METHODOLOGY: CRAMM

Mr Robin H Moses - UK Central Computer
and Telecommunications Agency (CCTA)
Riverwalk House, 157-161 Millbank,

London, SW1P 4RT,

England

Mr Rodney Clark - BIS Applied Systems Ltd,
20 Upper Ground, London,; SE1. 9PN, England

INTRODUCTION

1. The paper describes a risk (analysis and)
management methodology for Information Technology
(IT) Security developed by the UK Government
Central Computer and Telecommunications Agency
(CCTA) of Her Majesty's Treasury, with the
assistance of BIS Applied Systems Limited. The IT
Security and Privacy Group of CCTA is the National
Authority for advising British Government
Departments on all aspects of the protection of IT
Systems handling unclassified but sensitive data.
The methodology, designed for the identification
of justified security measures for both current and
future IT systems processing Government sensitive
data, has ~ as of May 1987 - successfully been the
subject of five separate trials with systems of
different environments. An automated support tool
is now being produced, and comprehensive training
in use of the methodology by non experts is being
prepared.

EXTENT OF THE PROBLEM

2. Her Majesty's Government (HMG) Departments
have recognised the general concepts of risk
management for some time and implemented them in a
pragmatic and relatively subjective manner.
However, by mid 1985 both Departments and the
Government Security Authorities identified the need
to develop a unified approach to risk management
which was threat rather than vulnerability driven
and which could be applied across the wide range

of HMG system types to identify more accurately
necessary countermeasures, provide justification
for spend and be understandable to non-technically
expert general managers. With the rapid expansion
of IT and the high cost of development of some
secure systems it was not considered to be viable
to continue with a significant probability of
unjustified spend on security and/or without high
confidence that all justified countermeasures had
been identified. It was also recognised that the
approach would need to cope with the complex
situations where many threats could impact more
than one asset, many countermeasures could counter
more than one threat, and many countermeasures could
protect more than one asset. It was agreed that
risk management should be put on a much more formal
and structured basis to deal with these problems,
using as a basepoint the main components of risk
analysis and management as shown on the traditional
simple model:-

THREATS VULNERABILITIES ASSETS T
\ ANALYSIS
RISKS _*_
MANAGEMENT
COUNTERMEASURES b

and incorporating related 'sub-components' such as
frequency and severity of threats, impacts and’
countermeasure costs.)

HMG APPROACH

3. As a National IT Security Authority for
Government Departments, CCTA was invited to mount
and manage a project to identify or develop a risk
management methodology which would meet thirteen
mandatory requirements. These included:-~

'able to deal with HMG Operational and
Administrative systems of all sizes';

'able to encompass all technical (eg Hardware,
Software, Communications) and non-technical
(eg Physical, Personnel) aspects of IT
security';

'compatible with existing Government IT
Security guidance';

'suitable for use during the development of
a system, ie for projects as well as
existing installations';

'easy to use, after training, by staff with
IT but not necessarily IT security experience’';

'able to be used such that reviews can be
carried out quickly enough to ensure that
results are not overtaken by changes in the
system';

'able to be used with an automated support tool'.

4, The first task was to examine existing
methodologies to determine if any met the HMG
requirements. Several methodologies were identified,
but none met all the mandatory requirements. Whilst
at first glance Annual Loss Expectancy (ALE) based

quantitative approaches seemed attractive, it
became evident that the inevitably subjective way
in which figures are attributed, particularly costs
for data assets, could produce an unsound base and
inconsistencies between similar reviews. Also
these methodologies typically did not offer much
support for countermeasure selection with a
consequential need for the reviewer to have IT
security knowledge, coupled with the fact that
analysis could be lengthy. Existing qualitative
methodologies were insufficiently rigorous, did
not cover all main components of risk management
or were not sufficiently far enough advanced to be
of use. Therefore it was decided to devise a new
methodology following a qualitative approach, but
wherever possible taking quantitative input, and
containing no 'hidden' logic.

5. Accordingly, a "manual" version of the
methodology has been produced and as of May 1987
has successfully undergone five separate trials
encompassing both administrative and operational,
and existing and planned, systems. Comprehensive
documentation - including management guidelines,
the logical design specification for an automated
support tool, and an outline of the training
course required for its use, have already been
produced. Detailed amendments are being
incorporated in the documentation, further 'beta'
site trials to 'fine tune' the methodology are in
progress, and work has started on the production
of an automated support tool and a comprehensive
training course. CRAMM is now the 'Preferred’
methodology for the British Government
Unclassified but Sensitive 'area'.

OVERVIEW OF THE METHODOLOGY

6. The methodology comprises a staged, or modular,
approach. The first two stages address analysis

of the risk and the third and final one addresses
management of risk through the implementation of
countermeasures. Each stage is supported by
questionnaires and guidelines and sets out to
answer one major question. Simply stated these

are:-
Stage 1: is there a security need above
a certain baseline level?
Stage 2: where and what is the extent of
the security need?
Stage 3: how can this need be met?
At the completion of each stage there is a
formal management review.

Stage 1

7. The first part of Stage 1 is the important
task of precisely determining the nature and
boundaries of the system under review, and its
various components. This is accomplished by the
acquisition of information on the user community
and the manner in which they use, or will use, the
system ~ together with an outline system
configuration diagram. This information is
obtained from interviews with senior installation
or project managers, and user managers and‘their
staff, and is essential in providing the reviewer
with the understanding necessary for the specific

104

boundaries of the review to be agreed and later

for the questionnaires and guidelinesto be put into
perspective. It also provides sufficient detail,
for instance on the number of 'data owners', for
the review to be scheduled. Stage 1 then continues
with its major function -~ the determination of
qualitative values for assets, toth physical and
data. The CRAMM documentation provides detailed
advice on how the reviewer should schedule, conduct
and record interviews with data owners and
personnel responsible for physical assets, and to
review results with system or project management.

A carefully structured questionnaire enables the
reviewer to establish the selection of qualitative
values, without 'user bias', for the four possible
impacts - disclosure (of data assets), modification
(both accidental and deliberate), unavailability
(of data assets) and destruction (of physical or
data assets). This selection is aided by detailed
'common metric' guidance for data valuation
covering such issues as political embarrassment,
commercial confidentiality, personal privacy,
financial and legal. Physical assets such as
hardware and air conditioning plant are first
valued on the basis of replacement or reconstruction
costs - which are thenconverted onto the same
qualitative scale as that used for data assets.

An advantage of the methodology is that time and
resource wastage can be avoided where all values are
low. In these circumstances what is in effect a
shortened version of Stage 2 would be used to check
whether there are any threats, vulnerabilities,

or combinations thereof, which are of sufficient
level to justify greater than baseline protection
for low value assets. If the value of all assets
is low and only baseline protection is justified,
then a review will move directly to 3tage 3.

Only where asset values are medium or high is

Stage 2 recommended. At the end of Stage 1, as
with the subsequent two stages, there is a
comprehensive management review.

Stage 2

8. The extent of the security needed by a system
relates not just to values of assets but also to
the levels and nature of threats to which the
system could be subjected and the likely
vulnerabilities of the system assets to those
threats. The first part of Stage 2 is concerned
with evaluating the dependency of a system or
potential system on certain groups of assets, not
all of which are vulnerable to the same potential
threats. Then twenty-two generic threat types,
for example fire, water damage, system infiltration
and misuse of resources, are used as the basis to
assess the qualitative threat and vulnerability
levels per relevant asset group, using pairs of
structured questionnaires incorporating the
knowledge of HMG Security experts. As far as
possible questions are framed so as to prompt a
'yes' or 'no' answer to avoid 'bias', with each
answer afforded a particular score; total scores
per questionnaire indicate a high, medium, or

low threat or vulnerability. For each relevant
asset group, the combination of asset value and
assessments of the levels of vulnerabilities and
threats are used to calculate a security
requirement (ie risk) number on a scale of one
(baseline) to five, for each of the four possible
impacts, (ie disclosure, modification, unavail-
ability and destruction). At the end of Stage 2,

http:reconstructi.on

management has a clear view of the levels of
threats to, vulnerabilities of, and thus risks
to, particular asset groups. The expression of
risks in a numerical form enables direct matching
to countermeasures in Stage 3. The completed
analysis of risks, ie at end pof Stage 2, is
reviewed in detail with management before moving
to Stage 3.

Stage 3

9. Stage 3 determines how the identified security
need can be met, ie countermeasure selection.
Taking the determined levels of risk, ie the
security requirement numbers, for each asset
grouping, countermeasures (covering all aspects
of security) are selected from a large 'library'
which is referenced by, among other things,
security aspect (physical, software, etc) and is
further annotated by type, eg reduce risk, reduce
impact, detect. If the review is of a current
installation, details of existing countermeasures
are now recorded. (This activity is deliberately
kept until the end of the review to avoid
prejudging the effectiveness and/or justification
for existing countermeasures). A comparison is
conducted to ascertain which additional
countermeasures are to be recommended, and which
existing ones are not justified. As the list of
countermeasures is produced, it is annotated with
likely levels of cost (from information held in
the 'library'). Then costs specific to the actual
or likely equipment types can be added, and a
further management review is held.

10. If management is unhappy about some aspect,
eg the likely overall cost is outside the budget,
"what if" questions can be dealt with (for example,
what would be the effect of removing one very
sensitive file?). 1In other words a parameter can
be changed and the methodology "re-run". The
final step is to determine when a further review
should be carried out. Much of the information
gathered during the first review can be used in,
and thus greatly speed up, subsequent reviews.

PRINCIPAL CRAMM CONCEPTS
Stage 1

1. Stage 1 introduces the first of several
concepts used in CRAMM, that of a baseline level
of countermeasures which would always be applied
to any system. You may think of them if you wish
as a 'code of good practice’. For example, for
other than truly single user systems the
requirement for a user to identify himself to the
system during log-on might be defined as a
baseline countermeasure. The need for such simple
countermeasures is based on the premise that any
system must be of some value to the organisation
(or why have it?), and therefore needs a certain
level of control.

12. Further protection will only be required

if the importance of the data to the user or the
value of, say, the hardware merits this addition.
The principal function of Stage 1 is therefore to
establish these values. As mentioned however,
Stage 1 initially establishes the scope of the
review, and details the system configuration and the
manner in which the system is used. Only when a
clear picture of the total system has emerged is

105

the first real risk management task tackled -~ that
of establishing the boundaries of the system under
review. Experience has shown this to be an
important task and guidelines are given to aid the
process. The typical modern system frequently
interconnects with other systems which themselves
are connected again to further systems. It is
important to establish therefore up to which point
one is aiming to provide a secure system.

13. The importance of the data can now be assessed
by detailed questionnaires directed at the owners
and users of data. They are asked to state what
the effect on the organisation would be if the data
were to be disclosed, modified, made unavailable
(loss of service), or destroyed. The reviewer is
aided in recording the results of this process by

a series of guidelines which enable him to place a
value on the data appropriate to the manner in
which it is used. For example, if the data
contains details of legal contracts, he will ask
what the effect would be of the organisation being
in breach of contract. Would it be sued? For

how much? What would the effect of the publicity
be? The guidelines will relate this to a scale

of 1 to 10.

14, This approach to establishing the importance
of the data to the organisation has been found to
have three important advantages:-

users can much more readily associate
with values appropriate to the system;
they are not forced to use financial
values;

(a)

the relative values that have been
established could, if justified, be
easily adjusted to an organisation's
own perception, without in any way
affecting the working of the
methodology;

(b)

(c)

the use of common guidelines helps
to prevent user bias.

15. Asset valuation is completed by 1listing the
replacement or reconstruction costs for hardware,
software and environmental facilities. This
enables complete understanding of the importance
of the system to be obtained and a decision can
now be made as to whether it justifies a full
scale review, or whether an abbreviated approach
could be used. This facility (which is incorporated
within the methodology) avoids creating situations
in which a great deal of time and money is spent
investigating the risks to a system which contains
nothing of great value.

16. Stage 1 is completed by a comprehensive

review with management to agrée the information
collected. At this stage discussion usually centres
on the extent of the configuration and the user's
perception of the importance of the system. These
are unemotive topics and consequently agreement

can usually be easily reached.

Stage 2

17. The primary function of Stage 2 is to
evaluate the level of threats to, and extent of the
vulnerabilities of, the system assets. However,
another important concept of the methodology is the

recognition that different threats may apply to
different parts of the same system. Similarly,
vulnerability may not be the same at all points.
In practical terms though it would be prohibitively
expensive in time and effort and indeed
unnecessary to explore the level of threat against
every individual asset. Therefore, using CRAMM,
assets are grouped in a manner appropriate to the
threat. The threat of fire, for example, is
likely to vary by physical location and it is
therefore appropriate to evaluate this threat
against all the assets in one room or small
building. However, by comparison, if system
infiltration is being considered then the total
system could be regarded as the appropriate group
of assets since it is normally not practical to
separately protect different parts of the same
system against this particular threat type.

18. The second part of Stage 2 establishes the
security requirement (measure of risk) of each
group of assets by relating together the value of
the assets (including data), the level of threats
to which it is likely to be exposed and the
degree of vulnerability. The first of these has
been expressed on a scale of 1 to 10 and the
other two on a high, medium or low basis. A
matrix is used to link the three factors together
and express the result on a scale of 1 to 5.

19. The significance of dividing the system into
assets or groups of assets becomes more apparent
when it is appreciated that the security
requirement figure will be used to determine the
level of countermeasures. Hence an asset with a
high value associated with it may have a higher
security requirement than an asset of lower value
but the same threat and vulnerability rating. The
correct level of protection is therefore
established for all parts of the system. Blanket
coverage, which frequently results in under or
over protection for particular assets, is avoided.

Stage 3

20. Stage 3 is concerned with establishing the
countermeasures necessary to meet the security
requirement calculated from the analytical work

of the first two stages. It therefore moves
positively from risk analysis to risk management.
This is an area which appears to have received
relatively little attention in other

methodologies, yet the task of selecting
countermeasures is a formidable one. For example,
a major installation or network may require several
hundred countermeasures to be implemented. These
could range from procedures for assigning passwords,
to check controls over input data, to encryption,
to fire extinguishers in the general office. The
range is enormous, making selection extremely
difficult.

21. Stage 3 tackles this problem by grouping
countermeasures together (countermeasure groups)
and relating these to threats. For example,
procedural controls over system programmers will
relate to the threat of systems infiltration
(unauthorised access). The first step, therefore,
is to select the appropriate countermeasure groups
for each threat. At this stage a considerable
degree of overlap is likely to be observed.

Physical access countermeasures, for example,
address several threats, (wilful damage, theft,
etc). This overlap indicates that these types of
countermeasure are likely to be essential.

22. Having selected the countermeasure groups,
the reviewer then has access to an extensive list
of several hundred countermeasures (arranged under
these groups) each of which has been assigned a
rating of between 1 (very low, or baseline) and

5 (very high). These ratings correspond to the
score calculated when deriving the security
requirement, and thus the reviewer can easily
select the appropriate countermeasures.

23. For an existing installation, the same list
can now be used to examine the previously
implemented countermeasures. These are then
compared against those identified as necessary by
CRAMM and recommendations made where there are
discrepancies. While normally the recommendations
will address the requirement for additional
countermeasures, this is by no means always the
case. In some instances in our 'beta' trials,
recommendations have been made to consider
removing countermeasures which did not seem to be
justified.

CONCLUSTON

24, Thus to conclude, the main CRAMM concepts
are:-

~ baseline level of countermeasures;

~ 'common metric' guidance for qualitative
valuation of data assets for the four
ma jor impacts;

~ no presumptions made as to the need for
previously implemented countermeasures;

- qualitative assessment of threat types
against specific groups of assets;

- qualitative assessment of the vulnerabilities
of these specific groups of assets;

~ combination of qualitative values for
assets and threat and vulnerability ratings
to form numeric indications of risks;

- matching numeric indications of risks to
specific countermeasures;

~ for an existing installation identifying
not only justified but also unjustified
countermeasures.

We feel that these were needed to meet the originally
specified criteria for a methodology for the UK
Government .

25. Indeed, the 'manual' methodology has been
produced and tested and it is evident that, with the
use of the automated support tool to considerably
reduce review time, it fulfils the specified
requirements. Particularly popular with trial site
staff has been the 'common metric' guidance for
establishing qualitative data values, and the
production of lists of specific countermeasures.

106

26. It is now clear that information collected
during a review could be used to identify
particular evaluation needs and to construct
security policy and requirement documents. Indeed,
the methodology will be invaluable to management
in presenting easily understandable results in

the form of countermeasure lists justified in
accordance with the real security need (and for
existing installations identifying countermeasures
which may not be justified and could be removed -
probably with cost savirg and easing of
operational constraint). Management will thus

be able to consider submissions for money spend

on security supported by a logical, properly-
constructed and justified case.

ROBIN MOSES
CCTA
20 May 1987

It should be noted that the CCTA methodology,
CRAMM, is Crown Copyright.

107

A PANEL DISCUSSION ON

RISK MANAGEMENT: A PLAN FOR THE FUTURE

Dr. Sylvan Pinsky
Senior Scientist

Office of Research and Development
National Computer Security Center
9800 Savage Road
Fort George G. Meade, Maryland 20755-6000
(301)859) 4485

ABSTRACT Robin Moses and Roger Clark from the United
Kingdom, Gene Troy of Martin Marietta, and
The federal government and private Kurt Schmucker of Productivity Products,
industry have a long-standing interest in International.

conducting computer security risk analyses.
Analysis is part of the larger, more
comprehensive "risk management" process which
describes the types of approaches and methods
that address all activities leading to cost-
effective safeguards for automated information
systems. Numerous computerized tools have
emerged over the last 3 years to assist
analysts in completing the risk management
process. Each of these models deals with only
one aspect of the total process, such as
vulnerability assessment, threat assessment,
or annual loss expectancy calculation.

There is a significant interest and need
in the computer security community to have
effective tools, technigues, and guidance for
completing the risk management process. The
National Computer Security Center and the
National Bureau of Standards have jointly
sponsored forums for exchanging ideas and
presenting approaches to risk analysis. These
two organizations have identified the major
issues in risk management and have embarked on
a plan that describes the steps hecessary to
resolve the problems, lays the foundation for
developing a comprehensive model for risk
management, and provides guidelines for
conducting the process and selecting effective
safeguards for computer systems. The
cornerstone of the plan resides with the
construction of the conceptual model of the
risk management process. This model will
describe the interrelationships of the
components of risk management (e.g., threats,
threat frequencies, vulnerabilities,
safeguards, risk, outcomes) in a formal way so
that we all have a common understanding of the
risk management process. This conceptualiza-
tion will help explain where alternative
methods or approaches fit into the overall
process.

The panel activity will begin with a
presentation of the elements of the road map
for the future of risk management. This
discussion will include the conceptual
framework, the creation of a risk management
laboratory and testbed, case studies, data
acquisition, model development, and related
topics. Panelists will have an opportunity to
critigue the plan and present alternative
recommendations. The panel will conclude with
a 15- to 20-minute question and answer —
session. Panel membership will consist of
Stuart Katzke of NBS, Sylvan Pinsky of NCSC,

108

m-EVES

Dan Craigen

Research and Technology
I. P. Sharp Associates Limited
265 Carling Avenue, Suite 600
Ottawa, Ontario K1S 2E1
CANADA

Telephone: (613) 236-9942

Abstract

This paper reports briefly upon the progress of the
m-EVES research and development project. m-EVES
is a prototype verification system being developed,
under contract, by I.P. Sharp Associates Limited.

1 Introduction

_- /The major goal of the m-EVES research and development project
" -'is to design and to implement a program verification system !
- which satisfies the following requirements:

¢ The system is to be based upon sound mathematics.

¢ The system is to include state-of-the-art techniques in the-
orem proving, workstations, compilers, and existing math-
ematics.

e The system may be used to develop programs required to
satisfy NCSC A1+ and UK/Canadian equivalents.

: Our project is divided into two distinct phases. In the first

. “phase, we are to develop the m—EVES environment; in the sec-
: ond phase, we are to develop EVES,

m-EVES is to be a research and pedagogical environment

-« that emphasizes program verification concepts. The system will

. handle a new programming and specification language (called

"+ m-Verdi), a new prototype theorem prover (called m—-NEVER),

. sundry workstation ideas, and will have a production quality

compiler for m—Verdi.
| The essential roles of the m—EVES environment are as follows:

e To be used for instructing our clients about program veri-
fication techniques;

e To allow us to test various unproven ideas before commit-
ting to a design for the EVES environment; and

¢ To obtain feedback from the various decisions we have al-
ready made. This includes decisions respecting mathemat-
ics, language and prover capabilities.

. EVES is to be the production quality verification environ-
+ ment. EVES will handle a dialect of m—Verdi (called Verdi),
: which will have significantly stronger specification and program-
" ming structures; and will include a state—of-the-art theorem
=t prover (called NEVER), a collection of specification and pro-
-7 gram analysis tools, and, of course, various compilers for Verdi.

1In this paper, I do not want to spend time discussing the rather lengthy
history of the EVES project. Another paper [Cra 86a] discusses the history
of the project and the evolution of our thoughts.

(IPSA Conference Paper CP-87-5402-21)

One immutable requirement of our project is that both m-—
EVES and EVES must have a sound mathematical basis. We
maintain that every verification system should be able to ex-
hibit such a basis; otherwise, one must question the mathemat-
ical proofs arising from the system. For example, many of the
current (North American) systems do not check whether de-
clared functions are well-defined. An elementary example of an
ill-defined function is the following Boolean function:

Russell(x) is defined as not(Russell(x))

Such an ill-defined recursion allows one to prove the theo-
rem “FALSE” which then throws into doubt any pretensions of

verified software. While such pathological examples are easy to
recognize, we have to be concerned about the subtle occurrences
of such events. Another paper [Cra 86b] discusses in more detail
some of the generic strengths and weaknesses of current verifi-
cation systems.

Of course, even with such a mathematical basis, there may
be unsoundness. As an example of a different kind of unsound-
ness, consider the incorrect (or incomplete) implementation of
the verification system itself. Note, however, that the presence
of the mathematical basis opens the door to the possible verifi-
cation of components of the verification system itself; its absence
completely negates such a possibility.

Currently, our project is focussing upon the m-EVES envi-
ronment. It is expected that the system will be completed by
November 1987.

The m-EVES development has generally followed two streams:

e The design of m—Verdi and its underlying mathematics.

e The development of the m~-NEVER theorem prover.

In the remainder of this paper, I will discuss briefly each of
these streams.

2 m—Verdi Development

The major requirement of the m—Verdi language design is that
m-Verdi support the development of verifiable software. By
verifiable it is meant that rigorous, mathematically sound proofs
(that a program is in consonance with its specifications) are
possible. To attain the goal of verifiability, the requirements
were refined to include the following:

e A formal semantic description of m-Verdi must be pre-
sented, and

¢ A sound logic, for reasoning about m—Verdi programs, must
be developed.

109

The m—Verdi language was designed basically as a “proof of
concept” language. We wanted to show that rigorous mathe-
matics could be developed to support the verification process
and the languages used as a part of that process. As noted
above, when we move onto the second stage of the project, the
development of EVES, we will enhance the language with more
powerful specification and programming facilities—resulting in
Verdi.

The design of m—Verdi has led to a language which is quite
different from its Pascal-based forbears, even though many of the
same concepts are found; it was a matter of different packaging
and appropriate simplification.

I have included, at the end of the paper, an example m~Verdi
program. This program has been verified using the m—EVES en-
vironment as it existed in early 19872, Since that environment
was incomplete (for example, the well-formedness of procedures
was not yet implemented), it is possible that an error may have
slipped through. I remind the reader about my previous com-
ments relating to unsoundness. (However, this example has also
been processed by an m~Verdi compiler and no well-formedness
errors were uncovered.)

An m—Verdi compiler has been 1mp1emented on a VAX/750
running VMS?®. To enhance the retargetability of the compiler,
the Code Generator Synthesis System (CGSS) of Karlsruhe Uni-
versity is being used. As a result, we are now one of the (few)
sites that is in the position of being able to execute verified code.
As a case in point, a simplified version of the Flow Modulator
was verified, compiled and then executed on the VAX:

In the following subsection, I have included an edited section
of the m—Verdi reference manual [Cra 87] which presents a brief
overview of the language.

2.1 m-—Verdi Overview

A declaration is used to introduce a set of new symbols to a vo-
- cabulary and to prescribe properties to these symbols. m—Verdi
requires declaration before use and disallows the redeclaration
of symbols. There are five different kinds of symbols: Constant
symbols, Variable symbols, Type symbols, Function symbols,
and Procedure symbols.

A Type symbol denotes a set of values. A Constant symbol
denotes a fixed value of a fixed type. A Variable symbol may be
used in valuations. A Function symbol denotes a function. A
function is a mapping from an n-tuple of values to values of a
fixed type. A Procedure symbol denotes a procedure.

An axiom restricts the possible interpretations for the sym-
bols in a vocabulary.

" The Bool, Int, Char and Ordinal types belong to the ini-
tial vocabulary (i.e., the predefined m-Verdi symbols). With
each type, a set of literals, and constant, variable and function
symbols are defined. The Bool type denotes the logical truth
values. The Int type denotes the set of unbounded mathemat-
ical integers. The Char type denotes a finite set of graphic
symbols. The Ordinal type denotes an initial segment of the
mathematical ordinals (up to w”). Other types are introduced
through an Enumeration type declaration, a Restriction
type declaration (which defines a set of values using an ex-
plicit Bool predicate), an Array type declaration or a Record
type declaration.

An Expression is an m—Verdi sentence which may be eval-
uated (using a vocabulary and valuation?) to produce a value

2The system has been significantly modified, since I proved the example,
as a result of decisions made during the spring of 1987. We have modified
the m-EVES interface so that interaction now occurs through a command
language. This point is discussed further in §4.

3VAX and VMS are trademarks of Digital Equipment Corporation.

*A valuation is a pairing of variable symbols with values.

of a fixed type. The Expressions are equality, inequality, eval-
uation of a constant, evaluation of a variable, evaluation of a
parenthesized expression, evaluation of a function application,
evaluation of a constructor, and evaluation of condltlonal and
quantification expressions. ‘

A Command is an m-Verdi sentence which denotes one.or
more execution steps and determines, in part, the ordering of
the execution steps. It is through the execution of commands
that the values associated with a program’s observables’—and .
valuations—are modified. The m-Verdi commands are exit
(from a loop), return (from a procedure), abort (the program),
Assignment command, Annotation, Procedure call command,
Conditional command,Loop command, and the Block command.

Certain m-Verdi constructs are used solely for specifying func-
tional relationships. These are the Initial clause, Pre con-
dition, Post condition, Measure condition (used in proofs
of termination and well-definedness of recursive functions), In-
variant (of a loop) and Annotation (m—Verdi’s equivalent: of
the assert command) [Saa 87] discusses in detail the proof the-
oretic issues arising from the language.

A Package collects together a sequence of declarations and
restricts the availability of certain symbols in the sequence. A
Package may be used to support information hiding and ab-

straction. . . .
An Environment is used tointroduce symbols which will form

a link between the m—Verdi program and the program’s observ-
ables. Symbols may also be introduced to support the expression
of specifications. The Environment acts as part of the axiomatic
basis to an m—Verdi program. The Environment will include the
specification of routines which cannot be implemented in m—
Verdi but are crucial to its execution and its ability to modify
the observables.

2.2 Mathematics and Extensions

The semantic basis of the language is described using a form of
Denotational Semantics. There are no real surprises in this part
of the work.

Much more interesting problems arose with the development
of a logical system for reasoning about m—Verdi programs. In
fact, this area required the development a new logical system
(by my colleague Mark Saaltink) [Saa 87). It is worthwhile not-
ing that Predicate Calculus systems are inadequate for reasoning
about and specifying programs. For example, the Predicate Cal-
culus does not handle recursive functions nor the introduction of
new symbols to the vocabulary of the logic. The logic is based
upon Gentzen-style deduction.

Each declaration in an m—Verdi program requires an accep-
tance proof. For example, recursive functions must be well de-
fined and verification conditions (the acceptance criteria) for
procedures, which are generated using a Verification Condition
Generator (VCG), must also be proven. The logic has been
shown to be sound relative to the Denotational Semantic model
and readers should note that, since the VCG is a part of the
logic, we have proved that the VCG performs the correct anal-
ysis of procedures. The mathematics is completely described in
Mark Saaltink’s paper [Saa 87).

Some of the intended additions to m-Verdi include polymor-
phism and higher-order functions. Other additions are rather
basic (e.g., for loops and case commands); such facilities were
not included in m-Verdi since they were only “quantitatively”
interesting, not “qualitatively” interesting. All of these addi-
tions will materially improve the expressibility of the specifica-
tion and programming facilities of the language and will more
usefully support the development of reusable mathematical the-
ories.

5The visible effect of a program’s execution is completely ‘ascertained from
the set of observables.

110

3 m-NEVER

The second major research stream of the project is the devel-
opment of a new theorem prover. This prover incorporates a
number of techniques that are under investigation by the theo-
rem proving community.

The prototype prover, called m—-NEVER (Not the EVEs Re-
writer), consists of six components: a simplifier (a tautology
checker augmented with Nelson-Oppen congruence closure and
linear programming techniques); a rewriter (that handles condi-
tional rewriting with backchaining, forward rules, and allows for
rules which permute parameters); an invoker (that heuristically
expands function definitions); a reducer (that reduces a formula
by an innermost-leftmost application of simplification, rewriting
and invoking to each of the subexpressions of a formula; the
reducer uses a cache to maintain valid reductions and thereby
significantly improve its performance); user commands (exam-
ples include split, invoke, prove, undo, and try); and the
required support for I/O and database management. An in-
duction mechanism, which is modelled on the approach used by
Boyer-Moore, is also included.

The theorem prover supports the interactive development of
proofs, but also has powerful automatic tools. For example,
there is a command which instructs the prover to bring all of its
heuristics to bear (including conditional rewriting and proof by
induction) on a proposition. Other commands are much more
selective in choosing portions of the prover’s capabilities to be
applied to a proposition. Users of the prover may instruct the
prover whether facts are to be used as lemmata or as forward
or backward chaining rewrite rules. The capability for defining
rewrite rules can greatly decrease the amount of manual inter-
action required. The decision to support powerful automatic
features and, yet, to allow for selective user control is a funda-
mental design decision. As the developers of n-NEVER have
stated elsewhere [PK 87]:

“ Although NEVER provides powerful deductive tech-
niques for the automatic proof of theorems, it also
includes simple user steps which permit its use as a
system more akin to a proof checker than a theorem
prover. ... It represents a tacit admission that we do
not intend to develop a deductive system which is fully
automatic; rather, for some proofs, it may be essential
for the user to resort to hand steps, since the automatic
capabilities may be inadequate.

The result of combining the manual and automatic
functions within a single system creates the possibility
of a synergy between abilities of the system (fast and
accurate) and the user (the necessary insight).”

One of the major goals of this effort is to develop a prover
which allows for journal-level inference steps, thereby addressing
one of the problems with previous verification systems. A more
complete description of the prover may be found in [PK 87].

As an indication of the theorem prover’s power, it has been
used to successfully prove many of the problems from the Kem-
merer Assessment Study of verification systems [Kem 86], Kem-
merer’s Library Specification [Kem 85], David Gries’ Tsquare
[Gri 82] and the consistency of theories describing a sequence
theory and a theory of sets.

4 m—EVES Interface

The verification system runs upon Symbolics hardware and, con-
sequently, makes use of the windowing software and graphics
packages. It is expected that these facilities will greatly increase
the utility of the system. (Either J Strother Moore or Bob Boyer

once told us that the power of the Boyer-Moore prover could
be increased by an order of magnitude solely by increasing the
bandwidth of information between the prover and the individual
using the prover.)

The interaction with m-EVES occurs using a “prover com-
mand language” (pcl) and may occur using either an EMACS
buffer or a Lisp Listener. There are six classes of commands:

¢ Goal Commands — The three commands retry, try and try
next untried are used to select a proposition for proof.

o Proof Steps — These commands are the basic theorem prover
commands for modifying a proposition. Examples have
been enumerated previously.

e Package Commands — The major unit of abstraction and
encapsulation in m—Verdi is the package construct. There
are six commands for identifying the beginning and end of
a package, the beginning and end of an environment, and
the beginning and end of a package model.

Database Commands — These commands elicit information
about proof status, information pertaining to various proof
events, the undoing of prover events, and the freezing and
thawing of the database.

Declarations — These commands are essentially m-Verdi
declarations. However, the pcl has generalized the m-Verdi
axiom declaration to include further information pertinent
to the proof process (e.g., trigger expressions for forward
rules) and packages are handled differently (as noted above).

e Miscellany — These commands are used to reset the prover
to its initial state, to begin and end scripting, to quit the
prover, and to read in a file of prover commands.

The pcl interface is now in place (as of May 1987) but some
of the commands are not supported. The commands of partic-
ular note are those dealing with the environment and packages.
While the environment commands will be easy to handle, some
rather significant modifications to the prover must be made to
properly handle packages.

The environment will fully support the prover’s capabilities
for interactive proving. As a result, when one is trying to prove
a proposition and notes that some subsidiary facts are necessary,
it is possible to introduce the new facts and either prove them
immediately, or temporarily assume them. (This facility will no
longer be available after changes are made during the summer of
1987. In particular, to simplify the checking for non-circularity
of proofs, each declaration must be proven as it is added to the
system. The only instance where proofs may be deferred will
occur when package headers may be added and the correspond-
ing package body deferred. However, when it is time to add the
package body, the prover state will have to be returned to the
state occurring after the procedure header was added; subse-
quently, the package body may be added and the various proof
obligations satisfied. The approach of forcing proof when a dec-
laration is being added is similar to the approach used by Boyer
and Moore.)

For now, if the program is to be compiled, it has to be trans-
mitted to a VAX (see §2). It is still unclear whether an m~Verdi
compiler will ultimately reside on the Symbolics machine and
we have yet to consider the issues of incremental compilation.

111

5 Conclusion

The project will result in four major advances:

¢ The design and implementation of a programming and spec-
ification language which has a complete, formal mathemat-
ical basis and supporting logic. :

The design of a sound and complete logical system which is.
sufficiently powerful to handle constructs used in the veri-
fication process.

e A new theorem prover which incorporates many of the state-
of-the-art concepts currently under investigation in the the-
orem proving community.

The use of workstation technology to enhance the interac-
tion between programmer and verification system.

We have tried to learn from the experiences of the existing
verification system efforts (e.g., [Kem 86] [Cra 85] [{Cra 86b)]).
Our development of a solid mathematical foundation allows us to
present some strong statements about our efforts and opens the
door to verifying components of the verification system. Further,
we attempt to decrease the cost of the verification effort, by
increasing the power of the theorem prover, environment, and,
ultimately, when m~Verdi is strengthened, the specification and
programming language.

6 Acknowledgements

The following individuals have been involved in either the tech-
nical or support staff aspects of the project: David Bonyun,
Brenda Brown, Sentot Kromodimoeljo, Irwin Meisels, Anders
Neilson, Bill Pase, Mark Saaltink, Karen Summerskill and my-
self, Dan Craigen.

The language was developed by Craigen and Saaltink. The
mathematics is due primarily to Saaltink. m-NEVER is being
developed by Pase and Kromodimoeljo. Meisels and Neilson are
implementing the m—Verdi compiler.

7 Micro Flow Modulator

The rather simple example described here is derived from an
Affirm description of a flow modulator which I specified during
the Kemmerer Assessment Study [Kem 86][Cra 85].

Suppose we have two computer systems, Public and Private.
It is intended that messages will be allowed to flow from the
Private system to the Public system if the messages satisfy a
particular Boolean predicate defined over messages. (Such a
predicate may, for example, check that no sensitive information
is being publically disseminated.)

Public
System

Private

[e———— released messages ———— System

The program described herein, specifies and implements a
Flow Modulator. The Flow Modulator will sequentially
read a message from the Private System, determine whether that
message satisfies an appropriate Boolean predicate, and based
upon the result, will either release the message to the Public
System or will log the rejected message. So, the above diagram
may be modified slightly to the following:

112

Low High
System Modulator System
Audit
Mechanism .

For the purposes of this exposition, details respecting the for-
mat of messages and the definition of the Boolean predicate are
ignored. Further, it is specified that the Modulator will process
exactly “number_of messagés” messages and then terminate. It
is assumed that the I/O channel types are of the same kind.

The following example has been processed by an m-Verdi
compiler and has also been verified using an earlier prototype m~
EVES verification system. The comments of the form “{! ... }
enclose commands which are recognized by the verification sys-
tem and are used to prove the proof obligations arising from the
associated declarations.

- The program is liberally sprinkled with remarks which, hope-
fully, clarify aspects of the problem being solved and of m—Verdi.
Only that text which is printed in typewriter font was pre-
sented-to the verification system. (Actually, the sequence of
declarations was presented—I did not use the program and
environment clauses. The entire program has been processed
by the m-Verdi compiler.)

The program is called “microflow_modulator.” This name
has no effect on the vocabulary.

program micro_flow_modulator =

The environment is used to introduce names which will form
a link between the m—Verdi program and the observables being
modified. It also forms the axiomatic basis for the program.
There are no (direct) proof obligations involved for the declara-
tions occurring within the environment.

environment

An unspecified executable type, called “message”, is declared.
In this instance, a pragma is used to indicate, to the compiler,
that a message will require 1024 bytes and requires a particular
word orientation.

prog type message =
pragma (alignment = 1, size = 1024)

The following sequence of declarations introduce a theory of
sequences of messages. A complete theory of sequences can be
quite rich; what we have here, however, is a basic kernel of
sequence theory concepts. An algebraic datatype style of pre-
sentation has been used to describe the theory.

The theory of sequences is used to specify (and annotate) our
program. Only one declaration, that for eD_message, is required
to be an executable declaration. '

type sequence_message

The reader should be aware that the following variable decla-
ration, and all subsequent variable declarations, introduce vari-
able symbols to the vocabulary; a program’s state is not modified
by such declarations.

The reader should be aware that the following variable declaration, and all subsequent
variable declarations, introduce variable symbols to the vocabulary; a program’s state is
not modified by such declarations.

var i0_message, il_message, i2_message: int
-

prog var e0_message: message
var el_message, e2_message: message

var sO_message, sl_message, s2_message: sequence_message

const empty_message: sequence_message

function tack_message (eO_message, sO_message): sequence_message

function head_message (sO_message): message

function tail_message (sO_message): sequence_message

axiom pragma (rule, name = "head_tack_message")
all sO_message, e0_message:
head_message (tack_message (eO_message, sO_message)) = e0_message

axiom pragma (rule, name = "tail;tack_message")
all sO_message, e0_message:
tail_message (tack_message (eO_message, sO_message)) = sO_message

axiom pragma (rule, name = "sequence_equality_message'")
all sO_message, si_message:
implies (and (sO_message <> empty_message,
sil_message <> empty_message),
(sO_message = s1_message) =

and (head_message (sO_message) = head_message (si_message),
tail_message (sO_message) = tail_message (sl_message)))

axiom pragma (rule, name = '"tack_equal_empty_message")
all sO_message, e0_message:
not (tack_message (eO.message, sO_message) = empty_message)

function size_message (sO_message): ordinal

axiom pragma (rule, name = "size_tail_message")
all sO_message:
implies (sO_message <> empty_message,
ordinal’lt (size_message (tail_message (sO_message)),
size_message (sO_message)))

function length_message (sO_message): int =
measure size_message (sO._message)

begin
if sO_message = empty_message
then O
else plus (1, length_message (tail_message (sO_message)))
end if

end length_message

axiom pragma (name = "length_is_non_negative_message")
all sO_message: int’ge (length_message (sO_message), 0)

113

axiom pragma (rule, name = "length_test_message")
all sO_message, sl_message:
implies (length_message (sO_message) <> length_message (sl_message),
not (sO_message = sl_message))

This brings us to the end of the sequence theory kernel. To show that the aforementioned

theory is consistent is a task that the specifier of the problem should tackle, not the person
who has been presented with the specification and told to implement a program (whose
specification is presented in terms of sequence theory). For completeness, I should note
that a model for the kernel has been .developed (using m-EVES) and, as a result, the
kernel theory is consistent.

The unspecified function “ok” will be the function used to check that messages may be
released to the Public system. In this case, there are no axioms restricting the possible
implementations of “ok”. As a consequence, in the extreme cases, “ok” could always return
true or always return false and still satisfy the intent of the specification.

prog function ok (eO_message): bool

“number.of messages” is to be used as the constant which restricts the number of mes-
sages that can be analyzed by the program. The axiom specifies that the value must be
positive and bounded by maxint. Consequently, any implementation of the environment
must satisfy this requirement.

prog const number_of_messages: int

axiom pragma (name = "about_number_of_messages')
and (int’gt (number_of_messages, 0),
int’gt (maxint, number_of_messages))

The following sequence of declarations, through to the end of the environment, relate to
the observables of the progrant and how they may be modified. In this instance, we have
two procedures which are used, respectively, to output a message to some particular port
(which will be either a port linked to the Public system or to a port linked to the audit
mechanism) or to input a message from the Private system.

With each port we associate a history of the messages that have flowed through the
port. An abstraction function, “port_history”, is used to capture this intent. From the
specifications of the procedures, the reader should be able to conclude that each invocation
of the procedures results in the processing of a single message.

prog type a_port = pragma (alignment = 1, size = 1024)

prog var port: a_port
function port_history (port): sequence_.message

prog procedure output_port (mvar port, lvar eO_message) =
initial (port’0 = port)
pre true
post port_history (port) = tack_message (eO_message, port_history (port’0))

prog procedure input_port (mvar port, pvar eO_message) =
initial (port’0 = port)
pre true
post port_history (port) = tack_message (eO_message, port_history (port’0))

end environment

Many of the declarations that follow could just have easily been included in the envi-
ronment.

The following sequence of declarations are rather specific to the concept of modulator.
These declarations make use of the sequence theory abstraction to capture modulator
concepts.

114

“accepted _messages” determines the subsequence of s0_message, preserving order, of el-
ements that satisfy the “ok” predicate. “rejected_messages” is essentially the same function
except that it extracts the elements which do not satisfy the “ok” predicate.

Since both these functions are defined recursively, we must show that they do, in fact,
describe some function. See [Saa 87] for the proof obligations arising from recursive func-
tion definitions. Further, in both instances, a lemma was required. The first step in each
proof, introduces the lemma “length_is_non_negative message”. The second step, prove,
results in m~Never applying its rewriting and simplification techniques to reduce the for-
mula to true. -

function accepted_messages (sO_message): sequence_message =
measure ordinal’val (length_message (sO_message))
begin if sO_message = empty_message
then empty_message
elseif ok (head_message (sO_message))
then tack_message (head_message (sO_message),
accepted_messages (tail_message (sO_message)))
else accepted_messages (tail_message (sO_message)) end if
end accepted_messages
{! use "length_is_non_negative_message" }
{! prove }

function rejected_messages (sO_message): sequence_message =
measure ordinal’val (length_message (sO_message))
begin if sO_message = empty_message
then empty_message
elseif not (ok (head_message (sO_message)))
then tack_message (head_message (sO_message),
rejected_messages (tail._message (sO_message)))
else rejected_messages (tail_message (sO_message)) end if
end rejected_messages
{! use "length_is_non_negative_message" }
{! prove }

The following function is a bool predicate which specifies- that every element of a se-
quence must satisfy the “ok” predicate. The axiom that follows then states that secu-
rity_property holds over the sequence returned by accepted_messages. This is a rather
trivial example of a proof of a specification property. .Observe that the proof of “ac-
cepted_message_sequence_is_secure” uses automatic induction.

function security_property (sO_message): bool =
measure ordinal’val (length_message (sO_message))
begin if sO_message = empty_message '
then true
else and (security_property (tail_message (sO_message)),
ok (head message (sO_message))) end if
end security_property
{! use "length_is_non_negative_message" }
{! prove }

axiom pragma (name = "accepted_message_sequence_is_secure")
all sO_message: security_property (accepted_messages (sO_message))
{! prove_by_induction }

The following three variable names will be used as formal parameters to the main
program and will be directly related to ports over which messages flow to the Pub-
lic system, to the audit mechanism, and from the Private system, respectively. “num-
ber_of_messages_read” will be used within the main program to define a component of the
program’s state and will be used as a counter for the number of messages read to some
point in time.

prog var down, reject, input: a_port

prog var number_of_messages_read: int

115

The following three functions are used to specify and annotate the main program. \

|
function pre_condition (down, reject, input): bool = \
begin and (port_history (down) = empty_message,
port_history (reject) = empty_message,

port_history (input) = empty_message)
end pre_condition

function post.condition (down, reject, input): bool =
begin and (port_history (down) =
accepted_messages (port_history (input)),
port_history (reject) =
rejected_messages (port_history (input)),
length_message (port_history (input)) =
number_of _messages)
end post_condition

function loop_invariant
(down, reject, input, number_of_messages_read): bool =
begin and (port_history (down) =
accepted_messages (port_history (input)),
port_history (reject) =
rejected_messages (port_history (input)),
length_message (port_history (input)) =
number_of_messages_read,
int’ge (number_of_messages, number_of_messages_read),
int’ge (number_of_messages_read, 0))
end loop_invariant

Finally, the main procedure. The implementation is fairly straightforward. The proof
of the procedure required two lemmas, including one referring to minint and maxint, viz.
“MININT-AND-MAXINT-REQUIREMENTS”. The “equality_substitute” step results in
the replacement of “port_history(input’l)” by an expression it is equated with. As a point
of interest, in a later version of the system, when the prover had been augmented with

forward rules, the proof of the main procedure was reduced to three steps since the lemmas
did not have to be explicitly assumed.

main prog procedure flow_modulator (mvar down, mvar reject, mvar input) =
pre pre_condition (down, reject, input)
post post_condition (down, reject, input)
begin
pvar e0_message
pvar number_of_messages_read := 0
loop
invariant loop_invariant (downm,
reject,
input,
number_of_messages_read)
measure ordinal’val (minus (number_of_messages,
number _of_messages_read))
exit when number_of_messages_read = number_of_messages
input_port (input, eO_message)
nunmber_of_messages_read := eplus (number_of_messages_read, 1)
if ok (eO_message)
then output_port (down, e0_message)

else output_port (reject, e0_message)
end if

end loop
end flow_modulator
{! use "about_number_of_messages" }
{! use "MININT-AND-MAXINT-REQUIREMENTS"}

{! prove }
{! equality_substitute port_history (imput’1) }
{! prove }

end micro_flow_modulator

116

References

[Cra 85]

Dan Craigen. A Technical Review of Four Verifica-
tion Systems: Gypsy, Affirm, FDM and Rcvised Spe-
cial. ILP. Sharp Associates Final Report FR-85-5401-
01, August 1985.

[Cra 86a] Dan Craigen. Program Verification at I.P. Sharp As-

sociates. L.P. Sharp Associates Technical Report TR~
86-5420-04, September 1986.

[Cra 86b] Dan Craigen. Some Comments on Program Verifica-

[Cra 87]

[Gri 82]

[Kem 85]

[Kem 86]

[PK 87]

[Saa 87]

tion Systems. To appear in the procecdings of the
“Symposium on Safety and Security”, (October 20 -
October 24, 1986), Glasgow, Scotland. Proceedings to
be published by Blackwells. Also I.P. Sharp Associates
Technical Report TR-86-5420-05, December 1986.

Dan Craigen. A Description of m-Verdi. I.P. Sharp
Associates Technical Report TR-87-5420-02, June
1987.

David Gries. A Note on the Standard Strategy for De-
veloping Loop Invariants and Loops. Cornell Univer-
sity Technical Report TR~-82-531, October 1982.

R. Kemmerer. Testing Formal Specifications to Detect
Design Errors. IEEE Transactions on Software Engi-
neering 21(1), January 1985.

R. Kemmerér, et al. Verification Assessment Study Fi-
nal Report, Volumes I-V. National Computer Security
Center C3-CR01-86, March 1986.

Bill Pase, Sentot Kromodimoeljo. NEVER: An Inter-
active Theorem Prover. L.P. Sharp Associates Confer-
ence Paper CP-87-5402-20, January 1987.

Mark Saaltink. The Mathematics of m-Verdi. L.P.
Sharp ‘Associates Technical Report FR-87-5420-03,
June 1987.

117

The Bell-LaPadula Computer Security Model
Represented as a Special Case of the
Harrison-Ruzzo-Ullman Model

Paul A. Pittelli

ABSTRACT

Currently most computer security models are classified
among the three types; access control, information flow, and
non-interference. Within the realm of access control lies the
classical Bell-LaPadula model. A BLP model consists of a set of
subjects and objects, three security level functions, and a
discretionary access matrix together with-a set of rules used to
manipulate the current state of the model. Security in this
model is dependent upon the satisfaction of the three
properties: simple security, discretionary access, and the *
property. An HRU model consists of an access matrix and a
finite set of commands which act as matrix transformations.
Here security is determined by looking for the existence of an
access right in a specific cell of the matrix. We define a specific
HRU model (called the Bobo model) and establish a
correspondence between the Bobo commands and BLP rules,
also between the Bobo and BLP states. Furthermore we
observe that this correspondence is security preserving in the
fact that 2 BLP access triple is secure if and only if that access
is contained in a specific cell of the Bobo access matrix.

Introduction

The purpose of this note is to show that the Bell-LaPadula
model for access control is simply a special case of the not so
well known Harrison-Ruzzo-Ullman model. The HRU model
consists of an access matrix together with a finite set of
commands that are used to manipulate the matrix. In order to
develop a model equivalent to BLP's, we need to exhibit
commands that are “identical” to the BLP rules.

Before we begin defining the commands, we must first
exhibit a correspondence between the “subjects” and “objects”
in the BLP model and the “subjects” and “