INATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY/
INATIONAL €COMPUTER SECURITY €ENTER

18th NATIONAL INFORMATION SYSTEMS
SECURITY CONFERENCE

(formerlv the National Computer Security Conference)
October 10-13, 1995

Baltimore Convention Center

Baltimore, Maryland

B gy e
L SR A WS 4

Welcome

The National Computer Security Center (NCSC) and the Computer Systems
Laboratory (CSL) are pleased to welcome you to the Eighteenth National
Information Systems Security Conference. The new conference name reminds us
that information systems, not just computers, must be secure. This year’s program,
with its theme “Making Security Real,” is designed to help you plan for effective
use of information security technology and to create security solutions. We believe
the conference will stimulate a copious information exchange and promote a solid
understanding of today’s information security issues and protection strategies.

The conference program addresses a wide range of interests from technical
research and development projects to user oriented management and administration
topics. This year, the program focuses on developing and implementing secure
networks, technologies, applications, and policies. Papers and panel sessions
address a broad spectrum of network security subjects including: security
architecture, internet security, firewalls, multilevel security (MLS) products, and
security management. Because the National Information Infrastructure (NII), and
its present backbone--the Internet--are topics of increasing interest, the challenges
they present are the subject of many presentations. As in the past, a number of
tutorials introduce attendees to a variety of information security topics and project
areas. As a new feature this year, we have invited the vendor award recipients to
provide product information displays as part of the award ceremony.

We feel assured that the professional contacts that you make at this conference,
the presentations, and these Proceedings will offer you insights and ideas you can
apply to your own security planning efforts. We encourage you to share the ideas
and information you acquire this week with your peers, your management, and your
customers. We also encourage you to share with us your success-based security
techniques. It is through sharing that we will continue to enhance the security of
our information systems and networks and build a strong foundation to make
security real.

SHUKRI A. WAKID
Acting Director V“/

Computer Systems Laboratory

e

HN C. DAVIS
Director
ational Computer Security Center

DoiG QUALITT INSPECTED §

18th National Information Systems Security Conference

Co-Chairs
Stephen F. Barnett, National Computer Security Center
Irene Gilbert Perry, National Institute of Standards and Technology

Program Directors
Jack Holleran, National Computer Security Center
Dennis Gilbert, National Institute of Standards and Technology

Program Council
Edward Borodkin, National Computer Security Center
Christopher Bythewood, National Computer Security Center
Dr. Gary Smith, Arca Systems, Inc.

Administration

Stacey Duany, National Computer Security Center

Tammie Grice, National Institute of Standards and Technology
Mary Groh, National Computer Security Center
Barbara Keller, National Security Agency

Kathy Kilmer, National Institute of Standards and Technology

Carol OBrien, National Computer Security Center

Phyllis Pierce, National Computer Security Center

Pat Purkey, National Security Agency

Sara Torrence, National Institute of Standards and Technology

Conference Referees

Dr. Marshall D. Abrams The MITRE Corporation
Rowland Albert National Security Agency
James P. Anderson J. P. Anderson Company
Devolyn Arnold National Security Agency
Al Arsenault National Security Agency
Steve Barnett National Computer Security Center
Dr. Matt Bishop University of California, Davis
Earl Boebert Sandia National Laboratory
Edward Borodkin National Computer Security Center
Dr. Dennis Branstad Trusted Information Systems, Inc.

Dr. Martha Branstad Trusted Information Systems, Inc.

ii

Conference Referees (continued)

Dr. Blaine Burnham
Christopher Bythewood
Dr. William Caelli

Dr. John Campbell

Dr. Jon David

Dr. Dorothy E. Denning
Donna Dodson

Ellen Flahavin

Daniel Gambel

Virgil Gibson

Dennis Gilbert

Dr. Grace Hammonds
Ronda R. Henning

Dr. Harold Highland, F1.C.S., FACM.
Jack Holleran '
Hillary H. Hosmer
Dennis Huaman

Dr. Sushil Jajodia

Carl Landwehr

Robert Lau

Dr. T.M.P. Lee
Special Agent John F. Lewis
Steve Lipner

Teresa Lunt

Dr. John McLean

Sally Meglathery
Rebecca Mercuri
William H. Murray

Dr. Peter Neumann
Donn B. Parker

Dr. Charles Pfleeger
Loreto Remorca

Dr. Ravi Sandhu
Marvin Schaefer

Dr. E. Eugene Schultz

J
Dr. Gary Smith Accesion For |
Dr. Eugene Spafford NTIS CRA&I)
James T. Tippett DTIC TAB O
Ken vanWyk Unannounced 0

Justification

Roy Wood
Paul Woodie By [Yy

Disthution [

Availability Codes

L Avail and{or
Dist Special

A-1

iii

National Security Agency
National Computer Security Center

Queensland University of Technology, Australia

National Security Agency
The Fortress
Georgetown University

National Institute of Standards and Technology
National Institute of Standards and Technology

General Research
Northrup Grumman

National Institute of Standards and Technology

AGCS

Harris Corporation

Computers & Security

National Computer Security Center
Data Security

Fidelity

George Mason University

Naval Research Laboratory
National Security Agency
Independent Consultant

United States Secret Service
Trusted Information Systems, Inc.
Advanced Research Projects Agency
Naval Research Laboratory

Estee Lauder

University of Pennsylvania

Deloitte & Touche

Stanford Research Institute, International
Stanford Research Institute, International

Trusted Information Systems, LTD
Secure Solutions

George Mason University

Arca Systems, Inc.

tanford Research Institute, International
Arca Systems, Inc.

Coast Laboratory, Purdue University
National Security Agency

Defense Information Systems Agency
National Security Agency

National Security Agency

Awards Ceremony

2:00 p.m. Thursday October 12
Convention Center, Room 310

The National Institute of Standards and Technology (NIST) and the National
Computer Security Center (NCSC) will honor those vendors who have successfully developed
products meeting the standards of the respective organizations. Immediately following the
ceremony, honored vendors will have the opportunity to display these products.

The NCSC recognizes vendors who contribute to the availability of trusted products
and thus expand the range of solutions from which customers may select to secure their data.
The products are placed on the Evaluated Products List (EPL) following a successful evaluation
against the Trusted Computer Systems Evaluation Criteria including its interpretations:
Trusted Database Interpretation, Trusted Network Interpretation, and Trusted Subsystem
Interpretation. Vendors who have completed the evaluation process will receive a formal
certificate of completion from the Director, NCSC marking the addition to the EPL. Certificates
will also be presented to those vendors that have placed a new release of a trusted product on
the EPL by participation in the Ratings Maintenance Program. Additionally, vendors will receive
honorable mention for being in the final stages of an evaluation as evidenced by transition into
the Formal Evaluation phase. The success of the Trusted Product Evaluation Program is made
possible by the commitment of the vendor community.

The Computer Security Division at NIST provides validation services to test vendor
implementations for conformance to security standards. NIST currently maintains validation
services for three Federal Information Processing Standards (FIPS): FIPS 46-2, Data Encryption
Standard (DES); FIPS 113, Computer Data Authentication; and FIPS 171, Key Management
Using ANSI X9.17. During this award ceremony, NIST presents “Certificate of Appreciation”
awards to those vendors who have successfully validated their implementation of these
standards.

With the reaffirmation of the Data Encryption Standard as FIPS 46-2 in 1993, DES
can now be implemented in software, as well as hardware and firmware. To successfully
validate an implementation for conformance to FIPS 46-2, a vendor must run the Monte Carlo
test as described in NBS (NIST) Special Publication 500-20. The Monte Carlo test consists of
performing eight million encryptions and four million decryptions, with two encryptions and one
decryption making a single test.

Vendors test their implementations for conformance to FIPS 113 and its American
National Standards Institute (ANSI) counterpart, ANSI X9.9, Financial Institution Message
Authentication (Wholesale). This is done using an electronic bulletin board system. Interactive
validation requirements are specified in NBS (NIST) Special Publication 500-156, Message
Authentication Code (MAC) Validation System: Requirements and Procedures. The test suite is
composed of a series of challenges and responses in which the vendor is requested to either
compute or verify a MAC on given data using a specified key which was randomly generated.

Conformance to FIPS 171 is also tested using an interactive electronic bulletin board
testing suite. FIPS 171 adopts ANSI X9.17, Financial Institution Key Management (Wholesale).
ANSI X9.17 is a key management standard for DES-based applications. The tests are defined in
a document entitled NIST Key Management Validation System Point-to-Point (PTP)
Requirements. The test suite consists of a sequence of scenarios in which protocol messages
are exchanged under specified conditions.

We congratulate all who have earned these awards.

iv

18th National Information Systems Security Conference

WEICOME LEtET......ooiiiiiiiiieee ettt e ST i
Conference Committee & Refereescoovveviiiieiiieiiiieieccievee e il
AWArd CETEIMONYooovviiiiieiieeiieteerieeee ettt et ettt e ser e et eeneeesanis iv
Table Of COMENESceoeiieiiiee et e et e e e ettt e e e e e e ebvaaaaaeaeeaeanns v
Authors Cross REferencCe..........oocvvviiiiiiiii e Xy

Refereed Papers
TECHNICAL CHALLENGES, TRACK A

Enforcement of Complex Security Policies with BEACc.ccccoiniviiiiiiiniiininiinecres 1
I-Lung Kao, Randy Chow, University of Florida
The Controlled Application Set Paradigm for Trusted SyStemsccoccoviviiininniiinicinineiees 11

Daniel F. Sterne, Trusted Information Systems, Inc.;
Glenn S. Benson, European Computer-Industry Research Centre

Information Domains MetapOlCY.........cevieecreieriiieiriete ettt te st st ebs b n e aeearaen 27
Gene Hilborn, Computer Sciences Corporation

Maintaining Secrecy and Integrity in Multilevel Databases: A Practical Approach..............cccocoiiiiinns 37
Sushil Jajodia, George Mason University;
Don Marks, Department of Defense,
Elisa Bertino, Universita di Milano

TOP: A Practical Trusted ODBMS..........oooiiiiiiiii e et e et e et e e s tae s s e e raaasnbeesssseeessabeeeessnneeens 50
Marvin Schacfer, Arca Systems, Inc.;)
Valeria A. Lyons, Paul A. Martel, Antoun Kanawati, ONTOS, Inc.

Great Unsolved Problems in Applied Computer SECUTItY..........ccocvivvirieriiiinieniiiieiieccieicircie e 63
Mark G. Graff, Sun Microsystems

Addressing INFOSEC Analysis Problems using Rule-Based Technologyc.ococeeviiniiicciciiinnnnnn. 73
Richard B. Neely, Ph.D., James W. Freeman, Ph.D., CTA Incorporated

Identification of Subjects and Objects in a Trusted Extensible Client Server Architecture...........c..c.c....... 83

Terry C. Vickers Benzel, E. John Sebes, Homayoon Tajalli, Trusted Information Systems, Inc.

The New Alliance: Gaining on Security Integrity ASSUTANCE ... s 100
René H. Sanchez, Rockwell Space Operations Company
Donald L. Evans, UNISYS

An Unusual B3-Complaint Discretionary Access Control P'olicy ... 113
Jeremy Epstein, Gary Grossman, Albert Donaldson, Cordant, Inc.

GENSER Message Multi-Level Secure Classifications and Categoriesccccoeveiveceeiiennnenn SR 123
Mary Lou Hoffert, NCPII Development Team, NCTAMS LANT and NCTS Washington

A Standard Audit Trail FOTMatcccooiimiiiiiiniiieieicienceceerreeeese et cnnsaeas 136
Matt Bishop, University of California, Davis

TCP/TP (Lack OF) SECUTILYicriiieiiiitieitetesteesteeiie sttt et eeseteste e taesee et e s e eesestbeesbaeesbneesbbeesaneeane 146
Jesper M. Johansson, University of Minnesota

AINT Misbehaving--A Taxomony of Anti-Intrusion Techniques.........cccoceivveerieeiieiniiiiie e 163

v

Lawrence R. Halme, R. Kenneth Bauer, Arca Systems, Inc.

Simulating Concurrent Intrusions for Testing Intrusion Detection Systems: Parallelizing Intrusions.... 173
Mandy Chung, Nicholas Puketza, Ronald A. Olsson, Biswanath Mukherjee, University of California, Davis

Maintaining Privacy in Electronic TIansactions............ccouvieueirmeunininccieriiniiinis e 184
Benjamin Cox, Carnegie Mellon University
A Software Architecture to Support Misuse Intrusion DEtection.............ccooveevieinivenniiiniins 194

Sandeep Kumar, Eugene H. Spafford, The COAST Project, Purdue University

SOLUTIONS, TRACK B

Providing Accurate Data Labels to the Analyst - The Secure CH WOrkStationccovvrveerereereeneen. 205
Ingrid Dampier, Christine Corbett, TRW Integrated Engineering Division

Controlling Network Communication with Domain and Type Enforcementc.ccececevvininnrinreinnnes 211
David L. Sherman, Daniel F. Sterne, Lee Badger, Sandra L. Murphy,
Kenneth M. Walker, Sheila A. Haghighat, Trusted Information Systems, Inc.

Integrating COTS Applications on Compartmented Mode Workstationsc.ccococvvecininnnniinnnn. 221
Susan A. Heath, The Boeing Company

Project WINMILL: Using a COTS Solution to Connect LANS of Different Compartments................... 228
Al Nessel, Curt Sawyer, Defense Intelligence Agency

ON GUArdS . . . BN GATAE..........ciiiiiviiieeiet ettt et bbbt 236
Lawrence M. Sudduth, Secure Computing and Communications, Inc.

Securing Local Area and Metropolitan Area Networks: A Practical Approach ... 249
Prof. Vijay Varadharajan, University of Western Sydney, Nepean, Australia

Using Network Traffic Analysis as a Security TOOIcocooevnininnncnccnnne et 262
Peter Troxell, Curry Bartlett, Nicholas Gill, Digital Equipment Corporation

SAGE: Approach to Rapid Development of Trusted Guard Applications............ccccocoeuniiieiiiniiiniinines 271
Karen Goertzel, Wang Federal, Inc.

Experiences with Implementing Messaging Security in MSMail 3.2 ..o, 281
James E. Zmuda, Russell Housley, Spyrus

Can Computers and Epidemiology Get Along? Health Problems in Computers............ccocoovnininninnn 291

Guillermo M. Mallén-Fullerton MS, Universidad Nacional Autonoma de México;
Dr. Florencia Vargas-Vorackova PhD, Instituto Nacional de la Nutricion;
Dr. Enrique Daltabuit-Godas PhD, Universidad Nacional Auténoma de México

Disaster Recovery Planning Case Study: The South African 1994 Electioncoooniiinniniinnn 300
Walter Cooke, CISSP, W. J. Cooke and Associates Ltd.
VHA's Approach to Contingency Plan Developmentccooiiiiiiininneniis 308

Gail Belles, Medical Information Security Service,
National Center for Information, VA Medical Center

CRITERIA AND ASSURANCE, TRACK C

Functional Security Criteria for Distributed SyStemscoooeviiiiiiiici s 310
Janet Cugini, National Institute of Standards and Technology;
Rob Dobry, National Security Agency,
Virgil Gligor, University of Maryland,
Terry Mayfield, Institute of Defense Analyses

vi

A Perspective of Evaluation in the UK Versus FRE US .ottt ettt 322
Alan Borrett, Member of UK ITSEC Scheme

ECMA's Approach for IT Security EValuationscccooieeniinnciiiine 335
Alexander Herrigel, R3 Security Engineering AG, Switzerland,
Roger French, Digital Equipment Corporation;
Haruki Tabuchi, Fujitsu Ltd, Japan;
The European Computer Manufacturers Association

Rating Network COMPONEILScoovviimimimiicretiitiresst sttt bbb s 344
Gloria Serrao, National Security Agency

Analysis Requirements for Low Assurance Evaluations..........c..c.oveevnnnmiiiniiiine 356
James L. Arnold Jr., National Security Agency

Measuring Correctness and Effectiveness: A New Approach Using Process Evaluation........................ 366

Klaus Keus, Klaus-Werner Schroder, Bundesamt fir Sicherheit in der Informationstechnik, Bonn, Germany

Reengineering the Certification and Accreditation Process: Security is Free..........cccocovniiniin 374
Sean G. Mahon, Boeing Information Services ‘

MANAGEMENT AND ADMINISTRATION, TRACK D

Critical Factors of Key Escrow Encryption SyStEmSccocoiiiiiiniiiniiiniiniccitiiiniii s 384
Dorothy E. Denning, Georgetown University

Evaluating the Strength of CIPhers ... 395
John C. Higgins, Brigham Young University

Community Response to CMM-Based Security Engineering Process Improvementccoeiies 404
Marcia W. Zior, National Security Agency

Measuring Security: What Can We Learn from Other Fields?cocoooiiiiiinnn, 414
Deborah J. Bodeau, The MITRE Corporation

Security and SOFtWATE REUSEcooverieriiciiiiiiiire ettt 424

George W. Rogers, Jr., Jerry C. Crabb, The Analysis Corporation

The Use of Generic Architectures in System INtegration.............cccoovveiiiiniininniiienineeeee 431
Dan Gambel, General Research Corporation;
Judith Hemenway, Northrop Grumman Data Systems and Services Division

An Open Trusted Enterprise Network ArchiteCturecooooiiiiiiii s 447
Gary Grossman, Jeremy Epstein, Cordant, Inc.;
Roger Schell, Novell, Inc.

Component Architectures for Trusted NEtWare.cooieiiniiniiiniicic e 455
Jeremy Epstein, Gary Grossman, Cordant, Inc.
Roger Schell, Novell, Inc.

Social Engineering: The Only Real Test of Information Systems Security Plans.....................locccoonne 464
Ira S. Winkler, Science Applications International Corporation

Contingency Planning: What to Do when Bad Things Happen to Good Systems............cccccvevvienunen. 470
Jay J. Kahn, Marshall D. Abrams, The MITRE Corporation

What Every Information Systems Security Professional Should Know _
About Electronic Records Managementcccecceveeerieeirirenoniiniciienisieir et sseeeessens 480
Julie Smith McEwen, CISSP, IIT Research Institute '

vii

THE INTERNET AND BEYOND, TRACK E

Computer Forensics: An Approach to Evidence in Cyberspace............coooovvviiiiinnnniinn 487
Special Agent Mark M. Pollitt, Federal Bureau of Investigation

Software Piracy: Prevention, Detection, and Liability Avoidance.............oooeviminiiiiiinininnieccieees 492
Melissa J. Shaw, Batelle '

Authorship Analysis: Identifying the Author of @ Program...............ocooviiiiiiniiiiiiicces 514
Ivan Krsul, Eugene H. Spafford, The COAST Project, Purdue University

Emerging Law Regarding Computers, Communications, and Softwarecceeeeiiiiniinnnccnn 525
J. Stewart Bradish, University of Maryland

Internet SNIFFEr AACKScc.iiiiiiiiie ettt er e sttt s a s sre s st ra s sabe s bb e tca s e sibe s saanbeenes 534

E. Eugene Schultz, Ph.D., SR International
Thomas A. Longstaff, Ph.D., Carnegie Mellon University

Information Warfare: A Front Ling PEerSPeCtive............covvviveriiieenieniiniieniciieeeiecniicniin e enineeeneeanns 543
Lieutenant Mark D. Tibbs, U.S. Air Force
Defending a Computer System using Autonomous AZENtSceevviriviiiiensiieneniennsesnee e 549

Mark Crosbie, Eugene H. Spafford, COAST Laboratory, Purdue University

Special Unrefereed Papers

The Table of Contents for the 1st through the 17th National Computer
Security Conferences.............cooviiiiireiiniiiieieecece e 559

Jack Holleran, National Computer Security Center
Darlene Affeldt, National Security Agency

A Retrospective on the Criteria MOVEIMENL............ccooiiiiiiiiiiiiiiieieie e 582
Willis H. Ware, Rand Corporation
Conference Report: 17th National Computer Security Conference...........oovvevviiininiiniiicininiinininnnes 589

Dennis Gilbert, National Institute of Standards and Technology

Panel Summaries

TECHNICAL CHALLENGES, TRACK A

INFOSEC Research and Technology, Facing the Challenge:
Secure Network Technology for the 21st Century.........cccooveevevveniiiiiiiiniii e 601
Joe Moorcones, Chair, National Security Agency
Panelists
Tom Zmurko, National Security Agency
Dave Muzzy, National Security Agency
Bill Ruppert, National Security Agency
Blaine Burnham, National Security Agency

Security on the I-WAY (High Speed ATM NEtWorks)cccoveuevuruioriiniiniiiniiiininiceinrcre e 602
Ken Rowe, Chair, University of lllinois Urbana-Champaign

Panelists :

Kem Abhlers, Caterpillar, Inc.

Jay Dombroski, San Diego Supercomputing Center

Ian Foster, Argonne National Laboratory

Judy Warren, Cornell Theory Center

viii

Secure Database Systems: Where are We?.........coovviivieiiiiiinnninneiic e 605
John R. Campbell, Chair, National Security Agency
Viewpoints
SETALEINENEveveeeeereeseeueieeetiereseessereesessassessestereabe e b et et saseb e s b e b e b s R o b b s b e b e e b b e bt eb b et e ns bbb sat e b s a s sasem et 607
Richard Allen, Oracle Corporation
Secure Database Systems - Where ATe We?.........ooovviiiiiiiiiiiii s 609
Dick O'Brien, Secure Computing Corporation
Directions for Database SECUTILYeveeeeireeriiieriiiiii st 611
Thomas Winkler-Parenty, Sybase Inc. _
Database Security for DoD and Commerce --- New Challengescccccooennmiiiinniciiinin 613
Bob Hedges, Informix Software Inc.

Security in INFINite NEtWOTKSccooiurieiiiiiiiiiieiie e 617
Ruth Nelson, Chair, Information System Security
Viewpoints
Managing Insecurity in Infinite NEtWOIKS............cooniiiinioinini 619
Ruth Nelson, Information System Security
Security Policies for Infinite NEtWOTKS..........cccoviiiiiiimininiecnececcin s 621
Hilary H. Hosmer, Data Security, Inc.
The VIP Security PATadigIm.........cccocouiviiuiiiiiiniiiisinreeis et 626
Dave Bailey, Galaxy Computer Services
Closing the Gaps: Network Behavior ASSESSIENLcccorvrririnircenmiiciiciei e 628
Kim Claffy, San Diego Super Computer Center
Security fOr INfiNite NEtWOTKS.ccoviiiriiriiietiiiierieset et 630
Steven M. Bellovin, AT&T Bell Laboratory

Cryptographic Application Program INterfaceccocoervnniniciiniiii e 631
Amy Reiss, Chair, National Security Agency
Panelists
John Linn, Panelist, Open Vision
Piers McMahon, ICL Ltd.
Dr. Burton Kaliski, RS4 Labs

The Future of Formal Methods for SECUTitY.........cccovveviiniriiiniiiiiiiie s 634
Peter G. Neumann, Chair, SRI International
Viewpoints
Formal Methods and NASAoooviiiiicicieirerrt et eeeeees sttt sab e ts b e b be s e se s baeness 635
Ricky W. Butler, NASA Langley Research Center
Algorithmic Verification ... 636
Robert Kurshan, AT&T Bell Laboratories .
Formal Methods: Changing Dir€Ctions.............civvvvivinieniiininiinesen s 637
Bill Legato, National Security Agency

SOLUTIONS, TRACK B

Building a MLS System: A Real Life AdVENturecccrnvvmvervnemriinieeninns reesesersrssas st s tesansans 638
Stephen Kougoures, Chair, National Security Agency
Panelists
Gloria Fitzergald, National Security Agency
Devloyn Arnold, National Security Agency
Daphne Willard, National Security Agency
Cindy Hash, National Security Agency

ix

Information Systems Security Research Joint Technology Office (Secure Virtual Office)............ccc....... 641
John C. Davis, Chair, National Computer Securtiy Center
Panelists
Dr. Howard Frank, Advanced Research Projects Agency
Gregory Giovanis, Defense Information Systems Agency
Teresa Lunt, Advanced Research Projects Agency
Robert Meushaw, National Security Agency

Developing an Incident Handling Capabilify...........ccccooieiieiiiriieniicieiiecee et e 643
Marianne Swanson, Chair, National Institute of Standards and Technology
Viewpoints
Mark Graff, Sun Corporation
Sandy Sparks, Department of Energy's Computer Incident Advisory Capability
Sharon Sandstrom, GE Information Services

An Assurance Framework or Can Process Replace Evaluation?.............ccoccoevevviinienieninneescenneneneens 644
R. Kenneth Heist, Chair, National Security Agency
Panelists
William J. Marshall, National Security Agency
John J. Adams, National Security Agency
Stephen M. LaFountain, National Security Agency
Dallas L. Pearson, National Security Agency

Network RAting MOEL..........c.oooiiiiiiieiii ettt err e ere e e staesre e sr e e beesavaeessaesssasatneeernnesasnens 647
Olga Lambros, Chair, National Security Agency
Viewpoints ‘
Network Rating Model - OVETVIEWoouieuieieriniirieeieieneeieseesreesiesssesssensaesaeessesssesssesssaensessnne 650
Emily D, Joyce, National Security Agency
Capability Maturity Models and their Role in the Network Rating Modelccccooeeereennnnnee. 652

Dr. Bruce George, National Security Agency
Quantifying Computer Security -- The Air Force C4 Systems Security

Posture Model and ASSOCIAIEd IMELTICS.........c..ooviueiiiieiiiiiii ettt ettt e s eaeeeeesaaeeas 655
Joe Filer, Trident Data Systems, Inc.
Metrics: Their Role in the Network Rating Modeloooiiiiiiiiiiiieeceee 656

Colin Bowers, National Security Agency

CRITERIA AND ASSURANCE, TRACK C

The TMach Experiment - PRAse L..........cccooiiiieiiiiiiii ettt s a e ens 659
Ellen Colvin Flahavin, Chair, National Institute of Standards and Technology
Viewpoints
Helmut Kurth, I4BG
Julian Straw, Logica/(SISL)
Nigel Rogers, CESG
Martha Branstad, Trusted Information Systems, Inc.

Common Criteria Editorial Boardc.coccoiieiniiiniinieiieentcicct et a e enaeses 662
Lynne Ambuel, Chair, National Security Agency
Panelists
Stephen M. LaFountain, National Security Agency
Eugene Troy, National Institute of Standards and Technology
Aaron Cohen, CSE (Canada)
Yvon Klein, SCSST (France)
Chris Ketley, CESG (UK)
Ulrich van Essen, GISA (Germany)

The New OMB Circular A-130, Appendix Il ..o 663
Barbara Guttman, Chair, National Institute of Standards and Technology
Panelists
Scott Charney, Department of Justice
Ed Roback, National Institute of Standards and Technology
Ed Springer, Office of Management and Budget

Perspectives on Internet Security Evaluation and ASSUIANCE.coovviereininiiniiimnsn e 664
Bruce Aldridge, Chair, NIST
Panelists
Karin Taylor, Communications Security Establishment, Canada
Marcus Ranum, Information Works :
Marvin Schaefer, ARCA Systems, Inc.
Ron Ross, Institute of Defense Analyses

Trusted Products - How A1e They USed?c.covviviiiiiimimiiieenccncsinsns e 665
Laura M. King, Chair, National Security Agency

Trust Technology ASSESSIMENt PIOZIAIM..........cviimeirtiieiiriiiisi e 666
Thomas Anderson, Chair, National Security Agency

Panelist
Ellen Colvin Flahavin, National Institute of Standards and Technology

The Development of Generally-Accepted System Security PrNCIpIEsocooiiimicniiiiniinnns 667
Will Ozier, Chair, ISSA GSSP Committee
Panelists
Marianne Swanson, National Institute of Standards and Technology
Kristen Noakes-Fry, Noakes-Fry Associates
Hal Tipton, HFT Associates
Nigel Hickson, Department of Trade and Industry

MANAGEMENT AND ADMINISTRATION, TRACK D

Linking Information Systems Security and Continuous Process Improvement.

A Win-Win Organizational Strategy............oeuierernmmininceniiiiiii e 668
Dennis Gilbert, Chair, National Institute of Standards and Technology

Viewpoints
Richard Belville, Richard Belville and ASSOCIGLEScovvveoniininiiiiiiins s 672
Chris Bythewood, National Computer Security Center ..., 674
Richard Koenig, (ISC)2 .. 675
Corey Schou, Idaho State URIVEFSILY ... s 677
Ralph Spencer Poore, Coopers & Lybrand LLLP. ... 678

INFOSEC Security Market, A Small Business PEISPECIVEcovrveenniiiiiiniiisicsnns 679
James P. Litchko, Chair, Trusted Information Systems, Inc.

Panelists

Jean Wu, Information Systems Management, Inc,
Teresa Acevedo, A & N Associates
Loreto Remorca, Secure Solutions, Inc.

xXi

Will Encryption Keep Out the HACKETS?..........oocviiiiiiiiiiiinieiesieieecete ettt 681
Dorothy E. Denning, Chair, Georgetown University
Panelists
Michael R. Higgins, DISA/CISS
Stephen T. Kent, BBN Communications Corporation
Eugene Spafford, The COAST Project, Purdue University
Viewpoint
Will Encryption Keep Out the HACKEISTcoovveviiiiviicieecetse et 682
Steven M. Bellovin, AT&T Bell Laboratories

Commercial World: Requirements vs. Solutions / Corporate Security Challenges.............cccccveeevrennnee. 683
Dennis Huaman, Chair

Panelists
Richard Lee
Brian O'Higgins
Stanley Jarocki

National Information Infrastructure Security Initiatives, Part I.............ccccooovviveiiiiiiecceeeecce 685
Electronic Commerce, Electronic Messaging (E-Mail) and Information Security, Overview of Panel
Thomas Burke, Co-Chair, GS4
F. Deane Erwin, Co-Chair, NII SIPMO

Panelists
Tom Clarke, Defense Information Systems Agency
G. Martin Wagner, ECA-PMO

Viewpoints
Governmentwide E-MAIL VISION ..ottt s 686
Jack Finley, GSA
Federal Electronic COmMMErce PTOZIAINc.ccooeiiviiriiiieiisceieciecie et rte e svaesva e aeenaeesne e 687
Security Infrastructure Program Management Office..............ccooviiiiiiiiiii e 690
National Information Infrastructure Security Initiatives, Part II................ FUUURRRRUORURRR e e———— 693
Stephen Walker, Chair, Trusted Information Systems, Inc.
Viewpoints
Richard Rothwell, USPS Electronic CoOmmerce SerVICEScouveeeveeeeeeeeeieeieieeieiiieeeeeeesesnenennes 694
Jim Bidzos, RSA Data SeCurity, INC............c.ccoovieiiievuieiieiiiieeieasiieeieessesiseecseeessssessesaessateeeneneees 695
Nick Piazzola, National Security AGENCY..............ccccceevvriecienieiienieirieieesresstesseeiveeveessessaseseessaanes 695
Wynn Redden, Communications Security Establishment, Canadian Government PRV 696
INFOSEC, Prepare to Meet the New Millennium!..............ccocoooiiiiiaiiiiiii e 697
Dr. Charles Abzug, Chair, Institute for Computer and Information Sciences
Panelists

Marshall D. Abrams, , The MITRE Corporation
Kevin T. Deeley, Federal Bureau of Investigation
Patricia Edfors, Department of Justice
Lynn McNulty, McNulty and Associates
Donn B. Parker, SRI International
Dr. Marv Schaefer, Arca Systems
Viewpoint :
Information Security Infrastructure for the New Millenniumc.ocoovvvevveviinniniiee, 699
Dr. Roger R. Schell, Novell, Inc.

xii

THE INTERNET AND BEYOND, TRACK E

Legal Hacking - What is Computer Crime on the INternet?coooviiiieniiniiii, 703
Christine Axsmith, Chair, Orkand Corporation
Panelists
Scott Charney, Department of Justice,
Barbara Fraser, CERT, Carnegie Mellon University
Dr. Lance Hoffman, George Washington University
Marc Rotenberg, Electronic Privacy Information Center

Law Enforcement Panel on Computer FOTENSICS.c.coevveeiiiiniiiiniiiniiiiirese ettt 705
Special Agent Mark M. Pollitt, Chair, Federal Bureau of Investigation -
Panelists . ‘
Special Agent Stephen D. McFall, Federal Bureau of Investigation
Special Agent Howard Schmidt, United States Air Force Office of Special Investigations
Duncan Monkhouse, Royal Canadian Mounted Police

Viewpoint
Department of Maryland State Police Computer Crimes Unitcoooveereieninnnnncne, 706
Sergeant Barry E. Leese, Maryland State Police
Internet Security: Current Threats and Practical SOIGtionscocovvveviinieiniiiien ... 708
John Wack, Chair, National Institute of Standards and Technology
Viewpoints
Trends in Internet Attacks and Unauthorized ACCESS......c.cveovieiiiiniiiiiniiiiiinee e enree e 708
David Curry, Purdue University
Business Needs and Concerns with Internet Firewalls...........c.cooooviviinininnies 708
John Pescatore, International Data Group
WWW Security: Current Problems and Solutions, Future Trends ..o 709

Robert Bagwill, National Institute of Standards and Technology
Network Attacks Analysis: Stopping the Cycle of Internet Security Attacks, Alerts, and Patches . 709
Dr. Matt Bishop, University of California, Davis

The Internet Series

INEEINEL SECUIILY ...vvoveivereeiereriieet ettt ettt cb et re et e n e e ene ek s s s e s st b e s e s b et et e sk s s b s besnasnanas 710
Jon David, The Fortress

Viewpoints '

Padgett Peterson, Martin Marietta

Internet SECUTILY TOOLS ...ocvvoviiiieeieiie ettt be et 716
Steven M. Bellovin, AT&T Bell Laboratories

Network Security Tools: Implementations and Implications.........cc.ceceecveiviiviniiniiiiinnieenns 718
Paul Ferguson, U.S. Sprint _

Publication of Vulnerabilities and TOOIScccueviviineenineiniiee e 727
Sarah Gordon, Command Software Systems, Inc.

Information Warfare: Its Impact upon Information SECUIILYvcverevevrieremememreeeeerereeeieeseeeecenes 728
Wayne Madsen, Chair, Computer Sciences Corporation
Panelists v
Martin R. Hill, Office of the Assistant Secretary of Defense, Cumw
David Banisar, Electronic Privacy Information Center
John Stanton, Technology Transfer Journal
Viewpoints
Information Warfare: Its Origins and Challenges for Information Security............ccccoceeininiinn. 730
John Hamlet, Deacon House

xiii

THE TUTORIAL TRACK, TRACK F

Tutorial Series on Trusted Systems and Operational SeCUritycccoveveiiiiiiiiennceenec e 735
Dr. Gary Smith, ARCA Systems, Inc.
Presenters:
Karen Ferraiolo, Mike Weidner, Stan Wisseman, Jack Wool, ARCA Systems, Inc.
R. Quane, A. Strameela, National Cryptologic School
Dr. Harold Highland, Computers & Security
Dr. John Campbell, National Security Agency
Joel Sachs, The Sachs Group

Internet 101: Introduction to the Insecurity of the INtErnet............cocevivviirvierieiiin i 737
Dr. Harold Highland, FICS, Chair, Computers & Security
Panelists
Dr. Jon David, The Fortress
Dr. Bertil Fortrie, Internet Security News
Sarah Gordon, Command Sofiware
Padgett Peterson, Martin Marietta

A Brief Database Security Tutorial; Or the less than Civil War between Ease-Of-Use and Security,
the Battle between Grant and Lee's Privilege, Roles and Rollbacks, MAC DAC and FACT,

even Distribution and Replication Maybe...........c.occovvrivieiiiieneneieereeeee e nvense e i e 740
John R. Campbell, Chair, National Security Agency

From Training Standards to Courseware: An INFOSEC Success StOryccceveevvrineeeieeniinenniieeeeeen. 758
Dr. Vic Maconachy, Chair, National Security Agency

Panelists

Dr. Corey Schou, /daho State University

Dr. John Cordani, Eastern Michigan University
Dr. Timothy Mucklow, U.S. Air Force

Lt. Ken Loker, U. S. Navy »

Ron Mayfield, General Services Administration

MISST SEIIES. ...cutiiviieeiieiiiie et b e bbb s bbb bbb st ba b s 759
Brooke Jenkins, Chair, National Security Agency :
Panelists
M. Fleming, National Security Agency
S. Saydjari National Security Agency
Todd Inskeep National Security Agency
Carol Friedhoffer National Security Agency
Al Arsenault National Security Agency

A Tutorial: The Internet, World Wide Web, and Beyond..............ccocvvniiiniininnieeienieseeseesiesessesreenens 760
Jeff Harrison, Chair, National Institute of Standards and Technology

xiv

18th National Information Systems Security Conference
Author Cross Reference List

Abrams, Marshall D. 470
Abzug Charlie ... 697
Ahlers, Kemcccoovveviniiiiii 602
Aldridge, Bruceccccooeiiienenn 664
Allen, Richardcccoooeiiiiinnn 607
Ambuel, Lynne ... 662
Anderson, Thomascccceeenne 666
Amold, James L., Jr. ... 356
Axsmith, Christine............c.ccccccoooennn 703
Badger,Lee ..o 211
Bagwill, Robert ..., 709
Bailey, Davecccooooiiiiiiin 626
Bartlett, Currycocooceevveviiivincnnnnn. 262
Bauer, R. Kenneth ... 163
Belles, Gailcccoovvviieciiiiiii 308
Bellovin, Steven M. 630, 682,716
Belville, Richardocccoeeinnninnnn 672
Benson, Glenn S. ..o, 11
Benzel, Terry C. Vickers 83
Bertino, Elisacccccoiiiiiiiiin, 37
Bidzos, Jimcccoooiieie 695
Bishop, Mattccccccovrnrnnnn. 136, 709
Bodeau, DeborahJ.cccocein 414
Borrett, Alanoocoeviiieniii 322
Bowers, Colinccoooceeiiiiiiiiinn 656
Bradish, J. Stewart ... 525
Burke, Thomasccccoovvieiiinniinnnen. 685
Butler, Ricky W.cooocoiiiiiiiin 635
Bythewood, Chris ..., 674
Campbell, JohnR. ... 605, 740
Chow, Randyccoceeviiiiiiiiiinn 1
Chung, Mandy...........ccccooeiiiiinannin. 173
Claffy, Kim..........cccoooniiieriiiiiiiin, 628
Cooke, Walter...........ccoocveeviicviiiiinnns 300
Corbett, Christinecccccecevinnnnns 205
Cox, Benjamincc.ccoeevniiinnnnn 184
Crabb, Jerry C. ..o 424
Crosbie, Markcocoovcvieieniiiiiinns 549
Cugini, Janetcccoeviinnniiinnnnn 310
Curry, David ..o 708
Daltabuit-Godas, Enrique.................... 291

Dampier, Ingridcccoooi 205

David, Jon ..o 710
Davis, John C. ..o 641
Denning, Dorothy E. 384, 681
Dobry, ROb ..o 310
Dombroski, Jayccccoviiiiiiiiiianieens 602
Donaldson, Albertc..ccccocovviiinnins 113
Epstein, Jeremy 113, 447, 455
Erwin, F. Deanecccccovviiiniinns 685
Evans, Donald E.cccciiins 100
Ferguson, Paul ... 718
Filer, JO€ooovvoviieeiiiiiiecieeiee 655
Finley, Jack ..o 686
Flahavin, Ellen Colvinc...cc..... 659
Foster, Janccccoeeeeiiiiiiiiiniiiiinnnn. 602
Freeman, James W. s 73
French, ROZerc.cccociiiiiiiiiiiienns 335
Gambel, Dancccoeviiiiiiiii 431
George, Brucec..cccoovvieiiiniennennn 652
Gilbert, Dennis...........cc.cccceeeinnnn. 559, 668
Gill, Nicholasccccoveviiiiiiiiiininnn 262
Gligor, Virgil ..o 310
Goertzel, Karenccccoeeciiiiniinnnnn 271
Gordon, Sarahccovviiiiiiinnn. 727
Graff, Mark G........ccooooviieicii 63
Grossman, Gary 113, 447, 455
Guttman, Barbaraccocco 663
Haghighat, Sheila A.o0. 211
Halme, Lawrence R...........c.ccccoeoiinnnns 163
Hamlet, John...........ccoooiviiiis 730
Harrison, Jeff ... 760
Heath, Susan A.cccooiiiiiiiiiins 221
Hedges, BObccccooeviiiiiiiiics 613
Heist, R. Kennethc.cooceiinnn. 644
Hemenway, Judith ... 431
Herrigel, Alexanderccccooooni. 335
Higgins, John C. ...t 395
Highland, Haroldc..cccocoiin 737
Hilborn, Geneccceevevveeecnieiininnnn 27
Hoffert, Mary Louccoooviiiiiinn, 123
Holleran, Jackccccooveviiveeeiiiiiniins 559
Hosmer, Hilary H. ... 621
Housley, Russell ..., 281

Huaman, Dennisccccoeeveeenen. 683
Jajodia, Sushil ... 37
Jenkins, Brookeccccoeevieiinnn, 759
Johansson, Jesper M...............ccoeoveeeee. 146
Joyce, Emily D. ... 650
Kahn, Jay J. ..o 470
Kaliski, BUrtonccccooveevveveveennnnn. 631
Kanawati, Antounccccceeeevnenns 50
Kao, I-Lungooocviiiiiiiii 1
Keus, Klauscccooeveiiiiiin. 366
King, Laura M.ccooiiiiiiinins 666
Koenig, Richardccooenine 675
Kougoures, Stephen...................cc..... 638
Krsul, Ivancccocooeeiiiiiic 514
Kumar, Sandeepcccooiivieiiinnns 194
Kurshan, Robertc..ooooeeeeenennn. 636
Lambros, Olgaccoevvviveiiine 647
Leese, Barry E. ..., 706
Legato, Billcccoooiiiiiiii, 637
Linn, Johncccoeiiiiiii 631
Litchko, James P. 679
Longstaff, Thomas A........................... 534
Lyons, Valeria A.cccooovvvienn 50
Maconachy, W. V. ... 758
Madsen, Wayneccccceeeviieerninen. 728
Mahon, Sean G.cooooiiiiiiiiinn, 374
Mallén-Fullerton, Guillermo M. 291
Marks, DON.........oooveviiiiiieiieciicei 37
Martel, Paul A.............ooooo. 50
Mayfield, Terryccccovveviieniieneens 310
McEwen, Julie Smith 480
McMahon, Piersc.cccoovvvennennn. 631
Moorcones, JO&ccoooevvvriirriinnnnn. 601
Mukherjee, Biswanath 173
Murphy, Sandra L. e 211
Neely, Richard B. ..o, 73
Nelson, Ruthceoocn 617,619
Nessel, Al ..o, 228
Neumann, Peter G......................ccoe 634
OBrien, Dickc..cccoocciiiiii, 609
Olsson, Ronald................................ 173
Ozier, Will ..o, 667

Xvi

Pescatore, Johncccooeeeeiiinn 708
Peterson, Padgettcocceeeinn. 712
Piazzola, Nickcoocvviviieiiiiieiinn 695
Pollitt, Mark M.ccoeene 487, 705
Poore, Ralph Spencer 678
Puketza, Nicholasc.cccovenne. 173
Redden, Wynnccceoeviicnnnnne. 696
Reiss, AMY ...ooovveiiiieiiceieciieee, 631
Rogers, George W, Jr..........ooeiiinnn. 424
Rothwell, Richardccee. 694
Rowe, Ken ..., 602
Sanchez, René H.coe 100
Sawyer, Curtccccooviiii 228
Schaefer, Marvinccoooveeeeieeenn. 50
Schell, RogerR. 447, 455, 669
Schou, Coreyccovieeiiiiicice 677
Schroder, Klaus-Werner 366
Schultz, E. Eugenecccooeeeee. 534
Sebes, E. Johncccoocoiiviiiinn, 83
Serrao, Gloriacccoocoeiviiii 344
Shaw, MelissaJ.ccooovvviiiiinnnennnn. 492
Sherman, David L.c...ooeeenn. 211
Smith, Garyccoeevveeeireeieeen. 735
Spafford, Eugene H. 194, 514, 549
Sterne, Daniel F. 11, 211
Sudduth, Lawrence M. 236
Swanson, Marianne 643
Tabuchi, Harukioooeiins 335
Tajalli, Homayooncccccoevveenenn 83
Tibbs, Mark D..........cc.ooovviiieiiiie 543
Troxell, Petercooevvviivnnnnnee.n. 262
Varadharajan, Vijaycccccoeeeennnns 249
Vargas-Vorackova, Florencia 291
Wack, Johnccoooiiiiiii. 708
Walker, Kenneth M. 211
Walker, Stephen ... 693
Ware, Willis H.cooeiii 582
Warren, Judyooovviviiiiii, 602
Winkler, Ira S.......oooov, 464
Winkler-Parenty, Thomas..................... 611
Zior, MarciaW.ccoooeiiiiiiiiiins 404
Zmuda, James E. ... 281

Enforcement of Complex Security Policies with BEAC

I-Lung Kao* and Randy Chow

Department of Computer and Information Sciences and Engineering
University of Florida
Gainesville, Florida 32611
{kao,chow} @cis.ufl.edu

Abstract

Many computer applications in the commercial
world need complex security policies which are
hardly enforced by the military multilevel security
model because their enforcement must violate the ba-
sic properties of the mathematical structure that the
model is based on. Nor can these policies be modeled
by a discretionary security model like the HRU’s ac-
cess conlrol matriz since the accessing character-
istics of these applications demand some degree of
mandatory control. This paper presents an effec-
tive access conirol model called BEAC to enforce
these complex security policies. The power of this
model is demonstrated by its capability of express-
ing a rich set of access patterns from subjects to
objects in an elegant and uniform way. Moreover,
frequently-desired multilevel exceptions are system-
atically categorized and it is shown many security
policies requifed by computer applications in com-
mercial sectors are actually examples of these mul-
tilevel exceptions. Then it is demonstrated that all
these multilevel exceptions and other commercial se-
curity policies can be effectively enforced by an ez-
tension of the BEAC model.

1 Introduction

1.1 Security policies and access control
models

From the view point of access authorization, all
system entities in a computing environment can be
classified either as active subjects or passive objects.
An access control model specifies how security at-
tributes can be assigned to the interacting subjects
and objects, and how these attributes are used in

*currently with IBM, Austin, Texas

evaluating access permission according to some pre-
scribed rules. Given an access control model, an
user of the system can define his security policies
which specify how accesses from subjects to ob-
jects are to be regulated. An access control model
provide a mechanism to enforce security policies.
It is usually desirable to enforce as many security
policies as possible with one uniform access control
model.

Access control models are usually divided into
two categories: mandatory access control and dis-
cretionary access control {20]. Both are formulated
to allow or deny particular access modes by sub-
jects to objects. The two categories of models differ
mainly in how access authorizations can be modi-
fied. With a mandatory model, authorization mod-
ifications can only be made by an organization’s
security authorities by changing the security at-
tributes of subjects and objects. In a discretionary
model, a subject may be given some degree of free-
dom to pass the whole or part of its access privileges
for an object to another subject.

Most mandatory access control models are
lattice-based models, in the sense that each sub-
ject and object is associated with a security class,
and the set of all security classes forms a lattice.
All the classes in a lattice are partially ordered by a
dominance relation. A model’s access control rules
reflect the security goal of the model and ensure
that a subject can only have some mode of access
(read or write) to an object when the security class
of the subject dominates or is dominated by that
of the object. The most well-known mandatory
lattice-based models are the Bell-LaPadula multi-
level model [1] for data confidentiality and the Biba
multilevel model [2] for data integrity. In addition
to security classes (hierarchical levels), it is often
necessary to incorporate the need-to-know rule in
the model for many commercial and military ap-
plications. The need-to-know rule is usually im-

plemented by a non-hierarchical component for the
security attributes of subjects and objects, usually
called categories. The categories, representing the
natural characteristics of subjects and objects, also
form a lattice with set containment as a basis of the
dominance relation.

A discretionary access control model basically
enumerates all the subjects and objects in a system
and regulates the access to an object based on the
identity of a subject or the groups to which it be-
longs [20]. It can be best represented by the HRU’s
access control matrix [12] with a row for each sub-
ject and a column for each object. Each entry of the
matrix describes what access rights each subject has
for each object. In this model, no semantics of in-
formation in the objects are considered, thus the se-
curity sensitivity of an object cannot be expressed.
For performance reasons, an access control matrix
is implemented by either a row-based mechanism
(capability lists) or a column-based mechanism (ac-
cess control lists), and both have their own pros and
cons [9].

1.2 Needs for a new model

Because of its flexibility and adaptability to the
needs of the real world’s applications, category has
been implemented as a basic mechanism for ac-
cess control in some security systems (e.g., [10]).
However, even with categories, conventional multi-
level security models still cannot adequately enforce
some security requirements needed by many appli-
cations. The most visible examples are different
exceptions of multilevel information flow such as
transitivity, aggregation, and separation (of duty)
exceptions [11, 17] which all violate the basic prop-
erties of lattice, but are definitely required by many
practical applications. Other security requirements
that multilevel security models cannot satisfy are
easily found. To incorporate these security require-
ments, system administrators are often forced to
resort to less graceful and complicated methods to
satisfy each requirement individually (e.g., [16, 22]).
Thus, the difficulty of maintaining a secure com-
puting environment satisfying all specific security
requirements is increased considerably. These se-
curity requirements cannot be enforced by a dis-
cretionary access control model either, since the ac-
cessing characteristics of these applications demand
some degree of mandatory control. Therefore, there
is a need for a uniform and simple security model
for enforcing security policies where both manda-
tory multilevelysecurity and discretionary security
models are inadequate.

With the above reasoning, the paper proposes a
powerful access control model based on boolean ex-
pressions of categories. The model can implement a
very rich set of regulated access patterns from sub-
jects to objects in a natural and elegant way. Fur-
thermore, it is shown that this model has a greater
modeling power than conventional multilevel secu-
rity models. We also systematically categorize the
multilevel information flow exceptions in terms of
access control. The model is then extended to in-
corporate the concept of states which must be sup-
ported in order to enforce these exceptions, and it is
demonstrated how these multilevel exceptions and
other complex security policies can be enforced by
using the extended model.

2 A Model Based on Boolean Ex-
pressions

2.1 The basic model

Like most access control models, the proposed
model divides all the entities in a system into sub-
jects and objects. The security attribute of each
subject is a category set which generally specifies
the accessing characteristics of a subject. Unlike
those in multilevel security models, the categories
used here do not need to form a lattice. A cate-
gory can also be created and assigned to a subject
to enforce a desired security policy. The security
attribute of each object is a boolean expression of
categories, which basically is composed of categories
assembled by any operators allowed in boolean al-
gebra (“¢” means AND, “4+” means OR, and a bar
over a category, e.g. €, means negation), and is
called an Access Control Ezpression in this paper,
abbreviated as ACE. When a subject tries to access
an object, the access is granted if the ACE of the ob-
ject is evaluated TRUE using the subject’s category
set. The evaluation process of an ACE is described
as follows: Any category in the object’s ACFE has a
default value of 0. If an category ¢ in the ACE also
appear in the category set of the accessing subject,
¢ is converted to TRUE in the ACE. The ACE is
then evaluated according to the normal evaluation
procedure in boolean algebra, and results in either
TRUE or FALSE.

To define the model in a more formal way, if
the category set of a subject S is represented by
CAT(S) = {A} and the access control expression
for accessing an object O in some mode M by
ACE(O)pm =< E >, then the exclusive access con-
trol rule of this model is stated as “the access of S

0 O in mode M is granted if E(A) = TRUE, where
E(A) means evaluating E with A as the input, and
is denied if E(A) = FALSE.”

The rules defined -above apply to any access
mode, such as read, write, or execute, etc., and an
ACE can be independently defined for each access
mode of an object. Whereas multiple access modes
(thus multiple ACEs) might be defined for an ob-
ject, for the reason of simplicity we will assume only
one ACE with each object (thus one access mode
only or one ACE applied to all access modes) in
following discussions unless stated otherwise.

_ For example, if the category set of a subject S; is
{a,b,c} and the ACE of an object Oj; is < a *¢ >,
S; 1s not allowed to access Oj since the category ¢
in CAT(S;) makes ACE(Q;) false (a*¢= TRUE *
TRUE = TRUE x FALSE = FALSE). However, S; is
allowed to access another object Oy whose ACE is
< b+d+ e > since the existence of b in ACT(S;)
makes ACE(Oy) TRUE.

Taking an example of the government, a sub-

- ject Sy which represents an employee in the De-
partment of Defense could have a category set
{Northgorea, Nuclear Weapon}, which implies

that S; has access privileges to the objects catego- '

rized as Northgorea, Nuclear-Weapon, or both.

Another subject S; which represents an employee

in the Department of States has a category set

" {Northgorea, China}, which implies that the re-
sponsibility of S3 requires him to have access rights
to the objects categorized as Northgorea, China,
or both. Now if an object O representing a secret
document file has an ACE = < Northgorea >,
then it can be accessed by both S; and Sz be-
cause Northgorea exists in both category sets of
Sy and S;. Another object whose ACE ='<
Nuclear_Weapon > can be accessed by Sz (because
the default value of Nuclear .Weapon is FALSE) but
cannot by S; (because the Nuclear_-Weapon in Sy
makes this ACE FALSE).

The “wildcard” character, represented by the
symbol ‘$, is also used in an ACE to represent
any category except those already appearing in the
ACE. Utilizing the wildcard character is very ef-
fective in achieving some desired access pattern
precisely. For instance, an object whose ACE =

- < axb*$ > can be accessed only by a subject whose
category set contains only a and b and nothing else.
Note that the value of the wildcat character is al-
ways determined after the value-substitutions of all
other categories in an ACE.

As a general rule for achieving desired access re-
strictions, the existence of a category “c” in an ob-
ject’s ACE implies that a subject needs to have a

“¢” in its category set in order to access the object,
and a “¢” in an object’s ACE implies that the ob-
ject can only be accessed by a subject which does
not have a “¢” in its category set. Moreover, two
categories appearing as “c; x¢;” in an object’s ACE
indicates that a subject must have both “c;” and
“c;” in its category set to access the object, and
two categories appearing as “c; + ¢;” in the ACE

)

means that any subject which has either “¢;” or

* “c;” can access the object.

For simplicity in description, this booelean
expression based access control model is named

BEAC.
2.2 Modeling power

The modeling capability of the BEAC model is
quite powerful . Firstly, it offers a flexible and ele-
gant mechanism of access control. Both authorized
:Emd prohibitive access control can be expressed ex-
plicitly at the same time by one mechanism. The
use of boolean expressions is more natural to en-
force the security requirements of some real appli-
cations, especially in commercial sectors, than us-
ing the set containment relation in multilevel secu-
rity models. The wildcard category used to gener-
alize access patterns sometimes or to restrict them
at other times is as powerful as using the wildcard
character “¥” in UNIX shell commands. The desir-
ability of prohibitive rights and wildcard in specify-
ing access rights is debatable [6]. However, the flex-
ibility these mechanisms provide is useful for some
special purposes as shown in the following.

Figure 1 shows how a complete set of access con-
trol among subjects to an object can be provided
by the use of boolean expressions. Assume a sys-
tem consisting of three subjects S1, Sz, and S with
{a}, {b}, and {a, b}, respectively, as their category
sets (e.g., S1 and S; are two different employees,
and Sg is their manager), and one object called O
(e.g., a document). Because any subject is either
allowed or denied access to O, the total number of
all possible access patterns of these three subjects
to O is eight. By specifying the ACE of O appropri-
ately, it can be seen in the figure that any of these
eight access patterns can be precisely enforced by
the BEAC model. :

For a comparison with multilevel security mod-
els, it has been shown [13] that the BEAC model
is powerful enough to enforce all the security poli-
cies that multilevel security models with levels and
categories can enforce. That is, all the security poli-
cies for accessing objects previously enforced by a
multilevel model can be exactly preserved using the

ACE of O S1 S2 S3
<i> X X
Subject { Category Set X X
S {a) <a+b> X X
Sz {b) <u*b> X
Y {a.b) <> X
 X
<a+b> X
<a*b>

Figure 1: Eight access patterns of 3 subjects. An
“X” in the entry means that subject S; can access
object O with the corresponding ACE.

BEAC model, by appropriately converting the lev-
els and categories of all entities used in the multi-
level model to the categories sets and ACEs used in
BEAC.

On the other hand, it is interesting to show that
there exists some security policies that can be en-
forced by the BEAC'model but cannot by the multi-
level access control model with categories. Suppose
a system contains two subjects, S; and Sz, and two
objects O and Og, and a security policy is applied
to them such that the allowable and disallowed ac-
cesses to objects by subjects are shown in Figure
2. Both subjects can write information to both ob-
jects, but only S; can read information from Oy and
only S3 can read information from Os. An appli-
cation which needs this policy is that S; acts as a
processing filter for O; such that any information
written to O; must be read and processed by S
before it can be written to other objects again. S
plays the same role to O;. Another application is
that O is the mailbox of S; and O3 is the mail-
box of S;. Any subject may send messages to any
mailbox but only the owner of a mailbox may read
information from it.

First we show how this security policy can be
enforced by the BEAC model. §; and S have cat-
egory sets {a} and {b}, respectively, according to
their natural characteristics. O; can be written by
both S; and S3 but can be read only by Sj, thus
O1’s ACE for write access is < a+b > and its ACFE
for read access is < axb >. Oy can be written by
both S; and S but can be read only by So, thus
0>’s ACE for write access is also < a 4+ b > and its
ACE for read access is < axb >. /

However, it is infeasible to to model the same
security policy in Figure 2 using the multilevel ac-
cess control with categories. Since S; can both
read and write O, class(Sy) = class(0y). Sim-

Figure 2: An access control policy which can be
enforced by the BEAC model but cannot by the
multilevel security model with categories.

ilarly, class(S2) = class(O3). Moreover, since
Sy can only write but not read O;, the category
set of O; must properly contain the category set
of Sy (if data confidentiality is the security con-
cern), i.e., class(O1) D class(S2), which implies
class(S1) D class(Ss2). However, with the same rea-
soning, the category set of Oy must properly contain
the category set of Sy, i.e., class(O2) D class(Sy),
which implies class(S2) D class(S;) — a contra-
diction. Therefore, this security policy cannot be
possibly enforced by the multilevel access control
model with only categories.

As an observation from the example above, we
can conclude that any security policy, that is rep-
resented by an information flow graph with cycles
consisting read and write edges among more than
two system entities (e.g., 01 — S; — Oy — Sy —
O; in Figure 2), cannot be enforced by a lattice-
based access control model.

3 A Classification of State Depen-
dent Security Policies

Complex access control policies are characterized
by state-dependent security requirements. Autho-
rization of access to objects by a subject depends
on the subject’s past access history and its interac-
tion with other subjects and objects. For examples,
a subject S is not allowed to access object Oy if it
has already read object O,, or subject S; or sub-
ject Sy can write object Og, but they together can
not write O3. We will categorize a class of state-
dependent access control control policies in' terms
of exceptions to normal information flow. Informa-
tion flow is a different view from authorization con-
trol, but also need to be implemented by an access
control model.

3.1 Multilevel information flow excep-
tions

An information flow model usually characterizes
all system entities with different security classes and
governs how information can flow between classes
[15]. Traditional information flow models are built

on a structure of lattice with components compos-

ing all the security classes, and information can only
flow between components of the lattice in the direc-
tion as the properties used to construct the lattice
permit [7, 8]. However, there exist some applica-
tions whose security requirements do need informa-
tion flow which violates some properties of lattice.

We will elaborate these information flow exceptions’

and use them as motivations for an extension of the
BEAC model.

Information flow in a lattice-based model is tran-
sitive, i.e., if information is allowed to flow from
class A to class B, and from B to class C, then
it is allowed to flow from A to C directly. How-
ever, some applications exist where this transitive
property is not desired. If we define the informa-
tion flow relation “—” on pairs of security classes
to represent the allowable direction of flow and “/”
to represent the prohibited direction of flow, then
transitivity ezception is formalized as A — B and
B—C,but A4 C.

Another exception of information flow which may
be desired by some applications is aggregation ex-
ception [17, 18]. In a lattice-based model, if A — C
and B — C, then the aggregate of information from
A and B, represented as AU B, usually can flow to
C. 1If this property is not desired, then we have
an aggregation exception, which is formalized as
A — C and B — C, but AUB + C. This exception
can be interpreted in two ways. One is that C' can
not sink information from the aggregate of A and B
(e.g., information from A and B are combined and

mixed by sharing a common pipe or FIFO with C),

and the other is that after C sinks information from
either A of B, it can not sink any information from
the other class. _

The dual problem of aggregation exception is
the separation exception. Separation of duty is
one of the most important ingredients in secu-
rity policies and models concerning data integrity
3, 5, 14, 19, 21]. With respect to information flow,
" it can be described as that information cannot flow
from a single class, either A or B, to another class
C but only the aggregate of information from A and
B can, which in practice can be interpreted as once
information transfers from either A or B to C, the
other must also transfer information to C. The in-

formation flowed to C from the first entity will not
be valid or meaningful to C until information flow
from the second entity happens. This requirement
cannot be satisfied by a lattice-based information
flow model alone, so we call it separation exception,
formalized as AUB — C,but A A C and B A C.

These exceptions place more constraints on infor-
mation flow among different classes than permitted
by a lattice-based multilevel model. We will show
in sections 4 and 5 that the BEAC model can be
extended to enforce these exceptions, but first we
formalize flow exceptions in terms of access control.

3.2 Refining flow exceptions in access
control ‘

Although the three exceptions mentioned above
originate from information flow policies, they can
be redefined in terms of access control. In access
control, the main operations for information trans-
fer betwe'en entities are read and write. So A — B
means subject A writes information to object B or
subject B reads information from object A. Fur-
thermore, an access control model is usually chosen
for either data confidentiality or data integrity pur-
pose. Therefore these information flow exceptions
are classified according to how subjects and objects
interact and the security purpose in the scope of ac-
cess control (as shown in Figure 3). The following
details each exception and justifies its significance
with possible applications.

Let’s first look at what transitivity exception
looks like in access control. Transitivity exception
in formation flow (A — B and B — C, but A 4 C)
can be described in access control as a relation
among two subjects and two objects in two different
ways. The first concerning with integrity (Figure 3
[i]) is that subject S; can write object Oy, Oy can
be read by subject S2, and Sy can write object Og,
but S; can not write Oy directly. This actually sim-
ulates the concept of “well-formed transaction” for
the commercial integrity policy [5]. The other way
which concerns confidentiality (Figure 3 [ii]) is that
object O; can be read by subject Si, S; can write
object O3, and O, can be read by subject Sz, but Oy
can not be read by S directly. An example of this
exception is that raw data (O1) can not be read by
some user (S) directly without being converted to
a specific format (O2) by some formatting software
(S1).

Aggregation exception can also be redefined in
terms of access control according to whether the
security concern is data integrity or data confiden-
tiality. If data integrity is the concern (Figure 3

Transitivity Exception Aggregation Exception Separation Exception
i iif ' v
t fi] Sl S2] S1 S2
Integrity :
w w w * w
(write) >.'< ®
/W
03 03
lil ol [vi]
R 0l 02 Ol 02
' " sl
Confidentiality |
(read) w >’.< R\®/R R*%/ R
02 FA
/R
R /
)
S2 S3 S3

Figure 3: A taxonomy of information flow exceptions redefined in terms of access control. The meanings of
symbols: “R”— read, “W” — write, “@” — exclusive or, “4” — and.

[iii]), then either subject S; or subject S, can write
object O3, but they together can not write Oz. The
interpretation is that after Os is written by Si, it
cannot be written by S» any more, and vice versa.
Any application which requires an object to be writ-
ten by only one subject, but not a specific one, falls
into this category of exception (e.g., an electronic
check can only be prepared by only one accountant,
and after it is prepared, no other accountants can
touch it, to prevent against malicious modification).
If data confidentiality is the concern (Figure 3 [iv]),
then subject S3 can read either object O; or object
0., but S3 can not read the aggregate of both ob-
jects. This can be interpreted as that after S3 reads
01, it can not read Os any more, and vice versa. A
well-known example which generalizes this excep-
tion is the Chinese Wall security policy [4] in which
a market analyst cannot access information from
more than one company within the same interest
class.

-Since the original concern of separation exception
- is data integrity, many practical examples can be
found in the literature discussing integrity policies
and models (a simple one is that a check must be
prepared and signed by two different accountants,
to achieve separation of duty). It is described (Fig-
ure 3 [v]) as two subjects S; and S; accessing the
object O3. After a subject (e.g., S1) writes Os,
only the other (S3) is allowed to write that object.
If data confidentiality is the concern (Figure 3 [vi]),

- separation exception means that initially subject S5

is allowed to read both objects O; and Os, but once
after S3 reads one object (e.g., O1), it can only read
the other object (O2). An example similar to the
one mentioned in [11] is that a user of a dial-up
database may only read service charge information
after he has viewed a stage of database information
subscribed before he is allowed to view the next
stage.

The BEAC model can be readily used to enforce
the transitivity exceptions, by arranging categories
sets of subjects and ACEs of objects appropriately
[13]. However, to enforce aggregation and separa-
tion exceptions, the access privileges of a subject to
an object needs to be affected either by the access
of the other subject to the object or by the subject’s
earlier own access to other objects. It implies that
some state information needs to be associated with
subjects and objects such that the access privileges
of subjects to objects will vary in different states.
In the next section, we will extend the BEAC model
to implement the state concept of the security at-
tributes of subjects and objects.

4 The Extended BEAC Model
4.1 Analogy to the lock-key concept

BEAC has a great similarity with the lock-key
concept used in discretionary access control [8]. The

lock-key concept is very intuitive in that a subject
holding a key k; which can be used to open a lock I;
can access the object “locked” by I;. In the BEAC
model, each category in an CAT virtually corre-
sponds to a key, so the CAT of a subject ‘corre-
sponds to a set of different keys. On the other
hand, the ACE of an object for one access mode
corresponds to a “lock combination”. An ACE =
< a*b > represents a complex lock which can only
be opened with presence of both keys a and b si-
multaneously. An ACE = < a+ b > represents a
generalized lock which can be opened by either key
a or key b. An ACE = < @ > means a lock which
remains open initially but the existence of key a in
the C AT of a subject will lock it. More vividly, one
ACE of an object represents a combination of locks
on the door to the room where the object is located,
and a subject must have all the necessary keys to
open the door, in order to access the object in the
access mode associated with that ACE.

4.2 Adding states by classifying cate-
gories

Motivated by the fact that access privileges of
subjects to objects need to be restricted or ex-
" panded in order to enforce some complex security
policies such as aggregation and separation excep-
tions, the security attributes of a subject and/or an
object must be changed dynamically, as a result of
access operations, yet in a controllable way. To fa-
cilitate this requirement, categories in the CAT of
a subject are divided into two different classes. The
first class is called reusable category, which perma-
nently belongs to a subject once it is assigned to
the subject, until a system security administrator
explicitly removes it from the CAT of the subject
through privileged commands. It is analogue to a
_reusable key which can be used by a subject to open
alock (an AC E) as many times as the subject would
like to. The second class of categories is one-time
category, which is dynamically assigned to a sub-
ject when the subject needs it. As its name im-
plies, a one-time category can be used by a subject
only once, and regardless whether it makes an ACE

TRUE or FALSE, it is deleted from the CAT of the

subject after its first use. (It can be imagined that
a key is stuck on the door immediately after it is
inserted into the lock hole, whether or not it can
help to open the complex lock. A common mailbox
in an apartment is one such example.) A category
¢ is “used” only when a subject whose CAT con-
tains c¢ tries to access an object in a mode whose
associated ACE also contains ¢. In other words,

a one-time category will not be removed from the
C AT of an accessing subject if it does not appear
in the ACE associated with that access mode. To
differentiate these two classes of categories, a hat
put on a category in a CAT is used to indicate a
one-time category, e.g., ¢. :

The other way of changing a subject’s privilege
to an object by BEAC is to classify the categories
composing the ACE of an object into two different
classes. A persistent category is a category whose
value remains TRUE once it is converted to TRUE.
Contrasting with the lock-key concept, a persistent
category corresponds to a lock which remains open
once it is opened. A non-persistent category (lock),
on the other hand, needs to be value-substituted
(opened) each time the ACE is evaluated. Simi-
larly, a ¢ in an ACE indicates that ¢ is a persistent
category.

It should be noticed that changing an object’s se-
curity attribute has a greater effect than just chang-
ing a subject’s security attribute, because the access
privileges of all other related subjects will possi-
bly be expanded or restricted. It should be used
very carefully such that only the exact access con-
trol desired is achieved. To safeguard this, a more
conservative approach is employed. It is assumed
that whenever a new access control requirement
is desired on an object, a new boolean expression
is generated just for that requirement and is then
ANDed with the original ACE (so the new gener-
ated boolean expression has no interference with the
original ACE). To enforce a state-dependent com-
plex security policy, both classifications of security
attributes mentioned above are often required, as
demonstrated subsequently.

5 Policy Enforcement with BEAC
5.1 Enforcing multilevel exceptions

In Section 3, multilevel information flow excep-
tions are categorized in terms of access control and
justified by the security requirements of different
applications. For brevity, only the enforcement of
two exceptions by the BEAC model is demonstrated
here. The other four exceptions can be similarly re-
alized [13].

For clarity, all the security policies in this section
use the conventions as follows:

e Sy,S53,83,- - : each represents a subject.
e 0;1,03,03,- - - : each represents an object.
e CAT(S;) : the category set of subject S;.

o ACE(O;)ar : the access control expression of ob-

ject Oj for access mode M. ,

e A, B,C,---: each represents a set of categories.
® p,q,r,-- - : each represents a reusable category
in the category set of a subject or a non-persistent
category in the ACE of an object.

e p, 4,7, -+ each represents a one-time category
in the category set of a subject or a persistent cat-
egory in the ACE of an object.

e E,F @G, : each represents a boolean expression.

aggregation exception - integrity

The original security attributes of subjects and
objects are assumed to be:

CAT(S:) = {A},

CAT(S;) = {B},

ACE(O3)w =< E >,
where A and B are two category sets which each
makes E TRUE (note that A and B are not nec-

essarily distinct). If we desire to enforce an aggre- -

gation exception between S; and Sy to O3, we can
change their security attributes as:

CAT(S1) ={4,p},

CAT(S:) ={B,¢}, _ _

ACE(O3)w =< E*(p+§) >,
where both p and ¢ are newly created and do not
exist in any of A, B, E. Since persistent categories
p and ¢ are complemented in the new ACE, they
actually simulate a lock which is open to any sub-
ject unless the subject has both keys p and ¢ (so
changing the ACE of Oz this way will not affect the
access privileges of other subjects). Initially Oz can
be written by either S; or Sz because a single p or ¢
still can make the whole ACFE TRUE. After S, for
example, writes Og, the value of p in ACE(O3)w
will remain TRUE, which makes the ACE equivalent
to < E+¢ >. When S, then tries to write Os, the
ACE will be evaluated FALSE due to the category
¢ in CAT(S3), so its access attempt will be denied.

separation exception - confidentiality

The original security attributes of subjects and
objects are assumed to be:

ACE(O1)r =< E >,

ACE(O2)r =< F >,

CAT(S;3) = {4},
where A is a category set which makes both E and
F TRUE If a separation exception is to be enforced
between O, and O for the read accesses by Ss, their
security attributes will be changed to:

ACE(O1)r =< Ex(p+T) >,

ACE(O2)r =< Fx(q¢+T7) >,

CAT(S3) = {A,ﬁ, g, T’},
where p, ¢ and r are all new. The purpose of com-
plementing = in the ACEs of O; and O3 is not to

affect other subjects’ privileges to these objects be-

* cause of such an aggregation exception enforcement.

Any other subject which originally has access to O,
or O, still can access it since r does not exist in its
category set. However,; r is added to CAT(S3) so
that the 7 in either ACE(O)gr or ACE(O3)r does
not open any door to Ss. Initially S3 can read either
O; or Oy. After Ss read Oy, for example, it will lose
p and make itself unable to read O, again since cat-
egory p is non-persistent in ACE(O1)r. Therefore
S3 can then only be allowed to read Os.

5.2 Specifying a sequence of accesses

We now demonstrate another advantage of this
model, i.e., its ability of assigning a fixed ordering
to multiple subjects for their accesses to an object,
in a straightforward way. For simplicity, the effect
of modifying the ACE of an object upon access priv-
ileges of other unrelated subjects is not considered
below. It can be eliminated, if necessary, by using
the technique of adding a complemented category
(7) to the ACEs of objects and a non-complemented
category (r) to the category sets of subjects involved
in policy enforcement, as shown above.

Assume that three subjects S1, Sy, and S3 can
access an object O4 in some mode M, so their se-
curity attributes are:

CAT(S;) = {A},

CAT(S;) = {B},

CAT(Ss) = {C},

ACE(O)m =< E >,
where A, B, and C all make F TRUE. If we desire
to specify an access ordering to O4 by three sub- .
jects as S; — S; — S3, their security attributes are
changed to:

CAT(Sy) = {A,p},

CAT(S,) = {B, §},

CAT(S3) = {C> 72}1

ACE(Oy)u =< Ex(p+pxq+q*r)>,
where categories p, ¢, and r are all new. It can
be easily verified that at first only S; is allowed
to access 0. After Si’s access, the ACE of Oy
becomes < E * (p + ¢ + § * 7) >, which allows only
Se to access O4. Then, after Sy’s access, the ACE
of O4 becomes < E'%(p+gq+r) >, which only allows
access to O4 by Ss.

The approach can be generalized to order ac-
cesses to an object by an arbitrary number of sub-
jects.

Figure 4: A complex security policy requiring both
access ordering and aggregation exception for in-
tegrity.

5.3 Combination of enforcement tech-
niques : ‘

Some complex security policies may require both
exception and ordering. The following shows an ex-
ample of the BEAC model using these techniques
combined. Again, the effect of modifying the ACE
of an object upon accesses of other unrelated sub-
jects is not considered but could be eliminated using
the technique mentioned earlier.

Assume there is a business application whose se-
curity requirement demands both access ordering
and aggregation exception, as shown in Figure 4.
An object Os (an electronic check) needs to be writ-
ten by S; (a clerk) first, and then written by either
S, or S (two managers) but not both, and finally
written by S; (another clerk). Assume their original
security attributes are:

CAT(S:) = {A},

CAT(S;) ={B1},

CAT(Ss) = {Bz},

CAT(S:) = {C},

ACE(Os)w =< E >,
where A, By, Bz, and C all make £ TRUE. To en-
force the security policy, we need to use the tech-
nique of specifying an ordering among Si, [S2 + S3]
(to treat them as one entity), and Ss and the
method of achieving aggregation exception for data
integrity between Sy and Ss. Therefore, the secu-
rity attributes become:

CAT(S:) = {4, p},

CAT(S2) = {B,4, s},

CAT(Ss) = {B»,§,t},

CAT(S4) = {C» f'}a .

ACE(Os)m =< Ex(p+p*xgx(E+1)+dxr)>,
where new categories p, ¢, 7, s, and t do not appear
in any of A, By, Bs, C, or E. Initially only S;
can write Os, and after S; writes, ACE(Os)y =<

Ex(p+qx (§+Z) +g+7) >, which only allows either
S or S3 to write Os. If Sy writes, ACE(Os)y =<
Ex(p+qg* t+r) >, then only Sy can write Os.

6 Conclusions

Using the language of Boolean Algebra to achieve
exact access patterns from subjects to objects is
more precise and nature in meeting security require-
ments of many practical applications. The BEAC
model proposed in this paper provides a system-
atic mechanism of modeling human-defined security
policies by adequately assigning security attributes
to both subjects and objects and using a simple ac-
cess control rule to achieve the desired policy.

Furthermore, this model is extended from a
stateless model to a more powerful version in which
states are associated with subjects and objects sim-
ply by dividing their security attributes into two
classes and render different meanings to different
classes in access authorization. The overhead of
implementing states on system entities by this way
can be reduced to the minimum. As demonstrated
in this paper, the modeling power of the extended
model is surprisingly great. Many security require-
ments which cannot be adequately enforced by ei-
ther conventional mandatory or discretionary secu-
rity model, such as multilevel information flow ex-
ceptions, can be effectively enforced by the model.

While most multilevel security models assume
only read and write operations on objects, the
BEAC model does not specify any restriction on the
set of access modes to an object and allows a single
ACE for each access mode, thus providing a finer de-
gree of access control. Independent control on each
access mode is more flexible and desirable in current
object-oriented systems, where a number of more
abstract access operations can be defined on an ob-
ject. Moreover, no predetermined security objec-
tive (confidentiality or integrity) is imposed in this
model. Instead it just offers a practical mechanism
for satisfying particular security policies. Informa- '
tion confidentiality or integrity may be achieved. as
just a property of the security policy to be enforced.
This strategy is believed to be more consistent with
the philosophy of separating policy and mechanism
in the construction of modern security systems.

References

[1] David E. Bell and Leonard J. LaPadula,
“Computer Security Model: Unified Exposition

and Multics Interpretation,” Technical Report
ESDTR-75-306, The MITRE Corporation, Bed-
ford, MA, June 1975.

Kenneth J. Biba, “Integrity Considerations for
Secure Computer Systems,” Technical Report
ESDTR-76-372, The MITRE Corporation, Bed-
ford, MA, April 1977.

2]

Lee Badger, “A Model for Specifying Multi-
Granularity Integrity Policies,” Proceedings of
the IEEE Symposium on Securily and Privacy,
Qakland, CA, May 1989, pp. 269 — 277.

[3]

David F. C. Brewer and Michael J. Nash, “The
Chinese Wall Security Policy,” Proceedings of
the IEEE Symposium on Securily and Privacy,
Oakland, CA, May 1989, pp. 206 - 214.

[4]

David D. Clark and David R. Wilson, “A Com-
parison of Commercial and Military Computer
Security Policies,”
Symposium on Security and Privacy, Oakland,
CA, April 1987, pp. 184 — 194.

[5]

F. Cuppens, “A Logical Analysis of Authorized
and Prohibited Information Flows,” Proceedings
of the IEEE Symposium on Research in Security
and Privacy, Oakland, CA, May 1993, pp. 100
- 109.

Dorothy E. Denning, “A Lattice Model of Se-
cure Information Flow,” Communications of the
ACM, Vol 19, No. 5, May 1976, pp. 236 — 243.

(7

[8] Dorothy E. Denning, Cryptography and Data
Security, Addison-Wesley, 1983.

[9] Deborah D. Downs, et al., “Issues in Dis-
cretionary Access Control,” Proceedings of the
1985 IEEE Symposium on Security and Privacy,
Qakland, CA, April 1985, pp. 208 - 218.

[10] Todd Fine and Spencer E. Minear “Assuring
Distributed Trusted Mach,” Proceedings of the
IEEE Symposium on Research in Security and
Privacy, Oakland, CA, May 1993, pp. 206 - 218.

[11] Simon N. Foley, “A Taxonomy for Information
Flow Policies and Models,” Proceedings of the
IEEE Symposium on Research in Security and
Privacy, Oakland, CA, May 1991, pp. 98 — 108.

[12] Michael A. Harrison, et al., “Protection in Op-
erating Systems,” Communications of the ACM,
Vol. 19, No. 8, August 1976, pp.461 - 471.

Proceedings of the IEEE

10

[13] I-Lung Kao and Randy Chow,. “Enforcing
Complex Security Policies with Boolean Ex-
pression Based Access Control,” Technical Re-
port UF-CIS-TR95-007, University of Florida,
February 1995.

[14] Paul A. Karger, “Implementing Commercial
Data Integrity with Secure Capabilities,” Pro-
ceedings of the IEEE Symposium on Security
and Privacy, Oakland, CA, May 1988, pp. 130
- 139. ‘

[15] Carl E. Landwehr, “Formal Models for Com-
puter Security,” Computing Surveys, Vol.13, No.
3, September 1981, pp. 247 — 278.

[16] Theodore M. P. Lee, “Using Mandatory In-
tegrity to Enforce Commercial Security,” Pro-
ceedings of the IEEE Symposium on Security
and Privacy, Oakland, CA, April 1988, pp. 140
— 146.

[17] Teresa F. Lunt, “Aggregation and Inference:
Facts and Fallacies,” Proceedings of the IEEE
Symposium on Security and Privacy, Oakland,
CA, May 1989, pp. 102 - 109.

[18] Catherine Meadows, “Extending the Brewer-
Nash Model to a Multilevel Context,” Proceed-
ings of the IEEE Symposium on Research in Se-
curity and Privacy, Oakland, CA, May 1990, pp.
95 — 102.

[19] Michael J. Nash and Keith R. Poland, “Some
Conundrums Concerning Separation of Duty,”
Proceedings of the IEEE Symposium on Re-
search in Security and Privacy, Oakland, CA,
May 1990, pp. 201 —207.

[20] National Computer Security Center, “Depart-
ment of Defense Trusted Computer System
Evaluation Criteria,” DoD 5200.28-STD, De-
cember 1985. :

[21] Ravi Sandhu, “Transaction Control Expres-
sions for Separation of Duties,” Proceedings of
the fth Aerospace Computer Security Applica-
tion Conference, 1988, pp. 282 — 286.

[22] William R. Shockley, “Implementing The
Clark/Wilson Integrity Policy Using Current
Technology,” Proceedings of the 11th National
Computer Security Conference, Baltimore, MD,
October 1988, pp. 29 - 37.

THE CONTROLLED APPLICATION SET PARADIGM
FOR TRUSTED SYSTEMS *

Daniel F. Sterne
Trusted Information Systems, Inc.
3060 Washington Road
Glenwood, Maryland 21738

sterne@tis.com

Abstract

A fundamental assertion underlying the TCSEC
paradigm is that all necessary automated security con-
trols for a computer system can be provided by an oper-
ating system, in particular the components that consti-
tute ¢ conventional TCB. We challenge this assertion
and ecplain why ordinary application processes oui-
side an operating system can leak sensitive informa-
tion, undermine an operating system’s accountability
mechanisms, and destroy information integrity.

We propose an alternative paradigm that more ac-
curately identifies sources of security risk within a
trusted system and can lead to improved security. The
paradigm is based on the premise that every software
component that can manipulate sensitive information,

" even if it has no special access control privileges, is po-
tentially security relevant and must be controlled and
protected by automated mechanisms. The paradigm
repositions the trusted system securily perimeter so
that it encompasses not only an operating system TCB
but the Controlled Application Set (CAS), a collection
of components that have been screened and are pre-
sumed to be benign. The paradigm allows unscreened
components to be present on a system but requires
that they be prevented from manipulating sensitive in-
formation. A practical approach to assurance is out-
lined based on the notion of balanced assurance. Ee-
amples illustrate the applicability of the paradigm to
systems providing confidentiality, accountability, and
integrity.

*Funded by ARPA contract DABT63-92-C-0020 - Approved
for Public Release - Distribution Unlimited.

Glenn S. Benson

European Computer-Industry Research Centre

Arabellastrasse 17
-D-81925 Munich, Germany
benson@ecrc.de

1 Introduction

A fundamental assertion underlying the Trusted
Computer Systems Evaluation Criteria (TCSEC) [10]
is that all necessary automated security controls for
many computer systems can be provided by their oper-
ating systems (OS), in particular the OS components
that constitute a Trusted Computing Base (TCB). Ac-
cording to the TCSEC paradigm, if applications pro-
cesses that have no special access control privileges
are properly constrained by an OS TCB, they may

~ safely execute software of unknown assurance while

accessing sensitive information, i.e., information that
merits special protection against unauthorized disclo-
sure or modification. In particular, constraints based
on a lattice are said to “confine” these untrusted
subjects, thereby preventing them from causing secu-
rity compromises. In this view, a robust application-
independent TCB is like a “silver bullet” that protects
sensitive information from errors and malicious code
in the applications programs that manipulate it. In
theory, if an OS TCB has been designed and imple-
mented properly, the rest of the software in a system
could be built by an adversary without undue risk of
compromise.! ‘

The TCSEC conceptual architecture for a trusted
system is shown in Figure 1. In the Figure, TCB com-

-ponents are shaded with a dark texture. The foun-

dation of the TCB is the access control component
or reference validation mechanism, shown as the bot-
tom layer of the system. Other TCB components for
identification and authentication (I&A), audit collec-
tion and storage, and other supporting functions are
shown as a vertical column on the left. The TCB
restricts access to both sensitive and non-sensitive in-
formation, represented by the cross-hatched and un-
shaded information storage containers below the sys-

1Pottinger [21] attributes this assertion to Roger Schell.

» ® % %

=<—Human

Security —
Perimeter

Untrusted
Subjects

Interface

%/////////////////

/,,,

/,
N

-—Security
Perimeter

W

Non-

Sensitive
Info

7

02

Figure 1: TCSEC Architecture and Security Perimeter

tem. Untrusted subjects, that is, subjects whose be-
havior is not security relevant, are shown atop the
TCB’s access control layer. (A component is secu-
rity relevant if a system’s ability to satisfy its security
requirements depends on the component’s behavior.)
The human interface is shown above these subjects
as a dotted line. As suggested by the arrows near
the bottom, users direct untrusted subjects to ma-
nipulate both sensitive and non-sensitive information.
Users may also interact directly with the TCB via the
trusted path.

The TCSEC asserts that “the bounds of the TCB
equate to the ‘security perimeter’” (p. 67). The secu-
rity perimeter is depicted in Figure 1 as a wide black
border positioned between the TCB and untrusted
subjects. Components below or to the left of the se-
curity perimeter are within the security perimeter and
are security relevant; those above or to the right are
outside the perimeter and are not security relevant.
The portion of the security perimeter that converges

12

with the human interface in the upper left represents
the trusted path.

A premise of this paper is that the confidential-
ity, accountability, and integrity protection needed
by many organizations cannot be enforced unilater-
ally by application-independent components inside the
perimeter. To provide the protection needed, the secu-
rity perimeter must be repositioned outward, thereby
acknowledging the security relevance of many ordi-
nary application programs that the TCSEC paradigm
treats as untrusted. This repositioning challenges the
ftndamental accuracy of the TCSEC paradigm as a
guide for identifying and addressing sources of security
risk within trusted systems. Such accuracy is critical
because the TCSEC paradigm is the principal frame-
work for conceptualizing, building, evaluating, and op-
erating trusted systems.

This paper is organized as follows. Section 2 ex-
plains why the security perimeter must be repositioned
if trusted systems are to provide better security. Sec-

tion 3 describes the Controlled Application Set (CAS)
paradigm, comprising a proposed trust principle, a
conceptual architecture, and an approach to assur-
ance. Section 4 illustrates the applicability of the ap-
proach via examples dealing with confidentiality, ac-
countability, and integrity. Sections 5 and 6 provide
further discussion, including related work. Section 7
" presents a summary and conclusion.

2 Why the Security Perimeter Must
Be Repositioned

Under the TCSEC paradigm, TCBs allow un-
trusted software to manipulate sensitive information.
As a consequence, even high-assurance T'CBs fall short
of meeting the computer security needs of many orga-
nizations in various ways, including the following:

o Leakage: Unless an OS TCB is completely free
of covert storage and timing channels, it cannot
by itself prevent sensitive information from be-
ing leaked to unauthorized users. Although pa-
per designs for channel-free architectures based
on exotic storage devices and other highly spe-
cialized techniques have been proposed in the re-
search literature [22], building channel-free TCBs
that are cost effective and provide acceptable sys-
tem performance and functionality is beyond the
state-of-the-art. Furthermore, there are no es-
tablished techniques for systematically finding all

" covert channels in a TCB, let alone eliminating
them. Moreover, as processor and I/O speeds
increase, covert timing channel bandwidths will
grow. Consequently, leakage vulnerabilities in
TCBs are unlikely to diminish in the near term,
if ever.

e Accountability: One of the control objectives and
fundamental security requirements cited in the
TCSEC is accountability, described as ensuring
“that actions affecting security can be traced
to the responsible party” [10]. Unfortunately,
any program containing malicious logic can eas-
ily confuse the accountability mechanisms of an
OS TCB. Suppose there are two subjects running
such programs, each associated with a different
user. Furthermore, suppose the subject running
in the name of Smith forwards Smith’s compu-
tational requests to the subject running in the
name of Jones. If Jones’s subject carries out the
requests on Smith’s behalf, the TCB’s audit trail

will erroneously identify Jones as the “responsi-
ble party.” To remedy this problem, the TCB
could attempt to audit the forwarding of all such
requests. This would require identifying all overt
and covert means by which information can flow
between different users’ subjects, including sub-
jects at the same security classification. This is a
task at least as difficult as attempting to iden-
tify all covert downgrade channels in a multi-
level secure (MLS) system. Worse yet, the TCB
would have to monitor the content of all infor-
mation exchanged between different users’ sub-
jects and distinguish illicit attempts to circum-
vent auditing from legitimate communication be-
tween users, clearly an impossible task.

o Integrily: An organization rarely defines the value
of information solely in terms of confidentiality.
To be useful to the organization, the informa-
tion in addition must be accurate to some de-
gree; information that is completely erroneous
is of negligible value to an organization, even
if rigorously protected from improper disclosure.
Hence, nondisclosure requirements rarely exist
apart from integrity requirements. An OS TCB
by itself, however, cannot preserve the integrity of
information because every program that a TCB
allows to modify information is capable of cor-
rupting it.

Although the TCSEC glossary defines the TCB as
the “totality of mechanisms within a computer sys-
tem ...responsible for enforcing a security policy,”
the examples above illustrate that an OS TCB can-
not by itself provide the confidentiality, accountability,
or integrity that many organizations need. Systems
whose security relies on the TCSEC paradigm fall
short because the security properties that are mean-
ingful to system owners, such as leakage prevention
and correct data transformations, cannot be enforced
at the security perimeter depicted in Figure 1. Only
by repositioning the perimeter outward so that it in-
cludes many additional application-dependent compo-
nents can these properties be enforced.

3 The Controlled Application Set
(CAS) Paradigm ~

The examples above suggest that meaningful sys-
tem security requires cooperative interactions between
an OS TCB and a collection of trustworthy applica-
tions. We use the term “application” broadly here

13

to mean any entity outside the TCB, including site-
specific programs, operating system utilities, database
management systems, and servers providing kernel-
like services [11]. Based on this observation, we next
propose an alternative paradigm for trusted systems.
The key elements of the paradigm are a new trust
principle, a conceptual architecture, and a practical
approach to assurance.

3.1 Trust Principle

We propose the following as a general principle:

Any application that can manipulate sensi-
tive information is potentially security rele-
vant. :

It follows from this principle that any application
that can manipulate sensitive information must be
controlled, requires some degree of assurance that it
will exhibit only benign behavior, and must be pro-
tected from tampering.

We use the term manipulate as a shorthand to refer
to access modes that are sensitive with respect to the
security objective of interest. When confidentiality is
the objective, assurance is needed for any application
that can read sensitive information. When integrity is
the objective, assurance is needed for any application
that can write sensitive (high-integrity) information;
under some circumstances, assurance may be unnec-
essary for applications that can read it. These distinc-
tions are illustrated further in a later section.

Depending on an organization’s security objectives
and policies, benign behavior may mean, among other
things, that an application will

e not exploit covert channels;

¢ not subvert accountability mechanisms, e.g., will
refrain from performing services on behalf of one
user in the name of another; or

e prevent certain kinds of information modifica-
tions identified a priori as harmful to integrity.

3.2 The CAS Conceptual Architecture

Figure 2 depicts the idealized CAS conceptual ar-
chitecture, which repositions the trusted system se-
curity perimeter so that it encompasses not only an
OS TCB but the Controlled Application Set (CAS),
a collection of applications for which some assurance

14

of benign behavior has been obtained via an unspeci-
fied screening process.? TCB components, the human
interface, and sensitive and non-sensitive information
containers are shown as in Figure 1. CAS subjects,
which are bound to CAS programs, are shown atop the
TCB’s access control layer. As suggested by the ar-
rows in the Figure, users must use CAS subjects when
manipulating sensitive information. In some systems,
they may also be allowed to use CAS subjects to ma-
nipulate non-sensitive information, as shown.

The presence of the CAS forces a much larger part
of the security perimeter to converge with the human
interface. We envision this as widening the trusted
path portion of the perimeter sideways from the left,
rather than elevating the access control portion from
the bottom. In this idealization, the CAS is not simply
a layer on top of the TCB’s access control component
— it is the layer; it leaves no room for other non-CAS
layers to be interposed between the user and sensitive
information because such layers would be capable of
causing the security problems noted earlier. In a later
section, we discuss relaxing this constraint.

Other programs that have not been approved for
inclusion in the CAS, including user-developed pro-
grams, may also reside on the system. However, any
subject that executes a non-CAS program cannot be
trusted. Untrusted subjects are shown in Figure 2 to
the right of the CAS. To prevent such subjects from
causing leaks and losses of accountability or integrity,
we require that the TCB prevent them from manipu-
lating sensitive information; they can manipulate only
non-sensitive information, as shown. Such subjects are
incapable of affecting the security of the system and
can legitimately remain outside the security perime-
ter.- .
Untrusted subjects may be able to interact with
CAS subjects in a constrained manner via sharable
objects. In general, non-sensitive objects can be used
for this purpose. Though not shown in the figure,
sensitive objects can also be shared in some cases, as
illustrated in Section 4.2.

Since the CAS is security relevant, CAS modifi-
cations and extensions must be carefully controlled.
This has significant operational implications for sys-
tems in which users provide, develop, or enhance
some of the programs they use. Consider a TCSEC-

2To minimize terminological confusion, we have chosen not
to refer to the CAS as an element of a larger TCB. Using the
term TCB to refer to all components inside the repositioned se-
curity perimeter, while technically correct, conflicts with com-
mon usage. Common usage, as exemplified by the National
Computer Security Center’s (NCSC) Evaluated Products List,
is that the prototypical TCB is an application-independent OS.

R 4R

Security — =~ Human
Perimeter Interface

g

@

&

S Controlled

3 Is-\ptpllcatlon Untrusted

2 e Subjects

L]

g

=

5

=3

<

<

=

-—Security
Perimeter
/ / Non-
|S$nsitive
nfo
_ % _
R nR i
Figure 2: Controlled Application Set (CAS) Architecture and Security Perimeter
compliant MLS system serving both cleared and un- nal components. This constitutes a significant shift in
cleared users, where the former are accustomed to us- its trust responsibilities.
ing their own programs to view, format, or edit classi- The TCB by itself or in combination with partic-
fied information. In the CAS paradigm, cleared users ular components of the CAS must meet the following
would lose this ability. Unless installed in the CAS, requirements:
user-developed programs will be able to manipulate
only non-sensitive information. Techniques for lessen- Tamper Protection — The CAS must be protected
ing the potential operational burden associated with from tampering. CAS subjects must run in a do-
this restriction are discussed in Section 3.5. main separate from those of non-CAS subjects.
» The CAS must not be modified without the ex-
3.3 The Role of the TCB plicit approval and participation of an authorized
individual.

In the CAS paradigm, the TCB no longer com- Non-Bypassability — The CAS must be non-

prises the “totality of protection mechanisms” respon- bypassable. Every action that manipulates sen-
sible for security [10] because the totality now includes sitive information must be accomplished via the
the CAS. Instead, the TCB acts as the base for these CAS.

protection mechanisms, as implied by the phrase for

which it stands: Trusted Computing Base. In this Trusted Path — As in the TCSEC, the TCB must
role, the TCB must extend to the CAS many of the support a trusted path between itself and users
facilities it uses to protect and support its own inter- that can be invoked whenever a positive TCB-to-

15

user connection is required. In addition, the TCB
must be able to transfer control from itself to the
CAS at the request of a user so that a trusted path
can be established between the CAS and the user
and maintained continuously for the duration of
any session in which sensitive information is ma-
nipulated.

Access to CAS Subjects and Programs —

CAS subjects must only be created on behalf
of users who are authorized to manipulate sen-
sitive information. Non-CAS subjects may exe-
cute CAS programs during non-sensitive sessions;
these subjects, however, will not be granted any
additional access rights to objects or the trusted
path as a result.

Functionally Correct Services — The TCB must
store, retrieve, and transform information in a
manner that does not lessen the integrity of the
information.

This last requirement stems from the use of the
TCB as a base for other security mechanisms. If a
TCB does not provide correct storage and retrieval
services, no CAS component can be relied on to behave
according to its security specification, source code, or
documentation. A multiuser server process, for exam-
ple, cannot be relied upon to provide user account-
ability if the TCB cannot store the server’s audit logs
correctly. Although the TCSEC imposes no require-
ments of this kind, they are de facto requirements for
any useful operating system or security kernel.

For high-assurance systems, an additional require-
ment should be satisfied.

Multiple CAS Domains — The TCB must pro-
vide multiple execution domains for the CAS and
restrict interactions among these domains as ap-
propriate to the organization’s security policy and
assurance concerns.

This final requirement serves several purposes.
First, it is a reinterpretation of the mandatory ac-
cess control (MAC) requirements of the TCSEC in the
following sense. Every subject controlled by a MAC-
enforcing TCB runs in an execution domain implied
by its MAC label [26]. Allowable interactions between
the subjects operating in different MAC domains and
objects are described by the read-down, write-up prop-
erties of the Bell-La Padula model [4]. The intended
effect of restricting domain interactions in this way is
that information cannot be transferred to less sensitive
domains.

16

Second, it allows CAS domains to be arranged in
different configurations to support other security poli-
cies, particularly policies concerned with integrity and
role-based restrictions. For example, the configuration
may form an “inverted ” lattice [5] or may nest the
domains so that one or more domains are subsets of
others, thereby supporting the construction of CAS
layers like TCB subsets [28]. Alternatively, the con-
figuration may be nonuniform [6] in accordance with
application-specific security policies [35].

Third, it supports the notion of least privilege [24]
for the CAS. Since a CAS may be enormous, tech-
niques for managing complexity are necessary ifa CAS
is to be of even modest assurance. An important
technique is to organize the CAS as a collection of
small tightly constrained domains in which CAS sub-
jects are allowed to access only the objects essential
to their assigned functions [17, 18]. This idea under-
lies a common interpretation of one of the TCSEC B3
requirements, namely, that a TCB’s protection mecha-
nism “shall play a central role in enforcing the internal
structuring of the TCB.”

3.4 A Practical Approach to Assurance

The obvious assurance issue confronting this ap-
proach is that a CAS may be extensive, encompassing
millions of lines of software. As a consequence, de-
veloping CAS components according to the TCSEC
and relying on the NCSC to evaluate them is infeasi-
ble. Fortunately, more pragmatic and modest assur-
ance and evaluation practices will be entirely adequate
in many cases.

3.4.1 Balancing Assurance and Risk

The CAS paradigm is based on the “balanced as-
surance” philosophy [15, 16], which asserts that the
degree of assurance needed for a trusted component
should be proportionate to the security risks the com-
ponent poses. Since CAS components are protected
and constrained by the TCB, CAS assurance risks can
arguably be lower than those of the TCB; hence, less
extensive assurance measures may be needed. This
is particularly true for trusted systems in which the
TCB enforces MAC constraints on the CAS. Accord-
ingly, the level of assurance for many CAS components
can and should be significantly lower than that of the
TCB.

By contrast, the TCSEC paradigm treats CAS
components as completely untrusted, requires no as-
surance for them whatsoever, and requires no support
for them in the TCB. Hence, insisting on even minimal

CAS assurance and support cannot lessen the overall
security of a trusted system and will in many cases
significantly improve it.

Finer-grained assurance balancing may also be
practical and beneficial. If information sensitivities
or user authorization levels on a system vary greatly,
CAS assurance requirements may need to vary on a
component-by-component basis. An organization may
deem that for some CAS components, or perhaps an
entire CAS, very little assurance is required. On the
other hand, for information that is extremely sensitive
with respect to modification or disclosure, the organi-
zation may require that access to it occur only through
a few extremely high-assurance CAS components.

3.4.2 Accountability of Origin

A common misconception in the TCSEC community
is that one can trust an NCSC-evaluated TCB because
evaluators have examined it thoroughly and forced the
vendor to remove any security defects that might have
originally been present. In fact, evaluators can only
“spot check” a small fraction of a TCB’s code and
have little hope of finding such defects, particularly
malicious code. Thompson [34] has pointed out that
malicious code can be easily disguised from code in-
spectors and testers. As a result, even if evaluators
could carefully inspect every line of code in an eval-
uated TCB, they still could not vouch for its purity
with confidence. Inevitably, evaluators and customers
have no choice but to trust that TCB vendors have not
hidden malicious code in their products. They may be
willing to trust them in this respect because they be-
lieve that vendors can be held accountable and that
vendors have a vested interest in assuring the trust-
worthiness of their products.

In actuality, the NCSC evaluation process focuses
on assessing that 1) the vendor is competent and em-
ploys suitable software development methods, and 2)
the product meets minimum quality standards. A
successful evaluation may increase confidence that a
TCB will carry out certain functions correctly and
uniformly (e.g., mediation) but cannot provide strong
assurance that a TCB or other component is free of
malicious code. Inevitably, one must trust the source
of such components and can do so judiciously only if
some organization or individual can be held account-
able. In the CAS paradigm, accountability of ori-
gin is the most fundamental basis for trusting a CAS
component; under no circumstances should a program
for which there is no accountability (e.g., a program
of unknown or highly questionable origin) be intro-
duced into the CAS. The security benefits such re-

strictions provide are acknowledged in DoD’s “Yellow
Book” [33], which allows trusted systems to be used
over a greater risk range if all applications are devel-
oped by cleared personnel.

3.4.3 Life Cycle Assurances

Beyond accountability of origin, an organization may
require any of a broad range of life cycle and other
assurance measures, including those cited in the
TCSEC. To ensure that CAS sources are not only
accountable but trustworthy and competent, an or-
ganization may impose personnel security (screening)
or training requirements on CAS developers. Alter-
natively, it may be satisfied to obtain CAS compo-
nents from certain reputable vendors. Quality control
techniques may range from very stringent formal pro-
cesses to highly informal procedures. Formal processes
may involve independent verification and validation
(IV&V), certification, or other forms of third-party
oversight. They may additionally require construction
of mathematical models, structured design reviews,
extensive preoperation field testing, formal configura-
tion management, trusted distribution, or trustwor-
thy development environments. An informal process
might simply require that a competent user vouch for
each component installed in the CAS.

3.5 Supporting a Site-Extensible CAS

For a very high-assurance CAS, e.g., a CAS used
to control a nuclear reactor or protect the information
assets of a large financial institution, CAS change con-
trol procedures may be very restrictive. For a lower-
assurance CAS, the owning organization may allow
some of its members to modify or extend the CAS.

To improve system usability for these cases, a TCB
together with the CAS should provide an “install”
function that allows authorized users to promote new
programs into specified CAS domains while the system
is in operation. This function must only be available
through the trusted path facility so that it can only
be invoked with the explicit approval of @ human be-
ing. It must not be possible for a program to invoke
it automatically and invisibly. Moreover, its use must
be auditable, so that installation of faulty components
can be traced to the responsible party. Accountabil-
ity of CAS changes can be further enhanced if nec-
essary by other techniques, including use of one-time
password authenticators. Organizations may choose
to disable the install function altogether or selectively
for particular CAS domains.

17

Security —~

Perimeter
S ;
4
r
o —
&) S
et
? | o 5
g 3 - O o]
b1 [] —
17} e S
2 [T] g
(= QI
o] (72 X7)) (6]
o
3§
<
<
0_6 g
7 CAS
/A Execution
Domains W é/////////////////’
Untrusted Confi-
Execution
Domain

A

os e, i,

TCB

<—Human
Interface
o
2
:'5 d>, 7 Non-
9n=0 : Sensitive
852 Subjects
ocaQa
co03
=717
-—Security

Perimeter

Non-
Sensitive
Info

%

202

Figure 3: CAS Example - Confidentiality and Accountability

4 Examples

We now outline the way the CAS paradigm can be
applied to a variety of systems.

4.1 Confidentiality and Accountability

This section discusses a hypothetical system trusted
to enforce aspects of the U.S. laws, rules, and practices
governing the protection of classified information. For
brevity, we will focus on the mandatory rather than
discretionary aspects of this policy.

In this example, the responsibilities of the trusted
system include preventing electronic leakage of classi-
fied information to individuals who are authorized to
use the system but are not sufficiently cleared. The
system is also responsible for providing an audit log
that lists the names of the users who have attempted

to access or create classified information objects. As
described above, an OS TCB by itself cannot address

18

these confidentiality and accountability requirements.

The CAS architecture for this system is shown in
Figure 3. The system is based on an OS TCB that
satisfies at least the B2 evaluation class requirements.
The TCB has been extended to support a CAS and in
particular provides multiple CAS execution domains.
The system processes information of four different sen-
sitivity levels: secret, confidential, unclassified sensi-
tive, and non-sensitive. CAS subjects execute in the
execution domains shown in the Figure as three cross-
hatched rectangles labeled secret subjects, confiden-
tial subjects, and unclassified sensitive subjects. As
suggested by the directional arrows near the bottom,
these subjects are constrained by MAC. Nevertheless,
they are trusted to not exploit the TCB’s covert chan-
nels and not confuse the TCB’s accountability mech-
anisms.

Non-CAS subjects execute in a domain in which
only non-sensitive information can be accessed; they
are represented in Figure 3 by the unshaded rectangle

to the right of the CAS, outside the security perime-
ter. Because they cannot access sensitive information,
these subjects are incapable of leaking it or obscuring
the identities of individuals who attempt to access it.

Among the users of this system are uncleared indi-
viduals. To mitigate the risk that a malicious program
may leak secret information to an uncleared user, the
organization that owns this system has imposed re-
strictions on the set of programs that can be installed
in the CAS secret domain. Only commercial off-the-
shelf (COTS) packages from approved vendors may
be installed in this domain and only by a system ad-
ministrator after approval by a configuration control
board (CCB). Approval of a vendor may be based on
the vendor’s reputation, history, ownership, person-
nel security and software development practices, or
other factors. User-developed programs may also be
installed in the CAS secret domain by an administra-
tor but only if supplied by a secret-cleared user and
only after a CCB review of the source code. These re-
strictions are modest, yet they prevent users in secret
sessions from inadvertently executing hostile programs
planted by uncleared users. This significantly reduces
the risks associated with covert channels in the TCB.

The organization allows users authorized for access
to confidential and unclassified sensitive information
to install programs in the corresponding CAS domains
without participation of a system administrator. The
primary security requirement for programs installed
in the unclassified sensitive domain is that they not
undermine the TCB’s accountability mechanisms. In-
stalling a program into either of these two domains is
an auditable event and causes a copy of the program to
be archived. These CAS mechanisms and procedures
have negligible impact on users yet provide account-
ability protection that a TCB alone cannot.

There are no restrictions or special procedures asso-
ciated with programs that execute in the non-sensitive
domain,

4.2 Integrity and Accountability

In this section, we apply the CAS paradigm to
a system trusted to enforce aspects of an integrity-
oriented security policy [29] like that described by the
Clark-Wilson integrity model [7]. These aspects are:
1) preventing unauthorized individuals from modify-
ing sensitive information, 2) preventing authorized in-
dividuals from modifying such information in an unau-
thorized manner, and 3) recording in an audit log se-
lected details about information modifications, e.g.,
user identifiers and the dollar amounts used in finan-
cial transactions. The system is shown in Figure 4.

Although this system’s components perform differ-
ent functions from those in the previous example, the
essential security architecture is identical. As in the
previous example, the TCB provides multiple domains
for a CAS, but here the domain enforcement mecha-
nism is programmable and supports a variety of do-
main configurations [6, 30]. The system protects the
integrity of three kinds of sensitive information: salary
and leave tables used by a payroll application, manu-
facturing specifications in the form of Computer Aided
Design (CAD) drawings, and purchase orders. Autho-
rization to modify these kinds of information is based
on role assignment (job title) rather than clearance.
The organization’s policies and procedures state that
only payroll clerks, senior engineers, and purchase offi-
cers, respectively, are authorized to modify these kinds
of information and only via designated programs.

The system enforces these restrictions by associat-
ing a different CAS execution domain with each role,
restricting the set of programs that can be executed in
each domain, and allowing individuals to create sub-
jects only in the domains for which they are autho-
rized. The CAS programs that run in these domains
are constrained by the TCB and can only modify the
types of information appropriate for their associated
roles. For example, programs that run in the Pay-
roll Clerk domain can modify salary and leave ta-
bles but not CAD drawings. Each CAS program is
trusted, however, to preserve information integrity by
constraining the kinds of modifications that can be
made, particularly to prevent fraud. For example, the
payroll program prevents payroll clerks from modify-
ing their own salaries or entering salaries above specific
numerical thresholds.

Various kinds of uncontrolled information having
no security relevance to the organization may also be
"kept on the system. The organization places no re-
strictions on the origin or behavior of programs used
to modify them. The domain in which non-sensitive
information alone can be modified is shown in Figure 4
as an unshaded rectangle outside the security perime-
ter. Since the security objective here is integrity, the
CAS paradigm permits subjects outside the security
perimeter to be given read-only access to sensitive in-
formation selectively, as depicted by the directional
arrows in Figure 4. Information flow restrictions on in-
teractions between subjects in different CAS domains
may also be appropriate. Those shown here are il-
lustrative only; where integrity is concerned, each or-
ganization must impose its own restrictions based on
application-specific policies and assurance concerns.

The salary and leave tables on this system are an

19

-

X

Security —
Perimeter

Y

I

DI

'-6¥§ sg %
=X .E....

CAS
Execution
Domains

V)

777
-

Untrusted
Execution
Domain

<—Human
Interface

Non-

2 o
© 5‘6 Sensitive
582 Subjects
°=298
SES
a.ow

@ —Security
Perimeter

Bulletin
Boards,
Notes,
Drafts,
etc.

|
0

Figure 4: CAS Example - Integrity and Accountability

attractive target for electronic fraud. By preventing
unauthorized individuals from modifying these tables,
the TCB greatly reduces electronic fraud risks. Never-
theless, the organization considers it critical that the
programs used to modify these tables be of very high
assurance. Consequently, it has configured the sys-
tem so that only a system administrator can install
programs into the payroll clerk domain. The admin-
istrator is authorized to do this only after approval
by the CCB. Assurance requirements for programs in
other CAS domains are less stringent; these programs
can be installed or revised more easily.

4.3 Low Assurance Systems

The previous examples illustrated the applica-
bility of the CAS paradigm to multiuser systems
built on high-assurance TCBs. This section applies
the paradigm to a personal computer (PC) system
equipped with a low-assurance TCB that provides no

20

features beyond those minimally required to support
a CAS. This example reduces the CAS paradigm to
its essence and reveals the most fundamental respon-
sibilities of a TCB.

The security architecture for the system is shown
in Figure 5. The security objective is a form of in-
tegrity, namely protecting tax returns, home finances
databases, term papers, and other sensitive infor-
mation from modification or deletion by computer
viruses. A variety of non-sensitive information is also
stored on the PC. This information is useful but does
not merit special protection, e.g., copies of postings
from network news groups.

The CAS consists of software that the PC owner has
decided to trust to be free of viruses, including shrink-
wrapped products from certain vendors and programs
that have been scanned for viruses or digitally signed
by their authors [23]. The owner would also like to
run other (non-CAS) software without having to trust
it in this manner. Non-CAS software includes free-

X

Security —
Perimeter

Presumed
Virus-Free
Subjects

7] CAS
% Execution

Domain Z///////////////////”
~ Untrusted Tax Return,

Execution

Domain

%

os e,

TCB

-—Human
Interface

Untrusted
Subjects

-—Security
Perimeter

Non-

Sensitive
Info

Figure 5: CAS Example - Personal Computer

ware of unknown origin and complex network appli-
cations that can automatically download and execute
code from Internet hosts without explicit approval of
the user (e.g., Mosaic, MIME agents).

The TCB for this system provides a single domain
for the CAS and another for non-CAS components.
At the beginning of each session, the user activates
the trusted path to the TCB and then designates the
session as a CAS domain session, a non-CAS domain
session, or a TCB session. During a CAS session, the
TCB allows only CAS programs to run but grants ac-
cess to both sensitive and non-sensitive files. During
a non-CAS session, the TCB allows any program to
run, but grants access only to non-sensitive files. In
this way, if viruses are present in unscreened programs,
the TCB prevents them from damaging files the owner
has designated as sensitive. During a TCB session,
the user can install programs into the CAS or remove
them.

The mandatory and discretionary multiuser access
controls, I&A, audit, and other features the TCSEC

21

requires for TCBs have little relevance to this system.
By contrast, the CAS paradigm focuses attention on
the system’s fundamental security risks and requires
onlythe TCB features that are essential to mitigating
them.

5 Discussion
5.1 Covert Channel Strategies

The TCSEC paradigm allows arbitrary programs
to access sensitive information and any covert chan-
nels that are present within the TCB. TCB develop-
ers are supposed to mitigate associated leakage risks
by identifying and eliminating covert channels, reduc-
ing their capacity, and auditing their use. Unfortu-
nately, the effectiveness of these techniques has been
limited, even when the level of effort applied has been
substantial. Furthermore, these techniques often im-
pair system performance or curtail system function-

ality. The CAS paradigm suggests an entirely differ-
ent strategy: deny software of unknown origin or as-
surance the ability to access sensitive information or

leak it. This strategy mitigates covert channel risks

by reducing the likelihood that an attempt to exploit
covert channels will occur or be successful, regardless
of the number, capacity, or auditability of the channels
present. It cannot be cost effective to require, as the
TCSEC paradigm does for high-assurance TCBs, Her-
culean efforts to identify, reduce, audit, or eliminate
covert channels while providing neither motivation nor
mechanism for restricting access to the channels that
remain.

5.2 Approximating the Idealized Archi-
tecture

The objective of the idealized CAS architecture
is to place all security-relevant components within a
trusted system under the control of the owning organi-
zation. Some real-world systems may only be able to
approximate the idealized CAS architecture and may
not be able to achieve this objective fully. The CAS
paradigm is intended to allow for deviations from the
ideal and provide insight about the additional risks
that may be incurred. Next, we explore the rami-
fications of relaxing the interface between CAS and
non-CAS components.

5.2.1 Adding an API

In the idealized architecture, non-CAS subjects do not
exist within sensitive sessions. Moreover, because the
CAS does not export a callable® application program
interface (API), non-sensitive sharable objects provide
the only interface between these CAS and non-CAS
subjects. This interface is highly constrained and is
intended to allow only limited importing and export-
ing of data across the security perimeter. In an MLS
system, for example, CAS subjects may be able to read
system-low objects created by non-CAS subjects.

The motivation for constraining this interface is to
protect sensitive information from being manipulated,
even indirectly, by non-CAS programs. To the extent
that the interface exported by the CAS becomes more
powerful and less constrained, the CAS cedes control
over its own sensitive operations to programs that can-
not be trusted, even if they’re executed by an autho-
rized individual.

In fact, these rules are overly restrictive. Under
some circumstances, a CAS can export a highly con-

3We include here a variety of system call mechanisms, in-
cluding system traps and interprocess communications.

22

strained callable interface to non-CAS entities that
provides no greater power or security risk than the
shared-object interface just described. Suppose the
CAS in an MLS system were designed to allow a thin
layer of non-CAS programs to be interposed between
itself and an authorized user during sensitive sessions.
If the API exported by the CAS to the non-CAS layer
consists of a single callable service that reads non-
sensitive files (i.e., reads down), the API conveys no
greater risk than the shared file interface. However, if
the API also allows reading files at the sensitivity level
of the session, the non-CAS layer would be capable of
leaking the sensitive information stored in them. In
short, providing an API for non-CAS components on
top of the CAS is neither inherently insecure nor is it
precluded from the paradigm. However, unless such
APIs are extremely limited, they can easily introduce
vulnerabilities. It is for this reason that they are not
depicted in the idealized CAS architecture.

5.2.2 Interpreters in the CAS

Although an OS TCB must prevent CAS subjects
from directly executing non-CAS programs, it cannot
prevent CAS subjects from indirectly executing them
by acting as an interpreter. If a CAS subject acts
as an interpreter, it can blur the execution domain
boundaries between CAS subjects and untrusted sub-
jects and among CAS subjects in different domains.
If the interpreter’s command language is sufficiently
powerful and it interprets a data file planted by an
adversary or incompetent user, it may be subverted.
For this reason, there are no interpreters in the ideal-
ized CAS architecture.

The fact that the distinction between an interpreter
and other kinds of programs is not always clear may
make it difficult in some cases to determine whether
the CAS is free of interpreters. Many useful programs
change their behavior according to tables, macros, or
initialization files provided by users and are meant to
be tailored by them. On the other hand, there are
many conspicuous examples of data-driven systems
whose behavior is highly predictable and not subject
to security-relevant user tailoring and its accompany-
ing vulnerabilities. The risk that an automated teller
machine (ATM) will be reprogrammed from its user
interface, for example, is very small. It is entirely
feasible to keep many systems, particularly turnkey
systems, virtually free of interpreter-related security
risks.

The CAS paradigm is intended to address high-
assurance CAS domains that need to be free of inter-
preters and lower assurance CAS domains that may in-

clude interpreters under certain circumstances. Prag-
matic measures for mitigating interpreter risks are
listed below in order of decreasing potential assurance
and increasing flexibility.

e Avoid execution of any program whose behavior
cannot be predicted with certainty, particularly
programs whose behavior is meant to be tailored
by individual users.

e Avoid user-tailorable programs except those that
require all tailoring or interpretation instructions
to have been installed previously in the CAS; in
principle, these have the same assurance as CAS
executables.

o Install user-tailorable programs only in domains
that can read only high-integrity information [5],
that is, information that can be produced only by
individuals and programs that can be trusted.

o Install user-tailorable programs only in low-risk
domains. Allow only individuals trained to avoid
potential vulnerabilities to use these programs.

6 Related Work

This paper is an improved version of an earlier pa-
per presented and used as the subject of a panel ses-
sion at a recent workshop [31, 32]. Revisions to ad-
dress issues raised at the workshop include refinements
(e.g., regarding the CAS interface and APIs), clarifi-

" cations, and additional discussion and examples.

The CAS paradigm clarifies, integrates, and ex-
tends a number of important ideas in the research
literature and restates them in a new context. CAS
components and our treatment of sensitive and non-
sensitive information generalize the Clark-Wilson in-
tegrity model’s Transformation Procedure (TP), Con-
strained Data Item (CDI), and Unconstrained Data
Item [7, 8]. For example, a Clark-Wilson TP “must
be certified to be valid”, i.e., a TP must transform
“CDIs from one valid state to another.” The CAS
paradigm, however, allows security functional require-
ments for CAS components to vary according to the
security objective sought and allows assurance pro-
cedures to range from formal certification to highly
informal processes. Clark and Wilson assert that the
confidentiality needs of the military and the integrity
needs of the commercial sector are so disparate that
they require fundamentally different conceptual mod-
els and mechanisms. Instead, we propose a single,
unifying paradigm that addresses both. Lee [13] and

23

Shockley [27] propose implementing TPs as partially
trusted subjects whose accesses are constrained ac- .
cording to Clark-Wilson access control tuples by a
lattice-enforcing TCB. Although this technique fore-
shadows the role and use of a TCB within the CAS
architecture, neither proponent suggests that the tech-
nique is necessary for or applicable to confidentiality;
neither acknowledges that application programs in an
MLS environment are security relevant.

The CAS architecture builds on previous ap-
proaches for layering security mechanisms. Popek and
Kline [20] outline an architecture containing multiple
“levels of kernels.” Shockley and Schell suggest orga-
nizing complex TCBs into collections of simpler TCB
subsets [28]. Neumann’s analysis of hierarchical sys-
tem architectures for safety, security, and other critical
requirements has explored related design and assur-
ance ideas [17, 18]. The CAS architecture allows a
CAS or a TCB to be organized internally as a col-
lection of TCB-subset-like layers. Nevertheless, there
are important differences between the CAS architec-
ture and the TCB subset approach. In particular, the
latter is wed to the TCSEC paradigm and suffers from
all of the drawbacks associated with it. Because the
TCB subset approach defines security relevance solely
in terms of access control, it treats subjects having no
special access control privileges as completely innocu-
ous. Consequently, under the TCB subset approach,
there is no reason to restrict the interface exported by
any TCB subset; in fact, such restrictions would seem
objectionable. In contrast, because the CAS paradigm
treats subjects that have no special access privileges
as potentially harmful, it requires that the interface
exported by the CAS to non-CAS subjects be highly
restricted; interfaces between layers within the CAS,
however, need not. '

Fundamental to the CAS paradigm is the balanced
assurance philosophy, which arose during the SeaView
project [15, 16] and is closely associated with the de-
velopment of TCB subsets. Other influences on the
CAS paradigm include the LOCK system’s type en-
forcement mechanism [6, 35, 19] and other efforts
to analyze and automate support for integrity poli-
cies [14, 30, 2, 3, 25]; the Military Message System [12],
which demonstrated that the trustworthiness of ap-
plications can be crucial even for DoD confidentiality
policies; Controlled Execution UNIX* [1], a precursor
of the CAS architecture that prevents any program
that has not been specially installed from being exe-

4UNIX is a registered trademark in the United States and
other countries, licensed exclusively through X/Open Company
Ltd.

cuted; and Trusted Mach® [36], whose multiuser server
processes clarify the limits of centralized accountabil-
ity mechanisms.

7 Conclusion

A fundamental assertion underlying the TCSEC
paradigm is that all necessary automated security con-
trols for many computer systems can be provided
by their operating systems, in particular the compo-
nents that constitute an OS TCB. This assertion does
not hold up in practice because ordinary application
processes possessing no special access control privi-
leges can leak sensitive information, undermine an OS
TCB’s accountability mechanisms, and destroy infor-
mation integrity. Hence, the security properties ulti-
mately needed by many organizations cannot be en-
forced by an OS TCB alone and necessarily depend
on the benign behavior of application programs.

We have proposed an alternative paradigm based
on the notion of a Controlled Application Set (CAS).
The CAS paradigm builds on TCSEC principles but
identifies and addresses important sources of security
risk within trusted systems that are effectively ignored
by the TCSEC. For this reason, we believe it can
lead to practical improvements in the security of real
systems. In addition, as illustrated by the examples
above, the CAS paradigm is applicable to a wide range
of systems of low and high assurance concerned with a
variety of security objectives, including confidentiality,
accountability, and integrity.

The CAS paradigm originates from the premise
that every software component that can manipulate
sensitive information, even if tightly constrained by
a TCB, is potentially security relevant. A key impli-
cation is that the amount of software on which the
security of a trusted system depends will appear in
many cases to be much larger than it would under
the TCSEC paradigm. The CAS paradigm is an at-
tempt to identify practical techniques for increasing
confidence that very large collections of software will
behave securely.

The CAS paradigm departs from the TCSEC
paradigm in many ways; these have broad implica-
tions for trusted systems theory and practice. It
charges organizations that own and operate trusted
systems with responsibility for controlling the appli-
cations used to manipulate sensitive information and,
more importantly, provides them with automated en-

5Trusted Mach is a registered trademark of Trusted Infor-
mation Systems, Inc.

24

forcement mechanisms to prevent other applications
from being used for that purpose.

The CAS conceptual architecture and security
perimeter provide a new theoretical context for the
construction and evaluation of trusted systems. In this
context, an OS TCB must be designed and evaluated
not as the totality of security protection mechanisms
but as the base for it. An OS TCB must satisfy or sup-
port new requirements, including ensuring that CAS
components are tamperproof, non-bypassable, and ac-
cessible to users via the trusted path; exporting mul-
tiple execution domains so that the CAS can be orga-
nized in accordance with the principle of least privi-
lege; and providing the CAS with functionally correct
storage and retrieval services. On the other hand, the
paradigm diminishes the importance of covert chan-
nel elimination, reduction, and auditing requirements
and compensates by reducing the likelihood that a ma-
licious agent will be given an opportunity to exploit
whatever covert channels are present.

The CAS paradigm relies on balancing assurance
requirements pragmatically against risks. Since an
OS TCB will address many security risks, the level of
assurance needed for CAS components need only be
commensurate with the residual risks that remain; in
many cases, CAS components may merit significantly
less assurance than TCB components. For some CAS
components (e.g., COTS products), assurance of be-
nign behavior will be based largely on accountability
of origin instead of quality-control spot checks of its
behavior or its development history.

Our current research involves building TCBs and
prototype extensions that provide much of the support
needed for a CAS [2, 3, 25]. We intend to pursue val-
idating the ideas described in this paper through con-
tinued prototyping and discussions with practitioners
and policy makers in the computer security commu-
nity.

References

[1] L. Badger, H. Tajalli, D. Dalva, and D. Sterne.
Controlled Execution UNIX. In Proc. 17th Na-
tional Computer Security Conference, pages 254—
263, Baltimore, MD, October 1994.

L. Badger, D. F. Sterne, D. L. Sherman,
K. M. Walker, and S. A. Haghighat. “Practical Do-
main and Type Enforcement for UNIX.” In Proc.
1995 IEEE Symposium on Security and Privacy,
Oakland, CA, June 1995.

[3] L. Badger, D. F. Sterne, D. L. Sherman,
K. M. Walker, and S. A. Haghighat. “A Domain
and Type Enforcement UNIX Prototype.” In Pro-
ceedings of the 5th USENIX UNIX Security Sym-
posium, Salt Lake City, UT, June 1995.

D. Bell and L. LaPadula. Secure Computer Sys-
tem Unified Ezposition and Multics Interpretation.
Technical Report MTR-2997, MITRE Corp., Bed-
ford, MA, July 1975.

[5] K. Biba. Integrity Considerations for Secure
Computer Systems. Technical Report TR-3153,
MITRE Corp., Bedford, MA, April 1977.

[6] W. E. Boebert and R. Y. Kain. A Practical Alter-

native to Hierarchical Integrity Policies. In Proc.

- 8t National Computer Security Conference, pages
18-27, Gaithersburg, MD, September 1985.

D. Clark and D. Wilson. A Comparison of Com-
mercial and Military Computer Security Policies.
In Proc. 1987 IEEE Symposium on Security and
Privacy, pages 184-194, Oakland, CA, April 1987.

[7]

D. Clark and D. Wilson. Evolution of a Model for
Computer Integrity. In Proc. 11** National Com-
puter Security Conference, Baltimore, MD, Octo-
ber 1988.

(8]

H. Custer. Inside Windows NT. Microsoft Press,
Redmond, Washington, 1993.

(9]

[10] Department of Defense. Department of De-
fense Trusted Computer System Evaluation Cri-
teria, December 1985. DoD 5200.28-STD.

[11) D. Golub, et al. UNIX as an Application Pro-
gram. Proceedings of the Summer 1990 USENIX
Conference, pp. 87-96, June 1990.

[12] C.E. Landwehr, C.L. Heitmeyer, and J.A.
McLean. A Security Model for Military Message
Systems. ACM Trans. on Computer Systems, Vol.
2, No. 3, August 1984, pages 198-222.

[13] T.M.P. Lee. Using Mandatory Integrity to En-
force Commercial Security. In Proc. 1988 IEEE
Symposium on Securily aend Privacy, pages 140-
146, Oakland, CA, April 1988.

[14] S.B. Lipner. Non-discretionary Controls For
Commercial Applications. In Proc. 1982 IEEE
Symposium on Security and Privacy, pages 2-10,
QOakland, CA, April 1982.

25

[15] T.F. Lunt, et al. Element-Level Classification
with A1 Assurance. Computers and Security, 7(1),
February 1988.

[16] T.F. Lunt, et al. A Near-Term Design for the
SeaView Multilevel Database System. In Proc.
1988 IEEE Symposium on Security and Privacy,
pages 234-244, Oakland, CA, April 1988.

[17] P.G. Neumann. On Hierarchical Design of Com-
puter Systems for Critical Applications. IEEE
Transactions on Software Engineering, (9):905-
920, September 1986.

[18] P.G. Neumann. On the Design of Dependable
Computer Systems for Critical Applications. Tech-
nical Report SRI-CSL-90-10, SRI International,
Menlo Park, CA, October 1990.

[19] R. O’Brien and C. Rogers. Developing Applica-
tions on LOCK. In Proc. 14th National Computer
Security Conference, pages 147-156, Washington,
DC, October 1991.

[20] G. Popek and C. Kline. The Design of a Ver-
ified Protection System. In Proc. 1974 Interna-
tional Workshop on Protection in Operaling Sys-
tems, pages 183-196, Rocquencourt, France, Au-
gust 1974.

[21] G. Pottinger. Proof Requirements in the Orange
Book: Origins, Implementation, and Implications.
Mathematical Sciences Institute, Cornell Univer-
sity, Ithaca, NY, February 1994.

[22] N.E. Proctor and P.G. Neumann. Architectural
Implications of Covert Channels. In Proc. 15th
National Computer Security Conference, pages 28—
43, Baltimore, MD, October 1992.

[23] A.D. Rubin. Trusted Software Distribution Over
the Internet. In Proc. Symposium on Network
and Distributed System Security, pages 47-53, San
Diego, CA, February 1995.

[24] J. Saltzer and M. Schroeder. The Protection of
Information in Computer Systems. Proc. IEEE,
63(9), March 1975.

[25] D.L. Sherman, D.F. Sterne, L. Badger, S.L. Mur-
phy, K.M. Walker, S.A. Haghighat. Controlling
Network Communication With Domain and Type
Enforcement. In Proc. the 18th National Informa-
tion Systems Security Conference, Baltimore, MD,
October 1995.

[26] L.J. Shirley and R.R. Schell. Mechanism Suffi-
ciency Validation By Assignment. In Proc. 1981
Symposium on Security and Privacy, pages 26-32,
Oakland, CA, April 1981.

[27] W.R. Shockley. Implementing the Clark/Wilson
Integrity Policy Using Current Technology. In
Proc. the 11th National Computer Security Con-
ference, Baltimore, MD, October 1988.

[28] W.R. Shockley and R.R. Schell. TCB Subsets For
Incremental Evaluation. In Proc. Third Aerospuce
Computer Security Conference, pages 131-139, Or-
lando, FL, December 1987.

[29] D.F. Sterne. On The Buzzword “Security Policy.”
In Proc. 1991 IEEE Symposium on Security and
Privacy, Oakland, CA, May 1991.

[30] D.F. Sterne. A TCB Subset for Integrity and
Role-Based Policies. In Proc. 15th National Com-
puter Security Conference, pages 690-696, Balti-
more, MD, October 1992.

[31] D.F. Sterne, G.S. Benson, and H. Tajalli. Re-
drawing the Security Perimeter of A Trusted Sys-
tem. In Proc. Computer Security Foundations
Workshop VII, pages 162-174, Franconia, NH,
June 1994.

[32] D.F. Sterne, G.S. Benson, C. Landwehr, L. La-
Padula, and R. Sandhu. Panel Session: Recon-
sidering the Role of the Reference Monitor. In
Proc. Computer Security Foundations Workshop
VII, pages 175-176, Franconia, NH, June 1994.

[33] Guidance for Applying the Department of De-
fense Trusted Computer System Evaluation Cri-
teria in Specific Environments. Technical Report
CSC-STD-003-85, DoD, June 1985.

[34] Ken Thompson. Reflections on Trusting Trust.
CACM, 27(8), August 1984.

[35] D.J. Thomsen. Role-Based Application Design
and Enforcement. In Proc. of the Fourth IFIP
Workshop on Database Security, Halifax, England,
September 1990.

[36] Trusted Mach System Architecture, Technical Re-
port TIS TMACH Edoc-0001-93B, Trusted Infor-
mation Systems, Inc, Glenwood, MD, May 1993.

26

INFORMATION DOMAINS METAPOLICY

Gene Hilborn
Computer Sciences Corporation
7471 Candlewood Road
Hanover, MD 21076

Abstract

The metapolicy inherent in the concept of information
domains, as used in the emerging Department of
Defense Information Systems Security Policy (DISSP)
[1], and underlying the Defense Goal Security
Architecture [8] is modeled and analyzed. The access
control and information transfer metapolicy of the
DISSP is formalized as a set of rules that apply
axiomatically to all information domain security
policies. The relationship between mandatory access
control (MAC) and discretionary access control (DAC)
system security policies and information domain
security policies is analyzed. An information system
that enforces a MAC policy is shown to be a highly-
structured, special case of the general multiple
information domain policy system. Inferences are
drawn for the use and limitations of existing
MAC/DAC-based systems for implementation of
multiple information domain policies. The type of
future system features needed to support the full
potential of information domain-based multiple
security policies is discussed. :

1 _Introduction
1.1 Background

Multilevel secure systems were developed as a solution
to the conflict between computer resource sharing of
multiple users and protection of classified information
at multiple levels from unauthorized access. The
structure of information labeling and user clearances
was formulated as an hierarchy or more generally, a
partial ordering, or a lattice. An automated information
system enforcing a mandatory access control (MAC)
policy based on such labeling of information objects
and users or subjects acting on their behalf has become
the dominant paradigm for “serious” information
security, and thoroughly embedded in the technical
guidance of the Trusted Computer System Evaluation
Criteria (TCSEC) [2]. A single system under this
paradigm is considered to enforce a single coherent
system policy. The single policy may have subpolicy
components such as MAC and DAC (discretionary
access control), that make up a single, coherent policy.
The Trusted Network Interpretation (TNI) [3] and
Trusted Database Interpretation (TDI) [4] further

27

extend the paradigm to various modes of system and
policy composition, but do not depart from the single,
global policy and system paradigm.

The still evolving Common Criteria [5] contains no
rigid policy construct. However, no protection profiles
with other than the dominant paradigm have been
developed.

Deficiencies in the dominant paradigm have been
identified by multiple workers. Hosmer [6]
summarized these deficiencies of the single policy
paradigm as: its inflexibility to change; the difficulties
with data interchange between systems under policy
authorities or domains; its unrealistic model of the real
world’s multiple, sometimes conflicting policy
domains; and, its poor performance when manual
security guards are introduced to deal with interdomain
transfers. As an approach to solving these deficiencies,
Hosmer advocated building a “Multipolicy Machine”
that enforces multiple, sometimes conflicting security
policies through automated metapolicy-enforcing
conflict-resolution mechanisms [6]. The problem with
this approach is that it is so general and unstructured it
is doubtful that the many standardization issues can be
resolved in order to reduce it to practice. Bell [7] has
developed a framework that abstractly describes such
multiple policies, conflicts, and resolutions.

1.2 Information Domains

A new approach to information system policy
formulation and subsequent automation was recently
initiated in the U.S. Department of Defense (DoD) [1]
based on the construct of “information domains.” The
information domain approach is a significant departure
from traditional DoD information system security
policies expressed by DAC and lattice-based MAC
policies. These (DAC and MAC) policies also form
the access control basis for existing evaluated trusted
products and systems in accordance with the TCSEC,
and its interpretations under the TNI and TDI. While
recent, and not widely known or understood, the
information domain policy formulation is also a key
underpinning of the Department of Defense (DoD)
Goal Security Architecture (DGSA) [8]. As important
as the information domain policy approach is as a
foundation of the DGSA, it has not been rigorously

formulated or modeled in published work, and has not
yet formed the basis of any available trusted products.

While the use of the information domain approach
originated as US DoD policy, it is potentially more
applicable to commercial environments than are the
traditional lattice-based MAC policies, which have not
been widely accepted in the commercial market.

1.3_Goals and Limitations of the Paper

The goals of this paper are to:

« Stimulate wider exploration and analysis of the
information domain policy idea,

¢ Provide a mathematically formalized basis for
statement of information domain security policies,

« Examine the relationship of information domain
policies to traditional MAC and DAC system
policies.

e Explore implications for existing and future trusted
products and systems.

The formalization of information domain metapolicy is
done using sets and functions to express a set of rules
about objects, accesses, and interdomain information
transfer. This process provides a basis for consistent
policy formation, and illuminates the power and
limitations of the information domain construct.

The scope of the paper is limited to information access
aspects of the DISSP [1]. Other aspects of the DISSP,
such as protection and strength of mechanisms are not
formalized or analyzed. The DGSA [8] is discussed
only as it interprets the DISSP information domain
metapolicy.

2 Informal Definitions

According to [1], an information domain combines the
following:

e A set of information objects, identifiable as
belonging to the domain

¢ A set of (human) members of the domain

¢« An information domain security policy that
includes:

- the requirements for membership

- the rules of access by members to information
objects of the domain

- the rules of import and export of information
from/to other information domains

28

- the required protection of the information
objects of the domain

To promote consistency, interoperability, and trusted
products that support multiple information domains,
constraints are imposed on the nature of information
domain security policies. The Department of Defense
Information Systems Security Policy [1] states an
overall DoD policy explicit on the minimum
constraints imposed by the information domain idea
itself and additional policy that the DoD imposes on
each of the information domains under its jurisdiction.

The following informally summarizes the author’s
interpretation of additional information domain policies
which are considered to be inherent in the information
domain idea, independent of other policy.

a. All information objects in an information domain
have identical security attributes.

b. All members of an information domain need not
have equal access to its information objects.

¢. A given member has identical access rights to all
information objects in an information domain.

d. No information object belongs to more than one
information domain.

e. Individuals may be members of more than one
information domain.

f. Transfer of information between domains occurs
only in accordance with the policies of both the
exporting and importing domain.

g. Transfer of information between information
domains can be accomplished only by a member
of both the exporting and importing domains.

h. Protections requirements for an information
domain are stated independently of any other
information domains.

It is implicitly assumed that:

i. Only the members of an information domain have
access to its information objects.

(a) and (c) are interpreted in the DGSA [8] to be
equivalent.

3 Information Domain Metapolicy

3.1 Information Domain Definition

An information domain D is defined as a triple of
information objects, members, and a policy.
Symbolically,

D=(0O,M,P).

Strictly speaking, this formulation is static, which
means that any change in the sets of members or
objects would change the information domain. Real
information domains need to provide for the admission
and exit of members, and the creation and deletion of
information objects, with persistence of the named
information domain. A more elaborate formulation
would incorporate a dynamic structure for members
and objects of an information domain, e.g., by defining
an equivalence class. This potential refinement is
omitted in the present formulation.

3.2 Single Information Domain Metapolicy

Let A represent the set of access modes possible for
the information objects in a domain, (e.g., read, delete,
append, modify, etc.). Many security models describe
a current security state by an access function that maps
object-subject pairs to subsets of A. This kind of
access function is an access state function. At any one
time an access state function represents the existing or
granted accesses of subjects to objects. The potential
or allowable accesses of subjects to objects can also be
modeled as a function mapping object-subject pairs to
subsets of A. Such a mapping is an access rights
function. The difference between an access state
function and an access rights function is that the later is
a static expression of policy, and represents all
allowable accesses, whether or not they are in current
use. The access rights function, o for information
domain D assigns a subset of A to each (information
object, member pair). Symbolically,

wOXM— 24,

where 24 denotes the set of all subsets of A .

The constraint on policy that all information objects in
a domain have identical security attributes can be
expressed concisely in terms of member access as
follows: ‘

Rule 1 (Object-Independent Access): For an
information domain D = (0, M, P), the policy P
restricts the access rights function o such that for
any m € M, and any two objects o, € O and

0, €0,

ooy, m) = a(oy,m).

Thus the structure of access rights permitted by the
security policy of an information domain is very
simple. If the access rights function is expressed as a
matrix with members identified with rows and
information objects identified with columns, then ali
columns must be equal. The access rights within an
information domain can also be described by subsets of
the members who have the same access rights, without
reference to information objects. Since the access
rights function « is independent of objects, it can be

29

replaced by a member access rights function, § with
M as its domain of definition:

g(m) = ao,m),

where o is an arbitrary objectin O.

3.3 Multiple Information Domain Metapolicy
Let D, D,,...,Dy, where D; =(0;,M;, P;), be a
finite set of information domains. O and M are the

total sets of information objects and members,
respectively, and O; and M; are subsets of O and M,

respectively.

That each information object belongs to a single
information domain is expressed as follows:

Rule 2 (Information Object-Isolation): For
distinct information domains, D;,D,,...,Dy ,
where D, =(0;,M;,P;),forall 1<i< N and
1<j<N,if i#j then

Since information objects are containers of
information, Rule 2 says nothing about the information
content of the objects, which could well be duplicated
across information domains.

Since Rule 2 categorizes every information object as
belonging to a single, distinct information domain,
there can be no such thing as a "multidomain
information object" (meaning an information object
that is marked as belonging to multiple information
domains). However, this constraint does not prohibit
the simultaneous access by a member of multiple
information domains to objects in those different
information domains. Such a simultaneous access
could be used, for example, to construct a display that
has the "look and feel" of a "virtual multidomain
information object.”

The following constraint formalizes the idea that only
the members of an information domain may have
access to its objects.

Rule 3 (Member-Only Access): For distinct
information domains, Dy, D,,...,Dy , where
D, =(0;, M;, P;) with member access rights
function §;, 1<i<N,andany me M,

{imy#d=meM,.

In describing access rights in a multiple information
domain context, the access mode set A is the
collection of all the access types needed in the various
information domains under discussion, even though
some types may not be used in a particular information
domain. For an information domain whose policy
defines conditions for the export of information to

another information domain, A contains an export
mode of access, symbolized E Similarly, an

information domain that permits the import of
information from another information domain, A
contains an import mode /. The description of export
in terms of information rather than the export of
information objects is consistent with the simplified
static model of information domains, each having a
fixed number of information objects. The right to
transfer information is modeled by an E access (which
includes read) for an information object in the
originating domain and an I access (which includes
modify or append) to an informaticn object in the
destination domain.

The security policy of an information domain
establishes conditions for import and export, such as
which members have the right to export to which other
information domains. The domain's security policy
could also establish other import/export conditions
provided they do not violate Rule 1.

Let the members M, of information domain D; who
are permitted by the policy P; to export from D; to D;
be denoted by M;(E;). Similarly, let the members of
M; who are permitted by P; to import to D; from D,
be denoted by M;(/;).
When the transfer of information directly from
information domain D, to a different information
domain D, is allowed by their combined policies, D,
is said to be adjacent to D,, symbolized " D, > D, "
Adjacency is directed; D, > D, does not imply
D, > D,. The use of the term "directly” means that no
other information domain is required for the transfer.
Symbolically,

D> D, & M{(E))nMy(1)# Q.

It follows from Rule 3 that M;(E,) is a subset of M,
and that M,(/;) is a subset of M,. Therefore
Ml (Ez)m MZ(II) is a subset of M1 M M2. The

necessary and sufficient conditions for direct
information transfers can therefore be stated as follows:

Rule 4 (Inter-information domain transfers):
Information domain D is adjacent to information

domain D,, if and only if there is at least one

member of both information domains, who is
permitted by the policy of D, to export

information to D,, and is permitted by the policy
of D, to import information from D;.

An information domain with no adjacency to any other
information domain is isolated.

30

It is possible for the policy of an information domain to
vest members with import or export authority, but for
the information domain to be isolated because no
member also has compatible import or export authority
in another domain.

Even when information domains are non-adjacent,
transfer of information can be accomplished indirectly
by using one or a chain of intermediary information
domains that form a directed graph chain of adjacent
information domains. When no such chain exists in
either direction, two information domains are pairwise
isolated.

Suppose for example, the members of information
domains D, and D, with no members in common

decide they want to make controlled transfers of
information from D, to D,, and they want to continue

to have no members in common, they can create a third
shared information domain Dj, such that D; > D, and

D;> D, To satisfy Rule 4, there is at least one
member of D; who can export to D, and one member
of D, who can import from D;, ie.,

M{(E))NnM,(I)# D

and

My(E,))NM,(I)#D.
An example adjacency graph of four information
domains is illustrated in Figure 1. In this example, D;
and D, are not adjacent, but information may be
transferred indirectly via D;. D, is pairwise isolated
from each of the others, and therefore isolated.

Figure 1. Information domain adjacency graph.

ti "

Information domain security policies have been
abstractly formulated in terms of information objects
and member access rather than in terms of system
behavior. Information systems can support one or
more information domains. The question then arises of
what is the distinction and relationship between
information system security policies and information
domain security policies.

For an automated information system supporting a
single information domain, an information domain
security policy that is automated by the system is the
same as the system security policy. For a system
supporting multiple information domains, the security
policies of all the supported information domains must
be supported (enforced). Such a system is more
properly called "multipolicy" secure than "multilevel”
secure, since a multilevel secure system enforces a
single security policy with certain rules of access based
on object and subject "levels." "Multipolicy secure”
(MPS) is also more appropriate than "multilevel
secure" (MLS) because there is no requirement for
information domains to have any particular relationship
as "levels" with a partial ordering or lattice. As will be
illustrated in the next section, a system that is MLS is
a special case of system that is MPS . In summary, the
system security policy of a multiple information
domain system is the combined enforcement of all the
policies of the individual information domains
supported.

4 MAC and Information Domains

4.1 MAC Security Policies

Mandatory Access Control (MAC) policies are
characterized as follows. Thereisaset L of N
distinct sensitivity levels:

L={L,L,,...,Ly).

There is a set of information objects O, and a set of
subjects M. The abstraction “subject” typically
represents a user or processing on a user’s behalf at a
given level. There is an assignment @ of sensitivity
level to each information object o € O

®:0—- L.

There is an assignment A of sensitivity level to each
subject me M :

A:M— L.

There is an access mode set A that contains modes
R— representing read-equivalent access (e.g., view,
copy-from), and W — representing write-equivalent
access (e.g., modify, append, clear). The first principle
of MAC is that the access rights function

o:0x M — 2" can always be expressed through a
function of the object and subject sensitivity levels.
There is a function f such that

a(o,m) = f(w(0), A(m)),
where
fiLxL—2",

Since o is not independent of information objects, it
does not satisfy Rule 1 for information domains.
Therefore (0, M, P), where P specifies such an access

31

rights function, can not be an information domain.
However it is possible to find a set of N embedded
information domains D,,D,,..., Dy that together

comprise the same access policy.

The second principle of MAC is that if any information
may flow between an object and a subject at different
levels, it may only flow “upward.” “Upward" is
expressed in terms of a partial ordering > on L. The
partial ordering operator > satisfies the three axioms of
idempotency, reflexivity, and transitivity. Whenx 2y,
x is said to dominate y. When x>y and x #y, x is said
to strictly dominate y, as indicated by x>y.

The MAC policy that is least restrictive on information
flow between levels is "read-down/write-up,” (also
called simple-security/*-property in the Bell and
LaPadula model [10]. For read-down/write-up,

{W}, @(0) > A(m)
{R, W}, @w(0)= A(m)
{R}, A(m) > w(o)

oo,m)=

@’ otherwise.

A strictly dominated write-up is sometimes
unacceptable from either a policy viewpoint or an
implementation viewpoint. An example of a policy
issue is the integrity requirement to protect high-level
information from corruption by low-level subjects, who
are not allowed to see any modifications they are
making. An example of an implementation issue is the
infeasibility of performing write without read
operations on some types of information objects. To
address these difficulties, many MLS systems
implement a read-down/write-equal variant of MAC
policy. This variant of MAC simply restricts the
access rights function by eliminating the strictly
dominated write-up access. Thus for read-down/write-
equal,

{R, W}, @(0)=A(m)
{R}, A(m)> (o)

o(o,m)=

7 , otherwise.

An example of an MLS system enforcing a read-
down/write-equal policy is the Compartmented Mode
Workstation [11].

When the access rights function is restricted to also
eliminate read-down, the MAC policy reduces to read-
equal/write-equal or level-isolation. For level
isolation,

alo,m) = {R,W}, w(0) = A(m)

g, otherwise.

For the level-isolation variant, no partial ordering
among the sensitivity levels is required. An example

of an MLS system implementing a level-isolation
policy is the Multinet Gateway [12].

4.2 Multiple Information Domain Policies
Corresponding to a Single MAC Policy

To demonstrate how single MAC policy is re-stated in
terms of a set of information domains and their
policies, define N sets of information objects as
follows:

0, ={oeO:0(0)=L},
for 1ISi<N.

Since the levels are distinct, these sets of information
objects are disjoint and therefore satisfy Rule 2 for
information domains. The members of these
information domains are to be identified with MAC
subjects.

Next, segment the MAC access rights function & into
N information domain member access functions &;:

$1(m),0e On
{2(m),0 € 02

a(o,m)=

{N(m),0 € ON

Since {; is dependent only on subjects/members, there
is an access rights function o; equal to {; for each i

that satisfies Rule 1 for information domains, and
expresses the access policy of each information
domain.

Define the following subsets of M:
M;(+)={meM:A(m)> L;}
M, (0)={meM:A(m)=L;}
M, (=)={meM:L, > A(m)}.

For each 1<i < N, these three sets are disjoint.

For a read-down/write-up MAC policy, the members of
information domain D; are

M, = M,(+)U M;(0)U M,(=), for 1Si<N.

Let

{R},me M;(+)
{R,W},me M,(0)
{(Whme M;(-).

Gi(m) =

It follows that for each 1<i< N, D, =(0;,M;, P;) is
an information domain where policy P; permits

32

member access rights ; defined above. Each of these

information domains has three kinds of members
within M; . The M;(+) members are those who have

an associated level (e.g., "clearance" or login level) that
strictly dominates L;, and who have read-only access

to the information objects O;. The M;(0) members are
those who have an associated level equal to L;, and

who have read and write access to the information
objects O;. The M;(—) members are those who have

an associated level that is strictly dominated by L;, and
who have write-only access to the information objects
0,.

i

For a read-down/write-equal MAC policy, the
members of information domain D; are

M, = M,(+)U M,(0).

Let

Gi(m) = {R},me M;(+)

{R,W},m e M,(0)_

The corresponding information domains
D; =(0;,M;,P;) for 1<i< N are information
domains with two kinds of members. The M;(+)

members are those who have an associated level
("clearance") that strictly dominates L;, and who have

read-only access to the information objects O;. The
M;(0) members are those who have an associated

clearance level that is the same as L;, and who have
read and write access to the information objects 0.

For a level-isolation MAC policy, the members of
information domain D; are

M, = M,(0).

Let

Gi(m)= {R,W},me M,;(0)

D; =(0;, M;, P,) is an information domain with all the
members having an associated clearance level of L,

and all having read and write access rights to the
information objects L;.

The information-access relation of the information
domain members to the information objects is
illustrated in Figure 2 for each of the information
domains imbedded in each of above three variants of
MAC. An arrow from object to subject indicates read
access is permitted; an arrow from subject to object
indicates write access is permitted; and an arrow

pointing both ways indicates read and write are both
permitted.

Mi
Mi(+)

0O |ja—>»

\

(a) Read-Down/Write-Up

Mi(0)
Mi(-)

Mi
Mi(+)

vl

Oi [a—>

Mi(0)

(a) Read-Down/Write-Equal

Mi

0Oi ja—]

M{0)

(c) Level Isolation

Figure 2. Access of members to information objects
in information domains embedded in MAC policies.

4.3_Adjacency of MAC-Based Information
Domains

Since only read and write equivalent accesses were
defined to characterize MAC policies, "export" access
is considered to be read-equivalent, and "import"
access is considered to be write-equivalent . The
members of D; who are permitted to export to D; are
those who are permitted to read in D;. Similarly, the
members of D; who are permitted to import from D;
are those who are permitted to write in D,.
Symbolically,

M(E;)={me M;IRe {;(m)},
and .
M;(1;)={me M}IW € {;(m)}.

For the read-equal/write-equal MAC policy variant, all
the composing information domains are isolated. For
read-down/write-equal, read-equal/write-up, and read-
down/write-up the information domains are adjacent
whenever the corresponding levels have a (strict)
dominance relationship, i.e.,

D>D; e L;i>L.

What differs between the information domains
embedded in variants of MAC that have adjacencies is
who can perform the transfer of information between
the information domains. When the MAC policy
permits read-down/write-up, then any member m
whose clearance level is bracketed by the levels of the
exporting and importing information domains will be a
member of both and allowed to perform transfers:

A(m) 2 L;
and
L; 2 A(m).

On the other hand, for a read-down/write-equal MAC
policy, the member clearance level must equal that of
the importing information domain and strictly
dominate that of the exporting information domain:

Am)=1L,
and
L; > A(m).

A system that implements a MAC policy is thus
capable of supporting multiple embedded information
domains, provided the information domains are either
isolated, or related through a partially ordered set of
sensitivity labels. For other than isolation MAC
policy, the adjacency graph of the set of embedded
information domains is isomorphic to the partial
ordering graph of the sensitivity levels.

An adjacency graph for four information domains in a
lattice relationship is illustrated in Figure 3. In the
illustrated set of information domains, L, is the Zero

element (dominated by all) of the lattice, L, is the Unit
element (dominates all) of the lattice, and L; and L,

are in between with no dominance relationship between
them.

Figure 3. Lattice-related information domain
adjacency graph.

33

4.4 Uses and Limitations of MAC Based
Systems

As demonstrated above, MAC is a special case of the
kinds of relationships that can exist between
information domains. A system that enforces a label-
based MAC policy (e.g., TCSEC B1 and higher
systems) is capable of supporting multiple information
domains when these information domains are either
isolated or can be related by a partial ordering or
lattice.

While most MAC trusted products nominally enforce
either a read-down/write-up or a read-down/write-equal
MAC policy with members of the level set each
composed of a hierarchical level and a set of non-
hierarchical categories. However such systems can
also be effectively set up to enforce isolation of N
information domains as follows. Let each information
domain correspond to a non-hierarchical category, and
define or use only a single hierarchical level whose
name is unimportant. In addition to the N information
domains corresponding to the N non-hierarchical
categories, define a system-low (no categories) public
information domain, and system-high (all categories)
information domain. The public information domain
provides such public information as executable
software for general use. The system-high information
domain is for system security administrative use, e.g.,
auditing.

There can be highly useful multiple information
domains that are not expressible as imbedded in any
MAC policy, and therefore not supported by an
existing MAC system. A very simple and yet clearly
useful example is where two information domains D

and D, have no members in common, but need to
make controlled transfers of information to one another
(e.g., two businesses or two government agencies with
different missions and people). Members the two
information domains agree to create two new
information domains each D; and D, that each have

members from both D; and D,. Some members of
D, may export to D; and members of D, may import
from D;. Members of D, may export to D, and
members of D, may import from D,. The
information objects of Dj; could be a mail queue that
holds information released from D, and destined only
to D,. Similarly, the information objects of D, could
be a mail queue that holds information released from
D, and destined only to D;. The adjacency graph
(Figure 4) is cyclic, and could not therefore correspond
to any MAC policy, since a cyclic graph is not
isometric to a any partial ordering.

34

Figure 4. Cyclic information domain adjacency
graph.

5 DAC and Information Domains

5.1 DAC Security Policies

Discretionary access control (DAC) policies [2] permit
assignment of access rights of system users to
information objects on a system at the discretion of the
"owner" of each information object. In general the
accesses rights permitted by the owner of an
information object may be changed at any time. The
corresponding access rights matrix can be interpreted
in information domain terms as either highly dynamic
and object dependent, or as "weak" (in that every entry
equals the total access modes set A because all
accesses are permitted under some owner decisions).

5.2 DAC and Information Domains

Since DAC is a much less rigid concept than MAC,
there are several different mappings that can be made
between DAC and information domain policies,
depending on the DAC-interpretation adopted.

Under a "weak" interpretation, a system that
implements a DAC policy, can support only a single
information domain, where all the users are its
members, who have (potentially) equal access rights to
all information objects. In this interpretation, the
individual owner-assignments and revocations of
access permission are not relevant from an information
domain policy viewpoint. They are a functional
convenience to the members of the information domain
to manage their activities.

Alternately, a dynamic interpretation could be made
where there are as many information domains on a
system as information objects. The members of a
single information domain are all those who have any
access assigned by the owner. Since the owner can
change these permissions at-will, the membership
changes with each such change. Each such change
changes a column of the access rights matrix.

On the other hand, a system DAC policy can have
associated procedural rules or other mechanism so that
it is neither weak nor dynamic. For example, if the
only owner of information objects is a security
administrator, the administrator can use the DAC
mechanism to group information objects and users into
multiple information domains. If an access control list

(ACL) mechanism is used, then the objects in a single
information domain are all those with the same ACL.
(An ACL is equivalent to a column of the access rights
matrix.) To satisfy Rule 1, the information objects of a
single information domain are those with identical
ACLs. All the users who are assigned one or more
access modes in that ACL are its members. While such
a "strong" DAC policy could enforce any information
domain access control policy, it may not be acceptable
for other reasons such as the protection weakness
inherent in the all-powerful nature of the administrator
across all information domains.

In a system that provides MAC and typically "weak"
DAC enforcement mechanisms, the MAC mechanism
can be used to establish rigid information domain
boundaries (within the limitations of MAC), and the
DAC mechanism can be used to provide a convenience
for system users to manage their information within
each information domain, independently of the formal
information domain security policy.

6 Interconnected MPS Systems

All information systems supporting the same
information domain must be compliant to its security
policy, including access controls and protection
mechanisms. These systems may or may not be
directly or indirectly connected. Establishing
interconnections or security association between these
systems can provide a mechanism for information
transfer only within the same information domain and
therefore in accordance with the same policy. The idea
of "connective association” includes both continuous or
interactive connection or discrete, staged, or
connectionless information transfer.

If the ability to enforce interdomain transfer policy in
accordance with Rule 4 is enforced by some form of
reference monitor, then presumably such transfers can
occur only within a single information system. Under
this assumption (which is a requirement of the DGSA
[8D), it follows that transfer of information between
information domains in accordance with both domain
policies can only occur on a system that enforces both
policies. Thus by connective associations, information
domains can extend across multiple systems in any
combination of systems and information domains,
provided (a) each information domain’s security policy
is enforced by the supporting systems, and (b) transfer
of information between domains occurs only on
systems that support both the exporting and importing
domains.

A significant difficulty that accompanies the traditional
one-system/one-policy paradigm is the celebrated
“composition problem”[13, 14]. The traditional
composition problem formulation merges system
boundaries. Interconnection of two systems where
each enforces a policy of its own is viewed as creating
a composite system with functionality allowed by the

35

interconnection, and security properties that enforce a
composite single policy [13]. The information domain
formulation essentially "sidesteps” this aspect of the
composition problem. If all connected systems support
information domains as constrained by information
domain metapolicy, their connection raises no new
policy “composition” issue. There is no need to
redefine or merge system boundaries; each system
maintains its identity. Of course there are other
significant composition issues, to be solved such as
assurance, strength of mechanism, and accreditation.

7_General MPS Systems

While MAC-enforcing MLS systems can support
special kinds of multiple information domain policies,
with significant levels of assurance, there are currently
no trusted products that support more general
multipolicy systems with an information domain
metapolicy. The DGSA [8] advocates creation of
information systems that deal with this problem by
extending the reference monitor idea to that of
separation of policy enforcement mechanisms from
policy decision mechanisms. Such an approach
extends the separation kernel idea of Rushby [15] by
creating a security context for each information domain
where its policy is enforced.

The separation of policy decisions and policy
enforcement is roughly as follows: Associate an
information domain identifier with each information
object. Associate a set of information domain
memberships with each user or user-subject. Associate
a subset of current information domain identifiers with
each active subject (e.g., process) operating on behalf
of a user. Each attempted access between subject and
object is mediated by an enforcement mechanism that
in turn calls on a policy decision mechanism that
returns an access decision based on the access policy of
the information domain identified with the object and
the information domain or domains identified with the
subject. '

Potentially, each information domain policy could be
changed independently of each other and of the
enforcement mechanism. Before it becomes practical
to "plug-in" a policy for each information domain in a
multipolicy machine, a standardized scheme of
encoding information domain identities and policies is
needed.

8 Summary and Conclusions

The information domain metapolicy described provides
a consistent framework for the coexistence of a set of
different security policies in multipolicy systems. This
framework is intermediate between the rigid structure
of a mandatory access control policy based on lattice or
partial ordering, and an arbitrary collection of multiple
policies with no basis for consistent interaction or
shared enforcement support mechanisms and systems.

The metapolicy provides a consistent basis for transfer

of information between information domains in mutual
accordance with their policies, without any requirement
for hierarchical or partial ordering relationships.

The access control aspects of the information domain
concept inherent in the emerging DoD information
systems security policy [1] were reduced to a set of
four axiomatic metapolicy rules. This formalization
provides a basis for consistent multiple information
domain policy formation as well as insight into the
power and limitations of this security policy
framework.

The formalism introduced enabled demonstration of
how MAC policies can be expressed as a special case
of multiple information domain policies. The mapping
of DAC policies to information domains metapolicy is .
less fixed, as there are many types of DAC. The only
clear mapping of a system policy supporting only
"weak" DAC is to a single information domain. When
a system supports both DAC and MAC the MAC
mechanism can be used to establish the limited kinds of
information domains, and the DAC mechanism can be
considered to be unrelated to information domain
policies.

While there are currently no general multipolicy trusted
products, the information domain approach provides a
metapolicy framework in which such products could be
built. Moreover it provides the basis for confident
system interconnection that sidesteps the access policy
composition problem.

References

1. Department of Defense Information Systems
Security Policy, DISSP-SP.1, 22 February 1993.

2. Department of Defense Trusted Computer System
Evaluation Criteria, DoD 5200.28-STD,
December 1985,

3. National Computer Security Center, Trusted
Network Interpretation of the Trusted Computer
System Evaluation Criteria (TNI), NCSC-TG-005,
July 1987.

4. National Computer Security Center, Trusted
Database Management Interpretation of the
Trusted Computer System Evaluation Criteria
(TDI), NCSC-TG-021, Version 1, April 1991.

36

10.

11.

12.

13.

14,

15.

Common Criteria for Information Technology
Security Evaluation, CCEB-94/082, Version 0.9,
October 1994.

Hosmer, Hillary H., "The Multipolicy Paradigm,"
Proceedings of the 15th National Computer
Security Conference, October 1992, Baltimore,
MD, pp. 409-422.

Bell, D. Elliott, “Modeling the ‘Multipolicy
Machine’,” Proceedings of the New Security
Paradigms Workshop, August, 1994, pp. 2-9.

Department of Defense (DoD) Goal Security
Architecture (DGSA), Center for Information
System Security Program, Version 1.0, 1 August
1993. :

Security Requirements for Automated Information
Systems (AlSs), DoDD 5200.28, March 21, 1988.

Bell, D. E. and LaPadula, L. J., Secure Computer
Systems: Unified Exposition and Multics
Interpretation, MTR-2997 Rev. 1, MITRE Corp.,
Bedford, Mass., March 1976

National Computer Security Center, Final
Evaluation Report SecureWare, Incorporated
Compartmented Mode Workstation Plus, CSC-
EPL-91/002, 30 January 1991.

Freeman, J., Neely, R., and Dinolt, G., “An
Internet System Security Policy and Formal
Model,” Proceedings of the 11th National
Computer Security Conference, 1988, pp. 10-19.

Tinto, Mario, The design and Evaluation of
INFOSEC Systems: The Computer Security
Contribution to the Composition Discussion,
National Computer Security Center C Technical
Report 32-92, June 1992.

King, Guy., "The Composition Problem: An
Analysis," Proceedings of the 17th National
Computer Security Conference, October 1994,
Baltimore, MD, pp. 292-297.

Rushby, John, "A Trusted Computing Base for
Embedded Systems," Proceedings of the 7th
DOD/NBS Computer Security Symposium, pp.
294-311,

Maintaining Secrecy and Integrity in Multilevel
Databases: A Practical Approach

Sushil Jajodia* Don Marks! Elisa Bertinot

Abstract. In a multilevel database, certain integrity constraints create a secrecy problem since
they cannot be evaluated without access to data at higher classifications than the classification of
the data to be modified. We present a practical approach for enforcing such constraints without
sacrificing the secrecy requirements. Our approach requires that the such constraints be rewritten
as a collection of level-valid constraints. Level-valid constraints meet the secrecy requirement since
their evaluation does not require access to any data that is classified higher than the classification of
data to be modified. Moreover, they meet the integrity requirements since any database state that
satisfies the level-valid constraints satisfies the original constraints as well. The cost associated with
this approach is that trusted processes must be relied upon to make occasional modifications.

1 Introduction

Consistency is an important property of a database. One way to achieve consistency is to associate
with each database a set of integrity constraints. Database management system (DBMS) has the
responsibility to ensure that these integrity constraints are satisfied by the database state at all
times. A multilevel secure (MLS) DBMS has the additional responsibility of preventing improper
disclosure! of information either by direct or indirect means. Direct violations are eliminated by
enforcing “no read up” and “no write down” requirements on all subjects. Indirect means of illegal
information leakages such as those via covert channels (signaling or timing channels) are more
difficult to prevent.

It is well-known that there are inherent conflicts in MLS databases between the secrecy require-
ments and certain types of integrity constraints [Den86]. In particular, it is not possible to enforce
certain integrity constraints without violating the secrecy requirements. To illustrate, consider a
database consisting of two relations as follows: EM P(ename, mname, salary) that contains for
each employee his name, the name of his manager, and his salary and MG R(mname, salary) that
contains the name and salary of each manager. Suppose that the EMP relation is considered Low,
while the MGR relation is considered High. Say MLS DBMS must enforce the integrity constraint
I that requires that an employee cannot have higher salary than that of any manager. We call I a
multilevel-valid constraint since to verify if the Low data can be modified, both High and Low data
need to be accessed.

Every time a new tuple is to be inserted to the EMP relation, constraint I needs to be checked.
Unfortunately, this simple integrity constraint presents a dilemma to the MLS DBMS. Since the
tuple is being inserted into a Low relation, the transaction T' performing the insertion must be
considered a Low transaction, in which case T will not have read access to High MGR relation
according to the simple security restriction on T. As a consequence, DBMS will not be able to
enforce the integrity constraint. Even if we were to assume that MLS DBMS gives T the read access
to the salaries in the High MGR relation, MLS DBMS still cannot force T' to abort whenever the

*Department of Information & Software Systems Engineering and Center for Secure Information Systems, George
Mason University, Fairfax, VA 22030-4444, U.S.A. The work of S. Jajodia was partially supported by National Security
Agency under grant MDA904-94-C-6118 snd by National Science Foundation under grants TRI-9303416 and INT-
9412507.

tOffice of the INFOSEC Computer Science, Department of Defense, Ft. Meade, MD 20755, U.S.A.

tDipartimento di Scienze dell'Informazione, Universita di Milano, 20135 Milano, Italy

$In this paper, we address only mandatory access controls

© 1995Sushil Jajodia and Elisa Bertino

37

insertion by T fails to satisfy the given integrity constraint I. This is because doing so would open
up a signaling channel which could easily be exploited by Trojan horses.

Since the enforcement of multilevel-valid constraints involves a trade- off between secrecy and
integrity, the usual approach is to accept one or another. If secrecy is strictly enforced, multilevel-
valid constraints cannot be enforced. On the other hand, if the multilevel-valid constraints are
enforced, then signaling channels can be used to subvert the secrecy policy.

In this paper, we show how it is sometimes possible to maintain secrecy while enforcing integrity
at the same time. The approach taken will be to translate the original multilevel-valid constraint
whose satisfaction requires MLS DBMS to access both High and Low data into a collection of level-
valid constraints; each level-valid constraint has a fixed security level associated with it and can be
evaluated by referencing only data at or below that level. Such constraints will specify conditions
where a process may modify the database without compromising either the secrecy or the integrity
of the data. Secrecy will not be violated since a level-valid constraint, by design, references data at
or below the level of the constraint. Integrity will be preserved since the level-valid constraints are
derived from the multilevel-valid constraints in such a way that any allowable database state (i.e., a
state satisfying the level-valid constraints) will automatically satisfy the multilevel-valid constraint.

Of course, all this will not come for free. There may exist database states which are allowable
under the original multilevel-valid constraints, but not under the derived level- valid constraints.
Processes allowed to modify the database in a way that meets the original multilevel-valid constraints,
but not the appropriate level-valid constraint, will have to be trusted. Thus, our approach can be
viewed as a compromise between the two extremes. That is, both secrecy and integrity will be
guaranteed to hold if we occasionally rely on trusted processes to make modification to the database

state.

2 Terminology

The “multilevel secure” model classifies data at various levels, such as U (unclassified), C (confiden-
tial, the lowest), S (secret) or TS (top secret, the highest), and users are cleared to similar levels.
Usually, we will simply use the designations “High” and “Low” to indicate the relative level of clear-
ances or classifications for the two levels of data being compared. The security policy consists of
two requirements, “no read up” and “no write down”. A C user is allowed to read only U and C
data, an S user may read U, C, or S data, a TS user may read any data. In the BLP model, a TS
user may only write TS data, an S user may write S or TS data, while a U user may write data at
any level.

While humans must be trusted not to read High classified data and then pass that along to lower
cleared people, computer processes cannot be so trusted. The restriction on writes by C, S, and TS
users therefore addresses the problem of a “Trojan horse”, a process that performs unauthorized
functions. For example, a High cleared process, possibly unknown to the High users, might read
information and then write that information into a Low classified area, passing the information to
the lower cleared users. This would violate a basic tenet of secure systems that information cannot
be passed to lower users without specific authorization (i.e. “downgrading”).

It may be possible for a High process to communicate High information by means other than
simply writing into a file visible to the Low users. Such means are called “covert channels” and are
just as objectionable as direct writing. Occasionally High cleared processes have legitimate reasons
for transmitting information to lower cleared users. Processes allowed to do such writing down are
said to be “trusted.” The term trusted therefore implies more than simply guaranteeing that the
write down is authorized, it guarantees that the intended write down is all that is done (i.e., the
code does not contain any trojan horses).

38

3 Related Work

Although the issue of conflict between the multilevel security and database integrity requirements has
been raised by several researchers [Den86, AD87, MJ88, Bur90], no one has developed an approach
for enforcing multilevel-valid constraints in a secure manner.

Recently, Thuraisingham [Thu91], Smith and Winslett [SW92], and Qian [Qia94a, Qia94b] have
addressed the integrity related problems that arise when key-based functional and referential in-
tegrity requirements are enforced in multilevel relations (i.e., problems related to polyinstantiation).
At the heart of their work is a model that differentiates between the data a user sees and data that a
user believes. Qian calls these accessibility and believability, respectively. This distinction has been
exploited to help resolve ambiguity in polyinstantiated relations.

However, it is not clear how this distinction can help solve the integrity related problems such
as the one described in the introduction. It does not make much sense to have two tuples for each
employee, one at High level that contains the correct salary and the other at the Low level with
possibly an incorrect salary.

4 Formalization of Our Approach

Assume we are given a valid database state D of a multilevel secure database containing data at
classification levels Iy, lo, . . ., I,. The classification level of a data item ¢ is denoted by L(t). Assume
further that the data in this database must satisfy integrity constraints. An integrity constraint
is an assertion (or a predicate) on the database state. A database state D is valid if all integrity
constraints hold in D.

Given a valid database state D, an integrity constraint I, and a data item ¢, we are interested
in determining if I holds in DUt. (For simplicity, we have chosen to drop {} around t.) We call ¢ a
prospective data item to be added to the database. Similarly, when a data item ¢ must be deleted,
we are interested in determining if I holds in D —¢. (Modification of data items can be formalized
similarly.)

In addition to the integrity constraints, we have a security policy which must be satisfied. The
security policy specifies that the constraint must be evaluated without regard to data at higher
classifications than the classification of the data to be inserted.

Note that the example in the introduction does not meet the security policy since data items
classified High may determine if tuples classified Low are valid.

A constraint is said to be level-valid at level [if it can be verified as true or false using only data
at level [or below. A constraint that is not level-valid is called a multilevel-valid constraint.

Suppose we have a constraint I that is multilevel-valid. To enforce both the constraint and the
security policy, we wish to replace I by a collection of level-valid constraints

r'=A{L,,nL,,....I}
such that

1. each I; in I' is a level-valid constraint at level l;, and

2. if D satisfies all level-valid constraints in I’, then D also satisfies I.

Hence replacement of constraints that are not level-valid by constraints that are level-valid sat-
isfies both the integrity and the secrecy requirements.

39

Let V denote the set of all valid database states under I, i.e., V = {D : D satisfies I}, and let
V' be the set of valid database states that satisfy the level-valid constraints in I, i.e., V' = {D: D
satisfies I'}. :

If V¥ = V', then the original multilevel constraint has been exactly translated into a set of level-
valid constraints. The more likely situation only guarantees that V' C V.

Since there are many possibilities for I’ and, therefore, V', we may wish to compare the goodness
of a replacement of an I by an I’. An example of an appropriate measure would be to compute the
ratio

card(V) — card(V’)
card(V)

Such a measure would become zero if all database states could be determined from data at or
below the subject’s level, and become one if no valid database states could be so determined.

5 Basic Idea

Example 1 To illustrate the basic idea, we consider once again the example given in the introduc-
tion. We replace I which is not level-valid by specifying two level-valid constraints as follows:

Tnign: A High user would be allowed to insert a manager tuple if the new salary is not the lowest
salary in the MGR relation.

ILow: A Low user would be allowed to insert an employee tuple so long as the inserted salary is not
the highest in the EMP relation.

With the assumption that the database originally satisfies the constraint I, after the addition of
either a High or a Low tuple, the database will continue to satisfy the original constraint. Further-
more, both these constraints will permit insertions into MGR and EMP relations without checking
data at another level. Thus, enforcement of these two level-valid constraints would guarantee that

1. a prospective tuple to be inserted by a High user carries no new information observable by a
Low user, and

2. a prospective tuple to be inserted by a Low user retrieves no High information.

Note that there are two problems with our approach that we need to address. First, how do
we insert tuples into an empty database state and, second, how do we insert tuples pertaining
to the “lowest paid manager” or the “highest paid employee”? We will require trusted database
administrator (DBA) processes to perform these operations since integrity checking will have to be
suppressed during these operations. This is discussed more fully in Section 8.

Note that I’ = {Imigh, Itow} is the not the only possible replacement for I. Indeed, Imigh is
needlessly restrictive since a High subject can read Low data without violating secrecy. Thus, a
better possibility would be to use I = {If{igh) Itow} where

I{ﬁgh: A High user would be allowed to insert a manager tuple if the new salary is higher than the
highest employee salary. '

Like Ixigh, the new condition I,’rligh does not violate the secrecy requirement since High subjects
are permitted to read Low data. However, I{{igh is clearly superior to Inigh since under I’ only
the tuples pertaining to the “highest paid employee” would have to be inserted by a trusted DBA

40

process. There are no restrictions on the “lowest paid manager” and these tuples can be inserted by
untrusted subjects.

It is possible to further simply the constraints so that only the single prospective tuple needs to
be checked, not all the tuples in the Low relation. This is accomplished by specifying a fixed upper
bound, say z, for the employee salaries. Obvicusly, this upper bound will become the lower bound
for the manager salaries. The new level-valid integrity constraints are as follows:

I"High: A High user would be allowed to insert a manager salary if the new salary is greater than z.

I"Low: A Low user would be allowed to insert an employee salary so long as the inserted salary is
less than or equal to z.

Although it is tricky to arrive at an appropriate value of z, the last set of integrity constraints
has an additional benefit. The cost of checking if an insertion satisfies I"High of I”Low is much
lower than that of any one of the preceding constraints. Indeed, [BBC80, BB81] advocates using
this strategy to reduce the cost of enforcing integrity constraints, where it is also shown that a large
class of constraints can be enforced using similar tactics. a

Example 2 Suppose that we modify example 1 so that we have only one relation: EMP(name,salary,
position) containing names, salaries, and positions of the employees. There are three positions, ap-
prentice, manager, executive. The constraints are:

1. all apprentice salaries are less than any manager’s salary, and

2. all manager salaries are less than any executive’s salary.

The classification levels are: 1) apprentice records are classified confidential (C), 2) manager
records are classified secret (S), and 3) executive records are classified top secret (TS).

Subjects at one level are not allowed to read information at a higher level, nor are they allowed
to write at any other level. ‘

Whenever a subject at the apprentice level attempts to write a new (apprentice) tuple with a
salary, the database must decide if this is allowed. As noted above, if the multilevel-valid constraint
is initially satisfied, then the following level-valid constraint:

Ic: New apprentice salary must be less than the highest existing apprentice salary.

is sufficient to guarantee that a new tuple does not invalidate the original constraint.

The highest cleared category, executive, needs only to be concerned with inserting salaries higher
than the highest paid manager. This is similar to the relation between manager and employee in
preceding example and is accomplished by requiring the following level-valid constraint:

Its: New executive salary must be higher than the highest existing manager salary.

which would guarantee that any executive salary meets the original multilevel-valid requirement.

Finally, if a user attempts to insert a new manager tuple there are two checks must be performed:
the salary value must be higher than any apprentice, but lower than any executive. The constraint

New manager salary must be less than the highest existing manager salary.

is not sufficient since it is to possible that the new manager salary is lower than the highest paid
apprentice. Since this is also not allowed, an additional constraint must be added to the preceding
constraint as follows:

41

Is: New manager salary must be less than the highest existing manager salary, but greater than the
highest paid apprentice.

which is sufficient. o

Thus, in general, there are several ways to replace a multilevel-valid constraint by a collection
of level-valid constraint. A wise replacement will not only accurately reflect the policy with respect
to secrecy and integrity, but minimize the number of valid database states that are attainable from
updates by trusted subjects only.

The previous examples have illustrated integrity constraints which are affected only by insert
operations. The following example illustrates integrity constraints which are affected by delete
operations also. It is important to note that constraints that are enforced during an insert operation
may be different from the constraints that are enforced during a delete operation.

Example 3 Suppose that we modify the relation of example 2 by adding a new column, called
‘proj#’, recording for each employee the project the employee is working on. Thus, the relation
EMP has the following schema EM P(name, salary, position, proj#). Classification levels of tuples
in the extended EMP relation are the same as in example 2.

Suppose that the following constraint must be enforced:
The average salary for employees working on project P200 must be greater than 5000.

Suppose that a subject at the apprentice level attempts to delete a tuple of an apprentice working
on project P200. Since employees in any position can work in project P200, evaluation of this
multilevel-valid constraint would require evaluating the average on data items that are classified at
confidential levels as well as at higher levels. Note, however, that, if this multilevel-valid constraint

is initially satisfied, the following level-valid constraint

Ic: The new average salary over all apprentice tuples with project value = ‘P200’ (i.e., not including
the salary of the tuple to be deleted) must be greater or equal to the old average salary over
all apprentices tuples with project value = ‘P200’ (i.e., including the salary of the tuple to be
deleted).

is sufficient to guarantee that the delete operation does not invalidate the multilevel-valid constraint.

Similarly, if a subject at secret level tries to delete a manager, the following level-valid constraint
would be sufficient to ensure the validity of the original multilevel-valid constraint:

Is: The new average salary over all apprentice and manager tuples with project value = ‘P200’ (i.e.,
not including the salary of the manager tuple to be deleted) must be greater or equal to the
old average salary over all apprentices and manager tuples with project value = ‘P200° (ie.,
including the manager salary of the tuple to be deleted).

Note that although constraint Is involves tuples from two levels, it is still a level-valid constraint
since it can be evaluated over tuples that are classified either secret or confidential.

6 Théoretical Basis

6.1 General approach

The discussion to this point has been either very general or concerned with a specific example. We
will now show how these approaches are related. That is, we will develop a method of translating

42

multilevel- valid constraints into a set of level-valid constraints. We will develop the method con-
sidering the features of a conventional (single-level) DBMS. As this is done, however, we will distill
the critical features and generalize the method to apply to more arbitrary functions.

6.2 Notation

The first necessary step that is to define a formalism for specifying constraints. Constraints are
generally formed by comparing characteristics of two sets of data (i.e. employee salaries and manager
salaries). This can be formalized in the following definitton.

Definition 1 A constraint is an expression of the form

filai(R)) © fa(g2(R))

where fi, f2 are functions resulting in a numerical value or a set of specific string values; ¢, g2 are
queries which operate on the relation R to produce a restricted relation or view; and O represents one
of the standard comparators: >; <;<;>;=; or the existential operator “exists in”. The constraint
will be true for any valid database state.

In later discussions, § will denote © or =, so if © =<, then @ =<.

Example 4 In our notation, the constraint “all apprentice salaries are less than any manager’s
salary” becomes:

MAX(select salary from EMP where posilion = ‘apprentice’) < MIN(select salary from
EMP where position = ‘manager’).

(]

This formalism allows sophisticated, complex relationships to be expressed. The views ¢1,¢2
are general and the functions fi, f; are not limited to those predefined by the system. In fact, the
functions could be arbitrary procedures implemented by triggers. For simplicity, however, we will
limit our discussions to the standard database aggregate functions, SUM, COUNT, MAX, and MIN.

Note that this formalism incorporates much of the characterization of constraints that are usually
expressed in a language which is like relational calculus [Sto75, BBC80, BB81, BMS88, GW93] but
in a different notation. As an example, [BM88] uses a tuple-based notation utilizing a precondition
(the selection criteria for data to be evaluated), and condition (the evaluation function itself), as well
as the aforementioned aggregate functions. which Although both systems are capable of expressing
the required constraints, our method does not require the new terminology and notation found in
[BM88]. For example we can allow aggregate values as fi, f2 in our notation; a precondition which
we implement as views ¢1, g2; and a test condition which we implement as ©.

Gupta and Widom [GW93] approach also uses distinctly different notation, namely first order
logic (which can, of course, be translated into more familiar SQL) and is stated as a condition
for failure to meet the constraint. Their notation requires that the selection/projection clauses
(implemented as views in our notation) be combined into a single formula. Testing is then done
only for existence conditions, the aggregate functions are not allowed. Such existence conditions are
not sufficient to test for the aggregate functions COUNT or SUM, hence our proposed notation is
more flexible and allows us to address additional constraints. The function and view based notation
presented here is based upon the familiar SQL and is much more intuitive than any of the previously
proposed notations. It maintains separation of important concepts, allows for multiple aggregate

43

functions and is not restricted to using base relations or conjunctions of simple selects as are the
previous studies.

To illustrate how constraints are specified in our proposed format, we consider the following
example taken from [BM88].

Example 5 Let us consider a database consisting of the following relations:

EM PLOY EE(emp#, name, salary, address, proj#, dno)
PROJECT(proj#,name, mgr#, budget, location)
M AN AGER(mgr#,name, age, salary, address)

The following integrity constraints may be defined on these relations:

I;: The project budget must be greater or equal to zero.
I,: For projects located in Italy there can be at most two managers.
I5: The average salary for the employees working on project ‘P200’ must be greater than $5.000.

I,: The sum of the salaries for the employees working on a project must be less than the project
budget.

Is: Each employee must work in an existing project.
In our notation, these constraints can be expressed as follows:
Ii: p; “exists in” {select proj# from PROJECT} AND {select budget from PROJECT where proj#
=pi}=0.
Is: COUNT{select mgr# from PROJECT where location = Ttaly’} < 2.
Is: AVE{select salary from EMPLOYEE where proj# = ‘P200’} > $5.000.

Is: p; “exists in” {select proj# from PROJECT} AND SUM {select salary from EMPLOYEE where
proj# = p;} < {select budget from PROJECT where proj# = p;}

Is: e; “exists in” {select emp# from EMPLOYEE} AND {select proj# from EMPLOYEE where
emp# = e;} “exists in” {select proj# from PROJECT}

‘o
One difficulty, however, that is found in this notation but addressed in both [BM88] and [GW93],

is expressing constraints that hold, not on the set, but on each member of some set. This is handled
by formulating two constraints, connected by a conjunction, as illustrated by Iy, Is, Is above.

This extended form of constraint is formalized by the following definition.

Definition 2 A complex constraint is an expression of the form

IC; AND IC;

where either both IC; and IC; are simple constraints as defined in Definition 1, or IC; is a simple
constraint and ICj is a complex constraint.

44

6.3 Ordering

The critical feature of this notation is the fact that if both sides of an integrity constraint yield
numerical values, it provides us with a way to order the relations using the comparator © (in cases
where either fi(R) or f2(R) yields string values, © must be “=” or “exists in”). The fact that the
relations are ordered allow us to derive some simple tests for determining if a tuple may be added
to (or deleted from, or modified in) the database.

The first necessary observation is that O is transitive.

Lemma 1 O is transitive. That is, if A © B and B © C, then A © C. More generally, if either (i)
AQBand BO Cor (ii) A © B and B Q C holds, then A © C holds.

The following lemma gives two tests for a prospective tuple, which, if both are satisfied, guarantee
the continued satisfaction of an existing constraint.

Lemma 2 Given a constraint f1(g1(R)) © f2(g2(R)), which is known to be satisfied by the current
state of the database, then if there exists a tuple t satisfying the following two conditions:

1. filgr(RUY)) 2 fi(q1(R)), and
2. fa(g2(R)) Q fa(g2(RUT)),

then the database will still satisfy the constraint after ¢ is added.

Proof: Since fi(q1(RU1)) fi(q1(R)) and fi(q1(R)) © fa(g2(R)), from the Lemma 1 it follows
that f1(g1(RU?)) Q f2(g2(R)), This last expression when combined with f2(q2(R)) Q f2(q2(RU1))
yields fi(q1(RU1)) © fa(g2(RU)), which is a statement that the database, after the addition of
tuple t, satisfies the constraint. a

The preceding lemma specifies two conditions, one for each expression in the constraint. We can
therefore define two sets of valid tuples, one for each condition. Those tuples in both sets may be
added to the relation and still satisfy the original constraint.

Fortunately, in many cases of practical interest, a substantial number of tuples are in both sets.
It is even common for a tuple to influence only one of the conditions in Lemma 2. For example, if
f2(R) is equal to a constant, then it is true that fo(g2(R)) = fa(q2(RU1)), regardless of what tuple
t is added to the database. In such cases, tuples only influence one condition, so the conjunction
does not present a serious problem. The constraint in example 4 illustrates one such constraint.

Example 6 Consider the constraint given is example 4. ;From Lemma 2, it follows that we need
to satisfy the following two conditions:

1. MAX{select salary from EM P Ut where position = ‘apprentice’} < MAX{select salary from
EM P where position = ‘apprentice’}, and

2. MIN{select salary from EM P where position = ‘manager’} < MIN{select salary from EM PU
t where position = ‘manager’}

Apprentice tuples with salaries less than or equal to the present maximum will satisfy (1), indeed,
they will not change it. All apprentice tuples will also satisfy (2) since it is unchanged by their
addition, regardless of their salary. The addition of an apprentice tuple therefore only requires
evaluation of one level-valid constraint:

45

Ic: If t.position = ‘apprentice’, then t.salary < MAX{select salary from EMP where position =
‘apprentice’}.

0

For those situations where all tuples with some characteristic (such as position = ‘apprentice’)
satisfy one of the lemma 2 conditions, regardless of other characteristics, only one view needs to be
considered. This allows the constraint to be simplified for performance reasons even without con-
sidering classification constraints. As [GW93] pointed out, such performance benefits are especially
valuable in distributed databases. If the apprentice and manager tuples are kept at distinct physical
locations, the constraint can still be verified without requiring a distributed join.

Example 7 Consider the relation from example 2 with the new constraint “all apprentice salaries
must be less than the average salary,” i.e., MAX{select salary from EMP where position = ‘apprentice’}
< AVE{select salary from EMP}.

Here the conditions from lemma 2 are:

MAX{select salary from EM P Ut where position = ‘apprentice’} < MAX{select salary from
EMP where position = ‘apprentice’} AND AVE{select salary from EMP} AVE {select salary
from EM P Ut}.

Here each new tuple affects both conditions. Apprentice tuples satisfy the first condition if the
new salary is less than the existing maximum apprentice salary. The second condition specifies that
the new salary must be greater than the existing average over all the tuples. Note that the addition
of a very low apprentice salary may reduce the average salary below an already existing apprentice
salary. The range of salaries satisfying both conditions may be very small. (]

A lemma, similar to Lemma 2, holds for the delete operation.

Lemma 3 Given a constraint fi(g1(R)) © f2(g2(R)), which is known to be satisfied by the current
state of the database, then if there exists a tuple t satisfying the following two conditions:

1 fi(@(R=1)) Q@ fi(q1(R)), and
2. foa(g2(R)) @ fa(q2(R 1)),
then the database will still satisfy the constraint after ¢ is deleted.

The proof of the above lemma is similar to that of Lemma 2 and thus we omit it.

1

7 Level-valid Constraints

The preceding discussion would be sufficient to simplify constraints to a single view if all the data
was classified at a single level. The functions and views used at a specific level need not be the same
as those used in the multilevel-valid constraint. They do not even have to bound the multilevel
functions, but they must increase or decrease appropriately in order to maintain the relationship
(©) in the multilevel-valid constraint. For example, consider the level-valid constraints I”gigh and
I"Low in Example 1. These level-valid constraints do not mention a range at all; however, these
replacements work since they guarantee continued satisfaction of the multilevel-valid constraint.
This is made more precise in the following theorem.

For this theorem, we define functions f3 and f4 and views g3 and ¢4 operating only on data at
level { or below that allow us to express conditions satisfying the original multilevel-valid constraint.
The notation R, is used to denote the subset of data in relation R classified at or below level 1.

46

Theorem 1 Given a multilevel-valid constraint fi(q:1(R)) © f2(q2(R)) which is satisfied by the
current state of the database R, if there exist functions f3, f4 and views g3, g4 such that

(a) filar(RUT)) = fi(q1(R)) Q f3(g3(Ri Ut)) — fa(gs(R1)), and
(b) f2(q2(R)) — f2(g2(RU)) @ fa(ga(Rr)) — fa(qa(Rr U1))

hold for all tuples ¢. In addition, for tuples ¢; at level { or below,

(¢) fa(gs(RiUt)) Q fa(ga(Ri)), and
(d) fa(ga(R1)) Q@ fa(ga(RiUt)).

Then fi(g1(RU %)) © f2(g2(RU). That is, the constraint is still satisfied after the tuple ¢ is
added.

Proof: We only consider the case when © produces a numeric value (other cases follow similarly).
Rearranging (a) gives fi(q1(RU?)) Q fi(q1(R))—(f3(gs(R:)) — fa(ga(R1Ut))). Since O Q f3(g3(Ri)—
f3(ga(R1Ut;)) from (c), adding these gives fi(q1(RU%)) © fi(q1(R)). A similar argument, utilizing
(b) and (d) yields f2(g2(R)) € fa(g2(RUt)). So, by lemma 2, the constraint is still satisfied after
adding the new tuple.]

Once the functions fs, f4 and views g3, qs4 are found, the constraint may be checked without
reference to High classified information. To the Low user, the constraints appear to be conditions
(c) and (d) of the theorem. Conditions (a) and (b) are used in the design stage to find suitable
functions and views, but are not visible to Low users. While the relation R; must be restricted to
contain only data at level I or below, the tuple t, being added to the database, need not be further
restricted since it already contains only data at level [or below.

To simplify the functions, we will usually choose fi = fs, f2 = fa,q1 = g3, and g2 = g4, but this
is not required.

A similar theorem holds with respect to delete operation.

8 Reaching Database States that do not satisfy Level-valid
Constraints

It is still somewhat unclear how the initial consistent database state is to be reached, and how to
reach those valid database states that fall outside the level-valid constraints (i.e., database states
that are in V — V'). That is, we have developed a technique that allows us to reach many database
states without referring to High data, but we must have some technique allowing us to reach all
database states.

These additional techniques will require checking High data to ensure that the original multilevel-
valid constraint is still satisfied, even if the level-valid one is not. Such procedures must therefore
be trusted. However, being trusted may not be enough, since the database has now implemented
the more specific constraints, which must be bypassed. Trusted subjects have the authority to
downgrade information, but may not have authority to actually bypass general database integrity
restrictions. format Generally a DBMS gives the ability to deal with constraints only to the DBA.
The additional database states can therefore only be reached through a trusted DBA.

8.1 Initial state

If a constraint depends upon data in the database, as we are considering, how are the initial tuples
loaded? Constraints such as we are considering require a substantial amount of data in the database

47

in order to be evaluated properly. Otherwise, many legitimate tuples will require special DBA
treatment as they extend the limits of the datasets used in the constraints. In several commercial
systems, the database may be initialized using a COPY command, loading large quantities of data.
During the initial loading, the constraints are disabled, that is, the data is assumed to already be
verified as meeting these constraints. This procedure is useful if valid data already exist in some
other DBMS or file management scheme. If valid data does not exist, it may be necessary to estimate
the values in the constraints using fixed values instead of values derived from views (see the last set
of level-valid constraints in Example 1). After inserting some of the data the constraint could be
changed to a form dependent upon a view of that data.

8.2 Remaining States

Now suppose that a tuple has failed to meet the constraint at its level, but needs to be inserted
anyway? We can assume that some user has been granted both trusted status and DBA privileges.
This trusted DBA must then disable the constraint at the tuple’s level, and disable other inserts at
that level, while they insert the new tuple. Some products (e.g., Oracle) provides this capability,
so the DBA can disable the individual constraint while the tuple is inserted. A similar capability
to disable triggers is desirable when dealing with systems utilizing that method of implementation
(i.e. Sybase). Some systems, such as Ingres, only provide the capability to disable all constraints,
not single ones. An alternative in this case would be for the DBA to 1) delete the rule, insert the
tuple and re-insert the rule or 2) suspend all rules, insert the tuple and reactivate the rules. Such
problems indicate the importance of minimizing the number of times that trusted processes must
be used to insert tuples. The alternative to using the level-valid constraints as developed here is to
perform this process for every addition, not just those that are not allowed by level-valid constraints.

9 Conclusions

We have shown that there is a large class of multilevel-valid integrity constraints that can be trans-
formed into multiple level-valid constraints whose satisfaction is sufficient to ensure that the original
multilevel-valid constraint is also satisfied. The level-valid constraints, by definition, are free from
signaling channels. The price for this is that certain modifications that are valid under the original
constraint, may not be valid under the level-valid constraints. It is possible make such modifications
if we rely on trusted processes to do so.

As part of our current work, we are investigating methods that automatically generate a suitable
set of level-valid constraints for certain multilevel-valid constraints such as aggregation. We are also
investigating how given a set of integrity constraints, triggers may be automatically generated for the
support and repair of integrity constraints in a secure way. By repair it is meant that some actions
are executed to restore the database correctness with respect to the violated integrity constraint.

References -

[AD87] S. G. Akl and D. E. Denning. Checking classification constraints for consistency and
completeness. In Proc. of the IEEE Symp. Security and Privacy, pages 196-201, 1987.

[BB81] Philip A. Bernstein and Barbara T. Blaustein. A simplification algorithm for integrity
assertions and concrete views. In Proc. of IEEE Int’l. Computer Software & Applications

Conf., pages 90-99, 1981.

48

[BBCS0]

[BMSS]
[Bur90]

[Den86]

[GW93]

[MJ88]

[Qia94a)
[Qia94b)
[StoT75)
[SW92]

[Thu91]

Philip A. Bernstein, Barbara T. Blaustein, and Edmund M. Clarke. Fast maintenance of
semantic integrity assertions using redundant aggregate data. In Proc. of Int. Conf. on
Very Large Data Bases, pages 126-136, October 1980.

E. Bertino and D. Musto. Correctness of semantic integrity checking in database manage-
ment systems. Acta Informatica, 26:25-57, 1988.

Rae K. Burns. Integrity and secrecy: Fundamental conflicts in database environment. In
Proc. 3rd RADC Database Security Workshop, pages 37-40, June 1990.

Dorothy E. Denning. A preliminary note on the inference problem in multilevel secure
database systems. In Proc. National Computer Security Center Workshop on Database
Security, June 1986.

Ashish Gupta and Jennifer Widom. Local verification of global integrity constraints in
distributed databases. In Proc. of the ACM SIGMOD Int’l. Conf. on Management of
Data, pages 49-58, 1993.

Catherine Meadows and Sushil Jajodia. Integrity versus security in multi-level secure
databases. In Carl E. Landwehr, editor, Database Security, Status and Prospects, pages
89-101, Amsterdam, 1988. North-Holland.

Xiaolei Qian. Inference channel-free integrity constraints in multilevel relational databases.
In Proc. IEEE Symposium on Security and Privacy, pages 158-167, May 1994.

Xiaolei Qian. A model-theoretic semantics of the multilevel relational model. In Lecture
Notes in Computer Science, pages 201-214, Berlin, 1994. Springer-Verlag.

Michael Stonebraker. Implementation of integrity constraints and views by query modifi-
cation. In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 65-78, 1975.

Ken Smith and Marianne Winslett. Entity modeling in the MLS relational model. In Proc.
of Int. Conf. on Very Large Dala Bases, pages 199-210, 1992.

B. M. Thuraisingham. A nonmonotonic typed multilevel logic for multilevel secure
database/knowledge-base management systems. In Proc. IEEE Workshop on Computer
Security Foundations, pages 127-138, 1991.

49

TOP: A Practical Trusted ODBMS

Marvin Schaefer?
Valerie A. Lyons® Paul A. Martel> Antoun Kanawati®

AArca Systems, Inc., 10320 Little Patuxent Parkway, Suite 1005, Columbia, MD 21044-3312, USA
bONTOS, Inc., Three Burlington Woods, Burlington, MA 01803, USA.

. Abstract

The Trusted ONTOS Prototype (TOP) is a new research initiative into secure object
database management. TOP presents a set of features from object data management, C++
application development, confidentiality, and integrity to provide the balance of usability,
safety, and flexibility that ONTOS users have learned to enjoy over the last decade.
Although several paper studies have been conducted by others, we and our sponsors have
concluded that the time is right to produce a prototype that can be used as a testbed. TOP
should help to assess confidentialitylintegrity tradeoffs, efficacy, and performance issues.
In addition, it will be possible to gauge the relative size and complexity of TOP’s
client/server TCB. This paper presents an overview of TOP’s access control policy, fea-
tures, and philosophy.

1. INTRODUCTION

Objects are everywhere. The need has surfaced for trusted systems. To move with the
trend toward object technology, the passive object paradigm of relational database man-
agement has also shifted to the look and feel of genuine object databases (ODBMS).
However, active objects present access control challenges different from those addressed
under the Bell-LaPadula model. In studies produced to date, the exclusive focus on confi-
dentiality has generally eschewed the spirit of object data management. From these studies
[2,3,4,7] it became clear that the emphasis on finding a high-assurance mechanism to con-
trol access has begun to overshadow the goal of providing useful multilevel access to object
databases. ONTOS, as a principal vendor of ODBMS, has recognized the need to conduct
security research! in the context of contemporary object technology.

1.1 Objectives: A Usable B1 Client/Server ODBMS

As a research effort, the TOP developers were given the opportunity to choose a set of
features from object data management [8], C++ application development, confidentiality,
and integrity to provide the balance of usability, safety, and flexibility that ONTOS users
have learned to enjoy.

Defining assurance for a B1 object data management system has been a continuing chal-
lenge during the project. Neither the TCSEC nor the TDI sheds direct light on either the
security issues or acceptable means of their resolution. Over the last five years, there has
been increasingly active research into defining access control in ODBMS. Readers of the
current literature easily become aware of lack of consensus among the researchers on many
of the most fundamental issues (e.g., inheritance, the object model itself). Many trusted

IThis project is funded by Rome Laboratory under Contract No. F30602-93-C-0123

50

ODBMS researchers have worked from the perspective of the relational model, which has
had the undesirable effect of missing the major issues of the common object programming
models (C++, Smalltalk). TOP explores the implications of a de facto object model (C++)
on security concerns, and attempts to resolve conflicts between the model and confidential-
ity requirements2.

The B1 level was chosen deliberately to provide the TOP team with the freedom to experi-
ment in the design of a first-time-ever TCB without having to be concerned with: TCB
minimality, least privilege, least common mechanism, or covert channels, as would be re-
quired for higher TCSEC levels. We believe that this is proper; the lack of worked exam-
ples provides us with no advance insight into either the challenges that will be encountered
in a real system, or into the tradeoffs needed for their resolution. We have concluded that
the prototype, once implemented and used, will give us valuable information about the po-
tential for achieving B2 or higher assurance in trusted ODBMS architectures.

We and our sponsors decided that we would benefit more by undertaking a proof-of-con-
cept prototype development that we would by conducting a theoretical study. We intend
our results to provide new knowledge in the theory and design of trusted ODBMSs, and an
empirical validation of such theories and designs.

Designing and maintaining a good database has become an art form in and of itself. The
subtleties of security policy, particularly arcane concepts like the *-property and its conse-
quences often serve to befuddle users and through confusion make things harder than they
need to be. TOP strives to minimize constraints and to encourage natural interaction be-
tween user and application. The philosophy in TOP has not been the dismissal of prudent
confidentiality concerns in favor of database integrity or vice-versa. It has instead been to

recognize that the reason for the existence of the *-property is to control untrusted, poten-
tially malicious, application code. We believe this can only be done by shutting out un-
trusted code at critical junctures where confidentiality and integrity objectives are in poten-
tial conflict. This is achieved through a private multilevel dialogue between just the cleared
user and the TCB3.

Here are our priorities:

« A well thought-out marriage of confidentiality and integrity. Everyone
knows what is meant by confidentiality; by ‘integrity’ we mean that the user be pro-
vided with tools and functionality to produce and maintain a consistent representation
by an object database of some aspect of the real world. This means that the user need
be provided the ability to get it right, to keep it right, and to know if it is right.

« A sound means of resolving conflicts between confidentiality and in-
tegrity objectives. Since the best knowledge of the relationships between the data
and the real world resides with the user, we believe that the resolution of confidential-
ity/integrity conflicts can best be resolved by trusted dialogue between the informed,
cleared user and the TCB. We propose an environment where the DBA and the cleared

ZFor example; under confidentiality requirements, the class graph (schema) need not be fully visible at all levels; a
coherent multilevel object model, on the other hand, would seem to require that the subclass relations of the class
graph be identical at all levels. In TOP, the class graphs of each visibility level are not necessarily isomorphic to
each other (compromise towards security), and multiple inheritance is not supported due to the complications it
introduces into multilevel type analysis, and the definition and implementation of uniqueness concerns. Also, the
choice of C++ has forced TOP to address the daily issues of programming: multilevel source code (C++ header files
are the schema descriptions), program object code is not stored in the database and methods bodies may vary
among the different levels of an object.

3Security policies include authorized users to reconcile those conflicts that cannot be handled through an
automated policy; for example: downgrading data, simultaneous codperating object updates at multiple levels, and

any other apparent violation of the * -property. Because of the need for an isolated trusted path that can be
invoked during a session by either the user or by the TCB, TOP assumes the existence of a B3 trusted path.

51

users cooperate to resolve data conflicts, and provide true multilevel transactions for
that purpose.

« User views that accommodate clearance and need-to-know. Objects and
relationships should be presented to users consistent with the security profile of the
application environment. Views, including multilevel views, can provide the applica-
tion with timely presentations of data that are suitable and safe for presentation to un-
trusted code.

« Cover stories, not accidental polyinstantiation. The database should repre-
sent reality except in those cases where an ‘alternate reality’ is required by sufficiently
cleared users. The confidentiality policy ought not to be allowed to corrupt a database

solely because of the over-restrictiveness of the % -property.

« Truly object-based, not relational-based, policy model and implementa-
tion. Work done by many previous researchers has extrapolated from the well-
known relational security models. We, on the other hand, have revisited the implica-
tions of the model from the perspective of the object-oriented environment, to produce
a fresh outlook for ODBMS security. Furthermore, the choice of C++ is now becom-
ing even more widely accepted as a application programming interface, and our imple-
mentation will be as faithful to this regime as is practicable.

1.2 Overview

In the remainder of this paper we present the access control policy, beginning with an
overview and progressing into details of the operations of creation, viewing, modification
and deleting multilevel objects. An example is provided to illustrate novel features of our
work. The paper concludes with a description of the project plan and status.

2. POLICY OVERVIEW

TOP is intended to satisfy the mandatory and discretionary policy requirements for B1, as
specified in the TCSEC. TOP bases its mediation on a combination of factors that include:
the user’s clearance, the environment from which the user logs in, the user’s login level,
and the security attributes of TOP objects being accessed. In principle, TOP objects may
all be multilevel, and may also be subject to discretionary access controls.

2.1 MAC: View of Level-Dominated Data

TOP Users are represented by untrusted clients that are labeled with the user’s login level.
The client is provided with a view of TOP objects (viz. schema, properties and proce-
dures). The view is derived from single level ‘slices’ of TOP objects (i.e., the [-instantia-
tions) whose level, /, is dominated by the client’s level. Such views are consistent with the
simple security and discretionary security conditions of Bell-LaPadula.

For the time being, TOP’s policy model is restricted to hierarchical levels and does not
encompass the complete lattice model. This is because of the evolving semantics of the /-
view as an alternative to automatic polyinstantiation. The rationale behind our postponing a
generalized lattice is given in Section 3.3, below, where we describe scooping and its uses.
Complications also arise because TOP allows schema-level cover stories 4.

2.1.1 Update at Level

TOP treats all clients as untrusted subjects. In normal operation, this is quite adequate for
retrieving and updating data. Creation and modification of data is performed at the level of

4Assume the reader has permissions <top, {A,B}>, and is reading an object X. Assume that X is instantiated only
at <confidential, {A}> and <confidential, {B}>. The user may view both instantiations under the mandatory access
control policy; however, it is possible that the schema corresoponding to the two compartments may be
different. Thus, the state and the precise type of the object can be ambiguous when compartments are used.

52

the client, and is consistent with the *-property and discretionary security conditions of
Bell-LaPadula. TOP stores the data persistently as a faithful image of the client’s view
from its level. Unlike trusted RDBMSs, untrusted updates of this form do not cause
polyinstantiation. Accidental polyinstantiation occurs in trusted RDBMSs as a consequence

of the *-property and multilevel operation. In fact, as we show below, TOP’s semantics
precludes the possibility for accidental polyinstantiation to occur.

2.1.2 Trusted Updates to Strictly Dominated Levels (Downgrades)'

TOP supports multilevel updates through a trusted dialogue between an authorized, appro-
priately cleared user and the TOP TCB. The classes of update supported are: downgrade,
update of multiple levels of data at the same time, and cover story (intentional polyinstan-
tiation). The mechanism used to support the dialogue is a fully-isolated B3 Trusted Path
that is invoked either by the user or by the TOP TCB.

2.2 Discretionary Access Control

We plan for TOP to provide DAC controls to support rdles for DBA and SSO along with
mode-based access controls to the granularity of individual users and groups. At present
there is no agreement within the community over issues of the scope of DAC in object
contexts and over acceptable mechanisms for its assured implementation. We plan to de-
sign a DAC mechanism to provide DAC over named objects, including databases, object
instantiations, and procedures.

2.3 Integrity: DBA-Provided Base Types

Most customers consider the preservation of database integrity a higher priority than control
over disclosure. Integrity determines the continuing utility of the data and its interrelation-
ships. Database operations are traditionally based on the notion of transactions. A transac-
tion is a set of operations that read and/or write persistent objects and satisfies the ACID
properties (atomicity, consistency, isolation, and durability). Briefly, atomicity means that
the transaction is either executed in its entirety or not executed at all; consistency means that
the transaction maps a database from one consistent state to another; isolation means that
the transaction does not read intermediate results of other non-committed transactions; and,
durability means that once a transaction is committed, its effects are guaranteed to endure
despite system failures. Scheduling of transactions, i.e., locking of data, needs to be ac-
complished such that the user application is notified of the success or failure of each trans-
action. This notification, unfortunately, could lead to illegal information flows and conflict
with confidentiality policy requirements.

Modern DBMSs implement DBA-defined integrity checks that dynamically monitor data
creation and update. Since the use of bad data will propagate additional bad data, we want
to ensure that each transaction reflects the user’s intention at the time of the commit.

In multilevel data management there is a potential for conflict between confidentiality and
integrity concerns. This conflict comes about as follows: In the presence of multilevel in-
tegrity constraints, updates to low data may be constrained by more sensitive values. If the
multilevel integrity constraint is known at low, it may be possible for an interloper to derive
or infer specific information at high through probing. Existing literature has identified
multilevel integrity problems regarding conflicting data values; referencing non-existing
values; deleting referenced values; and, accidental or policy-induced polyinstantiation of
data. TOP is designed to address these problems as well as others.

2.3.1 Multilevel Integrity Constraints

Triggers are one way in which ONTOS supports single-level integrity constraints. Because
of TOP’s support for multilevel objects, even single-level integrity constraints may involve
a comparison of the multilevel values that had been instantiated. Validation of an update,
therefore, may run afoul of an integrity constraint, independent of the level at which the
client is acting. Notification of the client would not be permissible if some of the con-

53

strained data were classified at a higher level than the client. In such cases, TOP invokes
the B3 Trusted Path to notify an appropriately cleared person of the violation. The person
may well be the user on behalf of whom the client is operating. She would be notified if
her workstation were located in an sufficiently cleared area, and if she were cleared suffi-
ciently to receive notification. Such notification would be safe, since the Trusted Path
mechanism is isolated from untrusted domains and the communication is between a cleared
human and the TOP TCB. If it is not possible to notify the user directly, TOP will notify
the DBA. The cleared user may then take appropriate action with respect to the update as a
multilevel transaction. '

2.3.2 Polyinstantiation Control Specific to Object Instantiation

Trusted RDBMSs can get badly corrupted from rigid adherence to the % -property: an un-
trusted subject is forced to write data at its own level, and cannot even lock data at lower
levels [8]. In contemporary trusted RDBMS architectures, updates to existing low data
cannot be performed from a higher level without the possibility of a Trojan Horse com-
promise, since there is no assured means for the user to verify that only the intended infor-
mation flow transfers from high to low. The only viable workaround has been to log out
of the higher level and perform the update after logging back in at the lower level. This
jeopardizes the ACID properties of the transaction: since all the data in a multilevel transac-
tion cannot be not locked during a manually-implementedS multilevel transaction, data can
become damaged by other users’ transactions and conversely.

When accidental polyinstantiation does occur, there can be far-reaching deleterious effects.
For example, aggregate functions would likely return unpredictable values. These in turn,
can, if used as the basis for decisions or future updates, imperil the correctness of the entire
database.

But, sometimes polyinstantiation is necessary, although this is only when the intention is to
deceive. In that case, the deception is called a ‘cover story’, the truth is instantiated at a
higher levelS, and the user needs to be able to accomplish this operation without sacrificing
any of the ACID properties.

As shown below, TOP addresses this problem directly.

3. INSIDE TOP

The TOP access control policy model [9] is derived from the Bell-LaPadula family of
models. In the initial prototype, however, we have chosen not to deal with the full lattice
of compartments and are using only hierarchical levels. This has been done to simplify
definitions needed for deriving views of multilevel objects. This allows us to uniquely
identify the nearest level dominated by a specified level and eliminate complications caused
by dominated non-comparable compartments. The section on views shows a motivation
for this simplifying decision. Future treatments of TOP will address the general case.

3.1 Multilevel Schema and Property Visibility Levels

Every TOP object is derived from a type specified in the database schema. Types contain a
set of properties and procedures (attributes). These are either explicitly defined in the type,
or inherited from a supertype. A type is a subtype when it inherits attributes from a parent
type, which is called the supertype. Inheritance is a means of organizing database types
into a meaningful framework. Each of the attributes is assigned an explicit visibility level
below which it is invisible. A sensitivity label that dominates the visibility level is assigned

5Tt would appear to a system as though distinct single-level untrusted logical subjects were independently
involved in separate transactions. An alternative, such as that in replicated RDBMS architectures like that of
SINTRA places responsibility for the complete multilevel transaction on multiple untrusted single-level DBMS
servers.

SReaders of spy stories may be aware of onion-like layers of cover stories upon cover stories.

54

at the point of instantiation rather than globally over the type so as to afford maximum
flexibility and control over information access. In order to provide multilevel views of
schema and objects, we have chosen to define the visibility level of the type to be equal to
the greatest lower bound of its non-inherited attributes.

Inherited attributes are assigned an induced visibility level equal to the visibility level of the
type or of the attribute, whichever is higher. TOP supports multilevel inheritance. The
visibility of the inherited attributes is governed by a rule that is explained following the dis-
cussion on [-instantiations.

Muliiple inheritance, though supported in C++, is not supported by TOP.

3.2 Example

An example will be presented here in order to illustrate various issues on multilevel
schema, views, polyinstantiation, and deletion. A typical scenario involving this database
is that once a drug has finished its testing phase and has been released, the information re-
garding the test results has varying degrees of sensitivity. The label on the drug is a kind
of cover story, while the actual test results (possibly indicating adverse effects) may need to
be classified as top secret. The number of lawsuits involving this drug may direct the need
to desensitize some of the information, or at least update the counter_indications labeling.

In this example, we use a hypothetical schema from a database at a pharmaceutical com-
pany. The part of the schema we will look at consists of two class definitions: Drug and

Status. The table below shows the properties of these two classes, along with the sen-
sitivity labeling for each property.

Drug Status

B C++_ Name C++ | Name

(U int _ USP_code C char* stat code

U char* drug_name U char* labeling

C Status* | status S char* report_name

u char* indications S char* observations

U char* counter_indications § T char* testing_results
- S int num_lawsuits

In the table, Name and C++ Type are self-explanatory. Label denotes the- visibility label of
the property, and is the minimum sensitivity level at which the property can be viewed.
Drug.status is a direct reference’ to an instantiation of Status. Note that the very
fact that a reference exists between any Drug and a Status object is itself classified to at
least C. This does not interfere with the ability for some Status.labeling values to
be accessed at the U level from a St atus object, as will be shown.

3.3 Multilevel Object and Identity

TOP objects are generalizations of ONTOS objects, and are likewise differentiated by ob-
ject identity. Object identity is implemented within the TOP TCB through object identifiers
(OID); each client references objects through tokens provided uniquely to it by the TOP
TCB. TOP object instantiations contain multilevel instantiations of some or all of the ob-
ject’s properties. A client that is authorized to ‘see” an object instantiation does so through
a view defined at the client’s login level, . This is called the /-view of the object instantia-
tion.

TIn ONTOS DB notation, this would be an OC_Reference.

55

3.3.1 [-Instantiation

If it exists, the instantiation of an object denoted by the OID and defined at level / is called
the [-instantiation of the object. The /-instantiation contains only the data explicitly written
at level /. In a multilevel ODBMS, object identity remains unique, but the OID may be as-
sociated with distinct /-instantiations of the object that have been defined and entered into
the persistent store at specific sensitivity (classification) levels. The complete object is the

full set of l-instantiations that share a common OID. The [-complete object is the set of I~
instantiations of the complete object dominated by /.

Associated with each [-instantiation is a semantic vector. The semantic vector is used by
TOP to control and protect the contents of properties in the l-instantiation, as well as to
provide a means for defining the [-view of the object. It also provides the user with the
means to enable and maintain cover stories.

3.3.1.1 [-Instantiation Example

Consider an instance of Drug with the following values for its U-instantiation: USP_ code
=DDT7110; drug_name = Marvuval; counter_indications = “Do not use while
sleeping”. The value of indications was not specified, so the default specified for the
property is used. For the C-instantiation we have: indication = boredom; status =
5. The symbol 5 is used to represent a token which itself references an instance of
Status. For the S-instantiation we have: indications = acne;
counter indications =“Do not use while thirsty”.

For the U-instantiation of Status, labeling = “Take 2 with water.” The C-instantia-
tion has stat_code = “Pending investigation.” The S-instantiation has labeling =
“Take 2 with water at bedtime”; report name = “c:\marvuval.rpt”’; observations =

“Patients develop spurious body parts.”; num_lawsuits =40. The T-instantiation has
testing results = “Repeated tests have shown a random tendency for mutations.”

Drug Status

K “Take 2 with water”

0DDT7110
O Marvuval
0
0“Do not use while

sleeping
0 boredom

U

c IO“Pcnding investigation”

0 “cAmarvuval.rpt”

[0 “Take 2 with water at bedtime.”
s [0 “Patient develop spurious body
parts”

[0 40

0 “Repeated tests have shown a
1 | random tendency for mutations.”

In this figure, the amorphous shape on the left represents a C-instantiation of the object
Drug. The arrow represents a reference to the complete St at us object, and shows all of
the instantiations in Status. Note that the C-user cannot see the S and T instantiations
of this object. The C-user will be presented with a view of these objects based on her
client’s level, as explained below.

3.3.2 [-View and Semantic Vector

Users do not directly access /-instantiations. Instead, an l-view is dynamically created for
the user at the time the object is retrieved. The derivation is based on the elements in the
semantic vectors of the -complete object.

56

Here’s how it works: If the /-complete object is not empty, then either there exists an [-in-
stantiation or there does not.

If there is an l-instantiation, then the semantic vector also exists. The [-view is built by it-
erating through the values of the /-instantiation’s semantic vector. For each property de-
fined at /, the value of the property will be determined as follows:

« if the semantic vector element is static, the value in the [-instantiation is used.

« if the semantic vector element is scooped, the value is dynamically determined by the
corresponding element in the nearest dominated /-instantiation8,

« if the semantic vector element is initialized_scooped, the value is defined by the schema
for the type.

If there is not an l-instantiation, then the semantic vector does not exist. The l-view is con-
structed in two steps, as shown below.

3.3.2.1 MAC simplification (temporary)
« property values will be scooped directly from the nearest dominated I-instantiation.

« property values introduced at / and not contained in the nearest dominated /-instantiation
are treated as though their semantic vector element was initialized_scooped, and will
acquire default values.

Note that when scooping is used, the property value comes from a dominated /-instantia-
tion. TOP uses scooping as a means of ensuring that high-level clients have access to the
most current view of data updated at lower levels.

This represents another departure from trusted RDBMSs that support polyinstantiation. In
such systems, if a high-level user performs an update, then subsequent updates to lower
instantiations of the tuple will be automatically masked by the polyinstantiation. It takes
explicit action by the TOP user to enable this form of polyinstantiation, as it can only occur
for those properties whose corresponding semantic vector element has been set to static.

Scooping requires the identification of a well-defined source for property values. The
complete compartment lattice may potentially contain ambiguities. For example, if a Secret
<A, B> property is scooped and distinct values existed at Secret <A> and also at Secret
, the scooping would not be well-defined. Several alternatives are being considered
for resolution of this problem.

A client operating at level / always retrieves an /-view (unless specifying otherwise). Any
object referenced by this [-view is retrieved as the /-view of the referent. Since all [-in-
stantiations of an object are associated with the same OID, the level of the referent need not
be equal to the level at which the reference was originally bound. :

3.3.2.2 Semantic Vector Example

Continuing from the example above, the semantic vector for the object indicates that nearly
all of the specified values are static; all others are scooped. However, since indication
is specified in the C-instantiation, the semantic vector value is either initialized_scooped (if
the C-instantiation had been created prior to the U-instantiation) or static (if the user in-
tended to create a cover story).

3.3.2.3 [-View Example _
In the above example the C-user will be presented with a view of Status consisting of
labeling = “Take 2 with water”; and stat code = “Pending investigation.”

Interestingly, if an T-user were to follow the reference from the T-view of the Drug object,
he would be presented with the T-view of Status, even though the reference was origi-

8The TOP TCB ensures that a value always exists when the semantic vector denotes scooping.

57

nally written at C. This is because all objects are accessed through a token that references
the complete object, rather than a specific /-instantiation of the object.

3.3.3 Multilevel Inheritance Principle

In the schema the explicit definition of an attribute within a type is assigned a visibility label
that dominates the level of the type. A property may appear in an l-instantiation only if the
level of the l-instantiation dominates the visibility level of the attribute. This has the follow-
ing implication on multilevel inheritance: A property in an [-instantiation has as its type ei-
ther

« the type of the object if the attribute is defined explicitly and / dominates the visibility
level of the attribute, or

« the type of the nearest supertype of the object such that / dominates the level of the su-

pertype.
This means that distinct /-instantiations within an object instantiation may have different in-
heritance hierarchies?. This causes ‘cover stories’ for supertype, because the visibility of a
supertype in the inheritance hierarchy is constrained by the effective visibility labels of its
attributes.

Previous attempts at multilevel object models have been constrained by the requirement that
the inheritance hierarchy’s sensitivity levels be monotonically non-decreasing from the base
type.[1, 6] TOP’s approach provides greater flexibility and, therefore, greater richness in
semantic expression, with no loss of confidentiality. In particular, this philosophy permits
different views of the hierarchy to exist according to a user’s clearance. This makes the hi-
erarchy yet another ‘property’ subject to access control. In effect, the feature introduces
schema-level cover stories that can further help to control inferences that may have been
based on knowledge of the hierarchy.

For example, consider the following classes:

NuclearMissile ModelFoo

Missile

RegularMissile ModelBar

If the schema is allowed to remain invariant over different visibilities, then we’ve also ex-

posed the fact that ModelFoo and ModelBar are distinct in some fashion more generalized

than can be justified by the model differences!0. Therefore, it seems reasonable that for

those subjects who do not need to know about such distinctions, the schema view should

R}t rglveal them. Instead ModelFoo and ModelBar would appear as direct subclasses of
issile.

3.3.4 Procedures

Morgenstern and others have introduced the possibility of having classified procedures
(‘methods’ in the original paper), with the additional potential for several distinctly classi-
fied instances of a single procedure to co&xist. It is planned that TOP will support the

9This concept was hypothesized as necessary in [1], although it ran contrary to earlier models’ constraints [5,6].

10This is assuming that all mnemonic information is removed from the class names, the method names, and the
property names. That alone is a significant sacrifice in usability.

58

specification of multi-instantiated procedures as part of the multilevel schema. Based on
the client security level, TOP would bind the proper instantiation to the client domain.

3.4 Updating the Database

Making changes to a database is significantly more complex than viewing its data. The is-
sues of concern are preserving confidentiality and integrity while users are concurrently
accessing the data through untrusted clients. While these problems are present in trusted
relational DBMS, they are more challenging in ODBMS because users are not limited to the
use of an interactive query facility such as SQL. Application developers write their own.
C++ programs to perform customized transactions.

3.4.1 Creation

When a client, logged in at level /, creates a new object instantiation, the TOP TCB creates
an OID and generates a semantic vector. The client furnishes the initial values for populat-
ing the [-instantiation. If authorized, the client may set elements of the semantic vector.
Otherwise, they take on initial values as follows:

+ static if / is the visibility level of the property
 initialized_scooped if the visibility level is strictly dominated by /.
3.4.2 Modification

In TOP, updates are subject to DAC, MAC, and integrity constraints that are type-specific
and they are further controlled by the semantic vector. There are several cases:

« The client acting at level [/, presents modifications to property values that are visible in
an [-view of an existing object. If the corresponding [-instantiation does exist and the
only modified properties are not scooped (they are, therefore, either static or initial-
ized_scooped), the update is performed to the /-instantiation. This case is completely
compliant with the *-property. All properties to be scooped by this level will continue
to be scooped, independent of this update.

» The client acting at level /, presents modifications to property values that are visible in
an [-view of an existing object. If the corresponding /-instantiation does not exist and
the modified properties are not visible in the nearest dominated I-instantiation, the l-in-
stantiation is created and these property values will be placed appropriately according to
the settings of the semantic vector, as in the case above.

» The client acting at level /, presents modifications to property values that are visible in
an [-view of an existing object. It is possible that all the visibility levels for these prop-
erty values are lower than / and that they are not yet instantiated at this level. The user
may create an /-instantiation dominated by / containing these values. The user can do
this with the B3 Trusted Path. A side effect will be that the semantic vector elements
corresponding to these properties will be changed from initialized_scooped to scooped.

+ In this case, some property value visible below / is updated. This may be because the
user intends to create a cover story or it may be because the user wants to modify the
property at its level. To create the cover story, the user needs to modify the corre-
sponding element of the semantic vector of the /-instantiation to static. To modify data
at a lower level, the B3 Trusted Path must be invoked in order to circumvent the re-
strictions caused by the * -property. Both operations may be performed through the
Trusted Path: the user may concurrently introduce a lower level cover story and update
at multiple levels within the object instantiation.

+ Aclient operating at level / may reference any object for which there exists an [-view.
The reference to this object may reside in the /-instantiation of any other object (as de-
fined in the schema).

59

3.4.2.1 Cover Story Creation Example

In order to polyinstantiate a property at level /, the corresponding component of the seman-
tic vector element needs to be set to static. The reader may have noted the presence of two
cover stories in the example: in the Drug object, counter indications has a cover
story at C and a more accurate value at S. In the Status object, labeling has a cover
story at U and a different value at S. The cover story will be scooped by intermediate lev-

els, so the C-view of the Status object will include the cover story for 1abeling.

3.4.3 Deletion

Object deletion updates the state of the database. Therefore, like write, we cannot allow its
observation below the level at which the deleting subject is executing. Furthermore, if
there are instantiations above the deletion level, then the deletion is potentially a cover
story. Therefore, the effect cannot be automatically cascaded upwards.

The TOP motivation is as follows: to the untrusted user, object deletion, while operating at
a particular level, should be indistinguishable from a complete object deletion.

TOP’s policy for object deletion is as follows: the level at which the object is deleted is
marked by a tombstone!l. If there are no other instantiations for the object, the complete
object is deleted (safely). If other instantiations exist below the deletion level, they con-
tinue to remain visible at their respective levels. If other instantiations exist above the dele-
tion level, they also continue to be visible at their respective levels, and any values they
scooped from the deleted instantiation would be written upwards to maintain the coherences
of such views. Uninstantiated levels of the object appear deleted if their views end up be-
ing constructed from a tombstone.

During maintenance, and cover story/polyinstantiation reconciliation, it is possible to
“revive” an object (remove the tombstone, usually replacing it with a live [-instantiation).
Because of the need to maintain the appearance of complete object deletion, we need to
insure that any references that used to appear obsolete (pointing to a deleted object)
continue to appear obsolete; otherwise, untrusted subjects may infer the existence of higher
instantiations. To insure this, we annotate references, and the complete object at each level,
with incarnation numbers'2. Thus, an obsolete reference continues to appear obsolete,
while a fresh references resolves, though both point to the same object.

3.5 Mediation: the Access Validation Monitor

The TOP TCB manages all labeling for its objects and is, thus, designed as a trusted sub-
ject TCB subset architecture. It is responsible for mediating all accesses between its sub-
jects (the untrusted clients) and its objects. As a client/server architecture, TOP maintains
its objects on the fully-trusted server. Mediation is performed through the interposition of
the Access Validation Monitor (AVM) between clients and the server. No path is provided
between client and server that does not involve the AVM, “The AVM and the remainder of
the TOP TCB rely on the underlying B1 (or higher) OS/TCB subset to protect their in-
tegrity, to authenticate users and their clearances, to identify security attributes of clients
and to protect all audit data. It is assumed that the B1 OS/TCB provides a B3-equivalent
trusted path mechanism to support private communications between the user and the TOP
TCB. The diagram below depicts a logical configuration of the TOP architecture from the
user’s perspective.

1Tombstones are not visible to the untrusted client, who can only observe obsolete references, and is incapable
of distinguishing them from complete object deletions.

12[ncarnation numbers are not visible to the untrusted client.

60

Client
Application

AVM

Binder Server

OSTCB

-
Database
Database

One of the critical functions of the AVM is OID obfuscation; that is: the minimization of in-
formation content of the client’s perception of OID, and the minimization of the viability of
such information. For every transaction, the AVM produces a new mapping from real
OIDs to tokens that are handed out to the client application. The mappings are transient,
and vary per transaction. Thus, the information contained in such tokens is relatively short
lived (one transaction only), and because of the additional level of indirection, significant
OID data patterns are also hidden (sequence and ordering of OIDs, form of the OID, etc.).

4, STATUS AND PLANS

Following an initial investigative study, the TOP project began in earnest in the summer of
1994 and has completed its informal policy model and preliminary prototype design. This
policy model and design are undergoing further refinement and implementation of the
prototype has begun. An initial configuration is expected for late September 1995. It is
planned that a proof-of-concept demonstration on a multilevel database be constructed for
delivery to the sponsor in June of 1996. At the time this paper is being written, mecha-
nisms for implementing discretionary access control and audit are being considered and will
be reported on in the future.

5. CONCLUSIONS

In this paper, we have discussed the design and design philosophy behind TOP, a research
initiative into developing a foundation for a trusted ODBMS. We have explored many of
the numerous tradeoffs and considerations needed to support a marriage between
confidentiality and integrity, without sacrificing utility. Our differentiation from previous
work is manifested by the fact that ONTOS exists today and TOP is being implemented as
its next generation.

The authors wish to acknowledge the faith, support, and enthusiasm Joe Giordano has
given this project from its naissance. We extend our warmest thanks to ONTOS manage-
ment, and in particular to Sandra A. Wade for her visionary contributions, unflagging in-
spiration and support. We would also like to thank Don Marks for his benevolent assis-
tance, and Matt Morgenstern [5], Arnie Rosenthal, and Bill Herndon [1,6] and Win
Cuthbert for their insight and frankly-given opinions. Smooches to our seldom-seen
spouses and pets.

Registry

61

6. REFERENCES

[1] Herndon, W., “Can We Do Without Monotonically Non-decreasing Levels in Class
Hierarchies?”, Unpublished Manuscript, The MITRE Corporation.

[2] Jajodia, S., and B. Kogan, “Integrating an Object-Oriented Data Model With Multilevel
Security”, Proceedings of the 1990 IEEE Symposium on Security and Privacy,
Oakland, CA, October 1990.

[3] Lunt, T., “Mulilevel Security for Object-Oriented Database Systems”, Proceedings of
the 3rd IFIP WG 11.3 Workshop on Database Security, Monterey, CA, September
1989.

[4] Millen, J., and T. Lunt, “Security for Object-Oriented Database Systems”, Proceedings
of the 1992 IEEE Computer Society Symposium on Security and Privacy, Oakland,
CA, May 1992.

[5] Morgenstern M., “A Security Model for Multilevel Objects with Bi-directional Re-
lationships”, Proceedings of the 4th IFIP 11.3 Working Conference in Database
Security, Halifax, England, 1990.

[6] Rosenthal, A., W. Herndon, B. Thuraisingham, and R. Graubart, “Multilevel Security
for Object-Oriented Database Management Systems”, Working Paper No. WP-
92B0000375, The MITRE Corporation, Bedford, MA, 1993.

[7] Sandhu, R., R. Thomas, and S. Jajodia, “A Secure Kernelized Architecture for
Multilevel Object-Oriented Databases”, Proceedings of the IEEE Computer Security
Foundations Workshop 1V, June 1991,

[8] Schaefer, M., Wade, S.A., Requirements in Security Policy: Preliminary Informal
Access Control Model, Final Technical Report, National Security Agency, Fort
George G. Meade, MD, and Rome Laboratory, Griffiss AFB, NY, 31 March 1994.

[9] Schaefer, M., Martel, P., Kanawati, A., Lyons, V., Multilevel Data Model for TOP, to
appear at IFIP, August 1995.

62

Great Unsolved Problems
in Applied Computer Security

What are the great unsolved problems in computer security?

The author proposes four—and announces a $1,000 prize
for the solution to any one of them. The competition, spon-
sored by FIRST (Forum of Incident and Response Teams),
is expected to be an annual event.

In this inaugural year, security experts are challenged to:

« Design a program able to detect the compromise of des-
ignated system files, including the program itself

e Develop a fast technique for writing log files to read/
write media such that the information, once written,
cannot subsequently be modified without detection

« Devise a method to compare the security of two similar
computer systems

 Provide a definitive answer to the question, “Who is
helped by the full disclosure of details about security
holes, and who is hurt?”

The author also explains how the competition will work and
how you can submit solutions to qualify for prize money.

Keywords: Security, intrusion, metrics, disclosure.

Mark G. Graff
Sun Microsystems

Voice: 415-688-9151

Fax: 415-329-8258
mark.graff@sun.com

63

Great Unsolved Problems
in Applied Computer Security

What are the great unsolved problems in computer security?

The author proposes four—and announces a $1,000 prize
for the solution to any one of them. The competition, spon-
sored by FIRST (Forum of Incident and Response Teams),
is expected to be an annual event.

In this inaugural year, security experts are challenged to:

» Design a program able to detect the compromise of des-
ignated system files, including the program itself

 Develop a fast technique for writing log files to read/
write media such that the information, once written,
cannot subsequently be modified without detection

¢ Devise a method to compare the security of two similar
computer systems

¢ Provide a definitive answer to the question, “Who is
helped by the full disclosure of details about security
holes, and who is hurt?”

The author also explains how the competition will work and
how you can submit solutions to qualify for prize money.

Keywords: Security, intrusion, metrics, disclosure.

1.0 How the Competition Will Work

1.1 Challenge

Each year a member of the FIRST Steering Committee will issue the challenge, in the
form of a paper presented at the National Information Systems Security Conference. The
paper will specify each problem and lay out the allowable parameters of a solution.

1.2 Scope of the Problems

FIRST will select problems from a wide variety of topics such as intrusion detection, net-
work protection, implications of trust among network elements, and sociological elements

64

of security policy. Each problem will be scaled in such a way that a moderate effort by the
right individual or small team may suffice.

No grand theoretical advances in the state of the art are anticipated. No proprietary interest
in the solutions themselves may be retained. FIRST seeks only to foster incremental
progress along practical lines by the elimination of everyday obstacles to today’s practitio-
ners.

1.3 Submissions

Solvers seeking recognition (and money) will submit their proposals as candidate papers
for the annual FIRST conference. A panel of experts appointed by the Steering Committee
will judge all submissions. Winners will be announced, and prizes awarded, at the FIRST
conference.

Each year FIRST will seek an appropriate venue for the publication of selected papers.
Submitting authors implicitly agree to such publication and must be prepared to cooperate
by meeting deadlines and conforming to editing guidelines. Papers that appear to deal
with proprietary topics, or seek to place limits on the distribution of the ideas expressed,
will be returned unread.

1.4 Awards

The full $1,000 prize will be awarded to any solver who either submits a complete solu-
tion, or proves that a problem as proposed is intractable.

Occasionally the judges will issue merit awards of lesser amounts to honor those whose
contributions, while falling short of the goal, have significantly advanced knowledge in
the field. The judges may also decide to split an award among multiple solvers.

Small awards will also be made to those whose suggestions for future topics are accepted.

1.5 Selection

The FIRST Steering Committee will select the problems, based on suggestions from
around the world. The goal will be to select challenges which are:

e Practical, difficult to solve, and urgently relevant

 Not already under study, or likely soon to be undertaken

o Of general interest to FIRST members

o Independent of any particular vendor

Problems not solved within a given year may be repeated.

65

1.6 Common Parameters

Certain parameters will be common to every solution. Software must:

o Run on, or be convertible to, a variety of operating systems, hardware platforms, and
file formats

 Require no licensed (third-party or vendor-specific) add-on packages
* Avoid (perhaps as a bonus) the use of any ITAR-restricted (non-exportable) software

Be robust (i.e., crash-resistant)

e Make practical, appropriate demands on system or network resources

2.0 Problem 1995A: Immaculate Detection

2.1 Problem Statement

Design a program able to detect the compromise of designated system files, including the
program itself.

2.2 What’s Wrong Now?

No one knows how much is lost today in productivity, time, and trust as a result of com-
puter system intrusions. But few doubt that the toll is significant—and rising.

Programs which detect intrusion by comparing the state of a system to a known-good
record are commonplace. Recent improvements in checksum and digital signature
schemes have made checking operations more robust. But the state of the art today (1995)
requires that the master copy of that system state record be itself protected from compro-
mise. This requirement, often satisfied with the use of a write-protected disk drive, com-
plicates the use of such tools and strongly limits their application.

Is this limitation necessary? Why can’t a program be designed which can check itself for
tampering? That done, the way would be clear for “unobtrusive” intrusion detection soft-
ware which could run on a wide variety of hardware and software configurations.

2.3 Parameters

In addition to the common parameters the intrusion detection software must (or must be
designed to):

¢ Operate without the need for write-protected storage

o Operate at user-settable intervals, and be able to run in background or foreground in
steady-state or continual operation

66

» Allow the system administrator to select the checksumming or digital signature algo-
rithms

For a full award, no manual participation—for example, an operator noticing that an
action signifying “all OK” was not taken—can be required.

For extra credit (but no more money) the program should:

» Be adaptive enough not to chatter on voluminously about minor and predictable
changes, such as the growth of a log file

* Be alert enough to notice anomalies such as a log file which shrinks unexpectedly.

2.4 Approaches

We suggest here two approaches to consider as rough guides (guesses).

2.4.1 Ringing the Changes

Consider the popular Tripwire package (and TAMU’s Tiger, similarly). This soft-
ware meets about all of our specifications except the key one. Would it be feasible to cre-
ate the checksum database; checksum the database; checksum the checker; then check the
checker?

In other words, it may be that the problem can be reduced to a question of whether a par-
ticular executable can be produced which can detect its own variance from a predeter-
mined, built-in digital signature.

2.4.2 How Are You? I’m Fine

Another promising approach: using multiple instantiations of the checker software, or
cooperating pieces, to check on each other’s integrity. The key idea here is that it may not
be possible to tamper undetectably and simultaneously with several cooperating pro-
cesses.

It might even prove workable to operate several such processes around a network, creating
a community of software somewhat similar to the Neighborhood Watch program found in
many U. S. communities. The TCP-based protocol used on some UNIX systems to syn-
chronize system clocks could be another useful analogue.

Stochastically variable intervals and search extents would seem to add robustness to this
model.

67

3.0 Problem 1995B: Indelible Ink

3.1 Problem Statement

Develop a fast technique for writing log files to read/write media such that the informa-
tion, once written, cannot be subsequently modified without detection.

3.2 What’s Wrong Now?

Today, log files are one of the battlegrounds of system security. Intrusion detection tools
often rely on the ability to write audit and log information for later analysis. Intruders, in
hiding their tracks, often tamper with log files, to cloak or remove evidence of their activi-
ties. Both sides want control of the log files.

Intruders have the edge now, because on most standard systems log files are kept on read/
write media. It’s hard not to. But how often is it necessary to change (not append to) log
files, once they are written?

The challenge is to develop a technique for log files that last—that is, the ability to log
information on read/write media in such a way that any subsequent modification of the log
file is immediately detected.

It’s often critical to know when events happened, too, and in what sequence. Protection of
the system clock is beyond the scope of this problem, but it’s imperative to protect the
sequence of the records (and any time stamp information) as carefully as the rest of the
logged data.

3.3 Parameters

In addition to the common parameters the logging software must (or be designed to):
e Be efficient (not impose a severe performance cost)

« Allow the system administrator to select the verification algorithms

* Be verifiable for correctness of operation

A bonus would be the ability to detect interruption of the process that is writing the log
file.

As another desirable feature the program could offer the ability to repair log files which
have been tampered with. This would seem to require either redundant record-keeping, or
special buffering by the process responsible for logging.

68

3.4 Approaches

Target system utilities such as UNIX’s syslog or VMS’s OPCOM. The external inter-
faces could remain the same, and the internal operations be modified to perform integrity
checks prior to appending each log entry.

Simple enough. But how can you protect against changes?

e Look into a “check digit” approach, associating a checksum with each log entries.

« It might be possible to come up with a scheme of redundant loggers or log entries such
that an attempt to introduce a variation between the two would raise an alarm.

« Information kept in two differing states should be harder to change undetectably at the
same time. (We don’t mean one copy in Maryland and the other in New York. Try, for
example, one in process memory and one force-written to disk.)

e There’s no reason redundant records must have the same format. Maybe keeping infor-
mation in different formats (say, one copy in plain text and one encrypted) would make
it harder to sneak through a change.

4.0 Problem 1995C: In Numbers There Is Safety

4.1 Problem Statement

Devise a method to compare the security of two similar computer systems.

4.2 What’s Wrong Now?

To paraphrase Ernest Thompson, the master engineer who laid the first transatlantic cable,
“To measure is to know.” When it comes to the relative security of two machines, we
know nothing.

Trying to improve the security of a system without being able to measure the result of

your changes is like pushing a rope. There’s effort; there’s apparent progress; but someday

you’re likely to trip over the result.

We need to be able to compare the relative security of:

» Two similar systems, even if they come from different manufacturers

o The same system after a patch or other putative fix has been applied ,

¢ A system before and after a major software upgrade or configuration change has been
applied

Notice, too, that once there’s a way to determine which of two systems is more secure, the
road is clear to useful spin-offs such as benchmarks and other metrics. These are going to
be terrific; but the comparison operator has to come first.

69

To keep it simple let’s restrict the arena to software. Hardware, today, is not the problem.

4.3 Parameters

In addition to the common parameters the method must:

e Produce unambiguous and reproducible results

o Take into account the many different security environments, e.g., behind a firewall
o Not become outdated with the discovery of every new vulnerability

o Not itself represent a security risk (as a straightforward system canvas or vulnerability
inventory might)

 Allow the system administrator to select from among many comparison criteria

For partial credit the comparison could be restricted to a subset of threats.

4.4 Approaches

The parameters seem to imply the use of some outside agent. Perhaps the winning tech-
nique will:

 Be an extension of today’s penetration studies and tiger teams

« Allow (and require) the creation of a secure, contractible network audit service

* Require the development of a technique for opaquely testing a system for a vulnerabil-
ity, using a program of assured integrity that cannot meaningfully be monitored during
operation, nor reverse engineered when static

5.0 Problem 1995D: Do What I Say and Nobody Will Get Hurt

5.1 Problem Statement

Provide a definitive answer to the question, “Who is helped by the full disclosure of
details about security holes, and who is hurt?”

5.2 What’s Wrong Now?

The debate over “full disclosure” has of late filled all of the security newsgroups and mail-
ing lists with opinions. Is “security by obscurity” 4£24? Dos+ information want to be free?

Some system administrators argue that the disclosure of detailed information about secu-
rity holes puts ammunition into the guns of those who would break into systems—and that
releasing an exploitation script supplies a complete, loaded weapon.

70

Others counter that the advisory bulletins issued by FIRST response teams are useless,
because not enough information is supplied either to reproduce the problem or design and
test a fix. It’s important to balance short-term versus long-term interests, too. Full disclo-
sure of exploitation details may cause immediate disruption; but it also tends to ensure that
the bugs so revealed, once killed, will stay dead. Some examples that buttress this reason-
ing are the “sendmail wizard” and “finger overflow” problems.

While the debate rages on, many systems are being broken into with the use of “fully dis-
closed” vulnerabilities, while perhaps as many are being trashed or tampered with because
the people charged with their protection are themselves being “protected” from knowing
how to fix them.

Let’s try to get this settled. Everybody in the field has an opinion. What are the facts?

5.3 Parameters

Answering the question may sound easy. But we need numbers at least as much as we
need analysis.

For a full award, the following information must also be supplied, with justification:

» Close estimates of the vendor, vendor-dependent, and roll-your-own populations

A characterization of the populations (sophistication, software theiy;re running, plat-
form, etc.

» Weighted risk analysis, broken down by population (e.g., risks for vendors)
¢ An analysis of which times at which disclosures are most damaging
¢ An analysis of possible warning periods. Is two weeks better than two months?

» Proposals for a modus vivendi, a practical set of arrangements allowing these groups
with differing information needs to cooperate (or at least co-exist)

5.4 Approaches

We anticipate that one way solvers might try to get real numbers is to conduct a real-world
experiment, using standard double-blind protocols. Such investigators would assume sole
risk and responsibility if the experiment misfires. FIRST is specifically not encouraging an
industry-wide hoax.

6.0 How to Submit an Entry

FIRST maintains the unsolved-problems@first.org mail alias for interested parties. Use
this to get a copy of the contest rules, get more information about the problems, and
exchange ideas with other participants.

71

With a solution or partial solution in hand, submit your work as a paper to the upcoming
FIRST conference. The 1996 conference will take place in the San Francisco Bay area.

For information about how to prepare and submit a paper to the FIRST, watch for the
annual Call For Papers.

7.0 Acknowledgments

The author wishes to thank the members of the 1994-1995 Steering Committee for their
confidence and assistance, and also:

* Problem submitters Gene Spafford (of Purdue) and Danny Smith (AusCERT)
» Advisers Steve Weeber (CIAC) and Roman Galperin (Sun Microsystems)

72

ADDRESSING INFOSEC ANALYSIS PROBLEMS
USING RULE-BASED TECHNOLOGY

Richard B. Neely, Ph.D.
rneely@cos.cta.com

James W. Freeman, Ph.D.
jfreeman@cos.cta.com

CTA INCORPORATED
7150 Campus Dr.
Colorado Springs CO 80920

Abstract

Obtaining the necessary understanding of
the security properties and vulnerabilities of
systems, which are becoming ever more
complex, requires significant analytic effort. A
security analysis team (either development or
evaluation) needs to navigate through large
amounts of documentation, partition significant
problem domains, and simulate or emulate a
system or particular components, to make
engineering based statements about a system's
security.

Current approaches, techniques and
supporting tools, including third-generation
based technologies are helpful, but are not
sufficient. Method specific techniques based on
CASE environments are often to narrow for
addressing the wide variety of security issues
faced by an analyst.

This paper discusses an approach to some
different types of security problems and our
experience in using a rule-based technology that
is not method specific and that has contributed
to improved understanding of the specific
problems. The use of the technology appears to
enable an analyst to address a wide-variety of
issues in the problem domains of the analyst
without forcing the analyst to become an expert
in the underlying rule-based technology.

1. Introduction

Systems are becoming increasingly
interconnected with more functionality. The
need for a security analyst to analyze,
understand, and explain a system’s security

73

mechanisms and vulnerabilities is increasingly
challenged by a system’s complexity. The
complexities and interrelationships of present
systems can easily overwhelm a security analyst
using current approaches and supporting
technology.

For example, within most current
approaches, an analysis team makes security
statements about a system’s underlying security
architecture. That structure is often based on a
monolithic trusted computing base (TCB). The
analysis team then implicitly extrapolates, with
some level of assurance, the structure to a
collection of security statements about the full
system. This has been a credible approach
when the TCB was relatively simple,
monolithic, and the step to the full system was
not large.

Increasing functionality and connectivity
adds complexity to networked and distributed
systems. The resulting underlying security
architecture, including a TCB, also becomes
complex and distributed. Also, the step to the
full system from the TCB often is either larger
than anticipated, in order to keep the TCB
manageable for understandability (particularly
for embedded systems), or else the resulting
TCB itself is significantly larger and more
complicated than desired. Such complex
systems are necessary in order for systems with
critical security requirements to exploit
advances in other system and software
engineering disciplines [1].

Each component within a distributed
system may have undergone a thorough
security analysis relative to the system

architecture. Nevertheless, residual vulnerabili-
ties in the high reliability components,
combined with potential exploitation by less
reliable components, could result in security
failures. These might include data compromise
via system output interfaces or loss of data or
system integrity. In other words, the system
structure itself must be considered in a security
analysis [2]. Using currently available
methods, a security analysis team would
probably be unable to say, with a reasonable
level of assurance, something definitive
concerning the security of the set of end-to-end
data flows for such a system. That would be
true, even though they used the best available
technology, including current methods and
supported by a CASE tool environment.

As has been described by Hirsch [3], a
security analyst needs to navigate through
large amounts of documentation with more
than an automatic page-turning capability. An
analyst needs to partition a general problem
into smaller problems and maintain or preserve
relationships among the parts. An analyst also
needs to apply appropriate metrics to
system/software entities. An analyst also needs
to reverse engineer available information to
either generate missing pieces or to double
check whether an entity is appropriately
derived from higher-level specifications. An
analyst performs a verification that establishes
a correspondence between higher-level and
lower-level specifications. Finally, an analyst,
by developing a simulation or emulation, can
obtain value by observing the behavior of a
system under controlled conditions.

What is needed, therefore, is a technology
or a well-integrated collection of supporting
technologies that enables an analyst to
accomplish the identified activities in an:
efficient and effective manner. This paper
identifies an approach, our recent experience,
and near-term plans that address aspects of a
security analyst’s navigating, partitioning,
reverse engineering, verifying, and simulating a

74

system to identify and demonstrate
vulnerabilities. The approach to INFOSEC
analysis problems uses rule-based techniques.

One problem that we have addressed in this
way is providing assurance for system security
related to end-to-end system flows—the
example mentioned above. This problem has
an important application within the security
analysis of MLS tactical systems.

A second problem we have addressed is
how to control disclosure of inferred
information from a relational data base system,
while still enabling the system’s users to
accomplish their mission. An effective solution
can be expected to be quite complex, involving
examination of multiple criteria in parallel and
using expert system techniques.

It is important to observe that the second
problem is an INFOSEC problem that is
essentially unrelated to sensitivity labels. One
consequence of these two problems is that a
very flexible environment would be needed by
an analyst to solve both these problems
effectively, using the same environment for
both.

Following this introduction and problem
identification, this paper discusses the use of
rule-based environments (Section 2).
Following that discussion is a description of
our experiences and results in developing rule-
based techniques and tools to solve INFOSEC
problems (Section 3). Finally, we present the
conclusions that we have drawn on the basis of
those efforts (Section 4).

2. Problems and Solution Directions

2.1 Issues In Automated Analysis for
INFOSEC

INFOSEC analysis has mostly used manual
methods, with any appropriate software
development tools. Manual methods remain
common, though some limited support tools
have been developed. Manual analysis has
been acceptable in the past, but newer systems
are large and complex. For such systems,

manual methods are too expensive, unreliable,
and unrepeatable. Repeatability is at issue
because of multiple builds and development
blocks, for which analysis must be repeated.
As a result, some significant risk is often
accepted in systems. Further, the concemn for
many systems is not that there is a high security
risk, but that, with current practice and
technology, the risk is' unknown and not
definable in a measurable way. This is because
of the intractability of effective manual analysis.

To have an effective as well as cost-
effective automated analysis, a solution ought
to have the benefits of manual analysis (e.g.,
flexibility and an expert’s base of knowledge)
without its shortcomings. Past approaches to
automnating the analysis, while in some ways
are beneficial, are also inadequate. For
example, simple object-oriented approaches,
while providing some useful data modeling, do
not address process modeling. Consequently,
they do not go nearly far enough in providing
proximity between problem and solution
spaces.

One way to look at this is that one wants to
see the “big picture”—what’s “really going
on,” providing a framework for important
details, rather than seeing details in a way that
only obscures. That is the situation in the
game of chess. A beginner, or even
intermediate, player sees 64 squares on a
playing field and 16 chessmen; a chess master
sees a “position” made up, perhaps, of three or
four high-level units. The master’s resulting
analysis of the game provides a deeper
understanding than the details can provide to
the novice.

This illustration applies specifically -to
INFOSEC: a simplistically algorithmic ap-
proach can inhibit the solution of some
problems, because the problems are obscured
by complexity that is not fundamental to the
problems. A rule-based approach can allow an
analyst to logically integrate all aspects of a
system without the analyst’s drowning in detail.

75

The big-picture view provides improved
understanding of a complex system, independ-
ent of whether rule-based automation (or any
automation) is considered. = For example,
Bodeau’s system-of-system perspective for risk
analysis would illuminate the risk analysis
problem addressed, even in the absence of the
ANSSR tool [4].

Past tools have used the extensive run-time
libraries associated with their implementation
languages, but these libraries do not provide an
adequate environment to facilitate reusability.
In developing INFOSEC tools in the past,
much design and implementation energy has
often been focused on the infrastructure, at the
expense of solving the problem. For example,
software tool development may consume as
much as 90% of the available resources in
providing support for a graphical user interface
(GUI) [5]. What is required is an environment
for automating INFOSEC analysis with an
infrastructure built in, that developed tools can
inherit.

2.2 A Solution: Rule-Based Automation

An examination of rule-based support for
INFOSEC analysis appears to indicate that this
is an approach that could solve some of the
analysis problems. Some rule-based environ-
ments do exist that have been shown to be
applicable.

2.2.1 Rule-Based Concepts

A rule-based environment provides
flexibility of data modeling beyond what is
provided by an object-oriented language. That
is because the underlying capability for data
description is more expressive (e.g., set theory
instead of standard programming language
types with narrow extensions).

Process modeling is also possible in a rule-
based environment. Process modeling allows
specification of what is to be done (versus how
to do it): it allows expression in terms of rules,
which preserves the best aspects of manual
processing. An important aspect to preserve is

adaptability as analysis needs change. In
particular, process modeling is critical for
proximity of problem and solution spaces.

Further, a general rule-based environment
supports the separation of process and data,
which is critical for robustness, flexibility, and
extensibility.

2.2.2 Benefits of a Rule-Based Approach
for INFOSEC

An important area best supported by rule-
based approaches is logical integration, which
involves both information integration and
development tool integration. A rule-based
environment can provide a capability for both
aspects of logical integration. Data models can
be merged and rule-based methods devised to
relate differing sources of assurance [6]. These

include risk analysis, hardware security
characteristics, physical security, and
communications. security (COMSEC)
characteristics.

A general rule-based environment is also
ideal for integrating a variety of tool-based
techniques for security analysis. Such
integration involves developing common data
models of information processed by each of the
techniques, and providing data capture release
interfaces with each. This allows many existing
capabilities to be used, rather than reinventing
them. Examples are CASE tools, configuration
management tools, configuration management
tools, and specialized security analysis tools,
such as Romulus (discussed below).

2.2.3 Lack of Generality in Some Rule-
Based Environments

To be useful for INFOSEC applications, a
rule-based environment must not limit the data
model or method. These must be open-ended,
so that the developer is able to specify them to
address the specific application problem. This
is not a specious point, for most rule-based
environments are designed with a built-in
method. Even an environment oriented toward
INFOSEC that has a built-in, non-extensible

76

method has limited value. As an example,
computer-aided software/system engineering
(CASE) environments are specific to software
or system engineering and not related to
INFOSEC analysis. Note that CASE tools are
not rule-based environments, but rather
specific rule-based tools.

An example of a rule-based tool designed
for security is Romulus, developed by ORA.
Romulus addresses a range of security
problems, and is effective within that range.
Even so, Romulus supports a built-in method
that is definitely narrower than the full range of
security problems. For example, it would be
very difficult (and perhaps ineffective) to apply
Romulus to the problems described in Section
3 (particularly the disclosure control problem),
or to any other problem that is unrelated to
security labels. This is because the method
implemented by Romulus is label based. The
method of Romulus is based on the concept of
“restrictiveness,” and specifically the “Hookup
Theorem” [7]. The built-in theorem prover of
Romulus extends its usefulness, but that does
not have the flexibility of interfacing with an
arbitrary external theorem prover, such as
Computational Logic, Inc.’s, Nqthm (Boyer-
Moore Theorem Prover) [8]. Because of the
built-in method nature of Romulus, that would
not be possible without significant redesign.

A particular limitation of Romulus is that a
security model (or at least a limited family of
models) is built in, and therefore an inferred
policy is assumed. This policy is based on
label-based access, restrictiveness (upper
bound on the sensitivity of system output data),
and hookup (composition) of system
components. Even so, the Romulus view is
more general than many security approaches,
since it is able to deal with non-deterministic
systems, such as distributed system with
concurrent processing.

Despite the advantageous features of the
Romulus approach, with its techniques and tool
support, Romulus has a serious limitation. The

limitation is that it is method specific and is not
easily extensible to other methods. Further, the
tools do not possess lower-level support
interfaces, in an open-system architecture, that
would allow developers to produce and
integrate tools for other methods, without
pervasive redesign.

2.2.4 Applicable Rule-Based Environments

A general rule-based environment should
separate information representation and
processing from user interface support. For a
GUI, many high-level primitives should be
available without unduly constraining the final
nature of the interface. Thus, what is needed is
an environment that has a variety of processing
and user interfacing building blocks without
pre-defining actual methods or interfaces.
Because of the variety of security concepts that
it might be desirable to support, the
environment itself should not be sufficiently
security oriented that it prescribes aspects of
any particular security method.

Several rule-based environments exist that,
according to marketing information, appear to
have capabilities that meet the above criteria.
They are [9]:

¢ Level5 Object, from Information Builders,
Inc.;
Nexpert Object, from Neuron Data;
Kappa, from Intellicorp;
ART*IM from Inference; and
Virtual Software Factory (VSF), from
Integrated Software Development
Environment (ISDE) Metaware, Ltd. (in
the UK) [10].
According to the information available to us,
these environments have similar capabilities;
we are in the process of obtaining additional
information about them. Our experience is
entirely with VSF, and has demonstrated that
VSF has the required features to support
INFOSEC analysis (and a variety of other
applications). The technology focus of this
paper is demonstrated by our VSF experience.

77

The basis of the data modeling notation
within VSF is set theory, from which a wide
variety of object types can be defined. VSF
provides for several kinds of set definitions.
Rules defining a method are expressed as set
membership constraints and set membership
consequences. The constraints determine what
members may be asserted into or deleted from
particular sets in particular contexts. The
consequences cause automatic assertions and
deletions based on preliminary assertions and
deletions.

VSF provides capabilities for data capture
and for reporting that are independent from
data representations. A single, pervasive
knowledge base is maintained, and so every
data view into the knowledge base is always
consistent with every other. These capabilities
exist in both graphical and textual forms, both
of which may be used interactively and non-
interactively. Reports are generally non-
interactive only.

This section began with a description of
problems associated with manual INFOSEC
analysis methods, and with criteria for
automating INFOSEC analysis. Our
experience has shown us that a rule-based
analysis approach (particularly using VSF)
satisfies those criteria. Section 3 presents some
details of our experience in this area, and
substantiates the claim that our approach
indeed satisfies the criteria for automating
INFOSEC analysis.

3. Experience and Results In Solving
INFOSEC Problems With VSF

This section reports some of our actual
experience using VSF to address a variety of
INFOSEC problems. The benefit of reporting
this experience is that it provides an awareness
of some of the kinds of INFOSEC problems
that can be solved using a general rule-based
environment, and may encourage others to try
such an approach. In addition to reporting
success in certain areas, we feel that evidence

is provided that some INFOSEC problems can
be solved better with a rule-based approach
than with a more traditional approach. By
“better” we mean a solution that is complete,
more extensible, more understandable, and
possibly more efficient.

3.1 Data Flow Security Analysis

Within CTA’s system security engineering
work on a major tactical MLS system, we have
encountered a concern regarding certification
of the system voiced by the security evaluation
team. The concern is that in order to avoid the
necessity of making the size of the software
portion of the trusted computing base (TCB)
extremely large (i.e., a sizable fraction of the
entire software of the system), an additional
source of system security assurance would be
needed. The goal of the assurance is to reduce
the risk of data compromise due to data flow
out of the MLS system.

The specific problem is that within the
system, a large proportion of components
handle data at multiple security levels and are
capable of writing high data to low destinations
(e.g., files), given their context within the
system architecture. Without further analysis,
all such components must be trusted not to do
so, and therefore are within the TCB. That
would be an untenable situation. It would
mean that the majority of the software within
the MLS system would be in the TCB, and
there are not sufficient resources available to
provide the necessary security analysis.

The additional source of assurance pro-
posed is to examine each end-to-end path to
determine, given the sensitivity of data entering
the path and allowed to leave the path, whether
a combination of components on the path
creates a risk of data compromise. The idea is
that a large number of multilevel components
might in that way be determined to be in no
position to compromise data with respect to
any end-to-end path, and so not to be within
the TCB. A problem with developing a tool
for such end-to-end analysis is that the MLS

78

system is very complex, with thousands of
components, and perhaps tens or hundreds of
thousands of distinct end-to-end paths. It
secemed that any third-generation solution
would be intractable, or at least would require
significant research effort for development.

We felt that certain of the capabilities of the
VSF environment could result in a solution that
would require tractable effort, would provide
reasonable performance, and would help
produce a more effective security analysis than
by manual means. Accordingly, we developed
a proof-of-concept tool to solve a simplified
version of the problem. Our expectation that
VSF would provide an appropriate solution
platform was based on several observations.
First, it seemed that VSF’s ability to deal with
data models and to express rules that would
provide for apparently parallel analysis would
allow for a clear solution. Second, based on
our previous experience with software re-
engineering using VSF, we new that the
advertised high performance of VSF’s
knowledge base was a reality. Finally, certain
aspects of a solution that would be
unacceptably complex to express algorithmi-
cally already existed within VSF as set
membership manipulations of various kinds.

An example of the latter is VSF’s transitive
closure set definition to deal with data flow
paths. It is necessary to understand, in order to
follow this example, that the data modeling
paradigm of VSF uses standard mathematical
set theory. In order to define and manipulate
data flow paths, we treated each component of
the system as a node in a graph, and direct data
flow between a pair of components as an arc in
the graph. Then, within VSF, we represented
each component node as a member of a
primitive (unstructured) set, Component, each
data flow arc as a member of the Cartesian
product set Flow = Component X Component.
We were then able to define the set Path =
closure (Flow). Once the Component and
Flow sets were populated (thus defining the

system architecture), the set Path would
automatically represent all data flow paths
(end-to-end and otherwise).

It would be incredibly inefficient to fully
populate Path, to represent all the data flow
paths in the system, and indeed VSF does not
do so. It merely determines what particular
elements are in that set based on particular
knowledge base queries. This was significant
when a particular rule was developed to
determine the set of partial paths on which lay
soth a multilevel component and a potential
upstream exploiter (i.e., a uni-level, untrusted
component processing classified data). In that
circumstance, exactly the appropriate members
of Path were extracted to populate that partial
path set. No other members of Path were ever
created.

The proof-of-concept tool was successful.
We were able to demonstrate the tool not only
to audiences related to the tactical MLS
system, but also to other groups. Because of
the clarity of the tool itself, people with no
familiarity with the MLS system were able to
understand the tool implementation easily.
That response was expressed in terms of its
GUI, its usability, and the ease of understand-
ing of its implementation in VSF

It is noteworthy that as we began to study
the security flow analysis problem, existing
statements of the problem were incomplete and
often confused. Indeed, it was not until we
began to formulate VSF rules to specify a
solution to the problem that we began to
understand the problem ourselves. This was
not unexpected, in that often a rigorous
‘analysis helps clarify a problem.

We expect that a full version of the tool,
capable of managing all aspects of a security
data flow analysis for the MLS system, would
be a success, based on the proof-of-concept
prototype. This is based on the prototype’s
satisfying (within its limited scope) the
completeness, extensibility, understandability,
and efficiency properties (mentioned above).

79

While the prototype is not intended to be
complete, its ease of extensibility (based on the
addition of certain capabilities in the
knowledge base and in the user interface)
should assure ultimate completeness.
Responses to demonstrations and explanations
of the tool indicate that the understandability
property is satisfied. Full-size (or even nearly
full size) knowledge-base populations have not
been applied to the prototype, but our previous
experience with re-engineering using VSF
indicates the efficiency of a full version of the
tool applied to the entire MLS system.

In terms of the needs of a security analyst
described by Hirsch (as indicated in Section 1),
the developed tool primarily addresses the
verification and simulation needs. The tool, in
effect, simulates the flow of data through the
end-to-end paths across the system. It also
verifies whether pre-defined TCB membership
characteristics are consistent with other system
characteristics, including system architecture.
It is anticipated that a production version of the
tool, if developed, would support partitioning
the data flow problem to allow multiple
analysts to work on the problem concurrently.

There is a significant issue in developing
concepts and techniques - to deal with
controlling disclosure of sensitive information
in relational data bases. Certain kinds of
sensitive information, when released in “small
doses,” may not result in a security risk. At the
same time, larger amounts of the same
information may result in quite significant
security risks. This concept of risk based on
amount of data released is known as the
aggregation problem. When information is
released only indirectly via logical analysis of
the information permitted to be released, this is
known as an inference attack. Information
released via an inference attack is also an
example of aggregation if it is more sensitive
than any (quantity of) information that would

have been permitted directly. These conceins
are explained in detail in [11].

The approach to disclosure control that we
addressed is intended to shut down such
aggregation and inference channels in a way
that does not place unnecessary restrictions on
access to the data base. The approach,
developed by Motro, Marks, and Jajodia [12],
is to limit accesses only based on predefined
data base views, termed concepts. A numeric
threshold is defined for each concept, and data
base tuples that relate to each concept are
allowed to be released only up to the number
corresponding to the threshold. Any number
of such concepts may be defined. A “lifetime”
count is maintained for each concept, for each
user. This approach is far more precise than
the relatively naive concept of counting tuples
across a whole data base table, or by
comparing exact queries. The precision means
that the exact information to be protected is
indeed protected, but no more.

This disclosure control approach appeared
to us to be ideal for implementation using VSF.
One important characteristic of the approach is
that it is fundamentally parallel in concept.
Accordingly, the view taken in a VSF
implementation, which involves performing an
operation on all the elements of a defined set
(without regard to sequentiality or order),
would relate well to the problem space.
Further, because of VSF’s capability for
supporting interfaces to arbitrary external
systems and forms of data, a VSF-based
disclosure control tool could be made to
interface with a relational data base
management system (RDBMS) without undue
effort. .
For the prototype disclosure control tool
that we have implemented, we simulated a
RDBMS within VSF itself, rather than
interfacing to an external RDBMS. This was
because we did not have available a RDBMS
that would run on the platform (Intel 80486
running OS/2) on which we were developing

80

the tool. It was, in any case, instructive to see
the limited amount of code (rules) required for
that simulation—about a page. Given that the
authors are not very experienced with
development in VSF, that is probably not at all
the most efficient or compact possible
simulation of an RDBMS in VSF!

The resulting tool is generally a success
with respect to the same properties as
considered for the data flow analysis tool:
completeness, extensibility, understandability,
and efficiency. The tool performs precisely the
disclosure control function originally specified.
Extensions to that functionality have been
identified, and based on preliminary analysis,
we are convinced that corresponding
extensions to the tool will be easy to make.
This is primarily because of the automatically
abstract nature of data and method descriptions
in VSF. Demonstrations of the tool, including
to the customer, were successful. In particular,
the functionality as made visible by the easily
developed user interface that described the
results of the RDBMS queries was
understandable and fully acceptable. Further,
the behavior of the disclosure control
functionality was accepted as faithfully
implementing the disclosure control method.

Those to whom demonstrations and
explanations of the implementation of the tool
have been given—including the customer, who
has no background with VSF—have expressed
a reaction that the implementation itself is easy
to understand, in terms of the data modeling
and the rule-based method definition.

This tool also addresses Hirsch’s
verification and simulation needs. The direct
need addressed is verification. What is being
verified is the disclosure control method itself
by implementing it and viewing the results. In
order to test the method effectively, it was also
necessary, in the circumstances, to simulate a
RDBMS. In retrospect, using a simulated
RDBMS was beneficial to verifying the method

because it allowed a more controlled execution
environment.

Our description of the disclosure control
method in terms of VSF rules clarified the
method itself, and, further, resulted in the
discovery of some ambiguities in the method as
originally described. It is likely that, after some
debugging, the ambiguities would have been
discovered as a result of a third-generation
implementation in a language like C or Ada. In
contrast, the ambiguities were immediately
manifest upon expressing the method in the
form of VSF rules.

3.3 Future Applications

We are at present planning two additional
INFOSEC applications of VSF. They are:

e implementation of a representation of
Hoare’s process external traces that we
have used in past security analysis efforts
[13]; and

e security evaluation support, involving the
integration of specialized software
development and security analysis tools
(such as the Boyer-Moore theorem prover
[8D.

We now discuss briefly how we anticipate
dealing with the first of these using the VSF
environment.

In [13], we have described a security
analysis method, which we term Boundary
Flow Analysis (BFA), which we have used
successfully for several security analysis
projects. The method is related to Hoare’s
process external traces, and has been provided
with a useful notation by Moore at the Naval
Research Laboratory (NRL) [14]. Also related
to BFA is NRL’s “assumptions and assertions”
security certification approach [15]. '

The concept of BFA is to view a system in
terms of multiple levels of refinement and in
terms of a data flow diagram at the same time.
At each represented level of refinement, a
logical history of information (treated as a
sequence of information units) entering and
leaving each component at each interface is

81

maintained. Security requirements are
expressed for each component (including the
system itself) in terms of the interface histories.
Verification methods are applied to show that
if all the security requirements of lower-level
components are satisfied, then the security
requirements of upper-level components are
satisfied.

Having had success with this approach
using the Gypsy Verification Environment, we
decided it would be valuable to implement the
approach within VSF. To date we have
implemented a portion of the BFA approach,
but do not have a fully operational tool.

4. Conclusions

This paper has outlined our experience in
applying an approach to INFOSEC analysis
problems using a rule-based technology and
environment, specifically that provided by the
Virtual Software Factory. We note that
developing a tool for each of the problems
discussed took approximately 3-4 man-weeks
of effort, which included the developer’s
learning aspects about the underlying VSF
environment. It is important to note that the
tool developer not is certainly a VSF expert.
Considering the results stemming from a
variety of problems faced by an analyst,
developing tools using VSF, and applying the
tools to solve the problems, we feel that such
an approach can be effective. Customer
feedback via demonstrations has validated this
conclusion. Finally, we have identified some of
the directions planned in applying this
promising technology.

(1]

(2]

[3]

[4]

(5]
[6]

[7]

5. References

J. N. Froscher, M. Kang, J. McDermott,
0. Costich, and C. E. Landwehr, “A
Practical Approach to High Assurance
Multilevel Secure Computing Service,”
Proceedings of the Tenth Computer

Security Applications Conference,
Orlando, Florida, December 1994,
pp. 2-11.

R. B. Neely and J. W. Freeman, “Struc-
turing Systems for Formal Verification,”
Proceedings of the IEEE Symposium on
Security and Privacy, Oakland,
California, April 1985, pp. 2-13.

S. J. Hirsch, “Software Analysis Require-
ments: An Abstract View,” INFOSEC
Standards and Evaluations Group, C62,
Officc of INFOSEC Evaluation
Technologies, Computer Science
Division, National Security Agency, June
1992.

D. J. Bodeau and F. N. Chase, “Modeling
Constructs for Describing a Complex
System-of-Systems,” Proceedings of the
Ninth Computer Security Applications
Conference, Orlando, Florida, December
1993, pp. 140-148.

ISDE Metaware, Inc., “Virtual Software
Factory Overview,” 1992.

R. B. Neely and J. W. Freeman, “Rigor-

-ous Integration of Sources of Assur-

ance,” Proceedings of the Conference on
Computer Assurance (COMPASS),
Washington, D. C., July 1986, pp. 100-
110.

I. Sutherland, T. Korelsky,
D. McCullogh, D. Rosenthal, J. Seldin,
M. Lam, C. Eichenlaub, B. Esrig,
J. Hook, C.Klapper, G. Pottinger,
O. Rambow, and S. Perlo, Romulus: A
Computer Security Properties Modeling
Environment (Overview), RL-TR-91-36,
Vol. 1, ORA for Rome Laboratory,
April 1991.

82

(8]

[9]

[10]

[11]

[12]

[13]

[14]

(15]

J S. Moore, A
New York,

R. S. Boyer and
Computational Logic,
Academic Press, 1979.
Datapro Information Services Group,
“Information Builders, Inc., LEVELS
OBIJECT,” Datapro Computer Systems
Analyst, McGraw-Hill, Delran, New
Jersey, 1995.

ISDE Metaware, Inc., User Documenta-
tion for the VSF Methods Workbench,
VSF-MWB Version 3.9, 1994.

T. F. Lunt, “Aggregation and Inference:
Facts and Fallacies,” Proceedings of the
IEEE Symposium on Security and
Privacy, Oakland, California, May 1989,
pp. 102-109.

A. Motro, D.Marks, and S. Jajodia,
“Aggregation in Relational Databases:
Controlled Disclosure of Sensitive
Information,” Proceedings of ESORICS
94,1994,

J. W. Freeman, R. B. Neely, and
M. A. Heckard, “A Validated Security
Policy Modeling Approach,” Proceedings
of the Tenth Computer Security
Applications Conference, Orlando,
Florida, December 1994, pp. 189-200.

A. Moore, “Specification and Verified
Decomposition of System Requirements
Using CSP,” IEEE Transactions on
Software Engineering, Vol. 16, No. 9,
September 1990, pp. 932-948.

C. N. Payne, J. N. Froscher, and
C. E. Landwehr, “Toward a Comprehen-
sive INFOSEC Certification Methodol-
ogy,” Proceedings of the 16th National
Computer Security Conference,
Baltimore, Maryland, September 1993,
pp. 165-172.

IDENTIFICATION OF SUBJECTS AND OBJECTS IN A
TRUSTED EXTENSIBLE CLIENT SERVER
ARCHITECTURE

Terry C. Vickers Benzel E. John Sebes Homayoon Tajalli
Trusted Information Systems, Inc. Trusted Information Systems, Inc. Trusted Information Systems, Inc.
11340 W. Olympic Blvd., Ste 265 444 Castro Street, Ste 800 3060 Washington Road
Los Angeles, CA 90064 Mountain View, CA 94041 Glenwood, Maryland 21738
310/477-5828 415/962-8885 301/854-6889
tcvb@la.tis.com ejs@ba.tis.com tj@tis.com

Abstract

Trusted Mach (TMach!) is a trusted operating system with a type extensible framework supporting a
client/sever architecture. The TCB implements the type framework and provides trusted system services
within it. The framework is extensible: untrusted client software can define and implement new types using
the same underlying microkernel mechanisms that the TCB uses to implement its types. To client software
there is no visible difference between objects implemented by the TCB and objects of untrusted application
servers. From a TCB modeling point of view, however, the difference between these two kinds of objects is
critical. The definition of the subjects and security-objects of the system extends the TCSEC paradigm to
encompass the system’s extensibility. The paper presents an overview of TMach, a definition of its subjects
and security-objects and an account of the assurance of the system as related to the type-based client/server
architecture. ‘

Keywords: Extensible, client server Trust, distributed systems, Mach, B3.

1 Introduction

Developers of the TCSEC recognized the importance of clearly identifying the set of subjects and objects
to be controlled by the TCB. This fundamental notion was derived from process-based architectures of the
trusted operating systems of the day, which were expected to consist of a monolithic security kernel and a
collection of trusted subjects. Subjects were closely tied to executing processes, and objects were containers
of information managed by the security kernel.

This foundational view of trusted systems is being updated by new and emerging client/server architectures
of microkernel-based systems. The microkernel basis allows multiple independent servers to implement
system services, while allowing the microkernel to implement only the most basic system mechanisms. The
microkernel /server architecture is inherently extensible, so that new servers can be added to implement new
services. Furthermore, these new services may be either system-level services or application-level services.

Modeling subjects and security-objects in the context of type extensible client/server architectures is a new
and critical aspect of modern trusted system development. The model must describe the security features
of the extensibility mechanisms. This report describes one approach to extending the TCSEC modeling
concepts to a trusted client/server system with secure extensibility that derives from the microkernel basis.

1.1 Basic Subject/Object Definition Then ...

In early trusted systems such as the Honeywell SCOMP and Multics systems, the TCB consisted of a trusted
kernel and a small collection of trusted processes. The security kernel created and managed all subjects,

1Trusted Mach and TMach are Registered Trademarks of Trusted Information Systems, Inc. (TIS)

83

which were simply processes executing on behalf of logged-on users. The security kernel also created and
managed all objects and enforced controls of access of them by subjects. Object were typically passive
containers of information, like memory segments and devices.

Subjects accessed objects only via the kernel, and the various kernel interfaces all rested on one mechanism—
a call instruction—which trapped to a kernel gate. Only by this mechanism could a process request that
the kernel perform for it some access to some object. Trusted processes used this same mechanism, the only
difference being that a trusted process might have some privilege which would cause the kernel to treat the
request differently than it would have if the request came from an untrusted process.

Subjects could communicate with one another by using shared security-objects (managed by the kernel)
such as shared memory segments, semaphores, etc. Each different mode of inter-subject communication
was modeled as a separate kind of security-object. These inter-process communication (IPC) objects were
storage objects just as were more persistent objects (e.g., directories and files), but were designed for more

efficiency in IPC.

These architectures mapped well with security models such as the Bell and LaPadula model and definitions
of subjects and objects corresponded closely with the definitions in the TCSEC.

1.2 ... And Basic Subject/Object Definition Now

In a microkernel-based trusted system, only the most basic system functions are implemented by software
executing in the privileged hardware state. The remaining trusted system functionality is implemented by a
collection of servers each of which executes as a process?. Many microkernels, including the Mach microkernel
which is the basis of TMach, do not provide sufficient functionality to implement subjects or security-objects.
The server TCB (the portion of the TCB exclusive of the microkernel) uses the microkernel’s basic services
to construct subjects and security-objects.

This extensibility approach is enabled by the separation of the traditional kernel TCB into a microkernel
and servers. Extensibility can be structured by a type mechanism. In a type-based client/server system,
each server defines an abstract data type with a specific set of operations (or methods) defined for objects
of that type. Each server is the manager for all objects of the type(s) it manages. In order to use a service
based on some type, a client contacts the server that manages that type and sends requests to the server;
each request is for an operation on some object of that type. Within such a type framework, extensibility
takes the form of the definition of a new type and the addition of a server to manage objects of that type.
As a result of using this framework, clients interact with new servers in the same way that they interact

with existing system servers3.

Such a type-based approach to server extensibility provides a convenient framework within which to model
the subjects and objects of a trusted system. The TCB is separated into a microkernel and a set of trusted
servers which manage some fixed set of types. Adding new types and new servers must be modeled in such
a way that the extension, while adding untrusted type manager servers, nevertheless does not change the
subject/object model which defines the basic approach to the security of the system. In other words, new
types of objects (managed by untrusted servers) can not be new kinds of security-objects.

There are a number of subject/object modeling issues that must be addressed within a microkernel/server
architecture with type-based extensibility.

Trusted Servers are not subjects. The TCB servers are analogous to a kernel’s process subsystem which im-
plements subjects by associating processes with user IDs defined by an authentication subsystem. Therefore,
the definition of subjects must carefully distinguish subject processes from the TCB process that implement

2Tn this context, we use the term processin a general way, to denote a domain of execution that is protected by the kernel yet

is separate from the kernel’s privileged domain.

3This form of type extensibility is increasingly referred to as “object-oriented” [9]. The underlying concept of object oriented
design is that software is modeled as collections of cooperating objects. Object managers provide services in response to messages
from clients or from other object managers. In order for trusted systems technology to keep up with this new approach it will be

necessary for trusted systems design to be extended to meet this evolution in software design, development and analysis.

84

subjects.

TCB servers implement security-objects. When microkernel resources alone do not constitute security-
objects, the server TCB must build on microkernel resources to construct security-objects. The microkernel
provides primitive storage abstractions (e.g., memory and devices) which servers use to implement system
objects such as files. Therefore the definition of security-objects must be enhanced to account for security-
objects being managed not by the kernel but by TCB servers.

Both kernel and trusted servers offer the TCB interface. The servers use the kernel interface to implement
objects. However, the kernel interface is not hidden by the interface that the TCB servers offer. Because
kernel services are available to subjects, subjects can use the kernel services in exactly the same ways as
TCB servers, i.e., to implement objects. In other words, subjects can be non-TCB servers and can manage
objects. However, the set of kernel services available to subjects is restricted to a subset which has been
determined to be non-security-critical. Other, privileged, kernel operations are restricted for the use of the
TCB servers, and cannot be directly accessed by untrusted servers. Instead, untrusted servers call on the
TCB to gain TCB-mediated access to resources governed by kernel privileges.

Microkernel provides basic TCB interface mechanism. The existence of TCB servers also effects the basic
interface between subjects and the TCB. As in a kernelized system, subject processes trap into the micro-
kernel. Then, rather than always servicing the request in the kernel—as is done in a kernelized system—the
microkernel redirects some service requests to the appropriate component of the server TCB. Among these
server-implemented requests are both subjects’ requests for access to security-objects and also subjects’
requests for access to subjects.

1.3 Where Do We Go From Here?

Each of these differences requires extensions to the traditional notions of subject, object and subject-TCB
interactions. This paper describes one effort at such extension, performed as part of the development of
Trusted Mach (TMach), a trusted system which has used TCSEC principles in the development of an
extensible, type-based system.

This paper will first present an overview of the TMach system in Section 2. Then Section 3 presents the
various issues pertaining to the application of TCSEC principles to TMach, including specific issues which
motivate extending the TCSEC definitions to encompass microkernel-based client/server systems. Having
laid this groundwork, Section 4 will then present an account of the way TMach addresses these issues by
defining subjects and objects in a manner consistent with the TCSEC, and yet inclusive of the extensibility
that is enabled by the microkernel-based, client/server architecture of TMach.

In making this presentation, subject-TCB interactions will be presented both from the point of view of
subject-object interactions and subject-subject interactions. There are fundamental distinctions between
these different views of TCB-interface usage, and these distinctions drive the different roles of three related
but critically different system abstractions: the kernel’s port abstraction, the server TCB’s IPC objects, and
a new kind of named object—the connection point—which is critical to modeling extensions of sets of types
of objects. Each of these three will be described, including the role of each in TMach’s provision of secure
communication.

After the central presentation, Section 5 provides an analysis of the security of the TMach system given these
new definitions and describes the benefits achieved from this new point of view. Section 6 then discusses
extensions of TMach to a distributed system and points out the how the definitions of IPC objects contribute
to ensuring security in a distributed system. Finally, Section 7 presents summaries and conclusions.

2 TMach System Overview

Trusted Mach is a microkernel-based system with a client/server architecture, which has been developed
using an object-oriented design methodology. TMach is aimed at the B3 level of trust as specified in the

85

TCSEC and at the F-B3/E5 levels of the ITSEC. TMach is a trusted server software layer that runs on the
Mach microkernel. The TMach servers use the Mach microkernel to implement security objects and subjects,
to implement controls on the access of objects by subjects, and to implement mechanisms for supporting
policies such as subject identification and authentication.

The TMach system uses a paradigm for computation known as a client /server architecture. In the paradigm,
server processes provide services that are required by other processes, called clients, which request services
from servers. The client/server interaction is via a form of message-passing. A client requests a service
by sending a message to the server. The server performs the computation necessary for the request, and
sends back to the client a reply message which contains the results of the computation. For example, when a
TMach client requires access to data in a directory, the client sends a message to a TMach server component,
which obtains the requested data and sends it in the reply message. The use of message passing as the means
of client/server communication also facilitates distribution of processing.

The message-passing communication is provided by the Mach microkernel, which is the basis of the TMach
TCB. The microkernel provides the primitive services that the server TCB uses to construct subjects,
security-objects, the services based on interactions between them, and the access controls on those inter-
actions. This kernel/server architecture is illustrated in Figure 1. We first describe the kernel’s primitive
services and then describe the various illustrated server components built on the kernel. We then discuss the
security mechanisms of the kernel and how the servers use them to implement subjects and security-objects.

2.1 Kernel Primitives

The microkernel provides an active process-like system abstraction, three passive container-like system ab-
stractions, and one primal mechanism—the port—that is interface to all abstractions and the microkernel
services provided through them. These five kinds of abstractions, or kernel-objects, are: multi-threaded
processes called tasks; threads of execution within tasks; regions of memory called memory-objects; devices;
and message queues.

For each of these five kinds of kernel-object there is a descriptor called a port. Ports have capabilities called
port rights. Possession of a send right to a port allows the possessing task to send messages over the port.
In the case of ports which are descriptors for tasks, threads, memory objects, or devices, the microkernel
receives each message and interprets it as a service request on the kernel-object to which the port refers.
In the case of ports which are descriptors for message queues, the microkernel enqueues each sent message,
which may later be dequeued by a task which holds the receive right for the port.

Ports, and messages sent on them, are the fundamental interface between tasks and the microkernel. Most
microkernel interface functions are operations on one kind of kernel-object, and these operations are per-
formed using the port that is the descriptor for the object. In many cases, the operation is implemented
as a message sent by the task on the descriptor port. For example, there is an interface for mapping a
memory-object, and this interface is implemented as a message sent on the port that is the descriptor for
the memory-object. The message-send operation is implemented via a trap mechanism.

Just as the port is the kernel’s fundamental mechanism, part of the port mechanism is the kernel’s primary
protection mechanism. Ports are used by name (actually an integer), but each task has a port name space
which is mapped by the microkernel in a manner analogous to virtual memory. A task may attempt to use
a port name, but the attempt will only be valid if the port name maps to an actual port. There will only
be a valid mapping if the task has obtained a right to the port. A task can only acquire a port right if the
right was contained in a message that the task received.? Such acquisition occurs as a result of the following
sequence of events. Initially there is a port A which is a descriptor for a message queue. Task R has the
receive right for port A, and task S has a send right for port A. There is also a port B which task S has
a send right for. Then task T sends a message over port A, and includes a port right for port B; task R

¢ Actually, this is a simplification—there are a few other ways that tasks can acquire port rights—but a useful one since the
other methods also either involve the microkernel directly (a task can request that the microkernel create a new port and give
the task a port right for it) or also involve the use of other port rights (if a task acquires rights to a port that is a descriptor for +
another task, the first task can get port rights from the second task).

86

UNTRUSTED CODE

APPLICATION TCB LAYER

Authentication
Server

Virtual Terminal Tape Server
erver

Audit Server

Root

TMACH KERNEL

Figure 1: Trusted Mach Kernel/Server Architecture

87

receives the message, and the kernel updates R’s port name space to have an entry for port B; task R now
has a send right for port B.

Because of the microkernel’s port name mapping, the port mechanism has two powerful but simple conse-
quences. First, control over a task’s set of ports is equivalent to control over the task’s access to system
resources. Second, possession of a right to any one port has the potential use of gaining other port rights,
if any other tasks have a right to the same initial port and are cooperative in using it to send messages
containing other port rights.

2.2 TMach Server TCB

As shown in Figure 1, the server TCB is comprised of a number of trusted servers and some utilities. In
addition to using the kernel abstractions to build higher level abstractions, the TMach TCB servers also use
the abstractions to protect themselves from each other and from non-TCB code.

Access mediation in the TMach system is centralized in the Root Name Server (RNS). All named entities
are items in the TMach name space. The RNS manages the name space and holds all security-relevant
information about the named items. The RNS makes all mediation decisions based on the TMach system
security policy. While all the security-relevant information about an item is held by the RNS, the specific
semantics of an item are implemented, and the contents held, by a different server called an item manager.
There are several types of named items in the TMach system. Currently TMach provides trusted item
managers or servers for directories, files, and various multilevel devices. In addition to item mangers, audit
and authentication services are each provided by a separate server. The other TCB servers shown in the
architecture diagram provide specific services related to privileged kernel operations: the host control server
for management of hardware configuration; the device server for management of physical devices; and the
subject server for creation of tasks with arbitrary security ID’s. .

In addition, the TCB contains entities which are not actually servers but collections of programs with
a common purpose. Specifically the Trusted Shell Utilities (TSH) and the Trusted Administrator Shell
Utilities (TASH) are collections of programs used to configure and administer the TMach system.

The final layer in the TMach architecture is composed of the Non-TCB software. This layer provides
the user-level interface, also called the operating system (OS) personalities. These non-TCB servers use
the personality-neutral TCB servers to provide their own OS-specific services. Currently two specific OS
personalities (POSIX and DOS/Windows) are being designed for the TMach system, but any number of
other personalities are possible.

2.3 Kernel Security Features

The microkernel does not provide sufficient functionality for kernel-objects to be security-objects and sub-
jects. None of the kernel-objects has any security attributes (e.g. ACL, sensitivity label, integrity class),
so there is no basis for access control. With respect to security-objects, it is entirely up to the server TCB
to build on kernel-objects, both by using them to construct higher-level abstractions which include security
attributes and by using these attributes to implement access controls. The server TCB uses the kernel
privilege of physical device access to securely store object data including security attributes.

With respect to subjects, however, the task kernel-object has two features which assist the server TCB in
basing subjects on tasks. These two features of Mach tasks are process isolation and the security identifier.
The Mach task is a familiar process-like abstraction, each task having a distinct virtual address space.
The kernel uses privileged hardware features to implement virtual memory and to prevent any task from
tampering with other tasks’ virtual memory. In addition, each Mach task has its own protected port name
space. As a result of using the familiar mechanisms that underly subject definition, Mach implements process
isolation and extends the notion to include the management not only of memory but of ports, which are the
critical access mechanism for all system resources.

The security identifier (or secID for short) is the second microkernel mechanism that supports the server

88

TCB’s implementation of subjects. The secID is an attribute of each task. The microkernel provides the
secID as an uninterpreted value which is intended for server-level use.’ Servers can interpret secIDs in
whatever manner is useful at the server level. The microkernel merely maintains an immutable task-to-
secID mapping, which is set during task creation by the creating task for the created task. In addition to
this task-secID association, the microkernel performs one other function which relates secIDs to messages
that are enqueued on message queues: when a task sends a message on a port for a message queue, the kernel
stores the sender’s secID along with the message; then, when a task receives the message, it can determine
the secID of the sender.

This sender-secID tagging is critical for security in any Mach system. In Mach, all non-kernel computation
takes place in tasks, and all interaction between tasks is accomplished by means of ports. Therefore, ports
are the means of interaction between subject tasks and the tasks that comprise the server TCB. As a result,
sender-secID tagging enables the server TCB to establish the identity of subjects, as described further below.

2.4 Subject/Object Abstractions

| TMach subjects are based on Mach tasks. A subject task is created by the TMach server TCB when a
} logged in authenticated user requests creation of a session®. The server TCB calls on the microkernel to
| create the task and specifies the secID. The value of the secID is a token that represents the various security

attributes of the subject: a user identity, groups, sensitivity level, etc. The ability to thus specify the secID
of a child task stems from a kernel privilege” which is held solely by the server TCB. Because subject tasks
lack this privilege, any child tasks inherit the secID from the parent task. Thus, for each session, there is a
task or group of tasks all with the same secID corresponding to the user.

The secID is used by the TMach server TCB to mediate and enforce access control decisions. This usage is
based on the kernel’s service of tagging each message with the secID of the sending task. Mach messaging
is the interface between any task and the kernel, and between any task and other tasks, including the tasks
that comprise the server TCB. Thus, any subject task request of the TCB is a message tagged with the
subject’s secID.

TMach security-objects are implemented by the TMach server TCB, using Mach devices, message queues,
and memory-objects. Each TMach security-object has a name and a type. The name represents an item
in the TMach name space, which is implemented by the Root Name Server (RNS). The RNS maintains a
mapping between each item and its type, and each type and its item manager.

All named security objects are items of a type managed by a TCB server which acts as a trusted item manager
for the type. Each TCB-managed type is a specific kind of security-object. Within the TMach hierarchical
name space, all internal nodes are directory security-objects. Each external, or “leaf”, node is an item of one
of several types. File security-objects provide general purpose storage. Symbolic link security-objects provide
pointers within the name space. Type security-objects are items which describe a type associated with some
other items. There are various types of device security-objects which are implemented by the server TCB’s
use of device kernel-objects coupled with server-implemented access controls. There may also be other types,
types which are not managed by the TCB. Every item of any non-TCB-managed type is a security-object
called a connection point. Finally, there is one kind of TMach security-object which is unnamed: the IPC
object. The core of this paper is Section 4’s description of connection points, IPC objects, subjects and
non-TCB item managers. ‘

In order to gain access to a named security-object, a subject sends a request message to the server TCB.
| The RNS is the destination of all such messages. The RNS performs all access mediation and is the sole
source of access to every security object. The request includes the name of an item and the access mode

server-level item managers do (see below). This checks does not involve interpretation of the secID, but rather is a check on
equivalence of secIDs.

8 A user can create multiple sessions each potentially of a different security level.

"Kernel privileges are represented as ports. For a task to successfully call a privileged kernel interface, the task must have a
port right for the port representing the privilege appropriate to the interface.

89

‘ 5The kernel itself uses secIDs in one way, to enforce access-control decisions on memory-objects, in the same manner that

requested. The RNS “resolves” the name, i.e., determines which specific item is named and retrieves from
stable storage the attributes of the item. among these attributes are security attributes, e.g., a label and an
ACL, that are half of the input to the access mediation function. The other half are the security attributes
of the subject requesting access. These are obtained from the secID tag on the request message. The RNS
extracts the message secID, expands it to the corresponding full set of attributes and uses these subject
attributes to decide whether to grant access in the requested mode.

If access is approved, the RNS creates a message queue. The port of the message queue is used as a descriptor
for the subject’s access to the requested object. The message queue itself is used as the communication
medium between the subject task and the item manager. The RNS gives the port’s receive right to the item
manager and gives a send right to the subject task. As a result, the subject task and item manager can then
interact in client and server roles, because the the subject task (client) can send operation requests to item

manger (server).

Trusted item managers have a security function that is also dependent on the secID functionality of the kernel.
After access to an item is granted, the item manager receives operation requests on the item descriptor port.
However, because rights to the port can be passed among tasks, the item manager checks the operation
request message and honors it only if it originated from the subject to which the RNS granted access. This
check is a comparison of the secID of the original access requester and the secID tag of the operation request
message. A similar check is made between the access mode required for the operation and the mode of access
granted by the RNS: when the RNS sends the item descriptor port right to the manager it also includes the
requester’s secID and access mode.

Therefore, item managers enforce the rules that a user task with a send right to an item descriptor port can
only use that port to access an object if the task has the securityID prescribed by the RNS, and only if the
requested operation’s access mode was granted by the RNS. The RNS’s mediation and the item managers’
enforcement are the central mechanisms of access control in TMach. :

Note that multiple tasks can share a secID. As described above, a user’s original task can spawn child tasks
with the same secID and hence the same single sensitivity label. All of these tasks form a task group. When
access is granted to one task in a task group other tasks in the task group can use the access: the original
accesser can send an item descriptor port right to another task in the task group, the other task can use the
port to send an operation request message, and the item manager will honor the request because it has the
correct secID. Thus, TMach’s subject is the task group. Because each session is assigned a distinct secID,
each session’s task group is a distinct subject.

This feature of TMach’s subject definition and access control mechanisms allows for a potentially powerful
multi-programming approach to application development. Client applications can use multiple co-operating
tasks, rather than being required to either have the entire application reside in one address space, or have
separate tasks get separate access to shared objects.

3 Issues in Applying TCSEC

Having presented a basic picture of the subjects and objects of TMach, it should be clear that a new view is
required to provide a more complete and detailed picture. The new view of modeling subjects and objects
in TMach is an extension of the TCSEC view of subjects and objects as embodied by many of the early
systems, which many view as definitive implementations of the TCSEC concepts pertaining to modeling
of subjects and objects. We have extended the TCSEC view to include a trusted system that has been
designed for type extensibility mechanisms which allow the system to be extend without changing the TCB
and its interface. Before describing this extended view and completing the picture of TMach subjects and
objects, there are a few important distinctions to be made. These distinctions are between the various kinds

of interfaces in TMach.

In a kernelized TCB, the main kind of interface is the kernel’s interface to subjects. This interaction is also
present in TMach, as the microkernel’s interface to tasks, both to subject tasks and to TCB tasks. However,
because of the microkernel/server distinction, the TCB interface consists not only of the kernel interface,

90

but also of the interface between subjects and the server TCB. The server TCB interface is message-based,
using the microkernel mechanism of message queues that can be shared by tasks, e.g., a subject task and a
TCB server task.

This same message mechanism is also used for a third major interface, the interface between a subject and
another subject. The principle distinction of the subject-subject interface is that the server TCB mediates
connections between subjects.

Because the server TCB mediates subjects’ use of the kernel’s communication mechanism, subjects’ interface
to one another is via a server TCB interface for requesting access to a communication medium to another
subject. This request, being the same sort of request as that to access objects—and having the same kind of
mediation—is in essence a request by a subject to access a subject. However, to avoid modeling a subject as
an object, there is a new security-object, the IPC object which represents the set of resources of one subject
that another subject can access. From a high-level conceptual view each IPC object is the passive portion
of a subject. The next section gives more details on the use of IPC objects to model access of one subject
to another subject’s resources.

In an extensible client/server system, perhaps the most significant modeling concepts center around modeling
subject-subject communication. Connection points are used to model such interaction in an extensible
system. The relationship between the two kinds of security objects, connection points and IPC objects,
is the main topic of the remainder of this paper. A key concept in this relationship is the communicating
group. A communicating group is a group of subjects that can communicate among one another. Each subject
initially is alone in a communicating group, but through TCB-mediated access requests the subject can get in
communication with another subject. As a result the two subjects become part of one communicating group.
If either or both subjects were previously in communication with other subjects (i.e., were part of a larger
communicating group), then all of these other subjects are also part of the newly merged communicating
group. This transitive group membership is intended to model the fact that when one subject communicates
with two other subjects, each of those other two is potentially in communication with the other via port
rights that the first subject could pass to the other two.

The next section uses these concepts to present a new view of subjects and objects that can account for
subject-subject interactions, specifically those which are interactions between a client subject and a server
subject which implements objects that are not security objects. This situation arises when the system is
extended with new types of objects and managers for them. Because all processing occurs in the framework
of client requests to object managers, it is possible to develop a model of subject/object interaction which
can be extended to include interactions between untrusted applications and objects. Constructing such a
model of communication has allowed us to extend the abstract concepts of subject and object closer to the
application level. We believe that this communication model will allow application designers to close the
gap between minimal TCB security primitives and more complex application needs, and to do so in a way
which can be shown to be secure. 4

4 A New Point of View

Given the basic definition of subjects and objects in TMach, the overall picture must be rounded out by
consideration of two related questions, which concern the areas of TMach that are modeled most differently
from early TCBs. These questions are: How are subject-subject interactions modeled? How are subject-
object interactions modeled, when the object is an item that is not managed by the TCB? These questions
are closely related, because the only means of interaction between subjects is via non-TCB-managed items.

Before describing the details of subject-subject interaction, however, we must first understand the initial
state of a subject, and the TCB’s controls over transitions from the initial state.

91

4.1 Initial State

Initially, a TMach subject is simply a task which cannot contact any other subjects and is not accessing any
security-object®. There are two types of action an initial subject can take in order to use any other system
resources than the ones it was created with. First, a subject can always make microkernel calls. Secondly,
a subject can contact the server TCB via the kernel’s message-passing service.

By contacting the microkernel, the subject can gain more primitive resources. However, doing so only
adds to the primitive resources that comprise the subject. These additions are examples of the subject’s
modification of its own IPC object. However such IPC object access does not permit any new object access
or subject contact. The following are examples of a subject modifying its IPC object: a subject can call
on the microkernel to create other tasks or threads which become part of the same subject; a subject can
call on the microkernel to create memory-objects, which adds to the virtual address space of the subject; a
subject can call on the microkernel to create message queues, though with no other subjects with rights to
the messages queues these are little more than extensions to the subject’s address space; finally, a subject
could call on the microkernel to access a device, but such requests would be disallowed because device access
requires a privilege that the server TCB holds and does not give away to subjects.

Other than these kernel interactions, any subject activity must come about as a result of requests to the
server TCB. Each subject initially has only one port right, a send right to a port for a message queue.® The
TMach Root Name Server holds a receive right for this port. Therefore the port can be used by the subject
to send request messages to the TCB. As described in Section 2, the Root Name Server (RNS) is the sole
point of access for all objects, and a successful access request results in the client acquiring a send right to a
descriptor port for the requested object. Because all system resources are accessed by subjects in the form
of security-objects (with the above-described exception of kernel resources which only augment the subject
itself), these object descriptor ports are the sole means of access to resources.

Object access is only possible via the RNS. Therefore, the RNS, together with the managers of the objects to
which the RNS has granted access to a subject, has the ability to control accesses by that subject. However,
correct control depends on the correct management by the trusted system servers of the ports to which a
subject is given rights. The rules for correct control can be simply stated. First, there is a rule of correct
access granting: for the ports over which the RNS receives messages, the RNS only handles object request
messages, and only replies with object descriptor ports when access control checks were successful. No
other requests are honored, and no other ports are given to subjects 1°. Second, there is a rule for correct
continuing access: trusted object managers only use item descriptor ports for providing access to the single
object that the port is the descriptor for, and access is only provided if the requester is the same subject

that originally opened the object.

Thus far, we can see that a subject may open objects and get descriptor ports, but that these ports are only
useful for communicating with the TCB, i.e., the trusted servers that manage the security objects which
the subject is accessing. Using the above mechanisms for communication with the RNS and trusted object
managers, a subject never acquires any port rights that will allow it to communicate with another subject.
However, the TCB does provide a way for subjects to contact one another. Such contact involves an object
that is of a type that is not managed by the TCB. Because TMach’s type system is extensible, it is possible
for a subject to define a new type and to become the manager for that type. Then, when another subject
requests access to an object of the new type, two port-related actions occur: the requesting subject receives
the usual send right to the descriptor port; and an untrusted object manager receives the receive right to
the descriptor port. There is a critical distinction in this mechanism in that the object manager is a subject
(rather than a TCB component), the object manager and requester are two subjects in communication with
each other via the port to which they share rights.

8 Actually the subject is created with access to its own internal state which is modeled as an IPC object.
Actually, a task does have other port rights (such as for the port that is the descriptor for the task itself), but these do not

effect the subjects’ ability to contact other subjects.

10The RNS is also an object manager for some types, e.g., directories. In this context, we distinguish between the RNS— the
central point of access and mediation— from the object manager for directories. The object manager components of the RNS are
treated in exactly the same way as object managers that are separate servers.

92

4.2 Connection Points

However, this subject-subject communication raises some issues that must be addressed. Recall that each
TCB-managed item is of a type that corresponds to one kind of security-object, e.g., a file item is a file
security-object. However, what kind of security-object is an item of a non-TCB-managed type? A TMach
system could be extended to have several non-TCB-managed types, e.g., mailbox, calendar, database. How-
ever, none of these types is a new kind of security-object. From the application point of view of the system,
an item of some new type (e.g., calendar) is not fundamentally different from an item of system type, e.g.,
file. From the TCB definition point of view, however, there is a critical difference: an untrusted item man-
ager cannot be relied upon to correctly implement the rule for correct continuing access described above in
Section 2.4.

For example, there could be two non-TCB-managed items of the same type, one with an ACL that only
allows reading and writing by one user, and another object with an ACL that only allows reading and writing
by another user. When a client opens the first item for write, the RNS will check the ACL to ensure that
writing is only allowed by the authorized user, and only then is the untrusted item manager involved. When
a client opens the second item for read, a similar procedure is followed. However, the when the second client
does a read request, the untrusted item manager is free to return data that was previously written on the
first item, to which the second client is denied access by the ACL.

Clearly, such misbehavior is not desirable for a useful item manager that operates as expected in the type-
based client/server framework. However, the critical point for TCB definition is that the TCB must assume
that such misbehavior is possible.

At this point, we are now ready to address the question of modeling subject-object interactions for non-
TCB-managed items. For purposes of TCB subject/object definition, all items of all non-T CB-managed
types are considered to be security-objects of one kind: connection point. Each connection point object is
simply an item which can be opened by a subject for the purpose of communicating with another subject.
For each non-TCB-managed type, all items of that type are connection point security-objects, but each is a
different name for the capability to contact the same subject, the type’s item manager.

Connection points are different in one important way from all other named objects. All named security
objects including connection points have in common data such as ACL, label, modification date and time.
In addition each other security object of TCB managed type has type specific data; for example, a file has file
contents; a type object contains data about operations and access mode. However, connection point objects
contain no further data. Connection points are security objects which model items that are not managed by
the TCB. Thus, from a modeling point of view there is nothing more to be said about these objects. Yet,
from an application point of view these type specific contents of the object are managed by the untrusted
itemn manager.

4.3 IPC Objects

Now that we have described the mechanism for subject-subject communication (non-TCB-managed items)
and also explained its consequences for modeling objects (connection points), we can complete the account of
TMach’s subject and object definitions by considering how to model these subject-subject interactions. The
TCSEC paradigm does not allow for direct subject-subject interactions. Rather, subject-subject interactions
are modeled by means of some intervening object. Therefore, in TMach, subject-subject interactions are
modeled in terms of a kind of security-object called an IPC object.

As mentioned in Section 3, the IPC object is used to model the passive part of a subject, its state, which
another subject can access. More specifically, an IPC object is the sum of the states of all the tasks that
comprise a subject. The state of each task is the set of microkernel-objects it can use: memory objects,
message queues, threads, and tasks; each of these is represented by a port to which the task has a right.
In addition to ports, the other part of a tasks’ state is its virtual address space, which allows a task to
access memory directly without using a port as a descriptor.!! Therefore, in terms of kernel mechanisms,

1)\emory is the exception to the rule that all kernel resources are accessed via a port. Once a memory object has been mapped

93

the content of an IPC object is a set of memory regions and a set of port rights, each of which is a descriptor
for a kernel-object accessible to some task in the subject to which the IPC object corresponds. With regard
to subjects, each IPC object represents the whole of one subject’s operational environment—essentially its
virtual address space and port name space—that can be effected by another subject.

Because IPC objects are security-objects of TMach, the definition of security-objects must include an account
of the mechanisms and modes of access to IPC objects. All other kinds of TMach security-objects are accessed
initially by opening the named item that corresponds to the security-object; subsequent access is via the
client/item-manager interface of the type of the item. Creation and deletion are also accomplished via item
open and management interfaces.

IPC objects, however, use different mechanisms than named security-objects. All IPC object operations
(create, access, delete) are side-effects of other operations. No IPC-object operations are undertaken by
reference to the IPC-object itself; in fact, there is no name by which to reference an IPC-object. An IPC
object is created each time a subject is created. The IPC object is destroyed along with subject, i.e., with
the destruction of the last task of the subject. There is only one access mode for IPC objects: all accesses
permit arbitrary use and modification of the IPC object.

Although such arbitrary access is possible in principle, the access is in fact constrained by the subject
associated with the accessed IPC object. If the accessed subject is willing to pass all its port rights to the
accessing subject, then complete access will be possible. On the other hand, if the accessed subject passes no
further port rights, then access will be limited to sharing the message queue represented by the port right,
the sharing of which was established during an open of a connection point.

There are two ways that access to an IPC object is granted. In the first case, each subject is granted access
to its associated IPC object when the subject is created. Subsequently, the subject can access the IPC object
in a variety of ways, by accessing memory or any kernel-objects to which a subject’s tasks have access, or by
creating kernel-objects, or by destroying any kernel-objects to which the subject’s tasks tasks have access.

The second method of IPC object access occurs when a task of one subject acquires a port right to a port
for which another task (of another subject) already has a port right. The canonical example occurs during
an open operation on a connection point. As described in Section 4.1, rights to the same port are given to
both the opening client and the item manager associated with the connection point. Thus the subject M
(of which the item manager task is a part) acquires access to the IPC object associated with the subject of
which the client task is a part, similarly for the client’s subject and M’s IPC object.

Given this initial access, each subject has the discretion to expand the amount of accessible resources by
passing further port rights in addition to the single initially shared port. Because the initial port sharing
is mediated by the TCB, and because any subsequent additional port sharing is discretionary, we can see
that IPC objects model the two salient features of inter-subject interaction in TMach: first, any established
communication has the potential to be expanded beyond the original shared port; second, every original
port sharing is mediated by the TCB, and mediated according to a policy that includes for the possibility
of such expansion.

This expansion of access is related to the transitive nature of IPC object access. We have already seen that
the canonical method of IPC object access is via an open of a connection point, when the client and manager
obtain access to each other’s IPC objects. All other IPC object accesses also occur during connection point
opening, and these other kinds of access are transitive. To understand the transitive nature of IPC object
access, recall that an item manager can have potentially several clients. Each client, furthermore, may be
in contact with other managers, and so forth. '

The complete network of inter-communicating subjects forms a communicating group. Each time a con-
nection point access is approved by the TCB, the communicating group of the client is merged with the
communicating group of the manager. The client’s and manager’s subjects gains access to each other’s IPC

into a task’s virtual address space (an operation that uses the memory object’s descriptor port), the task has the usual sort of
virtual memory-mapped access to the region of memory associated with the memory object. Direct memory access is of course
necessary in practice, but can be considered an optimization of memory object read and write operations which require use of the

memory object’s descriptor port.

94

object; but every subject in client’s communicating group gains transitive access to the IPC object of every
subject in the manager’s communicating group, and vice versa. As a result, every subject in the merged
communicating group has access to the IPC object of every other subject. This transitive closure of access
models the potential of every task to share all its port rights with every task it communicates with, and for
those tasks to further pass on the port rights.

With regard to security, the critical point is that each IPC object access occurs during communicating group
merger or subject creation, which is performed by the TCB only after passing access control checks for a
connection point. Mandatory security is maintained by ensuring that a subject can only join a communicating
group comprised of subjects of the same level. Therefore the relationship between IPC objects and connection
points can be summarized as follows: for each non-TCB managed type, all items of that type are connection
point security objects, each a different name for the capability to access both the type’s item manager’s IPC
object and all the IPC objects of the subject in the item manager’s communicating group.

5 Security Considerations

The above sections have described the subjects and security-objects of TMach and the server TCB’s use
of kernel mechanisms to implement them. This section concerns the assurance that the system enforces its
security policy. Formal assurance is addressed by a formal model [6] of the system’s entities and rules of
operation. After summarizing the model entities, this section addresses design assurance by describing how
TMach implements unbypassable security mechanisms within a microkernel-based client/server architecture.
Next we address architectural assurance by discussing how this architecture has benefits that enhance the
assurance of the system’s implementation of the security mechanisms.

The TMach subject is a set of tasks of one session, which therefore have the same mandatory and discretionary
security attributes. The server TCB encodes these attributes in a token which is stored by the microkernel
in each task’s security ID attribute. TMach implements several kinds of named security-objects. The names
are derived from a hierarchical name space. Each item in the name space has type. Some types are managed
by the TCB: directories, files, symbolic links, types and various types of devices. One kind of security-
object models each of these types. One other kind of security-object, the connection point, models all other
types, i.e., those that are not managed by the TCB. A subject’s access to all named security objects is
mediated based on the subject’s security attributes (encoded in the security ID which the kernel affixes to
every subject’s requests) and the object’s security attributes (maintained by the Root Name Server). The
remaining security-object, the IPC object, models the interactions between subjects that result from clients
accessing items of non-TCB-managed types. IPC object access is a side-effect of connection-point access.

5.1 Unbypassable

The unbypassability of the TMach TCB is built up from hardware mechanisms, kernel services implemented
using those mechanisms, and server TCB access control functionality built on kernel services. Because only
TCB software runs in the most privileged hardware state, it has sole access to hardware resources and
services, including sole control of physical memory. The kernel uses these hardware mechanisms to protect
itself and to implement the virtual memory mapping and port name mapping mechanisms that protect tasks
from one another.

The RNS is the server TCB component that mediates access. The RNS runs not in the kernel’s privileged
hardware state, but in a task. Therefore, in addition to the demonstration of the kernel’s unbypassability
due to hardware use, there must be a higher-level demonstration of the RNS’s unbypassability, i.e., that
subjects may obtain access to resources only after appropriate mediation by the RNS. Each TMach subject
has a well-defined initial set of resources and available services, this initial state ensuring that additional
resources may only be obtained after RNS mediation.

A subject’s use of microkernel interfaces is also an issues with unbypassability. As described in Section 4,
subjects initially have only two capabilities: communication with the kernel via the hardware trap mechanism

95

and use of the kernel port mechanism to communicate with the RNS. Therefore, a subject initially can contact
no other task than the RNS. Subsequently, subjects obtain resources only after RNS mediation. Subjects
can, nevertheless, contact the microkernel without going through the RNS. However, microkernel services
cannot be used to access objects without RNS involvement. Demonstration of this point corresponds to the
services of the kernel. A subject can manipulate its IPC object (create child tasks with the same security
ID, manipulate its threads, or create new threads, use existing or create new ports and memory objects)
but these operations effect the state of the subject, but do not effect any other resources mediated by the
RNS. The remaining kernel service is for devices, but the direct access to devices is controlled by a kernel
privilege which the TMach TCB reserves for its own use. In TMach, subjects do not have this privilege and
hence cannot obtain device access from the kernel.

The microkernel provides three privileges, each represented by a port. In order for privilege operations to
succeed the caller must have ports rights to the appropriate port. The first privilege is to devices, represented
by the device port; next is host control represented by the host control port; and the third is the ability to
create tasks with arbitrary security ids, which is represented by the host security port.

Because of TMach’s multi-server architecture, communication between the servers is also a critical part of
the basic security mechanisms. TCB servers must be able to accurately identify one another. For example,
item managers enforce access decisions communicated by the RNS, so item managers must be able to ensure
that such access directives genuinely come from the RNS. The microkernel’s port mechanism provides such
identification. During bootstrap, TCB server tasks are created with rights to ports shared only by TCB
servers. By only using these ports and by never passing rights to them, TCB servers ensure the authenticity
of other servers.

The kernel’s secID service is also the foundation of access control. Subjects can only contact the server TCB
via the kernel’s IPC service. Therefore, all subject requests are tagged with secIDs by the kernel, and the
TCB servers use the secID for access control. The other key mechanism for access control is the server TCB’s
storage of item security attributes, and of type specific information specifying for each operation what access
mode(s) are required. These security-critical data are TCB internal data inaccessible to subjects.

All these fundamental mechanisms extend simply when the system is extended with untrusted item managers.
As with all items, the server TCB maintains object security attributes, whether or not the item manager
is trusted. Operations on items of non-TCB type are treated by the TCB as always requiring read-write
access, because access to non-TCB-managed items is really access to the subject that is the item manager.
Access to the subject allows arbitrary communication with that subject, so RW access modes are needed to
ensure that only subjects of the same label can communicate.

Of course, an untrusted item manager may correctly implement a type and operations on its objects. Each
item may be correctly implemented as a distinct object with its own distinct content. The TCB cannot
assume this, and this is the reason for treating non-TCB-managed item access as subject access rather
than object access. However, if an untrusted item manager does correctly implement the access control
mechanisms that trusted item managers do, then its objects will be appear to applications to be very similar
to the objects of the TCB.

5.2 Benefits

The TMach system design is based on extensive use of layering, modularity, abstraction and data hiding.
Layering increases assurance by dividing the system into a collection of layers, from the most primitive layers
to the highest or least primitive layers. Within each of the abstract layers of the system architecture (i.e,
kernel, servers, OS personalities), each of the layers is further subdivided. Modularity increases assurance
by grouping together like functions into design and implementation units. As with layering, there are several
levels of refinement of modularity in TMach. First there are the layers of the system as a whole (non-TCB,
Server TCB, microkernel TCB) then each of these is further decomposed into subsystems and these are
decomposed into individual modules. The layering and modularity along with the object oriented design
of TMach provides abstraction and data hiding by providing progressive levels of interfaces and services.
The principle of least privilege also plays an important role in TMach. At the lowest layer each module

96

in TMach is designed to perform its intended function and no more. Further, modules and layers control
the export of privileges and services to only those needed by higher layers which can be shown to be safely
exported. Finally, through the use of domain separation between trusted servers and between servers and
the microkernel, the concept of least privilege is enforced throughout the system. All of these combine to
provide increased assurance that the system enforces its security policy.

The TMach architecture, with its extensible type-based client/server design, presents many advantages. As
we have seen, the basic abstractions of subjects and objects have been carefully constructed to provide
extensibility. Because of the extensive use of layering, modularity, abstraction and data hiding within the
context of an extensible type-based model of operation, an untrusted server for some new type of item can
be introduced without effecting the basic definition of subjects, objects and the rules for secure interactions
between them.

Along with extensibility comes flexibility. All access mediation in TMach is performed by the RNS, and all
mediation computation is performed by one module that compares subject and object security attributes.
As a result it is possible to replace the RNS’s mediation module with some other mediation module which
performs different or additional security policy mediation. The particular security policy enforced by the
RNS is independent of the client/server design and the basic rules guiding subject-object and subject—-subject
interactions.

Finally it is important to note that Mach, and correspondingly TMach, has been designed with portability
as a goal. The Mach microkernel encapsulates all machine dependencies into a few specific subsystems.
The microkernel is a machine dependent base which isolates non-kernel software from the idiosyncrasies
of differing hardware bases. Only these specific microkernel subsystems require modifications for a new
hardware base. This approach is essential for meeting the goal of portability. TMach server software has no
knowledge of hardware features other than those provided by the the microkernel and, therefore, need not
be modified when TMach is ported to new hardware. Because the security objects are constructed by the
server TCB layer, rather than the microkernel, security object abstractions are also portable.

Flexibility and extensibility have benefits for re-evaluation. Conscious attention to transportability and
expandability in a trusted system context will in itself make re-evaluation easier and provide greater assurance
in the trustworthiness of the system by forcing a modular design with narrow, well defined interfaces

6 Application to a Distributed System

TMach’s subject /object definition is easily adapted to fit a distributed trusted system. The Mach microkernel
itself was designed for distributed functionality, with an approach ideal for high-assurance systems. The
microkernel itself is minimal, and manages only local hardware-based resources; distribution functionality
is handled by a separate component that runs in a server rather than being part of the microkernel. This
additional server provides a distributed service with the same interface and functionality as the microkernel’s
IPC service based on ports and message queues. This distributed IPC server allows for messages to be sent
between tasks on different hosts in a distributed system. Message senders and receivers use exactly the same
port mechanism as with local IPC, and in fact they need not be aware whether other tasks are local or
remote. This property is referred to as the transparency of IPC in a distributed environment.

Because the port is the interface to all Mach microkernel services, distributing the port mechanism is all
that is required to distribute all microkernel services. Likewise, because all of TMach’s named security-
objects are accessed via item descriptor ports, distributed IPC also suffices to provide distributed access to
named objects. As for subjects, access to subjects is via IPC objects, which consist of a set of ports; again,
distributing the port services suffices to provide distributed access to IPC objects.

Other than ports, secIDs are the other security-relevant mechanism relevant to distribution. Because access
control depends on interpretation of secIDs, each host in a distributed system must interpret each secID
the same way. This can be accomplished by cooperation between the Subject Servers—the Subject Server
is the TMach component that handles the mapping of secIDs to security attributes—of the various TMach
nodes in a distributed system. Correct message secIDs also depend on remotely originating messages being

97

locally delivered with the secID of the actual remote sender, rather the secID of the distributed IPC server.
Therefore, the distributed IPC server is the sole holder of a kernel privilege that allows it to set the message
secID of messages it sends.

Server-to-server cooperation is based on communication via distributed IPC. Distributed IPC enables inter-
host cooperation between various servers. For example, the set of Root Name Servers can cooperate to
provide a global name space, and item managers can cooperate to provide object replication for high avail-
ability, fault tolerance, and locality. The Triad project is currently developing a distributed TMach system
that combines these features with support for real-time applications.

7 Conclusions

This paper has presented an overview of the TMach system and a number of issues pertaining to the
application of TCSEC principles to TMach, including specific issues which motivate extending the TCSEC
definitions to encompass microkernel-based client/server systems. Having laid this groundwork, we then
presented an account of the manner in which TMach addresses the issues by defining subjects and objects in
a manner consistent with the TCSEC, and yet inclusive of the extensibility that is enabled by the microkernel-
based, client/server architecture of TMach.

Modeling subjects and security-objects in the context of type extensible client/server architectures is a new
and critical aspect of modern trusted system development. The model must describe the security features
of the extensibility mechanisms. This report described one approach to extending the TCSEC modeling
concepts to a trusted client/server system with secure extensibility that derives from the microkernel basis

As was discussed in Section 5.2, extending TCSEC modeling concepts to encompass a type-based client/server
extensible system like TMach has many advantages. The primary advantage is a secure approach to adding
application specific extensions through the use of new non-TCB servers. This approach rests its security
on the modeling of subject to subject communication. While some of the modeling concepts may introduce
a degree of complexity, we believe that the increased assurance to be gained from type based extensibility
casily offsets this complexity.

As trusted client server architectures become more prevalent we believe that there will be increased need for
abstract security modeling concepts which can encompass type based extensibility.

References

(1] Trusted Mach System Architecture, TIS TMach Edoc-0001-93B, Trusted Information Systems, Inc., 24
May 1993.

[2] Accatta, M., Baron, R., Bolosky, W., Golub, D., Rashid, R., Tevanian, A., and Young, M., Mach: A
New Kernel Foundation for UNIX, Proceedings of USENIX, July 1986.

[3] Trusted Mach Philosophy of Protection—DRAFT. Document No. TIS TMACH Edoc-0003-94A

[4] Department of Defense Trusted Computer System Evaluation Criteria. Technical Report DOD 5200.28-
STD, DoD, December 1985.

[5] Information Technology Security Evaluation Criteria. Technical Report 1.2, Department of Trade and
Industry, June 1991.

[6] A Mathematical Model of TMach. Technical Report TIS TMACH Edoc-0017-93A, Trusted Information
Systems, Inc., December 1993.

[7] Trusted Mach System Architecture. Technical Report TIS TMACH Edoc-0001-94A, Trusted Informa-
tion Systems, Inc., August 1994.

[8] D. E. Bell and L. J. LaPadula. Secure Computer Systems: Unified Exposition and Multics Interpreta-
tion. Technical Report MTR-2997 Rev. 1, MITRE Corporation, Bedford, MA, 1976.

98

[9] Booch, Grady. Object Oriented Design With Applications. The Benjamin/Cummings Publishing Com-
pany, Inc., Redwood City, CA, 1991.

99

THE NEW ALLIANCE: GAINING ON SECURITY INTEGRITY
ASSURANCE

By

Rene’ H. Sanchez
Rockwell Space Operations Company
AIS Security Engineering and Operations
600 Gemini, R11A
Houston, Texas 77058
713-282-4589 FAX: 713-282-4922
E-mail: rhsanche@rsoc.rockwell.com

and

Donald L. Evans
UNISYS,

Government Systems Group, Space Systems Division
Mission Operations Directorate AIS Security Engineering Team
600 Gemini, U06b

: Houston, Texas 77058
713-282-4050 Fax 713-282-4575
EMAIL : dlevans@rsoc.rockwell.com

Introduction

As the complexity of today's distributed computing environments continues to evolve

independently, with respect to geographical and technological barriers, the demand for a

dynamic, synergistically integrated, and comprehensive automated information systems
(AIS) security control methodologies increases. Such business environments have

introduced significant opportunity for process reengineering, interdisciplinary synergism

increased productivity, profitability, and continuous improvement. With each

introduction of a new information technology (IT), there exist the potential for an
increased number of threats and vulnerabilities which together comprise total risk. This
is the level of risk that a management team must consider as an added cost of doing

business. These costs may therefore be realized in the form of systems failure and loss of
critical data. And with respect to mission and/or life critical systems, these costs may be
too great to recover.

It is in this context that management enterprise teams continue to

place greater demands for products and systems which are dynamic, synergistically
integrated, and equipped with high integrity AIS.

This péper describes the business approach employed at the National Aeronautics and
Space Administration’s Johnson Space Center Mission Operations Directorate (NASA
JSC MOD) for bridging the gaps between the three key area product development support

100

functions: configuration management, AIS security, and quality assurance organization.
This approach forms an enterprise-wide alliance needed for assuring the integrity,
reliability, and continuity of secure IT products and services. Although the development
and maintenance concepts for high-integrity unclassified systems are specifically
addressed, the processes described are equally applicable to classified systems.

MOD AIS Security Program Challenges _

Change is not easy whenever an enterprise considers reengineering its business processes.
This kind of competitive business initiative typically envolves redesigning and retooling
value added systems for new economies. The AIS Security Program at the NASA JSC
MOD is charged with directing and managing the busness of information security for life
and mission critical systems associated with Space Shuttle and Space Station operations
facilities.
These systems encompass:

¢ some 3,600 personnel,

e 1,682 large mainframes, mini mainframes, distributed systems,

» five types operating systems, '

e and a variety of network and communication protocols.
Much of these are legacy systems and are being pulled along by new technology making
change very difficult to manage in this complex environment. The speed at which new
emerging information technology is introduced to market, has also made it difficult to
maintain an automated information systems (AIS) security control architecture baseline.
Continued budget considerations have become a recognized element in managing this
change. The MOD AIS Security Program has dealt with these complicated challenges
head-on so as to comply with OMB Circular 130-A and the Johnson Space Center (JSC)
Automated Information Systems Security Manual 2410.11. To this end, several
interesting findings have resulted during the development and implementation processes
used for accrediting NASA JSC MOD data processing installations (DPI).

Security Control Architecture and Complimentary Tools

The Security Control Architecture (SCA) has been in development since 1992 and is the
product of a lot of in depth contemplation, research, and hard work by members of the
MOD Automated Information Systems Security Engineering Team (ASET) and Rockwell
Space Operations Company (RSOC) Security Engineering and Operations team. The
SCA was implemented as the tool of choice for accrediting NASA JSC MOD DPIs in
response to NASA’s budgetary constraints. The scope and intent of the SCA document is
to develop a comprehensive security control baseline architecture for a target DPL. The
security control baseline architecture considers all functional platforms of a target DPI
including: host mainframes, workstation(s), servers, bridges/routers/gateways, front-end
processors/cluster controllers, network analyzers, and physical security.

The Automated Information Systems Security Reference Structure (ASRS) was created to
document all information technology (IT) security terms and definitions in one reference
structure. A complete volume of standard operating procedures have been developed and
approved for use to support the DPI accreditation process at NASA JSC MOD.

101

Security Integrity Engineering Process

In today's computing world, distributed processing technologies change faster than most
operational platforms can be baselined. As they evolve with an ever-increasing speed,
companies and agencies are challenged with an opportunity to maintain stability for
growth and strategic competitiveness. Management must consider that sensitive business
systems increasingly demand higher levels of integrity in system and data availability.
Within this framework reliability, through product assurance and security assurance
constructs, provides a common enterprise objective. Accordingly, the scope of an
enterprise-wide product assurance partnership must be expanded to all three functional
areas as a single, logical, integrated entity with fully matrixed management (i.e., both
- horizontal and vertical management control). The process in which requirements for new
information technology are infused into the enterprise and managed becomes the pivotal
business success factor that must be defined, disseminated, and understood by the key
functional support organizations.

New Alliance Partnership Model (NAPM)

It has become critically essential for enterprise management to gain an understanding of
the interdependencies and complimentary pursuits that exist between the Quality
Assurance (QA), Configuration Management (CM), and the AIS Security Engineering
organizational support functions. With this knowledge, it is equally important to identify
and examine a synergistic approach for realizing additional economies(cost
savings/avoidances) throughout the system development life-cycle with continuous
improvement techniques. '

Implementation of product assurance and secure information technology development is a
management decision that must be judiciously exercised and integrated as part of a
system control architecture. In this model, AIS security management is qualified as the
~ functional point of control and authority for coordinating and guiding the development,
implementation, maintenance, and proceduralization of information security into a
unique, integrated management team. The SCA is the approved strategic methodology
used to produce a composite system of security controls, requirements, and safeguards
planned or implemented within an AIS environment to ensure the integrity, availability,
and confidentiality. This is one approach that will allow for integration and cooperative
input from the CM, AIS Security Engineering, and QA management groups. Each of
these product assurance functional support groups must understand and embrace common
corporate product assurance objectives, synergize resources, and emerge as a partnership
pursuant of corporate political strife dedicated to providing a harmonization of systems
integrity, availability, and confidentiality.

The harmonization effort evolves as an enterprise-wide New Alliance Partnership Model
(NAPM) in which:

QA provides an enhanced product assurance visibility by ensuring that the intended
features and requirements, including but not limited to security, are present in the

102

delivered software. QA allows program management and the customer to follow the
evolution of a capability from request through requirement and design, to a fielded
product. This provides management with an enhanced capability as well as a forum, for
identifying and minimizing misinterpretations and omissions which may lead to
vulnerabilities in a delivered system. The formal specifications required by QA increase
the chance that the desired capabilities will be developed. The formal documentation of
corrective actions from reviews (of specifications, designs, etc.) lessens the chance that
critical issues may go undetected. '

CM provides management with the assurance that changes to an existing AIS are
performed in an identifiable and controlled environment and that these changes do not
adversely affect the integrity or availability properties of secure products, systems, and
services. CM provides additional security assurance levels in that all additions, deletions,
or changes made to a system do not compromise it's integrity, availability, or
confidentiality. CM is achieved through proceduralization and unbiased verification
ensuring that changes to an AIS and/or all supporting documentation are updated
properly, concentrating on four components: identification, change control, status
accounting, and auditing.

AIS security provides additional controls and protection mechanisms based upon system
specifications, confidentiality objectives, legislative requirements and mandates, or
perceived levels of protection. AIS security primarily addresses the concerns associated
with unauthorized access to, disclosure, modification, or destruction of sensitive or
proprietary information, and denial of IT service. AIS security may be built into, or
added onto, existing IT or developed IT products, systems, and services.

Organizational management provides the empowerment and guidance for the economies
of scale.

A seminal case study is presented as proof of concept for gaining security integrity
assurance. It identifies the interdependencies and synergy that exist between the CM, AIS
Security Engineering, and QA functional management activities. It describes how IT, as a
principle change driver, is forcing the need for a QA, CM, and AIS security forum to
evolve if the enterprise is to be successful in providing high-integrity systems.

The security control architecture (SCA) is the authorized mechanism used for baselining
DPI system security architectures at the NASA JSC MOD and serves as the means for
accrediting both operations and development environments. Such DPI system security
architectures would include the Mission Control Center (MCC) as it exemplifies a
life/mission critical system with both types of environments. Many challenges were
encountered throughout the process of institutionalizing the SCA tool. For the intended
purposes of this paper, focus has been placed on how AIS security features are input to
the baseline security architecture, implemented, and tested and validated. Additionally,
the process used for managing software and hardware change while maintaining the
integrity and availability of life/mission critical systems was another very important point

103

of interest. Finally, a status for the NAPM implementation process has been provided.
The process has not been an easy one, nor one without challenges. It is not yet complete;
however, NAPM has proven to be an effective approach to managing the integrity and
availability of high-integrity unclassified systems and may also be applied to classified
systems.

MCC Support Request (SR) Process
The Security Engineering and Operations (SE&O) organization, the AIS security
functional team member at NASA JSC MOD, is responsible for facilitating and
maintaining all SCA activities for each MOD DPI at JSC. The MOD is responsible for
planning, directing, managing, and implementing all mission operations activities
including developing and operating all ground facilities. The support request (SR) is the
authorizing document with initiates change within all NASA JSC MOD DPIs. SE&O is
an integral member of this process from start to end. Both the MCC DPI computer
security official (CSO) and the designated SE&O representative have the opportunity to
review each MCC SR submitted by sustaining engineering, provide any applicable AIS
security requirements as prescribed in the center security manual (JSCM 2410.11), review
test scripts, and participate in the testing and verification of AIS security features.

The DPI CSO is tasked to review all SR’s initiated in his/her operations center to input
AIS security requirements. This is achieved by completing an AIS Security Checklist and
attaching the checklist to the SR as a bonafide addendum set of requirements which are
given full consideration by the responsible engineering support organizations. The AIS
Security Checklist is a comprehensive form that was designed to communicate AIS
Security requirements to all responsible hardware and software engineering organizations.

AIS Security Checklist Process

When NASA Facility Management requests an enhancement, removal, and/or otherwise
change to the baseline configuration of the DPI, the SOC Configuration Management
(CM) functional support team member is notified. This team member is responsible for
maintaining the baseline configuration for all MOD Space Shuttle and Space Station
support systems. The CM functional support team member is provided an approved SR
to officially begin the process of implementing change the baseline configuration. An
initial distribution of this acknowledgment is made, by the CM functional support team,
to other key organizations including the AIS Security functional support group (SE&O).
SE&O uses this opportunity to perform an impact analysis and provide AIS security
requirements via the AIS Security Checklist (ASC) where needed.

The DPI CSO evaluates the SR for security impact and qualitatively determines and
identifies the AIS security impact level to be either none, minor, and major. If
significant minor or major DPI changes are identified from an AIS security standpoint,
AIS security requirements, as per JSCM 2410.11, are then stated and delineated on the
ASC. Upon completion of the DPI CSO evaluation, the ASC is then attached to an SR as
an addendum set of AIS security requirements and becomes an integral component of the
engineering requirements set. Additionally, the cognizant DPI CSO will indicate on the

104

ASC whether the new AIS security requirements will drive hardware and/or software
support activity when an SR is approved for implementation. The cognizant DPI CSO
will determine, based on the security impact level and how the baseline Security Control
Architecture, AIS Security Procedures, and Disaster Recovery Plan are impacted. Finally,
the cognizant DPI CSO may also request specific interest in being present for the
implementation and testing phases of an SR and/or to be notified of SR close-out activity.

The SR (engineering requirements set) is then received by the DPI Operations Center’s
lead engineer for Rough Order Magnitude (ROM) costing analysis by the hardware and
software engineering support teams. This effort is facilitated and coordinated by the lead
engineer(s). It is important to recognize that this activity is one of several hinge pins
which determine the success or failure of achieving a closed loop process. The
communication process between the hardware and software engineering support teams
and the AIS Security team member must be assured. Without buy-in from the key
software and hardware support organizations, there is little expectation of finding6 an
acceptable level of integrity assurance. When all ROMs for related cost are input into a
roll-up total cost figure, then the subject SR is presented to the NASA DPI facility
manager for approval and implementation.

The subject requirements are then disseminated to the responsible hardware and software
support engineering management team for action. Once the engineering requirements set
are communicated to, received by, and understood by the responsible hardware and
software support engineering team members, internal task orders are generated to
document the affected work group(s) and in general terms what work is to be
accomplished.

Hardware and software support engineering work group(s) use internal task orders as
input to develop more detail implementation instructions and test script procedures.
Detail hardware and software implementation instructions are coordinated and formalized
in design reviews. All documentation generated in support of an SR is evaluated and
considered by all engineering disciplines during this period. During this feedback period,
the AIS Security team member may identify a deficiency and notify the respective
hardware and/or software engineering support group(s) of the correction or modification.
When a final detail set of implementation instructions and test script procedures are
refined to an acceptable state, the implementation and testing phases of an SR begins.
The cognizant DPI CSO will be notified of this activity if he/she has expressed interest,
on the ASC, to be present. Otherwise, the QA team member has third party
responsibilities for witnessing all implementation and test verification activities. The QA
team member is also tasked to notify the AIS Security organization of any unsuccessful
implementation or test script procedures for closed loop purposes.

The process aforementioned is ideal and facilitates the integrated and cooperative input
from the CM, AIS Security, and QA management groups. However, each of these key
functional support groups must understand and embrace common corporate product
assurance objectives, synergize resources, and emerge as a partnership pursuant of

105

corporate political strife dedicated to providing a harmonization of systems integrity,
availability, and confidentiality. At a closer look, some real-world experiences with
developing, producing, and maintaining high integrity IT systems may offer insight to the
issues that undermine the effectiveness of corporate product assurance initiatives. One
such example has been provided to understand the challenges of assuring the integrity of
life/mission critical IT systems is the MCC at NASA JSC.

The ASC Experience
A modified ASC was first introduced to the SE&O sometime in mid 1992 as a working
document. The ASC has not been well understood by the engineering community on the
whole since that time. However, much has been learned through process improvement
initiatives targeted at facilitating improved communications between the key functional
support and hardware and software engineering organizations. These initiatives were
orchestrated through management involvement.

In terms of what was not understood about the ASC process, given the number of
participants, it seems that each respective team member in the ASC process had a
perception of how it all worked. In mid 1994, the SE&O management team formed a
process improvement team to determine how a closed-loop ASC process should function.
After extensive research, it was determined that several process disconnects and gaps
existed causing serious uncertainty and doubt as to whether AIS Security requirements
were actually considered in the SR process. As the process improvement team identified
each functional support player in the ASC system, an open-loop process unfurled.
Interviews were arranged soon thereafter with each process management team member to
gain a more accurate perspective of the ASC system. Additional opportunity was
introduced with every interview the AIS Security team facilitated.

Configuration Management

The interview process began with the CM team member who is chartered to maintain the
baseline configuration and associated supporting documentation. The process
improvement team learned that CMs scope and sphere of influence could not provide at
any level of certainty that the ASC was in fact being considered and treated as a bonafide
engineering requirements set. Further, CM management was unable to produce any
evidence that AIS Security countermeasures had been implemented and/or tested from a
documentation standpoint. Essentially, the CM functional support team was managing a
repository of documentation, authorization paper trail, and engineering drawings which it
received as input and used it to maintain the associated baseline hardware and software
configuration. During these discussions, the process improvement team learned that the
CM team operated with certain seeded beliefs that the engineering support organizations,
QA organizations, and SE&O organization had accountability for evidencing the
implementation and testing of AIS security countermeasures.

In part, the CM management team is correct; however, can not ignore how its
involvement with the original assignment of an SR. The CM group does not authorize
any system change without sufficient documentation from all the engineering support

106

organizations and QA evidencing the implementation and testing of each engineering
requirement as stated on an SR. The CM team maintains a standing rule of notifying the
SE&O team whenever they have expressed interest on the ASC to close-out AIS security
requirements stated on an SR. However, such close-out requests are few in number and
the majority of SR’s that have AIS security requirements have had no mechanism for
assuring closure by the associated engineering support groups. The CM functional
support organization is a pivotal control point in the ASC system. Without the
functional support from such groups like the SE&O, QA, and engineering support
organizations, the ASC system will not be fully effective until closure mechanisms are
established between these groups. Otherwise, it becomes an increasingly more difficult
task for a cognizant DPI CSO to assure that AIS security countermeasures identified in a
respective DPI SCA are in fact implemented, tested successfully, and functioning

" propetly.

Hardware Engineering

In other interviews with the hardware engineering support group, the. SE&O team
received another interesting data point. The SE&O organization realized that in fact it’s
own organization was responsible for a critical system disconnect. The SE&O
organization had not been effective in providing an AIS security feedback mechanism for
responding to implementation and test script procedures reviews. The SE&O made
several attempts to close this loop; however, due to a variety of internal political issues
being driven by the changing environments of the time were unsuccessful. This
disconnect could have been, in part, minimized through more management training. As
indicated on the ASC, when the cognizant DPI CSO had identified hardware security
impact and testing requirements, the cognizant hardware engineer responded by sending
an implementation and test script package for AIS Security technical evaluation and
feedback. The internal hardware support team documentation was also determined to
require several minor decision point modifications for facilitating a more fluid feedback
process.

Software Engineering

Interviews with the software engineering support group were equally productive and
valuable. In light of how NASA, JSC, and specificall7y MOD operational systems have
undergone major IT system reconfigurations, the SE&O organization considers the
software engineering type SR activity as the area which presented the highest level of
uncertainty from an AIS security perspective. Prior to these interviews, the SE&O had
very little insight, due to political and changing environments, for what software
engineering support personnel did with the ASC. It was soon determined that there was
no existing feedback communication means between the SE&O and the software
engineering management team. It was like the SE&O had been sending three years worth
of AIS Security resource into a void. The team learned that the ASC had not been well
understood by the software support group since it’s implementation. This was one of the
most significant gaps identified by the process improvement team during its analysis.

107

The SE&O support group developed the ASC and introduced it to the SR process as the
official process for establishing AIS security engineering requirements input. It was
originally intended to serve as a bonafide addendum and part of the entire SR engineering
requirements set. Well, what was learned did not quite meet this intent. Upon further
discussions, the problems continue to unravel.

These discussions identified a real need to establish formal lines of communication with
key area support management. Through this dialogue and mutual understanding, the
software engineering team formed an internal process analysis team to gain a better
understanding for how AIS security requirements were responded to internally from a
management standpoint. This effort was also chartered determine how AIS security
requirements were articulated, implemented, tested, and documented. In other words, the
SE&O team was interested in a documentation trail and véry interested as to how the SR
engineering requirements set was being communicated downward for implementation.
Specifically, how were SR high-level requirements translated and communicated
internally to document the affected work group(s) and in general terms articulate what
work was to be accomplished. In effect, the teams reached an impasse and continue to
work the issue.

The SE&O organization had been even less effective in providing an AIS security
feedback mechanism for responding to implementation and test script procedures reviews
to the software engineering. As with the hardware engineering group, the SE&O made
several attempts to close the gap with the software management team. However, once
again the business of providing high integrity systems was clouded with a variety of
internal political issues being driven by the changing environments. In the case of the
software engineering support team, the SE&O organization had not received a single
implementation and test script procedure for AIS security requirements review and
evaluation during the past three years. Ideally, when a cognizant DPI CSO indicates
Software AIS security impact and testing requirements on a ASC, the cognizant software
engineer should respond by sending an implementation and test script package for a
technical review and evaluation. And much like the hardware engineering support team
the effects of this gap may have been minimize with more AIS Security awareness
training. This experience was uncomfortable although a beneficial realization.

Quality Assurance

Another key player in the NAPM approach for assuring security integrity is the QA
functional support organization. The QA support team is a pivotal control point in the
ASC system. Discussions with the SE&O process improvement team were no less
insightful. The team learned that QA personnel were very knowledgeable with the
execution of SR engineering requirements sets and associated implementation and test
script procedures. However, they did not recognize the ASC as a bonafide addendum to
the engineering requirements set and failed to understand its significance. The QA
support team, specifically the software QA function, was not in the loop to know the
significance of the ASC. How had AIS security requirements been articulated,
implemented, tested, and documented up to this point? AIS security requirements issues

108

had not been included in any of the established QA life cycle event checklist documents.
What had the engineering support leads been providing the CM support function as
documented evidence that all SR AIS security requirements had in fact been satisfied?
Further, what collected evidence had been used to assure the security posture of a given
DPI up to this point? The process improvement team had identified another gap in the
ASC system and this one pertained to closure, the documented evidence of successfully
implemented and fully tested AIS security countermeasures. This was of major
significance, in that SE&O support team function had struggled for years to find that
closure mechanism which could evidence the implementation and testing of AIS security
countermeasures. Without such evidence of closure, the SCA approach for accrediting
DPIs could also be weakened.

NAPM In Practice
At the outset of this initiative, there were serious uncertainties and doubts as to whether
the AIS Security requirements set had actually being considered in the SR process. The
SE&O team’s attempt to hone in on a documentation trail had evidenced an open-loop
communication process. Discussions with the QA team and others had validated a
breakdown in communications between the CM, AIS Security Engineering, Hardware
and Software Engineering, and QA as to the intent of the ASC. By gaining concurrence
from the QA team that in fact the AIS security engineering requirements set was not
being recognized as a bonafide addendum to the SR process, it was clear that the NAPM
approach offered a qualified solution for improvement.

The NAPM approach for providing integrity assurance to mission and/or life critical
systems presented significant opportunity. The NAPM purports to gain an understanding
of the interdependencies and complimentary pursuits that exist between the CM, AIS
Security and QA, organizational support functions. To these ends the SE&O support
team applied the NAPM alternative to identify the synergy for realizing new economies
throughout the hardware and software system life-cycle through continuous improvement
techniques.

The SE&O process improvement team promulgated several ASC system gaps which
share common themes, specifically in training and communication. Based on the
collected input from the organizational support functions it was determined that AIS
security requirements were not being communicated downward for implementation by the
affected work group(s). '

Prior to the introduction of the ASC system, CM management was unable to point to any
evidence that AIS Security countermeasures had been implemented and/or tested from a
documentation standpoint. The CM organization, SE&O organization, QA organizations,
and engineering support organizations have a collaborative level of accountability for
evidencing the implementation and testing of AIS security countermeasures. Based on
this collective input, the CM support team uses it to maintain each DPI’s hardware and
software baseline configuration. Today, the CM group does not authorize any system
change without this level of collaborative and collective documentation from the

109

participating functional support team who evidences the successful implementation and
testing of each engineering requirement stated on an SR. The CM team continues to
maintain the standing rule of notifying the SE&O team whenever close-out has been
expressed on the ASC. This feedback mechanism has proven to be very effective for
bringing closure to stated AIS security requirements. This kind of closure increases the
confidence level in which a DPI CSO assures that AIS security countermeasures have
been successfully implemented, tested, and functioning properly.

The SE&O organization worked intently with the hardware engineering support
management team to refine the AIS security feedback process. The SE&O provided
additional ASC training so as to detail the instructions for providing AIS security
feedback during implementation and test script procedures reviews. The SE&O and
hardware engineering management teams had successfully closed the open-loop through
improved understandings of how to use the ASC and with minor modifications to the
internal hardware engineering documentation. The functional relationship between these
two team members has shown marked improvement in terms of effectiveness and
cooperation. The ASC has become an excellent communication tool between these
support functions regardless of political and changing environments of the time. After all
improvement measures had been implemented, AIS Security technical evaluations of
implementation and test script reviews began to feedback in unprecedented numbers. It
should be noted that this process step continues to improve and refine itself through the
increased communication and cooperation between the SE&O and hardware engineering
support organizations.

The SE&O team has continued to build on its success of establishing communication
lines to software engineering management team so as to refine the AIS security feedback
process. The SE&O organization continues to facilitate meetings in support of this end.
A considerable amount of progress has been accomplished through this effort. And much
like the hardware engineering support team, additional AIS Security awareness and ASC
training was provided so as to detail the instructions for providing AIS security feedback
during implementation and test script procedures reviews. This experience was
uncomfortable although a beneficial realization. ~ The process improvement team
continues to identify opportunities and solutions with the Software Engineering support
team.

After several productive meetings, the software QA management team agreed that the
AIS security requirement set identified on the ASE should be viewed as part of the SR
requirements set. Up to this point, AIS security requirements issues had not been
included in any of the established software QA life cycle event checklist documents. The
QA support team agreed to modify their checklists to include additional QA steps to
assure that AIS security requirements are responded to in future events. This type of
corroborating evidence and other collected documentation have significantly contributed
to assuring the security posture of a given DPI. The ASC system is now the official
communication tool for bringing change to the software QA support function. The ASC
has also been instrumental in providing evidence of closure to the CM support team that

110

AIS security countermeasures have been successfully implemented and fully tested. If
however, the implementation and testing of the prescribed countermeasures are
unsuccessful, the QA team is still tasked to notify the AIS security organization for
resolution.

Summary
Change is not easy. Change has not been easy. Change will not be easy. In this case

study, the members of each respective management support team have championed the
process improvement initiatives and the corrective actions taken thus far. It is important
to emphasized that employee empowerment of this type must be supported by top
management because security integrity engineering and the implementation of an
integrated product assurance and secure information technology development process
such as a control architecture is a proactive management decision.

As management continues to learn more about the interdependencies and common
pursuits that exist between the Configuration Management, Automated Information
System Security Engineering, and Quality Assurance organizational functions, it will
realize additional opportunity for economies through continuous process improvement
techniques. :

Information technology has been and will continue to be a major change driver that
establishes a need for a functional organizational support forum dedicated to delivering
high-integrity products and services. Each of the product assurance functional support
organizations must understand and embrace common corporate product assurance
objectives, synergize resources, and emerge as a partnership independently pursuant of
corporate political strife and dedicated to providing a harmonization of systems integrity,
availability, and confidentiality.

The New Alliance Partnership Model is a viable solution that has been put to the test and
proven in a highly dynamic operational environment of ever-changing distributed
processing technologies. The NAPM supports the integration process and requires that
direct lines of communication be bridged between key functional support organizations so
as to input and feedback closure information.

The Automated Information System Security Checklist is an excellent tool for assuring
AIS security feedback to key hardware and software engineering support functions when
reviewing SR implementation and test script procedures for AIS security impacts. The
ASC has become an excellent communication tool between these support functions
regardless of political and changing environments of the time. The ASC functions as a
key communication tool for facilitating the initiation, implementation, testing, and
documentation of any AIS security requirements set. In this case, the CM team is an
integral key player in the closure of AIS security requirements which are stated on an SR.
The ASC system is not fully effective until closure mechanisms are established between
the functional support groups like the CM, SE&O, QA, and engineering support
organizations. The security control architecture methodology used for baselining and

111

maintaining an accreditable data processing installation is highly dependent on the
delivery of documented evidence supporting the successful implementation and testing of
AIS security countermeasures.

In conclusion, business enterprises must always be assured of a capability to maintain an

AIS Security Control Architecture baseline to maintain stability for growth and strategic
competitiveness.

112

AN UNUSUAL B3-COMPLIANT DISCRETIONARY ACCESS
CONTROL POLICY!

Jeremy Epstein, Gary Grossman, and Albert Donaldson
Cordant, Inc 2

ABSTRACT

There are many possible identity-based discretionary access control (DAC) policies.

This paper describes an unusual DAC policy: rather than associating access control
information with the objects (e.g., files) in the system, access control decisions are based
on pattern matching against a centralized database. This policy has certain advantages
and disadvantages compared to more common (e.g., UNLX) access control policies,
which are explained. While not an original goal of the design, the policy meets the
TCSEC B3 functional criteria for DAC.

1. Introduction

There are many possible discretionary access control (DAC) policies. Among the more common are
permission bits3 (e.g., UNIX, older VMS versions) and access control lists (e.g., Multics, newer versions of
DEC VMS and Novell NetWare). In each of these, access control information is associated with the
objects in the system, typically files. In most cases, every object has its own access control information,
which is stored with the object*.

Our system architecture imposed several constraints that made such an approach impractical. Because our
system is based on a personal computer DOS (e.g., MS-DOS) file system, there is no way to effectively
store access control information with the file, because there is no empty space in the File Allocation Table
(FAT) entry. For compatibility reasons, we did not want to modify the file system structure. We also
wanted an easy way to cause changes made by an administrator at a central server to apply to all
workstations in a network. Because our workstations interact with the server in an asymmetrical client-
server manner, we could not rely on notifying workstations of access control changes, but rather need to
allow them to download access control information at appropriate points.

For the past several years, Cordant has developed and marketed a product line under the brand name
Assure®3 which meets each of these objectives. For product line compatibility, we wanted to use that
product as a starting point. However, there were several problems with that product. While it has all the
necessary features to meet the Trusted Computer System Evaluation Criteria [TCSEC] Class C2 criteria,
it can not meet the Class C2 assurance criteria because it lacks a Trusted Computing Base (TCB).
Secondly, and more importantly from the perspective of this paper, the Assure policy is not fully defined:

1Copyright © 1995 Cordant, Inc.

211400 Commerce Park Drive, Reston Virginia. Mr. Epstein: 703-758-7367; jepstein@cordant.com. Mr.
Grossman: 703-758-7363; ggross@ccrdant.com. Mr. Donaldson: 703-758-7000 x7227; al@escom. com.
3Permission bits are arguably an access control list with a fixed number of entries and specific uses for each entry.
4Sometimes, as in the case of certain UNIX systems based on SecureWare or AT&T System V MLS technology,
the complete access control information is stored in a database, with each object only containing a tag to indicate
the database entry to be used. Nonetheless, each object contains some level of access control information.

3 Assure is a registered trademark of Cordant, Inc.

113

there are subtle cases where the results of an access control decision are indeterminate, given a particular
configuration®.

The remainder of this paper describes our file system object” access control policy, which is implemented in
a forthcoming product, Assure EC™8, The paper is organized as follows: Section 2 summarizes the
network architecture of which the Assure EC workstation is a part. Section 3 describes the access control
policy. Section 4 describes some of the interesting aspects of the policy, including how it meets the B3
criteria. Section 5 concludes the paper.

2. Network and Component Architectures

The Assure EC workstation is part of Novell's Trusted NetWare network architecture. Trusted NetWare is
being evaluated against the Trusted Network Interpretation [TNI] as a Class C2 network. There are two
types of active components in Trusted NetWare: workstations and servers. Both types of active
components have NTCB partitions. Workstations must be at least "I" components, and servers must be at
least "IAD" components. Workstations and servers communicate in a client-server architecture, where
clients make requests of servers, but servers never send requests to clients. Servers provide facilities that
can be used by both trusted and untrusted software running on workstations. These facilities include
storage of files, configuration information, and audit data.

The initial evaluation includes one server (Novell NetWare) and one workstation (Cordant Assure EC),
both running on generic IBM PC computers. The Assure EC workstation is an "ID" component. The
Cordant workstation relies on the NetWare server for storage of TCB configuration data and audit data.

Further information on the network architecture can be found in [NetArch]; a description of the component
architectures can be found in [CompArch].

3. The DAC Policy

The DAC policy enforced by Cordant's Assure EC product is based on pattern matching of file names.
Administrators define file path name patterns, and the file rights associated with those patterns using a
menu driven application. When a user logs in, the workstation TCB looks up the patterns associated with
the user and all groups of which the user is a member. The combination of user and group patterns is then
used for making access control decisions for the duration of the login session.

3.1. DOS File and Path Naming

DOS provides a hierarchical file system. File names consist of a base name, consisting of one to eight
characters, a period, and an optional extension, consisting of one to three characters. The period that
separates the base name and extension can be omitted if there is no extension. The base name and
extension can include letters, numbers, and a variety of special characters, and are case insensitive. Table
1 shows valid and invalid file names.

Table 1: Valid and Invalid File Names
File Name Explanation

foo.bar Valid; same as FOO .bar, FoO.Bar, etc.

80f course they are not random, but the results cannot be determined by a user or administrator, since they rely on
internal ordering of data structures, which cannot be determined using human interfaces.

7The forthcoming product has other types of objects besides file system objects, each of which has its own DAC
policy. However, those policies are relatively uninteresting, and are not explained further in this paper.

8 Assure EC is a trademark of Cordant, Inc.

114

abcdefghijk. Invalid; too many characters in base name®
abc.def.ghi Invalid; only one extension allowed

abc def.ghi Valid; underscore can be used as a separator
abc?def Invalid; ? is not a valid character in a file name
abc ¥ Invalid; * is not a valid character in a file name

A full path name consists of a drive letter (which identifies a particular logical disk drive), followed by a
colon, a backslash, and a series of file names separated by backslashes. The special file names "." (dot)
and ".." (dot-dot) which represent the current directory and parent directory, respectively, are not valid in
full path names. Table 2 shows several valid and invalid full path names.

Table 2: Valid and Invalid Full Path Names

Path Name Explanation
\foo.bar Invalid; doesn't have drive letter
c¢:\foo.bar Valid
d:\foo\bar Valid
¢:\\foo\bar Invalid; can't have multiple sequential backslashes
c¢:\foo\..\bar Invalid; can't have dot or dot-dot in path name
c:\foo\bar\ Invalid; can't have trailing backslash

3.2. File Name Patterns

File name pattefns are not DOS file names. Rather, they are used by the Assure EC product for assigning .
rights. A pattern is defined as a DOS full path name, with the following changes:

o The drive letter may be replaced by a question mark.

e The base name and/or extension in the final component of the path (i.¢., after the last backslash) may
be replaced by a string that terminates with a "*" (star).

Table 3 shows some valid and invalid file name patterns.

Table 3: Valid and Invalid Patterns

Pattern Explanation
c:\foo\bar Valid
c:\foo\bar.a* Valid
?7:\foo\abc* bar Valid
:\foo\bar Invalid; "" cannot appear as drive letter
7:\foo\bar.?? Invalid; "?" cannot appear except as drive letter
2:\foo\abc*def.* Invalid; the "*" (if used) must terminate the base name

Note that certain patterns are invalid as DOS file names. For example, abc.* is a valid pattern, but not a
valid file name!0. -

3.3. File and Directory Rights

Associated with each pattern in the access control database can be zero or more file and directory rights.
Table 4 describes the meaning of the right if associated with a file or directory.

9Long names may be truncated by applications, but DOS itself will refuse a name of this form.
10A name such as abc.* can be used as a wildcard to a command (€.g., "copy abc.*"), but the star is not part of the
file name.

115

Table 4: File and Directory Rights

Right Meaning for Files Meaning for Directories
Read File can be read Unused
Write File can be written Unused
Scan File name can be secen Directory name can be seen
Delete File can be deleted Directory can be deleted
Rename File can be renamed Directory can be renamed
Create File can be created Directory can be created

Note that because patterns are not associated with objects, it is possible to express the ability to create
objects before they exist. That is, it is possible to say that a user can create \FOO\BAR without making
any statement about the user's rights to \FOOQ, or about that user's ability to create \FOO\XYZ. This is
different from other systems, such as UNIX, where the ability to create a file (or subdirectory) in a
directory means that any name can be used, so long as it does not already exist.

3.4. Path Records

A path record consists of three parts: a pattern, a (possibly empty) set of file and directory rights, and
(optionally) an encryption key. If the encryption key is present, all files and directories that match the
pattern are DES [FIPS46] encrypted in electronic codebook [FIPS81] mode using the key provided. File
encryption is invisible to the application software: files are automatically decrypted as they are read, and
encrypted as they are written. If there is no encryption key, then the files are not encrypted.

3.5. Pattern Ordering

Users are associated with zero or more groups. Path records can be associated with users, with groups, or
both. When a user logs in, the TCB consults a database to find out the groups that user belongs to. It then
finds the path records associated with the user and all groups of which the user is a member. The resulting

list is sorted as follows:
o User-specific path records are divided into those with patterns containing wildcards ("?" and/or "*")
and those not containing wildcards. Each list is then sorted by length from longest to shortest pattern.

In the case of the wildcarded list, the characters "*" and "?" sort after all other characters in the
. lexicographic order. This results in each list being sorted in order of decreasing specificity.

» Group-specific path records containing identical patterns are merged, with file rights ORed together.
The resulting list is then sorted identically to user-specific path records.

The four lists are then concatenated in the order user non-wildcarded, user wildcarded, group non-
wildcarded, group wildcarded. The result, known as the consolidated access list (CAL), is the access

rights for the session.
Table 5 shows some sample user path records and group path records.

Table 5: User and Group Path Records

User/ Pattern Rights
Group
Alice C:\DOS Scan,Read, Write
Alice C\DOS* EXE Scan,Read,Rename
Alice 7\DOS\SORT.EXE Scan,Read, Write,Delete
Bob 7\FOO Scan,Read, Write Delete
Bob 7\DOS Scan,Read,Rename
Mgmt N** Scan,Read

116

Mgmt 7\DOS Scan,Delete,Create

All 2\DOS Scan,Read

All 7\WINDOWS Scan,Read

All \WINDOWS* INI Scan,Read, Write,Create

Given that Alice is a member of groups Mgmt and All, and Bob is a member of group All, Table 6 shows
the CAL for each user.

Table 6: Consolidated Access Lists

User ~ Pattern _Rights Origin Comments
Alice CADOS Scan,Read,Write Alice User-specific, no wildcard
7\DOS\SORT EXE Scan,Read, Write, Delete Alice User-specific, wildcarded
C:\DOS* EXE Scan,Read,Rename Alice Shorter than previous pattern
2\WINDOWS* INI | Scan,Read,Write,Create All Longest group pattern
2\WINDOWS Scan,Read All Next longest group pattern
7\DOS Scan, Read, Create, Delete | Mgmt + | Identical pattern in Mgmt and
All All, so rights ORed
N* * Scan, Read Mgmt ™" sorts after all other
characters
Bob 7\DOS Scan, Read,Rename Bob User-specific, wildcarded
7\FOO Scan, Read, Write, Delete | Bob FOO sorts after DOS
2\WINDOWS* INI | Scan,Read, Write,Create All Longest group pattern
7\WINDOWS Scan,Read All Next longest group pattern
7\DOS Scan, Read All Bob is not in Mgmt, so only
gets rights from All

Note that the C:\DOS and ?:\DOS patterns are not merged for Alice, because they are not identical.
3.6. Run-Time Pattern Matching

To access files or directories stored on the local disk!!, application software creates the full path name
being accessed (i.e., the path name is canonicalized). The full path name is then transmitted to the TCB,
which compares the full path name to the list of patterns to determine the access rights available to the user.

The pattern matching algorithm compares the full path name to each of the records in the CAL. If the full
path name is a superstring of the pattern in the path record, or matches an expansion of the wildcards in the
pattern (where "?" matches a single character drive name, and "*" matches any sequence of characters in
the file name), then it is considered to have matched, and the rights associated with the path record are the
rights available to the user. Only the first path record to match is used; any subsequent rights (greater or
lesser) are ignored. If the end of the CAL is reached without any match, then the user has no access to the
requested path name.

Table 7 shows some patterns matched against the CALs shown in table 6, and the resulting rights available
to the user.

Table 7: Pattern Matchini

User Path Requested Pattern Matched Rights Granted

Alice C:\DOS\SORT.EXE C:\DOS Scan,Read, Write

11 Application software can also access files and directories stored in NetWare servers. That access control policy
is under the control of the NetWare server, and is not further discussed here.

117

Alice CAWP\WP EXE 7:* * Scan,Read 3
Alice DADOS\PRINT EXE 7\DOS Scan,Read,Create,Delete
Bob CAWINDOWS\WIN.INI 2\WINDOWS* INI Scan,Read, Write, Create
Bob CAWINDOWS\FOO.BAR 7\WINDOWS Scan,Read

Bob D:\FOO\HELLO.TXT 72\FOO Scan,Read, Write,Delete
Bob D:\WP\WP EXE None None

Note that Alice's rights are constrained by the pattern C:\DOS. Although she has Rename rights to
C:\DOS* EXE, Delete rights to 7\DOS\SORT.EXE, and Create rights to 2\DOS (by virtue of her group
membership in Mgmt), she can never gain any of these when accessing files in C:\DOS, which is a non-
wildcarded pattern and therefore matches first. Changing the pattern C:\DOS to ?:\DOS or C:\DOS* *
would make 1t wildcarded, and therefore yield different results.

4. Policy Discussion

In this section we discuss several interesting (and sometimes surprising) aspects of the DAC policy.

4.1. Unusual Ordering

Note that the combination of CAL ordering and the pattern matching capability has several somewhat
surprising results:

o The strings \ and *.* are not the same, although they will match the same values. However, \ is a non-
wildcarded pattern, and hence will appear in the CAL before * *, which is a wildcarded pattern
(presuming that both apply to the same user, or both apply to groups).

» The policy denies all rights not explicitly granted. This is easy to reverse, by adding a path record
including the pattern 7:* * to a group that the desired user(s) are member(s) of. Note that adding this
path record for a user would cause any path records associated with groups to be ignored, since user
patterns are matched before group patterns.

4.2. Encryption Facilities

Any path record can include an encryption key. If present, files matching that path record are
automatically decrypted when read and encrypted when written. This allows applications to run
unchanged.

Because encryption keys are associated with patterns, and not with particular files, it is possible to
configure the product so that some people see the encrypted file contents, while others have the files
automatically decrypted when reading. Figure 1 shows some examples of this feature. If Bob has a pattern
for C:\DATA that includes an encryption key, then access by Bob to anything in C:\DATA will
automatically be encrypted and decrypted as necessary. An Operator could be given the ability to back up
data without decrypting what is being backed up by giving them the Read rights to C:\DATA, but without
an encryption key. Then Operator would only have access to the encrypted version of the file.

118

Alice Operator Bob

C\DATA* TXT RW (C:\DATA R)(c:\DATA RW Kl)
CA\DATA*DOC RW K2

-

S~

C:\DATAVFILEL.TXT C:\DATAFILE2.TXT CADATAFILE3.DOC

Dynamic encrypt/decrypt with key K1
Dynamic encrypt/decrypt with key K2
No encryption/decryption

Figure 1: Transparent File Encryption

A problem with this scheme occurs if Alice has rights for the pattern C:\DATA* TXT without an
associated encryption key. Then Alice will see any existing files that match the pattern without being
automatically decrypted, and any files she creates will not be encrypted. Similarly, if Alice has rights for
the pattern C:\DATA* DOC using a encryption key K2, rather than key K1 used by Bob for the pattern
C:\DATA, they will be unable to share files, since files that Alice creates will appear to be garbage to Bob,
and files that Bob creates will appear as garbage to Alice.

Another problem occurs if two groups are set up with different keys for the same pattern. If Mgmt has
been rights for the pattern C:\DATA using encryption key K3, and A/ has rights for the pattern C:\DATA
using encryption key K4, then it is non-deterministic whether key K3 or K4 will be used for users who are
members of both Mgmt and All.

These are both inherent aspects of the design. Administrators are cautioned not to use multiple encryption
keys for potentially overlapping paths, lest they encounter the problems described here.

4.3, The B3 DAC Criteria

Products evaluated as TNI "D" components can be rated as C2+, rather than C2, if they meet the TCSEC
Class B3 DAC feature requirements. If a product receives a C2+ rating, it can be integrated with other
components rated B3 or A1 to produce a system which as a whole is rated B3 or Al. However, if the
product only receives a C2 rating, then combining it with other components rated B3 or Al will yield at
most a system rated B2. Hence, it is useful from an integration standpoint to produce C2+ components,
rather than C2 components.

The TCSEC B3 DAC criteria require the ability to allow or deny access to users or groups. Section
3.3.1.1 of the TCSEC (and TNI) state:

These access controls shall be capable of specifying, for each named object, a list of named
individuals and a list of groups of named individuals with their respective modes of access to that
object. Furthermore, for each such named object, it shall be possible to specify a list of named
individuals and a list of groups of named individuals for which no access to the object is given.

Because the Assure EC DAC policy allows specifying null rights, and uses a first match capability, it can
be used to meet this requirement. The ability to allow rights on a user or group basis is clearly present.
Showing the ability to deny rights to a user or group is slightly more complex. For example, to deny Alice

119

all rights to a file, the administrator can assign Alice a pattern with no rights. Because user patterns match
before group patterns, and non-wildcarded patterns before wildcarded patterns, the explicit pattern will
override any other rights granted to Alice. To deny group Mgmt all rights to a file, the administrator can
assign Mgmt a pattern with no rights. However, if any user has been given rights to the file, or to a pattern
that matches the file, then they will still gain access to the file by virtue of their individual assignment,
regardless of the group membership. The wording of the TCSEC and TNI is not clear, but precedent
indicates that there is no requirement that group rights override individual user rights.

4.4. ACL or Capability?

At several points in our design, we debated whether the path records are capabilities or access control lists
(ACLs). Using a matrix of subjects and objects (as in [HRU]), where subjects are listed down the side and
objects across the top, systems have capabilities if they store data by row (i.e., with the subject), and ACLs
if they store data by column (i.e., with the object).

However, our path records do not meet the conventional view of a capability. In traditional capability
systems, untrusted software is permitted to hold the capability, which is cryptographically sealed. Users
may pass the capability, and thereby pass access rights. Additionally, capabilities are valid until explicitly

revoked by an administrator.

In the Assure EC system, users do not have access to path records, and cannot pass their rights from one
user to another. While path records are relatively permanent, the calculation of the CAL is performed on a
per-session basis, and access to a path cannot be revoked until the end of the session. Thus, we believe that
our path records are neither fish nor fowl: they have some of the characteristics of capabilities, but also

have certain aspects of ACLs.
4.5. Central Database Usage

In a traditional stand-alone computer, all security configuration databases are kept in that computer. Ina
distributed system, it is desirable to have access to configuration databases from anywhere in the system.
This is particularly true in a network with many personal computers. It would be undesirable for an
administrator to have to visit each workstation in order to change the access rights available to a user. Ina
peer-to-peer network, changes could be propagated from one client to another. However, this technique is

not feasible in a client-server architecture.

The Assure EC product stores its administrative information (e.g., path records) in a central repository,
known as the NetWare Directory Services (NDS) Directory Information Base (DIB). Each workstation
downloads the relevant information whenever a user logs in. Thus, changes to path records normally occur
when a user logs in!2. That is, if a change occurs in the central database during a session, users who are
already logged in to Assure EC workstations are not affected. Rather, the changes take effect the next time
a user logs in, when the databases are downloaded from the DIB.

Because path records are not tied to a particular workstation, and the path records are stored centrally, all
workstations in an administrative domain must be configured identically. That is, if user Alice is given
rights to \DOS, then she will have those rights to \DOS on any workstation for which she is an authorized
user. If administrators maintain consistency of configuration (which is a good idea in large networks), then
the common paths will not cause problems either of granting too much or too little access. However, if
each workstation in an organization has a different file organization, administrators will have a difficult
time setting up the desired patterns and rights.

12f the workstation NTCB is unable to contact a server to download new information, it uses the cached
information from the most recent download. This allows workstations to be used when disconnected from a

network.

120

4.6. Administrative Control of Policy

In the Assure EC product, only administrators can create or modify the access control information. There
are two reasons for this restriction.

First, because access control information is kept in the NDS DIB (see above), it would require that any
user who has the ability to modify access control information would need to have access to modify the DIB.
Since all paths are kept in a single storage location in the DIB, any user who can write that data can modify
all path rights. Thus, for Alice to give Bob access rights, she would have to modify Bob' information in the
DIB, and could give Bob rights to anything she wanted.

Second, even if there were an effective way to control access to the information stored in the DIB, users can
only see the workstation they are using, and not all of the workstations that the access controls apply to.
That is, if Alice could give Bob rights to directory \MEMOS, then Bob would gain access to \MEMOS on
all workstations he can use, not just to the copy of \MEMOS on the local workstation. Since Alice may be
unaware of what is in \MEMOS on workstations other than the one she is using, it would be undesirable for
her to give away such access. This is unlike more traditional systems, where access controls only apply to
a single computer.

4.7. Looking Down the Tree

Suppose user Alice has Read and Scan rights to directory \DOS, and no rights to anything else in the
system. If Alice attempts to get a list of files in \, she will see \DOS, and nothing else. This occurs because
the scan operator is defined as requiring access to the objects whose names are returned (i.e., \DOS), and
not to the directory being scanned (i.e., \). If Alice attempts to change her current directory to \DOS, the
operation will be successful. This is an entirely consistent view to the user.

However, if Alice attempts to change to her current directory to \, that request will fail, because Alice has
no rights to \, and changing directories requires that the user have at least one right. Thus, Alice will have
a surprising result: she can see \DOS, and can change to \DOS, but cannot change to \.

This is not an unknown feature. Multics offers a similar feature, where users may be able to go directly to
a destination directory without having access to intermediate directories. Novell NetWare has a similar
feature, but handles it differently: a user implicitly has Scan rights to all directories along the path to every
file that he/she has any rights to. That is, the presence of Read rights to file \A\B\C\D implicitly gives the
user Scan rights to \A, \B, and \C.

5. Conclusions

There are many possible DAC policies. We have explained one such policy that offers some unusual
features:

o The ability to coherently and efficiently manage access rights associated with a set of workstations
from a central point.

o The ability to meet the B3 DAC criteria, and thereby participate in a B3 or Al network. .
6. Acknowledgments

The work described in this paper reflects many contributions. Marv Schaefer helped us see many of the
weaknesses and undefined areas in the DAC policy enforced by our current product. Jon Dellaria, Dave
Bixler, Mike Newman, and Bruce McKinstry all helped us to understand the subtleties of the existing
security policy, and advised us on potential flaws. Anonymous reviewer #51 also had many useful
comments that helped improve this paper.

121

7. References

[CompArch]

[FIPS46]
[FIPS81]
[HRU]

[NetArch]

[TCSEC)

[TNI]

"Component Architectures for Trusted NetWare", Jeremy Epstein, Gary Grossman, and
Roger Schell, in Proceedings of the 18th National Information Systems Security
Conference, Baltimore MD, October 1995.

Data Encryption Standard (DES), Federal Information Processing Standards Publication
(FIPS PUB) 46-1, 1988.

DES Modes of Operation, Federal Information Processing Standards Publication (FIPS
PUB) 81.

"Protection in Operating Systems", Michael Harrison, Walter Ruzzo, and Jeffrey Ullman,
Communications of the ACM, August 1976, Volume 19 No 8.

"An Open Trusted Enterprise Network Architecture", Gary Grossman, Jeremy Epstein,
and Roger Schell, in Proceedings of the 18th Natzonal Informatzon Systems Security
Conference, Baltimore MD, October 1995.

Department of Defense Trusted Computer System Evaluation Criteria, National
Computer Security Center, December 1985.

Trusted Network Interpretation of the Trusted Computer System Evaluation Criteria,
Version 1, National Computer Security Center, July, 1987.

122

GENSER MESSAGE MULTI-LEVEL SECURE (MLS)
CLASSIFICATIONS AND CATEGORIES

Speaker
Mary Lou Hoffert

Authors
NCPII Development Team

Organizational Affiliation
NCTAMS LANT - Software Technology Department

NCTS Washington - Systems Development Directorate

Phone Numbers
Voice - 804-444-4638
DSN - 564-4638
FAX - 804-444-1427

Internet Address
J oelle_Grifﬁth_at_NCTAMSLANT@NCTCGW.NAVY.MIL

Point of Contact
Joelle Griffith

US Government Program Sponsor
Naval Computer and Telecommunications Command

ABSTRACT

This paper proposes a labeling schema for a Multi-Level Secure (MLS) system processing and
routing General Service (GENSER) messages for the DoD, Allied and NATO communities. It
assumes an automated system integrating a dedicated application and trusted Commercial Off-
The-Shelf (COTS) software products evaluated by the National Security Agency (NSA) at the
B1 level. It further assumes that the application described would pass Defense Message System
(DMS) security testing. It has attempted to provide a generic schema that could be employed
DoD wide to facilitate intercommunication of MLS systems with no need for intermediary
mapping translations. The discussion concentrates on GENSER message processing, but is
expandable to DSSCS systems.

123

GENSER MESSAGE
SECURITY LEVELS (CLASSIFICATIONS & CATEGORIES)

KEYWORDS

Allied

AUTODIN

B1

category

classifications

CMW

Compartmented Mode Workstation
CONFIDENTIAL

default category

Defense Special Security Communications System
DoD

DoD Directive 5200.28

dominance

DSSCS

Encrypted For Transmission Only (EFTO)
For Official Use Only (FOUO)

format line

GENSER

hierarchical

JANAP 128

124

MLS

multi-level secure
NATO

NSA

object

Orange Book
RESTRICTED
SECRET

security levels
sensitivity label

SIOP ESI

SOP

SPECAT

special access programs
Standard Operating Procedures
TOP SECRET

trusted
UNCLASSIFIED
Unclassified EFTO
window

GENSER MESSAGE

Table 1 - Multi—Level Secure (MLS) Matrix

SECURITY LEVELS (CLASSIFICATIONS & CATEGORIES)

Trust(Ed Classification Categories
Operating
System
Levels
0 1 2 3 4
A GENSER GENSER_ GENSER _ GENSER _ | DSSCS
(Default) SIOP_ESI SPECAT NATO
255 MAX
70 TOP_SECRET non-message message data message data message data message data
data
60 SECRET non-message message data message data message data
data
50 CONFIDENTIAL || non-message message data message data message data
data
40 RESTRICTED message data
30 UNCLASSIFIED || non-message message data message data
data

1. Table 1 above identifies the security levels that a General Service (GENSER) message

processing system will handle. Security level refers to two elements in combination, the

classification and the category, and is held by the trusted operating system in the sensitivity

label.

- Classifications are hierarchical in nature and correlate to personnel security clearances,
e.g. Top Secret.

-- Categories are non-hierarchical and are derived from special access programs that

impose additional control requirements. For example, access to Top Secret SIOP-ESI requires a
Top Secret clearance plus formal authorization for SIOP-EST access.

- Sensitivity labels are based on the classification and categories defined. This label is an
additional piece of information that is attached to every object which the operating system

controls.

The column "Trusted Operating System Levels" in the matrix shows hierarchical sensitivity

levels within the trusted operating system. Notice that security levels are defined against

operating system levels such that there is flexibility for the addition of security levels should
that be necessary in the future. For example, "255" is the highest level in the trusted operating
system, but the highest classification level is mapped to "70".

125

GENSER MESSAGE
SECURITY LEVELS (CLASSIFICATIONS & CATEGORIES)

Table 1 shows the classifications, categories, and logical data combinations defined for a Bl
multi-level secure operating system. In the matrix "message data" indicates the classification
and category combinations that apply to JANAP 128 messages. Those that apply to other
information (e.g., reference tables) and used during message processing/handling are indicated
by "non-message data". The default category ("./") would be applied to this information since
the information is not derived from a message. Blank cells in the matrix are illogical
combinations that would never be used for data storage or user access, i.e. UNCLASSIFIED
SIOP-ESI is not a legal message classification.

2. It is important to note that the hierarchical relationship of classifications enforces dominance
of a higher level over a lower level, i.e. SECRET dominates CONFIDENTIAL, RESTRICTED,
and UNCLASSIFIED. System users with access of SECRET also have rights to
CONFIDENTIAL, RESTRICTED, and UNCLASSIFIED data within the categories included in
the users’ access. The default category is always available for the levels to which a user has
access and so is not specifically included as part of the access or log-in. The non-default
categories are exclusive and not hierarchical. That is, system access to GENSER_SIOP_ESI
does not provide access to GENSER-NATO data. Several examples are shown in Table 2.

Table 2 - Data Access Allowed

Trusted Operating System Access Message Data Access Allowed Non-Message Data Access Allowed

SECRET// none SECRET/
CONFIDENTIAL//

UNCLASSIFIED//

SECRET /GENSER/ SECRET /GENSER/ SECRET//
CONFIDENTIAL /GENSER/ CONFIDENTIAL//
UNCLASSIFIED /GENSER/ UNCLASSIFIED/

SECRET /GENSER, GENSER_NATO/ | SECRET /GENSER, GENSER NATO/ SECRET//

CONFIDENTIAL /GENSER, GENSER_NATO/ CONFIDENTIAL//
RESTRICTED /GENSER_NATO/ none

UNCLASSIFIED /GENSER, GENSER_NATO/ UNCLASSIFIED//

3. Inatrusted windows environment using a Cormpartmented Mode Workstation (CMW)
product, a window will reflect the security level at which the user logged in. The user will be
able to display messages of security levels at or below the log-in security level. When a
message is brought into a trusted window, the sensitivity label of the message itself will not be
displayed. The security level of the process that initiated the trusted window will continue to

126

GENSER MESSAGE
SECURITY LEVELS (CLASSIFICATIONS & CATEGORIES)

be shown as the window label. This should not be interpreted as a problem since the sensitivity
label of the window will match or dominate the security level of the message.

As a matter of operational policy, users will have varying levels of clearances. A number
of users, commensurate with site operational requirements, will be granted special access
authorizations. The security level defined for each user will identify the classification level and
also the categories authorized. Standard Operating Procedures (SOP) must be established for
the translation of personnel security clearances to the trusted operating system access.

For example, the following clearances and accesses would translate to the trusted operating
system access (log-on) as shown in Table 3.

Table 3 - Clearance/Access Translation

Security Clearance | Special Access Authorizations | Trusted Operating System Access

Top Secret none TOP_SECRET//

(Personnel with TS clearance and no special access authorizations who
require access to only non-message data.)

Top Secret " none) TOP_SECRET /GENSER/

(Personnel with TS clearance and no special access authorizations who
require access to message data and non-message data.)

Top Secret SIOP-ESI, SPECAT, NATO TOP_SECRET /GENSER, GENSER_SIOP_ESI, GENSER_SPECAT,
GENSER_NATO/

(Personnel with TS clearance and SIOP-ESI, SPECAT, and NATO special
access authorizations who require access to message data and non-message
data.)

Top Secret NATO TOP_SECRET /GENSER, GENSER_NATO/

(Personnel with TS clearance and NATO special access authorization who
require access to message data and non-message data.)

Top Secret NATO TOP_SECRET /GENSER_NATO/

(Personnel with TS clearance and NATO special access authorization who
require access to NATO message data, but not US message data, and to non-
message data.)

Users assigned to correct messages may have Top Secret clearances and accesses of SIOP
ESIL, SPECAT, and NATO. Working in a secure area where Top Secret data could be openly
displayed, users may sign on as:

TOP_SECRET /GENSER, GENSER_SIOP_ESI, GENSER_SPECAT, GENSER_NATO/

127

GENSER MESSAGE
SECURITY LEVELS (CLASSIFICATIONS & CATEGORIES)

creating a window on the computer screen in which any message within the system could be
edited. Alternatively, the same personnel working in a general service area not cleared for Top
Secret materials and in which they would want to limit displays to Secret data and below, may
sign on as:

SECRET /GENSER, GENSER_NATO/

creating a window on the computer screen in which only messages of Secret classification or
lower, with or without NATO designation, could be accessed. That is, within this window
neither a Top Secret message nor a Secret SPECAT message could be displayed. So, it is the
trusted operating system access level assigned to personnel that determines the highest level at
which they may log in to the system and it is the log-in that determines the levels at which they
can access data during a particular session.

It would also be possible for users to create the two windows described above on the same
computer screen. The trusted operating system would prevent copying of data from the higher
level screen to the lower level screen - enforcing the read down/write up rule of trusted
processing.

4. Application software will provide the processing necessary to determine JANAP 128
message classification. This includes validation of security information in Format Lines 2, 4,
and 12 of the message and cross-check of Format Lines 2, 4, and 12. Additionally, special
handling caveats in Format Line 4 (AAAAA or BBBBB) and Format Line 12 (SPECAT
SIOP-ESI or SPECAT) are identified and validated if present. A trusted process, a distinct
segment of software certified to raise and lower system privileges, will evaluate aggregate data
and assign a sensitivity label that reflects the message security level.

5. In AUTODIN, Unclassified EFTO (Encrypted for Transmission Only) messages are
handled through the use of the classification designator "E". These messages, although
Unclassified, are considered sensitive and therefore they are transmitted over encrypted circuits
only. Messages containing the classification designator "E", just as those containing the
designator "U", will be assigned the UNCLASSIFIED/GENSER/ sensitivity label by the multi-
level secure operating system. This is not considered a problem if all circuits connecting
directly or indirectly to the message processing system are encrypted beyond the
communications center.

6. The security level scheme depicted in the matrix of Table 1 is designed to accommodate
potential interfaces with non-DoD/non-US multi-level secure messaging systems. The General
Service (GENSER) category is defined to provide a mechanism for segregating NATO message
traffic from other traffic (US and Allied).

128

GENSER MESSAGE
SECURITY LEVELS (CLASSIFICATIONS & CATEGORIES)

7. The classification Restricted, used in AUTODIN and indicated by the classification
designator "R", is not authorized for US originators. It may be used by an Allied or a NATO
originator.

The handling of NATO Restricted and Restricted (indicates Allied originator) is different.
NATO Restricted is handled as Unclassified For Official Use Only (FOUO). Restricted, from
an Allied nation, is handled as Confidential.

In the processing system a message with the "R" classification designator will be assigned
a sensitivity label as shown below:

Table 4 - Restricted Translation

Format Line 2 Format Line 12 Trusted Operating System
Sensitivity Label
R RESTRICTED CONFIDENTIAL /GENSER/
R ALLIED RESTRICTED | CONFIDENTIAL /GENSER/
R NATO RESTRICTED RESTRICTED /GENSER_NATO/

8. The Defense Special Security Communications System "DSSCS" category will not be used
in a message processing system handling only AUTODIN GENSER information. The category
is provided to accommodate potential interfaces to DSSCS systems or allow employment of the
security level scheme in a DSSCS system.

9. Banners on a printed message will be provided by the trusted operating system. These
banners will reflect the process sensitivity label identifying the classification and category, in
that order. It is important to note that it is the process label and not the data label that will be
printed. An application printer service, a trusted process, will evaluate all printing requests
initiated from within the application and set the operating system print request to the same level
as the data to be printed, ensuring consistent banners. Standard Operating Procedures (SOP)
must be established for printing data directly from the operating system.

It should be recognized that DoD Directive 5200.28, Security Requirements for Automated
Information Systems (AISs), enclosure 3, paragraph A.5. prescribes the following: "Automated
markings on output must not be relied on to be accurate, unless the security features and
assurances of the AIS meet the requirements for a minimum security class B1 as specified in
DoD 5200.28-STD [the Orange Book]." This MLS scheme is designed for a B1, NSA-
certified, operating system.

129

GENSER MESSAGE
SECURITY LEVELS (CLASSIFICATIONS & CATEGORIES)

With the MLS schema presented, current classification markings would translate to
sensitivity labels as follows:

Table 5 - Banner Translation

JANAP 128 Message Trusted Operating System Banner
Classification

COSMIC TOP SECRET TOP_SECRET /GENSER NATO/

SECRET SECRET /GENSER/

130

GENSER MESSAGE
SECURITY LEVELS (CLASSIFICATIONS & CATEGORIES)

A hardcopy of a message. would have the following pages:

TOP_SECRET /GENSER_NATO/
).9,9.0.0.0.:0.0.0.0.9.0.0.0.0.0.9.0.0.0.9,0.0.0.0.0,0.0.0.0.0,0,0.6.0.0.0,0.0.0.0.0.¢
),0.0.0,0.0.9.0,0.0.0,0.0.0.0,0.0.0,0.0.0.0,0.0.0.0.0.0.0,0.0.0,0.0,0.9.0,0,0,0,0,0,4
) 9.9.0.0.0.0.0.0.0.0..0.0.0.0.0.0.0.0.0,0.0.0.0.0,0.0.0.0.0,0,0,0.0.0,0,0.0,0.0.0.¢
),0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.9.0.0.9.0.6.0.0.0.0.0.0.0.00.0.0.00.0.090.0,00.

HiHH# #H#H# #E#E HHEHE

#
#
HiH#E # # # # #
#
H##H #in#

Request id: User-23 Printer: Printer-10

Wed Mar 1 09:10:12 1995

),0.0.0.0.0.0.0.9.0.0.0.0.0.0.0.9.0.0.0.0.9.0.0.0.0.0.0.0.0.0.0.0.0.6.0.0.00.0.0,0.4
),0.0.0,0.0.0.0.0.0,0.0,000.0064

The sensitivity label of the user is:
TOP_SECRET /GENSER _NATO/
Unless manually reviewed and downgraded
The system has labeled this data:

TOP_SECRET /GENSER_NATO/

),9.0:0:0.0,0.9.9,0,0.0.0.0.0.0.0.0,0.0.0.0.0.0.0.0.0.0.0,0.0.0,0.0.0.0.6,0,0,0.0,0 ¢

),0.9.0.0.0.0.9.0,0,0.0.0.0.0.0.0.0.0.0.0.0.0,0,0,0.0.0.0.0,0,0,0.0.0,0.0,0,0,0,0,0,¢

),0.0.0.0.0.0,0.0.0,0.0.0.0.0.0.0.0.0.0.0.0.0.9,0,0.0.0.0.0.0.0.0,0.0.0.0.0,0,0.0,0 ¢

),9.:0.0.0:0.0.0.0,0,0.0.0.0.9.0.0.0.0.0.0.0.0,0,0.0.0.0.0,0.0.0,0.0.0.0.6.0,0,0,0,0.¢
TOP_SECRET /GENSER_NATO/

Figure 1 - Banner Page of Printout

131

GENSER MESSAGE
SECURITY LEVELS (CLASSIFICATIONS & CATEGORIES)

TOP_SECRET /GENSER NATO/

data data data data data data
data data data data data data
data data data data data data
data data data data data data
data data data data data data
data data data data data data
data data data data data data

TOP_SECRET /GENSER _NATO/

Figure 2 - Data Page of Printout

TOP_SECRET /GENSER_NATO/
),0.0.0.0.0.0,0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0,0.0.0.0.0.0.0.0.0.0.0.0,0.0.0.0,0,0.0 ¢
),0.0.0.0.0,0,0.0,0,0.9.0.0.6,0,9,.0.6.0.0,0,0.¢
).0.0.0.0,0.0.0.0.0.0.0.0,0,0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0,0,0.0.0.0.0.0.0.0.0.
).0.0.9.0,0.0,0,0.9.9.0.0.0.0.0.0.0.0.0,0.6.0.0.0.0.0.0.0.0,9.9.0,0.9,0,0.0.0,0,0.04

The sensitivity label of the user is:
TOP_SECRET /GENSER _NATO/
Unless manually reviewed and downgraded
The system has labeled this data:

TOP_SECRET /GENSER_NATO/

),0,0.6.0.0.0.0.0.0.0.0.0,0.0.0.0.0.0.6.0.0.0.0.0.0.0.0.0.0,0.0.0.0.9.0.0.0,0.0,0,0 ¢

),9.0,0.0.0.0.0.0.0.9.0.0.0.0.0.0.0.0,0.0.0.0.0.0.0,0.0.0.0:0.0.0,0.0.0.0.0.0,0,0.0.¢

):0,0.0:0.0.0.0:0.0.6.0.0.0.0.0.0.0.0..0.0.0.6.0.0.0.0,0.0.6.0.0.6.0.0.0.0.0.0.6.0 ¢

),0.0.0.0.0.0.0,0.0.0.0.0.0.0.0.0.0.0.0.0.0.0,0,0.0.0.0.0.0,0,0.0.9,0,0.0.0,0,0,0,0,¢
TOP_SECRET /GENSER_NATO/

Figure 3 - Final Page of Printout

132

I l NCTS Washington

GENSER Message
Multi-Level Secure (MLS)
Classifications

and @ Sensitivity Labels
Categories

® Trusted Processes and Processing
Presented by NCTAMS LANT I)
NCTAMS LANT
Mary Lou Hoffert I I
804-445-1808

":' CONCEPTS

® Multi-Level Secure (MLS)

rr_ M [F'Tablc 1 Multi-Level Secure (MLS) Matrix

nT.-n:::n. Chawsification Cotegorien
System
Leveln
» [) 2 3 4
.Applylng MLS to 7 GENSER | GENSER_ | GENSER_ | GENSER_ | DSsCs
. fau SIOP_EST | SPECAT | NATO
GENSER Message Processing T R
kY TOP_SECRET | nonmessage | mesage | mewuge | mosage | message
duts data data dola dats
® Impact of Automated Processing o i el ™y il
50 CONFIDENTIAL | nonmessge | message message | mewage
duta duta data data.
. . a0 RESTRICTED message
® US vs NATO Classifications | e
I 0 UNCLASSFIED m...zr..;c m-‘:;::.gc n::g: I

133

I-I-=S'EN ITIVITY LABEL

SECRET/GENSER,GENSER_NATO/

- UNCLASSIFIED//

TOP_SECRET/GENSER_SIOP_ESI/ II

| I Table 2 - Data Access Allowed

“Trusked Operating System Acces Meage Data Acoes Allkwwed Ner-Mewiage Dot Acces

Alkwed

SECRET/ one SECRET/
CONFIDENTIAL/
UNCLASSFIED

SECRET/GENSER/ SECRET (GENSER! SECRET/
CONFIDENTIAL /GENSER/ CONFIDENTIALY/
UNCLASSIFIED /GENSTR/ UNCLASSIFIELY/

SECRET /GENSER, GENSER NATCY | SECRET /GENSER, GENSER_NATOY SECRET/
CONFIENTIAL /GENSER. GENSER NATCY | CONFIDENTIALY

RESTRICTED /GENSER NATYY one
UNCLASSIFIED/GENSTR, GENSER NATCY | UNCLASSIFIEDY I

134

I—' ACCESS

® Data Access

® Clearance/Access Translation

i

® User/Process Access

I | Table 3 - Clearance/Access Translation

Seeurily Specia Accers Trusted Opersting System Aceens
i Au

o132 exexs wuthorizations whe

Tap Seeret e TOP_SECKET IGENSER!

&3
messa ge dats and non-message data.)

requlre

Ton Secret SIOF-ESI,SPECAT,NATO | TOP_SECKET IGENSER, GENSER_SIOP_ESI, GENSER_SPECAT,
GENSER_NATO/

(Personnel with T8 clearance and SIOP-ES), SPECAT, and NATO

Top Seerel NATO TOP_SECRET KENSER, GENSER_NATO!

0 L] NATO
who require neeen o meinge dats and ana-mesisge date)

Tup Secret NATO TOP_SECRET /GENSER_RATO/

rance and NATO iecel accen authorization
NATO Axts, but not 1

Table 4 - Restricted Translation

Format Line 2 Format Line 12

Trusted Operating System
Sensitivity Label

R RESTRICTED

CONFIDENTIAL /GENSER/

=

ALLIED RESTRICTED

CONFIDENTIAL /GENSER/

R NATO RESTRICTED

RESTRICTED /GENSER NATO/

Printed Banners

ToP_SECHET AENSNATY

FXOOONOONOGAOEXOR000IANR000T000T0K
000000000000000000ETA00IKIITI0
XO00000000000NORIACAOIRITTONEOORIO0

e wn ams e
: oo
I

Ruuaid; Unee23 hise: w10

Wl M | 091017 1995

ied
The yieen o W it

TOPSFCRET KENTER_NATOY

ToP_ABCMET KENSER_MATY

Yoo SPNET e AT

- e . b
o o dr wm da -
-
ooy
- e e
Py
- e

Tor AecurT sreen vy

Tor ST ABOER HATY

frisianiatit b

000U OO X OO LXK

Th ety sl ma i

T XBRET BSRENATY

000000

xx

it

X0

O X KK KX XX KKK K]
TP XET AITNVERNATS'

00000000 ooo000000
X000 OX GO R DX XXX
X OO

oo
o
nnnxxxxxxn‘xxnx!f

135

l I Compartmented Mode Workstation — Screen Displa;

rn G

asaianiien

CONCLUSIO

® Leading Edge of Technology

® Accommodate Automated Processing

® Standard Nomenclature Benefits

A STANDARD AUDIT TRAIL FORMAT

Matt Bishop

Department of Computer Science
University of California at Davis
Davis, CA 95616-8562

Introduction

The central role of audit trails, or (more properly) logs, in security monitoring needs little
description, for it is too well known for any to doubt it. Auditing, or the analysis of logs, is a cen-
tral part of security not only in computer system security but also in analyzing financial and other
non-technical systems. As part of this process, it is often necessary to reconcile logs from differ-
ent sources.

Consider for example intrusion detection over a network. In this scenario, an intrusion detec-
tion system (IDS) monitors several hosts on a network, and from their logs it determines which
actions are attempts to violate security (misuse detection) or which actions are not expected
(anomaly detection). As some attacks involve the exploitation of concurrent commands, the log
records may involve more than one user, process, and system. Further, should the system security
officer decide to trace the connection back through other systems, he must be able to correlate the
logs of the many different heterogeneous systems through whom the attacker may have come.

All this speaks of many needs, such as synchronization of time among hosts, a method for cor-
relation of host-specific information, and a standard logging format. Such a format has several
benefits. First, it makes analysis of the logs by a central engine simpler, because that engine need
not know the types of systems generating the logs. Secondly, it enables logs generated for very
different purposes to be reconciled. Suppose a credit card transaction is made over the Internet.
The financial transaction will be logged at the (electronic) bank, and the connection (and presum-
ably information about the transaction) at the purchaser’s system. Should the purchaser claim
fraud (e.g., he denies the transaction), the investigators would need to reconcile the system log
with that of the financial institution to verify the legitimacy of the transaction. Third, it allows
interoperability of audit systems on a very large scale, much the way a standard byte ordering
allows interoperation of networked systems.

A standard log format robust enough to meet the needs of heterogeneity, transportability
across various network protocols, and flexibility sufficient to meet a variety of needs in very dif-
ferent environments must satisfy two basic properties: extensibility and portability. Accepting
existing log formats as standard violates one or more of these goals. For example, each of
[4][5][7][8] are specific to a particular type of operating system, although the format described in
[8] is meant to be general enough for third-party vendors to use. The format in [9] is specifically
designed for the detection of misuse or intrusion in UNIX systems [6] and not for other situations
such as financial transaction processing. Finally, the proposed POSIX standard [10] does not
define a log format, but an application programming interface for accessing the log files a system
produces. As the problem posed here includes moving the log files across networks and among
heterogeneous platforms, use of such an interface in this context is inappropriate.

Extensibility implies that neither the names nor the number of the fields of the log record are

136

fixed. As the use of logs increases, investigators will become more sophisticated and demand
additional information from the systems. Thus if the type of information that can be placed in the
log record is limited to those quantities defined by the designers of the system, adding new fields
requires a revision of the definition of an audit record as well as all ancillary software. Further, as
designers become more sophisticated in what their systems will log, they will define new fields to
aid in tracking specific security problems. All this speaks to allowing user-definable fields as well
as common, predefined fields.

Portability implies that the log can be processed on any system. Thus, issues of byte ordering,
character representation, and floating-point format must be either avoided or standardized. As log
records may be sent over electronic mail, the format should be portable enough to pass through
the SMTP protocol. This suggests that the best representation would involve printable ASCII
characters only; note that canonicalizing the standard format to this requirement eliminates issues
of byte ordering and floating-point representation, because numbers would be represented as
ASCII strings, and the standard system conversion functions would translate these into numbers
when required. Finally, given this approach, the record cannot be of fixed length, because differ-
ent machines will have different precisions, and mandating that the ASCII representation of num-
bers be of a fixed length would potentially cause a loss of precision in some cases.

The next section presents our proposed format. In section 3, we show how and where the
translation should be done, and in section 4 we demonstrate how log records from several dispar-
ate systems would be put into this format. Section 5 concludes with some observations and sug-
gestions for future work.

Proposed Standard

We select as our goal the definition of a standard log record format. We explicitly do not
attempt to standardize the events or fields (also called attributes) that are to be recorded; as argued
in [3], that is more properly a function of policy and not of information interchange. Users of this
format will have to use common field names when interoperating, and these common names could
form the basis for another standard.

A log record consists of several fields all of which refer to the same event. We separate fields
with a field separator, which by default will be ‘#’. (To include the separator in a field, repeat it;
thus, “##” stands for a single ‘# character.) Each field consists of an attribute, which is repre-
sented by a string of 1 or more characters not including ‘#’ or ‘=’, and a value, which consists of a
string of characters; the two are separated by an ‘=’. So, for example, the fields of a log record for
a UNIX command may look like :
#time=234627364#1log=mab#role=root#UID=384#file=/bin#su#devno=3#inode=2343#

For the reasons stated above, log records cannot be of fixed length; they therefore require a
start and a stop symbol. These symbols are pseudo-fields containing the characters are “S” and
“E”; note that these are not legal fields as they have no ‘=’ in them. For simplicity, the special field
“#N#" represents the juxtaposition “#E#S#”. Thus, the above log record would be
#S#time=234627364#1log=mab#role=root#UID=384#file=/bin#sutdevno=3#inode=2343#E#

The SMTP protocol is quite restrictive; it requires that all characters be printable ASCII, and
no line be more than 80 characters long. Hence, characters may, and nonprinting characters must,
be represented by their value expressed in hexadecimal and surrounded by the nonprinting delim-
iter *\’. For example, if the value of attribute “controlchar” is “ESC-[H”, where ESC is the escape

character, the field would be

137

Figure 1. Summary of standard log format.

#S# start log record . #Fc# change field separator to ¢

#HE# end log record #Cc# change nonprinting delimiter to ¢
#N# next log record (same as #E#S#) #I# ignore next field

default field separator \ default nonprinting delimiter
\hex value\ represents the character with ASCII value hex value

attribute=value set the value of attribute to value

#controlchar=\1b\ [H#

This means that a ‘\’ character must be escaped, so the sequence “\\” represents a single ‘\. Fur-
ther, a mechanism for including newlines in the middle of a log record will allow the record to be
broken into lines of less than 80 characters; for this purpose, we define the pseudo-field “#I#” as
marking the next field to be ignored. (Incidentally, this also allows comments to be interpolated.)
To expand on our log record above:
#S#login_id=bishop#role=root#UID=384#file=/bin/su#devno=3#inode=2343#I#
#return=1#errorcode=26#host=toad\79\#E#

As one last feature, we note that the field separator and the nonprinting delimiter may occur often
in the value of fields on some systems. Hence, we provide a way to change both. The distin-
guished symbol “#F%#” changes the field separator to ‘%’ and the symbol “#C$#” changes the
nonprinting delimiter to ‘$’. Note that any character may be used, not just ‘%’ and ‘$’. Also note
these are illegal fields as there is no *=" in them. For example,
#SH#FIHCSSlogin_id=bishop%role=root%UID=384%file=c:\bin\load%¥I%
$return=1%errorcode=26%host=toad793%E%

Note that these symbols are not considered part of the log record in which they occur; rather, the
chosen field separator and nonprinting delimiter characters remain in effect until changed. Figure
1 summarizes these character sequences.

Note that we do not specify any particular attributes as standard. This is to allow the designers
of audit tools to name fields as they wish; so long as they are consistent across platforms being
audited, the precise names of the attributes do not matter. However, many systems log the same
categories of information (such as user name, command, date, and process number). Section 4
describes several such attributes, and names and representations are suggested.

Note also that this format eliminates the problem of the undefined value. In a system in which
some attributes are required, the log must be able to specify that the value for the attribute cannot
be determined. Here, one of two approaches may be taken. First, define a distinguished value to
represent the undefined value; this is the approach other log formats use. Second, simply omit the
attribute from the record. If it is not present, then it is clearly not defined. This approach elimi-
nates the need for a distinguished value to mean undefined.

Use of the Format

Because each system uses its own internal representation of log files, and its own auditing
tools are crafted to use that format, it is not necessary that the log records be put into the standard
format. The need for a standard format arises when tools recognizing only that format are used, or
when the logs generated by that system must be combined with logs from other, different types of,

138

log filter
analysis
log filter processor

Figure 2. Architecture using log filters to generate the standard format. The native system logs
(generated by the log generators) are translated into the standard format by the log filters and then
sent to the log processor on the analysis host. That program changes the standard format into the
internal representation used by the analysis engine. '

systems. ,

Hence the recommended architecture for generating this log format is to build a filter tool that
will take as input the raw log records as produced by the system, and will generate as output the
standard log format. With this approach, at the analysis engine one need write all log input pro-
grams to use only the standardized format. Figure 2 summarizes this approach.

We note that one could use the POSIX standard interfaces to define the manner in which the
filter should access log records. In this case, the API would be the same for all POSIX-compliant
machines and the processing of the information would vary. We note however that the POSIX
interface suffers from some limits, specifically a failure to include some relevant information such
as session identification mechanisms, and that few vendors provide POSIX-compliant interfaces.

This approach avoids the need.to modify the kernel locally if new information becomes avail-
able. For example, suppose initially the log only records the user time of a process, and a later
revision adds system time spent executing on behalf of the process to the log. The filter will now
need to be changed to add this information into the standard format log, but the operating system
need not be modified (beyond the upgrade).

As an aside, we note that the filter may reside on the system being monitored (in which case
the records will be sent in standard format) or on the analysis engine (in which case the logs will
be sent in native format). The former seems preferable because it not only distributes the compu-
tation load but also handles network dependencies such as network byte order.

The next section presents several issues about representation of values to demonstrate com-
plexities that arise in using this format. We do so by examining log records for several systems.

A Comparison of The Standard Log Format with Other Formats

In this section, we describe several log record formats, and show how they can be mapped into
the standard audit format.

Basic Security Module

The Basic Security Module (BSM) [4] is an enhancement to SunOS system security. Each log
record is made up of a sequence of tokens and, like the standard format, the record size is not
fixed; there is a begin and an end token. Each record refers to an auditable event, which may be a
“kernel event” such as a system call or an “application event” such as a failure to authenticate suc-

139

|

cessfully to the login program.

BSM defines a token to be a token identification field followed by a series of information
fields. These tokens all relate to user identity (process, which includes real, effective, and original
UID and effective group ID as well as process ID; group list), file system information (pathname
and attributes), IPC usage (IPC token, IPC attributes), networking (IP port number, IP address),
and process and system call information (return value, arguments) as well as more general infor-
mation (text, data, opaque). By using this information, actions on the system can be traced.

The BSM logs use the same free-format idea as the standard log format; the only differences
are that the BSM information is stored in binary format when appropriate (for example, if num-
bers are involved) and the start and end tokens contain the length of the record. The standard log
format does not do this to allow the records to be generated on the fly, so that the entire record
need not be constructed in memory and then output. This means that scanning the standard log
format may involve some overhead, but the overhead is most likely negligible and is offset by the
elimination of the need to process ASCII strings into numbers.

An example BSM log record might look like this (when formatted using praudit):

header, 35,AUE_EXIT,Wed Sep 18 11:35:28 1991, + 570000 msec,
process,bishop, root, root, daemon, 1234,

return, Error 0,5

trailer, 35

Put into the standard log format, this looks like:

#S#event=AUE_EXIT#date=09181991@113528#usedtime=570000#logid=bishop#I#
#ruid=root#euid=root#egid=daemon#procid=1234#errno=0#retval=5#E#

Note that the same information is present, but the attributes are named rather than defined by loca-
tion in the log record. This is necessary as different systems and different policies will require dif-
ferent information to be stored, leading to much confusion if the fields are not identifiable by
attribute name rather than position. Basically, one cannot predict all attributes that will need to be
logged; hence, one cannot rely on position.

SunOS MLS Logs

SunOS MLS, the multilevel secure version of SunOS, produces logs very similar to those of
the BSM [8]. Log records are not fixed length, but there is no trailer token; the header token
includes a length, type, and time field. Associated with each event is a header token, a subject
token (giving the login, real, and effective UID and real GID of the process and the associated
user), return value information, labelling information (if the system uses labels), and other ancil-
lary information identical to that of the BSM. The average size of a log record is between 120 and
180 bytes; compression reduces this appreciably (by roughly a factor of 4 to 8, depending on the
record’s contents).

A simplified example of a SunOS MLS log record is given in [8]:

header,120,AUE_UNLINK,Wed Sep 18 11:35:28 1991, + 570000 msec,
process,bishop, root, root,daemon, 1234,
label,confidential,nuclear, crypto

pathname, /, /usr/holly, ../matt/tmp/junkfile

return, Error 0,5

trailer,120

Put into the standard log format, this looks like:

#S#tevent=AUE_UNLINK#date=09181991@113528#usedtime=570000#I#

140

#logid=bishop#ruid=root#euid=root#rgid=daemon#fprocid=1234#I#
#seclevel=confidential#class=nuclear#class=crypto#I#
#rootdir=/#cwd=/usr/holly#pathname=../matt/tmp/junkfile#I#
#errno=0#retval=5#E#

Again, note the standard log format simply presents the information in another way. Also note that

- if the attribute names are too long, one could define very short ones.

The basic differences between this format and the standard log format are twofold. First,
SunOS MLS log records include data in integer format; second, the types of information that can
be placed in those records is constrained and not easy to change. For example, if the same format
were used on a financial system, the format would need to be changed to include information
about the transaction itself. However, this format is quite good for its intended purpose (which is
to provide information for system security auditing).

VAX VMM Security Kernel

The VAX VMM security kernel is a virtual machine monitor which has extensive auditing
abilities designed to meet the requirements of the A1 class of the Orange Book [7]. All logging is
done by the Audit Trail layer and each record contains an event identifier, the event status (result
of the event), auxiliary data (such as the name, type, and class of the object involved in the event,
and other event-specific information), the name of the caller (who caused the event), the date and
time of the event, the caller’s type, access class, user’s name, rights, and privileges. While some
events can be excluded from the log, the higher layers have the power to override exclusion (for
example, if a login fails, the event will be logged). Unfortunately, the paper gives no examples,
but the attributes here can clearly be captured by the standard log format.

Again, this format has some drawbacks as a standard log format: the attributes are fixed, and
the data in the logs is binary, so numbers (for example) are stored in a machine-dependent man-
ner. To be fair, it was intended only for use in the VAX security kernel, and for that purpose
appears to be quite good.

svr4++ UNIX Log Flle Format

This log format [9] is an ASCII format based on the logging format used in OSF/1. The
attributes entered in a log record are time, event type, process identifier, result, user and group
information, session identifier, labelling information for the process, information about the object
(name, type, security label, device and inode information) and miscellaneous data. Each log
record is a single line with comma-separated fields, and undefined fields (such as the security
label field when the process does not have a security label) are set to ‘?’.

This style of record approaches portability. It is in ASCII, which solves the problem of binary
data management. However, the fields it uses are tied directly to the nature of the policy which
suggested the creation of the log: misuse or anomaly detection. No extensibility is provided for
(the miscellaneous fields are labelled as being dependent on the operating system and the event).

Here is an example audit record in this format (it is spread over two lines for clarity):
16:36:01:28:09:92,6,P16195,s(0),1021:1021:1021,10,S?,7?,
(/home/snapp/creat.foo:£:70644,1024,10":17080:66:184:411265:1818)

The equivalent record in the standard log format is:

#S#event=6#date=09281992@163601#1ogid=1021#ruid=1021#euid=1021#rgid=10#TI#
#procid=16195#cbjname=/home/snapp/creat.foo#objtype=file#objmode=0644#T#
#objuid=1024#0objgid=10#0objdevid=17080#cbjdmaj=66#objdmin=184#T#

141

#0objino=411265%#0cbjfsid=1818#E#

A few remarks are in order. First, had multiple objects been present, the attributes could be num-
bered objl..., obj2... and so forth to distinguish the object to which the fields referred to. Sec-
ondly, this log record assumes that the audit engine knows the internal representation of users (for
example, that user id 1021 refers to John Smith). Third, the label field and session id field are
omitted as the values in the svr4++ log record fields show the system did not provide those. This
makes the log more readable.

A Log for an Embedded Avionics System

The study of log records for an avionics system [5] may seem far from the point of this paper,
but as we claim the format is general enough for all purposes, this serves as one way to test our
claim. The log records subject identifier, action performed, 2 security-relevant parameters, object
identifier, the initial and resulting value of the object and the status of the operation, and then
information about resource usage, a time stamp, and the severity of the event and the status of the
logging. Again, the paper gives no examples, but clearly the standard format provides enough
flexibility to allow the records to be standardized.

RACF

RACEF [1] is a security enhancement package for the IBM MVS operating system and VM
environment. It logs failed access attempts and the use of privileges to change security levels, and
can be set to log any RACF command, changes to the RACF database, attempts to access
resources guarded by RACF, and any access by privileged groups or users. The logged informa-
tion includes userid, name, owner of the resource, when the resource was created, and so forth.

RACF generates reports using four commands. LISTUSER ists information about RACF
users:

USER=EW125004 NAME=S.J.TURNER OWNER=SECADM CREATED=88.004

DEFAULT-GROUP=HUMRES PASSDATE=88.004 PASS-INTERVAL=30
ATTRIBUTES=ADSP
REVOKE DATE=NONE RESUME-DATE=NONE

LAST-ACCESS=88.020/14:15:10
CLASS AUTHORIZATIONS=NONE
NO-INSTALLATION-DATA
NO~-MODEL-NAME

LOGON ALLOWED (DAYS) (TIME)
ANYDAY ANYTIME
GROUP=HUMRES AUTH=JOIN CONNECT-OWNER=SECADM CONNECT-DATE=88.004
CONNECTS= 15 UACC=READ LAST-CONNECT=88.018/16:45:06

CONNECT ATTRIBUTES=NONE
REVOKE DATE=NONE RESUME DATE=NONE
GROUP=PERSNL AUTH=JOIN CONNECT-OWNER=SECADM CONNECT-DATE: 88.004
CONNECTS= 25 UACC=READ LAST-CONNECT=88.020/14:15:10
CONNECT ATTRIBUTES=NONE
REVOKE DATE=NONE RESUME DATE=NONE
SECURITY-LEVEL=NONE SPECIFIED
CATEGORY AUTHORIZATION
NONE SPECIFIED

A standard log format representation of this might be:
#S#user=EW125004#name=S.J. TURNER#owner=SECADM#created=01041988#I#

142

#defgroups=HUMRES#passdate=01041988#passinterval=30#attributes=ADSP#I#
#lastaccess=01201988@141510#]logonok=anyday, anytimef#groupl=HUMRES#I#
#grouplauth=JOIN#grouplconnowner=SECADM##grouplconndate=0104995#T#
#grouplconncount=15#groupluacc=READ#groupllastconn=01181988@1641506#I#
#group2=PERSNL#group2auth=JOIN#group2connowner=SECADM# I#
#group2conndate=0104995##group2conncount=25#group2uacc=READ#I#
#group2lastconn=01201988@141510#E#

The other three log formats may be translated similarly. Note the difference in attribute names

which reflects the difference in security policy and system implementation.

CA-UNICENTER

CA-UNICENTER is a UNIX-based product providing many security features of a mainframe.
Its log messages cover logging in, logging out, and resource protection. Among the attributes
recorded are event, login name, host name, terminal identifier, resource name, result, and access
request. For example, the CA-UNICENTER record
CASF_E_465 Access violation by bishop to asset (Warn) /bin/su> from source con-
sole for access type write

would be

#S#event=CASF_E_465#loginid=bishop#mode=Warn#asset-name=/bin/su#I#
#termid=consolef#reqgaccess=write#E#

in the standard log format. Similarly, the record

CASF_E_466 Logging access by bishop to asset /bin/su from source console for
access type execute :

would be translated to
#S#event=CASF_E_466#loginid=bishop#asset-name=/bin/su#termid=console#I#
#regaccess=execute#E#

Summary

We have taken examples of log records from very different systems and shown how to put
them into the standard log format. This demonstrates that the log format can handle a variety of
systems and security policies, from intrusion detection to financial records.

We should note some commonalities between the attributes in the different examples. First,
user ID may be represented either by name or number, but the analysis engine must be able to
resolve either to a canonical name. The representation of date and time is as mmddyyyy @ hhmmss
rather than as an internal number (such as the number of seconds since January 1, 1970) because
different systems use different numbers, so this was chosen to make the records easier to under-
stand. Of course, all systems must have synchronized clocks to make a comparison of times

meaningful.
Example Attack Record

In this section we suggest specific fields for system security; that is, what fields in the standard
log format would a security analyst trying to track an intruder find useful? A fully detailed analy-
sis would be beyond the scope of this paper, but a simple one follows.

Intruders enter systems through a variety of mechanisms, most involving network connections
or logins. (Note that an exception is piggybacking onto an active connection.) Hence, log fields
indicating the origin and type of connections are appropriate, as is the time and privilege of the
connection. For reference, each log entry should be numbered. For example:

143

#S#no=1231#date=09281992@163601#net=1#srv=smtpd#orig=123.45.67.89#port=25#E#
$S#no=224#date=10101997@123456#tty=console#usr=mab#role=mab#grp=fac#tryno=1#E#
The first line is an example of an SMTP connection originating from IP address 123.45.67.89 and
coming in over the first network (this is a multi-homed host), -and the second a login by user
“mab” from the terminal “console”; the login was successful on the first try, and the user was put
into group “fac” and the role “mab”.

Detection involves looking at commands executed; the axes here are for suspicious programs
(such as a user executing a program called “guess_anyones_password”), and normal programs
that deviate from their expected pattern of execution (such as a UNIX shell with 100 hours of
CPU time; shells virtually never have that much CPU time). Fields relevant here would be pro-
gram name, amount of execution time (system and user, as well as time of execution, termination,
suspension, and resumption), and files accessed. Some sample log entries are: '
#S#no=123#name=/bin/sh#date=10101997@123456#act=beginffusr=mabigrp=Ffac#I#

#cwd=/u/mab#argl=X#pid=9876#E#
#S#no=124#name=sh#date=10101997@123457#pid=9876#act=open#mode=read#I#
#usrtime=0.01l#systime=0.01#file=/u/mab/X#res=1#I#
#fdev=/dev/rrhl0e#fino=123214#ftype=reg#fperm=0644#fuser=mab#I#
#fgrp=fac#atime=10081997@102300#ctime=080396@153451#I#
#mtime=10021997@0235344#E#
In the first line, the program “/bin/sh” (process number 9876) has been started by user “mab”, in
group “fac”, and was given the argument “X”. The second entry shows that “/bin/sh”, with 0.01
seconds of user and system time on it so far, has tried to open file “/u/mab/X” for reading and has
succeeded. The file resides on device “/dev/rrhOe” with inode number 123214, has access permis-
sions “0644” (owner read and write, group and other read), and is owned by user “mab” and
group “fac”. It was last accessed at 10:23:00 on 10/8/1997, last modified at 2:35:34 on 10/2/97,
and created at 15:34:51 on 8/3/96.
#S#no=139#name=/bin/sh#date=10101997@125001#pid=9876#usrtime=21600#I#
#systime=0.01l#act=susp#usr=root#E#
#S#no=160#name=/bin/sh#date=10101997@125223#pid=9876#usrtime=21600#T#
#systime=0.0lact=termfusr=root#E# ‘
These last two log entries show that process 9876, which is “/bin/sh”, was suspended and subse-
quently terminated by user “root”. At the time of suspension, it had 21600 seconds (6 hours) of
user time and 0.01 seconds of system time.

This is a very simple example of what a system administrator would look for. Note that in this
example the user time and system time are written out at each system call. Whether or not all
these fields could be present depends on the system on which the logging is done; but there is no
question their presence would indeed be useful.

Conclusion

This paper has presented a very flexible, portable, extensible standard log format. We have
demonstrated its use by applying it to several different formats of log records.

The key issue is, of course, what to log. As shown in [3], what to log depends on both the
implementation of system logging mechanisms and the needs of the security policy to be
enforced. This paper speaks to neither point; nor does it claim to.

The architecture of a distributed auditing system is beyond the scope of this paper, but the
essentials of one such system are described in [2]. That paper does not deal with reconciliation of

144

logs from heterogeneous systems, which is a very deep research question. This paper presents
work that is a step in the direction of a solution by eliminating the need to have the reconciliator
understand the vendors’ log format. The next step is to investigate techniques to reconcile logs.
Acknowledgments: Thanks to Al Novissimo and Alan Paller of Computer Associates, Inc., for
providing information about CA-UNICENTER, to John Gregg and David Day of the UC Davis
Office of Internal Audit for useful discussions about non-computer oriented auditing involving the
analysis of computer systems and for a description of RACEF, and to Biswaroop Guha, Christopher
Wee, James Hoagland, and Karl Levitt for useful discussions. This work was supported by an
award from the Lawrence Livermore National Laboratory to the University of California at Davis,
and was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under contract no. W-7405-Eng-48

Basic Security Monitor and SunOS are registered trademarks of Sun Microsystems, Inc. CA-
UNICENTER is a registered trademark of Computer Associates, Inc. RACF is a registered trade-
mark of IBM. VAX is a registered trademark of Digital Equipment Corporation.

References

[11 Audit, Control, and Security Issues in RACF Environments, Technical Reference Series No.
37052, Ernst & Whinney; available from The EDP Auditors Foundation, Inc., Carol Stream,
IL (1992).

[2] D.Banning, G. Ellingwood, C. Franklin, C. Muckenhirn, and D. Price, “Auditing of Distrib-
uted Systems,” 14th National Computer Security Conference Proceedings pp. 59-68 (1991).

[3] M. Bishop, “Goal-Oriented Auditing and Logging,” unpublished.

[4] Installing, Administering, and Using the Basic Security Module, Sun Microsystems, Inc.,
Mountain View, CA (April 1992).

[51 K. N. Rao, “Security Audit for Embedded Avionics Systems,” Proceedings of the Fifth
Annual Computer Security Applications Conference pp. 78-84 (Dec. 1989).

[6] D. M. Ritchie and K. Thompson, “The UNIX Time-Sharing System,” Communications of
the ACM 17(7) pp. 365-374 (1974).

[71 K. F Seiden and J. P. Melanson, “The Auditing Facility for a VMM Security Kernel,” Pro-
ceedings of the 1990 IEEE Symposium on Research in Security and Privacy pp. 262-277
(1992).

[8] W. Olin Sibert, “Auditing in a Distributed System: Secure SunOS Audit Trails,” 11th
National Computer Security Conference pp. 81-91 (1988).

[9]1 Stephen E. Smaha, svr4++, A Common Audit Trail Interchange Format for Unix, Haystack
Laboratories, Inc., Austin, TX (Oct. 5, 1994).

[10] Standard for Information Technology Portable Operating System Interface (POSIX) Part I:
System Application Protgram Interface (API), Report 1003.1e, (April 1994).

145

TCP/IP (Lack of) Security

Jesper M. Johansson

BMGT 727
Security of Information Systems
Dr. John Campbell

Abstract

This paper explores the security problems of the Transmission Control Protocol/Internet Protocol
(TCP/IP) protocol suite. The security problems of many of the most common features are
explained, and examples are given in many cases. The paper also takes a look at the changes to
the security aspects of IP which will change with the adoption of the revised version of this
protocol: IPv6. This protocol has solved some of the security problems inherent in IPv4, but
many problems, especially those that are inherent to other areas of the protocol, and those which
rely on source address authentication, remain. The paper concludes by a short examination of
what was perhaps the largest security breach in IP history, the Internet Worm. What the worm
actually did and did not do will be covered, as well as how it operated. This is an important
exercise, since it highlights some of the major security flaws in the protocol suite. It also
highlights the dangers of allowing the users of the system, as opposed to the system manager, to
dictate security policy.

Acknowledgment

I would like to thank my professors at the University of Maryland, and especially Drs. Campbell
and Alavi, for allowing me the opportunity to explore many of the areas of Information Systems
which I normally would never have delved into. When I started with the program I had no idea
how wide and exciting the area is. You have made me realize the excitement in studying the
leading edge of the field. It is due to your encouragement and advice that I have decided to make
the exploration of the mysteries of Information Systems my life work. As I commence my
doctorate studies at the University of Minnesota, I am forever grateful to you for your guidance
and encouragement.

146

Jesper M. Johansson TCP/IP (Lack of Security)

TCP/IP (Lack of) Security

The TCP/IP protocol suite is arguably the most commonly used protocol suite in the world today.
It comes as a standard feature on virtually all UNIX® systems. It forms the base of the largest
network in the world: The Internet. The Internet was developed using grants from the
Department of Defense’s (DoD) Advanced Projects Research Agency (ARPA). The Internet,
and the TCP/IP protocol suite it is built on, were not designed to provide security features.

(They also were not designed to handle the number of hosts presently on them either, but more
about that later). Rather, they were designed to facilitate the dissemination of information.
Therefore, most security features were added as an afterthought, in higher level protocols.

This paper discusses the security aspects of TCP/IP. First, a relatively brief overview of the
Internet Protocol (IP) will be given. This discussion will also cover the layering of protocols, to
create the protocol stack. Next, the “auxiliary” protocols (the higher layers) will be presented,
along with the security features they provide, or, as in most cases, lack. We will then turn our
attention to hope for the future: Internet Protocol; The Next Generation, more commonly known
as IPng, or officially IPv6 (as opposed to IPv4, the current implementation). Lastly, we shall
delve into a case study on the dangers of trust: The Internet Worm of November 1988.

The Internet Protocol

The Internet Protocol (IP) was first developed along with the ARPANet, and has been included
in the release of most every UNIX implementation since Berkeley’s version 4.2 (BSD4.2). The
Internet protocol provides the equivalent of the Open Systems Interconnect (OSI) networking
layer to the TCP/IP stack, with the exception that, in contrast to OSI, TCP/IP actually works.
TCP/IP is both topology and data link independent. This is one of the strong points, since the
protocol thus can be utilized on almost any network [KEEN94]. There are also numerous
derivative protocols of IP, such as IPX (used in Novell Corp’s. LANSs). IP, however, has
significant shortcomings, other than the security ones, which we shall discuss soon. First, we
will discuss some of the basics of IP though.

IP is a packet switched protocol. This means that it divides the message to be sent into packets,
which then could take different routes to the destination. The destination, and the source, is
identified through their IP-addresses An IP address is a 32-bit number, where the first few bits
define what size network the host is connected to. IP does not check whether a packet was
received or not. If a packet is undeliverable, or does not reach it’s destination, it is simply
discarded. Higher level protocols deal with what to do when packets disappear. An IP packet
consist mainly of two parts: The header, and the datagram. The header specifies the source, the

'"Unix is a trademark of AT&T Bell Laboratories

147

Jesper M. Johansson TCP/IP (Lack of Security)

destination, and certain other information, as will be described later. The datagram carries the
actual message, in plaintext. There is no method for encryption currently available that works on
the IP level.

IP Shortcomings

The most notable shortcoming of IP is the fact that its address space is fairly limited. An Internet
address (see Table 1) is made up of a 32 bit number. That number is further subdivided into (1)
high-order bits, specifying the class of network; (2) the network portion, specifying actual
network within the class; and (3) the host portion, specifying the host within the network.

IP Address Formats
Class High-Order Network Host Portion Number of Number of
Bits Portion Networks Hosts
A 0 7 24 128 16,777,214
10 14 16 16,384 65,534
C 110 21 8 2,097,157 254
D 1110 Multicast Multicast -1 268,435,456
Group Group
E 1111 (Experimental |(Experimental - -
Use) Use)
Source: [CHES89]

The class A networks have long been exhausted. The Class B networks were already in 1990
estimated to be exhausted by March of 1994 [BRAD95]. The Internet thus faces significant
growing pains. The theoretical limit on the number of hosts on the Internet would be just

under 4 billion. However, despite this limit, the routing tables necessary to implement a full
scale network with all these hosts would be humunguous, thus significantly slowing
performance. Therefore, an upgrade to the current IP protocol is being developed. This upgrade
is discussed at more length in the IPv6 section of this paper. It is estimated that, under the
current conditions, and rate of issuance, the address space will be exhausted between the years
2005 and 2011 [BRAD95]. However, this projection does not take into account any possible
significant shifts in the rate of usage.

Another weakness, which is more directly related to this paper, is the lack of security features in
IP. There are a number of optional fields in an IP header, two of which are the security label,

148

Jesper M. Johansson TCP/IP (Lack of Security)

and the strict an loose source routing fields. There are no other security features inherent in the
current version of IP.

The Security Label

The Security Label is most commonly used in military applications. The field allows a packet to
be labeled with the sensitivity of information it contains [CHES94]. These labels follow the
well-known “military model.” However, most operating systems in use today make no use of
these labels. The most common current use for them is to restrict routing. For example, a packet
labeled Top Secret will not be transmitted over a router rated less than that, unless the packet is
properly encrypted, using Top Secret-rated keys.

Source Routing

Source routing is an option in IP which specifies the routing path that a packet should take. This
is not a security feature in IP. Rather it is a significant problem. Using this label, a person can
specify that a packet should take a certain route. Since the destination machine must use the
inverse of that route [BRADENS9], the attacker can impersonate any machine that the target
trusts, thus gaining access to the packets, as they pass by. It is generally recommended that
source routing is turned off, or that packets containing this option be rejected by the router.
There are very few legitimate uses for source routing.

Higher Level Protocols

There are a number of auxiliary, or higher-level, protocols which attach to IP. By itself, IP will
do nothing more than establish a connection to another computer. It is up the higher level
protocols to decide what to do with that connection. Many of these protocols suffer from the
lack of basic security features in IP. Most of them also provide some holes all of their own.
These protocols can do many different things, ranging from setting up and tearing down
connections to other computers (TCP), to sending mail from one computer to another (SMTP).

Connection Layer
TCP

The most well known of the higher level protocols is the Transport Control Protocol (TCP). This
protocol is so commonly mentioned in conjunction with IP, that most people probably think that
they are one and the same. This is far from the truth. TCP is not required to do much of the
work on the Internet. There are other protocols available to do some of the same things.

TCP is used to provide the user (whether a breathing human being or a process on a computer)
with a reliable virtual circuit to use for the communication. (Interestingly, TCP adds a
connection-oriented protocol to a packet switched network, a seeming paradox). Since IP is
packet switched, there is no guarantee that packets are in the right order when they arrive. TCP
takes care of this by ordering the packets according to their sequence numbers. Every byte sent

149

Jesper M. Johansson TCP/IP (Lack of Security)

carries such a number. This sequence number is also used as an acknowledgment number, sent
the other way, to signify the last successful packet sent. Every packet, except the first one sent,
will contain such an acknowledgment number. The initial sequence number (at least in a
Berkeley system) is incremented by a constant amount each second, and by half that amount,
each time a connection is initiated [BELL89]. Robert T. Morris pointed out that it is entirely
possible to predict that sequence number, thus fooling the attacked host into thinking that
someone else is connecting to it [MORRS5]. A normal TCP connection sequence is shown in
Figure 1. The client would send a SYNchronize message to the server, including an initial
sequence number (ISN). The server would respond with its own synchronization and an
acknowledgment of the clients ISN. The client would then acknowledge the server’s ISN and
the data transfer could start. This is commonly known as the three-way handshake in TCP.

SYN(ISN¢C) ——
SYN(ISNs), ACK(ISNc)

ACK(ISNS) server.gov

data

Figure 1: A normal TCP connect session

Figure 2 pictures an attack. First the attacker would have to select a host to use as a third party.
This is the host to be blamed for the attack. Preferably, this host should be a host trusted by the
victim. The attacker would flood that third party with connection requests. This would cause
that host to be unable to respond to communication from the victim. The attacker would then
initiate a TCP session to the victim, stating that s/he is in fact the trusted third party host. The
victim, believing that the address sent as the source, is in fact the source, would send the usual
acknowledgment to the third party. However, since the third party is busy, the packet would
simply be thrown away. Since no errors are generated, the victim still does not know that it is
under attack. The attacker would now, assuming that s/he can reasonably guess the ISN that the
victim sent to the trusted host, acknowledge this ISN. This establishes the connection. The
victim still thinks that the third party is in fact the one connected, and a normal session would
proceed. The attacker could now access anything at the victim’s site that the third party has
access to. This type of attack, which is known as a sequence number attack, would essentially
circumvent the only real authentication feature in TCP: Source address authentication. This
authentication method is based on the fact that a host trusts other hosts based on the source
address that they supply it with. Many commands rely on this authentication feature, most
notably the Berkeley r-services (discussed later). This forms the basis of lesson one in
internetworking: Trust no-one. The only method of authentication today is the source address

150

Jesper M. Johansson TCP/IP (Lack of Security)

-

2 SYN(ISNa) SRC=T

4 ACK(ISNv), SRC=T

attacker.edu
5 data ——p

1 Flood this link
with connection
requests

3 Syn(ISNv), ACK(ISNa)

third.party.com

Figure 2: An attack via TCP

authentication. However, seeing how easy it is to spoof source addresses, one cannot be certain
that someone connecting is who s/he says s/he is. This point is driven home further in the
discussion of SMTP later. Note that, if the victim had blocked legitimate connections, such as
via a firewall, this method of breaking in will not work. However, firewalls will be the subject
of an entirely different paper. Another way to foil such an attack is to create more random (read

“not guessable”) initial sequence numbers, like for example, random bits from RAM. However,
the TCP specification does not provide for this. Rather, it provides for the fact that the number
be changed at a rate of 250 hertz. Since the spoofer could probably predict the constant
increment to the ISN, if s/he could only measure the turnaround time from an initial probe, all
the guesswork is taken out of spoofing [BELL89).

UDP

The User Datagram Protocol (UDP) provides additional security problems. UDP is a transport
protocol that extends the service of IP to applications. As such, it has no guarantees of service.
When using UDP, there is no setup and tear-down of a circuit as with TCP. Rather, UDP simply
transmits the packet, and hopes that the host is responding. This makes it very suitable for
query/response applications, where there is no need to setup a virtual circuit. Since there is no
handshake, there is no way to authenticate the sender of a UDP packet. Therefore, the
application using UDP will have to provide some form of authentication service.

151

Jesper M. Johansson TCP/IP (Lack of Security)

ICMP

The Internet Control Message Protocol (ICMP) is used to inform hosts of different, and
ostensibly better, routes to other hosts. In addition to this, it also supports a program called ping
which is used by system administrators to monitor systems. The problem with ICMP messages
lie in that many older implementations do not use the service correctly [CHES94]. When a
message is received that some host was unreachable for a specific connection, these older
implementations will disable all connections to the other host. Thus, sending false ICMP
messages could prove a very effective denial of service attack. Also, an ICMP message can be
generated by a prospective attacker, informing the victim that the usual path to a specific host is
down, and that a different path should be taken instead. Packets could then be sent via the
attackers machine, where they can be conveniently read, altered, or plain lost. In order to
safeguard against this, ICMP redirect messages should not be obeyed unless they come from a
router that is directly attached to the victims network [BELL89].

The Daemons

Daemons are programs which provide services on a UNIX machine. An example of a daemon is
fingerd which provides the finger service. This service is used to look up all kinds of useful
information about a user. Services such as these are usually used by crackers to obtain
information about users, that can later be used to determine login names and guess passwords.
Many of the attacks on these services center on a few files, such as /etc/passwd, /etc/hosts.equiv,
and SHOME/.thosts. These files, respectively, provide information on: All of the users
authorized on a system, their authorization level, their encrypted password, etc; hosts trusted by
the current system; and hosts trusted by individual users. We will now discuss some of these
services in more detail.

SMTP

SMTP stands for Simple Mail Transfer Protocol. Virtually all system administrators, whether
connected to the Internet or not, state that e-mail is the most sought-after service there is. The
first problem when using SMTP and the Internet is not really a security problem: SMTP
supports 7-bit ASCII (American Standard Code for Information Interchange) communications.
This means that anyone using the Internet for communication in a language other than English
will have a problem: SMTP does not recognize any characters with an ASCII number above
127. This precludes it from using characters used commonly in languages such as French,
Spanish, German, and Swedish, not to mention the two-byte languages (Chinese, Japanese etc).
However, there are much more serious problems with SMTP.

The most apparent problems in SMTP is that there is absolutely no way to be sure of who sent a
message. As a matter of fact, the SMTP daemon does not even check that the domain or user
name that the message is purported to originate from exists! (The author has been able to send
messages to himself from both long since closed accounts, and fake domains). This bug (as it

152

Jesper M. Johansson TCP/IP (Lack of Security)

almost has to be called) is also present in many third party add-ons to SMTP. For Example,
Eudora, a very popular program used as a front end for a Post Office Protocol (POP) gateway on
a Macintosh, does not even bother to log in to the POP server before sending messages. It is thus
possible to send mail without even having an account, anywhere! There are many other
programs with similar features, and the same lack of any attempt at authentication.

However, while people who are even vaguely familiar with the Internet should be aware that
there is no guarantee that the message actually originates from the user it says, there are much
more serious flaws in SMTP. One such flaw has been extensively reported (see SPAF89,
EICH89, ROCHS9 etc), and is contained in the sendmail implementation of SMTP. This
program is provided with most of the UNIX systems today, and has atrocious security history
[CHES94]. sendmail contains several tens of thousands.of lines of C code, mostly of the
spaghetti variety, and runs as root (UNIX for “with highest authority”). This is one of the
programs exploited by the infamous Internet Worm.

This sendmail bug has been described extensively in the literature, and during the Worm period
(November 2-5, 1988), several bug fixes for it were released, mostly by Keith Bostic of the
University of California at Berkeley. If any system administrators still run pre-worm versions of
sendmail, don’t feel sorry for them, they really deserve to have their systems broken into as
punishment for being ignorant. Nevertheless, since this is the single most famous bug in the
TCP/IP protocol suite, we will take a closer look at it:

The bug consists of a feature that was left in from development, namely the ability to send the
sendmail daemon into debug mode. In this mode, the daemon accepts UNIX command line
commands, rather than SMTP commands. These command line commands, which are executed
at the same authorization level as sendmail, can have very profound effects. The attack involves
telneting to a machine, using the port that the machine normally uses to listen for an SMTP
connection. The attacker then types debug on the command line. This causes the daemon to go
into debug mode. The attacker can now send commands over to the victims machine in place of
normal communication. Two commands which are commonly used by attackers are:

Ised -e ‘1,*$/°d | /bin/sh ; exit 0” - Which strips off the mail header, and executes the rest of the
message with root privilege. This command sequence is often used in conjunction with a
message body such as: mail attacker@evil.gov </etc/passwd, which will mail the password file
to the attacker. The second common command sequence is:

rm -rf /& - which, for those who do not speak UNIX has a result similar to the DOS command
sequence: format c: [CHES92] [VENE92]

Other security problems with SMTP include the Multipurpose Internet Mail Extensions (MIME).
The MIME system is intelligent in the sense that it can automatically retrieve files from a server
for the user. However, the MIME system could just as easily retrieve a file that should not be

153

Jesper M. Johansson TCP/IP (Lack of Security)

retrieved, such as a new .rhosts file. A MIME system that blindly replaces the current version is
very dangerous indeed. [CHES94]

Telnet

Telnet is the service on a UNIX system which allows a user to remotely log in to a different
machine. It is arguably one of the most useful services on the Internet. For example, if a user
who has an account at the University of Washington, goes to Miami to participate in a
conference, that user does not have to pay for a long distance call to check her mail. She would
simply find a local access number, dial that number, and then telnet whichever account she
wanted to use. However, this process is dangerous. Since IP does not have an encryption
mechanism (yet. Please see the IPv6 section) the username and password have to travel in
plaintext over the network. An attacker grabbing packefs could easily figure out passwords this
way. There are several ways to get around this, including using one-time passwords, and
encrypting telnet packets. Telnet can also be used to mount other attacks, most notably the
sendmail attack described above.

Finger

Finger is an extremely useful little program, which every user of the Internet seems to know how
to use. Finger will provide the user with information on another user, such as that person’s

- username, home directory, office and telephone, and a plan (usually something like: To graduate
from this place this century). All of this is information that a cracker can make great use of.
Imagine for example the situation where a cracker is looking for accounts to crack. He could
finger any user on host fullerton.edu called Smith. The fingerd on fullerton.edu would then
present that cracker with the information on all those users. The cracker could then launch a
dictionary attack on the passwords of all those users. Wietse Venema, of Eindhoven University
of Technology, stated that after a few days of cracking, 259 out of 1594 passwords were obtained
from a set of /etc/passwd files. The Internet worm is estimated to have had a success rate
upwards of 50% in some cases [SPAF91]. While this lessons teaches administrators to watch
their /etc/passwd files, it also teaches the lesson that, while the finger command is useful, it often
provides too much information. Coupled with very weak passwords, it could be extremely
dangerous. Another very famous bug in fingerd is the stack problem. This should also be
corrected on most systems by now, but again, it is very famous, and therefore deserves
mentioning. The fingerd program used a standard routine in C called gets(). This routine does
not do any checking that there is enough memory allocated to it. Thus, by causing it to write
more information to memory than it is technically allowed to, the behavior of the program can be
altered. E.g. by overflowing the stack memory in fingerd, the overflow will ge executed as root.
gets() is by no means the only C routine that does not do bounds checking. However, it proved
to be a crucial problem in the Worm incident [SPAF88]. Patches using a different routine were
quickly distributed, and there should not be any old versions of fingerd still in use [EICH89].
There are many other ways to obtain information on users, other than finger. One such service is
rpcinfo, which will be discussed next.

154

Jesper M. Johansson TCP/IP (Lack of Security)
RPC - NIS

The Remote Procedure Call protocol (RPC) was developed by Sun Microsystems in order to
make network programming slightly easier. RPC allows for replacement of many of the TCP/IP
tools, with easier to use RPC tools. RPC also supports the Data Encryption Standard (DES) in
the secure RPC implementation. RPC is, however, not immune to many of the TCP attacks, such
as the IP spoofing attack, where an attacker purports to be someone else. The authentication in
RPC is based on source addresses, and is thus really not worth much, since forging addresses is
trivial (as we saw in the SMTP discussion). There are many services running on top of RPC that
a cracker is likely to use. For example rpcinfo, can tell the cracker many things about your
system, such as what file system it is running, whether it is a Network Information Services
(NIS) host or server, which processes are running on it etc [FARM93]. This can be very useful
for an attacker. For example, NIS is used to distribute information from servers to clients. That
in and of itself does not raise many concerns, until one sees what type of information is
transmitted: Password files, host address tables, and public and private key databases used for
secure RPC. If an attacker can obtain this type of information, your systems processor ticks are
probably counted.

File Transfer Protocols

File transfer protocols enable users to transfer files between different computers. Most Internet
novices are familiar with the FTP (File Transfer Protocol), but there are two other worth
mentioning. The first is the Trivial File Transfer Protocol (TFTP), and the second is FSP (which
does not stand for anything).

FTP

FTP sets up a connection between two machines using two TCP connections one command
connection, and one data connection. FTP suffers from many of the ordinary security problems
inherent in other programs. For example, like the sendmail daemon, ftpd runs as root. Also, just
like with telnet, plain-text passwords are passed over unsecure links. However, the most
interesting security problem in FTP lies in its common usage as an anonymous service. A
recurring problem with FTP-sites is that they have had directories that are both readable and
writable to people accessing anonymously. These directories have often been turned into
repositories for pornographic material, or pirated software. Another problem is that many
utilities running on FTP servers are dependent on the existence of an accessible /etc/passwd file.
Many system administrators take one of two avenues to solving this problem. The first one is to
put a copy of their /etc/passwd file in the directory, which is really bad. The second one is to
include /etc as a directory in the FTP area, which is decidedly worse. Remember, if you were to
give a hacker a very appreciated gift, send him your /etc/passwd file. An important point to take
home here is to not include anything in the FTP area, that is not absolutely necessary there. A
number of sites also have so-called drop-directories in that area. These are directories which are

155

Jesper M. Johansson TCP/IP (Lack of Security)

writable but not readable. They are emptied of their contents periodically, and appropriate
material is then posted in the appropriate places in the archive.

TFTP

TFTP stands for Trivial File Transfer Protocol. It is commonly used to boot diskless
workstations. Unlike FTP, TFTP runs on top of the UDP protocol. The interesting thing is that
older TFTP implementations had no restrictions on the files that could be transferred. A cracker
could thus TFTP into your system, download the /etc/passwd file, and go to work on your
network. Sun Microsystems OS prior to release 4.0, for example, did not restrict TFTP. Another
really fruitful attack using TFTP would be to use it to put a new rhosts file in a users home
directory. As will be explained momentarily, appropriate entries in such a file would allow a
cracker to log into your account without even supplying a password [GARF94]. Most experts in
the area of Internet security recommend that TFTP not be run at all.

FSP

There is a third file transfer protocol. However, it is so obscure that it is not even mentioned in
[GARF94]. It is the FSP, which does not stand for anything [CHES94]. It works similar to FTP
but over a UDP connection. Historically it has seldom been used for anything other than bad
purposes. Therefore, Cheswick and Bellovin warn administrators that if FSP traffic is being
discovered, it is probably bad. '

The Berkeley Remote Services

The Berkeley remote services, more often known as the “r” commands were designed to allow
users and administrators to work on remote machines as if they were local. There are three
criteria for these services:

1 The call must originate from a privileged TCP port (usually those with a number below
1024). However, on systems without a concept of ports, such as PCs this restriction
cannot be enforced.

2 The calling machine must be listed in either the /etc/hosts.equiv or the SHOME/.thosts
file. (This is why so much emphasis was put earlier on not letting people put these
files on other machines).

3 The caller’s name must correspond to its IP address.

The practical use for these services are that users who use a lot of different machines can switch
between them without having to supply a password. Apparently the thought of having to type a
password is repugnant to many users. The option of allowing a user to create a .rhosts file raises
some important security concerns. Is it really prudent to let the users set the security policy for
the organization? In one survey, conducted on over 200 hosts, with over 40,000 accounts, close
to 10% of the accounts had .rhosts files. There were an average of 6 hosts in each. One had over
500 entries! It is hard to conceive of a situation where there are 500 different hosts that need to
be authorized to login to an account without passwords [FARM93].

156

Jesper M. Johansson TCP/IP (Lack of Security)
rlogin

rlogin is the r service which allows a user to remotely login to an account without supplying a
password. This service is very similar in performance to telnet, other than the lack of password
authentication.

rsh

This program lets a user mount a shell on a machine that trusts the user. The remote user can
execute a series of commands on the remote machine without actually being connected to it.

rexec

This program works similar to the rsh program, with the exception that it does not present a nice
command interpreter as an interface. Basically it was designed to let a system administrator send
commands to a remote machine without actually having to log into that machine.

The services, and holes, covered above are only a few of the commonly used holes in the TCP/IP
suite. There are innumerable others that a security conscious system administrator needs to be
familiar with. Many people simply assume that all the data they have on machines connected to
the Internet is public. While this is not a very optimistic outlook on the world, it is probably
realistic. There are ways to protect your site, however. Some involve installing all security
related updates to system software as soon as they are released. Another involves installing a
firewall, essentially a dedicated machine that filters Internet traffic to enforce security policy.
While this is not cheap, it is an option that is very often resorted to by many organizations.
Beginning with the new version of the Internet Protocol, some of the services provided in these
add-on security options will be provided in the network protocol. These services will be
discussed next.

IP “the Next Generation”

IPng was the unofficial name given to the newest revision of the Internet protocol, obviously by
someone who had watched too much Star Trek. The protocol has now officially been named
IPv6, however, the old moniker seems to stick. Much of the information contained in this
section of the paper comes from Request For Comment (RFC) number 1752, the
Recommendation for the IP Next Generation Protocol. This RFC was issued by the IPng Area
Directors (IPAD) and was accepted by the Internet Ergineering Steering Group (IESG). The
specific recommendations of interest from a security standpoint include:

* Support for an authentication header be required
* Support for a specific authentication algorithm be required
» Support for the Privacy Header be required

157

Jesper M. Johansson TCP/IP (Lack of Security)

* Support for a specific privacy algorithm be required
+ An IPng framework for firewalls be developed.

IPv6 Addressing Scheme

The main reason that a new version of IP is considered is that the address space in the current
version is running out. As stated before, the current addressing scheme consists of a 4-byte
address. The new standard proposes to expand this addressing scheme to a 16-byte addressing
scheme. This would allow for approximately 3.403 x 10* hosts. This should for all practical
purposes be sufficient for a long time to come. Despite the fact that the address space is four
times as long as the IPv4 addresses, the IPv6 header is only twice as long as the IPv4 header.
This supposedly maintains efficiency. A very crucial feature of IPv6, though is the ability to
append more headers, specifying various options, to the packet The headers of interest from a
security standpoint are the hop limit option in the IP header, the authentication header, and the
privacy header.

Hop Limit Option

This option in the standard IPv6 header allows the sender to specify a maximum number of hops
(routers traversed) that the packet is allowed to take before it is discarded. This is of some
usefulness from a security standpoint. Suppose, for example that an attacker has taken over a
routing table that your packet is sent over, and diverted the packets to his account. If that
account is farther away, in terms of hops, than the account that the packet was really intended
for, it will be discarded before it reaches the attacker. If a connection oriented protocol is used,
the sender will be notified of the loss of the packet, and can then take appropriate measures.

Authentication Header

The authentication header is similar to the security label in IPv4. It allows a user to specify the
security level of the packet. However, it also includes an additional feature: Authentication
Data. This is an algorithm specific piece of information required to authenticate the source of
the packet and assure its integrity. This could conceivably be used for such measures as
public/private key systems, or digital signatures. This authentication header is a great addition to
the very meager security features available in IPv4. It will now be possible to use other methods
than source address authentication to authenticate users.

Privacy Header

The privacy header is even more important than the authentication header. T he privacy header
allows for the encryption of data at the IP level. This header as well starts off with a Security
Association Identifier (SAID), which tells the receiver the security level of the data. However, it

158

Jesper M. Johansson TCP/IP (Lack of Security)

also carries a data field, in which encrypted data can be carried. An entire IPv6 datagram can be
carried in this field. The header also provides two additional fields, which can prove very useful
for various forms of encryption: The initialization vector, and the trailer. The initialization
vector can carry synchronization data for a block oriented encryption algorithm. The trailer can
carry padding necessary for a block oriented algorithm, or to provide authentication data for
algorithms that provide confidentiality without authentication.

IPv6 and Firewalls

The IPv6 also states that an “IPv6 framework for firewalls” be developed. This framework
should include information on how a firewall can use the IPv6 authentication header, as well as
detail on how IPv6 packets should be analyzed by a firewall. The concern is that many of the
firewall configurations in use today would not recognize' IPv6 packets, and would thus most
likely discard them. Unfortunately, there is, as of yet, precious little information on how this
framework for firewalls will be constructed, and what information it will contain.

We now conclude the study of the Internet Protocol and its related protocols security features,
and turn our attention to a case study of Internet security. The case selected is the famous
Internet Worm Incident, which infected a significant number of machines, on a then significantly
smaller Internet, in November of 1988.

Case Study - The Internet Worm

The Internet Worm (or virus, as some authors prefer to call it) was released on the Internet on
November 2, 1988. The virus used a number of the features described above to infect machines
across the entire Internet. A common estimate of the number of machines infected was that 10%,
or 6,000 machines, fell prey to the worm. However, this estimate possesses very little, if any at
all, scientific merit. This is based on a guesstimate given by James D. Bruce, MIT EECS
Professor and Vice President for Information Systems, and Jeff Schiller, of the
Telecommunications Network Gfoup, when pressured by the media as to how many machines
were infected. The guesstimate did not intend to represent the number of hosts on the Internet,
which were infected, but rather the number of hosts infected at MIT. Gene Spafford, in
[SPAF91] gives an estimate of 5% of the machines on the net infected. Regardless of the actual
number, the worm prompted many, much-needed modifications to the basic TCP/IP security
features, and the author should at least have praise for forcing those to happen. In this case
study, we will discuss three main things: What the worm did, how it did it, and what we
(hopefully) learned from the incident. A reader who is interested in a further discussion of the
worm is referred to [SPAF91], [EICH89] or any of the other numerous papers written on the
worm.

159

Jesper M. Johansson TCP/IP (Lack of Security)

What Did the Worm Do?

The most notable effect of the worm was that it used up significant processing time on the
affected hosts. This effectively constituted a denial of service attack. Some hosts, such as the
gateway machine at the University of Utah reported loads ten times higher than normal, due to
multiple infections. The worm also only attacked two types of machines: SUNs and VAXes.
These are, however, the single most common machines on the Internet, and the impact was thus
severe. The worm basically cracked accounts, in ways to be discussed later, and then launched
new attacks from there. In doing so it also spawned new processes (i.e. multiplied) thus
spreading rapidly. '

More important than what the worm actually did, is what it did not do. For example, the worm
did not destroy, nor even attempt to destroy, any data on the host machine. If the author had
wanted to, he could have easily destroyed most of the data on the infected machines. However,
no attempt to do so was made. The worm also did not normally attempt to gain privileged
access. It almost never broke into a system as root. In these two ways it definitely differs from
normal cracker attacks, which often have destruction as their purpose. The worm also did not
leave any timebombs behind. Most viruses and worms on PCs leave processes to be executed at
a specific time, ranging from an annoying message or a song, to re-formatting of a hard-drive.
The author of the Internet worm never attémpted to leave any such time-bombs behind.

How Did the Worm Operate?

This really boils down to what security holes the author utilized. There were four major features
exploited by the worm. These features contributed to its rapid spread.

The first feature of the worm exploited the sendmail bug, described above, in the following
manner: It initiated an SMTP connection to a remote site by simply telneting to the port that
SMTP normally uses for connections. The worm then sent the command debug to the daemon.
This sent sendmail into debug mode. The worm sent a program over, in the recipient field. This
program (which was a shell program) created a C program. This C program, in turn contacted
the attacking machine and downloaded a set of C object files. These files, which contained the
actual worm program, were linked and executed, thereby infecting another machine.

If the sendmail attack was unsuccessful, the worm could try to spawn a remote shell by invoking
the rsh service. This shell would then use the same infection steps as in the discussion of the
sendmail infection above.

The third way that the worm attacked was by using the bug described in the finger section above.
Basically, it involved rewriting a portion of the stack used by fingerd, to execute a command
line, which allowed the worm to connect to a remote shell. Not all of these break in attempts
were used. As soon as one succeeded, the worm started cracking passwords.

160

Jesper M. Johansson TCP/IP (Lack of Security)

Once the worm had achieved entry via one of the above features, it proceeded to utilize the
information on the infected host to infect other systems. It read the systems /etc/hosts.equiv file.
This file lists other systems which the host trusts. The worm used this file to find machine
names that would be likely targets. It also read the $HOME/.rhosts file. This file provides
user-specific information of the same form as the /etc/hosts.equiv file. In addition the program
read the entire /etc/passwd file of the infected system. It then used both a built-in dictionary, and
the system’s own dictionary to launch a dictionary attack against all the accounts listed in that
file. Once it cracked passwords in this file, it searched the cracked accounts for personal
forward files (these files are used to provide the SMTP daemon with systems to which it should
autoforward mail), in search of other machines to attack. Once it had found a password, it also
attempted to use it to connect to accounts given in the .rhosts, and .forward files. There were
many more features of the worm, some of which checked if other worms ran on a newly infected
machine, and others which changed process ID numbers. However, for the purposes of our
discussion here, the above features show how dangerous the holes discussed in this paper can be.
It is more important to discuss what we have learned from the worm.

Lessons To Be Learned

The first lesson to be learned is probably that connectivity really saved the network. One can
argue that connectivity was what allowed the worm to spread. However, connectivity also
allowed people in the know throughout the net to communicate, post bug fixes, and crack the
worm. In addition, a very important lesson was that bug fixes are critical. These fixes
sometimes were as simple as renaming a couple of files on the computer. Sometimes, they
involved a binary edit of a daemon. In any case, they were very important. The worm incident
also showed how important it is to have adequate security policies. It is absolutely unacceptable
to have 50% of your passwords broken by a relatively simple dictionary attack. There are
features available to enforce good password selection, and frequent change, and these should be
installed on any system. Also, it is up to each system administrator to decide how much security
policy is put in the users’ hands. By allowing the Berkeley “r” services on a system, the
administration of security policy is effectively transferred from the administrator to the user.

Conclusion

This paper has presented several security issues related to the TCP/IP protocol suite. The main
lesson to be learned is that data on unprotected computers is apt to be read by anyone who
wishes to do so. We have also discussed several new features which will be present in the next
generation IP protocols. The next generation of the Internet protocol will certainly make the task
of managing security easier. However, since many of the problems discussed are contained in
the higher level protocols, IPv6 will not resolve those. By no means should this be construed as
an exhaustive discussion of TCP/IP security problems and features. Rather, it should be
considered a preliminary primer on some of the issues that the security conscious manager,

lel

Jesper M. Johansson TCP/IP (Lack of Security)

implementing Internet connections for a business, need to concern him/herself with. There is
only one foolproof way to protect your system. It involves disconnecting all network cables,
putting the computer inside a vault, and post a 24-hour guard outside. For those who will not
consider such measures, the Internet presents active opportunities, both for contact with
customers, and for intra-company communication. However, the manager considering hooking a
system up to the Internet need to seriously consider the security aspects of doing so. Hopefully,
this paper has provided a few insights on what to look at.

162

AINT MISBEHAVING --
ATAXOMONY OF
ANTI-INTRUSION TECHNIQUES

Lawrence R. Halme
(halme@arca.ca.com)

R. Kenneth Bauer
(bauer@arca.ca.com)
Arca Systems, Inc.t
2540 North First St., Suite 301
San Jose, CA 95131-1016

Abstract: This paper examines the basic underlying
principles ofintrusion control and distills the universe
of anti-intrusion techniques into six high-level, mu-
tually supportive approaches. System and network
intrusions may be prevented, preempted, deflected,
deterred, detected, and/or autonomously countered.
This Anti-Intrusion Taxonomy (AINT) of anti-intru-
sion techniques considers less explored approaches
on the periphery of “intrusion detection” which are
independent of the availability of a rich audit trail, as
well as better known intrusion detection techniques.
Much like the Open Systems Reference Model sup-
ports understanding of communications protocols by
identifying their layer and purpose, the authors be-
lieve this anti-intrusion taxonomy and associated
methods and techniques help clarify the relationship
between anti-intrusion techniques described in the
literature and those implemented by commercially
available products. The taxonomy may be used to
assess computing environments which perhaps al-
ready support Intrusion Detection System (IDS)
implementations to help identify useful complemen-
tary intrusion defense approaches.

Keywords: Intrusion, detection, misuse, anomaly,
countermeasure, taxonomy.

1.0 Introduction

Efforts to combat computer system intrusions have
historically included preventive design, configuration,
and operation techniques to make intrusion difficult.
Acknowledging that by bowing to functionality con-
cerns and budgetary constraints these efforts will be
imperfect, the concept was suggested to detect intru-

+This work was sponsored by the Air Force Information Warfare Center.

sions by analyzing collected audit data. The study of
anomaly detection was prefaced by the postulate that
it would be possible to distinguish between a mas-
querader and a legitimate user by identifying devia-
tion from historical system usage [ANDS0]. It was
hoped that an audit analysis approach would be use-
ful to identify not only crackers who had acquired
identification and authentication information to per-
mit masquerading as legitimate users, but also legiti-
mate users who were performing unauthorized activity
(misfeasors). Clandestine users able to bypass the
security mechanisms were another identified prob-
lem, but considered more difficultto detect since they
could influence system auditing.

Early hands-on experimentation confirmed that user
work patterns could be distinguished using existing
audit trails [HALS86]. Techniques were debated to
make auditing, which was originally designed prima-
rily for accounting purposes, more useful to security
analysis. A model was developed which theorized
much of the framework for a general-purpose intru-
sion detection system [DENS87]. Intrusion detection
researchers split into two camps — those seeking
attack signatures in the audit data which announce
known misuse (e.g., MIDAS [SEB88]), and those
seeking evidence of usage which is anomalous from
historical norms (e.g., IDES [LUN88a]). The comple-
mentary combination of these approaches into an
investigative tool with autonomous response to par-
ticularly threatening deviance was suggested
[HALS88]. Survey papers attest to the dramatic growth
in the number of research efforts investigating differ-
ent anomaly and misuse detection approaches
([LUNSS8Db], [TIS90D).

163

The early Nineties saw test and commercial installa-
tion and operation of a number of IDS’s including
SRI’sIDES and NIDES, Haystack Laboratory Inc.’s
Haystack and Stalker, and the Air Force’s Distributed
Intrusion Detection System (DIDS). Emphasis broad-
ened to include integration of audit sources from
multiple heterogeneous platforms, and platform port-
ability. Distributed intrusion detection is the focus of
work at the University of California at Davis
[HEBE92] and at the Air Force [DIDS91]. Intrusion
detection continues to be an active field of research.

Althoughmuch has beenlearned from these research-
driven efforts, their focus has been on developing
optimized techniques to detect intrusions. Less
thoughthas been given tocreating an operational view
of complementary anti-intrusion approaches. Com-
puterand Internet misuse has become a frequent topic
oftoday’s mainstreammedia, and the demand for anti-

motes multiple approach solutions.

2.0 Anti-Intrusion Approaches

Over the past fifteen years a great deal of emphasis
has been placed on detection as the most fruitful area
forresearch and development to combat intrusionary
activity (both from external crackers as well as insid-
ers abusing their privileges). Less considered have
been other complementary anti-intrusion techniques
which canplay valuableroles. As work environments
become more interconnected and exposed, service
providers will need increasingly torely ona widerange
of anti-intrusion techniques, not just IDS’s. This pa-
per organizes these techniques (illustrated in Figure
1)into the Anti-Intrusion Taxonomy (AINT). The “fil-
tering” of successful intrusions is graphically depicted
by the narrowing of the successful intrusion attempt
band.

System Perimeter

Preemption e

External

Intrusion Attempts

External
Deterrence

Internal
Deterrence

System
Resources

Counter-
measures

Deflection

intrusion technology is exploding. However, intru-
sion detection products are as yet esoteric and not well
integrated to work together with complementary
approaches such asintrusion preventing firewalls. The
taxonomy we present in this paper seeks to give per-
spective and aid understanding. It provides the basis
for the formulation of a systematic and comprehen-
sive anti-intrusion approach categorization and pro-

Figure 1: Anti-Intrusion Approaches

The following text describes the six anti-intrusion
approaches. We also provide an analogousreal-world
illustration of each approach as applied to combating
the possibility of having your wallet stolen walking
down an urban street. Sections follow which elabo-
rate how these approaches apply to computer systems
under the AINT.

l64

Prevention precludesor severely handicaps the like-
lihood of a particular intrusion’s success.

Hire hulking bodyguards and avoid bad neighbor-
hoods. A definitive approach when it works, but ex-
pensive and troublesome and unlikely to be
operationally 100% foolproof. Still leaves opportu-
nity for successful attack if bodyguards can be dis-
tracted or bribed.

Preemption strikes offensively against likely threat
agents prior to an intrusion attempt to lessen the like-
lihood of a particular intrusion occurring later.

Support vigilante patrols. Non-specific and may af-
fect innocents.

Deterrence deters the initiation or continuation of
an intrusion attempt by increasing the necessary ef-
fort for an attack to succeed, increasing the risk asso-
ciated with the attack, and/or devaluing the perceived
gain that would come with success.

Dress down and walk with excitable Chihuahua dog.
Many attackers will move on toricher looking easier
prey, but if it has been a lean night, a little annoying
yapping dogisn’t going to stop a determined mugger.
Deflection leads an intruder to believe that he has
succeeded in an intrusion attempt, whereas instead
he has been attracted or shunted off to where harm is
minimized.

Carry two wallets so that when attacked, a decoy
wallet with canceled credit cards can be handed over.
Canlearn more about how attackers operate, but prob-
ably only works for newbie muggers and it is incon-
venient having to carry two wallets.

Detection discriminates intrusion attempts and in-
trusion preparation from normal activity and alerts
the authorities.

Carry a whistle and blow to attract attention from
beat cop if attacked. Limited usefulness if attack is
too far from a donut shop for whistle to be heard, or
if car-alarm-syndrome causes authorities toignore as
a false alarm. Also you may not detect in time that
your wallet was stolen if it is surreptitiously
pickpocketed.

Countermeasures actively and autonomously
counter an intrusion as it is being attempted.

Carryacanofmace, attachmouse trap towallet, and
know karate to counter attack. Run the risk of being

sued by accidentally breaking the arm of Hari Krishna
solicitor offering flowers. With a booby trapped wallet,
a pickpocket can be autonomously countered with
necessary speed without conscious detection. How-
ever you, as an authorized user, might mistakenly get
your fingers snapped if you forget about the mouse-
trap.

3.0 Intrusion Prevention

Intrusion Prevention techniques (enforced internally
orexternally to the system) seek to preclude oratleast
severely handicap the likelihood of success of a par-
ticular intrusion. These techniques help ensure thata
systemis so well conceived, designed, implemented,
configured, and operated that the opportunity for
intrusions is minimal. Because built-in prevention
seeks to make it impossible for an intrusion to occur
on the target system, it may be considered the stron-
gest anti-intrusion technique. Ideally, this approach
would prevent all intrusions, negating the need for
detection and consequent reaction techniques. Nev-
ertheless, in a real world system this technique alone
proves untenable and unlikely to be implemented
without some remaining exploitable faults and depen-
dence on configuration/maintenance. Add-on preven-
tion measures augmenting the defenses of an existing
system include vulnerability scanning tools and net-
work firewalls.

Correct Design / Implementation techniques rep-
resent classic INFOSEC mechanisms (e.g., identifi-
cation and authentication, mandatory and
discretionary access control, physical security), and
are appropriate to be developed into the target system
itself. These techniques are well explored, but may
be cumbersome and expensive, and care must be taken
that they are not poorly configured.

Vulnerability Scanning Tools examine system and
network configurations for oversights and vulnerabili-
ties. Static configuration scanners are programs and
scripts periodically run manually by the System Se-
curity Officer (SSO) to detect system vulnerabilities.
Dynamic configuration scanning tools perform much
the same function butrun constantly as a low priority
task in the background. Configuration scanning tools
can monitor for a wide range of system irregularities
including: unauthorized software, unauthorized ac-
counts, unprotected logins, inappropriate resource

165

ownership, inappropriate access permissions, weak
passwords, and ghost nodes on a network. Other
vulnerability scanning tools can check for evidence
of previous intruder activity, susceptibility to known
attacks, and dormant viruses. Representative UNIX
configuration scanning tools include: Security Pro-
file Inspector (SPI), Internet Security Scanner (ISS),
Security Analysis Tool for Auditing Networks (SA-
TAN), COPS, and Tripwire [FIS94].

Firewalls examine and control the flow of informa-
tion and services between a protected subnetwork and/
or hosts and the outside world. They protect one net-
work from another by blocking specific traffic while
allowing other traffic. The most common use today
isconnecting corporate and academic networks to the
Internet. Firewall designs have proven effective in
thwarting many intruder efforts. The decision as to
which traffic to allow is based upon the content of the
traffic itself. Typical decision criteria include traffic
direction, network address, port, protocol type, and
service type. The goal of the firewall is to provide
efficient and authorized access for users “inside” the
firewall to the outside world while controlling the
access of “outside” users to protected resources by
exporting limited and precisely controlled services.
Firewalls are bestimplemented on separate hardware
for performance and security reasons, and thus there
is expense of acquisition and maintenance.

4.0 Intrusion Preemption

Intrusion Preemption techniques strike offensively
prior to an intrusion attempt to lessen the likelihood
of aparticularintrusion occurring later. This approach
includes such techniques as education of users, pro-
moting legislation to help eliminate an environment
conducive to intrusion, taking early action against a
user who appears increasingly to be straying from the
straight-and-narrow, and infiltrating the crackercom-
munity to learn more about techniques and motiva-
tion. Rather than the reactive defenses offered by
detection and countermeasures, preemption refers to
proactive action against the source of as yet
unlaunched intrusions. Unchecked use of these tech-
niques can pose civil liberty questions. ‘

Banishment refers to producing a hostile environ-
ment intended to reduce the ranks of potential intrud-
ers prior to their attempt to launch an intrusion. Users

can be educated about security threats from technical
and nontechnical attacks, and provided directives on
how to handle specific social engineering informa-
tion requests. Support of legislation which deals
harshly with intruders is another example of this tech-
nique.

Vigilance secks to preempt later intrusions by notic-
ing preliminary danger signs of impending undesired
activity. Examples of this technique include attempt-
ing todiscern malicious intent and initial exploratory
stages of intrusionary activity, taking strong and early
action against users demonstrating a leaning toward
violating system policy, and offering to reward users
who spot vulnerabilities or unauthorized usage.

Infiltration refers to proactive efforts on the part of
the SSO to acquire attack information from under-
ground sources to supplement vendor bug reports and
Computer Emergency Response Team (CERT) warn-
ings. A more insidious infiltration would inundate
hacker bulletin board systems with false information
to confuse and discourage.

5.0 Intrusion Deterrence

Intrusion Deterrence seeks to make any likely reward
from an intrusion attempt appear more troublesome
than it is worth. Deterrents encourage an attacker to
move on to another system with a more promising
cost-benefit outlook. This approach includes devalu-
ating the apparent system worth through camouflage,
and raising the perceived risk of being caught by
displaying warnings, heightening paranoia of active
monitoring, and establishing obstacles againstundes-
ired usage. Intrusion deterrents differ from intrusion
prevention mechanisms in that they are weaker re-
minder/discomfort mechanisms rather than serious
attempts to preclude an intrusion.

Camouflage seeks to hide and/or devalue system
targets and encompasses such straightforward policy
as minimizing advertising a system and its contents.
Configuring a dial-in line not to pick up for a number
of rings greater than most cracker demon dialing
software, and presenting only generic logic banners
are other examples of camouflage. A faceless, boring
systemis notaprize trophy foracracker. Adisk entitled
“Thermonuclear War” intrigues more than one
deglamourized to “tnw.” Camouflage may make a

le6

system less usable and intuitive. It also may conflict
with the following deterrent techniques which seek
toemphasize active defenses. However, a systemthat
reveals efforts to secure it may beg an attacker to in-
vestigate why such effort was expended. Simple and
weak camouflage techniques may nonetheless prove
useful as deterrents to intrusion.

Warnings inform users that the security of a system
is taken seriously and emphasizing what the penal-
ties are if unauthorized activity is monitored. Sensi-
tive systems are often configured to display warnings
as part of their standard login banners. Users not
contemplating an intrusion should be little inconve-
nienced. Warnings are easily implemented and may
also be useful from a legal standpoint (especially in
the case of keystroke monitoring), but if the intruder
perceives all-bark-no-bite, this is a weak defense.
Warnings may even be counterproductive by piquing
the curious, and laying down a provocative gauntlet
to intruders out to prove their mettle. Particular user
warnings may also be implemented to trigger when
specific undesirable activity is detected. A concern
for activity-based user warnings is that the potential
intruder is alerted to what thresholds/signatures fire
the anti-intrusion mechanism.

Paranoiarefers toincreasing the impression (whether
true, exaggerated, or fallacious) that user activity is
being closely monitored by a vigilant SSO. Where
having nonstop watchful system administration in
place is not practical, it may be simulated. If the in-
truderisled to believe the risks of detection and pros-
ecution from an apparently attentive and motivated
SSO are greater than the possible reward, he may
instead move on to “easier pickings.” Emulating the
“fake caralarm blinking light” mechanismis the sim-
plest technique to give the misleading impression of
constant live monitoring. A “scarecrow” process
performing semi-random standard system adminis-
trator activities may be sufficient to ward off casual
intruders who have not seriously cased the system.
The deterrent value of this technique is lost, however,
as soon as potential intruders learn that a Scarecrow
is present and learn ways to distinguish between the
Scarecrow and areal SSO. An enhancement to this is
to implement a “security camera” technique which
admittedly only randomly offers live-monitoring, but
gives no indication when the SSO is actually watch-

ing. A potential intruder in this case can never be sure
when he is actually being live-monitored, butis aware
that it may be at any time.

Obstacles seek to increase the ante of time and effort
an attacker must expend to succeed beyond what the
perceived reward warrants. Obstacles, especially on
gateway machines, seek to try the patience of an in-
truder thereby “ruining his fun” and providing incen-
tive to move on. Delaying command executions,
displaying false system warnings, apparent exhaus-
tion of resources, and similar obstacles serve to exas-
perate, but not advertise detection. Annoying tactics
may include showing interesting but dead-end lures
— dummy accounts or files on which the intruder
wastes valuable time and reveals attack skills, but
which award him nothing. Use of this technique risks
inconveniencing authorized users.

6.0 Intrusion Deflection

Intrusion Deflection dupes an intruder into believing
that he has succeeded in accessing system resources,
whereas instead he has been attracted or shunted to a
specially prepared, controlled environment for obser-
vation (i.e., a “playpen” or “jail”). Controlled moni-
toring of an unaware intruder spreading out his bag of
tricks is an excellent source of attack information
withoutunduerisk to the “real”’ system [ST089]. Some
system enforced deflection techniques may be con-
sidered a special type of countermeasure, but the
conceptalsoincludes techniques which do notrequire
the protected system to have ever been accessed by
the intruder (e.g., “lightening-rod systems™).

Quarantined Faux Systems are designed to lead
intruders (primarily the unfamiliar “outsider”) to
believe that they are logged into the target system,
when they are actually locked into a separate “fish-
bowl” system. This deflection is accomplished by a
network front end system such as a router or firewall.
An effective quarantined faux system encourages an
intrudertoremain long enough for aresponse teamto
determine the intruder’s identity and motive. How-
ever, dedicating a separate machine and the resources
to maintain this charade is expensive, and with dis-
tributed environments and the powerful statusing tools
available, this technique may be untenable.

Controlled Faux Accounts are designed to lead in-
truders to believe that they are executing within a

167

compromised standard account, wheninstead they are
locked into a special limited access account. In this
case, the deflection controls are built right into the
target environment operating system or application.
This technique eliminates the need for the separate
hardware resources required by a faux system, but
must rely on the target operating system security to
ensure isolation from protected systemresources. The
constructed environment could contain various in-
ducements to engage and stall the intruder, and di-
vulge his intent. However, constructing and
maintaining a believable and unbreakable controlled
faux account is difficult.

Lightning Rod Systems / Accounts are similar to
the preceding faux techniques, but rather than the
intruder being unknowingly shunted to them, the
intruder is instead lured into pursuing a decoy con-
trolled environmentdirectly of hisown volition. Light-
ning rod systems are placed “near” assets requiring
protection, are made attractive, and are fully instru-
mented forintrusion detection and back tracking (the
term "honey pot" has also been used to describe this
technique). They are distinct from the primary re-
sources being protected, and do not need to be con-
cerned about performance and functionality handicaps
toauthorized users. A practical and convincing imple-
mentation of nontrivial lightning rods is problematic:
they are likely expensive to install and maintain, and
rely upon their true reason for existence remaining
secret.

7.0

Intrusion Detection encompasses those techniques
that seek to discriminate intrusion attempts from
normal system usage and alert the SSO. Typically,
system auditdata is processed for signatures of known
attacks, anomalous behavior, and/or specific out-
comes of interest. Intrusion detection, and particu-
larly profiling, is generally predicated upon the ability
to access and analyze audit data of sufficient quality
and quantity. If detectionis accomplished innearreal-
time, and the SSO is available, he could act to inter-
rupt the intrusion. Because of this necessity for a
human to be available to intervene, Intrusion Detec-
tion is not as strong an approach as Intrusion Coun-
termeasures as it is more likely that intrusion efforts
will complete before manual efforts can interrupt the

Intrusion Detection

attack. Intrusion Detection may be accomplished after
the fact (as in postmortem audit analysis), in near-
real time (supporting SSO intervention or interaction
with the intruder, such as network trace-back to point
of origin), or in real time (in support of automated
countermeasures).

7.1 Anomaly Detection

Anomaly Detection compares observed activity
against expected normal usage profiles which may
be developed for users, groups of users, applications,
or system resource usage. Audit event records which
fall outside the definition of normal behavior are
considered anomalies.

Threshold Monitoring sets values for metrics de-
fining acceptable behavior (e.g., fewer than some
number of failed logins per time period). Thresholds
provide a clear, understandable definition of unac-
ceptable behavior and can utilize other facilities be-
sides system audit logs. Unfortunately it is often
difficult to characterize intrusionary behavior solely
interms of thresholds corresponding to available audit
records. It is difficult to establish proper threshold
values and time intervals over which to check. Ap-
proximation can result in a high rate of false posi-
tives, or high rate of false negatives across a
non-uniform user population.

User Work Profiling maintains individual work
profiles to which the user is expected to adhere in the
future. As the user changes his activities his expected
work profile is updated. Some systeras attempt the
interaction of short-term versus long-term profiles;
the former to capture recent changing work patterns,
the latter to provide perspective over longer periods
of usage. However it remains difficult to profile an
irregular and/or dynamic user base. Too broadly de-
fined profiles allow any activity to pass review.

Group Work Profiling assigns users to specific work
groups which demonstrate a common work pattern
and hence a common profile. A group profile is cal-

- culated based upon the historic activities of the entire

group. Individual users in the group are expected to
adhere to the group profile. This method can greatly
reduce the number of profiles needing to be main-
tained. Also a single user is less able to “broaden” the
profile to which they are to conform. There is little

168

operational experience with choosing appropriate
groups (i.e., users with similar jobtitles may have quite
different work habits). Individual user profiles mim-
icked by creating groups of one may be a necessary
complication to address users who do not cleanly fit
into the defined groups.

Resource Profiling monitors system-wide use of such
resources as accounts, applications, storage media,
protocols, communications ports, etc., and develops
a historic usage profile. Continued system-wide re-
source usage—illustrating the usercommunity’s use
of systemresources asawhole—isexpected toadhere
to the system resources profile. However, it may be
difficult to interpret the meaning of changes in over-
all system usage. Resource profiling is user-indepen-
dent, potentially allowing detection of collaborating
intruders.

Executable Profiling secks to monitor executables’
use of system resources, especially those whose ac-
tivity cannotalways be traced to a particular originat-
ing user. Viruses, Trojan horses, worms, trapdoors,
logic bombs and other such software attacks are ad-
dressed by profiling how system objects such as files
and printers are normally used, not only by users, but
also by other system subjects on the part of users. In
most conventional systems, for example, a virus in-
herits all of the privileges of the user executing the
infected software. The software is not limited by the
principle of least privilege to only those privileges
needed to properly execute. This openness in the
architecture permits viruses to surreptitiously change
and infect totally unrelated parts of the system. User-
independent executable profiling may also be able to
detect collaborating intruders.

Static Work Profiling updates usage profiles only
periodically at the behest of the SSO. This prevents
users from slowly broadening their profile by phas-
ing in abnormal or deviant activities which are then
considered normal and included in the user’s adap-
tive profile calculation. Performing profile updates
may be at the granularity of the whole profile base or,
preferably, configurable to address individual sub-
jects. SSO controlled updates allow the comparison
of discrete user profiles to note differences between
user behavior or changes in user behavior. Unfortu-
nately these profiles must either be wide and insen-
sitive or frequently updated. Otherwise if user work

patterns change significantly, many false positives will
result — and we all recall the story of Peter and the
Wolf. This approach also requires diligence on the
part of the SSO who must update profiles inresponse
to false positives, and ensure changes represent le-
gitimate work habit changes.

Adaptive Work Profiling automatically manages
work profiles to reflect current (acceptable) activity.
The work profile is continuously updated to reflect
recent systemusage. Profiling may be on user, group,
or application. Adaptive work profiling may allow
the SSO to specify whether flagged activity is: 1)
intrusionary, to be acted upon; 2) notintrusionary, and
appropriate as a profile update toreflect thisnew work
pattern, or 3) not intrusionary, but to be ignored as an
aberration whose next occurrence will again be of
interest. Activity which is not flagged as intrusionary
is normally automatically fed into a profile updating
mechanism. If this mechanismis automated, the SSO
will not be bothered, but work profiles may change
and continue tochange without the SSO’s knowledge
or approval.

Adaptive Rule Based Profiling differs from other
profiling techniques by capturing the historical us-
age patterns of a user, group, or application in the form
of rules. Transactions describing current behavior are
checked against the set of developed rules, and
changes from rule-predicted behavior flagged. As
opposed to misuse rule-based systems, no prior ex-
pert knowledge of security vulnerabilities of the
monitored system is required. “Normal usage” rules
are generated by the tool in its training period. How-
ever, training may be sluggish compared to straight
statistical profiling methods. Also, to be effective, a
vast number of rules must be maintained with inher-
ent performance issues. Management of tools adopt-
ing this technique require extensive training,
especially if site-specific rules are to be developed.

7.2 Misuse Detection

Misuse detection essentially checks for “activity that’s
bad” with comparison to abstracted descriptions of
undesired activity. This approach attempts to draft
rulesdescribing known undesired usage (based on past
penetrations or activity which is theorized would
exploit known weaknesses) rather than describing
historical “normal” usage. Rules may be written to

169

recognize a single auditable event that in and of itself
represents a threat to system security, or a sequence
of events that represent a prolonged penetration sce-
nario. The effectiveness of provided misuse detec-
tion rules is dependent upon how knowledgeable the
developers (or subsequently SSO’s) are about vulner-
abilities. Misuse detection may be implemented by
developing expert systemrules, model based reason-
ing or state transition analysis systems, or neural nets.

Expert Systems may be used to code misuse signa-
tures as if-then implication rules. Signature analysis
focusesondefining specificdescriptionsandinstances
of attack-type behavior to flag. Signatures describe
an attribute of an attack or class of attacks, and may
require the recognition of sequences of events. A
misuse information database provides a quick-and-
dirty capability to address newly identified attacks
prior to overcoming the vulnerability on the target
system. Typically, misuse rules tend to be specific to
the target machine, and thus not very portable.

Model Based Reasoning attempts to combine mod-
els of misuse with evidential reasoning to support
conclusions about the occurrence of a misuse. This
technique seeks to model intrusions at a higher level
of abstraction than the auditrecords. In thistechnique,
SSO’sdevelop intrusion descriptions at a high, intui-
tive level of abstractionin terms of sequencesof events
that define the intrusion. This technique may be use-
ful foridentifyingintrusions which are closelyrelated,
but whose audit trails patterns are different. It per-
mits the selective narrowing of the focus of the rel-
evantdata, soasmaller partof the collected data needs
to be examined. As a rule-based approach it is still
based on being able to define and monitor known
intrusions, whereas new and unknown vulnerabili-
ties and attacks are the greatest threats.

State Transition Analysis creates a state transition
model of known penetrations. In the Initial State the
intruder has some prerequisite access to the system.
The intruder executes a series of actions which take
the target systemthroughintermediate states and may
eventually resultina Compromised State. The model
specifies state variables, intruder actions, and defines
the meaning of a compromised state. Evidence is
preselected from the audit trail to assess the possibil-
ity that current system activity matches a modeled
sequence of intruder penetration activity (i.e., de-

scribed state transitions lead to a compromised state).
Based upon an ongoing set of partial matches, spe-
cific audit data may be sought for confirmation. The
higher level representation of intrusions allows this
technique torecognize variations of scenarios missed
by lower level approaches.

Neural Networks offer an alternative means of
maintaining a model of expected normal user behav-
ior. They may offer a more efficient, less complex,
and better performing model than mean and standard
deviation, time decayed models of system and user
behavior. Neural network techniques are still in the
research stage and their utility have yet to be proven.
They may be found to be more efficient and less
computationally intensive than conventional rule-
based systems. However, a lengthy, careful training
phase is required with skilled monitoring.

7.3 Hybrid Misuse / Anomaly Detection

Hybrid Detectors adopt some complementary com-
bination of the misuse and anomaly detection ap-
proaches run in parallel or serially. Activity whichis
flagged as anomalous may not be noticed by a misuse
detector monitoring against descriptions of known
undesirable activity. For example, simple browsing
for files that include the string “nuclear” may not
threaten the security or integrity of the system but it
would be useful information for an SSO to review if
it was anomalous activity for a particular account.
Likewise, an administrator account may often dem-
onstrate access to sensitive files and have a profile to
permit this, but it would useful for this access to still
be checked against known misuse signatures. There
has been a fairly strong consensus in the anti-intru-
sion community that effective and mature intrusion
detection tools need to combine both misuse and
anomaly detection. There is increasing operational
field evidence that anomaly detection is useful, but
requires well briefed SSO’s at each site to configure
and tune the detector against a high rate of false posi-
tives. Anomaly detection systems are not turnkey and
require sophisticated support at least until profiles
have stabilized.

170

7.4 Continuous System Health
Monitoring

Intrusions may be detected by the continuous active
monitoring of key “system health” factors such as
performance and an account’s use of key system re-
sources. This technique is more flexible and sophis-
ticated than Static Configuration Checkers, as such a
tool would be run continuously as a background pro-
cess. Jtconcentrates onidentifying suspicious changes
in system-wide activity measures and systemresource
usage. An example is to monitor network protocol
usage over time, looking for ports experiencing un-
expected traffic increases. Work needs to be done to
develop and tune system-wide measures, and to un-
derstand the significance of identified variations.

8.0 Intrusion Countermeasures

Intrusion Countermeasures empower a system with
the ability to take autonomous action to react to a
perceived intrusion attempt. This approach seeks to
address the limitation of intrusion detection mecha-
nisms which mustrely on the constant attention of an
SSO. Most computing environments do not have the
resources to devote an SSO to full-time intrusion
detection monitoring, and certainly not for 24 hours
aday, seven days a week. Further, a human SSO will
not be able to react at machine processing speeds if
an attack is automated — the recent IP spoofing at-
tack attributed to Kevin Mitnick was largely auto-
mated and completed in less than eight minutes
[SHI9S5]. Entrusted with proper authorization, a sys-
tem will have much greater likelihood of interrupting
an intrusion in progress, but runs the risk of falsely
reacting against valid usage. What must be prevented
is the case where a user is doing something unusual
or suspicious, but for honest reasons, and is wrong-
fully burdened by a misfiring countermeasure. The
concern thata General Brassknuckles will be enraged
by being rudely locked out of the system because he
runs over the allowed page count for printouts, merely
reflects an avoidable, overly aggressive countermea-

sure configuration.

Two primary intrusion countermeasure techniques are
autonomously acting IDS’s and alarmed system re-
sources. Although the former may be considered simply
giving intrusion detection techniques teeth, the latter
will react to suspicious actions on the system without
ever processing audit data to perform “detection.”

Intrusion Countermeasure Equipment (ICE)’ re-
fer to mechanisms which not only detect but also
autonomously react tointrusionsin close toreal-time.
Suchatool would be entrusted with the ability to take
increasingly severe autonomous action if damaging
system activity is recognized, especially if no secu-
rity operator is available. The following ICE autono-
mous actions, in ascending order of severity, may be
envisioned:

Alert, Increase Support to SSO (Transparent):
« Note the variance in ICE console window
» Increase the amount of audit data collection on the
irregular user, perhaps down to the keystroke level
« Alert SSO at the ICE console with a local alarm
» Notify SSOs remotely (e.g., by beeper)

Seek to Confirm, Increase Available Information on

User:
» Reauthenticate user or remote system (i.e., to address
attacks originating from intruders capitalizing on an
unattended session, or spoofing packets on an authenti-

cated connection)
+ Notify security personnel to get voice/visual confirma-
tion of the user’s identity/intention

Minimize Potential Damage:
» Slow system response or add obstacles
» Only pretend to execute commands (e.g., buffer rather
than truly delete)

Arrest Continued Access:
* Lock local host account / Swallow offending packets
» Trace back network ID and lock out all associated
accounts back to entering host, perform housckeeping at
intermediary systems.
» Lock entire host system / Disconnect from network
» Disconnect network from all outside access
ICE offers a number of advantages over manually
reviewed IDS’s. A system can be protected without
requiring an SSO to be constantly present, and able
and willing to make instant, on-the-spot complex
decisions. ICE offers non-distracted, unbiased,
around-the-clock response toeven automated attacks.
Because ICE suffers from the same discrimination
and profile managementissues as intrusion detection
mechanisms, but with potentially no humaninterven-
tion, care must be taken that service is not disrupted
at a critical time by engineered denial of service at-
tacks.

! The anti-intrusion term “ICE" originated from science fiction author William
Gibson’s seminal cyberpunk novel Neuromancer, and was appropriated and
modified by [HAL88]. Mr. Gibson was reportedly amused by this instance of
life mimicking art.

171

Alarmed Files/Accountsreferto seductively named
and strategically located ““booby trap” resources which
lure an intruder into revealing his activities. Access-
ing an alarmed file or account unleashes immediate
action. Alarms can be silent (only notifying the SSO,
even remotely) or can prompt immediate retaliatory
action against the intruder. An ideal candidate for an
alarmed account is a default administrator account
with default password intact. This technique is low
cost and low tech, but care must be taken that autho-
rized users will not trip the alarm, especially through
accidental stumbling across it by some automatic
means (e.g., running a nonmalicious find).

9.0 Conclusion

This paper has established a comprehensive anti-in-
trusion taxonomy by working top-down at a theoreti-
cal level, and bottom-up by surveying implemented
approaches and those discussed in the referenced lit-
erature. Exercising the taxonomy against real life
analogies firmed and increased intuitive grasp of the
concepts. New anti-intrusion techniques will continue
to be developed in this rapidly evolving field of re-
search which may expand our taxonomy. This tax-
onomy will serve asa useful tool to catalog and assess
the anti-intrusion techniques used by a particular anti-
intrusion systemimplementation. It is hoped thatour
technique will provide new insight to the anti-intru-
sion research community. The authors are active
workers in the field and would be pleased to corre-
spond regarding additions or modifications.

10.0 References

[ANDRO] J.P. Anderson. Computer Security Threat
Monitoring and Surveillance.James P. Anderson Co.,
Fort Washington, PA, 15 April 1980.

[HALS86] L. Halme and J. Van Homne. “Automated
Analysis of Computer System Audit Trails for Secu-
rity Purposes,” Proceedings of the 9th National
Computer Security Conference. Washington DC.
September 1986.

[DEN87] D. Denning. “An Intrusion Detection
Model,” IEEE Transactions on Software Engineer-
ing, Vol. SE-13, No. 2. February 1987. pp. 222-232.

[SEBS88] E. Sebring, E. Shellhouse, M. Hanna, and
R. Whitehurst. “Expert Systems in Intrusion Detec-

tion: A Case Study,” Proceedings of the 11th Na-
tional Computer Security Conference. Washington
DC. October 1988.

[LUNS88a] T. Lunt and R. Jagannathan. “A Prototype
Real-Time Intrusion Detection Expert System,”
Proceedings of the 1987 IEEE Symposium on Secu-
rity and Privacy. Oakland CA. April 1988.

[HALS88] L. Halme and B. Kahn. “Building a Secu-
rity Monitor with Adaptive User Work Profiles,”
Proceedings of the 11th National Computer Security
Conference. Washington DC. October 1988.

[LUNS88b] T. Lunt. “Automated Audit Analysis and
Intrusion Detection: A Survey,” Proceedings of the
11thNational Computer Security Conference. Wash-
ington DC. October 1988.

[TIS90] N. McAuliffe, D. Wolcott, L. Schaefer, N.
Kelem, B. Hubbard, T. Haley. “Is Your Computer
Being Misused? A Survey of Current Intrusion De-
tection System Technology,” Proceedings of the 6th
Annual Computer Security Applications Conference.
Tucson, AZ. December 1990.

[HEBE92] L. Heberlein, B. Mukherjee, K. Levitt.
“Internetwork Security Monitor: An Intrusion-Detec-
tion System for Largé-Scale Networks,” Proceedings
of the 15th National Computer Security Conference.
Washington DC. October 1992.

[DIDS91] S. Snapp, J. Brentano, G. Dias, T. Goan, L.
Heberlein, C.Ho, K. Levitt, B. Mukherjee, S. Smaha,
T. Grance, D. Teal, and D. Mansur. “DIDS (Distrib-
uted Intrusion Detection System) - Motivation, Ar-
chitecture, and an Early Prototype,” Proceedings of
the 14th National Computer Security Conference.
October 1991.

[FIS94] W. Cheswick and S. Bellovin. Firewalls and
InternetSecurity Repelling the Wily Hacker, Addison-
Wesley, 1994,

[STO89] C. Stoll. The Cuckoos’ Egg: Tracking a Spy
Through the Maze of Computer Espionage,
Doubleday, 1989.

[SHI9S] T. Shimomura. The IP Spoofing Attack, in
Proceeding of the Third Workshop on Future Direc-
tions in Computer Misuse and Anomaly Detection,
eds. Matt Bishop, Karl Levitt, and Biswanath
Mukherjee. January 1995, appendix A-15.

172

Simulating Concurrent Intrusions
for Testing Intrusion Detection Systems:
Parallelizing Intrusions*

Mandy Chung

Nicholas Puketza

Ronald A. Olsson

Biswanath Mukherjee

Department of Computer Science
University of California, Davis, CA 95616
{chungm, puketza, olsson, mukherje} @cs.ucdavis.edu

Abstract

For testing Intrusion Detection Systems (IDS), it is essen-
tial that we be able to simulate intrusions in different forms
(both sequential and parallelized) in order to comprehensively
test and evaluate the detection capability of an IDS. This pa-
per presents an algorithm for automatically transforming a se-
quential intrusive script into a set of parallel intrusive scripts
(formed by a group of parallel threads) which simulate a con-
current intrusion. The main goal of parallelizing an intrusion
is to distract an IDS’s attention away from the intrusive ac-
twity. We tdentify constraints on the execution order among
commands, and the way commands can be classified based on
the effect of their execution. Synchronization and communi-
cation mechanisms are used to guarantee that the ezecution
order among commands is preserved even under the paral-
lelized scenario. We show that, ezperimentally, our work con-
stitutes @ magor part of testing the ability of an IDS to detect
intrusions and is especially useful for the users and develop-
ers of IDSs. We show that an intrusion is less likely to be
detected if the suspicious activity is distributed over several
sessions. Finally, we discuss some aspects of parallelizing in-
trusive scripts, including some practical difficulties that are
open problems for future research.

Keywords: Intrusion Detection, Concurrency, Testing, Paral-
lelization, Synchronization, Data Flow Analysis, Dependence
Analysis.

1 Introduction

Intrusion detection provides a practical alternative ap-
proach to computer security besides designing a secure
system [6, 12]. Intrusion Detection Systems (IDS) have
been under investigation for many years [7, 14] and have
started to move from laboratories to the real world.
There is thus a need for sound methodologies and tools
for testing IDSs. This paper presents our continuing ef-

*This work has been supported by the National Security Agency
(NSA) INFOSEC University Research Program (URP).

fort on testing Intrusion Detection Systems [13].

We are researching methods for testing IDSs. In our
testing experiments, we simulate intrusive activity, and
then study the corresponding output from the IDS. We
have developed a software platform that can be used to
create scripts that simulate both normal and intrusive
activities. We have also developed mechanisms in the
platform to support concurrent intrusion simulations, in-
cluding mechanisms for synchronization and communica-
tion (message passing) among different processes.

A major challenge of our work is to be able to sim-
ulate intrusions in various forms so that we can test an
IDS’s capability to detect intrusions comprehensively. A
single intrusion can be executed in many different ways.
For instance, an intruder may type in the intrusive com-
mands one by one from a single terminal, or an intruder
may code them up in a script. An advanced intruder
may partition (or parallelize) the commands and issue
them from different sources (e.g., different login sessions)
to reduce the noticeability of the intrusion by an IDS.
Similarly, multiple intruders may attempt to conceal an
intrusion attempt by distributing the suspicious behavior
amongst themselves.

Manually transforming a sequential intrusion into a
concurrent one is very tedious and time-consuming. Be-
sides, a single intrusion can typically occur in a number of
different concurrent forms. For this reason, we envision,
during the course of testing IDSs, the need for an auto-
mated approach to fragment a sequential intrusive script
into parallel scripts that cooperate with one another.

This paper presents an algorithm for parallelizing a
sequential intrusive script of Unix shell commands. Par-
allelizing an intrusive script has some similarities to par-
allelizing a program, which has been studied in depth
[2, 3, 4, 5, 8 9, 11]. Our work adapts some basic tech-
niques used in program parallelization to fit in our con-
text, including data flow analysis, dependence analysis,

173

and control dependence to data dependence conversion.
Our algorithm is based on a dependency graph that rep-
resents the meaning of commands as well as their inter-
relations. A sequential intrusive script is first analyzed
to determine various kinds of dependencies among com-
mands which, in turn, enable us to determine their exe-
cution order. The sequential script is then transformed
into a parallel script, in which synchronization and data
communication mechanisms are employed to enforce the
dependence relations of commands. A parallel script is
formed from a group of parallel threads generated from
our algorithm. By assembling parallel threads in differ-
ent ways, various parallel forms of an intrusive script can
be generated. This paper emphasizes the parallelization
of intrusive scripts for testing IDSs; however, this ap-
proach can be employed for parallelizing arbitrary (non-
intrusive) scripts, perhaps for different goals and different
optimization. :

The rest of this paper is organized as follows. Section
2 presents some example scenarios to illustrate the impor-
tance of an IDS to be able to detect concurrent intrusions,
which raises the motivation and the need for our work.
Section 3 presents some initial results from testing both
sequential and parallel intrusive scripts on an actual IDS
showing that intruders could escape detection by an IDS
by distributing their intrusive activity over several con-
current sessions. Section 4 describes the model for our
parallelization algorithm. Section 5 describes the steps
involved in the automated parallelization (or transforma-
tion) of an intrusive script and also presents an algorithm
for generating parallel threads. Section 6 discusses sev-
eral aspects of parallelizing intrusive scripts, including
some practical difficulties which we will deal with in the
future. Section 7 concludes the paper.

2 Scenarios

This section presents two intrusion scenarios —
password-guessing and password-cracking — demonstrat-
ing the fact that an intruder can possibly defeat an IDS’s
detection mechanism by issuing the intrusive commands
from different sources concurrently (e.g., from different
login sessions).

In the first scenario, an intruder attempts to guess
the password of a user on a target machine. Obviously,
he/she can do this by attempting repeated logins with
different passwords until he/she successfully enters the
system or until he/she gives up after several attempts.
An IDS could probably detect this intrusion because a
number of failed login attempts from a source machine is
very noticeable. However, the guessing of passwords can
be distributed among several intruders so that a group of
passwords are tested simultaneously, perhaps from differ-
ent machines. An intruder may also be able to manage to
test several passwords concurrently through several open
login sessions, or perhaps by an automated script. First,

login hostt useri

fip srcHost sroUser
cd targetDir

get cracker.in get cracker.c
cc -o cracker cracker.c

vi cracker.out

mdir crack

Figure 1: Depencence graph for a sequential password-
cracking intrusion.

in this concurrent intrusion, the intruder can test all pass-
words in a shorter period of time. Second, this concurrent
intrusion is less suspicious to an IDS than the sequential
one because the logins are issued from different sources.
Finally, if the target machine shares the password file
with some other machines *, the intruder can also test
passwords on different machines simultaneously (rather
than on one target destination). It is extremely difficult
for an IDS to aggregate the activities issued from dif-
ferent sources to different destinations and to detect the
coordinated intrusion.

In the second scenario, an intruder who manages to
enter a target machine attempts to find any password
that can be easily cracked. The intruder first logs into
a target host hostl as userl and then creates a tempo-
rary directory called crack under his/her home directory.
He/she copies the password cracking program cracker.c
and the dictionary file cracker.in from another machine
srcHost and in a directory targetDir under srcUser home
directory by ftp. Running the program cracker compiled
from cracker.c will generate those cracked passwords into

1This is usually the case when Network Information Service
(NIS) is running, where the password file is shared among all NIS
clients.

174

login h1ut login hi u2 1 [login h1 u3 I [login h1u4 I] login h1u5 login h1 ué l ’ login hiu7 ‘ ’ login h1u8 ’
ed ~ut) ed ~ut b Ced ~ul) 7 od ~ut) Cod ~ut ed ut) ed ~ut)
! owait1 | | owait1 | U wait1 | ji ! wai ! wai ! wai
-._.._$__l[-_I ...-J--I
‘ cd crack | [cd crack I cd crack 1 cd crack ’ 1 cd crack | ‘ cd crack ‘
1 ftp srcH srcU I l ftp srcH srcU1 l

, N
~ ,I

i
! syncs |
1

logout logout

logout

O an |-command

a command switches the current working space

Figure 2: Parallelized password-cracking intrusion.

file cracker.out. After reviewing the output file, the in-
truder cleans up the working directory crack and leaves
the session.

Although the actions in this intrusion, described
above, seem to be necessarily performed serially in a sin-
gle session, they can still be divided and performed in
concurrent sessions by multiple coordinated intruders (or
intrusion scripts). To illustrate, consider the commands
executed in this intrusion and the dependence relations
among them. Figure 1 depicts the dependence graph for
this password-cracking intrusion. (In Figures 1 and 2,
we distinguish between commands of four different types:
S-command, R-command, T-command, and I-command,
which will be described in Section 4.) Figure 2 shows
one possible parallel version of this intrusion. It consists
of eight individual intrusive sessions running simultane-
ously. Each of these intrusive sessions carries minimal
activity as shown. That is, it is not possible to sepa-
rate into two or more threads the activity performed in
any one of these parallel threads. Concerning the bene-
fits of parallelizing this password-cracking intrusion, the
parallel version does not gain any considerable speedup.
On the contrary, the elapsed time of the intrusion may
be increased due to the overhead of synchronization be-

tween the various parallel threads. However, the speedup
is not the main goal of the intrusion parallelization oper-
ation. The main goal is to disguise the intrusive activity
performed by an intruder or a group of intruders. The
major benefit obtained from parallelizing the password-
cracking intrusion is to distribute the intrusive activity
among concurrent sessions so as to minimize the chance
of detection of the activity.

The two examples described above both involve the
interaction between the intruder and the shell. Another
form of intrusion could be due to a program that makes
system calls. Activities issued from either of them may
be collected by an audit trail on which the analysis of
many IDSs rely. In this paper, we focus on the former
form of intrusion involving shell-level commands.

3 Experimental Results

‘To escape detection by an IDS, intruders might try to
distribute their intrusive activity over several concurrent
sessions. The premise behind this strategy is that the IDS
will assign a higher warning value to one very intrusive
session than it will to several less intrusive sessions. We
conducted some experiments to test this premise.

175

The IDS that we tested is the Network Security Mon-
itor (NSM) [7]. The NSM monitors all of the packets
that travel on the local area network (LAN) to which the
NSM host computer is connected. The NSM can asso-
ciate each such packet with the corresponding computer-
to-computer connection. It assigns a warning value be-
tween 1 and 10 (higher is more suspicious) to each con-
nection based on the contents of the packets, and on the
likelihood of the connection occurring, given a record of
recent connections. We ran the NSM on a Sun Sparc
Station 2 workstation connected to the Computer Sci-
ence LAN segment at UC Davis (UCD).

3.1 Test Procedure

We first selected four intrusive activities:

1. transmitting the /etc/passwd file from one computer
to another;

2. password-cracking by comparing the entries in the
/ete/passwd file to a list of encrypted password
guesses;

3. password-guessing using a dictionary file; and

4. exploiting the loadmodule flaw to achieve super-user
status.

For each of these activities, we created a sequential script
to simulate the activity. Then, we manually created a
concurrent script set which collectively included all of the
commands from the sequential script. We activated the
NSM and ran the scripts. We then compared the warning
values for the sequential script with the warning values
for the concurrent script set. The results are displayed
in Figure 3. The NSM assigns a warning value to each
network connection. Several of the scripts and script sets
initiate more than one network connection, but for clarity
the figure shows only the maximum warning value for
all network connections associated with each script and
script set.

INTRUSION SCRIPT TYPE [MAX
DESCRIPTION s = sequential WARNING
¢ = concurrent VALUE

transmitting s 7472
passwd file c 7472
password- s 3.160
cracking c 3.160
password- s 8.722
guessing c 7785
exploting S 7472
loadmodule flaw c 4972

Figure 3: NSM experimental results.

3.2 Analysis of Results

For the first intrusion simulation in Figure 3, the warn-
ing value for the concurrent script set is the same as the
warning value for the sequential script, and the warning
values are high. A possible explanation for this is that the
sequential script contains a very suspicious command or
set of commands which cannot be divided when the con-
current script set is created. As a result, at least one of
the threads in the concurrent script set is by itself just as
suspicious as the original sequential script. The warning
values for the second intrusion simulation are again equal,
but in this case the values are low. A likely explanation is
that the NSM was not configured to be sensitive to that
particular intrusion. So, neither the sequential script nor
the concurrent script set produced activity that appeared
suspicious to the NSM.

For each of the last two intrusion simulations in our
experiments, the warning value for the concurrent script
set is less than the warning value for the sequential script.
In both cases, it was possible to divide up a set of sus-
picious commands in the sequential script among two or
more threads in the concurrent script set.

Taken together, our experiments indicate that it is
possible for intruders to reduce the chance of detection
by an IDS by distributing their suspicious activities, al-
though this strategy is not always successful. In future
work we plan to investigate the effects of this strategy
on different IDSs. For example, the NSM monitors each
network connection independently. An IDS that, instead,
keeps track of all the activity associated with each user
may not be affected as much by this intruder strategy.

4 Model

Our work focuses on the automated parallelization (or
transformation) of an intrusive script that is used to sim-
ulate an intruder’s activity. An intrusive script is written
in a simple programming language which allows us to
specify shell-level commands, such as shell language [15]
and Ezpect [10]. In addition, the language typically in-
cludes variables, procedure, and control-flow statements,
such as if-then-else and loop.

This section presents a model for an intrusive script
transformation which focuses on issuable shell-level com-
mands in an intrusive script. The model is divided into
two parts: shell-level commands and statements in an
intrusive script.

An intrusion is considered to be a sequence of shell-
level commands issued by an intruder. An intruder can
issue commands one by one from a single terminal, or
issue commands from more than one terminal. For ex-
ample, an intruder can create two login sessions from two
different windows on his/her workstation to a target host
at the same time. On the target host, the identity of
the user associated with these sessions can be different

176

(if the intruder manages to get two different accounts on
that system). In this paper, we refer to the commands
that are issued from a terminal as an intrusive session.
More specifically, a user can consecutively issue several
commands that create a new user session, such as rlogin,
telnet, and ftp, from a terminal in which a hierarchical
structure of open user sessions is built. An intrusive ses-
sion refers to the root session of this structure. A sequen-
tial intrusion involves only one intrusive session while a
concurrent intrusion typically involves multiple intrusive
sessions.

A shell-level command, like a procedure, can take pa-
rameters (e.g., from command line) and return a result
(e.g., to standard output). In addition, a command may
change two kinds of states in a computer system: the
file system state and the intrusive session state. The file
system state includes the existence and the content of
files in the file system. The intrusive session (IS) state
consists of all predefined and user-defined environment
variables, including the real user ID (uid), the effective
user ID (euid), the group ID (gid), the current working
directory (cwd), and the hostname. The current IS state
refers to the state of the active user session in an intrusive
session. We characterize a command .C by the following:

e Input parameters and output result.

e A set of file system objects from which C reads.
e A set of file system objects to which C' writes.

e A set of IS state attributes? on which C depends.
e A set of IS state attributes which C changes.

Based on the above definition of a command, the depen-
dence constraints on the intrusive script transformation
are defined as follows:

Data dependence. Two commands are data depen-
dent if the input parameter of one command is deter-
mined by the output of another, or some file system ob-
jects written by one command are referenced (read or
written) by another and these file system objects are
not written by other commands between the execution
of these two commands.

Attribute dependence. Two commands are at-
tribute dependent if some IS state attributes changed by
one command are referenced (read or changed) by an-
other and these attributes are not changed by other com-
mands between the execution of these two commands.

An intrusive script typically consists of various con-
structs provided by the language. Control dependence is
another constraint to the parallelization problem due to
the presence of control-flow statements in the script (see
Section 5.2.1 for details).

2In order to distinguish between an environment variable and a
script variable, we refer to an environment variable as an attribute
of the IS state.

We also classify commands into four different types
according to their effect on the IS state:

1. I-command (state Inveriant) — A command that
does not affect the IS state. For example, Is, cp and
cat are I-commands. These commands only affect
the file system state, e.g., change the content of a
file or create a new file.

2. S-command (Session creation) — A command that
creates a new user session and changes the IS state,
but the IS state before executing this command can
be restored by an R-command. Examples of S-
commands are rlogin and ftp, which change the IS
state attributes, uid, euid, gid, cwd, and host. su is
slightly different from the above since it only changes
uid, euid, and gid.

3. R-command (state Restoration) — A command that
closes the current user session and restores a pre-
vious IS state. Specifically, an R-command reverts
the IS state to a state in which the corresponding
S-command began without requiring the knowledge
of those executed commands and their parameters,
or the value of the previous IS state. For exam-
ple, logout is an R~command corresponding to rlogin
whereas bye is an R-command corresponding to ftp.

4. T-command (state Transition) — A command that
changes the IS state, but no R-command corresponds
to it. For example, ¢d is a T-command that changes
the current working directory (cwd) and setenv is
another T-command that defines an environment
variable. Although the IS state before executing
a T-command can be restored via a series of T-
commands, c¢d and setenv are neither an S-command
nor an R-command since they require the knowledge
of the value of a previous IS state (for restoration)
and since they do not open or close a user session.

As we described earlier, a script can contain variables,
control-flow statements, and constructs for issuing shell-
level commands. Figure 4 shows a simple Ezpect script
that controls an rlogin session.

For simplicity, when parsing the script statically, we
refer to a statement that issues a shell-level command as
a “command” (e.g., lines 5, 7, 11, 13, and 14 in Figure
4), while we refer to other constructs provided by the
language as “statements” (e.g., lines 2, 3, and 10 above).
More precisely, the issuable commands (line number of
its referred statement) in Figure 4 are: rlogin (lines 5
and 7)3, whoami (line 11)4, Is -l (line 13), and logout
(line 14). Lines 10 and 11 together form a conditional
statement containing an issuable command whoami.

3Inputting password is considered to be part of the rlogin.
4Line 11 will be invoked only if rlogin to the host occurs as root.

177

get target host and user from arguments
set host [lindex $argv 1]
set user [lindex $argv 1]
spawn an rlogin process
spawn rlogin $host -1 $user
expect the password prompt,
then send the password.
expect {"Password:" send "actualpassword\r"}
8 # expect the shell prompt,
then send shell-level commands
9~ # The shell prompt is specified
in a regular expression.
10 if {$user == root} {
11 expect {-re ".*J|.*>|.*#" send "whoami\r"}
12}
13 expect {-re ".*%|.*>|.*#" send "1s -1\r"}
14 expect {-re ".#%|.*>|.*#" send "logout\r"}

T WN

~

Figure 4: A simple Ezpect script.

5 Automated Parallelization of an
Intrusive Script

Parallelization of a sequential intrusive script consists of
the following steps :

1. Parse an intrusive script and build a flow graph.
2. Convert the control dependence to data dependence.

3. Perform dependence analysis and build a data de-
pendence graph.

4. Create parallel threads for the intrusive script
and insert synchronization and data communication
commands to facilitate coordination between paral-
lel threads. ‘

5. Perform optimization and transformation, if any.

6. Generate a parallel intrusive script.

A flow graph representing an intrusive script is differ-
ent from a flow graph representing a program [1]. We
define a basic block, in our context, as a sequence of
consecutive “statements” and one issuable “command”.
Therefore, it is possible to have a basic block containing
a conditional statement or loop which contains no com-
mand. The intrusive script transformation procedure is
only interested in the issuable shell-level command con-
tained in a basic block. We assume that two basic blocks
are dependent only if the issuable commands in the basic
blocks are dependent (see Section 4). Information ob-
tained from the evaluation of other statements in a basic
block is only used within the basic block and is indepen-
dent of other basic blocks. That is, script variables used
or modified in a basic block are not referenced elsewhere.

In parallelizing an intrusive script, we must obey the
constraints of the underlying dependence structure of the
script. In our algorithm, a data dependence graph (8] is

used to represent the data dependence, attribute depen-
dence, and control dependence. Both data and attribute
dependence of commands can be represented in a data
dependence graph because the IS state attributes are an-
other form of data in an intrusive session. We can also
treat control and data dependence uniformly by apply-
ing a technique in parallelizing compilers introduced by
Allen and Kennedy [2] to convert control dependence into
data dependence. We also adapt the dependence analysis
{3, 5, 8, 9] used in program parallelization to determine
the dependence relations of all issuable commands in a
script.

In the following, when we refer to a command in a
dependence graph, we actually mean the basic block con-
taining this command. A node in a dependence graph
represents a basic block which contains one issuable com-
mand and other statements.

Section 5.1 presents an algorithm to generate paral-
lel threads in parallelizing an intrusive script, which does
not have branch, loop, and procedure. Section 5.2 ex-
tends the algorithm to handle conditional statements and
loops. It also discusses another dependence due to the
script variables used or modified in a basic block and ref-
erenced by another. Section 5.3 discusses the possible
optimization and transformation performed on the par-
allelized intrusive threads.

5.1 Parallelization Algorithm

This algorithm consists of two phases: parallel threads
generation phase and threads synchronization phase. Ap-
pendix A gives the pseudo-code for this algorithm.

5.1.1 DParallel Threads Generation Phase

We represent an intrusive script as a series of commands,
I ={Cy,C,,...,Cp} since there is no branch, loop, and
procedure in the script. The IS state transition during
the execution of I is {sg, $1,. .., Sn} where s¢ is the initial
IS state determined by the input of I. This phase cre-
ates a parallel thread for each I-command in I. In order
to guarantee that an I-command executed in a parallel
thread has the same effect as in the sequential script,
the IS state s;—; must be reached before the execution
of C; begins. Specifically, s;-1 is reached by executing
all S-commands and T-commands in {C1, Cs, ..., Ci—1}
serially.

The details of the algorithm are as follows. The al-
gorithm processes each command and uses a stack to
store those S-commands and I-commands whose execu-
tions reflect the current IS state. When processing an
I-command, the algorithm creates a new thread for per-
forming this command. We use a flow graph to represent
a sequence of commands executed in a parallel thread.
First, a flow graph is formed by creating a node for
each element (each command) in the stack; the bottom
one in the stack is the first command executed in the

178

thread while the top one is the last command. The algo-
rithm then appends a node representing the I-command
to the graph. When processing an S-command or a T-
command, this command is pushed onto the stack and
no thread is created. If it is an S-command, all new
threads containing this S-command are recorded so that
their open sessions can be closed appropriately. When
processing an R-command C,, all recorded threads for
the S-command C; that corresponds to C, are appended
with C, to close their current sessions. Precisely, C; is the
top S-command in the stack. All subsequent commands
following C (including C;) in the stack are popped (since
the open session created by C; is closed by C,).

After processing all commands in the script, the num-
ber of parallel threads generated is the number of I-
commands in the script. For example, Figure 1 is the
dependence graph for the sequential password-cracking
intrusion scenario discussed in Section 2, and it turns out
that this example has eight I-commands. Figure 2 shows
the eight parallel threads generated by this algorithm and
each thread performs only one of these eight I-commands.

5.1.2 Threads Synchronization Phase

After all parallel threads are generated, the dependence
relations among commands are enforced in this phase to
guarantee the execution order of the commands by insert-
ing synchronization and data communication mechanisms
[11].

A dependence graph G consists of nodes and directed
edges. A node represents a basic block containing a single
command. A directed edge (u,v) represents a dependence
relation between basic blocks and v, i.e., the execution
of v can begin only after the execution of u terminates.
By performing breadth-first search on G, all commands
(nodes) are visited. While visiting a node containing an
I-command C;, we insert a synchronization command to
each successor of C; in G, Cj, to ensure that its execu-
tion begins only after C; terminates. If the input of C;
depends on the output of C;, the output of C; is sent
to the thread containing C; using data communication
commands.

As in the parallel threads generation phase, all S-
commands, T-commands, and R-commands may be du-
plicated in other threads whereas an I-command is ex-
ecuted in only one parallel thread. If C; is either an
S-command, a T-command, or an R-command, the ex-
ecution order of C; and its successors is guaranteed to
occur in sequential order. '

5.2 Language Constructs
5.2.1 Conditional Statements

Conditional statements are very useful in simulating an
intrusion. As a simple example of control dependence in
an intrusion, consider an intruder who checks the per-
mission mode of a file named fileA and decides whether

to read fileA or to modify fileA. The first command per-
formed by the intruder is Is -l fileA to obtain the file access
information. According to the file access permissions of
fileA, if it is world-writeable, he/she then modifies the file
by vi; otherwise, if it is world-readable, he/she reads the
file by cat.

For simplicity, in the following example, we focus on
the issuable commands and ignore all other statements
within the if-statement.

if B then
command]l
command?2
else
command3
endif
command4

Commandl, command2, and command3 are control
dependent on the boolean expression B since B deter-
mines which command is executed. (B may be obtained
from the output of a previous command.) The conversion
from ‘control dependence to data dependence proceeds
by first replacing the if-statement at the source of the
dependence with an assignment statement to a boolean
variable. The converted if-statement is:

b=B

commandl when b
command2 when b
command3 when not b
command4

All control dependent commands are tagged with a
“when b” or “when not b” clause depending on to which
arm of the original if-statement they belong. The opera-
tor when indicates that the expression on its left is exe-
cuted only if the boolean expression on its right is true.
A boolean variable b is used instead of B because state-
ments in either arm of the if-statement could have side
effects, i.e., these side effects could change B. After the
conversion, the control dependences of commandl, com-
mand2, and command3 become flow dependences gener-
ated by variable b and each command is contained in a
single basic block in the flow graph.

After the if-conversion, the parallel threads can be
generated as described in Section 5.1 but a slight modifi-
cation must be made to handle the tagged R-commands
as follows. When processing a tagged R-command with
operand b, C, when b, all recorded threads containing
its corresponding S-command C; are appended with this
tagged R-command. Consider those S-commands and
T-commands executed between Cy and C,, ie., {Cs =
Ciy,Ciys.--,Ci } in the stack. First, for 0 < j < k, all
tagged C;; whose operand is satisfied with the current b
value are popped from the stack because, if b is true, the

179

current user session is closed. Then, all remaining C;; in
the stack are modified to tag with a “when not b” clause
if it is not tagged, or to replace the “when ¢” clause with
a “when ¢ and not b” clause. Therefore, all remaining
C;; in the stack are guaranteed to execute under correct
IS state.

The tagged commands now depend on the basic block
that evaluates b. All threads that contain the tagged
command may need to receive the b value from another
thread, which we refer to as variable dependence (to be
discussed in Section 5.2.3).

5.2.2 Loops

Recall from Section 2 that, in the sequential password-
guessing intrusion example, an intruder repeatedly at-
tempts to log into a target machine and guess a password
until he/she successfully enters the target machine or fin-
ishes guessing all passwords in his/her stock. This intru-
sion obviously contains a loop for testing passwords.5 In
this example, an iteration of the loop — logging in and
guessing a password — is independent of other guesses
and can be executed concurrently. Although loops in an
intrusive script may not be as commonly used as loops in
a program, this construct is considerably useful in simu-
lating certain types of intrusions.

We follow the terminology used in parallelizing com-
pilers proposed by Banerjee [3] to classify three parallel
loop forms.

¢ DOALL is a loop that allows total parallel execution,
i.e., all iterations of the loop body are allowed to run
simultaneously.

o DOACROSS is a loop that allows partial overlap of
successive iterations during execution.

o DOSEQ is a sequential loop without parallelism.

After performing the loop dependence analysis, we
can identify the type of loops contained in the script.
Two kinds of DOALL loops are parallelizable. First, a
DOALL loop that contains only I-commands is paral-
lelizable. Second, a DOALL loop is parallelizable if the
loop’s body can be divided into three blocks such that the
first and the last blocks contain only I-commands while
the middle block starts with an S-command and ends
with an R-command corresponding to this S-command.
In other words, a parallelizable DOALL loop terminates
with a previous IS state right before its execution begins.
Because each iteration of the loop is independent on oth-
ers, a new thread is generated for executing an iteration
of the parallelizable loop. A special type of node is used

to represent this parallelizable DOALL loop in the depen- -

dence graph so that the parallel threads generation phase
can recognize this loop and parallelize it accordingly.

5When the connection is closed (after the configured number of
incorrect login attempts), the intruder may need to issue a login
command again.

DOACROSS loops containing only I-commands (no
IS state change) can also be parallelized in a similar man-
ner but synchronization and data communication mech-
anisms must be appropriately inserted both at the end of
one iteration and before another iteration begins, just as
in processing dependent commands.

If a thread generated from the loop paralleliza-
tion procedure contains more than one I-command, this
thread can further be parallelized as if it is a sequential
intrusive script by recursively applying the algorithm on
it. Parallel threads may be required to transmit data due
to the loop parallelization because of DOACROSS loops.

Other kinds of loops are considered as non-
parallelizable. Among these non-parallelizable loops, a
loop containing only I-commands is treated as a single
basic block so that a single thread can be created to per-
form this loop’s activity. However, a non-parallelizable
loop that contains commands other than I-commands will
inhibit the parallelization. That is, all commands follow-
ing this loop together with the loop is treated as a single
basic block in the dependence graph, and hence, it is the
last thread created in the parallelization. In particular,
a script that has this kind of loop but no I-command be-
fore it is non-parallelizable. In fact, under some situation,
further parallelization may be allowed even if the script
contains such non-parallelizable loops. For example, if
the execution of a loop restores the original IS state after
it terminates, it can be treated as a single basic block.
Duplication of the loop in each parallel thread generated
for commands that follow it may also be feasible in some
cases. However, the analysis involved to guarantee that
the execution of such a non-parallelizable loop in more
than one thread resulting in a correct and safe state is
very complicated and difficult.

5.2.3 Variable Dependence

So far, we have considered that information obtained in
a basic block is independent of other basic blocks. Two
basic blocks are dependent only if the issuable commands
in the basic blocks are dependent. Therefore, script vari-
ables used or modified in one basic block are not refer-
enced in the others. Under certain circumstances, such
as the operand introduced by the if-conversion, the algo-
rithm may need to handle the variable dependence across
basic blocks.

5.3 Optimization and Transformation

After generating parallel threads from the dependence
graph, several possible optimizations can be performed
on each thread. One possible optimization is to log in as
a different user in each thread. Consider the password-
cracking example presented in Section 2. Figure 2 shows
eight parallel threads generated from the dependence
graph shown in Figure 1 by the algorithm. As shown
in Figure 2, each thread can login as a different user un-

180

less userl is root in the sequential script (Figure 1). If
different users are used in parallel threads, we must en-
~ sure that all referenced files are accessible by all of these
users. This can be achieved either by setting the permis-
sion mode of these shared files explicitly by the users, or
by assigning one thread to change the permission modes
of these shared files.

Another possible optimization is to remove redundant
commands executed in a thread. For example, the last
parallel thread in Figure 2 removes the temporary di-
rectory crack; however, two redundant c¢d commands are
executed before rmdir. Obviously, they can be removed
from this thread without altering its intrusive behavior.

su root

I su rootJ I su rootJ I su root |

exit

Figure 5: Transformation example.

As the parallel threads generated contain minimal ac-
tivity, a login session in the sequential intrusion may be
broken down into multiple login sessions in the concur-
rent intrusion. For example, Figure 5(a) shows a subtree
of the dependence graph representing one part of the in-
trusion and Figure 5(b) shows the three parallel threads
generated to perform the activity in Figure 5(a). Al-
though these parallel threads perform individual root lo-
gin session independently, three root logins may be more
suspicious to an IDS than the one root login in the se-
quential intrusion. In this case, parallelization of this
subtree may not be beneficial. One possible transforma-
tion in this example is to combine the threads into one
thread to avoid creating suspicious login sessions. There-
fore, Figure 5(a) is used for that part of the intrusion
after the transformation.

The parallel intrusion generated by our current ap-
proach uses the same working space as the sequential in-

trusion. For instance, in Figure 1, all files created or
added by this sequential cracker intrusion are placed un-
der the directory ~userl/crack in machine hostl, and they
will be removed at the end of the intrusion. Although dif-
ferent parallel threads of the concurrent cracker intrusion
can log into different users and have their own working
space, they access and use the same working space as in
the sequential intrusion, e.g., the directory ~userl/crack.
With further analysis on the semantics of the script, it
might be desirable to transform the threads to use their
own working space if possible.

6 Discussion and Future Work

This section discusses several aspects of parallelizing an
intrusive script: various forms of parallel scripts gener-
ated by our algorithm, some practical difficulties, and
generalization of our algorithm.

We have presented an algorithm for parallelizing a
sequential intrusive script into one possible parallel in-
trusive script in Section 5. The intrusive activity is basi-
cally performed by several parallel threads concurrently.
Each parallel thread carries minimal intrusive activity. In
fact, other possible parallel intrusive scripts can easily be
generated by assembling parallel threads together in dif-
ferent ways to form different combined threads. Thus, an
intrusion can be systematically mutated from a sequen-
tial form into various different parallel forms, which can
be used in testing an IDS.

Parallelizing an intrusive script is difficult in practice
because of the rich set of shell-level commands, and var-
ious constructs supported by the script language. How-
ever, we will deal with these difficulties and search for
their possible solutions in the future. Five practical dif-
ficulties are discussed below.

Domain and range analysis of shell-level com-
mands. Our algorithm relies on the assumption that
we have the knowledge about the domain and range of ev-
ery Unix command. The domain of a command is the set
of file system objects it reads from and the set of IS state
attributes it uses, while the range is the set of file system
objects it writes to and the set of IS state attributes it
changes. However, they are difficult to obtain systemat-
ically. First, the domain and range of a command may
differ with different arguments. Sometimes, the meaning
of a command changes substantially with different op-
tion arguments, and so do the domain and range. For
instance, the command “cp a b” copies the file a to a file
b, whereas the command “cp -ra b” copies all files under
the directory tree rooted by a to a directory b if a is a
directory. In this example, the domain and range of these
two ¢p commands may be different due to the “-r” op-
tion. In addition, the user is able to redirect I/O to and
from files as well as redirect the output of one command
as input to another command using pipes. For example,
the command “Is -I > file” changes the file system state

181

while the command “Is -I” alone does not. In Unix, com-
mand aliases, hard links, and symbolic links are allowed
to be created. The command cp at one time may refer
to the program /bin/cp, but at another time, it may re-
fer to /bin/ls if the user has made an alias named cp of
this Is command. Similarly, references on a hard link or
a symbolic link made by a command may actually refer
to another file. Apart from standard Unix commands,
a user can also execute a user-defined command which
can be a program making system calls. To determine the
domain and range of such a program requires detailed
analysis of the program source.

Complexity of text editor commands. Our algo-
rithm cannot completely handle text editor commands
because of their complexity. For example, vi can edit dif-
ferent files before exiting the editor session. It can also
start a new user session via shell escape. Activities per-
formed within an editor session are very hard to analyze
from a script. We currently handle vi and emacs as I-
commands that only access and modify one file specified
as a parameter and do not have other side effect.

Side effect of additional open user sessions. S-
commands and T-commands may be duplicated in paral-
lel threads. The execution of the duplicated S-commands
on parallel threads opens additional user sessions which
may affect the current state of the computer system, such
as the list of users currently on the system, the number
of active processes, and the last login time of an attacked
account. In other words, execution of S-commands may
affect the output of some I-command in a script. Our
algorithm does not currently handle an intrusive script
containing an I-command which depends on the system
state. For example, one of the actions performed by an
intruder is to discover the last user who logs into machine
A. When an intruder has logged into A, the user whom
the intruder wants to find becomes the second last user
who logs into A. The command “last -2” can be used to
get this information in a sequential intrusive script, but
it is not necessarily correct when used in a parallel script.

Interprocedural Analysis. Our algorithm handles
control-flow constructs used in a script, such as if-then-
else and loops. Procedures are another construct that
complicates our dependence analysis. However, by an-
alyzing the effect of a procedure call, including which
parameters changed on return, what global variables are
used and modified, and other side effects, we can deter-
mine whether the procedure presents a constraint on an
intrusive script’s parallelization. In some situations, a
procedure can be expanded in-line by substituting the
formal parameters with actual parameters, and renaming
local variables. However, in-line expansion is not appli-
cable to recursive procedures.

Suspension and resumption of open user sessions.
Currently, our algorithm does not handle commands that

suspend or resume a user session. We believe that these
commands are rarely used in intrusions. Our algorithm
can easily be extended to handle them. The command
that suspends a user session can be treated similar to an
R-command. Instead of just restoring a previous IS state,
those commands whose executions reflect the suspended
IS state are kept so that this suspended IS state can be
restored when this suspended user session is resumed.

Our algorithm described in this paper focuses on par-
allelizing a sequential intrusive script of Unix shell com-
mands. However, it can be generalized to apply to other
system platforms, e.g., VMS. The major difference in the
intrusive script transformation on different system plat-
forms is the definition of the intrusive session state on
which the dependence analysis depends, but same kinds
of analysis can be used. In the future, we will study the
dependence relations of commands on various platforms
and thus our work can be applied to testing other IDSs
that run on other system platforms.

7 Conclusion

In this paper, we have presented an automated mech-
anism for parallelization of intrusive scripts for testing
an IDS. Being able to simulate an intrusion in different
forms is very important for testing the ability of an IDS
to detect intrusions. Parallelizing an intrusive script has
some similarities with parallelizing a program; however,
they differ in some aspects mainly due to the shell-level
commands involved in a script and their additional con-
straints on parallelization. By modeling shell-level com-
mands and intrusive scripts, we can adapt the method-
ologies used in program parallelization for parallelizing
intrusive scripts.

The transformation of an intrusive script allows us to
generate other possible parallel forms so that an IDS can
be thoroughly tested. We conducted some experiments
on testing an IDS with both sequential and parallel in-
trusive scripts. The initial results showed that the de-
tection mechanism of an IDS could be defeated when an
intruder distributes the intrusive activity over concurrent
sessions. We believe that our work is especially useful to
the developers of IDSs in testing their products. Besides,
a system administrator can also evaluate and compare
the effectiveness of the detection mechanism of an IDS
with the help of the intrusive scripts transformation. We
expect that our work constitutes a major part in testing
IDSs.

In the future, we will deal with the practical problems
in parallelizing intrusive scripts that we have discussed.
We will also conduct some experiments on testing oper-
ational IDSs with both sequential and parallel intrusive
scripts to obtain further results. Finally, we would like
to mention that our work is used for testing IDSs rather
than for launching new intrusions.

182

References

[1] A.V. Aho, R. Sethi, and J.D. Ullman, Compilers:
Principles, Techniques, and Tools., Addison-Wesley,
1986.

[2] J.R. Allen, et al., “Conversion of Control Depen-
dence to Data Dependence”, Proceedings of 10th An-
nual ACM Symposium on Principles of Program-
ming Languages, Austin, Texas, January 1983.

[3] U. Banerjee, Dependence Analysis for Supercomput-
- ing, Kluwer Academic Publishers, Boston, Mass.,
1988.

[4] U. Banerjee, R. Eigenmann, A. Nicolau, and D.A.
Padua, “Automatic Program Parallelizaton”, Pro-
ceedings of the IEEE, vol. 81, no. 2, pp. 211-43,
February 1993.

[5] M. Burker and R. Cytron, “Interprocedural Depen-
dence Analysis and Parallelization”, Proceedings of
the ACM SIGPLAN ’86 Symposium on Compiler
Construction, pp. 17-22, June 1984,

[6] D.E. Denning, “An Intrusion Detection Model”,
IEEE Transactions on Software Engineering, vol.
SE-13, pp. 222-232, February 1987.

[7] L.T. Heberlein, G. Dias, K. Levitt, B. Mukherjee, J.
Wood, and D. Wolber, “A Network Security Moni-
tor”, Proc. 1990 Symposium on Research in Security
and Privacy, pp. 296-304, May 1990.

[8] D. J. Kuck, et al., “Dependence Graphs and Com-
piler Optimization”, SIGACT-SIGPLAN Sympo-
sium on Principles of Programming Languages, pp.
207-218, January 1981.

[9] Z.Li, P. Yew, and C. Zhu, “An Efficient Data Depen-
dence Analysis for Parallelizing Compilers”, IEEE
Trans. Parallel and Distributed Systems, vol. 1, no.
1, pp. 26-34, January 1990.

D. Libes, “Expect: Curing Those Uncontrollable
Fits of Interaction”, Proceedings of the Summer 1990
USENIX Conference, June 1990.

S. Midkiff and D. Padua, “Compiler algorithm for
Synchronization”, IEEE Transactions on Comput-
ers, vol. C-36, no. 12, pp. 1485-1495, 1987.

B. Mukherjee, L.T. Heberlein, and K.N. Levitt,
“Network Intrusion Detection”, IEEE Network, vol.
8, no. 3, pp. 26-41, 1994.

N. Puketza, B. Mukherjee, R.A. Olsson, and K.
Zhang, “Testing Intrusion Detection Systems: De-
sign Methodologies and Results from an Early Proto-
type”, Proc. 17th National Computer Security Con-
ference, vol. 1, pp. 1-10, October 1994.

[12]

[13]

[14] S.E. Smaha, “Haystack: An Intrusion Dection Sys-
tem”, Proc. IEEE jth Aerospace Computer Security
Applications Conference, December 1988.

[15] P. Wang, An Introduction to Berkeley Uniz,
Wadsworth Publishing Company, Belmont, Califor-
nia.

A Appendix: Algorithm for Par-
allelizing Intrusive Scripts

Parallel Threads Generation Phase:

S = empty stack /* S-commands stack */
M=0 /* resulting parallel threads */
For each command C; € an intrusion I do
if C; is an S-command with uid = U then
o push(S, C;); push(S, cd ~U)
if C; is a T-command then
[push(S y Ci)
if C; is an I-command then
o ¢ = gen_graph(S); append C; to g
o M=M U/{g}
if C; is an R-command then
o find the S-command C; in S that corresponds to C;
(i.e., the top S-command in S = Cj)
o for each graph g containing Cs do
o append C; to g
o pop(S) until Cy is pop

gen_graph(S) generates a new thread containing all com-
mands in the stack S.

Threads Synchronization Phase:

Perform a BFS on the dependence graph G and perform
the following when visiting a node of command C;:

if C; is an I-command then
o find the graph g in M containing C;
o for each successor of C; in G, say C;
¢ for each graph ¢’ in M containing C;
o if input of C; depends on output of C; then
¢ insert command in g after C;
(to send data to C; in g')
o insert command in g’ before C;
(to receive data from C; in g)
o else
o insert sync command in g after C;
¢ insert sync command in g' before C;

183

MAINTAINING PRIVACY IN ELECTRONIC TRANSACTIONS

Benjamin Cox <thoth+@cmu. edu>

Information Networking Institute
Carnegie Mellon University
5000 Forbes Ave.
Pittsburgh, PA 15213-3890

Abstract

Electronic commerce presents a number of seemingly contradictory requirements. On the one hand, we
must be able to account for funds and comply with laws requiring disclosure of certain sorts of transaction
information (e.g., taxable transactions, transactions of more than $10,000). On the other hand, it is often
socially desirable to limit exposure of transaction information to protect the privacy of the participants.

In this paper, I address the following issues:

¢ I develop a new analysis technique for measuring the exposure of transaction
information.

* I analyze various privacy and disclosure configurations to determine which are
technically feasible and which are logically impossible.

« T apply this analysis to the proposed NetBill billing server protocol.

+ Iconsider the use of intermediary agents to protect anonymity and the implications of
various arrangements of intermediaries.
New contributions include a new analysis technique and its associated notation, a system for generating
ad hoc pseudonyms to protect privacy, the application of message forwarding techniques to protecting
privacy in electronic commerce, and the application of these methods to the NetBill system.

1. Introduction

The time is ripe for commerce over the Internet. With the advent of the World Wide Web, merchants of many kinds
are seeing the advantages of making their wares available on the Internet. Along with the inrush of potential merchants
comes an inrush of electronic commerce technologies; the NetBill system being designed at Carnegie Mellon
University’s Information Networking Institute is one of many systems in development. Others include a system of
anonymous credit cards being researched at AT&T Bell Labs, the ECash system of digital currency being developed
by DigiCash, the CyberCash system from CyberCash, Inc., the First Virtual Internet Payment System from First
Virtual Holdings Incorporated, and the NetCheque system being developed at ISI. A major goal of NetBill is to reduce
the transaction processing overhead to accommodate purchase prices on the order of ten cents per transaction. A main
design feature of NetBill is that it uses a central server as an exchange point between merchants and consumers, rather
than requiring merchants to have prearranged relationships with their customers.

NetBill’s central-server approach has advantages and disadvantages. Some advantages are simplified
authentication authority, single-statement billing, and simplified access to account information. Disadvantages include
network and processor bottlenecks, and privacy concerns. .

With a central billing server handling all details of transactions and providing authentication services to all
parties, it is very simple to compile dossiers on consumers and merchants unless precautions are taken. When large
compilations of personal information are readily available, the potential for abuse is great. Abuse could range from an
explosion of direct marketing campaigns to use of the information to target groups of people as potential victims for
criminal activity.

184

In this paper, I discuss mechanisms for hiding various pieces of the transaction information to maintain the
privacy of users, both consumers and merchants. New contributions include:

a new analysis technique and its associated notation
a system for generating ad hoc pseudonyms to protect privacy
the application of message forwarding techniques to protecting privacy in electronic commerce, and

the application of these methods to the NetBill system.

2. The Transaction Information Matrix

It is useful to develop a model showing what portion of transaction information is available to which involved parties.
This section presents a matrix notation indicating information disclosure.

2.1. Parties Involved and Available Information

For various reasons, we may wish to hide information from (or disclose information to) any of the following parties
(some of whom are directly involved in the transaction, and some of whom are not): the merchant, consumer, the
billing server, government authorities (such as tax authorities), any applicable auxiliary parties, and observers.

In a fully disclosed electronic transaction, information is available about the merchant’s and the consumer’s
identities, account numbers and network addresses; the items purchased; and the transaction’s price and tax status.

2.2. The Matrix

Table 1 shows the basic matrix indicating information disclosure. A symbol in a matrix block indicates disclosure of
information to a specific party.

Table 1: Empty transaction information matrix.

Consumer’s Merchant’s Tax
Items | Amount

identity | account | address | identity | account | address Status

Consumer
Merchant
Billing Server

Authorities
Auxiliaries
Observer

The following symbols are defined:

.

X: The information is fully disclosed.

N: The information is disclosed, but cannot be associated with a particular transaction. For example, this
symbol would be used if the billing server knows a given consumer spent $5 and a given merchant received
$5, but cannot be sure the two events are related.

R: The information is disclosed to be within a given range, but the exact value is not disclosed.

L: The information may not be disclosed, but must be when a valid warrant is presented by a law enforcement
agency.

?2: It is not known whether a transaction actually occurred.

Adjacent symbols with no intervening punctuation represent combined disclosure types. For example, “RN”
means that the value is disclosed to be within a given range but cannot be associated with other values for the
transaction. Symbols separated by a comma represent alternatives. For example, “N, L” means that the value is

185

disclosed but cannot be associated with other values, yet can be fully disclosed to law enforcement agencies with a
warrant.

2.3. Properties of the Matrix

The matrix described above exhibits a number of interesting properties. They are:
+ Anything disclosed to an observer is known by all other parties.

» Each of the participants has complete knowledge of his own identity, address, and account, and complete
knowledge of the items, amount, and tax status of the transaction.

*» Detail information (such as account numbers) may easily be hidden from observers using standard
cryptographic techniques.

» Network addresses of participants may be difficult to hide; to achieve “R?” disclosure, we may use Chaum’s
unconditional sender and recipient untraceability (see [4]), or forwarding-agent techniques (see section 4).
Furthermore, we may use resale agents (see section 6.3.1) to dissociate participants from one another to
achieve “RN?” status (the information is known to be within a given range for participants, but participants
cannot be matched to one another or to a specific transaction).

» Given a network address or account number, it may be possible to determine a participant’s identity. This is
not explicitly shown in the matrix; it should be understood that the columns corresponding to the consumer
and merchant are related.

After considering these observations, the “most anonymous” transaction possible is similar to Table 2, with the
exception of the Authorities row, as explained below. The Auxiliaries row is treated as the Observer row, reflecting
the fact that the “most anonymous” transaction will not use auxiliary parties. We should always assume that the

.observer may be ideally placed to obtain the information (e.g., located on the same Ethernet segment and able to snoop
packets), making the requirements for eliminating observable information as stringent as possible.

Table 2: Desired transaction information matrix.

Consumer’s Merchant’s Tax
- : - - Items | Amount
identity | account { address | identity | account | address Status
— Consumer X X X RN X X X
Merchant RN X X X X X X
Billing Server N N RN N N RN N
Authorities L L RN?, L L L RN?7,L L L L
Auxiliaries RN? RN?
Observer RN? RN?

2.4. Law Enforcement Access

For a system which has no explicit provision for disclosure to law enforcement, the Authorities row is identical to the
Billing Server row, with “L” added to each entry. (In the table shown, law enforcement agencies with warrants have
access to all information.) If we arrange our system to support only minimum disclosure, it is unlikely to be adopted,
because of the potential for wire fraud or other illegal activities. Thus, we would like to provide the capability of
revealing full information to law enforcement agencies.

Law enforcement agencies not possessing a warrant will be denied all information (except that available to any
observer). We would like to provide law enforcement possessing a warrant with complete transaction information.
Thus, the ideal matrix has with an “L” alternative added to every column in the Authorities row, as in Table 2.

186

3. NetBill Transactions

NetBill provides a funds transfer mechanism over the Internet. Consumers and merchants are authenticated using
Kerberos (see [12]).

Consumers and merchants handle the initial parts of the transaction without intervention from the billing server,
then request a transfer of funds from the billing server, which completes the transaction. The merchant acts as a liaison
between the consumer and the billing server, thus simplifying the consumer’s communications needs; messages
between the consumer and billing server are encrypted using a Kerberos session key so that the merchant cannot
eavesdrop, despite his liaison role. The arrangement of parties in the NetBill system is as shown in Figure 1. The
numbers shown correspond to the steps in the explanation of the protocol in the next section. We are concerned only
with the communications within the dotted-line box; communications between the NetBill transaction server and the
bank are not considered.

F—— e s — — |
: Consumer ——3—> Merchant 4—4—-» NetBill :
I «> |
b o o e e 4

Figure 1: The arrangement of parties in the NetBill system.

3.1. Analysis of the NetBill Transaction Protocol

This section analyzes information disclosure in the NetBill system as described in [7]and [11]. Table 3 shows the final
Transaction Information Matrix for NetBill transactions.

Table 3: Final Transaction Information Matrix for NetBill Transactions.

Consumer’s Merchant’s Tax
- - _ . Items | Amount
identity | account | address { identity | account | address . Status
Consumer X X X X X X X X
Merchant X X X X X X X X X
Billing Server X X X X X X X X X
Authorities L L X2, L L L X2, L L L L
Auxiliaries X? X?
Observer X? X?

Before the NetBill transaction begins, the consumer and merchant each know their own address, the consumer
knows the merchant’s address (this knowledge is assumed in order to begin communication), and the consumer knows
which goods he would like to purchase, along with the purchase price and tax status.

1. Consumer Requests a Service: A consumer makes a request to a merchant indicating the intent to purchase an item
for a specified price. In this phase, the consumer reveals his network address. Also, the merchant now knows what
goods will be purchased. Eavesdroppers know the addresses of both parties, but not the amount and nature of the
goods requested (which are encrypted). Because NetBill uses Kerberos authentication services, the merchant and
consumer now also know each other’s identities. Additionally, the consumer includes his account number in the
request.

2. Merchant Forwards Encrypted Goods: The merchant encrypts the requested item with a key K and forwards the
goods to the consumer. The merchant creates an electronic invoice, and calculates a hash of the encrypted goods,
placing the result in its invoice. This phase does not affect the availability of transaction information.

187

3. Consumer Acknowledges Receipt of Goods: The consumer creates an electronic payment order (EPO), which is
filled in with such pieces of information as its identity, account number, and its own calculated hash of the encrypt-
ed goods. The EPO is sent back to the merchant to acknowledge the receipt of the encrypted goods. Because the
consumer’s EPO is encrypted with a session key known only to the consumer and the billing server, this phase does
not affect the availability of transaction information.

4. Merchant Invokes NetBill Transaction: The merchant passes its invoice and the consumer’s EPO to NetBill. Net-
Bill will examine the contents of both of these to determine whether the transaction is valid. Invoice and EPO com-
ponents such as price, item, parties and hash are used in verification. The merchant’s invoice also contains the
decryption key K for NetBill to store. If the proposed transaction is deemed valid, NetBill will execute and log the
transaction. The merchant is notified of the transaction results and passes this information on to the consumer. With
this phase, NetBill knows all relevant information and, upon presentation of a warrant, will reveal it to law enforce-
ment authorities. In addition, the consumer’s monthly statement will include the account numbers of all merchants
with whom he has done business.

5. Merchant Supplies Key: Upon notification of a successful transaction, the merchant returns the decryption key K
for the delivered goods to the consumer. This key will be maintained at both the merchant and NetBill locations in
case the consumer needs to re-request it. This phase does not affect the availability of transaction information.

Because electronic goods (such as documents or software) are delivered in encrypted form, they are unusable
until payment is made; the key is transmitted as part of the funds transfer request and forwarded to the consumer upon
successful completion, so it is impossible for the consumer to steal goods by aborting the transaction before payment.
([11 has a general discussion of this technique, known as certified delivery.)

4. Hiding Network Addresses

In distributed transactions, because of the need for the participating parties to exchange messages, it seems natural that
the parties must know each other’s address. This is not necessarily the case, however. In [4], Chaum describes a
method of hiding addresses using broadcast messages and cooperating potential senders. This section introduces an
alternative method for parties to mask their addresses using forwarding agents.

4.1. Forwarding Agents

We assume the existence of message forwarding agents, whose addresses are well known. In order that agents may
know the final intended recipient. each participant must know some distinguishing characteristic of its peer. I call this
piece of information the participant’s fag. We assume that forwarding agents know how to get messages to parties
based on their tags, either because they have access to a tag-to-address directory or because participants can poll tag
dropoff points periodically (as a person might poll a Post Office box).

In the following analysis, I will use A and B to represent the participants. I use G and H to represent single
forwarding agents, and F to represent the complete set of all available forwarding agents. M represents a message and
T, is a tag representing participant A. In all cases, A and B use end-to-end encryption so that none of their

communication is revealed to the forwarding agents.

4.1.1. Basic Single Agent

In order to send a message to a peer B whose address is not known, a participant A sends the message M with attached
tag Tp to a forwarding agent G selected from the set F of available agents. G replaces Tp with T4 (to indicate the sender

of the message, as a return address) and forwards the message to B. ,

Is this secure? No, for several reasons. First, the agent G knows the addresses of both participants, and therefore
must be trusted not to reveal this information. (Indeed, it may be that agents know the addresses of all potential
participants. The important point here is that the agent knows that these two are communicating.) Second, to find its
peer’s address, either party may send a message and then eavesdrop on the agent’s outgoing messages looking for one
with its own tag as the return tag. Finally, a rogue participant may pose as the forwarding agent and convince the other
to send messages directly to himself, thus revealing the victim’s address.

The next section shows how to overcome these problems.

188

4.1.2. Encrypted Single Agent
This arrangement is similar to the previous one, except that in addition to the end-to-end encryption employed by A
and B, each pair of parties encrypt their point-to-point communications with a different key. This may be accomplished
easily with any of various key exchange protocols such as the scheme presented by Diffie and Hellman in [6], or even
a Kerberos-based authentication step.

This shares the weakness of the previous arrangement that the forwarding agent must be trusted, but prevents the
parties from eavesdropping on the agent’s communications with other parties or (if the system provides authentication)
posing as the agent. It may also seem that traffic analysis would still be possible; section 4.2 presents the relevant traffic

analysis issues.

4.1.3. Encrypted Multiple Agent

We can eliminate the necessity of trusting forwarding agents by using two or more forwarding agents. No single agent
knows more than one participant; only by collusion among all forwarding agents may both participants be discovered.

An originating party, A, selects two forwarding agents G and H from the set F of agents. A packages the message
to B as if it were using only H to forward the message, and then treats that as a message-to be sent to H through G. G
does not know that the final recipient is B, and H does not know that the original sender was A. Again, messages are
encrypted with a different key for each pair of communicating parties, as in the Encrypted Single Agent arrangement.
This arrangement is similar to the use of “cascades” in [3].

This presents a trade-off between security and complexity: the more forwarding agents there are in a chain, the
more difficult it is for an adversary to gain the cooperation of all of them, but the more complexity is involved in
sending messages.

4.2. Foiling Traffic Analysis

An observer may try to obtain the network addresses of the participants in an electronic transaction using traffic
analysis. This section presents three common techniques and explains how they may be defeated.

4.2.1. Message Content Correlation

In the first kind of attack, the observer watches packets being transmitted across a network, and compare the contents
of those packets with each other. For example, if an observer wants to know with whom I am communicating, he can
observe the packets coming from my workstation and follow those packets around the network (by watching for
packets with the same content) until they reach their destination. This is the attack mentioned above, used to
demonstrate the need for encrypted channels. As stated above, it is important that communications are first encrypted
end-to-end, and then the encrypted messages are encrypied a second time with different keys on every point-to-point
link.

4.2.2. Message Length Correlation

This second type of attack is similar to the first, in that the properties of a message are compared to track individual
messages around the network. In this case, however, the length of the message is used, rather than its content (perhaps
because the contents of messages are encrypted, as suggested above). Thus, an adversary may track unusually long or
short packets around the network.

A simple way to ensure that packets cannot be tracked in this manner is to require all packets to be of a fixed
length (by padding short messages and segmenting longer messages, for example). If all packets are the same length,
an attacker has no way of determining which message emerging from a forwarding agent corresponds to which of the
messages received by that agent.

4.2.3. Message Timing Correlation

If an adversary cannot rely on the content or length of messages to track them around the network, he must rely on the
timing of messages to associate them with one another. When one workstation transmits a packet, the attacker can
eliminate as possible recipients all the workstations on the network which do not receive packets within a “reasonable”
time (the definition of which, naturally, depends on the nature and usage patterns of the network and other factors).

189

There are some fairly simple ways to reduce the effectiveness of this sort of attack; these may be used independently
or in combination.

First, forwarding agents may introduce a random delay before forwarding any message, thus reducing the
correlation between time of transmission and time of receipt. The main problem with this method, of course, is that
the longer the introduced delay, the slower the communication between end parties becomes (especially if
retransmission schemes are used to implement reliable transfer protocols). And if a small delay is used, much of the
timing correlation is preserved. Selecting a delay value is a design trade-off between speed of communications and
difficulty for the attacker.

Second, we may use distractor messages, introduced at various intervals; their recipients may detect and ignore
these messages, while other parties in the system cannot distinguish them from legitimate messages. In addition, we
may send messages along redundant paths, so that some of the messages may be dropped at random. If many senders
send many messages along multiple paths, the task of tracking them through the network becomes extremely complex,
because it is difficult to associate any given set of packets with a given source.

One example of this might be a system in which every participant transmits one packet during every fixed time
interval; those without a useful packet to send would send a “noise” packet. If every participant is transmitting all the
time, it becomes extremely difficult for an adversary to associate any packet with its source. If this method is combined
with the previous method, the adversary’s task becomes truly staggering: even for a single participant, it becomes
impossible for an observer to be certain, after a single stage of forwarding agents, which packets contain legitimate
messages and which do not.

5. Pseudonyms

It is often to our advantage not to be completely anonymous, but rather to be identifiable as a consistent party about
whom full information is not available. The creators of many current anonymity schemes understand this, as is
evidenced by the existence of the “Persona” PEM public key certification authority run by RSA Data Security, Inc.
(see [9] for a description of the PEM public key certification hierarchy), as well as most anonymous-remailer systems,
which assign each user a fixed pseudonym.

In NetBill, in addition to authenticating a consumer’s right to spend on an account, a consumetr’s identity is used
for two things: first, consumer-based price discounts, in which merchants may base their quoted prices on prearranged
contracts or volume discounts; second, “blacklisting,” where merchants may refuse service to a consumer based on
past abuse (a history of disputed transactions, for example) or other factors.

However, we wish to prevent the sort of abuse that comes from using the same pseudonym with every merchant:
merchants can correlate purchase records and build profiles of consumers without knowing their real identities (it may
even be possible to deduce the real identities given enough information from enough merchants).

So, we need a pseudonym system that allows consumers to use a different pseudonym with each merchant. Tt
should not, however, allow a consumer to use more than one pseudonym with a given merchant; that would allow a
consumer to defeat blacklisting, or prevent merchants from offering consumer-based pricing schemes. And, as in any
pseudonym system, it should not be possible to determine the consumer’s identity given the pseudonym, either by
direct mapping or by verification of repeated guesses.

If we form consumers’ per-merchant pseudonyms by taking the secure digest of a combination of the consumer’s
identity and the merchant’s identity, along with a secret bit sequence known only to the pseudonym generator, (using
a secure message digest algorithm such as the MD5 algorithm described in [10], the Rabin-Karp algorithm described
in [8]), we achieve the goals as stated.

With this system, a consumer wishing to connect anonymously to a merchant would request a Kerberos ticket
from the Ticket Granting Server with the pseudonym as principal name. The consumer and merchant authenticate and
communicate using the pseudonym only.

Because the secure digest algorithm cannot be reversed to reveal the consumer’s identity, this system succeeds
in preserving the anonymity of the consumer. Because the secure digest is deterministic and depends only on the
consumer’s and merchant’s identities and a fixed secret key, a consumer cannot use more than one pseudonym with a
given merchant. Finally, because of the low probability of collisions it is extremely unlikely that any two consumer-
merchant combinations will have the same pseudonym.

190

6. Integration Into NetBill

Comparing the Transaction Information Matrix for the proposed NetBill protocol (Table 3) to the desired matrix
(Table 2) reveals several areas for improvement. First, the consumer and merchant know each other’s identities, from
the use of Kerberos authentication between them. Second, the consumer and merchant know each other’s network
addresses, and external parties may associate pairs of communicating parties, because they communicate directly over
TCP/IP. Third, the NetBill server knows all information in the transaction, which is revealed by the consumer’s EPO
and merchant’s invoice. In this section, I apply techniques discussed earlier in the paper to these problems, improving
privacy properties of NetBill.

6.1. Eliminating Identity Information

By allowing consumers and merchants to use pseudonyms to authenticate to one another, we may protect their privacy
while retaining the desirable features of the Kerberos model (strong authentication and establishment of a shared
session key for communication) and of a consistent identity for a consumer-merchant pair (ability to implement special
pricing schemes and blacklisting).

6.2. Hiding Participants’ Addresses

If we use the encrypted multiple forwarding agent scheme between the consumer and merchant, we can reduce
knowledge of the consumer’s network address to “RN” for all involved parties and “RN?” for all uninvolved parties.
Additionally, we reduce knowledge of the merchant’s network address to “RN” for the consumer and “RN?” for
uninvolved parties (it remains “X” for the NetBill server). Furthermore, if we use the encrypted multiple forwarding
agent scheme between the merchant and NetBill, the merchant’s address becomes as well-hidden as the consumer’s
(“RN” for involved parties, “RN?” for uninvolved parties).

It seems that the additional network bandwidth required to use noise messages and redundant paths for this
purpose is too costly to be worth the additional benefit it provides, but they may be desirable for applications requiring
additional levels of security.

6.3. Minimizing Centralized Information

The billing server has complete knowledge of the transaction, including participants’ identities and account numbers,
items purchased, amounts and tax status. In a digital cash system, the messages exchanged themselves represent
negotiable value, and may pass through many hands before being exchanged for actual currency, as described in [2].
Because NetBill is a funds-transfer system, however, it is very difficult to hide participants’ identities and transaction
amounts from the server.

Hiding the nature of the items and tax status is very simple on the surface: we can simply remove those fields
from the invoice and payment order that the consumer and merchant send to NetBill in their transaction request.
However, NetBill uses the item catalog number to verify that the consumer and merchant agree on the item to be sold;
the item description and tax status are as simple for NetBill to obtain as they are for a potential consumer. Additionally,
it is convenient for consumers to have item catalog numbers on their NetBill statements at the end of a billing period;
it would not be acceptable to simply provide a list of amounts.

Nonetheless, it may still be possible to hide this information from NetBill by one of the following methods.

First, the consumer and merchant could simply agree not to tell NetBill what the items were. All NetBill verifies
is that the consumer and merchant agree on the item that is to be sold—that is, they both include the same product
number in their invoice or payment order. If they both agree to give the item a generic product number (for something
that is listed as, for example, “General Merchandise”), NetBill will approve the transaction and still have no way of
knowing what goods or services were actually transferred.

Second, the consumer may use a resale agent to hide many pieces of information from other parties.

191

6.3.1. Resale Agents

Resale agents can hide many pieces of information from many parties. In fact, they can be used in place of other
techniques described in this paper to hide some pieces of transaction information. For example, it is possible for a
consumer to hide his address to some extent from a merchant by using a resale agent. They are somewhat less effective,
however, because resale must be trusted by consumers, and because they introduce several obstacles to convenient
purchases.

To use a resale agent, a consumer prepares a list of goods or services he wishes to purchase, from various
merchants at various prices. He transmits this list to the resale agent, who individually purchases the items from the
merchants and resells them in one lump transaction to the consumer.

Clearly, the consumer cannot be associated with the merchants, except through the resale agent. (It is assumed
that enough people use resale agents that the mere fact a given consumer is using a given agent is not sufficient
information to link the consumer with the purchases.) If the transaction between the consumer and the resale agent is
a sufficiently large aggregate transaction, the transaction price will not be enough information to link the consumer
with individual purchases. If consumers, resale agents and merchants use anonymous forwarding agents to
communicate, the NetBill transaction matrix becomes Table 2 with no further modifications.

One difficulty with this arrangement is that the consumer must trust the resale agent not to give information away.
If the resale agent is corrupt, he can give away any or all of the consumer’s sensitive information, requiring no
collusion with any other party. This problem may be addressed somewhat using techniques described earlier for hiding
information from merchants. However, knowledge of the specific items is still vulnerable. Although this information
may also be disclosed by the merchant, it is expected that a resale agent (who is a fourth party to the transaction) has
less interest in maintaining the privacy of the transaction. (In fact, it is possible to use multiple stages of resale agents
in a manner similar to the use of multiple forwarding agents, as described in section 4.1.3, in order to hide this
information from individual resale agents.)

Another trust issue between the consumer and a resale agent arises because of the order in which the transactions
take place. In purchasing through a resale agent, we have two alternatives.

In the first, the resale agent purchases all the requested goods before the consumer sends him payment. In this
arrangement, the resale agent must trust the consumer to pay for the requested goods. In the second, the consumer
sends payment for the goods before the agent purchases them. In this arrangement, the consumer must trust the agent
to purchase and deliver the requested goods (for which payment has already been rendered; we cannot use certified
delivery for this, because at the time payment was made, the resale agent was not in possession of the goods).

An alternative approach might be to use nested transactions. An advantage of this approach is that it would be
possible to tie the results of transaction between the consumer and resale agent to the result of the transaction between
the resale agent and the merchant, making it impossible to separate them. A disadvantage, however, is that the
implementation of this type of transactions requires that the nested transactions are associated with one another in the
logs, defeating the purpose of the resale agent.

It is worth noting that the use of resale agents without nested transactions requires no modifications to the NetBill
model; it requires only merchants who act as resale agents and consumers willing to use them. The choice between the
above policies belongs to the agent; consumers may exercise their preferences by choosing from among resale agents
using their preferred policy.

6.4. Analysis of the Revised NetBill Model

Using the techniques described in this paper, it is possible to modify the NetBill transaction model (shown in Table 3)
to more closely match the ideal disclosure shown in Table 2.

With these modifications, the billing server now has “N” for all entries, due to the use of resale agents to
dissociate consumers and merchants. The merchant no longer has the consumer’s account number, simply by omitting
it from the negotiation. The merchant no longer has the consumer’s identity, due to the use of pseudonyms. The
transaction uses message forwarding agents, which removes the consumer and merchant’s knowledge of each other’s
network addresses, and puts “N?” in the associated columns of the Auxiliaries row. The Authorities row still has “L.”
access to all information, though law enforcement authorities will now have to present a warrant to auxiliary agents as
well as the billing server to obtain the full information. (Although each individual agent has only “N?” disclosure, all
agents could cooperate to give them “X?” disclosure, thus reassociating parties with one another.) The completed table
is shown in Table 4.

192

Table 4: Final Transaction Information Matrix for NetBill transactions with privacy enhancements.

Consumer’s Merchant’s Tax
- - - - Items | Amount
identity | account | address | identity | account | address Status
[Consumer X X X X ~ RN X X X
Merchant RN X X X X X X
Billing Server N N N N N N N N N
Authorities L L RN?7, L L L RN?, L L L L
Auxiliaries N? N?
Observer RN? RN?

The NetBill system is currently undergoing design revision for a trial in 1995. [5] is a detailed exposition of the
security choices made for the latest revision; it includes some of the techniques outlined in this paper.

Acknowledgements

There are several people without whom this paper could not have produced. I would d like to thank the NetBill project
group for cooperation regarding the design and implementation of NetBill. My reader, Marvin Sirbu, was very helpful
in discussions of many of the techniques described here. Finally, I'd like to extend my gratitude to my thesis advisor,
Doug Tygar, for advice and direction on the research as a whole, and for detailed technical discussions on the issues
presented here.

References

[1]1 Alireza Bahreman and Doug Tygar. Certified electronic mail. In Proceedings of the Internet Society Symposium
on Network and Distributed System Security, pages 3—19, San Diego, CA, February 1994.

[2] DigiCash bv. Digicash: Numbers that are money. Product brochure. For information on DigiCash, send email to
info@digicash.nl.

[3] David Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms. Communications of the
ACM, 24(2):84-88, February 1981.

[4] David Chaum. Security without identification: Transaction systems to make Big Brother obsolete.
Communications of the ACM, 28(10):1030-1044, October 1985.

[5] Benjamin Cox, Doug Tygar and Marvin Sirbu. NetBill Security and Transaction Protocol. USENIX Workshop
on Electronic Commerce, July 1995.

[6] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE Transactions on Information
Theory, IT-22(6).644-654, November 1976.

[7] Vaishali Goradia, David Lowe, David McNeil, Alexander Somogyi, and Thomas Wagner. NetBill preliminary
design. Information Networking Institute internal report, June 1994.

[8] Richard M. Karp and Michael O. Rabin. Efficient randomized pattern-matching algorithms. IBM Journal of
Research and Development, 31(2):249-260, March 1987.

[9] S.Kent. RFC 1422: Privacy Enhancement for Internet Electronic Mail: Part II: Certificate-Based Key
Management. Internet Activities Board, February 1993.

[10] R.L. Rivest. RFC 1321: The MD5 Message-Digest Algorithm. Internet Activities Board, April 1992.

[11] Marvin Sirbu and Doug Tygar. NetBill: An internet commerce system optimized for network delivered services.
In Proceedings of the 1995 IEEE Computer Communications Conference, March 1994.

[12] Jennifer G. Steiner, Clifford Neuman, and Jeffrey 1. Schiller. Kerberos: An authentication service for open
network systems. In USENIX Winter Conference, pages 191-202, February 1