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Threshold Cryto 

• Has focused on public-key crypto 

• Symmetric-key encryption got less attention 
• Symmetric keys don’t stay around long 

• Secure communication over internet (TLS) 
• Signing keys are long-term 

• Encryption keys change with every session 



 

   
        

      

  
    

   

Symmetric-key Encryption (SKE) 

• Encrypt data at rest 
• AWS, MS Azure, Google Cloud provide client-side, server-side, disk 

encryption 

• Keys managed by cloud service or client 

• Authentication on web, enterprises, ... 
• JSON web tokens,TGT in Kerberos, etc. 

• Securing PIN in credit/debit transactions 



 

        

     

   

 

     

   

Threshold SKE 

• Threshold PRFs [MS95, NPR99, Nie02, Dod03, DY05, DYY06, BLMR13] 

• MPC: Evaluate AES-GCM [DK10, GRRSS16, RSS17] 

• Good: Backward-compability, standard schemes 

• Bad: 
• Communication complexity linear in circuit size, number of parties 

• All parties interact with each other 



      
 

  
   

Build a threshold SKE that works well in practice: 
- Fast encryption/decryption 
- Requires minimal interactivity 
- Provides strong security guarantees 



 

   
      

   
        
   

  
  

 
     

Our Contributions 

• Formally study threshold SKE 
• Message privacy & ciphertext integrity in the distributed setting 

• Simple and light-weight protocols 
• Initiator sends one message, gets one message (challenge-response style) 
• Support arbitrary threshold t 

• Contact t-1 other parties 
• Resilient to t-1 corruption 

• Implement & evaluate 
• A million enc/dec per second, sub millisecond latency with upto 18 parties 



 

 

 

Outline 

• Security properties 

• DiSE: main protocol 

• Implementation 

• Future work 



 Threshold SKE 



  

    

 
  

 

   

Notation & Model 

• n – total number of parties 

• Initiator: Party who initiates an enc/dec session 

• t – threshold 

• Attack model 
• Corrupt t-1 parties maliciously 

• Static model 

• Communication model: Point-to-point secure channels 



  

       

        

      

      

Traditional vs Modern 

• Inspired by traditional game-based notions [BN00, KY01, RS06] 

• More advanced notions studied for non-threshold [Rog02, RS06, 

FFL12, PW12 Rog13, GL15, HRRV15, HKR15, BT16, BHT18] 

• Extending traditional notions to threshold already non-trivial 



  

 
   

 
   

   
 

 

Protocols 

• Setup (n, t) • (sk1, sk2, ..., skn), pp 

• DistEnc (j, msg, S) • ctxt 
• Parties involved don’t learn ciphertext 

• DistDec (j, ctxt, S) • msg 
• Parties involved don’t learn message 

• Consistency (all parties honest): 
• DistEnc (j, msg, S) • ctxt 

• DistDec (j*, ctxt, S*) • msg 



    

  

   

   
 

Correctness 

• DistEnc session fails even if initiated by honest party 

• DistEnc succeeds but DistDec fails 

• Basic: if DistEnc (msg) • ctxt ≠ ⟂, then DistDec (ctxt) • msg or ⟂ 

• Strong: if DistEnc (msg) • ctxt ≠ ⟂, then DistDec (ctxt) • msg if 
parties honest 



 

   

    

Security Games 

• Message privacy & ciphertext integrity 

• Games between Challenger Chal and Adversary Adv 

sk3 

Challenger 

sk1 

sk2 

sk4 

sk5 



    

   

   
    

    

    

Message Privacy 

• Ciphertexts do not reveal message 

• Non-threshold: Enc(m0) ≈ Enc (m1) 

• Adv is allowed to: 
• Encryption: Initiated by corrupt/honest party 

• Decryption: Initiated by honest party 

• Challenge:Adv outputs (j, m0, m1, S) 



  

     

  

  

      

 

Ciphertext Integrity (Authenticity) 

• New valid ciphertexts cannot be generated 

• Non-threshold: Can keep track of ciphertexts 

• C – set of corrupt parties 

• g = t - |C| 

• cnt – count #messages Adv sends to honest parties 

• L – list of ciphertexts 



  

   

  
 

      

   

 
      

    

    

 

Ciphertext Integrity (Authenticity) 

• Variables: C, g, cnt, L 

• Adv allowed to: 
• (Encryption, j, msg, S) 

• j is corrupt: increment cnt by #honest parties in S 

• j is honest: add ctxt to L 

• (Decryption, j, ctxt, S) 
• j is corrupt: increment cnt by #honest parties in S 

• (Targeted Decryption, j, k, S) with j honest 

• Maximum ciphertexts: cnt / g (rounded down) 

Counter 
incremented 

Decryption!! 



  

     

  
 

    

    

   

Ciphertext Integrity (Authenticity) 

• Forgery:Adv outputs (j1, S1, ctxt1), (j2, S2, ctxt2), ... ,(jk, Sk, ctxtk) 

• Adv wins if: 
• k > cnt / g 

• Dec sessions output valid messages 

• Basic: Dec sessions are honest 

• Strong: Corrupt parties can misbehave 



  

 

   

Summary 

• Correctness: Basic & Strong 

• Message privacy 

• Ciphertext integrity: Basic & Strong 



  DiSE:Threshold SKE Scheme 



  

   

      

 

     

     

      

Distributed PRF (DPRF) 

• Introduced by Naor et al. [NPR99] 

• Several constructions/variations [Nie02, Dod03, DY05, DYY06, BLMR13] 

• Setup (n, t) • (sk1, sk2, ..., skn) 

• Eval (skj, x) • yj 

• Combine (y1, y2, ...) • y 

• Consistency: Same output irrespective of the set 
Secure 

• Pseudorandomness: Final output should be pseudorandom Strongly 
secure • Correctness: Final output either correct or ⟂ 
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Security 

• If DPRF is (strongly) secure, then DiSE satisfies 
• (strong) correctness 

• message-privacy 

• (strong) ciphertext-integrity 



   

 
 

   

   
  

  

DPRF instantiations [MS95, NPR99] 

• DDH assumption (ROM) 
• Setup (n, t) • (sk1, sk2, ..., skn) 

• Eval (skj, x) • Hash(x)skj 

• DPRF (x) = Hash(x)sk 

• Any PRF like AES 
• Setup • Exponential number of keys 

• DPRF (x) = PRFk1 (x) ⊕ PRFk2 (x) ⊕ PRFk3 (x) ⊕ ... 



     

   

 

     

Compare 

DDH PRF 

Choice of n, t Arbitrary nCt should be small 

Type of operations Expensive public-key Cheap symmetric-key 

Strong security Easy Difficult 

Change of n, t Master key unaffected Master key affected 



Implementation & Evaluation 



    

      

      

 

 

  

        
  

    

Implementation 

• Three instantiations: PRF, DDH, DDH-NIZK 

• Tested on many values of n, but n = 18 here 

• Tested on both LAN,WAN, but only LAN here 

• Choices: 
• Hash function: Blake2 

• PRF/PRG:AES 

• ECC curve: p256k1 

• Benchmarking on a single server with two 18-core Intel Xeon CPUs @2.3 
GHz, 256GB RAM 

• LAN: 10 Gbps bandwidth, 0.1 ms latency 



 

  

  

Performance 

Threshold 
(T) 

PRF DDH DDH-NIZK 

Enc/sec Mbps Enc/sec Mbps Enc/sec Mbps 

Throughput (Enc/sec) 

2 1,037,703 253 553 0.14 226 0.28 

6 45,434 55 297 0.77 64 0.40 

9 10,194 20 231 0.45 42 0.50 

16 524,109 1919 135 0.49 23 0.43 

Latency (ms/Enc) Threshold (T) PRF DDH DDH-NIZK 

2 0.1 4.6 9.6 

6 0.6 5.4 21.5 

9 1.1 8.0 31.3 

16 2.2 12.6 55.2 



 Conclusion & Future Directions 



      

 

   

 

Conclusion 

• SKE widely used, secret keys need protection (MPC expensive) 

• Formalization of threshold SKE 

• New very efficient scheme 

• Promising performance 



 

   

   
 

     

Future Directions 

• DiSE lacks concrete security treatment 

• Ciphertext integrity definition counts decryption 
towards encryption 

• ParaDiSE:Addresses these issues – and more 



THANK YOU! 

QUESTIONS... 
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