

DISE: DISTRIBUTED
SYMMETRIC-KEY ENCRYTION

Shashank Agrawal
Payman Mohassel
Pratyay Mukherjee
Peter Rindal

Threshold Cryto

• Has focused on public-key crypto

• Symmetric-key encryption got less attention
• Symmetric keys don’t stay around long

• Secure communication over internet (TLS)
• Signing keys are long-term

• Encryption keys change with every session

Symmetric-key Encryption (SKE)

• Encrypt data at rest
• AWS, MS Azure, Google Cloud provide client-side, server-side, disk

encryption

• Keys managed by cloud service or client

• Authentication on web, enterprises, ...
• JSON web tokens,TGT in Kerberos, etc.

• Securing PIN in credit/debit transactions

Threshold SKE

• Threshold PRFs [MS95, NPR99, Nie02, Dod03, DY05, DYY06, BLMR13]

• MPC: Evaluate AES-GCM [DK10, GRRSS16, RSS17]

• Good: Backward-compability, standard schemes

• Bad:
• Communication complexity linear in circuit size, number of parties

• All parties interact with each other

Build a threshold SKE that works well in practice:
- Fast encryption/decryption
- Requires minimal interactivity
- Provides strong security guarantees

Our Contributions

• Formally study threshold SKE
• Message privacy & ciphertext integrity in the distributed setting

• Simple and light-weight protocols
• Initiator sends one message, gets one message (challenge-response style)
• Support arbitrary threshold t

• Contact t-1 other parties
• Resilient to t-1 corruption

• Implement & evaluate
• A million enc/dec per second, sub millisecond latency with upto 18 parties

Outline

• Security properties

• DiSE: main protocol

• Implementation

• Future work

 Threshold SKE

Notation & Model

• n – total number of parties

• Initiator: Party who initiates an enc/dec session

• t – threshold

• Attack model
• Corrupt t-1 parties maliciously

• Static model

• Communication model: Point-to-point secure channels

Traditional vs Modern

• Inspired by traditional game-based notions [BN00, KY01, RS06]

• More advanced notions studied for non-threshold [Rog02, RS06,

FFL12, PW12 Rog13, GL15, HRRV15, HKR15, BT16, BHT18]

• Extending traditional notions to threshold already non-trivial

Protocols

• Setup (n, t) • (sk1, sk2, ..., skn), pp

• DistEnc (j, msg, S) • ctxt
• Parties involved don’t learn ciphertext

• DistDec (j, ctxt, S) • msg
• Parties involved don’t learn message

• Consistency (all parties honest):
• DistEnc (j, msg, S) • ctxt

• DistDec (j*, ctxt, S*) • msg

Correctness

• DistEnc session fails even if initiated by honest party

• DistEnc succeeds but DistDec fails

• Basic: if DistEnc (msg) • ctxt ≠ ⟂, then DistDec (ctxt) • msg or ⟂

• Strong: if DistEnc (msg) • ctxt ≠ ⟂, then DistDec (ctxt) • msg if
parties honest

Security Games

• Message privacy & ciphertext integrity

• Games between Challenger Chal and Adversary Adv

sk3

Challenger

sk1

sk2

sk4

sk5

Message Privacy

• Ciphertexts do not reveal message

• Non-threshold: Enc(m0) ≈ Enc (m1)

• Adv is allowed to:
• Encryption: Initiated by corrupt/honest party

• Decryption: Initiated by honest party

• Challenge:Adv outputs (j, m0, m1, S)

Ciphertext Integrity (Authenticity)

• New valid ciphertexts cannot be generated

• Non-threshold: Can keep track of ciphertexts

• C – set of corrupt parties

• g = t - |C|

• cnt – count #messages Adv sends to honest parties

• L – list of ciphertexts

Ciphertext Integrity (Authenticity)

• Variables: C, g, cnt, L

• Adv allowed to:
• (Encryption, j, msg, S)

• j is corrupt: increment cnt by #honest parties in S

• j is honest: add ctxt to L

• (Decryption, j, ctxt, S)
• j is corrupt: increment cnt by #honest parties in S

• (Targeted Decryption, j, k, S) with j honest

• Maximum ciphertexts: cnt / g (rounded down)

Counter
incremented

Decryption!!

Ciphertext Integrity (Authenticity)

• Forgery:Adv outputs (j1, S1, ctxt1), (j2, S2, ctxt2), ... ,(jk, Sk, ctxtk)

• Adv wins if:
• k > cnt / g

• Dec sessions output valid messages

• Basic: Dec sessions are honest

• Strong: Corrupt parties can misbehave

Summary

• Correctness: Basic & Strong

• Message privacy

• Ciphertext integrity: Basic & Strong

 DiSE:Threshold SKE Scheme

Distributed PRF (DPRF)

• Introduced by Naor et al. [NPR99]

• Several constructions/variations [Nie02, Dod03, DY05, DYY06, BLMR13]

• Setup (n, t) • (sk1, sk2, ..., skn)

• Eval (skj, x) • yj

• Combine (y1, y2, ...) • y

• Consistency: Same output irrespective of the set
Secure

• Pseudorandomness: Final output should be pseudorandom Strongly
secure • Correctness: Final output either correct or ⟂

sk3

DiSE

!

* = $%!5

Cheap
operations

sk2
*+

Small
communication

*+ = ,-./ (01+, ") " = $%! (!; () "

" sk1

*4 = ,-./ (014, ") *3678 *4, *+, *3
*3 = ,-./ (013, ")

8 = 9:; * ⊕ ! ()
=>"> = (", 8)

sk4

Security

• If DPRF is (strongly) secure, then DiSE satisfies
• (strong) correctness

• message-privacy

• (strong) ciphertext-integrity

DPRF instantiations [MS95, NPR99]

• DDH assumption (ROM)
• Setup (n, t) • (sk1, sk2, ..., skn)

• Eval (skj, x) • Hash(x)skj

• DPRF (x) = Hash(x)sk

• Any PRF like AES
• Setup • Exponential number of keys

• DPRF (x) = PRFk1 (x) ⊕ PRFk2 (x) ⊕ PRFk3 (x) ⊕ ...

Compare

DDH PRF

Choice of n, t Arbitrary nCt should be small

Type of operations Expensive public-key Cheap symmetric-key

Strong security Easy Difficult

Change of n, t Master key unaffected Master key affected

Implementation & Evaluation

Implementation

• Three instantiations: PRF, DDH, DDH-NIZK

• Tested on many values of n, but n = 18 here

• Tested on both LAN,WAN, but only LAN here

• Choices:
• Hash function: Blake2

• PRF/PRG:AES

• ECC curve: p256k1

• Benchmarking on a single server with two 18-core Intel Xeon CPUs @2.3
GHz, 256GB RAM

• LAN: 10 Gbps bandwidth, 0.1 ms latency

Performance

Threshold
(T)

PRF DDH DDH-NIZK

Enc/sec Mbps Enc/sec Mbps Enc/sec Mbps

Throughput (Enc/sec)

2 1,037,703 253 553 0.14 226 0.28

6 45,434 55 297 0.77 64 0.40

9 10,194 20 231 0.45 42 0.50

16 524,109 1919 135 0.49 23 0.43

Latency (ms/Enc) Threshold (T) PRF DDH DDH-NIZK

2 0.1 4.6 9.6

6 0.6 5.4 21.5

9 1.1 8.0 31.3

16 2.2 12.6 55.2

 Conclusion & Future Directions

Conclusion

• SKE widely used, secret keys need protection (MPC expensive)

• Formalization of threshold SKE

• New very efficient scheme

• Promising performance

Future Directions

• DiSE lacks concrete security treatment

• Ciphertext integrity definition counts decryption
towards encryption

• ParaDiSE:Addresses these issues – and more

THANK YOU!

QUESTIONS...

	Structure Bookmarks
	2 0.1 4.6 9.6

