Combining E2E Voting with Trustworthy Computing

Russell A. Fink (JHU / APL and UMBC)
Alan T. Sherman (UMBC)
NIST E2E Voting Systems Workshop
October 13, 2009

Our Position

- E2E integrity is not sufficient
 - Electronics and software are necessary for accessibility, usability, efficiency
 - Malicious software can violate privacy, sow confusion, disrupt availability
 - Many problems caught late - only after polls close
- Trustworthy Computing (TC) can help plug gaps
 - Trusted Platform Modules (TPM) protocols
 - Application attestation
 - Secure key storage and key sealing
Examples – Gaps in E2E Systems

- Privacy attacks
 - Malicious software in scanners, touch screen interfaces can violate voter privacy

- Disruptive attacks
 - Malicious software can disable machines, swap votes, fake evidence of fraud

- Avoiding electronics hinders accessibility, usability
 - Scantegrity lacks accessibility interface for blind
 - Some Scantegrity voters will have difficulty writing down codenames, especially for long ballots

Examples – TC adds value

- Platform attestation helps assure correct software is running
 - Shuts down many privacy and disruptive attacks

- TPM protocols and secure key storage can help enforce policies, chain of custody of election data
 - TPM can bind vote to ballot presented and measurement of software

- Increases assurance of electronic improvements to usability, accessibility
 - Electronic intent capture, multi-media I/O, Scantegrity printer for codename
Costs and Limitations of Trustworthy Computing

- Costs
 - Key management
 - More complex system design, administration

- Limitations
 - Does not enhance understandability, transparency
 - Must trust TPM and other hardware
 - Platform attestation through static TPM measurement of software is imperfect