
NIST Hash Competition

Bill Burr
NIST

June, 2008

What is a Hash Function?
•

Hash functions take a variable-length message and
reduce it to a shorter fixed message digest

•

Core requirement: Use hash(x) as a stand-in for x in
digital signatures, MACs, file comparisons, etc.

•

Many applications: “Swiss army knives”

of crypto:
–

Digital signatures (with public key algorithms)
–

Random number generation
–

Key update and derivation
–

One way function
–

Message authentication codes & user authentication (with a
secret key)

–

Code recognition (list the hashes of good programs or malware)
–

Commitment schemes

Merkle-Damgard

Hashing

•

Most widely used hashes use MD
•

Break message into blocks
–

M1

, M2

, M3

…Mk (pad out last block)
•

“Compression function,”

F, mixes each

block successively into h-bit state
•

Last output of compression function is
the h-bit message digest.

M1

h-bit
fixed IV

h-bit
chaining value

h-bit
message

digest

…F

Mk… …

FFF

Properties of Hash Functions

•

Goal: use hash(x) as a stand-in for x.
•

Preimage

Resistance

–

Given y, can’t find x to satisfy y = hash(x)
–

Roughly means the hash is “one-way.”

•

Second Preimage

Resistance
–

Given x, can’t find x* so that hash(x)=hash(x*)

–

can’t match the hash of some given string
•

Collision Resistance
–

You can’t find x,x* to satisfy hash(x)=hash(x*)

–

Can’t find two strings with same hash

Work Factors

•

Preimage

Resistance for any n-bit hash
–

Given y, find x to satisfy y = hash(x)

–

Need to hash about 2n messages
•

Second Preimage

Resistance

–

Given x, find x* to satisfy hash(x)=hash(x*)
–

Need to hash about 2n different messages

•

Collision Resistance
–

Can’t find x,x* to satisfy hash(x)=hash(x*)

–

Need to hash about 2n/2 different messsages

Results in the last 4 years
•

Lots of new results on finding collisions
–

Down in the bits of the hash function

–

MD4, MD5, some Haval

variants, RIPE-MD, SHA0,
SHA1, Tiger

–

Potentially a lot of practical impact
•

Generic second preimage

and “herding”

attacks

–

Attacking the Damgard-Merkle

structure
–

Researchers have started to combine with collision
attacks and turn them into practical attacks

–

prediction of winner of US 2008 presidential elections

Nostradamus Attack
•

A good illustration of what can be done with collision attacks
–

Collisions on meaningful message
•

Nov. 30, 2007: Stevens, Lenstra

& Weger

posted 10 predictions that
each of the following would win the US 2008 Presidential Election
–

John Edwards, Fred Thompson, Ralph Nader, John McCain, Mitt
Romney, Jeb Bush, Al Gore, Barack Obama, Oprah Winfrey, Paris
Hilton

& 2 mystery winners
•

All predictions are PDFs

with the same MD5 hash!
•

Used Sony Playstations

to mount the attack
–

Actually a very powerful (if inexpensive) machine
•

Combines Wang style differential collision attack, Joux

multicollisions

and Kelsey’s Nostradamus attack.
–

http://www.win.tue.nl/hashclash/Nostradamus/

http://www.win.tue.nl/hashclash/Nostradamus/John Edwards.pdf
http://www.win.tue.nl/hashclash/Nostradamus/Fred Thompson.pdf
http://www.win.tue.nl/hashclash/Nostradamus/Ralph Nader.pdf
http://www.win.tue.nl/hashclash/Nostradamus/John McCain.pdf
http://www.win.tue.nl/hashclash/Nostradamus/Mitt Romney.pdf
http://www.win.tue.nl/hashclash/Nostradamus/Mitt Romney.pdf
http://www.win.tue.nl/hashclash/Nostradamus/Jeb Bush.pdf
http://www.win.tue.nl/hashclash/Nostradamus/Al Gore.pdf
http://www.win.tue.nl/hashclash/Nostradamus/Barack Obama.pdf
http://www.win.tue.nl/hashclash/Nostradamus/Oprah Winfrey.pdf
http://www.win.tue.nl/hashclash/Nostradamus/Paris Hilton.pdf
http://www.win.tue.nl/hashclash/Nostradamus/Paris Hilton.pdf
http://www.win.tue.nl/hashclash/Nostradamus/

Hashes: the problem
•

MD4, MD5, SHA-0, SHA-1,SHA-256,
SHA-512
–

All related Merkle-Damgard

hashes roughly

descended in this order
•

SHA-1, SHA-256 & SHA-512 are FIPS

•

MD4, MD5, SHA-0, SHA-1 now broken
•

SHA-256 & SHA-512 design never fully
explained
–

Are the SHA2’s next?

The Impact of Collisions
•

Collisions have a big impact when:
–

Attacker chooses messages for target to sign
& Target hashes and signs

•

Damaging Collision attacks are harder if:
–

Same party creates message & signs it

•

Nonrepudiation

is the issue
–

Target appends an unpredictable prefix to
message to be signed

•

Current SHA-1 collision attacks don’t
seem to affect HMAC.

NIST Hash Function Policy
•

Federal Users may use SHA-2 family hash
functions (SHA-224, SHA-256, SHA-384, & SHA-

 512) for all hash function applications.
•

For digital signatures and other apps that require
collision resistance, Federal users:
–

Should convert to SHA-2 as soon as practical, but
–

Must stop using SHA-1 for these apps by end of 2010

•

Federal users may use SHA-1 after 2010 for:
–

HMAC
–

Key derivation
–

Random number generation
–

To verify old signatures (signed before 2011)

SHA-3 Hash Competition
•

Motivated by collision attacks on commonly used
hash algorithms, particularly MD5 & SHA-1
–

No actual collisions yet announced on SHA-1

•

We think SHA-1 collision work factor ≈

260

operations

•

Held 2 hash function workshops
•

Jan 2007 proposed criteria for new hash function
comment period

•

Many comments received
•

“SHA-3”

Competition announced Nov. 2, 2007

SHA-3 Competition Timeline
•

1Q07 draft submission criteria published

•

11/2/07 Federal Register Announcement
•

8/31/08 Preliminary submissions:
–

NIST will review for completeness by 9/30/08
•

10/31/08 Final submissions due

•

2Q09 First Candidate Conference
•

2Q10 Second Candidate Conference

•

3Q10 Announce Finalist Candidates
•

4Q10 Final Tweaks of Candidates

•

1Q12 Last Candidate Conference
•

2Q12 Announce Winner

•

4Q 12 FIPS package to Secretary of Commerce

SHA-3 Criteria: these didn’t make it

•

Many comments to separate compression
function from the iterated structure.
–

NIST doesn’t understand how to make this
work, without assuming a great deal about the
iterated structure in advance

•

Number theoretic hash function
–

Not ruled out but “drop in”

makes it hard for

“number theoretic”

hashes

SHA-3 Criteria
•

Want an “On-line”

hash function

–

Some cryptographers would like an “in-memory”

alternative
•

Doubtful an in-memory hash would be widely used –

big latencies
•

Security is most important criterion
–

Problem is limited cryptanalysis resources
•

“Drop in”

compatibility required for

–

Current digital signature standards
–

HMAC
–

NIST RNGs

& key derivation functions
•

Diversity is a good thing
–

Don’t want the same attack to fell SHA-2 & SHA-3
•

Requirements about “generic”

attacks

–

Joux

multicollisions, etc.
–

Resistance to attacks > 2n/2

not required, but get extra credit

SHA-3 Cryptanalysis
•

Cryptanalysis of candidates
–

Long pole in the tent.

–

Very labor intensive
–

Few people can do it

•

NIST will depend heavily on crypto community
for cryptanalysis
–

We expect to have John Kelsey and 2 or 3 well
qualified guest scientists for SHA-3 cryptanalysis

–

In AES competition NIST had no in-house
cryptanalysts

Selecting SHA-3 Finalists
•

Might get 30 or more SHA-3 submissions

•

Need to cut this down to about 5 finalists
–

May have 10 or 15 pretty darn good candidates
–

Want to be fair and thorough, but
•

Must focus cryptanalysis resources on a few candidates
•

A fairly small blemish may kill an initial candidate
–

Bad English writing skills may hurt some candidates
–

Our in-house cryptanalysts should help here
•

Some performance data is fairly easy to collect
–

But good hardware data may take longer
–

Selection of finalists may depend heavily on performance on
“Wintel/Mactel”

desktop computers
•

Arguably not the critical platform
•

Some good algorithms won’t make the initial cut
–

Some folks are almost bound to be unhappy

Other SHA-3 Thoughts
•

Balance between submission requirements and
resources required
–

Want academics to be able to play

–

A team of 2 academics designed Rijendael

(AES)
•

“Sponge Model”
–

Interesting generalization of hash functions, but
maybe a bit much to impose for the competition

–

Will probably influence our thinking
•

Tried to allow design flexibility
–

Some cryptographers probably want more specifics

–

We want them to make design choices and argue
why their choice is right.

John Kelsey’s slides on SHA-
 3 selection issues

June 2008

Timetable

•

Submissions due Oct 31, 2008
–

I hope you’ve all started by now!

•

First SHA3 workshop after FSE2009
–

Leuven Feb. 25-27, 2009

•

Call for comments on submissions
•

Try to narrow down to 5 or so finalists by third
quarter of 2010.
–

Allow finalist tweaks

•

Select winner in 2nd quarter of 2012

Our Problem: How to Choose?

•

Requirements set the minimum bar
–

But we expect to get many minimally acceptable
hashes!

•

Many different things to weigh
–

Security

–

Performance
–

Implementation Issues

•

Not so clear how to weigh them
–

Security

Our Problem: How to Choose?
•

Can’t break existing stuff
–

HMAC has to work

–

DSA/ECDSA has to work
–

KDFs

and PRNGs

have to work

•

Acceptable performance /
implementation
–

Fast enough everywhere

–

Low power/low gate count
–

Workable on smartcards and embedded
processors

•

Secure (otherwise, why bother?)

Our Constraints

•

We have limited resources
–

Counting on community to help

•

Goal is to get a good hash function
–

Not important to get the best in any one
category

–

Very important to get something that’s
acceptable in all categories and very likely to
be secure

What’s Important?

•

Performance
–

Speed of different implementations

–

Resource requirements
–

Implementability

(can if fit?)

•

Analysis
–

Automated analysis

–

Side channel issues
–

Proofs and properties

–

Cryptanalysis and design

Performance

•

Speed
–

Many different platforms

–

Parallelizability
•

Implementation Issues
–

Can it be implemented?

–

Gate count/power consumption
–

RAM, ROM, and other resources

Performance: Speed

•

Many Platforms
–

Desktop, embedded, smartcard, low-end
hardware, high-end hardware

–

Good everywhere > superfast one place
–

Existing stuff is easy to measure

–

Should benefit from future advances
–

Both bulk speed and short msg

speed

Easy to measure, easy to overemphasize.

Some questions

•

How important is speed on:
–

Desktops

–

Multicore

desktop machines
–

High-end HW implementations

–

Low-end HW implementations
–

Embedded processors

•

Are there platforms we don’t care about?
–

As long as it can run….

Parallelism
•

Most hashing modes are sequential
–

Damgaard-Merkle: Process blocks in order

–

Can have parallelism in compression fn.
•

Simple variants possible
–

Interleave message blocks for 32-way
parallelism

–

Makes short messages ugly
•

How important is this?

Simple 32-way mode

•

Let interleave(message,j) be the
message formed from every 32nd
message block, starting with j.
–

Thus, interleave(M,10) =
M[10,42,74,106,…]

•

PH(M) =
–

Hash’(interleave(M,0)||interleave(M,1)||…)

•

Hash’

= Hash starting with different IV
–

Example: IV’

= IV xor

0xf0f0f0…f0

Implementability

Performance is nice, but it’s really important
to be able to get the algorithm to run.

•

RAM requirements
•

Minimal gate count

•

Special stuff (multipliers, barrel-shifters)

Is it okay to be slow but possible on low-end
processors, low-end hardware, etc?

What if the algorithm just won’t fit on a
smartcard or without 16KB of RAM?

Benefiting from the Future
•

Future computers will probably be
multicore

64-bit machines

–

Algorithms that can do well in that
environment have an advantage

•

What else can we say about future
machines?
–

Do we care? Moore’s law says we’ll be using
machines at 1000x current speed in 15 years.

Security Issues

•

General issues with evaluation
•

Automated analysis

•

Side channel issues
•

Proofs and properties

•

Cryptanalysis and design

General Evaluation Issues

•

How we evaluate depends on how
many submissions we get
–

All “complete and proper”

submissions will

be given time at SHA-3 workshop
•

Submissions break into three categories
–

Obviously flawed or unacceptable

–

Marginal
–

Apparently acceptable

•

(This is where finalists come from!)

Analysis time is scarce resource
•

Most of resource is outside NIST

•

Large number of serious submissions
dilutes analysis time
–

Low hanging fruit targeted first

–

Analyzing a really new design can take a long
time

•

Very different picture with 50 submissions
or with 20 submissions!

Obviously Flawed
•

Obviously flawed algorithms
–

Successful cryptanalysis

–

Horrible performance
–

Inability to meet basic requirements

•

Quickly excluded from most analysis
–

Often known unofficially at first, as with
algorithms with published attacks, or awful
performance.

•

After we verify flaws, we can be sure
these won’t be finalists.

Marginal

•

Distinguishing acceptable from marginal
submissions is problem for 1st round
–

Incomplete analysis in submission

–

Noticeable performance issues in some
platforms

–

Problems that don’t amount to an attack
–

Usually takes some close reading/analysis

Not obvious to community! We may all
have different opinions about which
algorithms are marginal!

Acceptable

•

These are algorithms that we might
select as finalists
–

Hope to get most analysis concentrated on
them

–

Harder to break stronger algorithms
–

…but has bigger impact.

•

Ideally, community has idea of these
–

This was probably true for AES.

Major Goal: Sort Quickly
•

Early analysis that sorts candidates into
these bins makes everything else work
well.

•

If we have 40 acceptable submissions,
very hard to select 5 finalists!

•

Performance comparisons likely to
dominate early, because they’re easy to
do.

Automated Analysis

•

Some automated tools exist for looking at
hash functions
–

Main advantage: Fast and cheap in terms of
analyst time

•

Statistical tests:
–

AES process: almost useless

–

Ecrypt

stream ciphers: very useful
•

Other tools?
–

Important to be able to understand what results
mean!

Automated Analysis (2)

•

Statistical tests on parts of hash
–

AES tests not so useful because looked at
whole cipher

–

Tests of how many rounds passed more
useful, but harder to interpret.

•

Similar issues with other tools
–

If we find bad properties of whole hash, it’s
probably “Obviously Flawed.”

–

Results on parts of cipher, or ambiguous
measures, not so easy to interpret

Side channel issues

•

Some algorithms have inherent side-channel
issues
–

S-boxes and cache timing attacks

–

Multipliers
–

Modular exponentiation/etc with variable execution
paths

•

How important is this?
–

Keyed hashes, hashing secrets?

May be easy to evaluate hashes, but not so
easy to decide what to do with evaluations!

Properties and Proofs
•

Some designs may come with security proofs
–

How critical is a flaw in a proof?

–

How much weight should proof get?
•

Some may claim better properties of iteration
scheme
–

Long-message second preimage

attacks

–

Indifferentiability, property-preserving, etc.
–

Not clear how to weigh these--probably not
decisive

–

Maybe small advantage among finalists?

What properties are important?

•

Not much apparent consensus
•

Mostly can point to bad behavior, not
define desired behavior

•

What observed/demonstrated properties
“break”

or call into question a hash

function?
–

Malleability, ability to ignore inputs in
computation, ability to control some
outputs in computation, etc.

Cryptanalysis

•

Most important question is “can someone
break this hash function?”
–

Some question about definition of “break.”

•

But many kinds of break well known
–

Collision, preimage, second preimage

–

Breaking pseudorandomness

in HMAC
–

Showing unacceptability for existing apps.

Cryptanalysis (2)
•

Strongly dependent on right tools
–

For MDx,SHA-{0,1} family, we have these
tools

–

Maybe have some for SHA256, RIPEMD
–

Maybe have some for Snefru/Tiger

•

Radically new designs may take years
to develop good attack tools!
–

How to weigh that in selection of finalists?

–

Think of HPC, MARS, DFC

Cryptanalysis (3)

•

Major input here is time of skilled analysts
–

This is the most scarce resource

–

This is why it’s important to narrow field to
most likely finalists quickly

•

Think of history of MD4/5 and SHA0/1.

Conclusions
•

We have a big job ahead of us

•

The number of submissions will matter
–

100 very different from 20

–

More important: how many are not
obviously flawed?

•

We are counting on community for most
of the work of evaluation!
–

We’ll do what we can, but that’s very
limited!

Links

•

Hash competition:
http://www.nist.gov/hash-function

http://www.nist.gov/hash-function

	NIST Hash Competition�
	What is a Hash Function?
	Merkle-Damgard Hashing
	Properties of Hash Functions
	Work Factors
	Results in the last 4 years
	Nostradamus Attack
	Hashes: the problem
	The Impact of Collisions
	NIST Hash Function Policy
	SHA-3 Hash Competition
	SHA-3 Competition Timeline
	SHA-3 Criteria: these didn’t make it
	SHA-3 Criteria
	SHA-3 Cryptanalysis
	Selecting SHA-3 Finalists
	Other SHA-3 Thoughts
	John Kelsey’s slides on SHA-3 selection issues
	 Timetable
	Our Problem: How to Choose?
	Our Problem: How to Choose?
	Our Constraints
	What’s Important?
	Performance
	Performance: Speed
	Some questions
	Parallelism
	Simple 32-way mode
	Implementability
	Benefiting from the Future
	Security Issues
	General Evaluation Issues
	Analysis time is scarce resource
	Obviously Flawed
	Marginal
	Acceptable
	Major Goal: Sort Quickly
	Automated Analysis
	Automated Analysis (2)
	Side channel issues
	Properties and Proofs
	What properties are important?
	Cryptanalysis
	Cryptanalysis (2)
	Cryptanalysis (3)
	Conclusions
	Links

