Key Management and ANSI X9.44

Burt Kaliski, RSA Laboratories February 10, 2000 NIST Workshop on Key Management Using Public-Key Cryptography

- Key pair generation
- Cryptographic primitives
- Encryption scheme
- Auxiliary functions

- Hash function: SHA-1
- Mask generation function: MGF1
- (Key construction functions currently in annex)

- Annexes:
 - random number generation [\rightarrow ANSI X9.82]
 - key pair generation [\rightarrow ANSI X9.80]
 - implementation considerations
 - examples
 - ASN.1 syntax
 - example key management protocols
 - mathematical background [\rightarrow ANSI X9.31, X9.80, etc.]

Scheme Standards

- ANSI X9.30:1, X9.31, X9.62
- ANSI X9.42, X9.44 (?)
- FIPS 186-2
- IEEE P1363
- ISO/IEC 9796-1, -2, -3
- ISO/IEC 14888-3

Protocol Standards

- ANSI X9.63
- ANSI X9.70
- FIPS 196
- Key management FIPS
- ISO/IEC 9798-3
- ISO/IEC 11770-3
- ... also, IKE [IPsec], SSL / TLS, S/MIME / CMS key management

- How many parties?
- How many key pairs?
- When to generate key pairs?
- How to distribute public keys?
- What is message *M*?
- What are parameters P?
- What else is needed?
 - signature scheme?

- one-pass?
- responder key pair only?
- computational load?
- What are the security goals?
 - implicit key authentication?
 - key confirmation?
 - key control?
 - replay protection?
 - forward secrecy?
 - entity authentication?
 - etc.

mplicit key authentication:	В
ley confirmation:	none
Key control:	Α
Replay protection:	none
Entity authentication:	none
Forward secrecy:	Α

mplicit key authentication:	В
Key confirmation:	both
Key control:	both
Replay protection:	both
Entity authentication:	В
Forward secrecy:	Α

- Editor: Xuejia Lai
- Scope: Key management mechanisms based on asymmetric cryptographic techniques, including:
 - symmetric key agreement
 - symmetric key transport
 - public key distribution

- One "hybrid" mechanism
- Abstraction of underlying schemes
- Similar variety to ISO/IEC 11770-3

• ANSI	American National Standards Institute
• ANSI X9.31	Digital Signatures using Reversible Public Key Cryptography (rDSA)
• ANSI X9.42	Agreement of Symmetric Keys using Discrete Logarithm Cryptography
• ANSI X9.62	The Elliptic Curve Digital Signature Algorithm (ECDSA)
• ANSI X9.63	Key Agreement and Key Transport using Elliptic Curve Cryptography

• ANSI X9.70	Management of Symmetric Keys using Public Key Algorithms
• ANSI X9.80	Prime Number Generation, Primality Testing and Primality Certificates
• ANSI X9.82	Random Number Generation
• ASN.1	Abstract Syntax Notation 1
• CMS	Cryptographic Message Syntax
• ES-OAEP	Encryption Scheme using OAEP
• FIPS	Federal Information Processing Standard

• FIPS 186-2	Digital Signature Standard (DSS)
• FIPS 196	Entity Authentication using Public Key Cryptography
• IEEE	Institute of Electrical and Electronics Engineers
• IEEE P1363	Standard Specifications for Public Key Cryptography
• IFDP	Integer Factorization Decryption Primitive
• IFEP	Integer Factorization Encryption Primitive

