
October, 2001

KEY ESTABLISHMENT SCHEMES WORKSHOP DOCUMENT:

(November 1-2, 2001)

[Note to the reader: This workshop document is a working paper from which material will be
drawn for the schemes document. This workshop document contains the current thinking of the
working group that will develop the final schemes document. Editorial comments are not
appropriate at this time, but comments addressing its content are encouraged. Questions have
been inserted to engender thought as to the eventual content of the schemes document. The
current content and the inserted questions will be addressed at the Key Management workshop.]

1

October, 2001

Table of Contents
1. Introduction.. 4

2. Scope and Purpose ... 4

3. Definitions, Symbols and Abbreviations ... 5

3.1 Definitions... 5

3.2 Symbols and Abbreviations .. 5

4. Key Establishment Algorithm Classes... 7

5. Security Attributes ... 7

6. Cryptographic Elements... 7

6.1 Domain Parameters... 7

6.1.1	 Domain Parameter Generation.. 8

6.1.2	 Domain Parameter Validation... 8

6.1.3	 Domain Parameter Management... 8

6.2 Private/Public Keys... 9

6.2.1	 Private/Public Key Generation ... 9

6.2.2	 Public Key Validation... 9

6.2.3	 Key Pair Management... 10

6.3 Key Derivation Function... 10

6.4 MAC ... 11

6.4.1	 Tag computation ... 11

6.4.2	 Tag Checking .. 12

6.4.3	 Implementation validation .. 12

6.5 Associate Value Function (Elliptic Curve Only) .. 12

6.6 Cryptographic Hash Functions ... 12

6.7 Random Number Generation .. 12

6.8 Key Confirmation ... 12

6.9 Calculation of Shared Secrets ... 13

6.10 RSA Primitives ... 14

6.11 Key Wrapping Primitive(s)... 14

7. Key Agreement Schemes... 14

7.1 Two Party Participation (interactive, 2-way), C(2) .. 16

7.1.1	 Each party has a static key pair and generates an ephemeral key pair: C(2,2)16
7.1.1.1 dhHybrid1, C(2,2,DH,FF) ... 17

7.1.1.2 Full Unified Model, C(2,2,DH,EC)... 18

7.1.1.3 MQV2, C(2,2,MQV,FF).. 18

7.1.1.4 Full MQV, C(2,2,MQV,EC) ... 19

7.1.2	 Each party generates an ephemeral key pair; no static keys are used: C(2,0) 20

7.1.2.1 dhEphem, C(2,0,DH,FF) ... 21

7.1.2.2 Ephemeral Unified Model, C(2,0,DH,EC).. 21

7.2 One Party Participation (client/server, store-and-forward, 1-way), C(1) 22

7.2.1	 Initiator has a static key pair and generates an ephemeral key pair; Responder

has a static key pair, C(1,2)... 22

7.2.1.1 dhHybridOneFlow, C(1,2,DH,FF) .. 22

7.2.1.2 1-Pass Unified Model, C(1,2,DH,EC)... 23

7.2.1.3 MQV1, C(1,2,MQV,FF).. 24

2

October, 2001

7.2.1.4 1-Pass MQV, C(1,2,MQV,EC) ... 25

7.2.2	 Initiator generates only an ephemeral key pair; Responder has only a static

key pair, C(1,1) ... 26

7.2.2.1 dhOneFlow, C(1,1,DH,FF).. 27

7.2.2.2 1-Pass Diffie-Hellman, C(1,1,DH,EC).. 28

7.3 Static keys only, C(0) .. 28

dhStatic, C(0,2,DH,FF)... 29

7.3.2	 Static Unified Model, C(0,2,DH,EC).. 30

9. Key Transport .. 30

10. Keys Derived from a “Master Key”... 30

11. Key Recovery... 30

Table of Figures

Figure 1. General protocol when each party has both static and ephemeral key pairs17

Figure 2. General protocol when the Initiator and Responder use only ephemeral key pairs; no

static key pairs are used..20

Figure 3. General protocol when the Initiator has both static and ephemeral key pairs, and the

Responder has only a static key pair ..22

Figure 4. General protocol when the Initiator has only an ephemeral key pair, and the Responder

has only a static key pair ..27

Figure 5. Each party has only a static key pair ..29

Table of Tables

Table 1: Key Agreement Scheme Categories ..14

Table 2: Key Agreement Scheme Subcategories...14

Table 3 : Key Agreement Schemes..15

Table 4: ANSI X9.42 dhHybrid1 Key Agreement Scheme...17

Table 5: ANSI X9.63 Full Unified Model Key Agreement Scheme...18

Table 6: ANSI X9.42 MQV2 Key Agreement Scheme...19

Table 7 : ANSI X9.63 Full MQV Key Agreement Scheme ..20

Table 8: ANSI X9.42 dhEphem Key Agreement Scheme...21

Table 9: ANSI X9.63 Ephemeral Unified Model Key Agreement Scheme21

Table 10: ANSI X9.42 dhHybridOneFlow Key Agreement Scheme..23

Table 11: ANSI X9.63 1-Pass Unified Model Key Agreement Scheme.......................................24

Table 12: ANSI X9.42 MQV1 Key Agreement Scheme...24

Table 13: ANSI X9.63 1-Pass MQV Model Key Agreement Scheme..26

Table 14 : ANSI X9.42 dhOneFlow Key Agreement Scheme ..27

Table 15: ANSI X9.63 1-Pass Diffie-Hellman Model Key Agreement Scheme28

Table 16: ANSI X9.42 dhStatic Key Agreement Scheme...29

Table 17: ANSI X9.63 Static Unified Model Key Agreement Scheme ..30

3

October, 2001

KEY ESTABLISHMENT SCHEMES

APPROACH

1. Introduction

Many U.S. Government Information Technology (IT) systems need to employ well-established
cryptographic schemes to protect the integrity and confidentiality of the data that they process.
Algorithms such as the Advanced Encryption Standard (AES) as defined in Federal Information
Processing Standard (FIPS) 197, Triple DES as adopted in FIPS 46-3, and HMAC as defined in
FIPS 198 make attractive choices for the provision of these services. These algorithms have been
standardized to facilitate interoperability between systems. However, the use of these algorithms
requires the establishment of shared keying material in advance. Trusted couriers may manually
distribute this keying material. However, as the number of entities using a system grows, the
work involved in the distribution of the keying material could grow exponentially. Therefore, it
is essential to support the cryptographic algorithms used in modern U.S. Government
applications with automated key establishment schemes.

2. Scope and Purpose
This workshop document provides an approach for the development of a key establishment
schemes document (hereafter referred to as the final schemes document) from standards
developed by the American National Standards Institute (ANSI): ANSI X9.42, Agreement of
Symmetric Keys using Discrete Logarithm Cryptography, and ANSI X9.63, Key Agreement and
Key Transport using Elliptic Curve Cryptography. It is intended that the final schemes document
will also contain key transport schemes from ANSI X9.44, Key Agreement and Key Transport
using Factoring-Based Cryptography; a key wrapping technique, whereby a symmetric key is
encrypted using another symmetric key (e.g., an AES key is encrypted by an AES key); and a
discussion of keys derived from a “master key”.

[Note: The key transport schemes from ANSI X9.44, the key wrapping schemes, and keys
derived from a master key are not present in this workshop document due to time constraints.
They will be provided for review at a later time.]

This workshop document provides only a high level description of the schemes defined in the
ANSI standards. Details for the implementation of these schemes, including the detailed
instructions for proper implementation, are available in the appropriate ANSI standard. When
there are differences between this workshop document and the referenced ANSI standards, this
workshop document identifies those differences.

The final schemes document will contain a requirement that the schemes be used in conjunction
with Special Publication 800-X, Guideline for Key Management and Use of Cryptographic
Mechanisms [8]. The schemes document, the referenced ANSI standards, and the guideline [8]
are intended to provide sufficient information for a vendor to implement and test secure key
establishment for FIPS 140-2 [1] validated modules.

4

October, 2001

3. Definitions, Symbols and Abbreviations

3.1 Definitions
Approved FIPS approved or NIST Recommended.

Keying material The data (e.g., keys and IVs) that are necessary to establish and maintain
cryptographic keying relationships. As used in this workshop document,
keying material is established between participants in a key establishment
process.

Shared keying
material

The keying material that is derived by applying the key derivation function
of Section 6.3 to the shared secret.

Shared secret A secret value that has been computed using a prescribed algorithm and
combination of keys belonging to the participants in the key establishment
scheme. The shared secret must not be used directly as shared keying
material.

3.2 Symbols and Abbreviations

General:
H An Approved hash function.

Text1, Text2 An optional bit string that may be used during key confirmation and that is sent
between the parties establishing keying material.

U One entity of a key establishment process, or the bit string denoting the identity
of that entity.

V The other entity of a key establishment process, or the bit string denoting the
identity of that entity.

X||Y Concatenation of two strings X and Y.

The following notations are consistent with that used in the ANSI standards; however, it should
be recognized that the notation between the standards is inconsistent (e.g., x and y are used as the
private and public keys in ANSI X9.42, whereas x and y are used as the coordinates of a point in
ANSI X9.63).

ANSI X9.42:
p, q, g The domain parameters.

mod p The reduction modulo p on an integer value.

5

October, 2001

rU, rV Party U or Party V’s ephemeral private key.

tU, tV Party U or Party V’s ephemeral public key.

xU, xV Party U or Party V’s static private key.

yU, yV Party U or Party V’s static public key.

Z A shared secret that is used to derive keying material using a key derivation
function.

Ze An ephemeral shared secret that is computed using a Diffie-Hellman primitive.

Zs A static shared secret that is computed using a Diffie-Hellman primitive.

ANSI X9.63:

[X] Indicates that the inclusion of string X is optional.

a, b Field elements that define the equation of an elliptic curve.

avf(P) The associate value of the elliptic curve point P.

de,U, de,V Party U’s and Party V’s ephemeral private keys.

ds,U, ds,V Party U’s and Party V’s static private keys.

FR An indication of the basis used.

G A distinguished point on an elliptic curve.

h The order of the elliptic curve divided by the order of the point G. This is called
the cofactor.

n The order of the point G.

j A special point on an elliptic curve, called the point at infinity. This is the
additive identity of the elliptic curve group.

q The field size.

Qe,U, Qe,V Party U’s and Party V’s ephemeral public keys.

Qs,U, Qs,V Party U’s and Party V’s static public keys.

SEED An optional bit string that is present if the elliptic curve was randomly generated.

6

October, 2001

xP The x-coordinate of a point P.
yP The y-coordinate of a point P.
Z A shared secret that is used to derive key using a key derivation function.

Ze An ephemeral shared secret that is computed using a Diffie-Hellman primitive.

Zs A static shared secret that is computed using a Diffie-Hellman primitive.

4. Key Establishment Algorithm Classes

Cryptographic keying material may be electronically established between parties using either key
agreement or key transport schemes. During key agreement, the keying material to be established
is not sent; information is exchanged between the parties that allows the calculation of the keying
material. The key agreement schemes described in this workshop document use asymmetric
(public key) techniques. During key transport, encrypted keying material is sent from an initiator
who generates the keying material to another party. Key transport schemes use either symmetric
or public key techniques.

The schemes from ANSI X9.42 and X9.63 in this workshop document are based on the
intractability of the discrete logarithm problem. The schemes in ANSI X9.42 are calculated over
a finite field. The schemes specified in ANSI X9.63 are calculated using elliptic curves.

This workshop document includes a high-level specification of the key establishment schemes.
Implementation details (e.g., data conversion rules, arithmetic, basis, encoding rules, etc.) are
provided in the appropriate ANSI standard. When there are differences between this workshop
document and the referenced ANSI standards, the final schemes document will contain a
requirement that the schemes document will have precedence for U.S. Government applications.

5. Security Attributes

[The final schemes document will contain a section that describes the security attributes that may
be provided by the various key establishment schemes and will discuss the importance of each
attribute.]

6. Cryptographic Elements

This workshop document assumes that the reader has, and is familiar with, ANSI X9.42 and
ANSI X9.63. These standards should be consulted to obtain specific guidance.

6.1 Domain Parameters
Discrete Log based cryptography, as specified in ANSI X9.42 and X9.63, requires that the public
and private key pairs be generated with respect to domain parameters. These domain parameters
must be validated to ensure that the parameters have been generated properly (e.g., by a

7

October, 2001

Certification Authority, hereafter called a CA). Although domain parameters are public
information, they must be managed so that the correct correspondence between a given key pair
and its domain parameters is maintained for all parties that use the key pair. Domain parameters
may remain fixed for an extended time period and may be used with multiple key establishment
schemes.

Some of the schemes in ANSI X9.42 and X9.63 allow separate domain parameters to be used
with static and ephemeral keys in the same scheme. This workshop document, however, uses
only one set of domain parameters, i.e., the same domain parameters are used with the
static and ephemeral keys in any given scheme.

6.1.1 Domain Parameter Generation
Domain parameters for the schemes specified in ANSI X9.42 are of the form (p, q, g), where p
and q are prime, and g is generator of the q-order cyclic subgroup of GF(p)*. For specific
instructions on how to generate (p, q, g) see Section 6.1 of ANSI X9.42 [9].

Domain parameters for the schemes specified in ANSI X9.63 are of the form (q, FR, a, b,
[SEED], G, n, h), where q is the field size; FR is an indication of the basis used; a and b are two
field elements that define the equation of the curve; SEED is an optional bit string if the elliptic
curve was randomly generated in a verifiable fashion; G is a point, (xG, yG) of prime order on the
curve; n is the order of the point G; and h is the cofactor equal to the order of the curve divided
by n. The generation of domain parameters depends on the form of the field over which the
curve is defined. For specific instructions on how to generate (q, FR, a, b, [SEED], G, n, h), see
Section 5.1.1.1 of [ANSI X9.63] for curves over Fp, and Section 5.1.2.1 of [ANSI X9.63] for
curves over F . Recommended elliptic curves for the Federal Government have been providedm2

in FIPS 186-2 [3] that may be used to determine the domain parameters.

6.1.2 Domain Parameter Validation
Domain parameters must be validated by each party or by an entity that they trust before use.
Validation consists of verifying the arithmetic properties of the domain parameters. Each party
must obtain assurance that the domain parameters are valid in one of the following ways:

i.	 The party has generated the parameters. Note: the checking of the parameters is actually
done during generation.

ii.	 The party has performed the domain parameter validation as specified in:
•	 Section 7.2 of ANSI X9.42 for discrete logarithms,
•	 Section 5.1.1.2 of ANSI X9.63 for elliptic curves over Fp, or
•	 Section 5.1.2.2 of ANSI X9.63 for elliptic curves over F .m2

iii. The party has received assurance from a trusted party (e.g., a CA) that the parameters are
valid (either (i) or (ii) above is true for the trusted party that provides the assurance).

6.1.3 Domain Parameter Management
Only authorized (trusted) parties should generate domain parameters. In addition, each private-
public key pair must be correctly associated with its domain parameters (e.g., by using a public

8

October, 2001

key certificate). The unauthorized modification or substitution of domain parameters may cause
security risks.

6.2 Private/Public Keys

6.2.1 Private/Public Key Generation
Static and ephemeral key pairs are generated using the same primitives.

For the schemes specified in ANSI X9.42, generate a private key x and a public key y using the
domain parameters (p, q, g). See Section 7.3 of [9].

For the schemes specified in ANSI X9.63, generate a private key d and a public key Q using the
domain parameters (q, FR, a, b, [SEED], G, n, h). See Section 5.2.1 of [11].

When static public/private keys are required by a participant in a key establishment process, the
static keys must be generated prior to participation in the key establishment process. Each
private key must be statistically unique, unpredictable, and created using an Approved random
number generator. The same private key should not be used with more than one set of domain
parameters.

6.2.2 Public Key Validation
Secure key establishment depends on the validity of the public/private key pairs. This workshop
document requires public key validation to be performed by the receiver of a key.

Static public keys must be validated by the recipient, or by an entity that is trusted by the
recipient. Static public key validation may be accomplished in one of the following three ways;
the first two options are preferred:

1.	 Performing an explicit public key validation, i.e., checking that the public key has
certain mathematical properties (i.e., the key is reasonable; this does not determine
that the other party has a private key that is associated with this public key). Note:
this is method 1 in ANSI X9.42 (Section 7.4) and ANSI X9.63 (Section 5.2.2).

2.	 Receiving assurance that another party (e.g., a CA) has validated the public key by
using method 1. Note: this is defined as method 2 in ANSI X9.42 (Section 7.4), and
as method 3 in ANSI X9.63 (Section 5.2.2).

3.	 Receiving assurance that another party (e.g., a CA) has regenerated the public key
using trusted routines. Note: this is method 4 in ANSI X9.42 (Section 7.4) and ANSI
X9.63 (Section 5.2.2).

Each ephemeral public key must be validated by the recipient before being used to derive a
shared secret. Ephemeral public keys may be validated using either method 1 or method 2 above.

Note: Both of the ANSI standards include an additional option for public key validation. In this
option, an implicit public key validation is performed by generating the public key using trusted
routines (method 3 of ANSI X9.42 (Section 7.4) and method 2 of ANSI X9.63 (Section 5.2.2)).
The working group did not see a reason for including this method. Can anyone provide a reason?

9

October, 2001

6.2.3 Key Pair Management
Public/private key pairs must be correctly associated with their corresponding domain
parameters. Private keys must be protected from unauthorized disclosure, modification, and
substitution. Thus, they must be protected from any unauthorized access.

The cryptoperiod of each static private key must be clearly defined. Static private keys must be
destroyed at the end of their cryptoperiod. Ephemeral keys should be generated as close to their
time of use as possible. Ephemeral private keys must be destroyed immediately after the shared
secret is computed.

Recipients of static public keys must be assured of a binding between the public key, a set of
domain parameters and the entity that “owns” the keys (i.e., the entity with whom the recipient
intends to establish a key). This assurance is often provided by verifying a public-key certificate
signed by a trusted party (e.g., a Certification Authority).

Static public keys must be obtained in a trusted manner, e.g., from a certificate signed by a
trusted CA, or directly from the public key owner, provided that the public key owner is trusted
by the receiving party and can be authenticated as the source of the data that is received.

Static key pairs may be used by more than one key establishment scheme. However, different
public/private key pairs should be used for different purposes (e.g., digital signature key pairs
should not be used for key establishment).

6.3 Key Derivation Function
The key derivation function is used to derive keying material from a shared secret as follows:

Function call: kdf(Z,OtherInput), where OtherInput is U, V, keydatalen, hashlen, [SharedInfo].

Input description:
1.	 A bit string Z that is the shared secret.
2.	 Bit strings U and V that denote the identities of the participating parties, where U is the

party that initiated the key establishment process, and V is the responder in the key
establishment process.

3.	 An integer keydatalen that is the length in bits of the keying material to be generated.
keydatalen must be less than hashlen · (232-1).

4.	 An integer hashlen that is the length in bits of the hash function to be used to derive the
keying material.

5.	 An optional bit string SharedInfo that consists of data shared by parties U and V.
Process:

a.	 Initiate a 32-bit, big-endian bit string counter as 0000000116.
b.	 For i=1 to i= Økeydatalen / hashlenø , do the following:

Compute Hashi = H(Z||counter||U||V||[SharedInfo])

Increment counter

Increment i.

c.	 Let Hhashj denote Hashj if keydatalen/hashlen is an integer, and let it denote the

(keydatalen-(hashlen· (j-1))) leftmost bits of Hashj otherwise.

10

October, 2001

d. Set DerivedKeyingMaterial = Hash1||Hash2||…||Hashj-1||Hhashj.
Output: The bit string DerivedKeyingMaterial of keydatalen bits.

[Question: Since both parties need to compute the same derived keying material, does the
necessity to provide U and V create a problem? For example, can all applications determine who
the initiator and responder are so that they would know in what order to place the identities? Or
would it be better to alphabetize the identities? Rather than using “U||V”, would it be better to
use a function of the two entities, such as “(U OR V)||(U AND V)”, where “OR” and “AND” are
bit-wise logical operators?]

The derived keying material may be parsed into one or more keys or other cryptographic keying
material (e.g., IVs).

Any scheme attempting to call the key derivation function for a bit string of length greater than
or equal to hashlen· (232-1) bits must output “invalid” and stop.

Note: The security provided by the derived keying material is limited by the cryptographic
strength of the key establishment scheme. For example, if an elliptic curve scheme is used with a
160 bit private key, a strength of roughly 80 bits is provided to the derived keying material, i.e., a
128 bit AES key derived from such a scheme provides no more than 80 bits of security to the
information it protects, not the 128 bits of security that might be expected when using AES with
a truly random key.

Note: This technique differs from the key derivation functions defined in ANSI X9.42 and
X9.63. In this workshop document, the identities of the initiating party (U) and the recipient (V)
are included in the data that is hashed. In ANSI X9.42 and X9.63, these identities could be
considered a part of the SharedInfo, which is optional and not defined. ANSI X9.42 also includes
a second key derivation function that is based on ASN.1 DER encoding.

6.4 MAC
A Message Authentication Code (MAC) is a function of both a symmetric key and other data. In
key establishment schemes, an entity is sometimes required to compute a MacTag on received or
derived data, which is sent to the other entity in order to confirm that the data was correctly
received or derived. This workshop document requires that an Approved MAC algorithm be
used to compute a MAC.

The MAC function is used to provide key confirmation, when desired, and is used to validate
implementations of the key establishment schemes specified in this workshop document. Tag
computation and checking are defined in Section 7.8 of ANSI X9.42, and in Section 5.7 of ANSI
X9.63.

6.4.1 Tag computation
The computation of the Tag is represented as follows:

MacTag = MACMacKey (MacData).

11

October, 2001

MAC represents an Approved MAC, MacKey represents a symmetric key, and MacData
represents the data.

6.4.2 Tag Checking
To check a MacTag for given MacKey and MacData, the MacTag is computed by the receiver
using the received or derived MacData (as specified in Section 6.4.1) and compared with the
received MacTag. If the two MacTag values are equal, then it may be inferred that the MacKey
and MacData values computed by each party are equal.

6.4.3 Implementation validation
For purposes of validating an implementation of the schemes in this workshop document during
an implementation validation test, the value of MacData must be the string “Standard Test
Message” followed by 16 bytes containing a 128-bit value used as a nonce. The default value for
the nonce is all zeros. Different values of the nonce will be specified during testing to perform
known answer tests.

Note: ANSI X9.42 defines MacData as “ANSI X9.42 Testing Message”. ANSI X9.63 does not
address implementation validation at this level of detail.

6.5 Associate Value Function (Elliptic Curve Only)
The associate value function is used in ANSI X9.63 by the MQV family of key agreement
schemes to compute an integer associated with an elliptic curve point. This workshop document
defines avf(P) to be the associate value function of a point P (P „ j) as defined in Section 5.6.1
of ANSI X9.63 using the domain parameters (q, FR a, b, [SEED], G, n, h).

6.6 Cryptographic Hash Functions
An Approved hash function must be used when a hash function is required (e.g., for the key
derivation function or to compute a MAC when HMAC is used).

6.7 Random Number Generation
Whenever this standard requires the use of a randomly generated value (e.g., for keys and
nonces), the values must be generated using an Approved random number generator.

6.8 Key Confirmation
Key confirmation is used to provide assurance that the parties have derived the same keys. The
participants in the key establishment process must first establish a shared secret Z using one of
the schemes provided by this standard. Each entity must then derive keying material using
Section 6.3 and parse it into MacKey and KeyData, such that:

MacKey || KeyData = DerivedKeyingMaterial

The responder in the key establishment process (party V, for example) sets MacDataV =
0216||V||U||EphemPubKeyV||EphemPubKeyU||[Text1] and computes MacTagV (see Section
6.4.1), which is then sent to the initiator (party U in this example).

12

October, 2001

The initiator in the key establishment process (party U, for example) sets MacDataU =
0316||U||V||EphemPubKeyU||EphemPubKeyV||[Text2] and computes MacTagU (see Section
6.4.1), which is then sent to the responder (party V in this example)..

Note that MacData need not be sent if both parties know all information needed to construct it.

Both parties verify the received MacTag using the Tag Checking procedure defined in Section
6.4.2.

Note: Key Confirmation is defined for some of the schemes in ANSI X9.63. Key Confirmation
for ANSI X9.42 is addressed in a different ANSI standard, ANSI X9.70, Management of
Symmetric Keys Using Public Key Cryptography.

Note: The above specification is restricted to those schemes where both parties have ephemeral
keys. Further research is needed to determine whether key confirmation is also worth doing for
other schemes and how best to do it.

[Questions:
1.	 Which schemes should use key confirmation? In X9.63, addresses key confirmation for a

Combined Unified Model (a combination of the Ephemeral Unified Model and the Static
Unified Model), the Full Unified Model, and the Full MQV scheme.

2.	 Should key confirmation be mandatory for some schemes?
3. Can all applications determine who the initiator and responder are?

]

6.9 Calculation of Shared Secrets
Primitives for the calculation of the shared secrets are defined in the ANSI standards. Each key
establishment scheme is required to use exactly one primitive. The five ANSI primitives that
shall be used by the schemes in Section 7 of this workshop document are:

1.	 The Diffie-Hellman primitive of Section 7.5.1 in ANSI X9.42. This primitive must be
used by the dhHybrid1, dhEphem, dhHybridOneFlow, dhOneFlow and dhStatic schemes,
which are based on finite field arithmetic and the Diffie-Hellman algorithm.

2.	 The Modified Diffie-Hellman primitive of Section 5.4.2 of ANSI X9.63. This primitive
must be used by the Full Unified Model, Ephemeral Unified Model, 1-Pass Unified
Model, 1-Pass Diffie-Hellman and Static Unified Model schemes, which are based on
elliptic curve arithmetic and the Diffie-Hellman algorithm.
Note: This differs from ANSI X9.63 in the use of primitives for elliptic curve-based
Diffie-Hellman schemes. ANSI X9.63 allows a choice of either the Standard Diffie-
Hellman primitive (which does not use co-factor multiplication) or the Modified Diffie-
Hellman primitive (which uses co-factor multiplication), while this workshop document
requires the use of the Modified Diffie-Hellman primitive for elliptic curve-based Diffie-
Hellman schemes.

3.	 The MQV2 primitive of Section 7.5.2.1 of ANSI X9.42. This primitive must be used by
the MQV2 interactive scheme, which is based on finite field arithmetic and the MQV
algorithm.

13

October, 2001

4.	 The MQV1 primitive of Section 7.5.2.2 of ANSI X9.42. This primitive must be used by
the MQV1 store-and-forward scheme, which is based on finite field arithmetic and the
MQV algorithm.

5.	 The MQV primitive of Section 5.5 of ANSI X9.63. This primitive must be used by the
Full MQV and 1-Pass MQV schemes, which are based on elliptic curve arithmetic and
the MQV algorithm.

Shared secrets must not be used directly as shared keying material; the shared keying material
must be calculated by applying the key derivation function to the shared secret (see Section 6.3
of this workshop document).

6.10 RSA Primitives
[To be addressed later]

6.11 Key Wrapping Primitive(s)
[To be included later]

7. Key Agreement Schemes

This workshop document provides three categories of key establishment schemes (See Table 1).
The classification of the categories is based on the number of ephemeral keys used by the two
parties to the key agreement process, U and V. In category C(i), parties U and V have a total of i
ephemeral key pairs. The first category, C(2) consists of schemes requiring the generation of
ephemeral key pairs by both parties (two party participation schemes - i.e. interactive or 2-way
schemes); the second category, C(1) consists of schemes requiring the generation of an
ephemeral key pair by only one party (one party participation schemes - i.e., store and forward
or 1-way schemes); and the third category, C(0) consists of schemes that do not use ephemeral
keys (static schemes - i.e., passive schemes).

Table 1: Key Agreement Scheme Categories

Category Comment
C(2): Two party participation (interactive,
2-way)

Each party generates an ephemeral key pair.

C(1): One party participation (store and
forward, 1-way)

Only the initiator generates an ephemeral key pair.

C(0): Static (passive) No ephemeral keys are used.

Each category is comprised of one or more subcategories that are classified by the use of static
keys by the parties (see Table 2). In subcategory C(i,j), parties U and V have a total of i
ephemeral key pairs and j static key pairs.

Table 2: Key Agreement Scheme Subcategories

Category Subcategory
C(2): Two party participation
(interactive, 2-way)

C(2,2): Each party generates an ephemeral key pair and has a
static key pair.
C(2,0): Each party generates an ephemeral key pair; no static
keys are used.

14

October, 2001

C(1): One party participation
(store and forward, 1-way)

C(1,2): The initiator generates an ephemeral key pair and has a
static key pair; the responder has only a static key pair.
C(1,1): The initiator generates an ephemeral key pair, but has no
static key pair; the responder has only a static key pair.

C(0): Static (passive) C(0,2): Each party has only static keys.

The schemes may be further classified by whether they use finite field arithmetic (FF) as
specified in ANSI X9.42 or elliptic curve arithmetic (EC) as specified in ANSI X9.63. A scheme
may use either Diffie-Hellman (DH) or MQV primitives (see Section 6.9). Thus, for example,
C(2,2,DH,FF) completely classifies the dhHybrid1 scheme as a scheme with two ephemeral keys
and two static keys that uses a Diffie-Hellman primitive with finite field arithmetic (See Table
3).

Table 3 : Key Agreement Schemes

Category Subcategory Primitive Arithmetic Scheme Full
Classification

C(2) C(2,2) DH FF dhHybrid1 C(2,2,DH,FF)
C(2) C(2,2) DH EC Full Unified

Model
C(2,2,DH,EC)

C(2) C(2,2) MQV FF MQV2 C(2,2,MQV,FF)
C(2) C(2,2) MQV EC Full MQV C(2,2,MQV,EC)
C(2) C(2,0) DH FF dhEphem C(2,0,DH,FF)
C(2) C(2,0) DH EC Ephemeral

Unified Model
C(2,0,DH,EC)

C(1) C(1,2) DH FF dhHybridOneFlow C(1,2,DH,FF)
C(1) C(1,2) DH EC 1-Pass Unified

Model
C(1,2,DH,EC)

C(1) C(1,2) MQV FF MQV1 C(1,2,MQV,FF)
C(1) C(1,2) MQV EC 1-Pass MQV C(1,2,MQV,EC)
C(1) C(1,1) DH FF dhOneFlow C(1,1,DH,FF)
C(1) C(1,1) DH EC 1-Pass Diffie-

Hellman
C(1,1,DH,EC)

C(0) C(0,2) DH FF dhStatic C(0,2,DH,FF)
C(0) C(0,2) DH EC Static Unified

Model
C(0,2,DH,EC)

Each party in a key agreement process must use the same domain parameters. These parameters
must be established prior to the initiation of the key agreement process. See Section 6.1 for a
discussion of domain parameters.

A general flow diagram is provided for each category of schemes. The dotted-line arrows
represent the distribution of static public keys that may be distributed by the parties themselves
or by a third party, such as a Certification Authority (CA). Static public keys must be distributed
in a trusted manner such that each party’s static public key is bound to that party’s identity and to
a set of domain parameters, e.g., by a public key certificate signed by a trusted CA. The binding
process must include the validation of the static public key as discussed in Section 6.2.2. The

15

October, 2001

acquisition of the static public keys may take place any time prior to their use, either before or
during the key agreement process.

The solid-line arrows represent the distribution of ephemeral public keys that occur during the
key agreement process. Ephemeral key pairs must be generated as close to the time of use as is
possible, and must be destroyed as soon as the computational need for them is complete.
Ephemeral public keys must be validated as specified in Section 6.2.2.

7.1	 Two Party Participation (interactive, 2-way), C(2)
In this category, each party generates an ephemeral key pair and sends the ephemeral public key
to the other party. The two parties perform similar computations to derive their shared secret;
however, the key derivation calculation (see Section 6.3) and the key confirmation calculation (if
used - see Section 6.8) differ for the initiator and responder. In this situation, the scheme
descriptions should be interpreted with U designating the initiator and V designating the
responder.

This category consists of two subcategories that are determined by the use of static keys by the
parties. In the first subcategory, each party has both static and ephemeral keys (see Section
7.1.1), while in the second subcategory, each party has only ephemeral keys (see Section 7.1.2).

7.1.1	 Each party has a static key pair and generates an ephemeral key pair:
C(2,2)

For these schemes, each party (U and V) have static key pairs and generate ephemeral key pairs
during the key agreement process. All key pairs must be generated using the same domain
parameters. Party U and party V obtain each other’s static keys, which have been generated
prior to the key establishment process. Both parties generate ephemeral private/public key pairs
and exchange the ephemeral public keys. Using the static and ephemeral keys, both parties
generate a shared secret. The shared keying material is derived from the shared secret (see
Figure 1).

16

October, 2001

U’s Static Public Key

V’s Static Public Key

U	 V
U’s Ephemeral Public Key

V’s Ephemeral Public Key

1. U uses its static and ephemeral private	 1. V uses its static and ephemeral private

keys and V’s static and ephemeral keys and U’s static and ephemeral

.public keys to compute a shared secret. public keys to compute a shared secret.
2. U invokes the Key Derivation Function	 2. V invokes the Key Derivation Function

using the shared secret. using the shared secret.

Figure 1: General protocol when each party has both static and ephemeral key
pairs

7.1.1.1 dhHybrid1, C(2,2,DH,FF)
In this scheme from ANSI X9.42, each party has a static key pair (x, y) that was previously
generated as specified in Section 6.2.1 using the same domain parameters (p, q, g). Party U has
(xU, yU); party V has (xV, yV). Each party must obtain the other party’s static public key in a
trusted manner.

During the key agreement process, each party generates an ephemeral key pair (r, t) using the
same domain parameters (p, q, g) that were used to generate the static key pair and sends the
ephemeral public key t to the other party. Party U generates (rU, tU) and sends tU to party V; party
V generates (rV, tV) and sends tV to party U. Each party computes the shared secret Z as shown in
Table 4, and then computes the shared keying material by invoking the key derivation function
using Z (see Section 6.3).

Table 4: ANSI X9.42 dhHybrid1 Key Agreement Scheme

Party U Party V
Static Data 1. Static private key xU

2. Static public key yU

1. Static private key xV

2. Static public key yV

Ephemeral Data 1. Ephemeral private key rU

2. Ephemeral public key tU

1. Ephemeral private key rV

2. Ephemeral public key tV

Input (p, q, g), xU, yV, rU, tV (p, q, g), xV, yU, rV, tU

17

October, 2001

Computation pyZ xU

Vs mod=

pt rZ U

Ve mod=

pyZ xV

Us mod=

pt rZ V

Ue mod=

Derive Key
Material

Compute kdf(Z,OtherInput) using Z
= Ze || Zs

Compute kdf(Z,OtherInput)using Z =
Ze || Zs

7.1.1.2 Full Unified Model, C(2,2,DH,EC)
In this scheme from ANSI X9.63, each party has a static key pair (ds, Qs) that was previously
generated as specified in Section 6.2.1 using the same domain parameters (q, FR, a, b, [SEED],
G, n, h). Party U has (ds,U, Qs,U); party V has (ds,V, Qs,V). Each party must obtain the other party’s
static public key in a trusted manner.

During the key agreement process, each party generates an ephemeral key pair (de, Qe) using the
same domain parameters (q, FR, a, b, [SEED], G, n, h) that were used to generate the static key
pair and sends the ephemeral public key Qe to the other party. Party U generates (de,U, Qe,U) and
sends Qe,U to party V; party V generates (de,V, Qe,V) and sends Qe,V to party U. Each party
computes the shared secret Z as shown in Table 4, and then computes the shared keying material
by invoking the key derivation function using Z (see Section 6.3).

Table 5: ANSI X9.63 Full Unified Model Key Agreement Scheme

Party U Party V
Static Data 1. Static private key ds,U

2. Static public key Qs,U

1. Static private key ds,V

2. Static public key Qs,V

Ephemeral Data 1. Ephemeral private key de,U

2. Ephemeral public key Qe,U

1. Ephemeral private key de,V

2. Ephemeral public key Qe,V

Input (q, FR a, b, [SEED], G, n, h),
de,U, Qe,V, ds,U, Qs,V

(q, FR, a, b, [SEED] G, n, h),
de,V, Qe,U, ds,V, Qs,U

Computation (xs, ys) = hds,UQs,V

(xe, ye) = hde,UQe,V

Zs = xs

Ze = xe

(xs, ys) = hds,VQs,U

(xe, ye) = hde,VQe,U

Zs = xs

Ze = xe

Derive Keying
Material

Compute kdf(Z,OtherInput)using Z=
Ze || Zs

Compute kdf(Z,OtherInput)using Z=
Ze|| Zs

7.1.1.3 MQV2, C(2,2,MQV,FF)
For the MQV2 scheme from ANSI X9.42, each party has a static key pair (x, y) that was
previously generated as specified in Section 6.2.1 using the same domain parameters (p, q, g).

18

October, 2001

Party U has (xU, yU); party V has (xV, yV). Each party must obtain the other party’s static public
key in a trusted manner.

During the key agreement process, each party generates an ephemeral key pair (r, t) using the
same domain parameters (p, q, g) that were used to generate the static key pair and sends the
ephemeral public key t to the other party. Party U generates (rU, tU) and sends tU to party V; party
V generates (rV, tV) and sends tV to party U. Each party computes the shared secret Z as shown in
Table 6, and then computes the shared keying material by invoking the key derivation function
using Z (see Section 6.3).

Table 6: ANSI X9.42 MQV2 Key Agreement Scheme

Party U Party V
Static Data 1. Static private key xU

2. Static public key yU

1. Static private key xV

2. Static public key yV

Ephemeral Data 1. Ephemeral private key rU

2. Ephemeral public key tU

1. Ephemeral private key rV

2. Ephemeral public key tV

Input (p, q, g), xU, yV, rU, tU, tV (p, q, g), xV, yU, rV, tV, tU

Computation 1. w = Ø||q||/2ø

2. tU¢ = (tU mod 2w) + 2w

3. SU = (rU + tU¢ xU) mod q

4. tV¢ = (tV mod 2w) + 2w

5. () UV
St

VVMQV t yZ ' = mod p

1. w = Ø||q||/2ø

2. tV¢ = (tV mod 2w) + 2w

3. SV = (rV + tV¢ xV) mod q

4. tU¢ = (tU mod 2w) + 2w

5. () VU
St

UUMQV ytZ ' = mod p.

Derive Keying
Material

Compute kdf(Z,OtherInput)using Z =
ZMQV

Compute kdf(Z,OtherInput)using Z =
ZMQV

7.1.1.4 Full MQV, C(2,2,MQV,EC)
For the Full MQV scheme from ANSI X9.63, each party has a static key pair (ds, Qs) that was
previously generated as specified in Section 6.2.1 using the same domain parameters (q, FR, a, b,
[SEED], G, n, h). Party U has (ds,U, Qs,U); party V has (ds,V, Qs,V). Each party must obtain the
other party’s static public key in a trusted manner.

During the key agreement process, each party generates an ephemeral key pair (de, Qe) using the
same domain parameters (q, FR, a, b, [SEED], G, n, h) that were used to generate the static key
pair and sends the ephemeral public key Qe to the other party. Party U generates (de,U, Qe,U) and

19

October, 2001

sends Qe,U to party V; party V generates (de,V, Qe,V) and sends Qe,V to party U. Each party
computes the shared secret Z as shown in Table 7, and then computes the shared keying material
by invoking the key derivation function using Z (see Section 6.3).

Table 7 : ANSI X9.63 Full MQV Key Agreement Scheme

Party U Party V
Static Data 1. Static private key ds,U

2. Static public key Qs,U

1. Static private key ds,V

2. Static public key Qs,V

Ephemeral Data 1. Ephemeral private key de,U

2. Ephemeral public key Qe,U

1. Ephemeral private key de,V

2. Ephemeral public key Qe,V

Input (q, FR a, b, [SEED], G, n, h),
de,U, Qe,V, ds,U, Qe,U, Qs,V

(q, FR, a, b, [SEED] G, n, h),
de,V, Qe,U, ds,V, Qe,V, Qs,U

Computation 1. implicitsigU = (de,U +
avf(Qe,U)ds,U) mod n

2. (x, y) = h · implicitsigU · (Qe,V +
avf(Qe,V)Qs,V)

Z = x

1. implicitsigV = (de,V +
avf(Qe,V)ds,V) mod n

2. (x, y) = h · implicitsigV · (Qe,U +
avf(Qe,U)Qs,U)

3. Z = x
Derive Keying
Material

Compute kdf(Z,OtherInput)using Z Compute kdf(Z,OtherInput)using Z

7.1.2 Each party generates an ephemeral key pair; no static keys are used: C(2,0)
For this category, only Diffie-Hellman schemes are specified. Each party generates ephemeral
key pairs with the same domain parameters. The two parties exchange ephemeral public keys
and then compute the shared secret. The keying material is derived using the shared secret (see
Figure 2).

U’s Ephemeral Public Key

U	 V

V’s Ephemeral Public Key

1. U uses its ephemeral private key	 1. V uses its ephemeral private key
and V’s ephemeral public key to and U’s ephemeral public key to
form a shared secret. form a shared secret.

2. U invokes the Key Derivation	 2. V invokes the Key Derivation
Function using the shared secret. Function using the shared secret.

Figure 2: General protocol when each party generates ephemeral key pairs; no
static keys are used

20

October, 2001

7.1.2.1 dhEphem, C(2,0,DH,FF)
In this scheme from ANSI X9.42, each party generates an ephemeral key pair (r, t) as specified
in Section 6.2.1 using the same domain parameters (p, q, g) and sends the ephemeral public key t
to the other party. Each party computes a shared secret Z as shown in Table 8. The shared keying
material is computed by invoking the key derivation function using Z (see Section 6.3).

Table 8: ANSI X9.42 dhEphem Key Agreement Scheme

Party U Party V
Static Data N/A N/A

Ephemeral Data 1. Ephemeral private key rU

2. Ephemeral public key tU

1. Ephemeral private key rV

2. Ephemeral public key tV

Input (p, q, g), rU, tV (p, q, g), rV, tU

Computation ptZ rU

Ve mod= ptZ rV

Ue mod=

Derive Keying
Material

Compute kdf(Z,OtherInput using Z =
Ze

Compute kdf(Z,OtherInput using Z =
Ze

7.1.2.2 Ephemeral Unified Model, C(2,0,DH,EC)
In this scheme from ANSI X9.63, each party generates an ephemeral key pair (de, Qe) as
specified in Section 6.2.1 using the domain parameters (q, FR, a, b, [SEED], G, n, h) and sends
the ephemeral public key Qe to the other party. Each party calculates a shared secret Z as shown
in Table 9. The shared keying material is computed by invoking the key derivation function
using Z (see Section 6.3).

Table 9: ANSI X9.63 Ephemeral Unified Model Key Agreement Scheme

Party U Party V
Static Data N/A N/A

Ephemeral Data 1. Ephemeral private key de,U

2. Ephemeral public key Qe,U

1. Ephemeral private key de,V

2. Ephemeral public key Qe,V

Input (q, FR a, b, [SEED], G, n, h),
de,U, Qe,V

(q, FR, a, b, [SEED] G, n, h),
deV, Qe,U

Computation (xe, ye) = hde,UQe,V

Ze = xe

(xe, ye) = hde,VQe,U

Ze = xe

21

October, 2001

Derive Keying
Material

Compute kdf(Z,OtherInput using Z =
Ze

Compute kdf(Z,OtherInput using Z =
Ze

7.2	 One Party Participation (client/server, store-and-forward, 1-way), C(1)
In this category, the parties participating in a key agreement perform different calculations to
determine the shared secret, depending on whether or not they initiate the key agreement process.
Let party U serve as the initiator, and party V serve as the responder. Only the initiator (party U)
generates an ephemeral key pair.

This category consists of two subcategories that are determined by the possession of static key
pairs by the parties. In the first subcategory, both the initiator and the responder have static key
pairs, and the initiator also generates an ephemeral key pair (see Section 7.2.1). In the second
subcategory, the initiator generates an ephemeral key pair, but has no static key pair; the
responder has only a static key pair (see Section 7.2.2).

7.2.1	 Initiator has a static key pair and generates an ephemeral key pair;
Responder has a static key pair, C(1,2)

For these schemes, party U (the initiator) uses both static and ephemeral private/public key pairs.
Party V (the responder) uses only a static private/public key pair. Party U and party V obtain
each other’s static public keys in a trusted manner. Party U also sends its ephemeral public key to
party V. A shared secret is generated by both parties using the available static and ephemeral
keys. The shared keying material is derived using the shared secret (see Figure 3).

U’s Static Public Key

V’s Static Public Key

U	 VU’s Ephemeral Public Key

1. U uses its static and ephemeral 1. V uses its static private key and
 private keys and V’s static public U’s static and ephemeral public
 key to form a shared secret keys to form a shared secret

2. U invokes the Key Derivation	 2. V invokes the Key Derivation
 Function using the shared secret Function using the shared secret

Figure 3: General protocol when the initiator has both static and ephemeral key pairs,
and the responder has only a static key pair

7.2.1.1 dhHybridOneFlow, C(1,2,DH,FF)
In this scheme from ANSI X9.42, each party has a static key pair (x, y) that was previously
generated as specified in Section 6.2.1 using the same domain parameters (p, q, g). Party U has

22

October, 2001

(xU, yU); party V has (xV, yV). Each party must obtain the other party’s static public key in a
trusted manner.

During the key agreement process, party U (the initiator) generates an ephemeral key pair (rU, tU)
using the same domain parameters (p, q, g) that were used to generate the static key pair and
sends the ephemeral public key tU to party V (the responder). Each party computes the shared
secret Z as shown in Table 10, and then computes the shared keying material by invoking the key
derivation function using Z (see Section 6.3).

Table 10: ANSI X9.42 dhHybridOneFlow Key Agreement Scheme

Party U Party V
Static Data 1. Static private key xU

2. Static public key yU

1. Static private key xV

2. Static public key yV

Ephemeral Data 1. Ephemeral private key rU

2. Ephemeral public key tU

N/A

Input (p, q, g), xU, rU, yV (p, q, g), xV, yU, tU

Computation pyZ xU

Vs mod=

pyZ rU

Ve mod=

pyZ xV

Us mod=

ptZ xV

Ue mod=

Derive Keying
Material

Compute kdf(Z,OtherInput using Z =
Ze || Zs

Compute kdf(Z,OtherInput using Z =
Ze || Zs

7.2.1.2 1-Pass Unified Model, C(1,2,DH,EC)
In this scheme from ANSI X9.63, each party has a static key pair (ds, Qs) that was previously
generated as specified in Section 6.2.1 using the same domain parameters (q, FR, a, b, [SEED],
G, n, h). Party U has (dsU, QsU); party V has (ds,V, Qs,V). Each party must obtain the other party’s
static public key in a trusted manner.

During the key agreement process, party U (the initiator) generates an ephemeral key pair (de,U,
Qe,U) using the same domain parameters (q, FR, a, b, [SEED], G, n, h) that were used to generate
the static key pair and sends the ephemeral public key Qe,U to party V (the responder). Each
party computes the shared secret Z as shown in Table 11, and then computes the shared keying
material by invoking the key derivation function using Z (see Section 6.3).

23

October, 2001

Table 11: ANSI X9.63 1-Pass Unified Model Key Agreement Scheme

Party U Party V
Static Data 1. Static private key ds,U

2. Static public key Qs,U

1. Static private key ds,V

2. Static public key Qs,V

Ephemeral Data 1. Ephemeral private key de,U

2. Ephemeral public key Qe,U

N/A

Input (q, FR, a, b, [SEED], G, n, h), ds,U,
de,U, Qs,V

(q, FR, a, b, [SEED], G, n, h), ds,V,
Qs,U, Qe,U

Computation (xs, ys) = h ds,U Qs,V

(xe, ye) = h de,U Qs,V

Zs = xs

Ze = xe

(xs, ys) = h ds,V Qs,U

(xe, ye) = h ds,V Qe,U

Zs = xs

Ze = xe

Derive Keying
Material

Compute kdf(Z,OtherInput using Z =
Ze || Zs

Compute kdf(Z,OtherInput using Z =
Ze || Zs

7.2.1.3 MQV1, C(1,2,MQV,FF)
For the MQV1 scheme from ANSI X9.42, each party has a static key pair (x, y) that was
previously generated as specified in Section 6.2.1 using the same domain parameters (p, q, g).
Party U has (xU, yU); party V has (xV, yV). Each party must obtain the other party’s static public
key in a trusted manner.

During the key agreement process, party U (the initiator) generates an ephemeral key pair (rU, tU)
using the same domain parameters (p, q, g) that were used to generate the static key pair and
sends the ephemeral public key tU to party V (the responder). Each party computes the shared
secret Z as shown in Table 12, and then computes the shared keying material by invoking the key
derivation function using Z (see Section 6.3).

Table 12: ANSI X9.42 MQV1 Key Agreement Scheme

Party U Party V
Static Data 1. Static private key xU

2. Static public key yU

1. Static private key xV

2. Static public key yV

Ephemeral Data 1. Ephemeral private key rU

2. Ephemeral public key tU

N/A

24

October, 2001

Input (p, q, g), xU, yV, rU, tU (p, q, g), xV, yU, tU

Computation 1. Ø 2øqw =

2. tU¢ = (tU mod 2w) + 2w

3. SU = (rU + tU¢xU) mod q

4. yV ¢ = (yV mod 2w) + 2w

5. () mod py yZ UV
Sy

VVMQV

' =

1. Ø 2øqw =

2. yV¢ = (yV mod 2w) + 2w

3. SV = (xV + yV¢xV) mod q

4. tU¢ = (tU mod 2w) + 2w

5. () mod pytZ VU
St

UUMQV

' =

Derive Keying
Material

Compute kdf(Z,OtherInput using Z =
ZMQV

Compute kdf(Z,OtherInput using Z =
ZMQV

7.2.1.4 1-Pass MQV, C(1,2,MQV,EC)
For the 1-Pass MQV scheme from ANSI X9.63, each party has a static key pair (ds, Qs) that was
previously generated as specified in Section 6.2.1 using the same domain parameters (q, FR, a, b,
[SEED], G, n, h). Party U has (dsU, QsU); party V has (ds,V, Qs,V). Each party must obtain the other
party’s static public key in a trusted manner.

During the key agreement process, party U (the initiator) generates an ephemeral key pair (de,U,
Qe,U) using the same domain parameters (q, FR, a, b, [SEED], G, n, h) that were used to generate
the static key pair and sends the ephemeral public key Qe,U to party V (the responder). Each
party computes the shared secret Z as shown in Table 13, and then computes the shared keying
material by invoking the key derivation function using Z (see Section 6.3).

25

October, 2001

Table 13: ANSI X9.63 1-Pass MQV Model Key Agreement Scheme

Party U Party V
Static Data 1. Static private key ds,U

2. Static public key Qs,U

1. Static private key ds,V

2. Static public key Qs,V

Ephemeral Data 1. Ephemeral private key de,U

2. Ephemeral public key Qe,U

N/A

Input (q, FR, a, b, [SEED], G, n, h), de,U,
ds,U, Qe,U, Qs,V

(q, FR, a, b, [SEED], G, n, h), ds,V,
Qs,V, Qe,U, Qs,U

Computation 1. implicitsigU = (de,U +
avf(Qe,U)ds,U) mod n

2. (x, y) = h · implicitsigU · (Qs,V +
avf(Qs,V) Qs,V)

3. Z = x

1. implicitsigV = (ds,V +
avf(Qs,V)ds,V) mod n

2. (x, y) = h · implicitsigV · (Qe,U +
avf(Qe,U) Qs,U)

Z = x
Derive Keying
Material

Compute kdf(Z,OtherInput using Z Compute kdf(Z,OtherInput using Z

7.2.2	 Initiator generates only an ephemeral key pair; Responder has only a static
key pair, C(1,1)

For these schemes, Party U generates an ephemeral key pair, but has no static key pair; party V
has only a static key pair. Party U obtains party V’s static public key in a trusted manner and
sends its ephemeral public key to Party V. The parties compute a shared secret using their private
keys and the other party’s public key. Each party uses the shared secret to derive keying material
(see Figure 4).

26

October, 2001

V’s Static Public Key

VU

U’s Ephemeral Public Key

1. U uses its ephemeral private key	 1. V uses its static private key and

and V’s static public key to form U’s ephemeral public key to form

a shared secret a shared secret

2. U invokes the Key Derivation	 2. V invokes the Key Derivation

Function using the shared secret Function using the shared secret

Figure 4: General protocol when the Initiator has only an ephemeral key pair,

and the Responder has only a static key pair

7.2.2.1 dhOneFlow, C(1,1,DH,FF)
In this scheme from ANSI X9.42, party V has a static key pair (xV, yV) that was previously
generated as specified in Section 6.2.1 using domain parameters (p, q, g). Party U must obtain
party V’s static public key in a trusted manner.

During the key agreement process, party U (the initiator) generates an ephemeral key pair (rU, tU)
using the same domain parameters (p, q, g) that were used to generate party V’s static key pair
and sends the ephemeral public key tU to party V (the responder). Each party computes the
shared secret Z as shown in Table 14, and then computes the shared keying material by invoking
the key derivation function using Z (see Section 6.3).

Table 14 : ANSI X9.42 dhOneFlow Key Agreement Scheme

Party U Party V
Static Data N/A 1. Static private key xV

2. Static public key yV

Ephemeral Data 1. Ephemeral private key rU

2. Ephemeral public key tU

N/A

Input (p, q, g), rU, yV (p, q, g), xV, tU

Computation pyZ rU

Ve mod= ptZ xV

Ue mod=

27

October, 2001

Derive Keying
Material

Compute kdf(Z,OtherInput using Z =
Ze

Compute kdf(Z,OtherInput using Z =
Ze

7.2.2.2 1-Pass Diffie-Hellman, C(1,1,DH,EC)
In this scheme from ANSI X9.63, party V has a static key pair (ds,V, Qs,V) that was previously
generated as specified in Section 6.2.1 using domain parameters (q, FR, a, b, [SEED], G, n, h).
Party U must obtain party V’s static public key (Qs,V) in a trusted manner.

During the key agreement process, party U (the initiator) generates an ephemeral key pair (de,U,
Qe,U) using the same domain parameters (q, FR, a, b, [SEED], G, n, h) that were used to generate
party V’s static key pair and sends the ephemeral public key Qe,U to party V (the responder).
Each party computes the shared secret Z as shown in Table 15, and then computes the shared
keying material by invoking the key derivation function using Z (see Section 6.3).

Table 15: ANSI X9.63 1-Pass Diffie-Hellman Model Key Agreement Scheme

Party U Party V
Static Data N/A 1. Static private key ds,V

2. Static public key Qs,V

Ephemeral Data 1. Ephemeral private key de,U

2. Ephemeral public key Qe,U

N/A

Input (q, FR, a, b, [SEED], G, n, h), de,U,
Qs,V

(q, FR, a, b, [SEED], G, n, h), dsV,
Qe,U

Computation (x, y) = h de,U Qs,V

Z = x
(x, y) = h ds,V Qe,U

Z = x

Derive Keying
Material

Compute kdf(Z,OtherInput using Z Compute kdf(Z,OtherInput using Z

7.3 Static keys only, C(0)
In this category, each party has only static key pairs that have been generated using the same
domain parameters. Each party obtains the other party’s static public keys and calculates the
shared secret by using their own static private key and the other party’s static public key. Keying
material is derived using the key derivation function and the shared secret (see Figure 5).

28

October, 2001

U’s Static Public Key

U	 V

V’s Static Public Key

1. U uses its static private key	 1. V uses its static private key

and V’s static public key to and U’s static public key to

form a shared secret form a shared secret

2. U invokes the Key Derivation 2. U invokes the Key Derivation
Function using the shared secret Function using the shared secret

Figure 5: Each party has only a static key pair

7.3.1 dhStatic, C(0,2,DH,FF)
In this scheme from ANSI X9.42, each party has a static key pair (x, y) that was previously
generated as specified in Section 6.2.1 using the same domain parameters (p, q, g). Party U has
(xU, yU); party V has (xV, yV). Each party must obtain the other party’s static public key in a
trusted manner.

Each party computes the shared secret Z as shown in Table 16, and then computes the shared
keying material by invoking the key derivation function using Z (see Section 6.3).

Table 16: ANSI X9.42 dhStatic Key Agreement Scheme

Party U Party V
Static Data 1. Static private key xU

2. Static public key yU

1. Static private key xV

2. Static public key yV

Ephemeral
Data

N/A N/A

Input (p, q, g), xU, yV (p, q, g), xV, yU

Computation pyZ xU

Vs mod= pyZ xV

Us mod=

Derive Keying
Material

Compute kdf(Z,OtherInput using Z =
Zs

Compute kdf(Z,OtherInput using Z =
Zs

29

October, 2001

7.3.2 Static Unified Model, C(0,2,DH,EC)
In this scheme from ANSI X9.63, each party has a static key pair (ds, Qs) that was previously
generated as specified in Section 6.2.1 using the same domain parameters (q, FR, a, b, [SEED],
G, n, h). Party U has (dsU, QsU); party V has (ds,V, Qs,V). Each party must obtain the other party’s
static public key in a trusted manner.

Each party computes the shared secret Z as shown in Table 17, and then computes the shared
keying material by invoking the key derivation function using Z (see Section 6.3).

Table 17: ANSI X9.63 Static Unified Model Key Agreement Scheme

Party U Party V
Static Data 1. Static private key ds,U

2. Static public key Qs,U

1. Static private key ds,V

2. Static public key Qs,V

Ephemeral Data N/A N/A

Input (q, FR, a, b, [SEED], G, n, h), ds,U,
Qs,V

(q, FR, a, b, [SEED], G, n, h), ds,V,
Qs,U

Computation (xs, ys) = hds,UQs,V

Zs = xs

(xs, ys) = hds,VQs,U

Zs = xs

Derive Keying
Material

Compute kdf(Z,OtherInput using Z =
Zs

Compute kdf(Z,OtherInput using Z =
Zs

9. Key Transport
[To be addressed]

10. Keys Derived from a “Master Key”
[Suggestions on this section are welcome]

11. Key Recovery
For some applications, the keying material used to protect data may need to be recovered (e.g.,
the normal reference copy of the keying material is lost or corrupted). In this case, either the
keying material or sufficient information to reconstruct the keying material needs to be available
(e.g., the keys, domain parameters and the scheme used to perform the key establishment
process).

Keys used during the key establishment process must be handled in accordance with the
following:

•	 Static key pairs may be saved (see the Key Management Guideline document [8] for
required protections); static public keys could be saved, for example, in public key
certificates.

30

October, 2001

• Ephemeral public keys may be saved.
• Ephemeral private keys must not be recoverable, and, therefore, must not be saved.

[Note: This implies that schemes where both parties generate ephemeral key pairs (see Section
7.1) cannot be recoverable by reconstruction of the keying material. For those schemes where
only the initiator generates an ephemeral key pair (see Section 7.2), only the responder can
recover the keying material by reconstruction.]

[Note: Text may need to be added about recovering the key derived from a master key.]

General guidance on key recovery and the protections required for each type of key is provided
in the Key Management Guideline document [8].

12. Implementation Validation

Implementations of schemes in the final schemes document must be tested in order to claim
compliance with this workshop document. Information on NIST’s testing program is available at
http://csrc.nist.gov/cryptval.

31

http://csrc.nist.gov/cryptval

October, 2001

Appendix A: Secure Implementation

Appendix B: Security Considerations

Appendix C: Examples

Appendix E: References

[1]	 FIPS 140-2, Security requirements for Cryptographic Modules, May 25, 2001.

[2]	 FIPS 180-2 (Draft), Secure Hash Standard, [Insert data].

[3]	 FIPS 186-3 (Draft), Digital Signature Standard, [Insert date].

[4]	 FIPS 196, Entity Authentication Using Public Key Cryptography, February, 1997.

[5]	 FIPS 197, Advanced Encryption Standard, [Insert date].

[6]	 FIPS 198 (Draft), The Keyed-Hash Message Authentication Code (HMAC), [Insert
date].

[7]	 SP 800-XX, Recommendation for Block Cipher Modes of Operation, [Insert date].

[8]	 SP 800-XX, Key Management Guideline, [Insert date].

[9]	 ANSI X9.42 -2001, Public Key Cryptography for the Financial Services Industry:
Agreement of Symmetric Keys Using Discrete Logarithm Cryptography

[10] ANSI X9.44 (Draft), Public Key Cryptography for the Financial Services Industry:
Agreement and Key Transport Using Factoring-Based Cryptography

[11] ANSI X9.63 (Draft), Public Key Cryptography for the Financial Services Industry: Key
Agreement and Key Transport Using Elliptic Key Cryptography

[12] ANSI X9.80-2001, Prime number Generation, Primality Testing and Primality

Certificates

[13] ANSI X9.82 (Draft), Random Bit Generation

[14] A. Menezes, P. van Oorschot and S. Vanstone, Handbook of Applied Cryptography,
CRC Press, 1997

32

