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Abstract

The Elliptic Curve Digital Signature Algorithm (ECDSA) is one of the
most widely used schemes in deployed cryptography. Through its applica-
tions in code and binary authentication, web security, and cryptocurrency,
it is likely one of the few cryptographic algorithms encountered on a daily
basis by the average person. Standardizing a design for a threshold vari-
ant of ECDSA will be significant progress toward standardizing building
blocks for threshold cryptosystems at large.

However, the design of ECDSA is such that executing multi-party or
threshold signatures in a secure manner is challenging: unlike other, less
widespread signature schemes, secure multi-party ECDSA requires custom
protocols, which has heretofore implied reliance upon additional crypto-
graphic assumptions and primitives such as the Paillier cryptosystem.

This paper reports on new protocols (appearing in [DKLs18, DKLs19])
for multi-party ECDSA key-generation and signing with arbitrary thresh-
olds, that are secure against malicious adversaries in the Random Oracle
Model assuming only the Computational Diffie-Hellman Assumption. We
instantiate our protocols using the same hash function and elliptic curve
group used by the ECDSA signature being computed. Our threshold ¢
scheme requires log(t) 4+ 6 rounds of communication with scope for ad-
justment to constant rounds if desired, and when ¢ = 2 we provide an
optimized two message protocol.

We evaluate our implementations and find that the wall-clock time for
computing a signature through our two-party protocol comes to within a
factor of 18 of local signatures. Concretely, two parties can jointly sign a
message in just over three milliseconds.

We also demonstrate the feasibility of signing with a low-power device
(as in the setting of 2-factor authentication) by computing a signature
between two Raspberry Pi devices in under 60 milliseconds.

1 Introduction

Threshold Digital Signature Schemes, a classic notion in the field of Cryptog-
raphy [Des87], allow a group of individuals to delegate their joint authority to



sign a message to any subcommittee among themselves that is larger than a
certain size. Though extensively studied, threshold signing is seldom used in
practice, in part because until recently, threshold techniques for standard signa-
tures tended to be highly inefficient, reliant upon unacceptable assumptions, or
otherwise undesirable, while bespoke threshold schemes continue incompatible
with familiar and widely-accepted standards.

Consider the specific case of the Elliptic Curve Digital Signature Algorithm
(ECDSA), perhaps the most widespread of signatures schemes: almost all ex-
isting threshold techniques for generating ECDSA signatures require the in-
vocation of heavy cryptographic primitives such as Paillier encryption [Linl7,
GGN16, BGG17, GG18]. This leads both to poor performance and to reliance
upon assumptions that are foreign to the mathematics on which ECDSA is
based.

This is troublesome, because performance concerns and avoidance of certain
assumptions often motivate the use of ECDSA in the first place. To address this
probem, in [DKLs18, DKLs19] we propose an approach to computing threshold
ECDSA signatures that makes use of Multiparty Computation (MPC) tech-
niques, augmented by a simple linear check in the exponent to enforce security
against malicious adversaries. Our techniques can be securely instantiated by
relying on the hardness of the Computational Diffie-Hellman problem in the
same curve as the ECDSA signature itself, in addition to using the same hash
function as ECDSA. We implement and benchmark our protocols, showing that
using native ECDSA assumptions for threshold ECDSA does not have to com-
promise on concrete efficiency; indeed our wall-clock times are better than all
other current approaches in both the LAN and WAN settings.

The recent protocol of Lindell and Nof [LN18] is constructed under the
Decisional Diffie-Hellman assumption, making use of a multiplier which can be
instantiated using our CDH-based one (although this is not the one that they
choose to implement for their benchmarks). However due to the large number
of public key operations required by the zero-knowledge proofs in their protocol,
we believe that our approach will compare favourably if their threshold ECDSA
scheme were to be implemented using our multiplier.

In this paper we provide the necessary background to motivate the standard-
ization of threshold ECDSA signature schemes, briefly describe our approach
of using MPC techniques to achieve this task, and report the efficiency of our
implementation to demonstrate that our protocol is already practical in a num-
ber of real-world settings. The technical details can be found in our published
work [DKLs18, DKLs19).

2 Background

ECDSA is a standardized [Nat13, Ame05, Brol0] derivative of the earlier Digi-
tal Signature Algorithm (DSA), devised by David Kravitz [Kra93]. Where DSA
is based upon arithmetic modulo a prime, ECDSA uses elliptic curve opera-
tions over finite fields. Compared to its predecessor, it has the advantage of



being more efficient and requiring much shorter key lengths for the same level
of security. In addition to the typical use cases of authenticated messaging,
code and binary signing, remote login, &c., ECDSA has been eagerly adopted
where high efficiency is important. For example, it is used by TLS [BWBG™06],
DNSSec [HW12], and many cryptocurrencies, including Bitcoin [Bit17b] and
Ethereum [Wool7].

A t-of-n threshold signature scheme is a set of protocols which allow n parties
to jointly generate a single public key, along with n private shares of a joint secret
key, and then privately sign messages if and only if ¢ (some predetermined
number) of those parties participate in the signing operation. In addition to
satisfying the standard properties of signature schemes, it is necessary that
threshold signature schemes be secure in a similar sense to other protocols for
multi-party computation. That is, it is necessary that no malicious party can
subvert the protocols to extract another party’s share of the secret key, and that
no subset of fewer than ¢t parties can collude to generate signatures.

The concept of threshold signatures originates with the work of Yvo Desmedt
[Des87], who proposed that multi-party and threshold cryptographic protocols
could be designed to mirror societal structures, and thus cryptography could
take on a new role, replacing organizational policy and social convention with
mathematical assurance. Although this laid the motivational groundwork, it was
the subsequent work of Desmedt and Frankel [DF89] that introduced the first
true threshold encryption and signature schemes. These are based upon a com-
bination of the well-known ElGamal [EIG84] and Shamir Secret-Sharing [Sha79)
primitives, and carry the disadvantage that they require a trusted party to dis-
tribute private keys. Pedersen [Ped91] later removed the need for a trusted third
party.

Desmedt and Frankel [DF89] recognized the difficulties inherent in designing
threshold systems for standard signature schemes. Nevertheless, they later re-
turned to the problem [DF91], proposing a non-interactive threshold system for
RSA signatures [RSA78]. This was subsequently improved and proven secure in
a series of works [DF92, GJKR96a, DSDFY94, Sho00]. Threshold schemes were
also developed for Schnorr [Sch89, SS01] and DSA [Lan95, GJKR96b, MRO01]
signatures. Many of these schemes were too inefficient to be practical, however.

The efficiency and widespread acceptance of ECDSA make it a natural tar-
get for similar work, and indeed threshold ECDSA signatures are such a useful
primitive that many cryptocurrencies are already implementing a similar con-
cept in an ad-hoc manner [Bit17a]. Unfortunately, the design of the ECDSA
algorithm poses a unique problem: the fact that it uses its nonce in a multi-
plicative fashion frustrates attempts to use typical linear secret sharing systems
as primitives.

It has only very recently become practically feasible to compute a threshold
ECDSA signature along with setup; of the broadly two approaches, one using
homomorphic encryption [GG18, LN18] and the other MPC [DKLs18, DKLs19]
a clear winner is yet to emerge. The homomorphic encryption based approaches
are more efficient in terms of communication, while the MPC approach is more
efficient in computation. While the works of [GG18, LN18] require a constant



number of rounds (as opposed to log(t) in the MPC approach) the MPC ap-
proach can in principle be made constant-round at the expense of some compu-
tation and communication, by means of the Bar-Ilan and Beaver inversion tech-
nique [BB89] (work in progress). We note that in terms of wall-clock time (ac-
counting for network costs, etc), in both the WAN and LAN settings, our bench-
marks for signature generation significantly outperform those of [GG18, LN18|.
While the benchmarks of [LN18] were performed on a single threaded machine,
we do not believe that additional cores on commodity hardware will bridge the
difference in performance to be comparable to the MPC approach. The setup
times for our MPC approach is orders of magnitude more efficient than the ones
based on homomorphic encryption.

3 Our Techniques

We present two sets of protocols; a general t-of-n multiparty threshold ECDSA
scheme [DKLs19] that requires log(¢) 4+ 6 rounds to sign, and a specialized min-
imally interactive 2-of-n scheme [DKLs18| that requires only 2 rounds (one in
each direction) to sign. Both have similar setup protocols.

Recall the signing equation for ECDSA,

H(m) +sk-ry
N k
where m is the message, H is a hash function, sk is the secret key, k is the
instance key, and r,, is the z-coordinate of the elliptic curve point R =k -G (G
being the generator for the curve). At a high level, our approach is constituted
by the following recipe:

1. Setup:

(a) Key generation. To establish the common signing key sk, each
party chooses a random additive share of sk, of which they compute
a t-of-n Shamir sharing and communicate said shares to other parties
privately. The validity of shares received is checked by having each
party broadcast their share in the exponent, and verifying that every
possible interpolation in the exponent yields the same value (which
can be done in time O(n)).

(b) Base Oblivious Transfers. Along with signing key generation, the
setup required for the OT-based multiplier (consisting of the base
OTs to be extended later) is done at this time.

2. Signing a message m:

(a) Nonce generation. A key-agreement protocol is used to produce a
nonce R, of which the discrete logarithm k is multiplicatively shared
among the parties. In the two party setting this is done by Diffie-
Hellman, whereas in the multiparty setting a ¢-party multiplier is
used for this task.



(b) Multiplication. A t-party multiplication protocol is used to com-
pute additive shares of sk/k and 1/k, from which an additive sharing
of a complete signature o can be obtained by simple linear combina-
tion.

To compute these multiplications, one could apply generic multi-
party computation over arithmetic circuits, but generic MPC tech-
niques incur large practical costs in order to achieve malicious secu-
rity. Instead, we construct a new two-party multiplication protocol,
based upon the semi-honest Oblivious-Transfer (OT) multiplication
technique of Gilboa [Gil99], which we harden to tolerate malicious
adversaries. Note that even if the original Gilboa multiplication pro-
tocol is instantiated with a malicious-secure OT protocol, it is vul-
nerable to a simple selective failure attack whereby the OT sender
(Alice) can learn one or more bits of the secret input of the OT
receiver (Bob). We mitigate this attack by encoding Bob’s input
randomly, such that Alice must learn more than a statistical security
parameter number of bits in order to determine his unencoded input.

(¢) Consistency check. In order to verify that consistent inputs were
supplied to the multipliers, we introduce a simple consistency check
mechanism. In essence, the parties combine their shares with the
secret key and instance key in the exponent, such that if the shares
are consistent then they evaluate to a constant value. This check is
a novel and critical element of our protocols, and we conjecture that
it can be applied to other domains. The security of this mechanism
relies on the hardness of the CDH problem in the elliptic curve group
used by the signature itself.

4 Implementation

We created proof-of-concept implementations of our two-party and t-of-n setup
and signing protocols in the Rust language. Our implementation uses the
secp256k1 curve, as standardized by NIST [Brol0]. Additionally, we chose our
statistical security parameter as 80. In all cases where our protocols permitted a
choice among different methods for instantiating a particular primitive, we chose
the option that most closely mirrors the ECDSA specification. For example, we
chose SHA-256 as our hash function, and we implemented Oblivious Transfer
Extensions using a combination of the protocol of Keller et al. [KOS15] and
our own varant of the protocol of Chou and Orlandi [CO15], since this method
works over the same elliptic curve as ECDSA and requires no assumptions be-
yond those necessary to prove our signing protocols secure.

In our implementation, each party parallelizes its interactions with its coun-
terparties, using a number of threads equal to the number of parties, up to a
specified maximum. While it is hypothetically possible for our setup protocol
to parallelize key-generation and one-time Oblivious Transfer Extension initial-
ization, our implementation runs these two phases sequentially, and thus the



n/t Range n/t Step Samples (Signing) Samples (Setup)

2,8] 1 16000 2000
(8,16] 2 8000 1000
(16,32 4 4000 500
(32, 64] 8 2000 250
(64,128] 16 1000 125
(128, 256 32 500 62

Table 1: LAN Benchmark Parameters. For signing we varied ¢ according to these
parameters, and for setup we varied n, fixing t = [(n +1)/2].

round count of setup is increased from five to eight.

We benchmarked our implementation using a set of Google Cloud Platform
nl-highcpu-8 nodes, each running Ubuntu 18.04 with kernel 4.15.0. Each node
of this type has four physical cores clocked at 2.0 GHz, and is capable of exe-
cuting eight threads simultaneously. Each party participating in a benchmark
was allocated one node, and the parties communicated via Google’s internal
network. We compiled our code using the nightly version of Rust 1.28, with the
default level of optimization. Parallelism was provided by the Rayon crate and,
as each node can execute eight threads simultaneously, we limited the number of
threads used in signing to ten (having arrived at this number empirically). Our
hash function implementations were written in C using compiler intrinsics, and
were compiled with GCC 8.2.0. Our benchmarking programs were designed to
establish insecure connections among the parties one time only, and then run a
batch of setup or signing operations, measuring the wall clock time for the entire
batch. Thus, they record overhead due to latency and bandwidth constraints,
but they do not record overhead due to private or authenticated channels.

4.1 LAN Benchmarks

For benchmarks in the LAN setting, we created a set of 256 nodes in Google’s
South Carolina datacenter. Among these nodes, we measured the bandwidth
to be generally between 5 and 10 Gbits/sec, and the round-trip latency to be
approximately 0.3 ms. Using these nodes, we collected data for both our setup
and signing protocols using combinations of parameters as specified in Table 1.
For signing benchmarks, all costs are independent of n, the number of parties in
the larger group from whom the signing parties are selected. Consequently, we
varied only ¢, the number of parties actually participating in signing. For setup,
only computation costs depend upon ¢, and not bandwidth; consequently we
varied n and set t = [(n+1)/2], which we determined to be the most expensive
value relative to a particular choice of n. Our aim in choosing sample counts
was to ensure each benchmark took five to ten minutes in total, in order to
smooth out artifacts due to transient network conditions. Our results for setup
are reported in Figure 1, and our results for signing are reported in Figure 2.
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Figure 1: Wall Clock Times for n-Party Setup over LAN. Note that all parties
reside on individual machines in the same datacenter, and latency is on the order of a
few tenths of a millisecond.

4.2 Comparison

In a similar benchmark environment to our own, but without parallelism, the
2-0f-2 protocol of Lindell [Linl7] was reported to require 36.8 ms for signing
with only two parties, and 2435 ms for key-generation. Our two-party proto-
col requires only 5.8ms for 2-of-2 signing, and allowing parallelism, our t-of-n
protocol is capable of signing with 20 parties in 31.6 ms (a slightly shorter time
envelope). For setup (which includes key-generation) our protocols require 45
ms with two parties and 232 with 20.

In the arbitrary-threshold context, a number of prior and contemporary
works exist. As with Lindell’s protocol, we did not benchmark their protocols
in our environment, and so no truly fair comparison is possible. Neverthe-
less, all of them report benchmarks among 2 to 20 LAN-connected parties on
broadly similar hardware to our own, and we believe it possible to draw some
loose conclusions by comparing their results. The protocol of Gennaro and
Goldfeder [GG18] appears to be the fastest prior or concurrent work: they do
not count network costs or report benchmarks for their key-generation proto-
col, but claim that in terms of computation their signing protocol requires 77
ms among two parties and 509 ms among 20. Lindell and Nof [LN18] report
benchmarks that count network costs, but do not take advantage of parallelism.
They demonstrate signing times of 305 ms among two parties and 5 seconds
among 20, and key-generation times of 11 and 28 seconds, respectively. The
protocols of Gennaro et al. [GGN16] and Boneh et al. [BGG17] are somewhat
slower; for explicit comparisons with these, we refer the reader to Doerner et
al. [DKLs18, DKLs19]. In all parameter regimes reported, all prior and concur-
rent works are at least one order of magnitude slower than our own in terms
of both key-generation and signing, and in some cases we improve upon them
by two or more orders of magnitude. We stress again that as these benchmarks
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Figure 2: Wall Clock Times for t-Party Signing over LAN. Note that all parties
reside on individual machines in the same datacenter, and latency is on the order of a
few tenths of a millisecond.

were not run in identical environments, they do not constitute a fair compari-
son. Nevertheless, we do not believe that environmental differences account for
the performance discrepancy.

4.3 WAN Benchmarks

Our protocol is at a disadvantage relative to other works in terms of round
count and bandwidth cost. In order to demonstrate the practical implications
of this fact, we ran an additional benchmark in the WAN setting. We chose
16 Google datacenters (otherwise known as zones) that offer instances with
current-generation CPUs; these are located on a map in Figure 3. Five were
located inside the United States, in South Carolina, Virginia, Oregon, Califor-
nia, and Iowa. Among these, the longest leg was between Oregon and South
Carolina, with a round-trip latency of 66.5 ms and bandwidth of 353 Mbits/sec.
The remaining 11 were located in Montreal, London, Frankfurt, Belgium, the
Netherlands, Finland, Sydney, Taiwan, Tokyo, Mumbai, and Singapore. Among
the complete set, the longest leg was between Belgium and Mumbai, with a
round-trip latency of 348 ms and a bandwidth of 53.4 MBits/sec. We tested
two configurations: one with only the five US datacenters participating, and
another with all 16. For each configuration, we performed benchmarks with one
party in each participating datacenter, and with eight parties in each partici-
pating datacenter. In all cases, we collected 125 samples. Results are reported
in Table 2, along with comparative data from our LAN benchmarks.
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Figure 3: Map of Datacenter Locations used for WAN Benchmarks, with
latency figures along a few of the longer routes. The subgroup of five zones inside the
US are highlighted in red.

Parties/Zones  Signing Rounds  Signing Time Setup Time

5/1 9 13.6 67.9
5/5 9 288 328
16/1 10 26.3 181
16/16 10 3045 1676
40/1 12 60.8 539
40/5 12 592 743
128/1 13 193.2 2300
128/16 13 4118 3424

Table 2: Wall-clock Times in Milliseconds over WAN. The benchmark config-
urations used are described in Section 4.3. For signing we varied ¢ according to these
parameters, and for setup we varied n, fixing t = |(n + 1)/2]. Benchmarks involving
only a single zone are LAN benchmarks, for comparison.

4.4 Low-power Benchmarks

Finally, we performed a set of benchmarks on a group of three Raspberry Pi
model 3B+ single-board computers in order to demonstrate the feasibility of
evaluating our protocols on small, low-powered devices. Each board has a single,
quad-core ARM-based processor clocked at 1.4 GHz. The boards were loaded
with Raspbian Linux (kernel 4.14) and connected to one another via ethernet.
As an optimization for the embedded setting, we abandoned SHA-256 (except
where required by ECDSA) in favor of the BLAKE2 hash function [ANWOW13],
using assembly implementations provided by the BLAKE2 authors. To simulate
the setting wherein an embedded device signs with a more powerful one, we
used a 2013 15” Macbook Pro running Mac OS 10.13 (i.e. one author’s laptop).
This machine was engaged in other tasks at the time of benchmarking, and no
attempt was made to prevent this. We benchmarked 2-of-2 signing and setup



Configuration = Benchmark Setup Time Signing Time

Macbook/RPi 2-0f-2 1419 52.6
2xRPi 2-o0f-2 1960 58.5
3xRPi 3-0f-3 2277 162

Table 3: Wall-clock Times in Milliseconds for Raspberry Pi. The benchmark
configurations used are described in Section 4.4.

between the Macbook and a single Raspberry Pi, and t-of-n setup and signing
among the group of Pis, with ¢ and n set as both 2 and 3. For setup, we
collected 50 samples, and for signing, we collected 250. Results are presented
in Table 3. We observe that in spite of the limitations of the hardware on
which these benchmarks were run, the signing time remains much less than a
second, and setup requires only a few seconds. Thus we expect our protocol
to be computationally efficient enough to run even on embedded devices such
as hardware tokens or smartwatches, and certainly on more powerful mobile
devices such as phones.

5 Conclusion

Threshold signature schemes are a powerful cryptographic primitive that are
natural building blocks for any threshold cryptosystem, direct applications notwith-
standing. Unfortunately, ECDSA which is one of the most widely deployed
signature schemes, does not permit a simple threshold variant. Candidate solu-
tions for this problem have only recently entered the realm of practical feasibility,
therefore formulating a standard for this task will be substantial progress to-
ward widespread deployment of threshold variants of signatures already in use
today.

In this paper we make the case for the use of MPC techniques to solve this
problem, demonstrating protocols to compute threshold ECDSA signatures that
add no assumptions foreign to ECDSA itself. Our benchmarks indicate that our
threshold ECDSA scheme achieves the best wall-clock times of such schemes
known to date, showing that being conservative in assumptions need not come
at the cost of concrete efficiency.
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