tSHAKE: Incremental Hashing
With SHAKE128 and SHAKE256
for the Zettabyte Era

Danilo Gligoroski and Simona Samardjiska

Department of Telematics,

Faculty of Information Technology, Mathematics and Electrical Engineering
Norwegian University of Science and TechnologyTechnology - NTNU, NORWAY

® NTNU

Innovation and Creativity

www.ntnu.no - SHA-3 2014 Workshop, iSHAKE: Incremental Hashing With SHAKE128 and SHAKE256

Incremental cryptography

® Introduced 20 years ago in Crypto '94 paper by
Bellare, Goldreich and Goldwasser, “Incremental
Cryptography: The Case of Hashing and Signing”

® Bellare, Goldreich and Goldwasser, STOC '95,
“Incremental Cryptography and Applications to
Virus Protection”

¢ Bellare and Micciancio, “A New Paradigm for
Collision-Free Hashing: Incrementality at Reduced
Cost”, Eurocrypt '97

@ NTNU

A
www.ntnu.no ¥ SHA-3 2014 Workshop, iSHAKE: Incremental Hashing With SHAKE128 and SHAKE256

Incremental cryptography

® Introduced 20 years ago in Crypto '94 paper by
Bellare, Goldreich and Goldwasser, “Incremental
Cryptography: The Case of Hashing and Signing”

® Bellare, Goldreich and Goldwasser, STOC '95,
“Incremental Cryptography and Applications to
Virus Protection”

¢ Bellare and Micciancio, “A New Paradigm for
Collision-Free Hashing: Incrementality at Reduced
Cost”, Eurocrypt '97

WARNING:

Innovation and Creativity

A
www.ntnu.no ¥ SHA-3 2014 Workshop, iSHAKE: Incremental Hashing With SHAKE128 and SHAKE256

Basic idea of Incrementality

® |f we have already computed the function on some
document, and this document is modified, then we update
the function value based on the old value, and introduced
changes rather than re-computing it from scratch.

® NTNU

Innovation and Creativity

A
www.ntnu.no ¥ SHA-3 2014 Workshop, iSHAKE: Incremental Hashing With SHAKE128 and SHAKE256

Basic idea of Incrementality

® |f we have already computed the function on some
document, and this document is modified, then we update
the function value based on the old value, and introduced
changes rather than re-computing it from scratch.

OldDocument: F(,,)

==2» F(OldDocument)

® NTNU

Innovation and Creativity

A
www.ntnu.no ¥ SHA-3 2014 Workshop, iSHAKE: Incremental Hashing With SHAKE128 and SHAKE256

Basic idea of Incrementality

® |f we have already computed the function on some
document, and this document is modified, then we update
the function value based on the old value, and introduced
changes rather than re-computing it from scratch.

OldDocument: F(,,)

==2» F(OldDocument)

® NTNU

Innovation and Creativity

A
www.ntnu.no ¥ SHA-3 2014 Workshop, iSHAKE: Incremental Hashing With SHAKE128 and SHAKE256

Basic idea of Incrementality

® |f we have already computed the function on some
document, and this document is modified, then we update
the function value based on the old value, and introduced
changes rather than re-computing it from scratch.

2 F(OldDocument)

¢

NewDocument

® NTNU

Innovation and Creativity

www.ntnu.no ¥ SHA-3 2014 Workshop, iSHAKE: Incremental Hashing With SHAKE128 and SHAKE256

Basic idea of Incrementality

® |f we have already computed the function on some
document, and this document is modified, then we update
the function value based on the old value, and introduced
changes rather than re-computing it from scratch.

2 F(OldDocument)

2 F(NewDocument)

® NTNU

Innovation and Creativity

www.ntnu.no ¥ SHA-3 2014 Workshop, iSHAKE: Incremental Hashing With SHAKE128 and SHAKE256

Basic idea of Incrementality

® |f we have already computed the function on some
document, and this document is modified, then we update
the function value based on the old value, and introduced
changes rather than re-computing it from scratch.

OIdDocument?F(Oldmcumeno
Change, &Changep

2 F(NewDocument)

Change, Change, ®@NTNU

Innovation and Creativity

www.ntnu.no - SHA-3 2014 Workshop, iSHAKE: Incremental Hashing With SHAKE128 and SHAKE256

Basic idea of Incrementality

® |f we have already computed the function on some
document, and this document is modified, then we update
the function value based on the old value, and introduced
changes rather than re-computing it from scratch.

2 F(NewDocument)

2 F(NewDocument)

® NTNU

Innovation and Creativity

www.ntnu.no - SHA-3 2014 Workshop, iSHAKE: Incremental Hashing With SHAKE128 and SHAKE256

Basic idea of Incrementality

® |f we have already computed the function on some
document, and this document is modified, then we update

the function value based on th The main motivation is that
changes rather than re-compy the second computation of
F() can be ordersof

OldDocument

- ()

® NTNU

Innovation and Creativity

A
www.ntnu.no ¥ SHA-3 2014 Workshop, iSHAKE: Incremental Hashing With SHAKE128 and SHAKE256

Bellare-Miciancio concrete proposals for
construction of Colision-free Hashing

www.nthu.no

M

M

n

!

® Group G with combining operation ©
® Randomizer or compression
function h mapping fixed size
strings to element of G
@ Original message
M= MlM2 Mn
that we transform into the message
M'=<1>M <2>M_ ... <n>M_

(prepend the index of each block to the
block)
@ Apply h to each block M = <i>M to

obtainy = h(M/)
@ Combine y. in G by the operation O:
y(M)=y Oy O ..y

® NTNU

Innovation and Creativity

SHA-3 2014 Workshop, iSHAKE: Incremental Hashing With SHAKE128 and SHAKE256

Operation ©, the size of the
hash and properties of h

 Bellare and Micciancio proposed three variants for the operation O:
- MuHASH: Multiplication in a group

» special cases:
-multiplication in groups of prime order
-integer multiplication modulo p
- AdHASH: Addition modulo M
- LtHASH: Vector addition

* They concluded that in order the incremental hash function y() to
be collision free the following conditions must be satisfied:

- In the group (G, ©) the balance problem should be hard,
- The compression function h() should be collision free
- The size k of the hash output should be around 1024 bits
O NTNU

Innovation and Creativity

www.ntnu.no ¥ SHA-3 2014 Workshop, iSHAKE: Incremental Hashing With SHAKE128 and SHAKE256

Operation ©, the size of the
hash and properties of h

« However Wagner in “A generalized birthday
problem” CRYPTO 2002, showed that the size k of
the hash should be much bigger (for standard security
levels, even up to tens of thousands of bits).

» Basically those findings killed the attractiveness of the
concept of incremental hashing.

 Even more: None of the SHA-3 candidates explicitly
explained can they offer some form of incremental
hashing

® NTNU

Innovation and Creativity

A
www.ntnu.no ¥ SHA-3 2014 Workshop, iSHAKE: Incremental Hashing With SHAKE128 and SHAKE256

HOWEVER

® NTNU

Innovation and Creativity

www.ntnu.no - SHA-3 2014 Workshop, iSHAKE: Incremental Hashing With SHAKE128 and SHAKE256

\Welcome to the Zettabyte Era

Cisco Visual Networking Index
Global IP Traffic Forecast 2010-2015

Western Furope Central [Eastem Europe
Norfi e (0 2.3 BILLION () 902 MILLION Jopa
#2 36 Mbps {+290%) £ 20 Mbps (1720%)
I:’] LI 1 18.9 EB/month (1285%) 4 3.7 EBfmonth (#4247 G PRy MELON
f# 27 Mbps | 1266%) 2 63 Mbps (1212%)
1 22.3 EB/month (72 18%) | : 1 4.8 EB/month (+235%)
Middle East | Africa
Latin America 0 1.3 BILLION Agta-Pacific
Q 1.3 BILLION {7 1 MOEER) () 5.8 BILLION

£ 8 Mops (1101%) T 20 Eﬂiﬁg};ﬁj (1899%)

K
) oy e T
MpDs | T
e l‘i bttt Ut
el v
LR

\/\/elcome to the Zettabyte 1

Annual global IP trafflc W|II pass the zettabyte
threshold by the end of 2015, and will reach 1.4
zettabytes per year by 2017. In 2015, global IP traffic

will reach 1.0 zettabytes per year or 83.8 exabytes per
month, and by 2017, global IP traffic will reach 1.4
zettabytes per year or 120.6 exabytes per month

oy § &9 Coimontn . Y 4.7 EBfmontn |

f# 27 Mbps | 1266 #o 63 Mbps (1

=iy 1| WHAT IS A ZETTABYTE?
Latin America 01381 1,000,000,000,000gigabyte
() 1.3 BILLION f#7Wp 41 000,000,000terabyte
£ 8 Mops (110 12°% 4 000,000petabyte
T 4.7 EB/month © 100 1’000exabyte

L2ettabyte |

\/_\/e\come to the Zettabyte Era

In 2017, the gigabyte equivalent of all movies ever
made will cross the global Internet every 3 minutes.

The global Internet networks will deliver 13.8 petabytes
every 5 minutes in 2017.

f& 27 Mbps (1] £7 63 Mbps
1 22.3 EB/month o 1 4.5 EB/month
| atin America [1.3 BILLION Agla-Pacific
() 1.3 BILLION {7 7 Wope it () 5.8 BILLION
77 8 Mbps T 2.0 el 7% 25 Mbps
2 i) T 241 e8/month

ONT HJ” J

oy tion and Cireaiiviay

Opportunity for Big Data

40

30

10

Digital Universe
B Useful If Tagged and Analyzed

| [

2010 2015 2020

Source: IDC's Digital Universe Study, sponsored by EMC, December 2012

Candidates for Big Data

Surveillance
M Embedded and Medical
M Data Processing

Entertainment and Social Media
M Consumer Images and Voice

2010 - ; '
2015 : '
2020 | = ’

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
(Share of Data That is Useful If Tagged and Analyzed)

Source: IDC's Digital Universe Study, sponsored by EMC, December 2012

Are the practical needs for
iIncremental hashing present today?

4, 'would like to use MurmurHash3 to uniquely identify large pieces of data. This implementation:
0 http://code.google.com/p/smhasher/source/browse/trunk/MurmurHash3.h

’ Doesn't seem to provide a way to update the hash incrementally, though--it seems to compute one
separate hash per block of data given. For example, if | were hashing 512MB of data from disk | might
not want to load it all in memory at once, or if | were hashing an unknown amount of data from the

mahuarls as amranas sarasre ieand RnemnnivldaslD dm cnial oA camtawt lhafars fllhachinsm A larms Aasssoomd ~F

® NTNU

Innovation and Creativity

www.ntnu.no - SHA-3 2014 Workshop, iSHAKE: Incremental Hashing With SHAKE128 and SHAKE256

Are the practical needs for
iIncremental hashing present today?

© crypto-js

JavaScript implementations of standard and secure cryptographic algorithms

Project Home Downloads Wiki Issues Source

Mew issue| Search | Open issues ¥ | for Search| Advanced search Searchtips Subscriptions

Issue 24: Support for computing hashes incrementally
2 people starred this issue and may be notified of changes.

itatus: Fixed Reported by jhaber...i@gmail.com. Jan 26, 2012
wmer: -— I have an application where I want to incrementally compute hashes of data, eg.
losed: May 2012
. SHAZ256(A)
y_;:-e_—Enhann;en‘mnt SHA256{A+B)
‘riority-Medium SHAZ56(A+B+C)
etc.

dd a commentbelow 1 gon't want this to be an 0(n~2) algorithm, so I was wondering if the API could support a lower-level object with an API like:

var sha256 = new Crypto.SHA2561()
sha256.append(A)

var digestA = sha256.digest();
sha256.append(B)

var digestB = sha256.digest();
/f etc.

® NTNU

Innovation and Creativity

www.ntnu.no SHA-3 2014 Workshop, iSHAKE: Incremental Hashing With SHAKE128 and SHAKE256

Are the practical needs for
iIncremental hashing present today?

Duplicity (software)

From Wikipedia, the free encyclopedia

Duplicity is a software suite that provides encrypted, digitally signed, versioned, remote backup of files requiring little
of the remote server.l*] Released under the terms of the GNU General Public License (GPL), Duplicity is free software.

Duplicity devises a scheme where the first archive is a complete (full) backup, and subsequent (incremental) backups
only add differences from the latest full or incremental backup.[z] Chains consisting of a full backup and a series of
incremental backups can be recovered to the point in time that any of the incremental steps were taken. If any of the
incremental backups are missing then the incremental backups following it cannot be reconstructed. It does this using
GnuPG, librsync, tar, and rdiff.[Y] To transmit data to the backup repository it can use SSH/SCP/SFTP, local file access,
rsync, FTP, Amazon 53,3l Google Cloud Storage,[“] Rackspace Cloud Files,1 and others. Refer to its man page & for
the constantly growing list of back-ends.

® NTNU

Innovation and Creativity

www.ntnu.no - SHA-3 2014 Workshop, iSHAKE: Incremental Hashing With SHAKE128 and SHAKE256

Are the practical needs for
iIncremental hashing present today?

I Duplicity - Bandwidth Efficient Encrypted Backup

Overview Code m Blueprints Translations Answers

Very slow incremental backup of modified large files

Duplicity » Bugs » Bug #1301892

Reported b_\;'a Andrei on 2014-04-03

This bug affecks 1 person

Affecks Status Importance Assigned to Milestone

> ™, Duplicity New (# Unassigned

(# Also affects project @ @ Also affects distribution/package &) Nominate for series

Bug Description

I'm using duplicity to backup to a LOCAL drive my virtual machine files.

The initial full backup goes swimmingly. Subsequent incremental backups
also work very well as long as NONE of those large files (= 30 GB) have
changes made to them. IF however those large >30 GB files have changes to
them, it may take duplicity up to 10 hours to process the changes made to a
single one of these large files.

www.ntnu.no - SHA-3 2014 Workshop, iSHAKE: Incremental Hashing With SHAKE128 and SHAKE256

Are the practical needs for
iIncremental hashing present today?

" Duplicity - Bandwidth Efficient Encrypted Backup

Overview Code m Blueprints Translations Answers

Very slow incremental backup of modified large files

Duplicity » Bugs » Bug #1301892

In the latest version of Duplicity this issue is
- resolved (by using hash trees and storing
> rFowicd INtermediate hash values and signatures).

(# Also affects project @ @ Also affects distribution/package &) Nominate for series

Reported b_w'a Andrei

This bug affects 1 pe

Milestone

Bug Description

I'm using duplicity to backup to a LOCAL drive my virtual machine files.

The initial full backup goes swimmingly. Subsequent incremental backups
also work very well as long as NONE of those large files (= 30 GB) have
changes made to them. IF however those large >30 GB fTiles have changes to

them, it may take duplicity up to 10 hours to process the changes made to a
single one of these large files.

A\
www.ntnu.no ¥ SHA-3 2014 Workshop, iSHAKE: Incremental Hashing With SHAKE128 and SHAKE256

Are the practical needs for
iIncremental hashing present today?

Signature files are not required to restore a backup set, but without an up-to-date signature, duplicity
cannot append an incremental backup to an existing archive.

To save bandwidth, duplicity generates full signature sets and incremental signature sets. A full signature
set is generated for each full backup, and an incremental one for each incremental backup. These start
with duplicity-full-signatures and duplicity-new-signatures respectively. These signatures will be
stored both locally and remotely. The remote signatures will be encrypted if encryption is enabled. The
local signatures will not be encrypted and stored in the archive dir (see --archive-dir).

® NTNU

Innovation and Creativity

A
www.ntnu.no ¥ SHA-3 2014 Workshop, iSHAKE: Incremental Hashing With SHAKE128 and SHAKE256

Are the practical needs for
iIncremental hashing present today?

Signature files are not required to restore a backup set, but without an up-to-date signature, duplicity
cannot append an incremental backup to an existing archive.

To save b
set is gene
with dupl
stored bot
local sign:

Having an incremental hash function
would increase the speed of production of
signed backups by order of magnitude,
while decreasing the extra storage for
Intermediate signature sets.

. A full signature
D. These start
tures will be

is enabled. The

www.nthu.no

® NTNU

Innovation and Creativity

SHA-3 2014 Workshop, iSHAKE: Incremental Hashing With SHAKE128 and SHAKE256

Observations

Observation 1. In the Zettabyte era the trend
for reducing the cost of data storage will
diminish the importance of the fact that
iIncremental hashing needs longer digests
than traditional hash functions.

@ NTNU

SHA-3 2014 Workshop, iSHAKE: Incremental Hashing With SHAKE128 and SHAKE256

Memory Price ($/MB)

Historical Cost of Computer Memory and Storage

1.00E+09 -
I
1.00E+08 E 7
1.00E+07 [
F B
[53]
1.00E+06 [B
E
E i
1.00E+05
F #FlEF oS
E %i‘ :
.+ aces
1UUE+U4 %-] == %11 A= on Doands
I [} I == * =S
!. = s }h =TT
1. 00E+03 - o : -
E + st o
i‘: 9] o){>‘§={ +Ficmy Crives
1.00E+02 .E HEEIDT
>§ — -ia:rl.’twun
[%Sx X X =
1 00E+01 - % ~
- % .-I—‘
1.00E+00 5
1.00E-01 %
; %ﬂ
1.00E-02 E =
;f
1.00E-03 +
;
1.00E-04 [
E
1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

Year

Observations

Observation 2. In the Zettabyte era there will
be an increased need for an efficient and
secure cryptographic primitive that will
perform incremental collision-free hashing.

® NTNU

and Creativity

A
www.ntnu.no ¥ SHA-3 2014 Workshop, iSHAKE: Incremental Hashing With SHAKE128 and SHAKE256

Observations

Observation 3. For the compression functions h : {0, 1}'IJ — {0, l}k where k is multiple of 64
bits i.e. k = 64 L, on modern 64-bit CPUs, instead of modular operations with k bit prime
numbers in the group (G, (+)), much more efficient operations would be word wise operations of

addition in the group ((Zes)*, FHy).

® NTNU

Innovation and Creativity

www.nthu.no

SHA-3 2014 Workshop, iSHAKE: Incremental Hashing With SHAKE128 and SHAKE256

Formalizing previous notations

Definition 1.

1. Let h: {0, 1}'5 — {0, 1}k be a compression function that maps b bits into k bits.

2. Let the message M be represented as a concatenation of n blocks, where n < N for some
predefined number N which is larger than the number of blocks in any message we plan to
hash, i.e., M = Mi||Ms||...||M,.

3. The size of each block M; is determined by the following relation: |M;| = b —1g(N).

4. For each block M;, i = 1,...,n, prepend a lg(N)-bit binary encoding (i) of the block index

i to the block content M; to get an augmented block M; = (i)||M,;.

For eacht=1,..., n, apply h to M; to get a hash value y; = h(M;).

Let (G,(®) be a commutative group with operation (=) where G C {0, 1}*.
Combine yq, ..., Yn via a combining group operation (+) to get the final hash value y =

Y1 (D y2 (). (D Yn.

Denote the incremental hash function as:

NS

M;) (1)

M| ..

y(M) = HASH{ g, (M) M) = () h(()
i=1

® NTNU

Innovation and Creativity

www.ntnu.no - SHA-3 2014 Workshop, iSHAKE: Incremental Hashing With SHAKE128 and SHAKE256

Formalizing previous notations

Proposition 1. Let HA‘SH@)) be an incremental hash function defined by Definition 1. For

any Y € {0,1)* the compleaity of finding o preimage message M = My||Myl.. M of length
K < N blocks such that Y = HA%H@)([) is

min O(K -) TTIR) (2)
K<N

If the length of the messages is not restricted, then the minimum in equation (2) is achieved
for messages of K = k=1 blocks.

® NTNU

Innovation and Creativity

www.ntnu.no - SHA-3 2014 Workshop, iSHAKE: Incremental Hashing With SHAKE128 and SHAKE256

Formalizing previous notations

. .]- * . + +
Proposition 1. Let HASH{G) be an incremental hash function defined by Definition 1. For

any Y € {0,1}* the complexity of ﬁwdf’nq a prﬁ“fmage message M = My||My||...||Mk of length
K < N blocks such that Y = HA?H@)(1) is

min O(K -) TTIR) (2)
K<N

If the length of the messages is not restricted, then the minimum in equation (2) is achieved
for messages of K = k=1 blocks.

Proof. Just adopt the notation from Wagner's Crypto 2002 paper [Sec. 2, Summary]
to match the notation of variables in Definition 1.

® NTNU

Innovation and Creativity

www.ntnu.no - SHA-3 2014 Workshop, iSHAKE: Incremental Hashing With SHAKE128 and SHAKE256

Extendable-Output Functions
SHAKE128 and SHAKE256

e DRAFT FIPS 202 “SHA-3 Standard:
Permutation-Based Hash and Extendable-
Output Functions”

SHA-3 2014 Workshop, iSHAKE: Incremental Hashing With SHAKE128 and SHAKE256

Extendable-Output Functions
SHAKE128 and SHAKE256

SHAKE128(M, d) = RawSHAKE128(M |11, d)

.
4

where
RawSHAKE128(M, d) = KECCAK[256](M ||11, d),
and
SHAKE256(M, d) = RawSHAKE256(M |11, d),
where

RawSHAKE256(M, d) = KECCAK[512](M |11, d).

® NTNU

Innovation and Creativity

www.ntnu.no ¥ SHA-3 2014 Workshop, iSHAKE: Incremental Hashing With SHAKE128 and SHAKE256

tSHAKE128

Definition 2.

1. Let h:{0,1}13% — {0, 1}2%%® be defined as the function h(m) = SHAKE128(m, 2688) where
im| = 1344.

2. Let the message M = M ||Msl|...||M, be represented as a concatenation of n blocks, where
n < N, and N = 2%° is the largest number of blocks in any message we plan to hash.

3. The size of each block M; in bits is determined by the following relation: |M;| = 1344—64 =
1280.

4. For each block M;, i = 1,...,n, prepend a 64-bit binary encoding (i) of the block index i to
the block content M; to get an augmented block M; = {i)|| M.

5. Foreachi=1,...,n, apply h to M; to get a hash value y; = h(M;) = SHAKE128(M;, 2688).

Let ((Zea)**,[Hg,) be a commutative group with the operation [, that represents a 64-bit

word wise addition of 42 words.

7. Combine yi,...,Yy, via a combining group operation [Hs, to get the final hash value

S

y = y]_ T 64y2 1 lga s | [54yn.-

Denote the incremental hash function iISHAKE128 as:

ISHAKE128(M) = [4],, SHAK E128(M;, 2688). (3)

® NTNU

Innovation and Creativity

www.ntnu.no - SHA-3 2014 Workshop, iSHAKE: Incremental Hashing With SHAKE128 and SHAKE256

tSHAKE128

Corollary 1: Let b = 1280, £ = 2688. and let the
maximal allowed number of blocks be N = 22°. Then

}{HII&O(K 21+lg,[Kj) __ 2128.385 (4)
<

®NTNU

nnnnn tion and Creativity

A
www.ntnu.no b SHA-3 2014 Workshop, iSHAKE: Incremental Hashing With SHAKE128 and SHAKE256

tSHAKE128

@ For a 2'*° level of security, the maximal size of the files
that can be hashed with ISHAKE128 is 5 GB.

e For small file sizes such as 160 KB the complexity of
finding collisions with Wagner's generalized birthday
attack is 2°>*

and

e For files long 1.25 TB the complexity of finding collisions
drops down to 2'** .

® NTNU

and Creativity

A
www.ntnu.no ¥ SHA-3 2014 Workshop, iSHAKE: Incremental Hashing With SHAKE128 and SHAKE256

tSHAKE256

1. Let h: {0,1}1988 — {0,1}9528 be defined as the function h(m) = SHAKE256(m, 6528) where
im| = 1088.

2. Let the message M = My||Ms||...||M, be represented as a concatenation of n blocks, where
n< N, and N = 228 is the largest number of blocks in any message we plan to hash.

3. The size of each block M; in bits is determined by the following relation: |M;| = 1088 — 64 =
1024.

4. For each block M;, i =1,...,n, prepend a 64-bit binary encoding (i) of the block index i to
the block content M; to get an augmented block M; = {i)||M,;.

5. Foreachi=1,...,n, apply h to M; to get a hash value y; = h(M;) = SHAKE256(M;, 6528).

6. Let ((Zgs)'%,[Hg,) be a commutative group with the operation [Hy, that represents a 64-bit
word wise addition of 102 words.

7. Combine y1,...,Yn via a combining group operation [Hg, to get the final hash value

Definition 3.

) — | ; | ;
Y= Y17 G4y2_|_64"') 6alYn-

Denote the incremental hash function iISHAKE256 as:

N
ISHAKE256(M) = [, SHAKE256(M;, 6528). (5)

_ ® NTNU

Innovation and Creativity

www.ntnu.no - SHA-3 2014 Workshop, iSHAKE: Incremental Hashing With SHAKE128 and SHAKE256

tSHAKE256

Corollary 2: Let b = 1024, k£ = 6528. and let the
maximal allowed number of blocks be N = 228, Then

}(ﬂl% O(K _ 2—1+12[Kj) _ 2253.103 (6)
<

®NTNU

nnnnn tion and Creativity

A
www.ntnu.no b SHA-3 2014 Workshop, iSHAKE: Incremental Hashing With SHAKE128 and SHAKE256

tSHAKE256

@ For a 2°>° level of security, the maximal size of the files
that can be hashed with ISHAKE256 is 32 GB.

e For small file sizes such of 1 MB the complexity of
finding collisions with Wagner's generalized birthday
attack is 2"

and

e For files long 8 TB the complexity of finding collisions
drops down to 2°*.

® NTNU

and Creativity

A
www.ntnu.no ¥ SHA-3 2014 Workshop, iSHAKE: Incremental Hashing With SHAKE128 and SHAKE256

Properties of ISHAKE parallel
operations

 Trivial parallelization without a need for special scheduling

— (except that every message bloc M, has to be prepended with
Its index <i> in the message)

* The obtained hash is the same, regardless of the level of
parallelism used in the computation

* No need to keep extra intermediate values in order to
achieve incrementality

- What is bigger: the amount of stored intermediate chain values
In tree-hash modes or the size of hash values in ISHAKE
(2688 / 6528 hits)?

® NTNU

Innovation and Creativity

A
www.ntnu.no ¥ SHA-3 2014 Workshop, iSHAKE: Incremental Hashing With SHAKE128 and SHAKE256

Thank you for your attention!

® NTNU

Innovation and Creativity

www.ntnu.no - SHA-3 2014 Workshop, iSHAKE: Incremental Hashing With SHAKE128 and SHAKE256

	Slide 1
	Slide 2
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

