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Abstract 

In 2017, Ward Beullens et al submitted Lifted Unbalanced Oil and Vinegar (LUOV)[1], 
a signature scheme based on the famous multivariate public key cryptosystem (MPKC) 
called Unbalanced Oil and Vinegar (UOV), to NIST for the competition for post-quantum 
public key scheme standardization. The defning feature of LUOV is that, though the 
public key P works in the extension feld of degree r of F2, the coeffcients of P come 
from F2. This is done to signifcantly reduce the size of P . This is a totally new design 
which was not therefore under any scrutiny before the submission. The LUOV scheme is 
now in the second round of the NIST PQC standardization process. 

In this paper we introduce a new attack on LUOV. The main idea is to consider some 
special differentials to develop new approaches to attack the systems. 

1 Introduction 

1.1 Background and Post-Quantum Cryptography Standardization 

A crucial building block for any free, secure, and digital society is the ability to authen-
ticate digital messages. In their seminal 1976 paper, Whitfeld Diffe and Martin Hellman 
described the mathematical framework to do such, which is now called a digital signature 
scheme. They proposed the existence of a function F so that any party can easily check 
whether F (X ) = D , i.e verify a signature, but only one party, who has a secret key, can fnd 
a X so that F (X ) = D , i.e sign a document. Such a function F is called a trapdoor function. 
Following this idea, Rivest, Shamir, and Adleman proposed the frst proof of concept of a 
signature scheme based off of their now famous RSA public key encryption scheme, which 
relies on the diffculty of the discrete logarithm problem. 

Up to to 2013, the National Institute of Standards and Technology (NIST)’s guidlines al-
lowed for three different types of signature schemes: the Digital Signature Algorithm (DSA), 
RSA Digital Signature Algorithm, and The Elliptic Curve Digital Signature Algorithm [7]. How-
ever, a mayor drawback to these signature schemes is that in 1999 Peter Shor showed that 
they were weak to a suffciently powerful quantum computer [14]. As research towards de-
veloping a fully fedged quantum computer continues, it has become increasingly clear that 
there is a signifcant need to prepare our current communication infrastructure for a post-
quantum world. For it is not easy nor quick undergoing to transition our current infrastruc-
ture into a post quantum one. Thus a signifcant effort will be required in order to develop, 
standardize, and deploy new post-quantum signature schemes. 

As such in December 2016 NIST, under the direction of the NSA, put out a call for propos-
als of new, post-quantum cryptosystems. NIST expects to perform multiple rounds of eval-
uations over a period of three to fve years. The goal of this process is to select a number of 
acceptable candidate cryptosystems for standardization. These new standards will be used 
as quantum resistant counterparts to existing standards. The evaluation will be based on the 
following three criteria: Security, Cost, and Algorithm and Implementation Characteristics. 
We are currently in the second round of this process, and out of the original twenty-three 
signature schemes there are only nine left, of which LUOV is one of them. 
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An additional complication to designing a post-quantum cryptosystem is quantifying 
securities levels in a post quantum world. For neither the full the capabilities nor limitations 
of a quantum computer is fully understood. In [11], NIST addresses this issue and quantifes 
the security strength of a given cryptosystem by comparing it to existing NIST standards 
in symmetric cryptography, which NIST expects to offer signifcant resistance to quantum 
cryptanalysis. Below are the relevant NIST security strength categories which we present 
logarithm base 2 of the complexity. 

NIST Level Security Description Complexity 
II At least as hard to break as AES128 (exhaustive key search) 146 
IV At least as hard to break as SHA384 (collision search) 210 
V At least as hard to break as AES265 (exhaustive key search) 272 

Table 1: Description of different NIST security strength categories. 

1.2 Multivariate Public Key Cryptosystems 

Since the work of Diffe and Hellman, mathematicians have found many other groups of 
cryptosystems that do not rely on Number Theory based problems. Some of these seem to 
be good candidates for a post-quantum system. One such group is Multivariate Public Key 
Cryptosystems (MPKC)[3][4]. The security of a MPKC depends on the diffculty of solving 
a system of multivariate polynomials over a fnite feld. Usually, these polynomials are of 
degree two. Solving a set of random multivariate polynomial equations over a fnite feld, in 
general, is proven to be an NP-hard problem [8], thus lending a solid foundation for a post-
quantum signature scheme. Furthermore, MPKCs in general can be computationally much 
more effcient than those many other systems. 

A breakthrough in MPCK was proposed by Matsumoto and Imai in 1988. Instead of look-
ing for a invertible map between the vector space kn for a fnite feld k, they looked at the big-
ger feld K , which is of degree n extension over k, where an inverse map can be constructed 
[10]. This scheme was broken by Patarin by using the Linearization Equation Attack [12]. 
However, inspired by the attack, Patarin introduced the Oil and Vinegar scheme [13]. This 
has been one of the most studied schemes for multivariate cryptography and is the basis for 
LUOV. 

1.3 A Brief Sketch and History of Oil and Vinegar Schemes 

One of the most well known multivariate public key signature schemes is the Oil and 
Vinegar scheme. As the only difference LUOV introduced is what feld some coeffcients 
come from, we will only give a brief, verbal description of Oil and Vinegar schemes in gen-
eral. The key idea of the Oil and Vinegar signature scheme is to reduce signing a document 
into a linear system. This is done by separating the variables into two collections, the vine-
gar variables and the oil variables. Then when one constructs the central map, one ensures 
that oil variables are never multiplied together. That way if one guesses for all the vinegar 
variables, one is left with a linear system that has high probability of being consistent. To 
hide the oil and vinegar variables, one simply composes on the right of the central map an 
affne transformation to change the basis. 

Patarin originally proposed that the number of oil variables would equal the number 
of vinegar variables. However, the Balanced Oil Vinegar scheme was broken by Kipnis and 
Shamir using the method of invariant subspaces [9]. This attack, however, is thwarted by 
making the number of vinegar variables greater then the number of oil variables. Though, 
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proposed nearly twenty years ago, the Unbalanced Oil and Vinegar (UOV) scheme still re-
mains unbroken. Further, this simple and elegant signature scheme boasts small signatures 
and fast signing times. Arguably the only drawback to UOV is its rather large public key size. 
There have been several attempt to reduce the size of the public key but keeping the strength 
of UOV like HIMQ-3, a round one NIST submission. However, this is in general hard to due 
as can be seen from the soon to be published singularity attack on HIMQ-3 by Ding et al. 

Out of the nine signature schemes that were accepted to round two of the NIST stan-
dardization program, two (LUOV and Rainbow) are based off of UOV with modifcations to 
reduce key size. Rainbow, originally proposed in 2005, reduces its keysize by forming multi-
ple layers of UOV schemes, where oil variables in a higher layer become vinegar variables in 
the lower layers [5, 6]. LUOV achieved a reduction in key size by forcing all the coeffcients 
of the public key to either be 0 or 1. This is a totally new design which was not therefore un-
der any scrutiny before the submission. In this paper we will show that such modifcations 
used by LUOV allows for algebraic manipulations that result in a underdetermined quadratic 
system over a much smaller fnite feld. We will further show that Rainbow and other UOV 
schemes is immune to such attacks. 

1.4 Our Contributions 

We will present a new attack method called the Subfeld Differential Attack (SDA). This 
attack does not rely on the Oil and Vinegar structure of LUOV but merely that the coeffcients 
of the quadratic terms are contained in a small subfeld. We will show that the attack will 
make it impossible for LUOV to fulfll the NIST security levels requirements. 

First, we will recall the design of LUOV. Afterwards, we will argue heuristically that there 
is a high probability that there exists a solution in a smaller feld. More precisely, for pub-
lic key P : Fn 

2r → Fo 
2r , we assert the for any x0 ∈ Fn 

2r and y ∈ Fo 
2r there exists x ¯ ∈ Fn 

2d such that 

P (x0 + x̄) = y, where F2d is a small subfeld of F2r . We call x0 + x ¯ the differential of P . We 
will also provide experimental evidence that overwhelming supports our assertion. With the 
differential and the fact that the coeffcients of P are either 0 or 1, we will show that by view-
ing P in the polynomial ring over an small subfeld modded by an irreducible polynomial 
and by comparing coeffcients, we have reduced the problem of solving an underdetermined 
quadratic over F2d . The complexity required for such is well under our target. For each pro-
posed set of parameters, we will explicitly apply our attack. We will provided a small toy 
example. Finally, we will explain how UOV and Rainbow are unaffected by our attack. 

2 Lifted Unbalanced Oil Vinegar Scheme 

One can tell from the name that LUOV is a modifcation of the original unbalanced oil 
vinegar scheme. The main difference between these two schemes is that in the original un-
balanced oil vinegar scheme there is no restriction on the coeffcients of the public key. How-
ever in the LUOV, the scheme uses two fnite felds, one is the binary feld of two elements, 
the other is its extension of degree r . In order to shorten the size of the public, the coeff-
cients of the public key are all from the base feld, but the document and the signatures may 
contain elements from the extension feld. 
Let F2 be the binary feld and F2r be its extension of degree r . Let o and v be two positive 
integers such that o < v and n = o + v . 
The central map F : Fn → Fo is a quadratic map whose components f1, · · · , fo are in the 2r 2r 

form: 
v n nX X X 

fk (x)= αi , j ,k xi x j + βi ,k xi + γk . 
i =1 j =i i =1 
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where the coeffcients αi , j ,k ,βi ,k and γk are from the base feld F2. One can easily see that 
these polynomials are in the oil vinegar form, meaning that oil is never multiplied with oil. 
To hide the oil vinegar structure of these polynomials, an invertible linear map T : Fn → Fn 

2r 2r 

is used to mix the variables. In particular, the authors choose T in the form: · ¸ 
1v T 
0 1o 

where T is a v × o matrix whose entries are also from the small feld F2, to speed up the key 
generation and signing process as well as keep the size of the private key small. 
The public and private keys of LUOV are given by: 

Public key : P = F ◦ T . Private key : T . 

The way to invert the central map F is the same as UOV. Given an element y ∈ Fo 
2r , one wants 

to fnd an x ∈ Fn 
2r such that F (x)= y. First, one assigns random values from F2r to the vinegar 

variables x1, · · · ,xv . By substituting them in the equations, the remaining system becomes 
a linear system, which can be solved easily by Gaussian elimination. If no solution exists, 
repeat the process by choosing different values for the vinegar variables. 

This is a totally new design which was not therefore under any scrutiny before the sub-
mission. 

The LUOV scheme actually made into the second round of the NIST PQC standardization 
process. 

3 The Subfeld Differential Attack on LUOV 

3.1 The general idea of the attack 

The key to our attack is the structure of fnite feld extension. The authors ignore the use 
of the small subfelds. The small F2d connects the base feld F2 and the extension feld F2r and 
what is more important is that we can construct isomorphisms between the extension feld 
F2r and the quotient of polynomial ring over F2d modded by an irreducible polynomial f (t ). 
So every element in the extension feld can be represented by a polynomial in F2d [t ]/ f (t ). 

The next question is how we use the feld F2d [t ]/ f (t ). This is where the differential comes 
in. Suppose P : Fn → Fo is a quadratic multivariate polynomial having coeffcients from F2. 2r 2r 

Let y be an arbitrary element in Fo 
2r . The differential is defned to be x0 + x ¯ where x0 is an 

arbitrary point we choose from Fn and x̄ is an indeterminate point in Fn . If we evaluate the 2r 2d 

quadratic multivariate polynomial P at the differential and set it equal to y, the quadratic 
0 0 0 ¯part of the polynomial P will produce terms xi x j , xi x j and x̄i x ¯ j , where xi 

0 are known and 
x̄ j are unknown. We are expressing F2r as F2d [t ]/ f (t ), so every element in the feld can be ex-
pressed as a polynomial in t of degree at most r /d − 1. Applying such isomorphism on both 
sides and comparing the coeffcients of t , t2, · · · , t r /d−1, we almost obtain a linear equation. 
This is because in this equation, the x̄i x ¯ j is a product of two elements from the small sub-
feld. Thus if we apply this method on every component of the public key we almost have 
a system of linear equations. So the idea of solving this equation by differential is that we 
associate the elements from extension feld to the linear part where it is easy to solve, and 
the elements from the small subfeld to the quadratic part where we can search for them. 

3.2 The Goal of the Attack 

Let P = F ◦ T : Fn → Fo be a given LUOV public key as described in section 2.1. Then 2r 2r 

following the construction of all Oil Vinegar Schemes, P appears to be a random quadratic 
system, except in this case the coeffcients will be from the feld F2 embedded in F2r . 
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⎧ 
n n nX X X 

f̃1(x)= αi , j ,1xi x j + βi ,1xi + γ1 
i =1 j =i i =1 

n n nX X X ⎨ f̃2(x)= 
P (x)= i =1 j =i i =1 

. 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪ αi , j ,2xi x j + βi ,2xi + γ2 

. . 
n n nX X X 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪ f̃  o (x)= αi , j ,o xi x j + βi ,o xi + γo ⎩ 
i =1 j =i i =1 

As is found in basic feld theory F2 is not the only subfeld embedded in F2r . For if d is any 
positive divisor of r where d s = r , then for any irreducible degree s polynomial f (t ) ∈ Fr d [t ] 
we have that F2d [t ]/ f (t ) ∼= F2r . Here F2d is embedded as the set of constant polynomials in 
F2d [t ]/ f (t ). This allows us to change question like fnding preimages (and thus signatures) 
from being about elements from the larger feld F2r to being about elements from the smaller 
feld F2d . 

The frst such question is that given a document y= (y1, · · · , yo ) ∈ Fo 
2r and an arbitrary x0 ∈ 

Fn does there exist a reasonable small integer d such that there will also exist a x̄ ∈ Fn ⊂ Fn 
2r 2d 2d 

where P (x0 + x̄)= y? It turns out that for all given parameters of LUOV that the answer is yes. 

¯3.3 The Probability of x0 + x Existing 

Our frst step is to calculate the probability of it existing. Fix x0 ∈ Fn and to consider the 2r 

function P 0 : Fn → Fo given by P 0(x̄) = P (x0 + x̄) where d |r . Notice that P 0 is a quadratic 
2d 2r 

system of n variable with o equations over F2d . For the sake of argument, we will assume 
that P 0 acts as a random map from Fn → Fo . This mean that the outputs of P 0 are uniform 

2d 2r 

in Fo . Now we arbitrarily choose y ∈ Fo . We are interested in the probability that there does 2r 2r 

not exist x ¯ ∈ Fn such that P 0(x̄) = y. Since |Fn | = 2d ·n and |Fo | = 2r ·o , we fnd that for any 
2d 2d 2r 

1 x̄ ∈ Fn that the probability that P 0(x̄) 6= y is 1− ·o . Since the outputs of P 0 are independent, 
2d 2r 

exhausting every element of Fn we fnd we can estimate our desired probability as 
2d µ³ ¶2(d ·n)−(r ·o) ³ ´ 2d ·n ´ 2r ·o 1 1 −2(d ·n)−(r ·o) 

1− = 1− ≈ e , 
2r ·o 2r ·o 

)n −1 because limn→∞(1− 1 = e . n 
In tables 2 and 3 we calculate the probability of failure for the frst set parameters as given 

in the LUOV description. The table 2 is given on parameters designed to reduce the size of 
signatures. These parameters are used in situations where many signatures are needed. For 
these we always chose d = 2 based on the relatively small size of the extension feld F2r . The 
table 3 is given on parameters designed to the cost of both signatures and public keys. These 
parameters are used when communicating both signatures and public keys is needed. Due 
to the larger size of F2r , our choice of d is the smallest such that the probability of failure is 
small. The smallness of d will mean fnding a signature will be easier later. 

3.4 On how to fnd x ¯

So we can say with confdence that such a x ¯ will exists for the given parameters of LUOV. 
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NIST Security Level r o v n d Probability of Failure 
II 8 58 237 295 2 exp(−2126) 
IV 8 82 323 405 2 exp(−2154) 
V 8 107 371 478 2 exp(−2100) 

Table 2: Estimated Probabilities of Failure for Parameters Designed to Minimize the Size of 
the Signature 

NIST Security Level r o v n d Probability of Failure 
II 48 43 222 265 8 exp(−256) 
IV 64 61 302 363 16 exp(−21904) 
V 80 76 363 439 16 exp(−2944) 

Table 3: Estimated Probabilities of Failure for Parameters Designed to Minimize the Size of 
the Signature and Public Key 

As the size of Fn 
2d is still far to large for a brute force search, we will narrow down the pos-

sibilities by examining the components of P (x0 + x̄)’s coeffcients and y’s components when 
0 0 viewed as elements of F2d [t ]/ f (t ). Let our arbitrary x0 ∈ Fn 

2r be equal to (x1, · · · ,xn ). We see 
that the kth component of P (x0 + x̄) is 

n n nX X X 0 0 0 0 f̃k (x + x̄)= αi , j ,k (xi + x̄i )(x j + x̄ j )+ βi ,k (xi + x̄i )+ γk = yk 
i =1 j =i i =1 

Expanding the above and separating the quadratic terms leads to 

n n nX X X 0 0 0 0 0 0 f̃k (x + x̄)= αi , j ,k (xi x j + xi x̄i + x j x ¯ j )+ βi ,k (xi + x̄i )+ γk 
i =1 j =i i =1 X n nX + αi , j ,k x̄i x ¯ j 

i =1 j =i 

= yk 

We notice that the coeffcients of the quadratic terms are still from the feld F2, mean-
ing they will be represented by the constant terms 0 or 1 as we view these over F2d [t ]/ f (t ). 

0 On the other hand the xi and the yk are arbitrary elements of F2r are thus represented by 
degree at most s − 1 polynomials in F2d [t ]/ f (t ). We can thus regroup the above equation in 
terms of the powers of t , where the quadratic part is confned in the constant term. Mean-
ing for some wi ,k ∈ F2d , some linear polynomials gi ,k (x̄1, · · · , x̄n ) ∈ F2d [x̄1, · · · , x̄n ], and some 
quadratic polynomial Qk (x̄1, · · · , x̄n ) ∈ F2d [x̄1, · · · , x̄n ] we have that 

s−1 s−1X X 0 i i f̃k (x + x̄)= gi ,k (x̄1, · · · , x̄n )t +Qk (x̄1, · · · , x̄n )= yk = wi ,k t . 
i =1 i =0 

We thus fnd s − 1 linear equations gi ,k (x̄1, · · · , x̄n ) = wi ,k for each f̃k in the public key P 
leading to a system of (s −1)o linear equations with n variables. Let us denote this by system 
by 

Ax= y 

where Ax is a matrix times a variable vector representing the linear equations gi ,k (x̄1, · · · , x̄n ). 
Our desired x ¯ will be in the set S of solutions of this system, though certainly most of the 
solution space will not be equivalent to x ¯ as they also must satisfy each quadratic equation 
Qk (x̄1, · · · , x̄n ) = w0,k to be a valid signature for y. As each gi ,k (x̄1, · · · , x̄n ) is essentially a 
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random linear polynomial, there is a good probability for the rank of A to be (s − 1)o (or full 
rank if (s − 1)o ≥ n, but this makes the existence of x ¯ unlikely and need not be considered). 

In general we see that 
|S| = n − rank(A)= n − (s − 1)o 

by the Rank Nullity Theorem and the fact that there are n variables. If the size of S is suff-
ciently small (which will depend on the parameters of LUOV and the choice of d), a brute 
force search now is applicable. If the size of S is too large, then more sophisticated searches 
are needed. We see that our problem thus reduces to solving o equations with n − (s − 1)o 
variables in a search for a solution from S. 

Below we will estimate the complexity for fnding a signature for the various parameters 
given in tables 1 and 2. We will use the method of Thomae and Wolf [15]. This reduces our 
system of o equations and n − (s − 1)o variables to one of m equations and variables where ¹ º 

n − (s − 1)o 
m = o − . 

o 

We will then guess for a certain number of the variables forming a overdetermined sys-
tem. This system will have a certain degree of regularity. We can then use an algorithm 
such as XL to solve this system. The most complex part of this process is solving a sparse 
linear equation over a fnite feld [2]. We can use the block Wiedermann algorithm to solve 
this, thus fnding our signature. Below we give a table describing this process for the various 
parameters describing each system as (number of equations) × (number of variables). 

Table and 
Security 

Finite 
Field 

Original 
System 

New 
System 

# of 
Guesses 

Degree of 
Regularity 

Log2 
Complexity 

(2, II) F22 58× 121 56× 56 24 7 107 
(2, IV) F22 82× 259 79× 79 33 9 143 
(2, V) F22 107× 157 106× 106 51 9 184 
(3, II) F28 43× 50 42× 42 3 19 135 
(3, IV) F216 61× 180 59× 59 2 31 202 
(3, V) F216 76× 131 75× 75 2 38 244 

Table 4: Results 

The degree of regularity estimates and the complexity estiamtes are based on the works 
[16, 17] and the complexity estimates are based on Proposition 4 in [16]. 
Recalling that NIST requires complexity (2146,2210,2272) for security levels (II, IV, V) respec-
tively, we see that LUOV fails to meet the security level requirements in all parameter sets 
given for their targeted security. 
The two schemes which claim to be of Level II security do not even satisfes the Level I secu-
rity, which is supposed to be 2143 . 

3.5 Toy Example 

Let o = 2, v = 8, and n = 10. The size the large extension feld chosen by the public 
key generator will be 28 = 256. In the attack we will use as our small feld F22 denoting its 
elements by {0,1, w1,w2}. We then will represent the feld F28 by F24 [t ]/ f (t ) where f (t ) = 
t4 + t2 + w1t + 1. 

Consider the LUOV public key P : F
2
n 

8 → Fo where for simplicity sake will be homoge-
28 

neous degree two: 
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2 f̃1(x)=x1x4 + x1x5 + x1x6 + x1x7 + x1x8 + x1x9 + x2x4 + x2x6 + x2x9 + x3 

+ x3x6 + x3x7 + x3x10 + x4
2 + x4x7 + x4x8 + x4x9 + x4x10 + x5x6 + x6x10 

+ x7
2 + x7x8 + x7x9 + x8x9 + x8x10 + x9

2 + x9x10 

2 f̃2(x)=x1x3 + x1x4 + x1x5 + x1x9 + x2x3 + x2x6 + x2x7 + x2x9 + x3 + x3x4 

+ x3x5 + x3x6 + x3x7 + x3x9 + x4
2 + x4x5 + x4x6 + x4x7 + x4x10 + x5

2 

2 + x5x6 + x5x7 + x5x8 + x5x10 + x6x7 + x7x9 + x9x10 + x10 

We will attempt to fnd a signature for the message: · 
w1t 3 + w2t2 + w2t 

y= 
w2t3 + w2t 2 + t

First we randomly select our x0 as 

¸ 

⎡ 
t3 + w2t 

w1t3 + w2t2 + w2t 
t 3 + t + 1 

w2t2 + w1 

t3 + t2 + 1 
w2t3 + t2 + w2t + w2 

w1t3 + w2t + w 
w1t 2 + w2t + 1 
t3 + w2t + w1 

w2t + w2 

⎤ ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

0 x = 

We then calculate P (x+ x̄) and represent it as a polynomial of t : 

0 3 f̃1(x + x̄)=(x̄1 + w1x̄2 + x̄3 + w1x̄5 + w2x̄6 + x̄7 + w1x̄8 + x̄9 + w2x̄10)t

+ (x̄1 + w1x̄2 + x̄3 + x̄4 + x̄5 + w1x̄6 + x̄7 + w2x̄8 + w1x̄9)t2 

+ (w2x̄3 + w1x̄6 + w1x̄7 + w2x̄9 + w1x̄10)t 

+Q1(x̄1, · · · , x̄n ) 
0 3 f̃2(x + x̄)=(x̄1 + x̄2 + w1x̄3 + x̄5 + x̄8)t

¯ ¯ ¯+ (w1x1 + x̄2 + x̄6 + x̄8 + w2x9 + w1x10)t2 

+ (w1x̄1 + w1x̄2 + w2x̄3 + x̄4 + w1x̄5 + x̄6 + w1x̄7 + x̄9 + w2x̄10)t 

+Q2(x̄1, · · · , x̄n ) 

Where Q1(x̄1, · · · , x̄n ) and Q2(x̄1, · · · , x̄n ) are quadratic polynomials from F22 [x̄1, · · · , x̄n ]. By 
0 comparing the coeffcients of t3, t2, t1 assuming P (x + x̄) = y we arrive at a system of linear 

equations over F22 . This can be represented by a matrix equation Ax = y. In our case this is 
the following: ⎡ ⎤ 

x̄1 

x̄2 

x̄3 

x̄4 

x̄5 

x̄6 

x̄7 

x̄8 

x̄9 

x̄10 

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

⎤ ⎡ 
1 w1 1 0 w1 w2 1 w1 1 w2 

⎤ ⎡ 
w1 ⎢⎢⎢⎢⎢⎢⎢⎣ 

⎥⎥⎥⎥⎥⎥⎥⎦ 

⎢⎢⎢⎢⎢⎢⎢⎣ 

⎥⎥⎥⎥⎥⎥⎥⎦ 

1 w1 1 1 1 w1 1 w2 w1 0 
0 0 w2 0 0 w1 w1 0 w2 w1 

1 1 w1 0 1 0 0 1 0 0 
w1 1 0 0 0 1 0 1 w2 w1 

w2 

w2 

w2 

w2 

= 

w1 w1 w2 1 w1 1 w1 0 1 w2 1 
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The solution space for the above equation has dimension 4 over F22 , as we would expect 
as n−(s−1)o = 4. Thus there are only (22)4 = 28 possible choices for x̄. A quick search through 
these, plugging them + x0 into the public key and seeing if the result is y, fnds the signature ⎡ 

t3 + w2t + 1 
w1t3 + w2t2 + w2t + w1 

t3 + t + w2 

w2t2 

t3 + t2 + 1 
w2t 3 + t 2 + w2t + 1 

w1t3 + w2t + w1 

w1t 2 + w2t + 1 
t3 + w2t + 1 

w2t 

⎤ ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

σ = 

In order to show that this was not a fuke and that our above heuristic argument on P 0 
(namely that it acts as a random map) refects reality, we ran an experiment on a fxed public 
key with parameters r = 8,o = 5,v = 20,n = 25,d = 2. Generating 10,000 random documents, 
we were able to fnd using the method from the toy example a signature for every document. 

4 The Inapplicability of the Subfeld Differential Attack on 
Unbalanced Oil Vinegar 

Now let us discuss why subfeld differential attack does not work on unbalanced oil vine-
gar. Let us assume that Fqr contains nontrivial subfeld Fqd . If we construct our differential 
x0 + x ¯ with x0 ∈ Fqr and x ¯ ∈ Fqd , evaluating the public key at the the differential. In its kth 
component, we have that 

X X X n n n

i =1 j =i i =1 

Note that there is no restrictions on coeffcients,αi , j ,k ,βi ,k and γk are randomly chosen from 
Fqr . If we multiply the polynomial out 

0 f̄  
k (x

0 0 
i + ¯ 0 + x̄) αi , j ,k (x xi )(x j + x ¯ j )+ βi ,k (xi ++ x̄i )+ γk = yk = 

X n nX + x)= αi , j ,k (x
X n

i =1 j =i i =1 

0 f̃k (x
0 0 0 0 
i x j + x ¯ βi ,k (x 0 

i + x̄i )+ γk x ¯ j )+ xi + xi j 

(1) X n nX + αi , j ,k x̄i x ¯ j = yk 
i =1 j =i 

and apply the isomorphism to express every element in a polynomial in Fqd [t ]/ f (t ) except 
the quadratic terms x̄i x̄ j , we immediately lose track of the polynomial expression for x̄i and 
x̄ j . Because the coeffcients αi , j ,k ,βi ,k and γk can also be represented by a polynomial in 
Fqd [t ]/ f (t ), multiplication from these coeffcients αi , j ,k ,βi ,k and γk in f̄  

k will mix the de-
grees of the polynomial expression of x̄i and x ¯ j in Fqd [t ]/ f (t ). Thus comparing the coeff-
cients of all degrees of t is useless. Therefore this attack is not at all applicable to UOV or 
Rainbow. 

Prime UOV and subprime UOV 

One may immediately realize that if the scheme is constructed with a prime extension, then 
there will be no intermediate feld.This will prevent the subfeld differential attack as it is 
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now. 
Using this idea, We will propose a new type UOV, which we call prime UOV (PUOV). It is 
based on the UOV and LUOV, but with additional conditional requirements. 

• Let the base feld be Fp , where p is the prime number. Then we require that the exten-
sion feld which is Fpr to be a primes extension feld of Fp , namely r is a prime number. 
Therefore here the only subfeld inside the extension feld is Fp . 

• It is a normal UOV, but the coeffcients of central OV map, the linear transformation 
to hide the OV polynomials and the pubic key should be over F(p) not Fpr , but we will 
use it to sign a document over Fpr . 

• We require that o + v < r o. 

• We require that pr o−(o+v) > 55. 

• For higher security, we should increase pr o−(o+v) to the level required. 

• The new scheme should have security level required by the usual UOV under the nor-
mal UOV attacks. 

Another variant of this construction, which we call subprime UOV. 
It is based on the UOV and LUOV idea, but with additional conditional requirements. 

• Let the base feld be Fp , where p is the prime number. Then we require that the exten-
sion feld which is Fpr to be an extension of Fp , namely r is not necessarily a prime 
number. 

• It is a normal UOV, but the coeffcients of central OV map, the linear transformation to 
hide the OV polynomials and the pubic key should be over Fp not Fpr , but we will use 
it to sign a document over Fpr . 

• Let d be any factor of r including 1, we require that d(o + v)< r o. 

• We also require that pr o−d(o+v) > 55. 

• For higher security, we should increase pr o−(o+v) to the level required. 

• The new scheme should have security level required by the usual UOV under the nor-
mal UOV attacks. 

However our further work indicates that we can do new attacks on such designs without 
using any subfeld but some special subset in the large feld, which we call subset differential 
attack. Therefore we believe much more work is needed to understand the security of these 
new schemes. from our experiences by now, we believe there are possible even more lethal 
attacks and we hope the research community can use held to extend our work. 

6 Conclusion 

We proposed a new attack to a NIST round 2 candidate LUOV. This attack only uses basic 
structure of feld extension and a differential x+ x ¯ to solve system of equations. The idea 
of our attack is simple, however it has great potential. First, one can see that the attack 
does not depend on the design of central map, it can be applied to other scheme with a 
lifted structure. Furthermore, one may ask if it is possible to choose a better x rather than 
randomly selecting one to reduce the complexity of solving the equations. Further work 
indicates that much more work needs to be done on this type pf new differential attacks. 
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