
Implementing and Benchmarking Seven Round 2
Lattice-Based Key Encapsulation Mechanisms Using

a Software/Hardware Codesign Approach
Farnoud Farahmand1, Viet Ba Dang1, Michal Andrzejczak2 and Kris Gaj1

1 Cryptographic Engineering Research Group,
George Mason University

Fairfax, VA, U.S.A.
2 Military University of Technology

Warsaw, Poland

Abstract. In this paper we present the results of implementing and benchmarking seven lattice-based
key encapsulation mechanisms (KEMs), representing fve NIST PQC Round 2 PQC candidates, using a
software/hardware codesign approach. This approach is particularly applicable to the current stage of
the NIST PQC standardization process, where the large number and high complexity of the candidate
algorithms makes traditional hardware benchmarking extremely challenging. We propose and justify
the choice of a suitable platform and design methodology. The results obtained indicate the potential
for very substantial speed-ups vs. purely software implementations, reaching 396x for encapsulation
and 712x for decapsulation. At the same time these speed-ups depend strongly on the features of each
particular algorithm, which leads to noticeable changes in the ranking of evaluated candidates using
software/hardware vs. purely-software benchmarking.
Keywords: Post-Quantum Cryptography · software/hardware codesign · lattice-based · hardware accelera-
tor · System on Chip · programmable logic

1 Introduction
Hardware benchmarking has played a major role in all recent cryptographic standardization e˙orts, such as
the AES, eSTREAM, SHA-3, and CAESAR contests. As with the current NIST Post-Quantum Cryptography
(PQC) standardization e˙ort, the number of candidates was reduced after each round of public evaluation. With
the emergence of commonly-accepted hardware application programming interfaces (APIs) [20], development
packages [19, 21], specialized optimization tools [13, 8], new design methodologies based on High-Level
Synthesis (HLS) [17, 18], and mandatory hardware implementations in the fnal round of the CAESAR
contest [5], the percentage of initial submissions with hardware implementations grew from 27.5% in the
SHA-3 contest [12] to 49.1% in the CAESAR competition [6, 11].

Unfortunately this trend is not likely to be sustained in the NIST PQC standardization process by
simply following prior practices and hardware benchmarking approaches. In many respects PQC schemes are
diametrically di˙erent from those evaluated in previous cryptographic contests, and new challenges call for
new substantially di˙erent solutions [11, 7].

Traditionally software and hardware benchmarking were conducted separately, by di˙erent groups of
experts, equipped with di˙erent knowledge and tools. Even the units for measuring speed were di˙erent -
cycles per byte for software, and megabits per second for hardware. For PQC algorithms this approach is
hard to maintain. These algorithms are simply too complex and too di˙erent from the current state-of-the-art
in public-key cryptography to permit the development of optimized purely hardware implementations for a
signifcant fraction of the remaining candidates by any single group within the time frame imposed by the
NIST evaluation process (12-18 months in case of Round 2).

At the same time there is little (if any) consensus regarding basic design choices such as hardware API,
optimization target, or hardware platform (e.g., a single FPGA family or a single ASIC standard cell library).

2 Implementing and Benchmarking Seven Round 2 Lattice-Based KEMs

NIST has not indicated that a hardware implementation will be required for each submission to the next
round of the process.

In the 16 months since the start of the NIST PQC process only a few purely hardware implementations of
Round 1 candidates have been announced: [29], [39], [22], [25], [9], and even fewer have been made open
source. These implementations use di˙erent APIs, target di˙erent platforms, and are aimed at di˙erent
optimization targets from high-speed to low-area. No conclusions regarding ranking of these algorithms in
terms of their performance in hardware can be reached based on such divergent e˙orts.

In this paper we present an alternative approach to evaluating candidates in cryptographic contests, based
on software/hardware codesign. This technique has been used for years in industry and studied extensively
in academia, with the goal of reaching performance targets using a shorter development cycle than is typical
for hardware-only implementations. To the best of our knowledge no benchmarking of software/hardware
designs was reported during any previous cryptographic competitions. As a result multiple problems specifc
to cryptographic contests, such as the choice of the most representative platform(s) and the fairness of
software/hardware partitioning schemes, have never been addressed.

It should be clearly stated that software/hardware benchmarking is not intended as a replacement for
purely-hardware benchmarking. On the contrary, applying this approach for the 26 candidates advanced to
Round 2, and developing a library of hardware accelerators for major operations of these candidates, will
make it much easier to develop hardware-only implementations in subsequent rounds.

Within the proposed framework the frst issue to address is the choice of the representative device. In
particular we need a computing platform allowing fast communication across the software/hardware boundary.
We also need reconfgurable hardware, as the timing measurements must be performed experimentally, and
the platform must be well-suited for attempting various software/hardware partitioning schemes.

In recent years several such platforms have emerged. The most popular in industry are those based on
integrating an ARM-based processor and FPGA fabric on a single chip. Examples include Xilinx Zynq 7000
System on Chip (SoC), Xilinx Zynq UltraScale+ MPSoC, Intel Arria 10 SoC FPGAs, and Intel Stratix 10
SoC FPGAs. These devices support software/hardware codesigns based on a traditional high-level language
program running on an ARM processor, with the most time-critical computations performed on a dedicated
hardware accelerator. The advantages of these platforms include: the use of the most popular embedded
processor family (ARM) operating at high speed (1 GHz or above), state-of-the-art commercial tools (available
for free, or at a reduced price for academic use), availability of inexpensive prototyping boards, and practical
deployment in multiple environments.

The primary alternatives are FPGA-based systems with so-called "soft" processor cores implemented
in reconfgurable logic. Examples include Xilinx MicroBlaze, Intel Nios II, and the open-source RISC-V,
originally developed at the University of California, Berkeley [30, 40, 41]. The main advantage of these
systems over "hard" processor cores is fexibility in the allocation of resources to processor cores, including the
possibility of extending them with special instructions specifc to PQC. Additionally they are easy to port
between di˙erent FPGA families, and even between FPGAs and ASICs. A disadvantage compared to the
"hard" option is that the "soft" processors operate at much lower clock frequencies (typically 200-450 MHz).

During a presentation at PQCrypto 2019, NIST asked designers to focus on the ARM Cortex-M4 for
embedded software implementations and the Artix-7 for FPGA implementations. However we are not aware
of any all programmable SoC device that contains a Cortex-M processor and the Artix-7 FPGA fabric
on a single chip. Even if such a chip existed it would be more suitable for benchmarking of lightweight
implementations (optimized for minimal cost and power consumption), rather than benchmarking of the
high-speed implementations targeted by our study.

As a result we have based our choice of platform primarily on the projected practical importance of
various platforms during the initial period of deployment of new PQC standards, and the expected speed-up
over purely software implementations. These priorities led us to choose devices from the "hard" processor
class, with a hard-wired ARM processor, and among them the Zynq UltraScale+ family from Xilinx Inc., the
vendor with the biggest market share in this device category. Zynq UltraScale+ and similar SoCs are likely
to be used for practical deployments of PQC in the near future, wherever device speed and time-to-market
are of primary concern. Implementations using these devices are more likely than implementations using only
hardware.

However the use of soft-core processors, and in particular the free and open-source RISC-V, should be
considered as a natural next step, especially in light of DARPA’s recent selection of the RISC-V Instruction

http:implementations.To

3 Farnoud Farahmand, Viet Ba Dang, Michal Andrzejczak and Kris Gaj

Table 1: Features of selected NIST Round 2 PQC KEMs

Feature FrodoKEM Round5 Saber

Underlying
problem

LWE :
Learning With Errors

RLWR :
Ring Learning With

Rounding

Mod-LWR :
Module Learning with

Rounding
Element of a
matrix or vector in Zq Zq Zq[x]/(xn + 1)

Modulus q Power of 2 Power of 2 Power of 2

Major parameters

n: matrix dimensions,
B: number of bits

encoded in each matrix
entry,

˙: standard deviation

n: degree of reduction
polynomial,

p, t: other moduli

n: degree of reduction
polynomial,
l: number of

polynomials per vector,
p, T : other moduli, µ:

parameter of CBD
Hash-based
functions

SHAKE cSHAKE SHAKE, SHA3-256,
SHA3-512

Sampling Integers are sampled
from an approximation
of a rounded continuous
Gaussian distribution.

Integers from a uniform
distribution are

produced by a DRBG
taking a random seed.

Integers are sampled
from a centered

binomial distribution
(CBD).

Decryption
failures Yes Yes Yes

#Multiplications
in Encapsulation

2 matrix-by-matrix 2 vector-by-vector 2 matrix-by-vector
1 vector-by-vector

#Multiplications
in Decapsulation

3 matrix-by-matrix 3 vector-by-vector 1 matrix-by-vector
2 vector-by-vector

Set Architecture (ISA) for investigation within its cybersecurity-related programs [27].
With the preferred platform identifed, our second major concern is the fairness of software/hardware

benchmarking, especially in terms of deciding which operations within each evaluated scheme should be
o˜oaded to hardware. In this paper we propose a comprehensive approach to address this issue, aimed at
achieving the best possible trade-o˙ between the speed-up compared to software and the required development
time. This approach is described in detail in Section 4.

The proposed methodology was applied to the evaluation of seven IND-CCA-secure [3, 15] key encapsulation
mechanisms (KEMs), belonging to the following fve di˙erent Round 2 PQC submissions: FrodoKEM [34],
Round5 [37], Saber [38], NTRU [36], and NTRU Prime [35].

2 Basic Features of Compared Algorithms
Basic features of FrodoKEM, Round5, and Saber are summarized in Table 1. These algorithms are based on
the Learning with Errors (LWE), General Learning With Rounding (GLWR), and Module Learning with
Rounding (Mod-LWR) problems, respectively. The implemented variant of Round5 relies specifcally on the
RLWR (Ring Learning With Rounding) variant of GLWR, and thus only features of this variant are discussed
below. All three KEMs are based on underlying IND-CPA public key encryption schemes, converted to
IND-CCA KEMs using very similar variants of the Fujisaki–Okamoto transform [10], [16].

In all three schemes the elementary operation is integer multiplications modulo a power of two (denoted
as q). In FrodoKEM the most time-consuming operation is a matrix-by-matrix multiplication, where each
component of a matrix is an element of Zq . In Saber the most time-consuming operations are matrix-by-vector
and vector-by-vector multiplications, where each element of a matrix or a vector is a polynomial with n
coeÿcients in Zq, and the multiplication of such polynomials is performed modulo the reduction polynomial
xn + 1. In the implemented variant of Round5 the most time consuming operation is a vector-by-vector

4 Implementing and Benchmarking Seven Round 2 Lattice-Based KEMs

Table 2: Features of NIST Round 2 NTRU-based PQC KEMs

Feature NTRU-HPS NTRU-HRSS
Streamlined

NTRU Prime
NTRU

LPRime

Underlying
problem

Shortest Vector
Problem

Shortest Vector
Problem

Shortest Vector
Problem

Shortest Vector
Problem

Polynomial P xn − 1 �n = (xn − 1)/(x − 1)��
xn − x − 1

irreducible in
Zq[x]

xn − x − 1
irreducible in

Zq[x]
� Degree n prime prime prime prime

Modulus q
power of 2

with q/8− 2 � 2n/3
power of 2 p

with q > 8 2(n + 1) prime prime

Weight w
Fixed weight
for f and r N/A

Fixed weight
for f and r.
3w � 2n

16w + 1 � q

Fixed weight
for b and a.

3w � 2n
16w + 2� + 3 � q

Hash-based functions SHA3-256 SHA3-256 SHA3-512 SHA3-512
Decryption failures No No No No

Quotient rings

R/q:
Zq [x]/(xn − 1)

S/q:
)�� Zq [x]/(�n

S/3:
)�� Z3[x]/(�n

R/q:
Zq[x]/(xn − 1)

S/3:
Z3[x](x − 1)/(xn − 1)

R/q:
n −Zq[x]/(x x − 1)

R/3:
Z3[x]/(xn − x − 1)

R/q:
n −Zq[x]/(x x − 1)

R/3:
Z3[x]/(xn − x − 1)

#Poly Mults for
Encapsulation 1 in R/q 1 in R/q 1 in R/q 2 in R/q

#Poly Mults for
Decapsulation

1 in R/q
1 in S/q
1 in S/3

1 in R/q
1 in S/q
1 in S/3

2 in R/q
1 in R/3 3 in R/q

� denoted by p in the specifcation of Streamlined NTRU Prime and NTRU LPRime
�� �n = (xn − 1)/(x − 1) irreducible in Zq[x]

multiplication, where components of one vector are elements of Zq, and the components of the other vector
are in the set {-1, 0, 1}.

All three algorithms use SHAKE [26] or cSHAKE [24] as an auxiliary cryptographic operation. Saber uses
SHA3-256 and SHA3-512 in addition to SHAKE. Sampling is the easiest to implement in Round5 (uniform
distribution), followed by Saber (centered binomial distribution), and then FrodoKEM (approximation of a
rounded continuous Gaussian distribution).

Basic features of the four NTRU-based KEMs submitted to the NIST PQC process (NTRU-HPS and
NTRU-HRSS from the NTRU submission package, and Streamlined NTRU Prime and NTRU LPRime from
the NTRU Prime submission package) are summarized in Table 2. In each of these algorithms the underlying
security problem is the Shortest Vector Problem (SVP) in a lattice. The most time-consuming operation in
each is a polynomial multiplication, where the degree of the reduction polynomial is a prime. For operations
on the polynomial coeÿcients the modulus is a power of 2 for NTRU-HPS and NTRU-HRSS, and a prime for
Streamlined NTRU Prime and NTRU LPRime. The modulus chosen for each NTRU Prime algorithm may
potentially lead to a higher resistance against future attacks, but its e˙ect on the maximum clock frequency
and resource utilization is clearly negative.

Additionally, NTRU LPRime requires two polynomial multiplications per encapsulation vs. one for the
other three algorithms listed in Table 2. For decapsulation, the exact types of multiplications vary, but the
number of multiplications required is three for each algorithm.

Parameter sets of seven investigated algorithms are summarized in Table 3. Because we compared
IND-CCA KEMs [15], the parameter sets for Round5 were adopted from the IND-CCA PKE variant, rather
than from the IND-CPA KEM. The submission package of Round5 does not contain the recommended
parameter values for the IND-CCA KEM as this scheme is treated only as a building block of the IND-CCA
PKE.

5 Farnoud Farahmand, Viet Ba Dang, Michal Andrzejczak and Kris Gaj

The specifcation of NTRU associates two di˙erent security categories with each parameter set for NTRU-
HPS and NTRU-HRSS. In this paper we conservatively assumed the lower security category based on the so
called non-local computational models (see [36], Section 5.3 Security Categories). The same computation
model is implicitly assumed by the submitters of the other investigated algorithms.

In Table 3 we have divided parameter sets into three groups with security categories 1 and 2, 3 only, and
4 and 5, respectively. Only the frst group contains all 7 investigated algorithms. However the second group
contains the largest number of {algorithm, parameter set} pairs (6 out of 7) with exactly the same security
level.

Table 3: Parameter sets of investigated algorithms

Algorithm Parameter
Set

Security
Category

Degree
n

Modulus
q

Other Major
Parameters

Auxiliary
Functions

FrodoKEM Frodo-640 1 640 215 B=2, ̇ = 2.8 SHAKE128
Round5 R5ND-1PKE_0d 1 586 213 p = 29, t = 24 cSHAKE128
Saber LightSaber-KEM 1 256 213 l = 2, T = 23,

µ = 10
SHAKE128
SHA3-256
SHA3-512

NTRU-HPS ntruhps2048677 1� 677 211 N/A SHA3-256
NTRU-HRSS ntruhrss701 1� 701 213 N/A SHA3-256
Str NTRU
Prime

kem/sntrup653 2 653 4621 < 213 w = 288 SHA3-512

NTRU
LPRime

kem/ntrulpr653 2 653 4621 < 213 w = 252,
� = 289

SHA3-512

FrodoKEM Frodo-976 3 976 216 B=3, ̇ = 2.3 SHAKE256
Round5 R5ND-3PKE_0d 3 852 212 p = 29, t = 25 cSHAKE256
Saber Saber-KEM 3 256 213 l = 3, T = 24,

µ = 8
SHAKE128
SHA3-256
SHA3-512

NTRU-HPS ntruhps4096821 3� 821 212 N/A SHA3-256
Str NTRU
Prime

kem/sntrup761 3 761 4591 < 213 w = 286 SHA3-512

NTRU
LPRime

kem/ntrulpr761 3 761 4591 < 213 w = 250,
� = 292

SHA3-512

FrodoKEM Frodo-1344 5 1344 216 B=4, ̇ = 1.4 SHAKE256
Round5 R5ND-5PKE_0d 5 1170 213 p = 29, t = 25 cSHAKE256
Saber FireSaber-KEM 5 256 213 l = 4, T = 26,

µ = 6
SHAKE128
SHA3-256
SHA3-512

Str NTRU
Prime

kem/sntrup857 4 857 5167 < 213 w = 322 SHA3-512

NTRU
LPRime

kem/ntrulpr857 4 857 5167 < 213 w = 281,
� = 329

SHA3-512

� assuming non-local computational models

3 Previous Work
Only a few candidates in the NIST PQC standardization process have been fully implemented in hardware to
date. These implementations are reported in [29], [39], [22], [25], [9].

Only a few attempts to accelerate software implementations of post-quantum cryptosystems have been
made through software/hardware (SW/HW) codesign by other groups. A coprocessor consisting of the

6 Implementing and Benchmarking Seven Round 2 Lattice-Based KEMs

PicoBlaze soft-core and several parallel acceleration units for the code-based McEliece cryptosystem was
implemented on Spartan-3AN FPGAs by Ghosh et al. [14]. No speed-up vs. purely software implementation
using PicoBlaze was reported.

In 2015 Aysu et al. [2] built a high-speed implementation of a lattice-based digital signature scheme
using SW/HW codesign techniques. The work focused on the acceleration of signature generation. The
design targeted the Cyclone IV FPGA family and consisted of the NIOS II soft processor, a hash unit, and
a polynomial multiplier. Compared to the C implementation running on the NIOS II processor, the most
eÿcient software/hardware codesign reported in the paper achieved a speed-up of 26,250x at the expense of
an increase in the number of Logic Elements by a factor of 20.

Wang et al. [39] reported a software/hardware implementation of the hash-based digital signature
scheme XMSS. The selected platform was an Intel Cyclone V SoC, and the software part of the design
was implemented using a RISC-V soft-core processor. Hardware accelerators supported a general-purpose
SHA-256 hash function, as well as several XMSS specifc operations. The design achieved a speed-up of 23x
for signing and 18x for verifcation over a purely software implementation running on RISC-V.

All the aforementioned platforms were substantially di˙erent than the platform used in this work. The
algorithms and their parameters were also substantially di˙erent. As a result, limited information could be
inferred regarding the optimal software/hardware partitioning, expected speed-up, or expected communication
overhead.

An earlier version of this work, representing three NIST PQC Round 1 candidates (NTRUEncrypt,
NTRU-HRSS, and NTRU Prime) was reported in [7]. Compared to that work, all previously reported
designs were updated to make them compatible with the Round 2 specifcations of NTRU and NTRU
Prime [36], [35]. It should be mentioned that although the NTRUEncrypt and NTRU-HRSS candidates
merged, the obtained Round 2 candidate, NTRU, has two distinct variants, NTRU-HPS (somewhat similar to
the Round 1 NTRUEncrypt) and NTRU-HRSS (somewhat similar to the Round 1 candidate with the same
name), and thus the total number of the NTRU-based KEMs did not change. Our designs for FrodoKEM,
Round5, and Saber have not been reported in any earlier paper. Other di˙erences compared to [7] include
reporting results for multiple parameter sets per algorithm, more complete exploration of the available
software/hardware partitioning schemes, minimization of the software/hardware transfer overhead, and
measuring separately the execution time of the function randombytes() used to obtain uniformly distributed
random bytes during encapsulation.

4 Methodology
4.1 Software/Hardware Codesign Platform
The platform used in this work was selected based on the following criteria:

• modern technology, representing the current state of the art (vs. older generations of FPGAs, such as
Xilinx Virtex-6 or Virtex-7, used in the majority of previous cryptographic competitions)

• reconfgurable logic large enough to demonstrate the full capability for parallelization in hardware of
PQC algorithms

• a fast processor, representing the majority of the embedded system market, such as a variant of ARM

• a fast on-chip interface between the Processing System (based on a microprocessor) and Programmable
Logic (based on reconfgurable fabric), such as the ARM Advanced Microcontroller Bus Architecture
(AMBA) Advanced eXtensible Interface (AXI) version 4, the de facto standard for today’s embedded
processor bus architectures [1]

• relatively low cost and wide availability of a prototyping board containing the selected device, supporting
practical experimental measurements by multiple groups

• a device with relatively large share of the market for embedded system applications, especially in the
area of communications.

7 Farnoud Farahmand, Viet Ba Dang, Michal Andrzejczak and Kris Gaj

Output FIFOInput FIFO
Hardware

Accelerator

Zynq Processing System

AXI DMA

FIFO
Interface

FIFO
Interface

AXI Stream
Interface

AXI Stream
Interface

A
X

I L
it

e
In

te
rf

a
ce

A
X

I F
u

ll

In
te

rf
a

ce

A
X

I L
it

e
In

te
rf

a
ce

IR
Q

Clocking wizard

rd_clkwr_clk wr_clk rd_clkclk

UUT_clk

Main Clock

A
X

I L
it

e
In

te
rf

a
ce

AXI Timer
AXI Lite

Interface

Figure 1: Block diagram of software/hardware codesign.

Based on these criteria we chose the Xilinx Zynq UltraScale+ MPSoC XCZU9EG-2FFVB1156E as our
target device, and the Xilinx ZCU102 Evaluation Kit as a prototyping board. The device is composed of two
major parts sharing the same chip. The primary component of the Processing System (PS) is a quad-core
ARM Cortex-A53 Application Processing Unit, running at 1.2 GHz. As in the software benchmarking
experiments conducted by other groups, we utilize only one core in all our experiments. The Programmable
Logic (PL) includes a programmable FPGA fabric similar to that of Virtex UltraScale+ FPGAs, including
Confgurable Logic Block (CLB) slices, Block RAMs, DSP units, etc. The frequency of operation depends on
the particular logic instantiated in the reconfgurable fabric, but typically does not exceed 400 MHz.

The software used is Xilinx Vivado Design Suite HLx Edition, Xilinx Software Development Kit (XSDK),
and Xilinx Vivado HLS, all with version number 2018.2.

A high-level block diagram of the experimental software/hardware codesign platform is shown in Fig. 1.
The Hardware Accelerator is connected, through the dual-clock Input and Output FIFOs, to the AXI DMA,
supporting the high-speed communication with the Processing System. Timing measurements are performed
using the popular Xilinx IP unit called AXI Timer, which is capable of measuring time in clock cycles of the
200 MHz system clock. The Hardware Accelerator can operate at a variable clock frequency, controlled from
software using the Clocking wizard unit.

4.2 Software Profling, C Source Code Analysis, and Software/Hardware Partitioning
Our frst step in evaluating the suitability of cryptographic algorithms for software/hardware codesign was
profling of their software implementations using one core of the ARM Cortex-A53. Profling produces a list
of the most-time consuming functions, including their absolute execution time, percentage execution time,
and the number of times they are called.

8 Implementing and Benchmarking Seven Round 2 Lattice-Based KEMs

In the case of KEMs, the encapsulation operation uses multiple calls to the function randombytes()
which produces a sequence of random bytes with uniform distribution. Other PQC benchmarking projects use
a version of this function based on operating system functions and/or functions from OpenSSL [4, 32, 23, 33].
None of these options is available in our study, in which we perform benchmarking in the Bare Metal mode.
Therefore in our code we use the implementation of randombytes() proposed by Saarinen in April 2018 [32],
which is an improved version of the implementation developed by NIST for the generation of known-answer
tests [28]. Since both of these implementations rely on the implementation of AES in the ECB mode from
the OpenSSL library, we have replaced this implementation by the standalone, optimized implementation
of AES in C, based on the use of T-boxes [31]. Compared to the OpenSSL implementation the selected
implementation is written entirely in C rather than in an assembly language of a specifc processor, and does
not contain any countermeasures against cache-timing attacks. As a result, the selected implementation
of randombytes() is likely to have di˙erent timing characteristics than the implementations used in other
benchmarking studies, such as SUPERCOP [4], pqcbench [32], pqm4 [23], and liboqs [33]. Therefore for
each encapsulation operation we measure the execution time including and excluding the execution time of
randombytes(). Additionally, we report the total number of calls to randombytes(), as well as the total
number of bytes generated using this function. This approach allows us to determine whether ranking of
candidates may be possibly modifed by the use of a di˙erent implementation of randombytes(), and/or by
replacing calls to this function by calls to a di˙erent cryptographically-strong pseudorandom function, such
as SHAKE.

We decided which functions to o˜oad to hardware based on the highest potential for total speed-up, as
well as fairness of comparison among investigated algorithms. The total speed-up obtained by o˜oading an
operation to hardware depends on two major factors: the percentage of the execution time taken in software
by the operation o˜oaded to hardware, and the speed-up for the o˜oaded operation itself (which we will
call the "accelerator speed-up"). In order to maximize the frst factor we gave priority to operations that
take the largest percentage of the execution time, preferably more than 90%. These operations may involve
a single function call, several adjacent function calls, or a sequence of consecutive instructions in C. It is
preferred that a given operation is executed only once, or only a few times, as each transfer of control and
data between software and hardware involves a certain fxed timing overhead, independent of the size of input
and output to the accelerator. In order to maximize the second factor we gave priority to operations that
have high potential for parallelization in hardware, and small total size of inputs and outputs (which will
need to be transferred to and from the hardware accelerator, respectively)

Most of the data required to make informed decisions regarding software/hardware partitioning can be
obtained by profling the purely software implementation, possibly extended with some small modifcations
required to gather all relevant data. However, determining the potential for parallelization requires some
knowledge of hardware or at least basic concepts of concurrent computing.

In order to assure fairness in our comparison, we endeavored to o˜oad to hardware all operations common
to or similar across the iplementat algorithms (e.g. all polynomial multiplications), and all operations that
contribution signifcantly to the total execution time. Nevertheless it should be understood that this heuristic
procedure may need to be repeated several times, because after the each round of o˜oading to hardware
di˙erent software operations may emerge as taking the majority of the total execution time. This process
can stop when the development e˙ort required for o˜oading the next most-critical operation to hardware is
disproportionately high compared to the projected speed-up.

4.3 Interface of Hardware Accelerators and the RTL Design Methodology
The interface of a hardware accelerator matches the interface of the Input and Output FIFOs. The default
width of the data bus is 64 bits. Each particular operation, such as load public key, start encapsulation, etc.,
is initiated by sending an appropriate header (in the form of a single 64-bit word), from a program running
on the ARM processor to the data input of a hardware accelerator. When an operation requires additional
data, this data is transmitted using the subsequent Input FIFO words.

After the hardware accelerator produces results or detects an error, a header word is sent in the opposite
direction. If an additional output is required, this output follows the header and is arranged in 64-bit words.
The detailed format of the exchanged inputs and outputs is left up to the designer of a hardware accelerator.

The design of a hardware accelerator follows a traditional Register-Transfer Level (RTL) methodology.

9 Farnoud Farahmand, Viet Ba Dang, Michal Andrzejczak and Kris Gaj

The entire system is divided into a Datapath and a Controller. The Datapath is described using a hierarchical
block diagram, and the Controller using hierarchical algorithmic state machine (ASM) charts. Multiple local
controllers may be advantageous compared to a single global Controller. The RTL approach, although not
novel by itself, is an important part of our methodology as it facilitates very eÿcient hardware accelerator
designs. The block diagrams and ASM charts are very easy to translate to eÿcient and fully synthesizable
VHDL code.

4.4 Verifcation and Generation of Results
Functional verifcation of the hardware description language (HDL) code is performed by comparing simulation
results with precomputed outputs generated by a reference software implementation.

Fully verifed and independently optimized VHDL code is then combined with the optimized software
implementation of a given PQC candidate. Functional verifcation of the integrated software/hardware design
is performed by running the code on the prototyping board and comparing the obtained outputs with outputs
generated by a functionally equivalent reference implementation, run on the same ARM Cortex-A53 processor.

Experimental timing measurements follow, with the hardware accelerator’s clock set (using the Clocking
wizard) to the optimal target frequency identifed during the synthesis and implementation runs. The
execution time is measured by using the AXI Timer module, shown in Fig. 1, in clock cycles of the AXI
Timer, which operates at the default clock frequency of 200 MHz.

5 Hardware Accelerators
5.1 FrodoKEM
The pseudocode of FrodoKEM, with parts o˜oaded to hardware surrounded by dotted rectangular frames, is
shown in Fig. 9 in Appendix B. The top-level block diagram of the hardware accelerator is shown in Fig. 2.

The public key is composed of the 128-bit seed_A and B – an unpacked public-key matrix, of dimensions
n x 8 log2q-bit words, where n=640, 976, 1344 for the security levels 1, 3, 5, respectively. Both of these
elements are assumed to be loaded to the respective memories of the hardware accelerator, Seed_Asm_Mem
and Matrix_A_and_B_Dual_Mem before the encapsulation or decapsulation starts.

During the encapsulation, shown in Fig. 9, the 256-bit seed_SE is frst loaded to the asymmetric memory
Seed_Asm_Mem, with the 8-bit data input and the 64-bit data output. SHAKE128 is run to generate a
pseudorandom sequence r(0)..r(mn−1). This sequence is then fed to Sampler, which for every 16-bit word
produces a w-bit output. The obtained samples, representing subsequent coeÿcients of the vector S0, are
stored in the asymmetric memory Matrix_S’_Asym_Mem. The internal block diagram of the Frodo Sampler is
shown in Fig. 3.

The subsequent words generated by SHAKE128, denoted in the pseudocode as r(mn).. r(2mn−1), are
passed through Sampler, and its outputs are stored as subsequent coeÿcients of E0, in the memory
Matrix_B’_and_V_Dual_Mems. Similarly, the words r(mn)..r(2mn−1) are passed through the sampler, and
used to generate coeÿcients of E00, stored in the same memory.

Subsequently, SHAKE128 is used to generate elements of the n x n matrix A, with each element expressed
using log2q bits. In order to reduce the execution time and the size of the Matrix_A_and_B_Dual_Mem memory,
only one row of the A matrix is generated at a time, and used for the computations of B0 = S0A + E0, in
parallel with calculating the subsequent row of A. The elements of A are multiplied by the corresponding
elements of S0, read from Matrix_S’_Asym_Mem, sign-extended to log2q bits, and stored in one of the eight
registers preceding the 4MAC units.

The internal block diagram of the 4MAC unit, processing 4 elements of A, S0, and E0 at a time is shown
in Fig. 13 in Appendix B. The temporary results are stored back in Matrix_B’_and_V_Dual_Mem. B0 is
then transferred back to the processor using the outfifo_data bus. After the subsequent computation,
V = S0B + E00, V is transferred to the processor for further computations in software.

The operations performed by the hardware accelerator during the decapsulation are identical to those
performed during the encapsulation (with B0 replaced by B00). The operation M = C −B0S is not o˜oaded
to hardware. This operation takes a very small percentage of the total execution time in the purely software
implementation. It also requires a signifcant amount of data to be transferred to and from the hardware

http:implementation.It

10 Implementing and Benchmarking Seven Round 2 Lattice-Based KEMs

Sampler

Seed
Asm_Mem

Matrix S’
Asym_Mem

4w

SHAKE128/256

Sign Ext

w

4 MACs

4 MACs

4 MACs

4 MACs

4 MACs

4 MACs

4 MACs

4 MACs

Matrix
A and B

Dual_Mem

Row 0

Row 1

Row 2

Row 3

Row 4

Row 5

Row 6

Row 7

Matrix
B’ and V

Dual_Mems

16

16

16

16

16

16

16

16

16

16

16

16

16

16

16

16

16

Sign Ext

4w

samples

samples

Controller

in
fi

fo
_

d
a

ta

ad-a ad-b

d
i-a

d
i-b

d
o

do

di

ad
-a

di

do

ad
-in

ad
-o

S’
_a
d
_i
n

S’
_a
d
_o

in
fi

fo
_

e
m

p
ty

1 1

log2(2n+n/2)

lo
g2
(n
/4
)

ad
-a

ad
-b

d
i-a d
i-b

d
i-a d
i-b

d
i-a d
i-b

d
i-a d
i-b

d
o

d
o

d
o

d
o

d
i-a d
i-b

d
o

d
i-a d
i-b

d
o

d
i-a d
i-b

d
o

d
i-a d
i-b

d
o

do_1

do_0

do_2

do_3

do_4

do_5

do_6

do_7

do_0

do_1

do_2

do_3

do_4

do_5

do_6

do_7

log2(8n)

log2(2n)

outfifo_data

in
fi

fo
_

re
a

d

ad
-b

Piso

8

o
u

tf
if

o
_f

u
ll

1

o
u

tf
if

o
_w

ri
te

1

7

4

S’_ad_in

log2(8n)log2(2n)

S’_ad_o

A

B

Acc

C

A

B

Acc

C

A

B

Acc

C

A

B

Acc

C

A

B

Acc

C

A

B

Acc

C

A

B

Acc

C

A

B

Acc

C

Figure 2: Block diagram of the hardware accelerator for FrodoKEM. All bus widths are 64-bit unless specifed.

accelerator. As a result, any attempt at a hardware acceleration of this operation has resulted in increasing
rather than decreasing the total execution time.

5.2 Round5
The pseudocode of Round5, with parts o˜oaded to hardware surrounded by dotted rectangular frames, is
shown in Fig. 10 in Appendix B. The main computations of Round5 are performed in the polynomial ring
Zq[x]/(�n+1(x)). The most time consuming operation is multiplication in the aforementioned ring, described
by the equation X

ck = ai � bj mod q (1)
i+j�k mod n

This operation is executed twice during encapsulation and three times during decapsulation.
Thus, polynomial multiplication is the most obvious candidate for hardware acceleration. Moreover, a

polynomial multiplication can be implemented more eÿciently than in general case, due to the special form of
one of the polynomials. In each Round5 multiplication, one of the polynomials is always a ternary polynomial,
which means that each of its coeÿcients is from the set {−1, 0, 1}. In this case, the multiplication is reduced
only to addition or subtraction of the coeÿcients of the second polynomial.

http:oneofthepolynomials.In

11 Farnoud Farahmand, Viet Ba Dang, Michal Andrzejczak and Kris Gaj

64

CDF CDF CDF CDF

4w

16 16 16 16

w w w w

15

> cnt_1 > cnt_n

15 15 15

> cnt_2

2's Complement

w

w

16
15 … 1 0CDF

Figure 3: FrodoKEM sampler.

After initially, moving only polynomial multiplication to hardware, we have decided to accelerate the
entire encryption and decryption. In this approach, cSHAKE is also implemented in hardware and used for
the secret key and public key expansion. This approach allows generating the majority of polynomials used
in multiplication directly in hardware, without the need of generating them in software and passing through
the relatively slow communication channel. The inputs for encryption and decryption are directly passed to
FPGA fabric without unpacking by CPU. The (un-)packing functions, based on bit-shifting operations are
implemented in hardware. These operations are very inexpensive in hardware. Thus, the speed-up comes
from both the faster execution of cSHAKE in hardware, as well as lower communication overhead, achieved
by sending only the seed for cSHAKE instead of the expanded data. The remaining operations, such as
rounding, addition, and subtraction are also fast and cost-eÿcient in hardware, providing additional speed-up.
Thus, with little additional area, the design is able to execute encryption and decryption on the input data
and return results in the already packed format.

We have decided to implement in hardware only r5_cpa_pke_encrypt, r5_cpa_pke_decrypt, and one of
the additional calls to cSHAKE appearing during decapsulation (denoted as G(m’||pk in Fig. 10). A few
remaining operations of Round5 CCA KEM are executed on the software side. Moving all operations to
FPGA fabric would lead to a more complicated and area-consuming design. Moreover, the maximum clock
frequency could decrease. Finally, the design with all operations executed in FPGA fabric would be a full
hardware implementation and the comparison with other software/hardware codesigns described in this paper
would not be any longer fair.

The top-level block diagram of r5_cpa_pke is shown in Fig. 4. The required data is being read from
the input FIFO using the port data_in. The frst data block must be a header block, which describes the
command and the destination of the incoming transmission. Based on the header value, the main controller
decides where the next data block should be written. The decision is sent to the SIPO module with selected
input. If the incoming data is a seed for expansion, it is passed directly to the cSHAKE unit. In other cases,
the specifed input port of one of the two arithmetic modules is used.

The main controller is also responsible for managing the state of the accelerator. After all required data is
received, including the expanded data generated by cSHAKE, the controller initializes the arithmetic modules
and waits till the end of computations. The last step is to send the result back to software.

Encryption and decryption are performed by the arithmetic modules: Rounding and Poly_Mul, shaded
with colors in Fig. 4. Provided with necessary data and operation type, the aforementioned modules execute
specifc instructions. At frst, a polynomial multiplication is performed. Based on the operation type,
temporary result can be then rounded. During encryption, the message is added at the end of the data fow,
before the results are prepared to be sent back to software.

The majority of area taken by arithmetic modules is used by Poly Mult, shown in Fig. 5. The area
requirements come from the construction of the multiplier. To achieve the best performance, we use n
coeÿcient multipliers working in parallel. With this setting, the polynomial multiplication takes n clock
cycles. A multiplication by a ternary coeÿcient is performed as an XOR and AND operation. We utilize the

http:aternarycoe�cientisperformedasanXORandANDoperation.We

12 Implementing and Benchmarking Seven Round 2 Lattice-Based KEMs

Sipo w/sel_in

in
fi

fo
_

d
a

ta

Sipo

Controller

q*(n+1)

2*(n+1)

p*n

t*n

p*n

msg

cSHAKE

||

0s

q*(n+1)

NTRU_Poly_Mul

…

…

neg

q*(n+1)

q qq

q
q q q

q

2*(n+1)

neg

q*nq

q

P
o

ly
_M

u
l q*(n-1)

Rounding

…

bit_sel bit_sel bit_sel…

q q q q qq

const const const

q

Shift_Reg

q*n

q

p*n

q*n

ext

p*n

p*n

su
b

_o
u

t

sub_out

P
is

o
Add

Subt*n

||

0s

p*n

o
u

tf
if

o
_d

at
a

in
fi

fo
_

e
m

p
ty

1

in
fi

fo
_

re
a

d

1o
u

tf
if

o
_f

u
ll

1

o
u

tf
if

o
_w

ri
te

1

11

cSHAKEo

cSHAKEo

64

outfifo_data

64

64

cSHAKEo

64

Reg

q

||

0s

q*n

Figure 4: Block diagram of the hardware accelerator of Round5.

fact that one of the arguments is from the set {−1, 0, 1}. Thus, the second argument is XOR-ed bit-by-bit in
parallel with the bit describing the sign of the frst argument. Next, the parallel AND operation, with a bit
denoting a zero value of the ternary coeÿcient is performed. The result is passed to an adder and next to an
accumulator.

The NTRU_Poly_Mul is surrounded with additional logic performing necessary operations to prepare
polynomials for multiplication. One of the polynomials is lifted from the ring

Zq[x]/(�n+1(x)) (2)

to the ring

Zq[x]/(Nn+1(x)). (3)

before multiplication. The coeÿcients in the lifted polynomial are equal to −a0 +(a0 −a1)x+(a1 −a2)x2 +· · · +
an−1xn. Due to lack of data dependency, each coeÿcient is lifted in parallel and the operation takes always
only one clock cycle. After multiplication, a polynomial is unlifted to previous ring. Unlifting is computed

L recursively as ai = ai−1 −a . Unfortunately, this operation cannot be executed in parallel and has almost the i
same latency as multiplication. The second arithmetic module named Rounding is responsible for properly
shrinking the bit size of coeÿcients by adding a rounding constant (specifc to the given computational step)
and applying a proper mask.

The presented design is able to encrypt and decrypt data by performing all necessary operations. This
feature allows using the core directly in any Round5 scheme requiring the r5_cpa_pke encryption and
decryption.

13 Farnoud Farahmand, Viet Ba Dang, Michal Andrzejczak and Kris Gaj

Rotator

acc acc acc

Parall. and Parall. and Parall. and

Parall. XOR Parall. XOR Parall. XOR

Left_shift

Right_shift

q q q

q

q

q

q

q

q

q q q

q q q

q q q

…

…

…

qk

2k

2 2

q*n

b {-1,0,1}

2n

Poly a

q*n 2

a_init

a_init

a_init

Permutation

q*n

b1

b0

b1 b1

b0

b1

b1

b0

b1

1

1

1

1

1

1

1

1

1

Figure 5: Block diagram of Round5 NTRU Poly Mult.

5.3 Saber

The pseudocode of Saber, with the operations o˜oaded to hardware surrounded by dotted rectangular frames,
is shown in Fig. 11 in Appendix B. The top-level block diagram of the hardware accelerator is shown in Fig. 6.

The public key of Saber is composed of the 256-bit seed_A and the vector b composed of l polynomials
with n=256 coeÿcients each (where l=2, 3, 4 for the security levels 1, 3, 5, respectively). The coeÿcients of
polynomials are of the size of log2q=13 bits for all security levels. Both seed_A and b are assumed to be
loaded to the respective memories of the hardware accelerator, Seed_Mem and Vector_b_and_S_Asym_Mem,
using the 64-bit input bus infifo_data, before the encapsulation or decapsulation starts.

During the encapsulation, only the operations performed during Encryption Saber.PKE.Enc, shown in
Fig. 11, are accelerated. Unlike in the pseudocode, in the hardware accelerator, vector s0 is generated frst.
In order to make it possible, the 256-bit seed r is loaded frst to Seed_Mem. The generation of s0 involves
SHAKE128 followed by Sampler, generating w-bit integers using centered binomial distribution (CBD). The
obtained samples, representing subsequent coeÿcients of the vector s0, are stored in the asymmetric memory
Matrix_S’_Asym_Mem.

Subsequently, SHAKE128 is used to generate elements of the l x l matrix A, with each element representing
a polynomial. In order to reduce the execution time and the size of Matrix_A_Asym_Mem memory, only one
row of the A matrix is generated at a time, and used for the computations of b0 = (As0 + h) mod q, in parallel
with calculating the subsequent row of A. h in the above equation is a constant. The elements of A are
multiplied by the corresponding elements of s0, read from Matrix_S’_Asym_Mem, sign-extended to 13-bits,
and stored in the n-stage LFSR. With 4 coeÿcients loaded per clock cycle, the initialization of the 256-stage
LFSR takes 64 clock cycles. The temporary results are stored in the registers shown to the right of MACs
in Fig. 6. The internal structure of MACs is shown in Fig. 14 in Appendix B. Each coeÿcient of b0 is then
shifted right by 3 positions (corresponding to the division by q/p=213/210=8) and transferred back to the
processor using the outffo_data bus. In the subsequent operation, v0 = bT (s0 mod p), the reduction mod p is
performed on the fy, and the result transferred to the processor for further computations in software.

14 Implementing and Benchmarking Seven Round 2 Lattice-Based KEMs

Sampler

Seed
Mem

Matrix S’
Asym_Mem

8w

SHAKE128

Sign Ext

4w
MAC

MAC

MAC

52

13

13

13

Controller

in
fi

fo
_

d
a

ta

do

di

ad

di

do

ad-in

ad-o

in
fi

fo
_

e
m

p
ty

1 1

7+
lo
g2
(l
)

in
fi

fo
_

re
a

d

o
u

tf
if

o
_f

u
ll

1

o
u

tf
if

o
_w

ri
te

1

7

Sign Ext

Vector b’
Mem

di

doad

52

40

…
.

Piso

Mod p rding

5252

52

13n

13

13

13

13

13

13

o
u

tfifo
_d

ata

Matrix A
Asym_Mem

di

do

ad-oad-in

97

13

64

Sign Ext

64

Vector b and S
Asym_Mem

di

do

ad-oad-in

10

13

64

6+
lo
g2
(l
)

…
.

9+
lo
g2
(l
)

b’_ad

6+
lo
g2
(l
)

b
’_
a
d

13

64

LFSR
13n

52

S’_ad_in

S’_ad_o

5+
lo
g2(l)

6+
lo
g2
(l
)

6+
lo
g2
(l
)

S’
_a
d_
o

5+
lo
g2
(l
)

S’
_a
d_
in

SR
13n

A

B

C

Acc

A

B

C

Acc

A

B

C

Acc

Figure 6: Block diagram of the hardware accelerator of Saber.

Secret key s is assumed to be loaded before the decapsulation starts. In the frst phase of decapsulation, a
new operation, v = b0T s mod p, specifc to decapsulation, is performed by the hardware accelerator. b0 is a
part of the ciphertext, and thus must be loaded already after the start of decapsulation. In the second phase
of decapsulation, the function Saber.PKE.Enc is called, and as a result, the hardware accelerator performs
exactly the same operations as during the encapsulation.

5.4 NTRU-HPS and NTRU-HRSS
The pseudocode of NTRU, with parts o˜oaded to hardware surrounded by dotted rectangular frames, is
shown in Fig. 12 in Appendix B. The top-level block diagram of the hardware accelerator is shown in Fig. 7.

Polynomial multiplications mod (q, �1�n), located in the lines 2 of Encrypt() and 2 of Decrypt() are
executed using Zq_LFSR and MACs located in the top portion of the block diagram. The Zq_LFSR is initialized
with a polynomial with large coeÿcients (h for Encrypt() and c for Decrypt()). Let us denote the initial

i state of the LFSR as a(x). In each subsequent iteration, the output from LFSR contains the value a(x) · x
i mod P . In a single clock cycle, a simple multiplication by x, namely a(x) · xi+1 mod P = a(x) · x · x mod P ,

is performed, as shown in Fig. 17a. The coeÿcients at the output of Zq_LFSR are then multiplied by the
sign-extended small coeÿcient of r for Encrypt() and f for Decrypt(), read from the f_r_Asym_RAM, and
added to the partial sum sum_fb. The internal structure of MAC is shown in Fig. 14. For the multiplication
mod (q, �n), located in the line 5 of Decrypt(), c0 is set to the output of hq_Asym_RAM. The multiplication
mod (3, �n), located in line 3 of Decrypt(), is performed using Z3_LFSR and the adders mod 3 located
in the right portion of the block diagram in Fig. 7. c0r, generated by the controller, based on the value
of the currently processed coeÿcient of fp, is used to select between adding or subtracting the output of

15 Farnoud Farahmand, Viet Ba Dang, Michal Andrzejczak and Kris Gaj

M
A

C

0s

c0

sum_fb0

zq
o
0

su
m

0

su
m

1

su
m

n
-1

sum

logq

nlogq

logq

sum_fb

logq

nlogq

….

….

hq
Asym_RAM

f_r
Asym_RAM

64 logq

64

Zq_PISO

logq

c_t

in
fi
fo
_
d
at
a

in
fifo

_
rea

d

in
fifo

_
e
m
p
ty

64
o
u
tfifo

_w
riteo

u
tf
if
o
_f
u
ll

o
u
tf
if
o
_d
a
ta

logq-1...0 63...0

5 5

2 logq

64

nlogq

2n

0s

c0r

sum_r0

sum_r1

sum_rn-1

z3o0

z3o1

z3on-1

22

2

2

0s

c0r

22

2

2

0s

c0r

22

2

2

2

2

…
.…
.

2n

64

5

10

in
fi
fo
_
d
at
a

2

== -1 == 0

fp_eq0

r

64

Controller

EXT

Z3_PISO

sum_r

64

r

2n

Mod 3

2n

1010

do

wr_ad rd_addi

do

wr_ad rd_addi

fp_RAM

do

w
r_
ad

rd
_a
d

di

su
m
_2

fp_eqm1

Center_3q

logq(+2)n

sum_r
2n su

m
_r

n
-1

su
m
_r

n
-1

2

su
m
_r

n
-1

Zq_LFSR
sin

dout

Z3_LFSR
din dout

Sign EXT
c0

logq

logq

logq

sum_fbn-1

M
A

C

0s

c0

sum_fb1

logq

logq

logq

sum_fbn-1 zq
o
1

nlogq

logq logq

M
A

C

0s

c0

sum_fbn-1

logq

logq

logq

sum_fbn-1 zq
o
n
-1

logq

c0
r

fp
_
eq
m
1

fp
_
eq
0

A

B

C
Acc

A

B

C
Acc

A

B

C
Acc

Figure 7: Block diagram of the hardware accelerator for NTRU.

0s

c0

su
m
_f
b
0

su
m
_f
b
1

su
m
_f
b
n
-1

ro0 ro1 ron-1

su
m

0

su
m

1

su
m

n
-1

sum

13n

13

13n

2

sum_fb

13

13

13

13

0s

c0

13

13

13

0s

c0

13

13

13

13

131313

13n

….

….

13
REPc0

c0v 13
c0v

13
c0v

Reg_h
r_RAMf_RAM

64 64

64

Zq_PISO

13
c_t

in
fi
fo
_
d
at
a

in
fifo

_
rea

d

in
fifo

_
e
m
p
ty

64

o
u
tfifo

_w
riteo

u
tf
if
o
_f
u
ll

o
u
tf
if
o
_d
a
ta

12...0 63...0

5 5

2 2

64

13n

13

M
o

d
q

sum_fb

2n

0s

c0r

sum_r0

sum_r1

sum_rn-1

ro0

ro1

ron-1

22

2

2

0s

c0r

22

2

2

0s

c0r

22

2

2

2

2

2

…
.

…
.

2n

64

5

10

in
fi
fo
_
d
at
a

2

== -1 == 0

c0r finv_eq0

r

64

Controller

EXT

Z3_PISO

sum_r

64

r

2n

Mod 3

2n

Zq_LFSR

== -1

== 0 eq_0

c0

1010

Reg_A

13n

do

wr_ad rd_addi

do

wr_ad rd_addi

finv_RAM

do

w
r_
ad

rd
_a
d

di

dinsin

13

M
o

d
q

M
o

d
q13 13

dout

Z3_LFSR
din dout

r
64

Figure 8: Block diagram of the hardware accelerator for NTRU LPRime and Streamlined NTRU Prime.

16 Implementing and Benchmarking Seven Round 2 Lattice-Based KEMs

Z3_LFSR to/from the partial sum sum_r. The internal structure of the Z3_LFSR is shown in Fig. 17b. In case
of multiplications in lines 3 and 5 of Decrypt(), one extra clock cycle is suÿcient to convert the result of
multiplication mod �1�n =xn − 1 to the result of multiplication mod �n.

Coeÿcients of the private key f are preloaded to the asymmetric f_r_RAM, before the decryption starts.
The partial and fnal results are stored in the Zq_PISO (Parallel-In Serial-Out) unit, with the parallel input
of the width of n · logq bits, the parallel output of the same width (used to enable the accumulation of
intermediate products), and the serial output of the width of logq bits used to read out the fnal result to the
output FIFO.

The Controller is responsible for generating suitable select and enable signals, communication with the
Input and Output FIFOs, interpreting the input headers with instructions sent by the respective driver, and
generating the output header containing the status and error codes that are sent back to the driver.

5.5 NTRU LPrime and Streamlined NTRU Prime
A block diagram of the hardware accelerators for Streamlined NTRU Prime and NTRU LPRime is shown in
Fig. 8. The operations in R/3 are necessary only in case of Streamlined NTRU Prime and are similar to
operations in S/3 for NTRU. Compared to NTRU, the main di˙erence is the need for reduction of partial
sums, involving large coeÿcients, mod q. Since now, q is a prime, a conditional subtraction is necessary. An
additional register A is required for NTRU LPRime only, increasing the number of required fip-fops.

6 Results
The results of profling for the purely software implementations, running on a single core of ARM Cortex-A53,
at the frequency of 1.2 GHz, are presented in the left portions of Tables 7, 8, 9, 10, and 11 in Appendix A. For
each of the seven investigated algorithms and each major operation (Encapsulation and Decapsulation), two
to fve most time-consuming functions are identifed. For each of these functions, we provide their execution
time in microseconds, and the percentage of the total execution time. In the right portions of the same
tables, we list in bold functions o˜oaded to hardware. For the functions combined together, they are listed
in the same feld of the table, with sub-indices, such as 1.1, 1.2, 1.3, etc. A single execution time and a single
percentage of the software/hardware execution time is given for such a combined function.

It should be mentioned that the number of functions o˜oaded to hardware may be misleading, as these
functions may appear at di˙erent levels of hierarchy. For example, for the Round5 encapsulation, only one
function is o˜oaded. However, it is a function involving the majority of operations of Round5, amounting to
99.6% of the total execution time in the software-only implementation. For the majority of algorithms, at
least the frst and the second most-time consuming functions are o˜oaded to hardware.

In Table 4, for each investigated KEM and each major operation (Encapsulation and Decapsulation),
we list the total execution time in software (for the optimized software implementations in C running on
ARM Cortex-A53 of Zynq UltraScale+ MPSoC), the total execution time in software and hardware (after
o˜oading the most time consuming operations to hardware), and the obtained speed-up. The ARM processor
runs at 1.2 GHz, DMA for the communication between the processor and the hardware accelerator at 200
MHz, and the hardware accelerators at the maximum frequencies, specifc for the RTL implementations of
each algorithm, listed in Table 6. All execution times were obtained through experimental measurements
using the setup shown in Fig. 1. The speed up for the software part o˜oaded to hardware itself is given in
the column Accel. Speed-up. This speed-up is a ratio of the execution time of the accelerated portion in
software (column Accel. SW [ms]) and the execution time of the accelerated portion in hardware, including
all overheads (column Accel. HW [ms]). The last column indicates how big percentage of the software-only
execution time was taken by an accelerated portion of the program.

The time of Encapsulation is provided with and without the execution time of randombytes(). The
reason for that is discussed in Section 4.2 and reinforced by measurements reported in Table 5. Optimized
implementations included in the submission packages of FrodoKEM, Round5, Saber, and NTRU LPRime use
randombytes() only to generate a 16, 24, or 32-byte seed for other pseudorandom functions, such as SHAKE.
The implementations included in the submission packages of NTRU-HPS, NTRU-HRSS, and Streamlined
NTRU Prime use randombytes() to generate signifcantly longer strings of bytes.

http:columnAccel.HW

17 Farnoud Farahmand, Viet Ba Dang, Michal Andrzejczak and Kris Gaj

Table 4: Timing results.

Algorithm
Parameter

Set

Total
SW
[ms]

Total
SW/HW

[ms]

Total
Speed-

up

Accel.
SW
[ms]

Accel.
HW
[ms]

Accel.
Speed-

up

SW part
Sped up

by
HW [%]

Encaps
FrodoKem 1:Frodo-640 16.192 1.414 11.5 15.10635 0.328 46.0 93.29
FrodoKem 3:Frodo-976 34.609 2.028 17.1 33.31272 0.732 45.5 96.26
FrodoKEM 5:Frodo-1344 62.076 1.977 31.4 61.39795 1.299 47.3 98.91
Round5 1:R5ND-1PKE_0d 9.899 0.055 179.8 9.86147 0.018 556.5 99.62
Round5 3:R5ND-3PKE_0d 20.807 0.077 269.4 20.75316 0.023 905.6 99.74
Round5 5:R5ND-5PKE_0d 39.097 0.100 389.9 39.12033 0.030 1,299.7 99.56
Saber 1:LightSaber-KEM 0.379 0.051 7.4 0.34173 0.014 23.7 90.25
Saber 3:Saber-KEM 0.725 0.069 10.6 0.67592 0.020 34.4 93.24
Saber 5:FireSaber-KEM 1.195 0.094 12.7 1.12595 0.025 44.8 94.21
NTRU-HPS 1:ntruhps2048677 3.066 0.386 7.9 2.69311 0.013 203.6 87.84
NTRU-HPS 3:ntruhps4096821 4.416 0.475 9.3 3.95545 0.015 271.5 89.58
NTRU-HRSS 1:ntruhrss701 3.044 0.171 17.8 2.88665 0.014 209.8 94.83
Str NTRU Prime 2:kem/sntrup653 34.936 0.540 64.7 34.40847 0.013 2,750.8 98.49
Str NTRU Prime 3:kem/sntrup761 47.343 0.646 73.2 46.70855 0.012 3,974.5 98.66
Str NTRU Prime 4:kem/sntrup857 59.930 0.727 82.4 59.21685 0.014 4,188.3 98.81
NTRU LPRime 2:kem/ntrulpr653 70.636 1.843 38.3 68.81706 0.024 2,863.2 97.42
NTRU LPRime 3:kem/ntrulpr761 95.490 2.093 45.6 93.41708 0.020 4,681.3 97.83
NTRU LPRime 4:kem/ntrulpr857 120.775 2.363 51.1 118.43359 0.022 5,432.4 98.06

Encaps without randombytes()
FrodoKem 1:Frodo-640 16.191 1.413 11.5 15.10635 0.328 46.0 93.30
FrodoKem 3:Frodo-976 34.606 2.026 17.1 33.31272 0.732 45.5 96.26
FrodoKEM 5:Frodo-1344 62.076 1.977 31.4 61.39795 1.299 47.3 98.91
Round5 1:R5ND-1PKE_0d 9.898 0.054 183.1 9.86147 0.018 556.5 99.63
Round5 3:R5ND-3PKE_0d 20.806 0.076 272.9 20.75316 0.023 905.6 99.74
Round5 5:R5ND-5PKE_0d 39.096 0.099 395.8 39.02695 0.030 1,296.6 99.82
Saber 1:LightSaber-KEM 0.377 0.050 7.6 0.34173 0.014 23.9 90.61
Saber 3:Saber-KEM 0.723 0.067 10.8 0.67592 0.020 34.4 93.44
Saber 5:FireSaber-KEM 1.195 0.094 12.7 1.12595 0.025 44.8 94.22
NTRU-HPS 1:ntruhps2048677 2.954 0.274 10.8 2.69311 0.013 203.6 91.18
NTRU-HPS 3:ntruhps4096821 4.280 0.338 12.7 3.95661 0.015 271.6 92.44
NTRU-HRSS 1:ntruhrss701 2.995 0.122 24.5 2.88665 0.014 209.8 96.38
Str NTRU Prime 2:kem/sntrup653 34.638 0.242 142.9 34.40847 0.013 2,750.8 99.34
Str NTRU Prime 3:kem/sntrup761 46.997 0.300 156.7 46.70855 0.012 3,974.5 99.39
Str NTRU Prime 4:kem/sntrup857 59.543 0.340 175.0 59.21685 0.014 4,188.3 99.45
NTRU LPRime 2:kem/ntrulpr653 70.635 1.842 38.4 68.81706 0.024 2,863.2 97.43
NTRU LPRime 3:kem/ntrulpr761 95.489 2.092 45.6 93.41708 0.020 4,681.3 97.83
NTRU LPRime 4:kem/ntrulpr857 120.775 2.363 51.1 118.43359 0.022 5,432.4 98.06

Decaps
FrodoKem 1:Frodo-640 16.192 1.414 11.5 15.10635 0.328 46.1 93.29
FrodoKem 3:Frodo-976 34.649 2.058 16.8 33.32329 0.733 45.5 96.18
FrodoKEM 5:Frodo-1344 62.377 2.608 23.9 61.06782 1.299 47.0 97.90
Round5 1:R5ND-1PKE_0d 14.826 0.043 343.3 14.80661 0.024 621.5 99.87
Round5 3:R5ND-3PKE_0d 31.177 0.063 495.8 31.14658 0.033 944.9 99.90
Round5 5:R5ND-5PKE_0d 58.598 0.082 711.6 58.55841 0.043 1,375.8 99.93
Saber 1:LightSaber-KEM 0.474 0.054 8.8 0.44317 0.024 18.8 93.56
Saber 3:Saber-KEM 0.867 0.069 12.6 0.82878 0.030 27.2 95.60
Saber 5:FireSaber-KEM 1.379 0.086 16.0 1.32991 0.037 35.7 96.43
NTRU-HPS 1:ntruhps2048677 8.175 0.114 71.7 8.09307 0.032 251.3 99.00
NTRU-HPS 3:ntruhps4096821 11.982 0.112 107.1 11.90773 0.038 313.7 99.38
NTRU-HRSS 1:ntruhrss701 8.790 0.128 68.5 8.69522 0.034 257.4 98.92
Str NTRU Prime 2:kem/sntrup653 106.391 0.341 311.9 106.07692 0.027 3,915.2 99.70
Str NTRU Prime 3:kem/sntrup761 144.361 0.392 368.0 143.9971 0.028 5,148.0 99.75
Str NTRU Prime 4:kem/sntrup857 182.965 0.437 418.7 182.55901 0.031 5,878.2 99.78
NTRU LPRime 2:kem/ntrulpr653 104.550 1.359 77.0 103.22538 0.034 3,043.2 98.73
NTRU LPRime 3:kem/ntrulpr761 141.615 1.526 92.8 140.12556 0.036 3,853.6 98.95
NTRU LPRime 4:kem/ntrulpr857 179.322 1.712 104.7 177.65014 0.040 4,407.9 99.07

18 Implementing and Benchmarking Seven Round 2 Lattice-Based KEMs

Table 5: : The execution time of randombytes() in absolute units (Time [us]) and as a percentage of the
total execution time of Encapsulation a) in software (% in SW) and b) using software/hardware codesign (%
in SW/HW). #Calls denotes the total number of calls to the function randombytes(), and #Bytes – the total
number of random bytes generated by these calls.

Algorithm Parameter Set Time [us] % in SW % in SW/HW #Calls #Bytes
FrodoKem 1:Frodo-640 1.6 0.000099 0.001131 1 16
FrodoKem 3:Frodo-976 2.2 0.001085 0.001085 1 24
FrodoKEM 5:Frodo-1344 2.22 0.000024 0.000759 1 32
Round5 1:R5ND-1KEM_0d 0.94 0.000009 0.017078 1 16
Round5 3:R5ND-3KEM_0d 0.96 0.000005 0.012428 1 24
Round5 5:R5ND-5KEM_0d 1.52 0.000039 0.007223 1 32
Saber 1:LightSaber-KEM 1.5 0.003961 0.029198 1 32
Saber 3:Saber-KEM 1.5 0.002069 0.021860 1 32
Saber 5:FireSaber-KEM 1.5 0.001260 0.010596 1 32
NTRU-HPS 1:ntruhps2048677 112.14 0.036576 0.290458 1 3211
NTRU-HPS 3:ntruhps4096821 135.61 3.070000 28.560000 1 3895
NTRU-HRSS 1:ntruhrss701 48.77 1.600000 48.770000 1 1400
Str NTRU Prime 2:kem/sntrup653 297.22 0.850764 55.073527 653 2612
Str NTRU Prime 3:kem/sntrup761 326.47 0.731825 53.593964 761 3044
Str NTRU Prime 4:kem/sntrup857 386.86 0.650000 53.210000 857 3428
NTRU LPRime 2:kem/ntrulpr653 1.52 0.000022 0.000825 1 32
NTRU LPRime 3:kem/ntrulpr761 1.5 0.000717 0.000717 1 32
NTRU LPRime 4:kem/ntrulpr857 1.54 0.000013 0.000642 1 32

From Tables 5 and 4, it can be clearly seen that the ranking of algorithms in terms of the total execution
time is not a˙ected by this choice for the purely software implementations, where the execution time of
randombytes() does not exceed 3.1% for any investigated algorithm. Coincidentally, the ranking does not
change signifcantly even for the software/hardware implementations, in spite of the fact that the execution
time of randombytes() reaches 55.1% of the total execution time of Encapsulation for Streamlined NTRU
Prime.

The total speed-up is by far the highest for Round5, due to the a) initial very high percentage of time taken
by the accelerated operations (more than 99.56% for encapsulation and more than 99.87% for decapsulation),
b) limited size of input to and output from the accelerator, and c) high potential for the parallelization in
hardware (with the speed up of the accelerated portion reaching 1,299.7 for encapsulation and 1,375.8 for
decapsulation). For similar reasons the total speed-up is also very high (greater than 38) for Streamlined
NTRU Prime and NTRU LPrime, during both encapsulation and decapsulation.

NTRU-HPS and NTRU-HRSS achieve high overall speed-ups, but only for decapsulation, mostly because
the accelerated portion of encapsulation takes less than 96.4% of the total execution time, even without
counting the execution time of randombytes(). For FrodoKEM, the overall speed-up is comparable for
encapsulation and decapsulation, and varies between 11.5 and 31.4 for encapsulation, and between 11.5 and
23.9 for decapsulation. For Saber, the total speed-up varies between 7.4 and 12.7 for encapsulation, and
between 8.8 and 16.0 for decapsulation. Overall, the total speed-up is greater than 7 for all reported cases. As
expected, the speed-up increases with the increase in the security level. This dependency exists because for
larger parameter values, a higher level of parallelization can be typically achieved by the operations o˜oaded
to hardware. Additionally, the operations o˜oaded to hardware tend to account for a larger percentage of
the total execution time in software, as illustrated by the column SW part Sped up by HW [%] in Table 4.

Below, we describe the ranking of algorithms, separately for three groups of parameter sets listed in
Table 3, with the security categories 1 and 2, 3 only, and 4 and 5, respectively. Only the frst group contains
all 7 investigated algorithms. In the second group NTRU-HRSS is missing, and in the third group both
NTRU-HRSS and NTRU-HPS are not represented.

For all groups, the ranking of algorithms, in terms of the total execution time (in milliseconds), changes
after o˜oading the most time-consuming operations to hardware. In particular, for the frst group of
parameter sets, covering the security categories 1 and 2, for encapsulation, the purely software ranking is:

19 Farnoud Farahmand, Viet Ba Dang, Michal Andrzejczak and Kris Gaj

Table 6: Maximum frequency and resource utilization.

Algorithm
Security Category:

Parameter Set
Clock Freq.

[MHz] LUTs Slices FFs
36kb

BRAMs
DSPs

FrodoKEM 1:Frodo-640 402 7,213 1,186 6,647 13.5 32
FrodoKEM 3:Frodo-976 402 7,087 1,190 6,693 17 32
FrodoKEM 5:Frodo-1344 417 7,015 1,215 6,610 17.5 32
Round5 1:R5ND-1PKE_0d 260 55,442 10,627 82,341 2 0
Round5 3:R5ND-3PKE_0d 249 73,881 14,307 109,211 2 0
Round5 5:R5ND-5KEM_0d 212 91,166 18,733 151,019 2 0
Saber 1:LightSaber-KEM 322 12,343 1,989 11,288 3.5 256
Saber 3:Saber-KEM 322 12,566 1,993 11,619 3.5 256
Saber 5:FireSaber-KEM 322 12,555 2,341 11,881 3.5 256
NTRU-HPS 1:ntruhps2048677 200 24,328 4,972 19,244 2.5 677
NTRU-HPS 3:ntruhps4096821 200 29,389 5,913 23,338 2.5 821
NTRU-HRSS 1:ntruhrss701 200 27,218 5,770 21,410 2.5 701
Str NTRU Prime 2:kem/sntrup653 244 55,843 8,134 28,143 3 0
Str NTRU Prime 3:kem/sntrup761 244 62,595 9,176 32,763 3 0
Str NTRU Prime 4:kem/sntrup857 244 70,604 9,894 37,018 3 0
NTRU LPRime 2:kem/ntrulpr653 244 50,911 7,874 34,050 2 0
NTRU LPRime 3:kem/ntrulpr761 244 51,295 7,978 39,600 2 0
NTRU LPRime 4:kem/ntrulpr857 244 58,056 8,895 44,719 2 0

1. Saber, 2-3. NTRU-HRSS and NTRU-HPS (with very similar results and the order swapped depending
on counting or not the execution time of randombytes()) 4. Round5, 5. FrodoKEM, 6. Streamlined NTRU
Prime, and 7. NTRU LPRime. For the software/hardware implementations, this ranking changes to 1. Saber,
2. Round5 (with results for Saber and Round5 very close to each other), 3. NTRU-HRSS, 4. NTRU-HPS
(with NTRU-HRSS outperforming NTRU-HPS by more than a factor of 2), 5. Streamlined NTRU Prime, 6.
FrodoKEM, and 7. NTRU LPRime. Thus, Round5 advances by two positions, ahead of NTRU-HRSS and
NTRU-HPS. Additionally, Streamlined NTRU Prime advances ahead of FrodoKEM. The frst position of
Saber and the last position of NTRU LPRime remain unchanged.

For decapsulation, the software only ranking is 1. Saber, 2. NTRU-HPS, 3. NTRU-HRSS (with results for
NTRU-HPS and NTRU-HRSS very close to each other), 4. Round5, 5. FrodoKEM, 6. NTRU LPRime, and
7. Streamlined NTRU Prime. Compared to encapsulation, only the positions of Streamlined NTRU Prime
and NTRU LPRime have been swapped. For the software/hardware implementations, the ranking changes to
1. Round5, 2. Saber, 3. NTRU-HPS, 4. NTRU-HRSS, 5. Streamlined NTRU Prime, 6. NTRU LPRime,
and 7. FrodoKEM. Thus, Round5 advanced by 3 positions, to the frst place. Additionally, FrodoKEM and
Streamlined NTRU Prime swapped positions 5 and 7. Thus, clearly Round5 and Streamlined NTRU Prime
benefted the most from moving their most time consuming operations to hardware.

For the second group of parameter sets, covering the security category 3, for encapsulation, the ranking
of candidates based on the purely software implementations is identical as in the frst group, except that
NTRU-HRSS is now missing. For the software/hardware implementations, the ranking is also almost identical
as for group 1, except that now, the results for NTRU-HPS and Streamlined NTRU Prime are close to each
other, and the ranking of these algorithms at positions 3 and 4 depends on the inclusion or exclusion of the
execution time of randombytes(). For decapsulation, both rankings remain the same as in group 1 (except of
the absence of NTRU-HRSS). Similarly, in the third group of parameter sets, covering the security categories
4 and 5, NTRU-HPS is not any longer represented. However, the rankings of remaining algorithms (for both
software and software/hardware implementations) remain the same as in group 2.

The maximum clock frequencies and the corresponding resource utilizations, obtained after the synthesis
and implementation tool optimizations, supported by Minerva [8], are summarized in Table 6. Clearly,
the accelerators for NTRU-HPS and NTRU-HRSS involve the highest number of integer multiplications
performed in parallel. These multiplications in the FPGA fabric are delegated to dedicated DSP units. The
DSP units are also taken advantage of in Saber and to a lower extent in FrodoKEM. Round5, Streamlined
NTRU Prime and NTRU LPRime do not involve any integer multiplications in hardware. This is because

20 Implementing and Benchmarking Seven Round 2 Lattice-Based KEMs

the coeÿcients of one of the multiplied polynomials always belong to the set {-1, 0, 1}.
Because of the timing dependencies, and in particular, the bottleneck caused by SHAKE, our implementa-

tion of FrodoKEM cannot be easily sped up by trading additional resources for speed. This example clearly
illustrates the potential algorithmic limits on the amount of potential parallelization (and thus the maximum
speed-up), which is independent of the amount of hardware resources available to the designer. FrodoKEM
is also an algorithm with the highest utilization of BRAMs, which reaches 17.5. The remaining algorithms
use only between 2 and 3.5 36kb BRAMs. Round5, Streamlined NTRU Prime, and NTRU LPRime, which
demonstrated the highest potential for hardware acceleration, use also the highest number of LUTs, Slices,
and fip-fops (FFs). The amount of resources used increases noticeably with the increase in the security level
for 5 out of 7 algorithms. The only exceptions are FrodoKEM and Saber, in which the security levels do not
a˙ect the resource utilization (except of the small increase in the number of BRAMs in FrodoKEM).

FrodoKEM is able to achieve the highest clock frequency, above 400 MHz for all parameter sets. This
frequency is possible because the accelerator processes only 4 elements of each row of the product B’V at
a time. This allows us to pipeline the Frodo MAC unit with additional registers between multipliers and
adders. These registers are also built-in inside DSP units. The same optimization is not possible for Saber
and NTRU, because the immediate feedback from the output registers is necessary for the next operation
happening in the next clock cycle. NTRU design also su˙ers from additional logic for converting polynomials
from R/q to S/q and from R/q to S/3. Operating frequency for the two variants of NTRU Prime is mainly
limited by the "modulo q" block. To reduce numbers with the prime modulus q, we selected the conditional
subtraction method, which is relatively simple, but comes with a long critical path.

7 Conclusions
In this paper we have demonstrated the feasibility of a new benchmarking approach, based on the soft-
ware/hardware codesign, with application to 7 PQC schemes representing 5 submissions qualifed to Round 2
of the NIST PQC standardization process. We have shown that the obtained speed-up depends strongly on the
evaluated algorithm. For all analyzed schemes, and both major operations (encapsulation and decapsulation),
the total speed-up always exceeded a factor of 7. For encapsulation the highest speed-up reached 396 for
Round5 (without counting the execution time of randombytes()). For decapsulation the speed-ups were even
more spectacular, reaching a factor of 712 for Round5, 419 for Streamlined NTRU Prime, 107 for NTRU-HPS,
and 105 for NTRU LPRime. Only two out of seven evaluated algorithms (FrodoKEM and Saber) have
decapsulation speed-ups smaller than 50.

Round5 benefted greatly from hardware acceleration due to its simple operations (not involving integer
multiplication) and their inherent parallelism. Its achieved speed-up is the highest, but at the highest
cost in terms of CLB Slice utilization. On the other hand no DSP units are used, and the use of Block
RAMs is minimal. Due to accelerating almost 100% of the software execution time, it seems that maximum
performance limit has been reached. Due to these signifcant speed-ups, Round5 is ranked the second for
encapsulation and the frst for decapsulation for all three investigated parameter groups. Saber, which is by
far the fastest in software only implementations, for the software/hardware implementations remains on the
frst position for encapsulation, and moves to the second position for decapsulation. Saber has also relatively
low resource utilization compared to other candidates (second in terms of the number of CLB Slices), but
requires a substantial number of DSP units.

On the other end of the spectrum is FrodoKEM. Despite almost reaching its limit in terms of hardware
acceleration, FrodoKEM is by far the slowest for decapsulation, and the second slowest for encapsulation. The
results for NTRU-HPS and NTRU-HRSS place these candidates in the middle of the pack. A modifcation of
the Round 1 NTRU algorithm resulted in a signifcant increase in DSP unit utilization. With at least twice as
high logic utilization (in terms of CLB slices and DSPs) compared to Saber, the overall evaluation is clearly
worse. The two KEMs associated with NTRU Prime start from the worst performance in embedded software.
Despite impressive speed-ups (especially for decapsulation) their overall ranking improves only slightly,
with only Streamlined NTRU Prime outperforming FrodoKEM for encapsulation, and both outperforming
FrodoKEM for decapsulation.

Future work will include extending this analysis to the remaining NIST Round 2 PQC candidates, as well
as the exploration of other software/hardware codesign platforms and development tools.

http:limitedbythe"moduloq"block.To

21 Farnoud Farahmand, Viet Ba Dang, Michal Andrzejczak and Kris Gaj

References
[1] ARM. AMBA: The Standard for On-Chip Communication. https://www.arm.com/products/silicon-ip-

system/embedded-system-design/amba-specifcations. 2019.
[2] Aydin Aysu, Bilgiday Yuce, and Patrick Schaumont. “The Future of Real-Time Security: Latency-

Optimized Lattice-Based Digital Signatures”. In: ACM Transactions on Embedded Computing Systems
14.3 (Apr. 2015), pp. 1–18. issn: 15399087. doi: 10.1145/2724714.

[3] Mihir Bellare and Phillip Rogaway. Introduction to Modern Cryptography. May 2005.
[4] Daniel J. Bernstein and Tanja Lange. eBACS: ECRYPT Benchmarking of Cryptographic Systems.

https://bench.cr.yp.to. 2019.
[5] CAESAR: Competition for Authenticated Encryption: Security, Applicability, and Robustness - Web

Page. https://competitions.cr.yp.to/caesar.html. 2019.
[6] Cryptographic Engineering Research Group (CERG) at George Mason University. Hardware Bench-

marking of CAESAR Candidates. https://cryptography.gmu.edu/athena/index.php?id=CAESAR. 2019.
[7] Farnoud Farahmand et al. “Evaluating the Potential for Hardware Acceleration of Four NTRU-Based

Key Encapsulation Mechanisms Using Software/Hardware Codesign”. In: 10th International Conference
on Post-Quantum Cryptography, PQCrypto 2019. LNCS. Chongqing, China: Springer, May 2019.

[8] Farnoud Farahmand et al. “Minerva: Automated Hardware Optimization Tool”. In: 2017 International
Conference on ReConFigurable Computing and FPGAs (ReConFig). Cancun: IEEE, Dec. 2017, pp. 1–8.
isbn: 978-1-5386-3797-5. doi: 10.1109/RECONFIG.2017.8279804.

[9] Ahmed Ferozpuri and Kris Gaj. “High-Speed FPGA Implementation of the NIST Round 1 Rainbow
Signature Scheme”. In: 2018 International Conference on ReConFigurable Computing and FPGAs
(ReConFig). Cancun, Mexico: IEEE, Dec. 2018, pp. 1–8. isbn: 978-1-72811-968-7. doi: 10.1109/
RECONFIG.2018.8641734.

[10] Eiichiro Fujisaki and Tatsuaki Okamoto. “Secure Integration of Asymmetric and Symmetric Encryption
Schemes”. In: Journal of Cryptology 26.1 (Jan. 2013), pp. 80–101. issn: 0933-2790, 1432-1378. doi:
10.1007/s00145-011-9114-1.

[11] Kris Gaj. “Challenges and Rewards of Implementing and Benchmarking Post-Quantum Cryptography
in Hardware”. In: Proceedings of the 2018 on Great Lakes Symposium on VLSI - GLSVLSI ’18. Chicago,
IL, USA: ACM Press, 2018, pp. 359–364. isbn: 978-1-4503-5724-1. doi: 10.1145/3194554.3194615.

[12] Kris Gaj, Ekawat Homsirikamol, and Marcin Rogawski. “Fair and Comprehensive Methodology for
Comparing Hardware Performance of Fourteen Round Two SHA-3 Candidates Using FPGAs”. In:
Cryptographic Hardware and Embedded Systems, CHES 2010. Vol. 6225. LNCS. Santa Barbara, CA, Aug.
2010, pp. 264–278. isbn: 978-3-642-15030-2 978-3-642-15031-9. doi: 10.1007/978-3-642-15031-9_18.

[13] Kris Gaj et al. “ATHENa - Automated Tool for Hardware EvaluatioN: Toward Fair and Comprehensive
Benchmarking of Cryptographic Hardware Using FPGAs”. In: 2010 International Conference on Field
Programmable Logic and Applications, FPL 2010. Milan, Italy: IEEE, Aug. 2010, pp. 414–421. isbn:
978-1-4244-7842-2. doi: 10.1109/FPL.2010.86.

[14] Santosh Ghosh et al. “A Speed Area Optimized Embedded Co-Processor for McEliece Cryptosystem”.
In: 2012 IEEE 23rd International Conference on Application-Specifc Systems, Architectures and
Processors, ASAP 2012. Delft, Netherlands: IEEE, July 2012, pp. 102–108. isbn: 978-1-4673-2243-0
978-0-7695-4768-8. doi: 10.1109/ASAP.2012.16.

[15] Shaf Goldwasser and Mihir Bellare. Lecture Notes on Cryptography. July 2008.
[16] Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. “A Modular Analysis of the Fujisaki-Okamoto

Transformation”. In: Theory of Cryptography. Ed. by Yael Kalai and Leonid Reyzin. Vol. 10677. Cham:
Springer International Publishing, 2017, pp. 341–371. isbn: 978-3-319-70499-9 978-3-319-70500-2. doi:
10.1007/978-3-319-70500-2_12.

https://doi.org/10.1145/2724714
https://doi.org/10.1109/RECONFIG.2017.8279804
https://doi.org/10.1109/RECONFIG.2018.8641734
https://doi.org/10.1109/RECONFIG.2018.8641734
https://doi.org/10.1007/s00145-011-9114-1
https://doi.org/10.1145/3194554.3194615
https://doi.org/10.1007/978-3-642-15031-9_18
https://doi.org/10.1109/FPL.2010.86
https://doi.org/10.1109/ASAP.2012.16
https://doi.org/10.1007/978-3-319-70500-2_12
http:Software/HardwareCodesign�.In
http:https://bench.cr.yp.to

22 Implementing and Benchmarking Seven Round 2 Lattice-Based KEMs

[17] Ekawat Homsirikamol and Kris Gaj. “Hardware Benchmarking of Cryptographic Algorithms Using
High-Level Synthesis Tools: The SHA-3 Contest Case Study”. In: Applied Reconfgurable Computing
- ARC 2015. Vol. 9040. LNCS. Cham: Springer International Publishing, 2015, pp. 217–228. isbn:
978-3-319-16213-3 978-3-319-16214-0. doi: 10.1007/978-3-319-16214-0_18.

[18] Ekawat Homsirikamol and Kris Gaj. “Toward a New HLS-Based Methodology for FPGA Benchmarking
of Candidates in Cryptographic Competitions: The CAESAR Contest Case Study”. en. In: 2017
International Conference on Field Programmable Technology (ICFPT). Melbourne, Australia: IEEE,
Dec. 2017, pp. 120–127. isbn: 978-1-5386-2656-6. doi: 10.1109/FPT.2017.8280129.

[19] Ekawat Homsirikamol, Panasayya Yalla, and Farnoud Farahmand. Development Package for Hardware
Implementations Compliant with the CAESAR Hardware API. 2016.

[20] Ekawat Homsirikamol et al. CAESAR Hardware API. Cryptology ePrint Archive 2016/626. 2016.
[21] Ekawat Homsirikamol et al. Implementer’s Guide to Hardware Implementations Compliant with the

CAESAR Hardware API. GMU Report. Fairfax, VA: George Mason University, 2016.
[22] James Howe et al. “Standard Lattice-Based Key Encapsulation on Embedded Devices”. en. In: IACR

Transactions on Cryptographic Hardware and Embedded Systems 2018.3 (Aug. 2018), pp. 372–393. issn:
2569-2925. doi: 10.13154/tches.v2018.i3.372-393.

[23] Matthias J. Kannwischer et al. Pqm4 - Post-Quantum Crypto Library for the {ARM} {Cortex-M4}.
https://github.com/mupq/pqm4. 2019.

[24] John Kelsey, Shu-jen Chang, and Ray Perlner. NIST Special Publication 800-185: SHA-3 Derived
Functions: cSHAKE, KMAC, TupleHash and ParallelHash. Tech. rep. Gaithersburg, MD: National
Institute of Standards and Technology, Dec. 2016. doi: 10.6028/NIST.SP.800-185.

[25] Brian Koziel et al. “Post-Quantum Cryptography on FPGA Based on Isogenies on Elliptic Curves”.
In: IEEE Transactions on Circuits and Systems I: Regular Papers 64.1 (Jan. 2017), pp. 86–99. issn:
1549-8328, 1558-0806. doi: 10.1109/TCSI.2016.2611561.

[26] National Institute of Standards and Technology. FIPS PUB 202: SHA-3 Standard: Permutation-Based
Hash and Extendable-Output Functions. Aug. 2015. doi: 10.6028/NIST.FIPS.202.

[27] Richard Newell. Survey of Notable Security-Enhancing Activities in the RISC-V Universe. 17th In-
ternational Workshop on Cryptographic Architectures Embedded in Logic Devices, CryptArchi 2019.
Pruhonice, Czech Republic, June 2019.

[28] NIST. PQC - API Notes. 2017.
[29] Tobias Oder and Tim Guneysu. “Implementing the NewHope-Simple Key Exchange on Low-Cost

FPGAs”. en. In: LATINCRYPT 2017. Havana, Cuba, Sept. 2017.
[30] David Patterson and Andrew Waterman. The RISC-V Reader: An Open Architecture Atlas. Book

version: 0.0.1. Strawberry Canyon LLC, Oct. 2017.
[31] Vincent Rijmen, Antoon Bosselaers, and Paulo Barreto. Optimized ANSI C Code for the Rijndael

Cipher (Now AES), Rijndael-Alg-Fst.c, v3.0. Dec. 2000.
[32] Markku-Juhani O. Saarinen. Pqcbench. https://github.com/mjosaarinen/pqcbench. 2019.
[33] Douglas Stebila and Michele Mosca. Liboqs - Master Branch. https://github.com/open-quantum-

safe/liboqs. 2019.
[34] FrodoKEM Submission Team. Round 2 Submissions - FrodoKEM Candidate Submission Package.

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-2-Submissions. Apr. 2019.
[35] NTRU Prime Submission Team. Round 2 Submissions - NTRU Prime Candidate Submission Package.

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-2-Submissions. Apr. 2019.
[36] NTRU Submission Team. Round 2 Submissions - NTRU Candidate Submission Package. Apr. 2019.
[37] Round5 Submission Team. Round 2 Submissions - Round5 Candidate Submission Package. Apr. 2019.
[38] Saber Submission Team. Round 2 Submissions - Saber Candidate Submission Package. Apr. 2019.

https://doi.org/10.1007/978-3-319-16214-0_18
https://doi.org/10.1109/FPT.2017.8280129
https://doi.org/10.13154/tches.v2018.i3.372-393
https://doi.org/10.6028/NIST.SP.800-185
https://doi.org/10.1109/TCSI.2016.2611561
https://doi.org/10.6028/NIST.FIPS.202
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-2-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-2-Submissions
https://github.com/open-quantum
https://github.com/mupq/pqm4

23 Farnoud Farahmand, Viet Ba Dang, Michal Andrzejczak and Kris Gaj

[39] Wen Wang, Jakub Szefer, and Ruben Niederhagen. “FPGA-Based Niederreiter Cryptosystem Using
Binary Goppa Codes”. In: 9th International Conference on Post-Quantum Cryptography, PQCrypto
2018. Ed. by Tanja Lange and Rainer Steinwandt. Vol. 10786. LNCS. Fort Lauderdale, Florida:
Springer International Publishing, Apr. 2018, pp. 77–98. isbn: 978-3-319-79062-6 978-3-319-79063-3.
doi: 10.1007/978-3-319-79063-3_4.

[40] Andrew Waterman and Krste Asanovic. The RISC-V Instruction Set Manual . Volume I: Unprivileged
ISA v2.2. Tech. rep. 20190608-Base-Ratifed. June 2019, p. 236.

[41] Andrew Waterman and Krste Asanovic. “The RISC-V Instruction Set Manual, Volume II: Privileged
Architecture, v1.12”. In: (June 2019), p. 113.

https://doi.org/10.1007/978-3-319-79063-3_4

24 Implementing and Benchmarking Seven Round 2 Lattice-Based KEMs

A Profling Results

25 Farnoud Farahmand, Viet Ba Dang, Michal Andrzejczak and Kris Gaj

Table 7: Results of profling for FrodoKEM

Function
Time
[us]

Time
[%] Function

Time
[us]

Time
[%]

Software Software/Hardware

FrodoKEM640 - Encaps
1. frodo_mul_add_sa_plus_e 13,794.27 85.19 1.1 frodo_mul_add_sa_plus_e

1.2 Shake128 and frodo_sample_n
1.3 frodo_mul_add_sb_plus_e

328.16 23.20 2. Shake128 and frodo_sample_n x3 1,002.40 6.19
3. frodo_mul_add_sb_plus_e 309.68 1.91
4. frodo_pack 291.83 1.80 2. frodo_pack 291.83 20.64
5. frodo_unpack 277.26 1.71 3. frodo_unpack 277.26 19.61
Total 16,192.37 96.81 Total 1,414.18 63.45

FrodoKEM640 - Encaps without Randombytes()
1. frodo_mul_add_sa_plus_e 13,794.27 85.20 1.1 frodo_mul_add_sa_plus_e

1.2 Shake128 and frodo_sample_n
1.3 frodo_mul_add_sb_plus_e

328.16 23.23 2. Shake128 and frodo_sample_n x3 1,002.40 6.19
3. frodo_mul_add_sb_plus_e 309.68 1.91
4. frodo_pack 291.83 1.80 2. frodo_pack 291.83 20.66
5. frodo_unpack 277.26 1.71 3. frodo_unpack 277.26 19.63
Total 16,190.75 96.82 Total 1,412.56 63.52

FrodoKEM640 - Decapsulation
1. frodo_mul_add_sa_plus_e 13,793.01 85.23 1.1 frodo_mul_add_sa_plus_e

1.2 Shake128 and frodo_sample_n
1.3 frodo_mul_add_sb_plus_e

327.97 23.19 2. Shake128 and frodo_sample_n x3 1,002.85 6.20
3. frodo_unpack x3 548.74 3.39
4. frodo_mul_add_sb_plus_e 309.21 1.91 2. frodo_unpack x3 548.74 38.81
5. frodo_mul_bs 242.40 1.50 3. frodo_mul_bs 242.40 17.14
Total 16,182.80 98.23 Total 1,413.99 79.15

FrodoKEM976 - Encaps
1. frodo_mul_add_sa_plus_e 31,430.38 90.82 1.1 frodo_mul_add_sa_plus_e

1.2 Shake128 and frodo_sample_n
1.3 frodo_mul_add_sb_plus_e

732.09 36.10 2. Shake128 and frodo_sample_n x3 1,410.18 4.07
3. frodo_mul_add_sb_plus_e 472.16 1.36
4. frodo_pack 357.58 1.03 2. frodo_pack 357.58 17.63
5. frodo_unpack 297.73 0.86 3. frodo_unpack 297.73 14.68
Total 34,608.54 98.15 Total 2,027.91 68.42

FrodoKEM976 - Encaps without Randombytes()
1. frodo_mul_add_sa_plus_e 31,430.38 90.82 1.1 frodo_mul_add_sa_plus_e

1.2 Shake128 and frodo_sample_n
1.3 frodo_mul_add_sb_plus_e

732.09 36.14 2. Shake128 and frodo_sample_n x3 1,410.18 4.07
3. frodo_mul_add_sb_plus_e 472.16 1.36
4. frodo_pack 357.58 1.03 2. frodo_pack 357.58 17.65
5. frodo_unpack 297.73 0.86 3. frodo_unpack 297.73 14.70
Total 34,606.34 98.16 Total 2,025.71 68.49

FrodoKEM976 - Decaps
1. frodo_mul_add_sa_plus_e 31,441.14 90.74 1.1 frodo_mul_add_sa_plus_e

1.2 Shake128 and frodo_sample_n
1.3 frodo_mul_add_sb_plus_e

732.58 35.60 2. Shake128 and frodo_sample_n x3 1,410.86 4.07
3. frodo_unpack x3 594.63 1.72
4. frodo_mul_add_sb_plus_e 471.29 1.36 2. frodo_unpack x3 594.63 28.90
5. frodo_mul_bs 368.32 1.06 3. frodo_mul_bs 368.32 17.90
Total 34,648.58 98.95 Total 2,057.87 82.39

FrodoKEM1344 - Encaps
1. frodo_mul_add_sa_plus_e 58,577.48 94.41 1.1 frodo_mul_add_sa_plus_e

1.2 Shake128 and frodo_sample_n
1.3 frodo_mul_add_sb_plus_e

1,298.85 65.71 2. Shake128 and frodo_sample_n x3 1,416.27 2.28
3. frodo_mul_add_sb_plus_e 654.64 1.06
4.frodo_pack 386.22 0.62 2. frodo_pack 386.22 19.54
5.frodo_unpack 276.00 0.44 3. frodo_unpack 276.00 13.96
Total 62,048.92 98.81 Total 1,976.73 99.21

FrodoKEM1344 - Encaps without Randombytes()
1. frodo_mul_add_sa_plus_e 58,577.48 94.41 1.1 frodo_mul_add_sa_plus_e

1.2 Shake128 and frodo_sample_n
1.3 frodo_mul_add_sb_plus_e

1,298.85 65.76 2. Shake128 and frodo_sample_n x3 1,416.27 2.28
3. frodo_mul_add_sb_plus_e 654.64 1.06
4. frodo_pack 386.22 0.62 2. frodo_pack 386.22 19.55
5. frodo_unpack 276.00 0.44 3. frodo_unpack 276.00 13.97
Total 62,046.72 98.81 Total 1,975.23 99.28

FrodoKEM1344 - Decaps
1. frodo_mul_add_sa_plus_e 58,754.02 94.22 1.1 frodo_mul_add_sa_plus_e

1.2 Shake128 and frodo_sample_n
1.3 frodo_mul_add_sb_plus_e

1,298.53 49.79 2. Shake128 and frodo_sample_n x3 883.14 1.42
3. frodo_unpack x3 765.56 1.23
4. frodo_mul_add_sb_plus_e 649.68 1.04 2. frodo_unpack x3 765.56 29.36
5. frodo_mul_bs 507.08 0.81 3. frodo_mul_bs 507.08 19.44
Total 62,359.42 98.72 Total 2,607.89 98.59

26 Implementing and Benchmarking Seven Round 2 Lattice-Based KEMs

Table 8: Results of profling for Round5

Function
Time
[us]

Time
[%] Function

Time
[us]

Time
[%]

Software Software/Hardware
R5ND_5PKE_0d - Encapsulation

1. r5_cpa_pke_encrypt 39,026.95 99.82% 1. hash 68.65 68.46%
2. hash 68.65 0.1756% 2. r5_cpa_pke_encrypt 30.10 30.02%
3. randombytes 1.52 0.0039% 3. randombytes 1.52 1.52%
Total 39,097.13 100.00% Total 100.28 99.99%

R5ND_5PKE_0d - Encapsulation without randombytes()
1. r5_cpa_pke_encrypt 39,026.95 99.82% 1. hash 68.65 69.50%
2. hash 68.65 0.1756% 2. r5_cpa_pke_encrypt 30.10 30.47%
Total 39,095.61 100.00% Total 98.78 99.97%

R5ND_5PKE_0d - Decapsulation
1. r5_cpa_pke_encrypt 39,021.09 66.59% 1. hash_2 35.75 43.42%
2. r5_cpa_pke_decrypt 19,504.52 33.29% 2.1 r5_cpa_pke_decrypt

2.2 hash_1
2.3 r5_cpa_pke_encrypt

42.56 51.69% 3. hash_2 35.75 0.06%
4. hash_1 32.80 0.06%
Total 58,598.19 99.99% Total 82.34 95.11%

R5ND_3PKE_0d - Encapsulation
1. r5_cpa_pke_encrypt 20,753.16 99.74% 1. hash 52.87 68.44%
2. hash 52.87 0.2541% 2. r5_cpa_pke_encrypt 22.92 29.67%
3. randombytes 1.01 0.0049% 3. randombytes 1.01 1.31%
Total 20,807.49 100.00% Total 77.25 99.42%

R5ND_3PKE_0d - Encapsulation without randombytes()
1. r5_cpa_pke_encrypt 20,753.16 99.74% 1. hash 52.87 69.35%
2. hash 52.87 0.2541% 2. r5_cpa_pke_encrypt 22.92 30.06%
Total 20,806.48 100.00% Total 76.24 99.41%

R5ND_3PKE_0d - Decapsulation
1. r5_cpa_pke_encrypt 20,748.66 66.55% 1.1 r5_cpa_pke_decrypt

1.2 hash_1
1.3 r5_cpa_pke_encrypt

32.98 52.45% 2. r5_cpa_pke_decrypt 10,373.33 33.27%
3. hash_2 27.34 0.09%
4. hash_1 24.59 0.08% 2. hash_2 27.34 43.48%
Total 31,176.50 99.99% Total 62.88 95.92%

R5ND_1PKE_0d - Encapsulation
1. r5_cpa_pke_encrypt 9,861.47 99.62% 1. hash 34.30 62.32%
2. hash 34.30 0.3465% 2. r5_cpa_pke_encrypt 17.72 32.19%
3. randombytes 0.99 0.0100% 3. randombytes 0.99 1.80%
Total 9,898.79 99.98% Total 55.04 96.31%

R5ND_1PKE_0d - Encapsulation without randombytes()
1. r5_cpa_pke_encrypt 9,861.47 99.63% 1. hash 34.30 63.46%
2. hash 34.30 0.3465% 2. r5_cpa_pke_encrypt 17.72 32.78%
Total 9,897.80 99.98% Total 54.05 96.24%

R5ND_1PKE_0d - Decapsulation
1. r5_cpa_pke_encrypt 9,857.37 66.49% 1.1 r5_cpa_pke_decrypt

1.2 hash_1
1.3 r5_cpa_pke_encrypt

23.82 55.28% 2. r5_cpa_pke_decrypt 4,932.58 33.27%
3. hash_2 17.46 0.12%
4. hash_1 16.66 0.11% 2. hash_2 17.46 40.51%
Total 14,825.97 99.99% Total 43.10 95.79%

27 Farnoud Farahmand, Viet Ba Dang, Michal Andrzejczak and Kris Gaj

Table 9: Results of profling for Saber

Function
Time
[us]

Time
[%] Function

Time
[us]

Time
[%]

Software Software/Hardware

LightSaber - Encaps
1. MatrixVectorMul 204.70 54.06 1. Hash 28.27 55.03
2. InnerProduct 102.57 27.09 2.1 MatrixVectorMul

2.2 InnerProduct
2.3 GenMatrix
2.4 GenSecret

14.443 28.11 3. GenMatrix 23.64 6.24
4. Hash 28.27 7.47
5. GenSecret 10.82 2.86
Total 378.66 97.71 Total 51.37 83.14

LightSaber - Encaps without Randombytes()
1. MatrixVectorMul 204.70 54.27 1. Hash 28.27 56.68
2. InnerProduct 102.57 27.20 2.1 MatrixVectorMul

2.2 InnerProduct
2.3 GenMatrix
2.4 GenSecret

14.443 28.96 3. GenMatrix 23.64 6.27
4. Hash 28.27 7.50
5. GenSecret 10.82 2.87
Total 377.16 98.10 Total 49.87 85.64

LightSaber - Decaps
1. MatrixVectorMul 203.74 43.01 1. Hash 15.49 28.64
2. InnerProduct x2 204.78 43.23 2.1 MatrixVectorMul

2.2 InnerProduct x2
2.3 GenMatrix
2.4 GenSecret

23.59 43.61 3. GenMatrix 23.81 5.03
4. Hash 15.49 3.27
5. GenSecret 10.84 2.29
Total 473.67 96.83 Total 54.09 72.25%

Saber - Encaps
1. MatrixVectorMul 458.14 63.20 1. Hash 39.05 56.91
2. InnerProduct 153.34 21.15 2.1 MatrixVectorMul

2.2 InnerProduct
2.3 GenMatrix
2.4 GenSecret

19.65 28.64 3. GenMatrix 53.46 7.37
4. Hash 39.05 5.39
5. GenSecret 10.98 1.51
Total 724.89 98.63 Total 68.62 85.54

Saber - Encaps without randombytes()
1. MatrixVectorMul 458.14 63.33 1. Hash 39.05 58.18
2. InnerProduct 153.34 21.20 2.1 MatrixVectorMul

2.2 InnerProduct
2.3 GenMatrix
2.4 GenSecret

19.65 29.28 3. GenMatrix 53.46 7.39
4. Hash 39.05 5.40
5. GenSecret 10.98 1.52
Total 723.39 98.84 Total 67.12 87.46

Saber - Decaps
1. MatrixVectorMul 457.70 52.79 1. Hash 20.73 30.21
2. InnerProduct x2 306.54 35.36 2.1 MatrixVectorMul

2.2 InnerProduct x2
2.3 GenMatrix
2.4 GenSecret

30.47 44.39 3. GenMatrix 53.56 6.18
4. Hash 20.73 2.39
5. GenSecret 10.98 1.27
Total 866.94 97.99 Total 68.63 74.60

FireSaber - Encaps
1. MatrixVectorMul 815.40 68.48 1. Hash 44.82 47.49
2. InnerProduct 204.60 17.18 2.1 MatrixVectorMul

2.2 InnerProduct
2.3 GenMatrix
2.4 GenSecret

25.157 26.66 3. GenMatrix 92.58 7.78
4. Hash 44.82 3.76
5. GenSecret 12.46 1.05
Total 1,190.70 98.25 Total 94.38 74.15

FireSaber - Encaps without randombytes()
1. MatrixVectorMul 815.40 68.57 1. Hash 44.82 48.26
2. InnerProduct 204.60 17.20 2.1 MatrixVectorMul

2.2 InnerProduct
2.3 GenMatrix
2.4 GenSecret

25.157 27.09 3. GenMatrix 92.58 7.79
4. Hash 44.82 3.77
5. GenSecret 12.46 1.05
Total 1,189.20 98.37 Total 92.88 75.34

FireSaber - Decaps
1. MatrixVectorMul 815.98 59.29 1. Hash 44.82 51.85
2. InnerProduct x2 408.96 29.72 2.1 MatrixVectorMul

2.2 InnerProduct x2
2.3 GenMatrix
2.4 GenSecret

37.24 43.09 3. GenMatrix 92.60 6.73
4. Hash 24.50 1.78
5. GenSecret 12.44 0.90
Total 1,376.14 98.43 Total 86.43 94.94

28 Implementing and Benchmarking Seven Round 2 Lattice-Based KEMs

Table 10: Results of profling for NTRU

Function
Time
[us]

Time
[%] Function

Time
[us]

Time
[%]

Software Software/Hardware

NTRU-HPS2048677 - Encaps
1. poly_Rq_mul 2,693.11 87.84 1. owcpa_samplemsg 217.38 56.30
2. owcpa_samplemsg 217.38 7.09 2. randombytes 112.14 29.05
3. randombytes 112.14 3.66 3. poly_S3_frombytes x2 25.96 6.72
4. poly_S3_frombytes x2 25.96 0.85 4. poly_Rq_mul 13.23 3.43
5. sha3_256 10.45 0.34 5. sha3_256 10.45 2.71
Total 3,065.84 99.78 Total 386.08 98.21

NTRU-HPS2048677 - Encaps without randombytes()
1. poly_Rq_mul 2,693.11 91.18 1. owcpa_samplemsg 217.38 79.35
2. owcpa_samplemsg 217.38 7.36 2. poly_S3_frombytes x2 25.96 9.48
3. poly_S3_frombytes x2 25.96 0.88 3. poly_Rq_mul 13.23 4.83
4. sha3_256 10.45 0.35 4. sha3_256 10.45 3.81
Total 2,953.70 99.77 Total 273.94 97.47

NTRU-HPS2048677 - Decaps
1. poly_S3_mul 2,706.80 33.11 1.1 poly_Z3_to_Zq/poly_Rq_mul

1.2 poly_Rq_to_S3/poly_S3_mul
1.3 poly_Sq_mul

32.25 28.29 2. poly_Sq_mul 2,693.15 32.94
3. poly_Rq_mul 2,693.12 32.94
4. poly_S3_frombytes x2 25.86 0.32 2. poly_S3_frombytes x2 25.86 22.68
5. sha3_256 20.50 0.25 3. sha3_256 20.50 17.98
Total 8,174.88 99.57 Total 114.02 68.95

NTRU-HPS4096821 - Encaps
1. poly_Rq_mul 3,955.45 89.58 1. owcpa_samplemsg 272.44 57.37
2. owcpa_samplemsg 272.44 6.17 2. randombytes 135.61 28.56
3. randombytes 135.61 3.07 3. poly_S3_frombytes x2 31.06 6.54
4. poly_S3_frombytes x2 31.06 0.70 4. poly_Rq_mul 14.57 3.07
5. sha3_256 10.66 0.24 5. sha3_256 10.66 2.24
Total 4,415.75 99.76 Total 474.87 97.78

NTRU-HPS4096821 - Encaps without randombytes()
1. poly_Rq_mul 3,955.45 92.41 1. owcpa_samplemsg 272.44 80.58
2. owcpa_samplemsg 272.44 6.37 2. poly_S3_frombytes x2 31.06 9.19
3. poly_S3_frombytes x2 31.06 0.73 3. poly_Rq_mul 14.57 4.31
4. sha3_256 10.66 0.25 4. sha3_256 10.66 3.15
Total 4,280.14 99.75 Total 338.10 97.23

NTRU-HPS4096821 - Decaps
1. poly_S3_mul 3,972.12 33.15 1.1 poly_Z3_to_Zq/poly_Rq_mul

1.2 poly_Rq_to_S3/poly_S3_mul
1.3 poly_Sq_mul

37.97 33.92 2. poly_Sq_mul 3,960.27 33.05
3. poly_Rq_mul 3,955.44 33.01
4. poly_S3_frombytes x2 31.06 0.26 2. poly_S3_frombytes x2 31.06 18.40
5. sha3_256 24.07 0.20 3. sha3_256 24.07 14.26
Total 11,981.69 99.68 Total 111.93 83.18

NTRU-HRSS - Encaps
1. poly_Rq_mul 2,886.65 94.83 1. randombytes 48.77 28.70
2. randombytes 48.77 1.60 2. poly_Rq_mul 13.57 7.99
3. owcpa_samplemsg 32.96 1.08 3. owcpa_samplemsg 32.96 19.40
4. poly_lift 27.89 0.92 4. poly_lift 27.89 16.41
5. poly_S3_frombytes x2 26.83 0.88 5. poly_S3_frombytes x2 26.83 15.79
Total 3,043.87 99.32 Total 169.93 88.29

NTRU-HRSS - Encaps without Randombytes()
1. poly_Rq_mul 2,886.65 96.38 1. owcpa_samplemsg 32.96 27.20
2. owcpa_samplemsg 32.96 1.10 2. poly_lift 27.89 23.02
3. poly_lift 27.89 0.93 3. poly_S3_frombytes x2 26.83 22.14
4. poly_S3_frombytes x2 26.83 0.90 4. poly_Rq_mul 13.76 11.36
Total 2,995.10 99.31 Total 121.16 72.37

NTRU-HRSS - Decaps
1. poly_S3_mul 2,900.79 33.00 1.1 poly_Z3_to_Zq/poly_Rq_mul

1.2 poly_Rq_to_S3/poly_S3_mul
1.3 poly_Sq_mul

33.78 26.32 2. poly_Sq_mul 2,890.74 32.89

3. poly_Rq_mul 2,886.63 32.84 2. poly_lift 22.33 21.19
4. poly_lift 27.19 0.31 3. sha3_256 13.29 17.40
5. sha3_256 22.33 0.25 4. poly_S3_frombytes 13.29 10.36
Total 8,789.77 99.29 Total 128.33 75.27

29 Farnoud Farahmand, Viet Ba Dang, Michal Andrzejczak and Kris Gaj

Table 11: Results of profling for NTRU Prime

Function
Time

[us]
Time

[%] Function
Time

[us]
Time

[%]
Software Software/Hardware

NTRU LPRime - Encaps
1. Rq_mult_small x2 118,433.60 98.06 1. Hash 1,715.70 71.48
2. Hash 1,715.70 1.42 2. Short_fromlist 343.14 14.30
3. Short_fromlist 343.14 0.28 3. Round 72.44 3.02
4. Round 72.44 0.06 4. Rounded_decode 67.03 2.79
5. Rounded_decode 67.03 0.06 5. Rq_mult_small x2 52.33 2.18
Total 120,774.96 99.88 Total 2,400.31 93.76

NTRU LPRime - Encaps without randombytes()
1.Rq_mult_small x2 118,433.60 98.06 1. Hash 1,715.70 71.52
2. Hash 1,715.70 1.42 2. Short_fromlist 343.14 14.30
3. Short_fromlist 343.14 0.28 3. Round 72.44 3.02
4. Round 72.44 0.06 4. Rounded_decode 67.03 2.79
5. Rounded_decode 67.03 0.06 5. Rq_mult_small x2 52.33 2.18
Total 120,773.42 99.88 Total 2,398.77 93.82

NTRU LPRime - Decaps
1. Rq_mult_small x3 177,650.43 99.07 1. Hash 947.72 53.62
2. Hash 947.72 0.53 2. Short_fromlist 326.38 18.46
3. Short_fromlist 326.38 0.18 3. Rounded_decode x2 134.00 7.58
4. Rounded_decode x2 134.00 0.07 4. Rq_mult_small x3 95.92 5.43
5. Round 72.45 0.04 5. Round 72.45 4.10
Total 179,326.77 99.89 Total 1,767.57 89.19

Strl NTRU Prime - Encaps
1. Rq_mult_small 59,216.81 98.81 1. Randombytes 386.86 53.21
2. Randombytes 386.86 0.65 2. Hash 72.66 9.99
3. Hash 72.66 0.12 3. Round 72.45 9.96
4. Round 72.45 0.12 4. Rq_mult_small 43.73 6.01
5. Rounded_encode 14.76 0.02 5. Rounded_encode 14.76 2.03
Total 59,929.86 99.72 Total 727.08 81.21

Strl NTRU Prime - Encaps without randombytes()
1. Rq_mult_small 59,216.81 99.45 1. Hash 72.66 21.36
2. Hash 72.66 0.12 2. Round 72.45 21.30
3. Round 72.45 0.12 3. Rq_mult_small 43.73 12.85
4. Rounded_encode 14.76 0.02 4. Rounded_encode 14.76 4.34
Total 59,543.00 99.72 Total 340.22 59.84

Strl NTRU Prime - Decaps
1. Rq_mult_small x2 118,433.60 64.33 1. Hash 1,174.55 78.42
2. R3_mult 64,124.99 34.83 2.1 Rq_mult_small x2

2.2 R3_mult
91.63 6.12 3. Hash 1,174.55 0.64

4. Round 72.46 0.04 3. Round 72.46 4.84
5. Rounded_decode 67.17 0.04 4. Rounded_decode 67.17 4.48
Total 184,095.24 99.88 Total 1,497.82 93.86

30 Implementing and Benchmarking Seven Round 2 Lattice-Based KEMs

B Pseudocode of investigated algorithms and block diagrams of lower-
level operations

Algorithm 12 FrodoKEM.KeyGen.

Input: None.
Output: Key pair (pk, sk0) with pk 2 {0, 1}lenseedA

+D·n·n, sk0 2 {0, 1}lens+lenseedA
+D·n·n ⇥ Zn⇥n

q ⇥ {0, 1}lenpkh .

1: Choose uniformly random seeds skseedSEkz $ U({0, 1}lens+lenseedSE
+lenz)

2: Generate pseudorandom seed seedA SHAKE(z, lenseedA)
3: Generate the matrix A 2 Zn⇥n

q via A Frodo.Gen(seedA)

4: Generate pseudorandom bit string (r(0), r(1), . . . , r(2nn�1))) SHAKE(0x5FkseedSE, 2nn · len�)
5: Sample error matrix S Frodo.SampleMatrix((r(0), r(1), . . . , r(nn�1))), n, n, T�)
6: Sample error matrix E Frodo.SampleMatrix((r(nn), r(nn+1), . . . , r(2nn�1))), n, n, T�)
7: Compute B AS + E
8: Compute b Frodo.Pack(B)
9: Compute pkh SHAKE(seedAkb, lenpkh)

10: return public key pk seedAkb and secret key sk0 (skseedAkb,S,pkh)

Algorithm 13 FrodoKEM.Encaps.

Input: Public key pk = seedAkb 2 {0, 1}lenseedA
+D·n·n.

Output: Ciphertext c1kc2 2 {0, 1}(m·n+m·n)D and shared secret ss 2 {0, 1}lenss .

1: Choose a uniformly random key µ $ U({0, 1}lenµ)
2: Compute pkh SHAKE(pk, lenpkh)
3: Generate pseudorandom values seedSEkk SHAKE(pkhkµ, lenseedSE

+ lenk)
4: Generate pseudorandom bit string (r(0), r(1), . . . , r(2mn+mn�1))) SHAKE(0x96kseedSE, 2mn+mn·len�)

5: Sample error matrix S0 Frodo.SampleMatrix((r(0), r(1), . . . , r(mn�1))), m, n, T�)
6: Sample error matrix E0 Frodo.SampleMatrix((r(mn), r(mn+1), . . . , r(2mn�1))), m, n, T�)
7: Generate A Frodo.Gen(seedA)
8: Compute B0 S0A + E0

9: Compute c1 Frodo.Pack(B0)
10: Sample error matrix E00 Frodo.SampleMatrix((r(2mn), r(2mn+1), . . . , r(2mn+mn�1))), m, n, T�)
11: Compute B Frodo.Unpack(b, n, n)
12: Compute V S0B + E00

13: Compute C V + Frodo.Encode(µ)
14: Compute c2 Frodo.Pack(C)
15: Compute ss SHAKE(c1kc2kk, lenss)
16: return ciphertext c1kc2 and shared secret ss

20

Algorithm 14 FrodoKEM.Decaps.

Input: Ciphertext c1kc2 2 {0, 1}(m·n+m·n)D, secret key sk0 = (skseedAkb,S,pkh) 2
{0, 1}lens+lenseedA

+D·n·n ⇥ Zn⇥n
q ⇥ {0, 1}lenpkh .

Output: Shared secret ss 2 {0, 1}lenss .

1: B0 Frodo.Unpack(c1)
2: C Frodo.Unpack(c2)
3: Compute M C�B0S
4: Compute µ0 Frodo.Decode(M)
5: Parse pk seedAkb
6: Generate pseudorandom values seedSE

0kk0 SHAKE(pkhkµ0, lenseedSE
+ lenk)

7: Generate pseudorandom bit string (r(0), r(1), . . . , r(2mn+mn�1))) SHAKE(0x96kseedSE
0, 2mn + mn ·

len�)
8: Sample error matrix S0 Frodo.SampleMatrix((r(0), r(1), . . . , r(mn�1))), m, n, T�)
9: Sample error matrix E0 Frodo.SampleMatrix((r(mn), r(mn+1), . . . , r(2mn�1))), m, n, T�)

10: Generate A Frodo.Gen(seedA)
11: Compute B00 S0A + E0

12: Sample error matrix E00 Frodo.SampleMatrix((r(2mn), r(2mn+1), . . . , r(2mn+mn�1))), m, n, T�)
13: Compute B Frodo.Unpack(b, n, n)
14: Compute V S0B + E00

15: Compute C0 V + Frodo.Encode(µ0)
16: if B0kC = B00kC0 then
17: return shared secret ss SHAKE(c1kc2kk0, lenss)
18: else
19: return shared secret ss SHAKE(c1kc2ks, lenss)

2.2.10 Correctness of IND-CCA KEM

The failure probability � of FrodoKEM is the same as the failure probability of the underlying FrodoPKE as
computed in Section 2.2.7.

2.2.11 Interconversion to IND-CCA PKE

FrodoKEM can be converted to an IND-CCA-secure public key encryption scheme using standard conversion
techniques as specified by NIST. In particular, shared secret ss can be used as the encryption key in
an appropriate data encapsulation mechanism in the KEM/DEM (key encapsulation mechanism / data
encapsulation mechanism) framework [44].

2.3 Cryptographic primitives

In FrodoKEM we use the following generic cryptographic primitives. We describe their security requirements
and instantiations with NIST-approved cryptographic primitives. In what follows, we use SHAKE128/256 to
denote the use of either SHAKE128 or SHAKE256; which one is used with which parameter set for FrodoKEM
is indicated in Table 3.

• Gen in FrodoKEM.KeyGen: The security requirement on Gen is that it is a public random function
that generates pseudorandom matrices A. Gen is instantiated using either AES128 (as in Algorithm 7)
or SHAKE128 (as in Algorithm 8).

• H, G2, and F in transform FO 6?0: The security requirements on H, G2, and F are that they are
independent random oracles. We instantiate these using SHAKE128/256; see below for an explanation
of domain separation to achieve independence.

• G1 in transform FO 6?0: The security requirement on G1 is that it is a public random function. G1 is
instantiated using SHAKE128/256.

Overall, FrodoKEM has the following uses of SHAKE:

21

Figure 9: Pseudocode of FrodoKEM [34]

31 Farnoud Farahmand, Viet Ba Dang, Michal Andrzejczak and Kris Gaj

Figure 10: Pseudocode of Round5 [37]

32 Implementing and Benchmarking Seven Round 2 Lattice-Based KEMs

2.5.1 Saber.KEM Key Generation

The Saber key generation is specified by the following algorithm.

Algorithm 4: Saber.KEM.KeyGen()

1 (seedAAA, bbb, sss) = Saber.PKE.KeyGen()
2 pk = (seedAAA, bbb)
3 pkh = F(pk)
4 z = U({0, 1}256)
5 return (pk := (seedAAA, bbb), sk := (sss, z, pkh))

2.5.2 Saber.KEM Key Encapsulation

The Saber key encapsulation is specified by the following algorithm and makes use of
Saber.PKE.Enc as specified in Algorithm 2.

Algorithm 5: Saber.KEM.Encaps(pk = (seedAAA, bbb))

1 m U({0, 1}256)

2 (K̂, r) = G(F(pk), m)
3 c = Saber.PKE.Enc(pk, m; r)

4 K = H(K̂, c)
5 return (c, K)

2.5.3 Saber.KEM Key Decapsulation

The Saber key decapsulation is specified by the following algorithm and makes use of
Saber.PKE.Dec as specified in Algorithm 3.

Algorithm 6: Saber.KEM.Decaps(sk = (sss, z, pkh), pk = (seedAAA, bbb), c)

1 m0 = Saber.PKE.Dec(sss, c)

2 (K̂ 0, r0) = G(pkh, m0)
3 c0 = Saber.PKE.Enc(pk, m0; r0)
4 if c = c0 then

5 return K = H(K̂ 0, c)
6 else
7 return K = H(z, c)

8

2.5.1 Saber.KEM Key Generation

The Saber key generation is specified by the following algorithm.

Algorithm 4: Saber.KEM.KeyGen()

1 (seedAAA, bbb, sss) = Saber.PKE.KeyGen()
2 pk = (seedAAA, bbb)
3 pkh = F(pk)
4 z = U({0, 1}256)
5 return (pk := (seedAAA, bbb), sk := (sss, z, pkh))

2.5.2 Saber.KEM Key Encapsulation

The Saber key encapsulation is specified by the following algorithm and makes use of
Saber.PKE.Enc as specified in Algorithm 2.

Algorithm 5: Saber.KEM.Encaps(pk = (seedAAA, bbb))

1 m U({0, 1}256)

2 (K̂, r) = G(F(pk), m)
3 c = Saber.PKE.Enc(pk, m; r)

4 K = H(K̂, c)
5 return (c, K)

2.5.3 Saber.KEM Key Decapsulation

The Saber key decapsulation is specified by the following algorithm and makes use of
Saber.PKE.Dec as specified in Algorithm 3.

Algorithm 6: Saber.KEM.Decaps(sk = (sss, z, pkh), pk = (seedAAA, bbb), c)

1 m0 = Saber.PKE.Dec(sss, c)

2 (K̂ 0, r0) = G(pkh, m0)
3 c0 = Saber.PKE.Enc(pk, m0; r0)
4 if c = c0 then

5 return K = H(K̂ 0, c)
6 else
7 return K = H(z, c)

8

2.4.1 Saber.PKE Key Generation

The Saber.PKE key generation is specified by the following algorithm.

Algorithm 1: Saber.PKE.KeyGen()

1 seedAAA U({0, 1}256)
2 AAA = gen(seedAAA) 2 Rl⇥l

q

3 r = U({0, 1}256)
4 sss = �µ(Rl⇥1

q ; r)

5 bbb = ((AAATsss + hhh) mod q)� (✏q � ✏p) 2 Rl⇥1
p

6 return (pk := (seedAAA, bbb), sk := (sss))

2.4.2 Saber.PKE Encryption

The Saber.PKE Encryption is specified by the following algorithm, with optional argument r.

Algorithm 2: Saber.PKE.Enc(pk = (seedAAA, bbb), m 2 R2; r)

1 AAA = gen(seedAAA) 2 Rl⇥l
q

2 if r is not specified then
3 r = U({0, 1}256)

4 s0s0s0 = �µ(Rl⇥1
q ; r)

5 bbb0 = ((AAAsss0 + hhh) mod q)� (✏q � ✏p) 2 Rl⇥1
p

6 v0 = bbbT (sss0 mod p) 2 Rp

7 cm = (v0 + h1 � 2✏p�1m mod p)� (✏p � ✏T) 2 RT

8 return c := (cm, b0b0b0)

2.4.3 Saber.PKE Decryption

The Saber.PKE Decryption is specified by the following algorithm.

Algorithm 3: Saber.PKE.Dec(sk = sss, c = (cm, b0b0b0))

1 v = bbb0T (sss mod p) 2 Rp

2 m0 = ((v � 2✏p�✏T cm + h2) mod p)� (✏p � 1) 2 R2

3 return m0

2.5 Saber Key-Encapsulation Mechanism

Saber.KEM is the key-encapsulation mechanism consisting of the triplet of algorithms
(Saber.KEM.KeyGen, Saber.KEM.Enc, Saber.KEM.Dec) as described in Algorithms 4, 5
and 6 respectively. The more detailed technical specifications are given in Section 10.

7

2.4.1 Saber.PKE Key Generation

The Saber.PKE key generation is specified by the following algorithm.

Algorithm 1: Saber.PKE.KeyGen()

1 seedAAA U({0, 1}256)
2 AAA = gen(seedAAA) 2 Rl⇥l

q

3 r = U({0, 1}256)
4 sss = �µ(Rl⇥1

q ; r)

5 bbb = ((AAATsss + hhh) mod q)� (✏q � ✏p) 2 Rl⇥1
p

6 return (pk := (seedAAA, bbb), sk := (sss))

2.4.2 Saber.PKE Encryption

The Saber.PKE Encryption is specified by the following algorithm, with optional argument r.

Algorithm 2: Saber.PKE.Enc(pk = (seedAAA, bbb), m 2 R2; r)

1 AAA = gen(seedAAA) 2 Rl⇥l
q

2 if r is not specified then
3 r = U({0, 1}256)

4 s0s0s0 = �µ(Rl⇥1
q ; r)

5 bbb0 = ((AAAsss0 + hhh) mod q)� (✏q � ✏p) 2 Rl⇥1
p

6 v0 = bbbT (sss0 mod p) 2 Rp

7 cm = (v0 + h1 � 2✏p�1m mod p)� (✏p � ✏T) 2 RT

8 return c := (cm, b0b0b0)

2.4.3 Saber.PKE Decryption

The Saber.PKE Decryption is specified by the following algorithm.

Algorithm 3: Saber.PKE.Dec(sk = sss, c = (cm, b0b0b0))

1 v = bbb0T (sss mod p) 2 Rp

2 m0 = ((v � 2✏p�✏T cm + h2) mod p)� (✏p � 1) 2 R2

3 return m0

2.5 Saber Key-Encapsulation Mechanism

Saber.KEM is the key-encapsulation mechanism consisting of the triplet of algorithms
(Saber.KEM.KeyGen, Saber.KEM.Enc, Saber.KEM.Dec) as described in Algorithms 4, 5
and 6 respectively. The more detailed technical specifications are given in Section 10.

7

Figure 11: Pseudocode of SABER [38]

33 Farnoud Farahmand, Viet Ba Dang, Michal Andrzejczak and Kris Gaj

Figure 12: Pseudocode of NTRU [36]

x

x

x

x

646416

A B C

64
Acc

16

16

16

16

16

16

16

16

16

16

16

16

16

16

16

16

16

16

16

16

Figure 13: Block diagram of the unit 4 MACs used in FrodoKEM.

34 Implementing and Benchmarking Seven Round 2 Lattice-Based KEMs

x
A

B

C Acc
logq

logq

logq

logq

logq

Figure 14: MAC used in Saber, NTRU-HPS, and NTRU-HRSS. logq=13 for Saber and NTRU-HRSS,
logq=11 for NTRU-HPS with the security category 1 (ntruhps2048677) and 12 for NTRU-HPS with the
security category 3 (ntruhps4096821).

ldld ld ld ld ld ld ld ld ldld ld ld

neg

data_out

data_in

data_out0

data_out0

data_out1 data_out63

data_out62

….

….

….

52 52
52

52 52 52

3328

Figure 15: Block diagram of Saber LFSR. All buses are 13-bit wide unless specifed.

35 Farnoud Farahmand, Viet Ba Dang, Michal Andrzejczak and Kris Gaj

Piso

64

Sipo

16

48

24 24

CBD_5 CBD_5

24

12 12

24

+ +

12

….

2 2 2 2

+

3 3

CBD_5
Byte_rev

24

64

32 32

CBD_3 CBD_3

32

16 16

32

+ +

16

….
3 3 3 3

+

4 4

CBD_3
Byte_rev

32

Piso

64

Sipo

16

80

40 40

CBD_1 CBD_1

32

16 16

40

+ +

16

….

3 3 3 3

+

4 4

CBD_1
Byte_rev

40

(a) Security Level 5.

Piso

64

Sipo

16

48

24 24

CBD_5 CBD_5

24

12 12

24

+ +

12

….

2 2 2 2

+

3 3

CBD_5
Byte_rev

24

64

32 32

CBD_3 CBD_3

32

16 16

32

+ +

16

….

3 3 3 3

+

4 4

CBD_3
Byte_rev

32

Piso

64

Sipo

16

80

40 40

CBD_1 CBD_1

32

16 16

40

+ +

16

….

3 3 3 3

+

4 4

CBD_1
Byte_rev

40

(b) Security Level 3.

Piso

64

Sipo

16

48

24 24

CBD_5 CBD_5

24

12 12

24

+ +

12

….

2 2 2 2

+

3 3

CBD_5
Byte_rev

24

64

32 32

CBD_3 CBD_3

32

16 16

32

+ +

16

….

3 3 3 3

+

4 4

CBD_3
Byte_rev

32

Piso

64

Sipo

16

80

40 40

CBD_1 CBD_1

32

16 16

40

+ +

16

….

3 3 3 3

+

4 4

CBD_1
Byte_rev

40

(c) Security Level 1.

Figure 16: Block diagrams for the centered binomial distribution (CBD) samplers of Saber for three di˙erent
security levels.

36 Implementing and Benchmarking Seven Round 2 Lattice-Based KEMs

w

w

….0 1 2 n-1

….

sel

w*n

w

w…. wwww

sin

dout

2 2 2

2 2 …. 2

2

0 1 2 n-1

2n

….

ld ld ld ld

2n

2

2….

….

2222

din

dout

2

w w w w

(a) Zq_LFSR.

w

w

….0 1 2 n-1

….

sel

w*n

w

w…. wwww

sin

dout

2 2 2

2 2 …. 2

2

0 1 2 n-1

2n

….

ld ld ld ld

2n

2

2….

….

2222

din

dout

2

w w w w

(b) Z3_LFSR

Figure 17: Block diagrams of LFSRs used in NTRU-HPS and NTRU-HRSS.

W

W

W

W W

W W …. W

W

0 1 2 N-1

W*N

….

ld ld ld ld

W*N

W

W….

….

WWWW

Sin

Din

Dout

sel

2

2

2 2

2 2 …. 2

2

0 1 2 N-1

2N

….

ld ld ld ld

2N

2

2….

….

2222

Din

Dout

+
mod 3

2

2

W

Mod qW

0s

(a) Zq_LFSR.

W

W

W

W W

W W …. W

W

0 1 2 N-1

W*N

….

ld ld ld ld

W*N

W

W….

….

WWWW

Sin

Din

Dout

sel

2

2

2 2

2 2 …. 2

2

0 1 2 N-1

2N

….

ld ld ld ld

2N

2

2….

….

2222

Din

Dout

+
mod 3

2

2

W

Mod qW

0s

(b) Z3_LFSR

Figure 18: Block diagrams of LFSRs used in NTRU LPrime and Streamlined NTRU Prime .

	Introduction
	Basic Features of Compared Algorithms
	Previous Work
	Methodology
	Software/Hardware Codesign Platform
	Software Profiling, C Source Code Analysis, and Software/Hardware Partitioning
	Interface of Hardware Accelerators and the RTL Design Methodology
	Verification and Generation of Results

	Hardware Accelerators
	FrodoKEM
	Round5
	Saber
	NTRU-HPS and NTRU-HRSS
	NTRU LPrime and Streamlined NTRU Prime

	Results
	Conclusions
	Profiling Results
	Pseudocode of investigated algorithms and block diagrams of lower-level operations

