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Abstract. In this paper we present the results of implementing and benchmarking seven lattice-based 
key encapsulation mechanisms (KEMs), representing fve NIST PQC Round 2 PQC candidates, using a 
software/hardware codesign approach. This approach is particularly applicable to the current stage of 
the NIST PQC standardization process, where the large number and high complexity of the candidate 
algorithms makes traditional hardware benchmarking extremely challenging. We propose and justify 
the choice of a suitable platform and design methodology. The results obtained indicate the potential 
for very substantial speed-ups vs. purely software implementations, reaching 396x for encapsulation 
and 712x for decapsulation. At the same time these speed-ups depend strongly on the features of each 
particular algorithm, which leads to noticeable changes in the ranking of evaluated candidates using 
software/hardware vs. purely-software benchmarking. 
Keywords: Post-Quantum Cryptography · software/hardware codesign · lattice-based · hardware accelera-
tor · System on Chip · programmable logic 

1 Introduction 
Hardware benchmarking has played a major role in all recent cryptographic standardization e˙orts, such as 
the AES, eSTREAM, SHA-3, and CAESAR contests. As with the current NIST Post-Quantum Cryptography 
(PQC) standardization e˙ort, the number of candidates was reduced after each round of public evaluation. With 
the emergence of commonly-accepted hardware application programming interfaces (APIs) [20], development 
packages [19, 21], specialized optimization tools [13, 8], new design methodologies based on High-Level 
Synthesis (HLS) [17, 18], and mandatory hardware implementations in the fnal round of the CAESAR 
contest [5], the percentage of initial submissions with hardware implementations grew from 27.5% in the 
SHA-3 contest [12] to 49.1% in the CAESAR competition [6, 11]. 

Unfortunately this trend is not likely to be sustained in the NIST PQC standardization process by 
simply following prior practices and hardware benchmarking approaches. In many respects PQC schemes are 
diametrically di˙erent from those evaluated in previous cryptographic contests, and new challenges call for 
new substantially di˙erent solutions [11, 7]. 

Traditionally software and hardware benchmarking were conducted separately, by di˙erent groups of 
experts, equipped with di˙erent knowledge and tools. Even the units for measuring speed were di˙erent -
cycles per byte for software, and megabits per second for hardware. For PQC algorithms this approach is 
hard to maintain. These algorithms are simply too complex and too di˙erent from the current state-of-the-art 
in public-key cryptography to permit the development of optimized purely hardware implementations for a 
signifcant fraction of the remaining candidates by any single group within the time frame imposed by the 
NIST evaluation process (12-18 months in case of Round 2). 

At the same time there is little (if any) consensus regarding basic design choices such as hardware API, 
optimization target, or hardware platform (e.g., a single FPGA family or a single ASIC standard cell library). 
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NIST has not indicated that a hardware implementation will be required for each submission to the next 
round of the process. 

In the 16 months since the start of the NIST PQC process only a few purely hardware implementations of 
Round 1 candidates have been announced: [29], [39], [22], [25], [9], and even fewer have been made open 
source. These implementations use di˙erent APIs, target di˙erent platforms, and are aimed at di˙erent 
optimization targets from high-speed to low-area. No conclusions regarding ranking of these algorithms in 
terms of their performance in hardware can be reached based on such divergent e˙orts. 

In this paper we present an alternative approach to evaluating candidates in cryptographic contests, based 
on software/hardware codesign. This technique has been used for years in industry and studied extensively 
in academia, with the goal of reaching performance targets using a shorter development cycle than is typical 
for hardware-only implementations. To the best of our knowledge no benchmarking of software/hardware 
designs was reported during any previous cryptographic competitions. As a result multiple problems specifc 
to cryptographic contests, such as the choice of the most representative platform(s) and the fairness of 
software/hardware partitioning schemes, have never been addressed. 

It should be clearly stated that software/hardware benchmarking is not intended as a replacement for 
purely-hardware benchmarking. On the contrary, applying this approach for the 26 candidates advanced to 
Round 2, and developing a library of hardware accelerators for major operations of these candidates, will 
make it much easier to develop hardware-only implementations in subsequent rounds. 

Within the proposed framework the frst issue to address is the choice of the representative device. In 
particular we need a computing platform allowing fast communication across the software/hardware boundary. 
We also need reconfgurable hardware, as the timing measurements must be performed experimentally, and 
the platform must be well-suited for attempting various software/hardware partitioning schemes. 

In recent years several such platforms have emerged. The most popular in industry are those based on 
integrating an ARM-based processor and FPGA fabric on a single chip. Examples include Xilinx Zynq 7000 
System on Chip (SoC), Xilinx Zynq UltraScale+ MPSoC, Intel Arria 10 SoC FPGAs, and Intel Stratix 10 
SoC FPGAs. These devices support software/hardware codesigns based on a traditional high-level language 
program running on an ARM processor, with the most time-critical computations performed on a dedicated 
hardware accelerator. The advantages of these platforms include: the use of the most popular embedded 
processor family (ARM) operating at high speed (1 GHz or above), state-of-the-art commercial tools (available 
for free, or at a reduced price for academic use), availability of inexpensive prototyping boards, and practical 
deployment in multiple environments. 

The primary alternatives are FPGA-based systems with so-called "soft" processor cores implemented 
in reconfgurable logic. Examples include Xilinx MicroBlaze, Intel Nios II, and the open-source RISC-V, 
originally developed at the University of California, Berkeley [30, 40, 41]. The main advantage of these 
systems over "hard" processor cores is fexibility in the allocation of resources to processor cores, including the 
possibility of extending them with special instructions specifc to PQC. Additionally they are easy to port 
between di˙erent FPGA families, and even between FPGAs and ASICs. A disadvantage compared to the 
"hard" option is that the "soft" processors operate at much lower clock frequencies (typically 200-450 MHz). 

During a presentation at PQCrypto 2019, NIST asked designers to focus on the ARM Cortex-M4 for 
embedded software implementations and the Artix-7 for FPGA implementations. However we are not aware 
of any all programmable SoC device that contains a Cortex-M processor and the Artix-7 FPGA fabric 
on a single chip. Even if such a chip existed it would be more suitable for benchmarking of lightweight 
implementations (optimized for minimal cost and power consumption), rather than benchmarking of the 
high-speed implementations targeted by our study. 

As a result we have based our choice of platform primarily on the projected practical importance of 
various platforms during the initial period of deployment of new PQC standards, and the expected speed-up 
over purely software implementations. These priorities led us to choose devices from the "hard" processor 
class, with a hard-wired ARM processor, and among them the Zynq UltraScale+ family from Xilinx Inc., the 
vendor with the biggest market share in this device category. Zynq UltraScale+ and similar SoCs are likely 
to be used for practical deployments of PQC in the near future, wherever device speed and time-to-market 
are of primary concern. Implementations using these devices are more likely than implementations using only 
hardware. 

However the use of soft-core processors, and in particular the free and open-source RISC-V, should be 
considered as a natural next step, especially in light of DARPA’s recent selection of the RISC-V Instruction 
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Table 1: Features of selected NIST Round 2 PQC KEMs 

Feature FrodoKEM Round5 Saber 

Underlying 
problem 

LWE : 
Learning With Errors 

RLWR : 
Ring Learning With 

Rounding 

Mod-LWR : 
Module Learning with 

Rounding 
Element of a 
matrix or vector in Zq Zq Zq[x]/(xn + 1) 

Modulus q Power of 2 Power of 2 Power of 2 

Major parameters 

n: matrix dimensions, 
B: number of bits 

encoded in each matrix 
entry, 

˙: standard deviation 

n: degree of reduction 
polynomial, 

p, t: other moduli 

n: degree of reduction 
polynomial, 
l: number of 

polynomials per vector, 
p, T : other moduli, µ: 

parameter of CBD 
Hash-based 
functions 

SHAKE cSHAKE SHAKE, SHA3-256, 
SHA3-512 

Sampling Integers are sampled 
from an approximation 
of a rounded continuous 
Gaussian distribution. 

Integers from a uniform 
distribution are 

produced by a DRBG 
taking a random seed. 

Integers are sampled 
from a centered 

binomial distribution 
(CBD). 

Decryption 
failures Yes Yes Yes 

#Multiplications 
in Encapsulation 

2 matrix-by-matrix 2 vector-by-vector 2 matrix-by-vector 
1 vector-by-vector 

#Multiplications 
in Decapsulation 

3 matrix-by-matrix 3 vector-by-vector 1 matrix-by-vector 
2 vector-by-vector 

Set Architecture (ISA) for investigation within its cybersecurity-related programs [27]. 
With the preferred platform identifed, our second major concern is the fairness of software/hardware 

benchmarking, especially in terms of deciding which operations within each evaluated scheme should be 
o˜oaded to hardware. In this paper we propose a comprehensive approach to address this issue, aimed at 
achieving the best possible trade-o˙ between the speed-up compared to software and the required development 
time. This approach is described in detail in Section 4. 

The proposed methodology was applied to the evaluation of seven IND-CCA-secure [3, 15] key encapsulation 
mechanisms (KEMs), belonging to the following fve di˙erent Round 2 PQC submissions: FrodoKEM [34], 
Round5 [37], Saber [38], NTRU [36], and NTRU Prime [35]. 

2 Basic Features of Compared Algorithms 
Basic features of FrodoKEM, Round5, and Saber are summarized in Table 1. These algorithms are based on 
the Learning with Errors (LWE), General Learning With Rounding (GLWR), and Module Learning with 
Rounding (Mod-LWR) problems, respectively. The implemented variant of Round5 relies specifcally on the 
RLWR (Ring Learning With Rounding) variant of GLWR, and thus only features of this variant are discussed 
below. All three KEMs are based on underlying IND-CPA public key encryption schemes, converted to 
IND-CCA KEMs using very similar variants of the Fujisaki–Okamoto transform [10], [16]. 

In all three schemes the elementary operation is integer multiplications modulo a power of two (denoted 
as q). In FrodoKEM the most time-consuming operation is a matrix-by-matrix multiplication, where each 
component of a matrix is an element of Zq . In Saber the most time-consuming operations are matrix-by-vector 
and vector-by-vector multiplications, where each element of a matrix or a vector is a polynomial with n 
coeÿcients in Zq, and the multiplication of such polynomials is performed modulo the reduction polynomial 
xn + 1. In the implemented variant of Round5 the most time consuming operation is a vector-by-vector 
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Table 2: Features of NIST Round 2 NTRU-based PQC KEMs 

Feature NTRU-HPS NTRU-HRSS 
Streamlined 

NTRU Prime 
NTRU 

LPRime 

Underlying 
problem 

Shortest Vector 
Problem 

Shortest Vector 
Problem 

Shortest Vector 
Problem 

Shortest Vector 
Problem 

Polynomial P xn − 1 �n = (xn − 1)/(x − 1)�� 
xn − x − 1 

irreducible in 
Zq[x] 

xn − x − 1 
irreducible in 

Zq[x] 
� Degree n prime prime prime prime 

Modulus q 
power of 2 

with q/8− 2 � 2n/3 
power of 2 p

with q > 8 2(n + 1) prime prime 

Weight w 
Fixed weight 
for f and r N/A 

Fixed weight 
for f and r. 
3w � 2n 

16w + 1 � q 

Fixed weight 
for b and a. 

3w � 2n 
16w + 2� + 3 � q 

Hash-based functions SHA3-256 SHA3-256 SHA3-512 SHA3-512 
Decryption failures No No No No 

Quotient rings 

R/q: 
Zq [x]/(xn − 1) 

S/q: 
)�� Zq [x]/(�n

S/3: 
)�� Z3[x]/(�n

R/q: 
Zq[x]/(xn − 1) 

S/3: 
Z3[x](x − 1)/(xn − 1) 

R/q: 
n −Zq[x]/(x x − 1) 

R/3: 
Z3[x]/(xn − x − 1) 

R/q: 
n −Zq[x]/(x x − 1) 

R/3: 
Z3[x]/(xn − x − 1) 

#Poly Mults for 
Encapsulation 1 in R/q 1 in R/q 1 in R/q 2 in R/q 

#Poly Mults for 
Decapsulation 

1 in R/q 
1 in S/q 
1 in S/3 

1 in R/q 
1 in S/q 
1 in S/3 

2 in R/q 
1 in R/3 3 in R/q 

� denoted by p in the specifcation of Streamlined NTRU Prime and NTRU LPRime 
�� �n = (xn − 1)/(x − 1) irreducible in Zq[x] 

multiplication, where components of one vector are elements of Zq, and the components of the other vector 
are in the set {-1, 0, 1}. 

All three algorithms use SHAKE [26] or cSHAKE [24] as an auxiliary cryptographic operation. Saber uses 
SHA3-256 and SHA3-512 in addition to SHAKE. Sampling is the easiest to implement in Round5 (uniform 
distribution), followed by Saber (centered binomial distribution), and then FrodoKEM (approximation of a 
rounded continuous Gaussian distribution). 

Basic features of the four NTRU-based KEMs submitted to the NIST PQC process (NTRU-HPS and 
NTRU-HRSS from the NTRU submission package, and Streamlined NTRU Prime and NTRU LPRime from 
the NTRU Prime submission package) are summarized in Table 2. In each of these algorithms the underlying 
security problem is the Shortest Vector Problem (SVP) in a lattice. The most time-consuming operation in 
each is a polynomial multiplication, where the degree of the reduction polynomial is a prime. For operations 
on the polynomial coeÿcients the modulus is a power of 2 for NTRU-HPS and NTRU-HRSS, and a prime for 
Streamlined NTRU Prime and NTRU LPRime. The modulus chosen for each NTRU Prime algorithm may 
potentially lead to a higher resistance against future attacks, but its e˙ect on the maximum clock frequency 
and resource utilization is clearly negative. 

Additionally, NTRU LPRime requires two polynomial multiplications per encapsulation vs. one for the 
other three algorithms listed in Table 2. For decapsulation, the exact types of multiplications vary, but the 
number of multiplications required is three for each algorithm. 

Parameter sets of seven investigated algorithms are summarized in Table 3. Because we compared 
IND-CCA KEMs [15], the parameter sets for Round5 were adopted from the IND-CCA PKE variant, rather 
than from the IND-CPA KEM. The submission package of Round5 does not contain the recommended 
parameter values for the IND-CCA KEM as this scheme is treated only as a building block of the IND-CCA 
PKE. 
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The specifcation of NTRU associates two di˙erent security categories with each parameter set for NTRU-
HPS and NTRU-HRSS. In this paper we conservatively assumed the lower security category based on the so 
called non-local computational models (see [36], Section 5.3 Security Categories). The same computation 
model is implicitly assumed by the submitters of the other investigated algorithms. 

In Table 3 we have divided parameter sets into three groups with security categories 1 and 2, 3 only, and 
4 and 5, respectively. Only the frst group contains all 7 investigated algorithms. However the second group 
contains the largest number of {algorithm, parameter set} pairs (6 out of 7) with exactly the same security 
level. 

Table 3: Parameter sets of investigated algorithms 

Algorithm Parameter 
Set 

Security 
Category 

Degree 
n 

Modulus 
q 

Other Major 
Parameters 

Auxiliary 
Functions 

FrodoKEM Frodo-640 1 640 215 B=2, ̇  = 2.8 SHAKE128 
Round5 R5ND-1PKE_0d 1 586 213 p = 29, t = 24 cSHAKE128 
Saber LightSaber-KEM 1 256 213 l = 2, T = 23, 

µ = 10 
SHAKE128 
SHA3-256 
SHA3-512 

NTRU-HPS ntruhps2048677 1� 677 211 N/A SHA3-256 
NTRU-HRSS ntruhrss701 1� 701 213 N/A SHA3-256 
Str NTRU 
Prime 

kem/sntrup653 2 653 4621 < 213 w = 288 SHA3-512 

NTRU 
LPRime 

kem/ntrulpr653 2 653 4621 < 213 w = 252, 
� = 289 

SHA3-512 

FrodoKEM Frodo-976 3 976 216 B=3, ̇  = 2.3 SHAKE256 
Round5 R5ND-3PKE_0d 3 852 212 p = 29, t = 25 cSHAKE256 
Saber Saber-KEM 3 256 213 l = 3, T = 24, 

µ = 8 
SHAKE128 
SHA3-256 
SHA3-512 

NTRU-HPS ntruhps4096821 3� 821 212 N/A SHA3-256 
Str NTRU 
Prime 

kem/sntrup761 3 761 4591 < 213 w = 286 SHA3-512 

NTRU 
LPRime 

kem/ntrulpr761 3 761 4591 < 213 w = 250, 
� = 292 

SHA3-512 

FrodoKEM Frodo-1344 5 1344 216 B=4, ̇  = 1.4 SHAKE256 
Round5 R5ND-5PKE_0d 5 1170 213 p = 29, t = 25 cSHAKE256 
Saber FireSaber-KEM 5 256 213 l = 4, T = 26, 

µ = 6 
SHAKE128 
SHA3-256 
SHA3-512 

Str NTRU 
Prime 

kem/sntrup857 4 857 5167 < 213 w = 322 SHA3-512 

NTRU 
LPRime 

kem/ntrulpr857 4 857 5167 < 213 w = 281, 
� = 329 

SHA3-512 

� assuming non-local computational models 

3 Previous Work 
Only a few candidates in the NIST PQC standardization process have been fully implemented in hardware to 
date. These implementations are reported in [29], [39], [22], [25], [9]. 

Only a few attempts to accelerate software implementations of post-quantum cryptosystems have been 
made through software/hardware (SW/HW) codesign by other groups. A coprocessor consisting of the 
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PicoBlaze soft-core and several parallel acceleration units for the code-based McEliece cryptosystem was 
implemented on Spartan-3AN FPGAs by Ghosh et al. [14]. No speed-up vs. purely software implementation 
using PicoBlaze was reported. 

In 2015 Aysu et al. [2] built a high-speed implementation of a lattice-based digital signature scheme 
using SW/HW codesign techniques. The work focused on the acceleration of signature generation. The 
design targeted the Cyclone IV FPGA family and consisted of the NIOS II soft processor, a hash unit, and 
a polynomial multiplier. Compared to the C implementation running on the NIOS II processor, the most 
eÿcient software/hardware codesign reported in the paper achieved a speed-up of 26,250x at the expense of 
an increase in the number of Logic Elements by a factor of 20. 

Wang et al. [39] reported a software/hardware implementation of the hash-based digital signature 
scheme XMSS. The selected platform was an Intel Cyclone V SoC, and the software part of the design 
was implemented using a RISC-V soft-core processor. Hardware accelerators supported a general-purpose 
SHA-256 hash function, as well as several XMSS specifc operations. The design achieved a speed-up of 23x 
for signing and 18x for verifcation over a purely software implementation running on RISC-V. 

All the aforementioned platforms were substantially di˙erent than the platform used in this work. The 
algorithms and their parameters were also substantially di˙erent. As a result, limited information could be 
inferred regarding the optimal software/hardware partitioning, expected speed-up, or expected communication 
overhead. 

An earlier version of this work, representing three NIST PQC Round 1 candidates (NTRUEncrypt, 
NTRU-HRSS, and NTRU Prime) was reported in [7]. Compared to that work, all previously reported 
designs were updated to make them compatible with the Round 2 specifcations of NTRU and NTRU 
Prime [36], [35]. It should be mentioned that although the NTRUEncrypt and NTRU-HRSS candidates 
merged, the obtained Round 2 candidate, NTRU, has two distinct variants, NTRU-HPS (somewhat similar to 
the Round 1 NTRUEncrypt) and NTRU-HRSS (somewhat similar to the Round 1 candidate with the same 
name), and thus the total number of the NTRU-based KEMs did not change. Our designs for FrodoKEM, 
Round5, and Saber have not been reported in any earlier paper. Other di˙erences compared to [7] include 
reporting results for multiple parameter sets per algorithm, more complete exploration of the available 
software/hardware partitioning schemes, minimization of the software/hardware transfer overhead, and 
measuring separately the execution time of the function randombytes() used to obtain uniformly distributed 
random bytes during encapsulation. 

4 Methodology 
4.1 Software/Hardware Codesign Platform 
The platform used in this work was selected based on the following criteria: 

• modern technology, representing the current state of the art (vs. older generations of FPGAs, such as 
Xilinx Virtex-6 or Virtex-7, used in the majority of previous cryptographic competitions) 

• reconfgurable logic large enough to demonstrate the full capability for parallelization in hardware of 
PQC algorithms 

• a fast processor, representing the majority of the embedded system market, such as a variant of ARM 

• a fast on-chip interface between the Processing System (based on a microprocessor) and Programmable 
Logic (based on reconfgurable fabric), such as the ARM Advanced Microcontroller Bus Architecture 
(AMBA) Advanced eXtensible Interface (AXI) version 4, the de facto standard for today’s embedded 
processor bus architectures [1] 

• relatively low cost and wide availability of a prototyping board containing the selected device, supporting 
practical experimental measurements by multiple groups 

• a device with relatively large share of the market for embedded system applications, especially in the 
area of communications. 
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Figure 1: Block diagram of software/hardware codesign. 

Based on these criteria we chose the Xilinx Zynq UltraScale+ MPSoC XCZU9EG-2FFVB1156E as our 
target device, and the Xilinx ZCU102 Evaluation Kit as a prototyping board. The device is composed of two 
major parts sharing the same chip. The primary component of the Processing System (PS) is a quad-core 
ARM Cortex-A53 Application Processing Unit, running at 1.2 GHz. As in the software benchmarking 
experiments conducted by other groups, we utilize only one core in all our experiments. The Programmable 
Logic (PL) includes a programmable FPGA fabric similar to that of Virtex UltraScale+ FPGAs, including 
Confgurable Logic Block (CLB) slices, Block RAMs, DSP units, etc. The frequency of operation depends on 
the particular logic instantiated in the reconfgurable fabric, but typically does not exceed 400 MHz. 

The software used is Xilinx Vivado Design Suite HLx Edition, Xilinx Software Development Kit (XSDK), 
and Xilinx Vivado HLS, all with version number 2018.2. 

A high-level block diagram of the experimental software/hardware codesign platform is shown in Fig. 1. 
The Hardware Accelerator is connected, through the dual-clock Input and Output FIFOs, to the AXI DMA, 
supporting the high-speed communication with the Processing System. Timing measurements are performed 
using the popular Xilinx IP unit called AXI Timer, which is capable of measuring time in clock cycles of the 
200 MHz system clock. The Hardware Accelerator can operate at a variable clock frequency, controlled from 
software using the Clocking wizard unit. 

4.2 Software Profling, C Source Code Analysis, and Software/Hardware Partitioning 
Our frst step in evaluating the suitability of cryptographic algorithms for software/hardware codesign was 
profling of their software implementations using one core of the ARM Cortex-A53. Profling produces a list 
of the most-time consuming functions, including their absolute execution time, percentage execution time, 
and the number of times they are called. 
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In the case of KEMs, the encapsulation operation uses multiple calls to the function randombytes() 
which produces a sequence of random bytes with uniform distribution. Other PQC benchmarking projects use 
a version of this function based on operating system functions and/or functions from OpenSSL [4, 32, 23, 33]. 
None of these options is available in our study, in which we perform benchmarking in the Bare Metal mode. 
Therefore in our code we use the implementation of randombytes() proposed by Saarinen in April 2018 [32], 
which is an improved version of the implementation developed by NIST for the generation of known-answer 
tests [28]. Since both of these implementations rely on the implementation of AES in the ECB mode from 
the OpenSSL library, we have replaced this implementation by the standalone, optimized implementation 
of AES in C, based on the use of T-boxes [31]. Compared to the OpenSSL implementation the selected 
implementation is written entirely in C rather than in an assembly language of a specifc processor, and does 
not contain any countermeasures against cache-timing attacks. As a result, the selected implementation 
of randombytes() is likely to have di˙erent timing characteristics than the implementations used in other 
benchmarking studies, such as SUPERCOP [4], pqcbench [32], pqm4 [23], and liboqs [33]. Therefore for 
each encapsulation operation we measure the execution time including and excluding the execution time of 
randombytes(). Additionally, we report the total number of calls to randombytes(), as well as the total 
number of bytes generated using this function. This approach allows us to determine whether ranking of 
candidates may be possibly modifed by the use of a di˙erent implementation of randombytes(), and/or by 
replacing calls to this function by calls to a di˙erent cryptographically-strong pseudorandom function, such 
as SHAKE. 

We decided which functions to o˜oad to hardware based on the highest potential for total speed-up, as 
well as fairness of comparison among investigated algorithms. The total speed-up obtained by o˜oading an 
operation to hardware depends on two major factors: the percentage of the execution time taken in software 
by the operation o˜oaded to hardware, and the speed-up for the o˜oaded operation itself (which we will 
call the "accelerator speed-up"). In order to maximize the frst factor we gave priority to operations that 
take the largest percentage of the execution time, preferably more than 90%. These operations may involve 
a single function call, several adjacent function calls, or a sequence of consecutive instructions in C. It is 
preferred that a given operation is executed only once, or only a few times, as each transfer of control and 
data between software and hardware involves a certain fxed timing overhead, independent of the size of input 
and output to the accelerator. In order to maximize the second factor we gave priority to operations that 
have high potential for parallelization in hardware, and small total size of inputs and outputs (which will 
need to be transferred to and from the hardware accelerator, respectively) 

Most of the data required to make informed decisions regarding software/hardware partitioning can be 
obtained by profling the purely software implementation, possibly extended with some small modifcations 
required to gather all relevant data. However, determining the potential for parallelization requires some 
knowledge of hardware or at least basic concepts of concurrent computing. 

In order to assure fairness in our comparison, we endeavored to o˜oad to hardware all operations common 
to or similar across the iplementat algorithms (e.g. all polynomial multiplications), and all operations that 
contribution signifcantly to the total execution time. Nevertheless it should be understood that this heuristic 
procedure may need to be repeated several times, because after the each round of o˜oading to hardware 
di˙erent software operations may emerge as taking the majority of the total execution time. This process 
can stop when the development e˙ort required for o˜oading the next most-critical operation to hardware is 
disproportionately high compared to the projected speed-up. 

4.3 Interface of Hardware Accelerators and the RTL Design Methodology 
The interface of a hardware accelerator matches the interface of the Input and Output FIFOs. The default 
width of the data bus is 64 bits. Each particular operation, such as load public key, start encapsulation, etc., 
is initiated by sending an appropriate header (in the form of a single 64-bit word), from a program running 
on the ARM processor to the data input of a hardware accelerator. When an operation requires additional 
data, this data is transmitted using the subsequent Input FIFO words. 

After the hardware accelerator produces results or detects an error, a header word is sent in the opposite 
direction. If an additional output is required, this output follows the header and is arranged in 64-bit words. 
The detailed format of the exchanged inputs and outputs is left up to the designer of a hardware accelerator. 

The design of a hardware accelerator follows a traditional Register-Transfer Level (RTL) methodology. 
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The entire system is divided into a Datapath and a Controller. The Datapath is described using a hierarchical 
block diagram, and the Controller using hierarchical algorithmic state machine (ASM) charts. Multiple local 
controllers may be advantageous compared to a single global Controller. The RTL approach, although not 
novel by itself, is an important part of our methodology as it facilitates very eÿcient hardware accelerator 
designs. The block diagrams and ASM charts are very easy to translate to eÿcient and fully synthesizable 
VHDL code. 

4.4 Verifcation and Generation of Results 
Functional verifcation of the hardware description language (HDL) code is performed by comparing simulation 
results with precomputed outputs generated by a reference software implementation. 

Fully verifed and independently optimized VHDL code is then combined with the optimized software 
implementation of a given PQC candidate. Functional verifcation of the integrated software/hardware design 
is performed by running the code on the prototyping board and comparing the obtained outputs with outputs 
generated by a functionally equivalent reference implementation, run on the same ARM Cortex-A53 processor. 

Experimental timing measurements follow, with the hardware accelerator’s clock set (using the Clocking 
wizard) to the optimal target frequency identifed during the synthesis and implementation runs. The 
execution time is measured by using the AXI Timer module, shown in Fig. 1, in clock cycles of the AXI 
Timer, which operates at the default clock frequency of 200 MHz. 

5 Hardware Accelerators 
5.1 FrodoKEM 
The pseudocode of FrodoKEM, with parts o˜oaded to hardware surrounded by dotted rectangular frames, is 
shown in Fig. 9 in Appendix B. The top-level block diagram of the hardware accelerator is shown in Fig. 2. 

The public key is composed of the 128-bit seed_A and B – an unpacked public-key matrix, of dimensions 
n x 8 log2q-bit words, where n=640, 976, 1344 for the security levels 1, 3, 5, respectively. Both of these 
elements are assumed to be loaded to the respective memories of the hardware accelerator, Seed_Asm_Mem 
and Matrix_A_and_B_Dual_Mem before the encapsulation or decapsulation starts. 

During the encapsulation, shown in Fig. 9, the 256-bit seed_SE is frst loaded to the asymmetric memory 
Seed_Asm_Mem, with the 8-bit data input and the 64-bit data output. SHAKE128 is run to generate a 
pseudorandom sequence r(0)..r(mn−1). This sequence is then fed to Sampler, which for every 16-bit word 
produces a w-bit output. The obtained samples, representing subsequent coeÿcients of the vector S0, are 
stored in the asymmetric memory Matrix_S’_Asym_Mem. The internal block diagram of the Frodo Sampler is 
shown in Fig. 3. 

The subsequent words generated by SHAKE128, denoted in the pseudocode as r(mn).. r(2mn−1), are 
passed through Sampler, and its outputs are stored as subsequent coeÿcients of E0, in the memory 
Matrix_B’_and_V_Dual_Mems. Similarly, the words r(mn)..r(2mn−1) are passed through the sampler, and 
used to generate coeÿcients of E00, stored in the same memory. 

Subsequently, SHAKE128 is used to generate elements of the n x n matrix A, with each element expressed 
using log2q bits. In order to reduce the execution time and the size of the Matrix_A_and_B_Dual_Mem memory, 
only one row of the A matrix is generated at a time, and used for the computations of B0 = S0A + E0, in 
parallel with calculating the subsequent row of A. The elements of A are multiplied by the corresponding 
elements of S0, read from Matrix_S’_Asym_Mem, sign-extended to log2q bits, and stored in one of the eight 
registers preceding the 4MAC units. 

The internal block diagram of the 4MAC unit, processing 4 elements of A, S0, and E0 at a time is shown 
in Fig. 13 in Appendix B. The temporary results are stored back in Matrix_B’_and_V_Dual_Mem. B0 is 
then transferred back to the processor using the outfifo_data bus. After the subsequent computation, 
V = S0B + E00, V is transferred to the processor for further computations in software. 

The operations performed by the hardware accelerator during the decapsulation are identical to those 
performed during the encapsulation (with B0 replaced by B00). The operation M = C −B0S is not o˜oaded 
to hardware. This operation takes a very small percentage of the total execution time in the purely software 
implementation. It also requires a signifcant amount of data to be transferred to and from the hardware 

http:implementation.It
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Figure 2: Block diagram of the hardware accelerator for FrodoKEM. All bus widths are 64-bit unless specifed. 

accelerator. As a result, any attempt at a hardware acceleration of this operation has resulted in increasing 
rather than decreasing the total execution time. 

5.2 Round5 
The pseudocode of Round5, with parts o˜oaded to hardware surrounded by dotted rectangular frames, is 
shown in Fig. 10 in Appendix B. The main computations of Round5 are performed in the polynomial ring 
Zq[x]/(�n+1(x)). The most time consuming operation is multiplication in the aforementioned ring, described 
by the equation X 

ck = ai � bj mod q (1) 
i+j�k mod n 

This operation is executed twice during encapsulation and three times during decapsulation. 
Thus, polynomial multiplication is the most obvious candidate for hardware acceleration. Moreover, a 

polynomial multiplication can be implemented more eÿciently than in general case, due to the special form of 
one of the polynomials. In each Round5 multiplication, one of the polynomials is always a ternary polynomial, 
which means that each of its coeÿcients is from the set {−1, 0, 1}. In this case, the multiplication is reduced 
only to addition or subtraction of the coeÿcients of the second polynomial. 

http:oneofthepolynomials.In
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After initially, moving only polynomial multiplication to hardware, we have decided to accelerate the 
entire encryption and decryption. In this approach, cSHAKE is also implemented in hardware and used for 
the secret key and public key expansion. This approach allows generating the majority of polynomials used 
in multiplication directly in hardware, without the need of generating them in software and passing through 
the relatively slow communication channel. The inputs for encryption and decryption are directly passed to 
FPGA fabric without unpacking by CPU. The (un-)packing functions, based on bit-shifting operations are 
implemented in hardware. These operations are very inexpensive in hardware. Thus, the speed-up comes 
from both the faster execution of cSHAKE in hardware, as well as lower communication overhead, achieved 
by sending only the seed for cSHAKE instead of the expanded data. The remaining operations, such as 
rounding, addition, and subtraction are also fast and cost-eÿcient in hardware, providing additional speed-up. 
Thus, with little additional area, the design is able to execute encryption and decryption on the input data 
and return results in the already packed format. 

We have decided to implement in hardware only r5_cpa_pke_encrypt, r5_cpa_pke_decrypt, and one of 
the additional calls to cSHAKE appearing during decapsulation (denoted as G(m’||pk in Fig. 10). A few 
remaining operations of Round5 CCA KEM are executed on the software side. Moving all operations to 
FPGA fabric would lead to a more complicated and area-consuming design. Moreover, the maximum clock 
frequency could decrease. Finally, the design with all operations executed in FPGA fabric would be a full 
hardware implementation and the comparison with other software/hardware codesigns described in this paper 
would not be any longer fair. 

The top-level block diagram of r5_cpa_pke is shown in Fig. 4. The required data is being read from 
the input FIFO using the port data_in. The frst data block must be a header block, which describes the 
command and the destination of the incoming transmission. Based on the header value, the main controller 
decides where the next data block should be written. The decision is sent to the SIPO module with selected 
input. If the incoming data is a seed for expansion, it is passed directly to the cSHAKE unit. In other cases, 
the specifed input port of one of the two arithmetic modules is used. 

The main controller is also responsible for managing the state of the accelerator. After all required data is 
received, including the expanded data generated by cSHAKE, the controller initializes the arithmetic modules 
and waits till the end of computations. The last step is to send the result back to software. 

Encryption and decryption are performed by the arithmetic modules: Rounding and Poly_Mul, shaded 
with colors in Fig. 4. Provided with necessary data and operation type, the aforementioned modules execute 
specifc instructions. At frst, a polynomial multiplication is performed. Based on the operation type, 
temporary result can be then rounded. During encryption, the message is added at the end of the data fow, 
before the results are prepared to be sent back to software. 

The majority of area taken by arithmetic modules is used by Poly Mult, shown in Fig. 5. The area 
requirements come from the construction of the multiplier. To achieve the best performance, we use n 
coeÿcient multipliers working in parallel. With this setting, the polynomial multiplication takes n clock 
cycles. A multiplication by a ternary coeÿcient is performed as an XOR and AND operation. We utilize the 

http:aternarycoe�cientisperformedasanXORandANDoperation.We
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Figure 4: Block diagram of the hardware accelerator of Round5. 

fact that one of the arguments is from the set {−1, 0, 1}. Thus, the second argument is XOR-ed bit-by-bit in 
parallel with the bit describing the sign of the frst argument. Next, the parallel AND operation, with a bit 
denoting a zero value of the ternary coeÿcient is performed. The result is passed to an adder and next to an 
accumulator. 

The NTRU_Poly_Mul is surrounded with additional logic performing necessary operations to prepare 
polynomials for multiplication. One of the polynomials is lifted from the ring 

Zq[x]/(�n+1(x)) (2) 

to the ring 

Zq[x]/(Nn+1(x)). (3) 

before multiplication. The coeÿcients in the lifted polynomial are equal to −a0 +(a0 −a1)x+(a1 −a2)x2 +· · · + 
an−1xn. Due to lack of data dependency, each coeÿcient is lifted in parallel and the operation takes always 
only one clock cycle. After multiplication, a polynomial is unlifted to previous ring. Unlifting is computed 

L recursively as ai = ai−1 −a . Unfortunately, this operation cannot be executed in parallel and has almost the i 
same latency as multiplication. The second arithmetic module named Rounding is responsible for properly 
shrinking the bit size of coeÿcients by adding a rounding constant (specifc to the given computational step) 
and applying a proper mask. 

The presented design is able to encrypt and decrypt data by performing all necessary operations. This 
feature allows using the core directly in any Round5 scheme requiring the r5_cpa_pke encryption and 
decryption. 
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5.3 Saber 

The pseudocode of Saber, with the operations o˜oaded to hardware surrounded by dotted rectangular frames, 
is shown in Fig. 11 in Appendix B. The top-level block diagram of the hardware accelerator is shown in Fig. 6. 

The public key of Saber is composed of the 256-bit seed_A and the vector b composed of l polynomials 
with n=256 coeÿcients each (where l=2, 3, 4 for the security levels 1, 3, 5, respectively). The coeÿcients of 
polynomials are of the size of log2q=13 bits for all security levels. Both seed_A and b are assumed to be 
loaded to the respective memories of the hardware accelerator, Seed_Mem and Vector_b_and_S_Asym_Mem, 
using the 64-bit input bus infifo_data, before the encapsulation or decapsulation starts. 

During the encapsulation, only the operations performed during Encryption Saber.PKE.Enc, shown in 
Fig. 11, are accelerated. Unlike in the pseudocode, in the hardware accelerator, vector s0 is generated frst. 
In order to make it possible, the 256-bit seed r is loaded frst to Seed_Mem. The generation of s0 involves 
SHAKE128 followed by Sampler, generating w-bit integers using centered binomial distribution (CBD). The 
obtained samples, representing subsequent coeÿcients of the vector s0, are stored in the asymmetric memory 
Matrix_S’_Asym_Mem. 

Subsequently, SHAKE128 is used to generate elements of the l x l matrix A, with each element representing 
a polynomial. In order to reduce the execution time and the size of Matrix_A_Asym_Mem memory, only one 
row of the A matrix is generated at a time, and used for the computations of b0 = (As0 + h) mod q, in parallel 
with calculating the subsequent row of A. h in the above equation is a constant. The elements of A are 
multiplied by the corresponding elements of s0, read from Matrix_S’_Asym_Mem, sign-extended to 13-bits, 
and stored in the n-stage LFSR. With 4 coeÿcients loaded per clock cycle, the initialization of the 256-stage 
LFSR takes 64 clock cycles. The temporary results are stored in the registers shown to the right of MACs 
in Fig. 6. The internal structure of MACs is shown in Fig. 14 in Appendix B. Each coeÿcient of b0 is then 
shifted right by 3 positions (corresponding to the division by q/p=213/210=8) and transferred back to the 
processor using the outffo_data bus. In the subsequent operation, v0 = bT (s0 mod p), the reduction mod p is 
performed on the fy, and the result transferred to the processor for further computations in software. 
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Figure 6: Block diagram of the hardware accelerator of Saber. 

Secret key s is assumed to be loaded before the decapsulation starts. In the frst phase of decapsulation, a 
new operation, v = b0T s mod p, specifc to decapsulation, is performed by the hardware accelerator. b0 is a 
part of the ciphertext, and thus must be loaded already after the start of decapsulation. In the second phase 
of decapsulation, the function Saber.PKE.Enc is called, and as a result, the hardware accelerator performs 
exactly the same operations as during the encapsulation. 

5.4 NTRU-HPS and NTRU-HRSS 
The pseudocode of NTRU, with parts o˜oaded to hardware surrounded by dotted rectangular frames, is 
shown in Fig. 12 in Appendix B. The top-level block diagram of the hardware accelerator is shown in Fig. 7. 

Polynomial multiplications mod (q, �1�n), located in the lines 2 of Encrypt() and 2 of Decrypt() are 
executed using Zq_LFSR and MACs located in the top portion of the block diagram. The Zq_LFSR is initialized 
with a polynomial with large coeÿcients (h for Encrypt() and c for Decrypt()). Let us denote the initial 

i state of the LFSR as a(x). In each subsequent iteration, the output from LFSR contains the value a(x) · x
i mod P . In a single clock cycle, a simple multiplication by x, namely a(x) · xi+1 mod P = a(x) · x · x mod P , 

is performed, as shown in Fig. 17a. The coeÿcients at the output of Zq_LFSR are then multiplied by the 
sign-extended small coeÿcient of r for Encrypt() and f for Decrypt(), read from the f_r_Asym_RAM, and 
added to the partial sum sum_fb. The internal structure of MAC is shown in Fig. 14. For the multiplication 
mod (q, �n), located in the line 5 of Decrypt(), c0 is set to the output of hq_Asym_RAM. The multiplication 
mod (3, �n), located in line 3 of Decrypt(), is performed using Z3_LFSR and the adders mod 3 located 
in the right portion of the block diagram in Fig. 7. c0r, generated by the controller, based on the value 
of the currently processed coeÿcient of fp, is used to select between adding or subtracting the output of 
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Z3_LFSR to/from the partial sum sum_r. The internal structure of the Z3_LFSR is shown in Fig. 17b. In case 
of multiplications in lines 3 and 5 of Decrypt(), one extra clock cycle is suÿcient to convert the result of 
multiplication mod �1�n =xn − 1 to the result of multiplication mod �n. 

Coeÿcients of the private key f are preloaded to the asymmetric f_r_RAM, before the decryption starts. 
The partial and fnal results are stored in the Zq_PISO (Parallel-In Serial-Out) unit, with the parallel input 
of the width of n · logq bits, the parallel output of the same width (used to enable the accumulation of 
intermediate products), and the serial output of the width of logq bits used to read out the fnal result to the 
output FIFO. 

The Controller is responsible for generating suitable select and enable signals, communication with the 
Input and Output FIFOs, interpreting the input headers with instructions sent by the respective driver, and 
generating the output header containing the status and error codes that are sent back to the driver. 

5.5 NTRU LPrime and Streamlined NTRU Prime 
A block diagram of the hardware accelerators for Streamlined NTRU Prime and NTRU LPRime is shown in 
Fig. 8. The operations in R/3 are necessary only in case of Streamlined NTRU Prime and are similar to 
operations in S/3 for NTRU. Compared to NTRU, the main di˙erence is the need for reduction of partial 
sums, involving large coeÿcients, mod q. Since now, q is a prime, a conditional subtraction is necessary. An 
additional register A is required for NTRU LPRime only, increasing the number of required fip-fops. 

6 Results 
The results of profling for the purely software implementations, running on a single core of ARM Cortex-A53, 
at the frequency of 1.2 GHz, are presented in the left portions of Tables 7, 8, 9, 10, and 11 in Appendix A. For 
each of the seven investigated algorithms and each major operation (Encapsulation and Decapsulation), two 
to fve most time-consuming functions are identifed. For each of these functions, we provide their execution 
time in microseconds, and the percentage of the total execution time. In the right portions of the same 
tables, we list in bold functions o˜oaded to hardware. For the functions combined together, they are listed 
in the same feld of the table, with sub-indices, such as 1.1, 1.2, 1.3, etc. A single execution time and a single 
percentage of the software/hardware execution time is given for such a combined function. 

It should be mentioned that the number of functions o˜oaded to hardware may be misleading, as these 
functions may appear at di˙erent levels of hierarchy. For example, for the Round5 encapsulation, only one 
function is o˜oaded. However, it is a function involving the majority of operations of Round5, amounting to 
99.6% of the total execution time in the software-only implementation. For the majority of algorithms, at 
least the frst and the second most-time consuming functions are o˜oaded to hardware. 

In Table 4, for each investigated KEM and each major operation (Encapsulation and Decapsulation), 
we list the total execution time in software (for the optimized software implementations in C running on 
ARM Cortex-A53 of Zynq UltraScale+ MPSoC), the total execution time in software and hardware (after 
o˜oading the most time consuming operations to hardware), and the obtained speed-up. The ARM processor 
runs at 1.2 GHz, DMA for the communication between the processor and the hardware accelerator at 200 
MHz, and the hardware accelerators at the maximum frequencies, specifc for the RTL implementations of 
each algorithm, listed in Table 6. All execution times were obtained through experimental measurements 
using the setup shown in Fig. 1. The speed up for the software part o˜oaded to hardware itself is given in 
the column Accel. Speed-up. This speed-up is a ratio of the execution time of the accelerated portion in 
software (column Accel. SW [ms]) and the execution time of the accelerated portion in hardware, including 
all overheads (column Accel. HW [ms]). The last column indicates how big percentage of the software-only 
execution time was taken by an accelerated portion of the program. 

The time of Encapsulation is provided with and without the execution time of randombytes(). The 
reason for that is discussed in Section 4.2 and reinforced by measurements reported in Table 5. Optimized 
implementations included in the submission packages of FrodoKEM, Round5, Saber, and NTRU LPRime use 
randombytes() only to generate a 16, 24, or 32-byte seed for other pseudorandom functions, such as SHAKE. 
The implementations included in the submission packages of NTRU-HPS, NTRU-HRSS, and Streamlined 
NTRU Prime use randombytes() to generate signifcantly longer strings of bytes. 

http:columnAccel.HW
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Table 4: Timing results. 

Algorithm 
Parameter 

Set 

Total 
SW 
[ms] 

Total 
SW/HW 

[ms] 

Total 
Speed-

up 

Accel. 
SW 
[ms] 

Accel. 
HW 
[ms] 

Accel. 
Speed-

up 

SW part 
Sped up 

by 
HW [%] 

Encaps 
FrodoKem 1:Frodo-640 16.192 1.414 11.5 15.10635 0.328 46.0 93.29 
FrodoKem 3:Frodo-976 34.609 2.028 17.1 33.31272 0.732 45.5 96.26 
FrodoKEM 5:Frodo-1344 62.076 1.977 31.4 61.39795 1.299 47.3 98.91 
Round5 1:R5ND-1PKE_0d 9.899 0.055 179.8 9.86147 0.018 556.5 99.62 
Round5 3:R5ND-3PKE_0d 20.807 0.077 269.4 20.75316 0.023 905.6 99.74 
Round5 5:R5ND-5PKE_0d 39.097 0.100 389.9 39.12033 0.030 1,299.7 99.56 
Saber 1:LightSaber-KEM 0.379 0.051 7.4 0.34173 0.014 23.7 90.25 
Saber 3:Saber-KEM 0.725 0.069 10.6 0.67592 0.020 34.4 93.24 
Saber 5:FireSaber-KEM 1.195 0.094 12.7 1.12595 0.025 44.8 94.21 
NTRU-HPS 1:ntruhps2048677 3.066 0.386 7.9 2.69311 0.013 203.6 87.84 
NTRU-HPS 3:ntruhps4096821 4.416 0.475 9.3 3.95545 0.015 271.5 89.58 
NTRU-HRSS 1:ntruhrss701 3.044 0.171 17.8 2.88665 0.014 209.8 94.83 
Str NTRU Prime 2:kem/sntrup653 34.936 0.540 64.7 34.40847 0.013 2,750.8 98.49 
Str NTRU Prime 3:kem/sntrup761 47.343 0.646 73.2 46.70855 0.012 3,974.5 98.66 
Str NTRU Prime 4:kem/sntrup857 59.930 0.727 82.4 59.21685 0.014 4,188.3 98.81 
NTRU LPRime 2:kem/ntrulpr653 70.636 1.843 38.3 68.81706 0.024 2,863.2 97.42 
NTRU LPRime 3:kem/ntrulpr761 95.490 2.093 45.6 93.41708 0.020 4,681.3 97.83 
NTRU LPRime 4:kem/ntrulpr857 120.775 2.363 51.1 118.43359 0.022 5,432.4 98.06 

Encaps without randombytes() 
FrodoKem 1:Frodo-640 16.191 1.413 11.5 15.10635 0.328 46.0 93.30 
FrodoKem 3:Frodo-976 34.606 2.026 17.1 33.31272 0.732 45.5 96.26 
FrodoKEM 5:Frodo-1344 62.076 1.977 31.4 61.39795 1.299 47.3 98.91 
Round5 1:R5ND-1PKE_0d 9.898 0.054 183.1 9.86147 0.018 556.5 99.63 
Round5 3:R5ND-3PKE_0d 20.806 0.076 272.9 20.75316 0.023 905.6 99.74 
Round5 5:R5ND-5PKE_0d 39.096 0.099 395.8 39.02695 0.030 1,296.6 99.82 
Saber 1:LightSaber-KEM 0.377 0.050 7.6 0.34173 0.014 23.9 90.61 
Saber 3:Saber-KEM 0.723 0.067 10.8 0.67592 0.020 34.4 93.44 
Saber 5:FireSaber-KEM 1.195 0.094 12.7 1.12595 0.025 44.8 94.22 
NTRU-HPS 1:ntruhps2048677 2.954 0.274 10.8 2.69311 0.013 203.6 91.18 
NTRU-HPS 3:ntruhps4096821 4.280 0.338 12.7 3.95661 0.015 271.6 92.44 
NTRU-HRSS 1:ntruhrss701 2.995 0.122 24.5 2.88665 0.014 209.8 96.38 
Str NTRU Prime 2:kem/sntrup653 34.638 0.242 142.9 34.40847 0.013 2,750.8 99.34 
Str NTRU Prime 3:kem/sntrup761 46.997 0.300 156.7 46.70855 0.012 3,974.5 99.39 
Str NTRU Prime 4:kem/sntrup857 59.543 0.340 175.0 59.21685 0.014 4,188.3 99.45 
NTRU LPRime 2:kem/ntrulpr653 70.635 1.842 38.4 68.81706 0.024 2,863.2 97.43 
NTRU LPRime 3:kem/ntrulpr761 95.489 2.092 45.6 93.41708 0.020 4,681.3 97.83 
NTRU LPRime 4:kem/ntrulpr857 120.775 2.363 51.1 118.43359 0.022 5,432.4 98.06 

Decaps 
FrodoKem 1:Frodo-640 16.192 1.414 11.5 15.10635 0.328 46.1 93.29 
FrodoKem 3:Frodo-976 34.649 2.058 16.8 33.32329 0.733 45.5 96.18 
FrodoKEM 5:Frodo-1344 62.377 2.608 23.9 61.06782 1.299 47.0 97.90 
Round5 1:R5ND-1PKE_0d 14.826 0.043 343.3 14.80661 0.024 621.5 99.87 
Round5 3:R5ND-3PKE_0d 31.177 0.063 495.8 31.14658 0.033 944.9 99.90 
Round5 5:R5ND-5PKE_0d 58.598 0.082 711.6 58.55841 0.043 1,375.8 99.93 
Saber 1:LightSaber-KEM 0.474 0.054 8.8 0.44317 0.024 18.8 93.56 
Saber 3:Saber-KEM 0.867 0.069 12.6 0.82878 0.030 27.2 95.60 
Saber 5:FireSaber-KEM 1.379 0.086 16.0 1.32991 0.037 35.7 96.43 
NTRU-HPS 1:ntruhps2048677 8.175 0.114 71.7 8.09307 0.032 251.3 99.00 
NTRU-HPS 3:ntruhps4096821 11.982 0.112 107.1 11.90773 0.038 313.7 99.38 
NTRU-HRSS 1:ntruhrss701 8.790 0.128 68.5 8.69522 0.034 257.4 98.92 
Str NTRU Prime 2:kem/sntrup653 106.391 0.341 311.9 106.07692 0.027 3,915.2 99.70 
Str NTRU Prime 3:kem/sntrup761 144.361 0.392 368.0 143.9971 0.028 5,148.0 99.75 
Str NTRU Prime 4:kem/sntrup857 182.965 0.437 418.7 182.55901 0.031 5,878.2 99.78 
NTRU LPRime 2:kem/ntrulpr653 104.550 1.359 77.0 103.22538 0.034 3,043.2 98.73 
NTRU LPRime 3:kem/ntrulpr761 141.615 1.526 92.8 140.12556 0.036 3,853.6 98.95 
NTRU LPRime 4:kem/ntrulpr857 179.322 1.712 104.7 177.65014 0.040 4,407.9 99.07 
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Table 5: : The execution time of randombytes() in absolute units (Time [us]) and as a percentage of the 
total execution time of Encapsulation a) in software (% in SW) and b) using software/hardware codesign (% 
in SW/HW). #Calls denotes the total number of calls to the function randombytes(), and #Bytes – the total 
number of random bytes generated by these calls. 

Algorithm Parameter Set Time [us] % in SW % in SW/HW #Calls #Bytes 
FrodoKem 1:Frodo-640 1.6 0.000099 0.001131 1 16 
FrodoKem 3:Frodo-976 2.2 0.001085 0.001085 1 24 
FrodoKEM 5:Frodo-1344 2.22 0.000024 0.000759 1 32 
Round5 1:R5ND-1KEM_0d 0.94 0.000009 0.017078 1 16 
Round5 3:R5ND-3KEM_0d 0.96 0.000005 0.012428 1 24 
Round5 5:R5ND-5KEM_0d 1.52 0.000039 0.007223 1 32 
Saber 1:LightSaber-KEM 1.5 0.003961 0.029198 1 32 
Saber 3:Saber-KEM 1.5 0.002069 0.021860 1 32 
Saber 5:FireSaber-KEM 1.5 0.001260 0.010596 1 32 
NTRU-HPS 1:ntruhps2048677 112.14 0.036576 0.290458 1 3211 
NTRU-HPS 3:ntruhps4096821 135.61 3.070000 28.560000 1 3895 
NTRU-HRSS 1:ntruhrss701 48.77 1.600000 48.770000 1 1400 
Str NTRU Prime 2:kem/sntrup653 297.22 0.850764 55.073527 653 2612 
Str NTRU Prime 3:kem/sntrup761 326.47 0.731825 53.593964 761 3044 
Str NTRU Prime 4:kem/sntrup857 386.86 0.650000 53.210000 857 3428 
NTRU LPRime 2:kem/ntrulpr653 1.52 0.000022 0.000825 1 32 
NTRU LPRime 3:kem/ntrulpr761 1.5 0.000717 0.000717 1 32 
NTRU LPRime 4:kem/ntrulpr857 1.54 0.000013 0.000642 1 32 

From Tables 5 and 4, it can be clearly seen that the ranking of algorithms in terms of the total execution 
time is not a˙ected by this choice for the purely software implementations, where the execution time of 
randombytes() does not exceed 3.1% for any investigated algorithm. Coincidentally, the ranking does not 
change signifcantly even for the software/hardware implementations, in spite of the fact that the execution 
time of randombytes() reaches 55.1% of the total execution time of Encapsulation for Streamlined NTRU 
Prime. 

The total speed-up is by far the highest for Round5, due to the a) initial very high percentage of time taken 
by the accelerated operations (more than 99.56% for encapsulation and more than 99.87% for decapsulation), 
b) limited size of input to and output from the accelerator, and c) high potential for the parallelization in 
hardware (with the speed up of the accelerated portion reaching 1,299.7 for encapsulation and 1,375.8 for 
decapsulation). For similar reasons the total speed-up is also very high (greater than 38) for Streamlined 
NTRU Prime and NTRU LPrime, during both encapsulation and decapsulation. 

NTRU-HPS and NTRU-HRSS achieve high overall speed-ups, but only for decapsulation, mostly because 
the accelerated portion of encapsulation takes less than 96.4% of the total execution time, even without 
counting the execution time of randombytes(). For FrodoKEM, the overall speed-up is comparable for 
encapsulation and decapsulation, and varies between 11.5 and 31.4 for encapsulation, and between 11.5 and 
23.9 for decapsulation. For Saber, the total speed-up varies between 7.4 and 12.7 for encapsulation, and 
between 8.8 and 16.0 for decapsulation. Overall, the total speed-up is greater than 7 for all reported cases. As 
expected, the speed-up increases with the increase in the security level. This dependency exists because for 
larger parameter values, a higher level of parallelization can be typically achieved by the operations o˜oaded 
to hardware. Additionally, the operations o˜oaded to hardware tend to account for a larger percentage of 
the total execution time in software, as illustrated by the column SW part Sped up by HW [%] in Table 4. 

Below, we describe the ranking of algorithms, separately for three groups of parameter sets listed in 
Table 3, with the security categories 1 and 2, 3 only, and 4 and 5, respectively. Only the frst group contains 
all 7 investigated algorithms. In the second group NTRU-HRSS is missing, and in the third group both 
NTRU-HRSS and NTRU-HPS are not represented. 

For all groups, the ranking of algorithms, in terms of the total execution time (in milliseconds), changes 
after o˜oading the most time-consuming operations to hardware. In particular, for the frst group of 
parameter sets, covering the security categories 1 and 2, for encapsulation, the purely software ranking is: 
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Table 6: Maximum frequency and resource utilization. 

Algorithm 
Security Category: 

Parameter Set 
Clock Freq. 

[MHz] LUTs Slices FFs 
36kb 

BRAMs 
DSPs 

FrodoKEM 1:Frodo-640 402 7,213 1,186 6,647 13.5 32 
FrodoKEM 3:Frodo-976 402 7,087 1,190 6,693 17 32 
FrodoKEM 5:Frodo-1344 417 7,015 1,215 6,610 17.5 32 
Round5 1:R5ND-1PKE_0d 260 55,442 10,627 82,341 2 0 
Round5 3:R5ND-3PKE_0d 249 73,881 14,307 109,211 2 0 
Round5 5:R5ND-5KEM_0d 212 91,166 18,733 151,019 2 0 
Saber 1:LightSaber-KEM 322 12,343 1,989 11,288 3.5 256 
Saber 3:Saber-KEM 322 12,566 1,993 11,619 3.5 256 
Saber 5:FireSaber-KEM 322 12,555 2,341 11,881 3.5 256 
NTRU-HPS 1:ntruhps2048677 200 24,328 4,972 19,244 2.5 677 
NTRU-HPS 3:ntruhps4096821 200 29,389 5,913 23,338 2.5 821 
NTRU-HRSS 1:ntruhrss701 200 27,218 5,770 21,410 2.5 701 
Str NTRU Prime 2:kem/sntrup653 244 55,843 8,134 28,143 3 0 
Str NTRU Prime 3:kem/sntrup761 244 62,595 9,176 32,763 3 0 
Str NTRU Prime 4:kem/sntrup857 244 70,604 9,894 37,018 3 0 
NTRU LPRime 2:kem/ntrulpr653 244 50,911 7,874 34,050 2 0 
NTRU LPRime 3:kem/ntrulpr761 244 51,295 7,978 39,600 2 0 
NTRU LPRime 4:kem/ntrulpr857 244 58,056 8,895 44,719 2 0 

1. Saber, 2-3. NTRU-HRSS and NTRU-HPS (with very similar results and the order swapped depending 
on counting or not the execution time of randombytes()) 4. Round5, 5. FrodoKEM, 6. Streamlined NTRU 
Prime, and 7. NTRU LPRime. For the software/hardware implementations, this ranking changes to 1. Saber, 
2. Round5 (with results for Saber and Round5 very close to each other), 3. NTRU-HRSS, 4. NTRU-HPS 
(with NTRU-HRSS outperforming NTRU-HPS by more than a factor of 2), 5. Streamlined NTRU Prime, 6. 
FrodoKEM, and 7. NTRU LPRime. Thus, Round5 advances by two positions, ahead of NTRU-HRSS and 
NTRU-HPS. Additionally, Streamlined NTRU Prime advances ahead of FrodoKEM. The frst position of 
Saber and the last position of NTRU LPRime remain unchanged. 

For decapsulation, the software only ranking is 1. Saber, 2. NTRU-HPS, 3. NTRU-HRSS (with results for 
NTRU-HPS and NTRU-HRSS very close to each other), 4. Round5, 5. FrodoKEM, 6. NTRU LPRime, and 
7. Streamlined NTRU Prime. Compared to encapsulation, only the positions of Streamlined NTRU Prime 
and NTRU LPRime have been swapped. For the software/hardware implementations, the ranking changes to 
1. Round5, 2. Saber, 3. NTRU-HPS, 4. NTRU-HRSS, 5. Streamlined NTRU Prime, 6. NTRU LPRime, 
and 7. FrodoKEM. Thus, Round5 advanced by 3 positions, to the frst place. Additionally, FrodoKEM and 
Streamlined NTRU Prime swapped positions 5 and 7. Thus, clearly Round5 and Streamlined NTRU Prime 
benefted the most from moving their most time consuming operations to hardware. 

For the second group of parameter sets, covering the security category 3, for encapsulation, the ranking 
of candidates based on the purely software implementations is identical as in the frst group, except that 
NTRU-HRSS is now missing. For the software/hardware implementations, the ranking is also almost identical 
as for group 1, except that now, the results for NTRU-HPS and Streamlined NTRU Prime are close to each 
other, and the ranking of these algorithms at positions 3 and 4 depends on the inclusion or exclusion of the 
execution time of randombytes(). For decapsulation, both rankings remain the same as in group 1 (except of 
the absence of NTRU-HRSS). Similarly, in the third group of parameter sets, covering the security categories 
4 and 5, NTRU-HPS is not any longer represented. However, the rankings of remaining algorithms (for both 
software and software/hardware implementations) remain the same as in group 2. 

The maximum clock frequencies and the corresponding resource utilizations, obtained after the synthesis 
and implementation tool optimizations, supported by Minerva [8], are summarized in Table 6. Clearly, 
the accelerators for NTRU-HPS and NTRU-HRSS involve the highest number of integer multiplications 
performed in parallel. These multiplications in the FPGA fabric are delegated to dedicated DSP units. The 
DSP units are also taken advantage of in Saber and to a lower extent in FrodoKEM. Round5, Streamlined 
NTRU Prime and NTRU LPRime do not involve any integer multiplications in hardware. This is because 
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the coeÿcients of one of the multiplied polynomials always belong to the set {-1, 0, 1}. 
Because of the timing dependencies, and in particular, the bottleneck caused by SHAKE, our implementa-

tion of FrodoKEM cannot be easily sped up by trading additional resources for speed. This example clearly 
illustrates the potential algorithmic limits on the amount of potential parallelization (and thus the maximum 
speed-up), which is independent of the amount of hardware resources available to the designer. FrodoKEM 
is also an algorithm with the highest utilization of BRAMs, which reaches 17.5. The remaining algorithms 
use only between 2 and 3.5 36kb BRAMs. Round5, Streamlined NTRU Prime, and NTRU LPRime, which 
demonstrated the highest potential for hardware acceleration, use also the highest number of LUTs, Slices, 
and fip-fops (FFs). The amount of resources used increases noticeably with the increase in the security level 
for 5 out of 7 algorithms. The only exceptions are FrodoKEM and Saber, in which the security levels do not 
a˙ect the resource utilization (except of the small increase in the number of BRAMs in FrodoKEM). 

FrodoKEM is able to achieve the highest clock frequency, above 400 MHz for all parameter sets. This 
frequency is possible because the accelerator processes only 4 elements of each row of the product B’V at 
a time. This allows us to pipeline the Frodo MAC unit with additional registers between multipliers and 
adders. These registers are also built-in inside DSP units. The same optimization is not possible for Saber 
and NTRU, because the immediate feedback from the output registers is necessary for the next operation 
happening in the next clock cycle. NTRU design also su˙ers from additional logic for converting polynomials 
from R/q to S/q and from R/q to S/3. Operating frequency for the two variants of NTRU Prime is mainly 
limited by the "modulo q" block. To reduce numbers with the prime modulus q, we selected the conditional 
subtraction method, which is relatively simple, but comes with a long critical path. 

7 Conclusions 
In this paper we have demonstrated the feasibility of a new benchmarking approach, based on the soft-
ware/hardware codesign, with application to 7 PQC schemes representing 5 submissions qualifed to Round 2 
of the NIST PQC standardization process. We have shown that the obtained speed-up depends strongly on the 
evaluated algorithm. For all analyzed schemes, and both major operations (encapsulation and decapsulation), 
the total speed-up always exceeded a factor of 7. For encapsulation the highest speed-up reached 396 for 
Round5 (without counting the execution time of randombytes()). For decapsulation the speed-ups were even 
more spectacular, reaching a factor of 712 for Round5, 419 for Streamlined NTRU Prime, 107 for NTRU-HPS, 
and 105 for NTRU LPRime. Only two out of seven evaluated algorithms (FrodoKEM and Saber) have 
decapsulation speed-ups smaller than 50. 

Round5 benefted greatly from hardware acceleration due to its simple operations (not involving integer 
multiplication) and their inherent parallelism. Its achieved speed-up is the highest, but at the highest 
cost in terms of CLB Slice utilization. On the other hand no DSP units are used, and the use of Block 
RAMs is minimal. Due to accelerating almost 100% of the software execution time, it seems that maximum 
performance limit has been reached. Due to these signifcant speed-ups, Round5 is ranked the second for 
encapsulation and the frst for decapsulation for all three investigated parameter groups. Saber, which is by 
far the fastest in software only implementations, for the software/hardware implementations remains on the 
frst position for encapsulation, and moves to the second position for decapsulation. Saber has also relatively 
low resource utilization compared to other candidates (second in terms of the number of CLB Slices), but 
requires a substantial number of DSP units. 

On the other end of the spectrum is FrodoKEM. Despite almost reaching its limit in terms of hardware 
acceleration, FrodoKEM is by far the slowest for decapsulation, and the second slowest for encapsulation. The 
results for NTRU-HPS and NTRU-HRSS place these candidates in the middle of the pack. A modifcation of 
the Round 1 NTRU algorithm resulted in a signifcant increase in DSP unit utilization. With at least twice as 
high logic utilization (in terms of CLB slices and DSPs) compared to Saber, the overall evaluation is clearly 
worse. The two KEMs associated with NTRU Prime start from the worst performance in embedded software. 
Despite impressive speed-ups (especially for decapsulation) their overall ranking improves only slightly, 
with only Streamlined NTRU Prime outperforming FrodoKEM for encapsulation, and both outperforming 
FrodoKEM for decapsulation. 

Future work will include extending this analysis to the remaining NIST Round 2 PQC candidates, as well 
as the exploration of other software/hardware codesign platforms and development tools. 

http:limitedbythe"moduloq"block.To
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Table 7: Results of profling for FrodoKEM 

Function 
Time 
[us] 

Time 
[%] Function 

Time 
[us] 

Time 
[%] 

Software Software/Hardware 

FrodoKEM640 - Encaps 
1. frodo_mul_add_sa_plus_e 13,794.27 85.19 1.1 frodo_mul_add_sa_plus_e 

1.2 Shake128 and frodo_sample_n 
1.3 frodo_mul_add_sb_plus_e 

328.16 23.20 2. Shake128 and frodo_sample_n x3 1,002.40 6.19 
3. frodo_mul_add_sb_plus_e 309.68 1.91 
4. frodo_pack 291.83 1.80 2. frodo_pack 291.83 20.64 
5. frodo_unpack 277.26 1.71 3. frodo_unpack 277.26 19.61 
Total 16,192.37 96.81 Total 1,414.18 63.45 

FrodoKEM640 - Encaps without Randombytes() 
1. frodo_mul_add_sa_plus_e 13,794.27 85.20 1.1 frodo_mul_add_sa_plus_e 

1.2 Shake128 and frodo_sample_n 
1.3 frodo_mul_add_sb_plus_e 

328.16 23.23 2. Shake128 and frodo_sample_n x3 1,002.40 6.19 
3. frodo_mul_add_sb_plus_e 309.68 1.91 
4. frodo_pack 291.83 1.80 2. frodo_pack 291.83 20.66 
5. frodo_unpack 277.26 1.71 3. frodo_unpack 277.26 19.63 
Total 16,190.75 96.82 Total 1,412.56 63.52 

FrodoKEM640 - Decapsulation 
1. frodo_mul_add_sa_plus_e 13,793.01 85.23 1.1 frodo_mul_add_sa_plus_e 

1.2 Shake128 and frodo_sample_n 
1.3 frodo_mul_add_sb_plus_e 

327.97 23.19 2. Shake128 and frodo_sample_n x3 1,002.85 6.20 
3. frodo_unpack x3 548.74 3.39 
4. frodo_mul_add_sb_plus_e 309.21 1.91 2. frodo_unpack x3 548.74 38.81 
5. frodo_mul_bs 242.40 1.50 3. frodo_mul_bs 242.40 17.14 
Total 16,182.80 98.23 Total 1,413.99 79.15 

FrodoKEM976 - Encaps 
1. frodo_mul_add_sa_plus_e 31,430.38 90.82 1.1 frodo_mul_add_sa_plus_e 

1.2 Shake128 and frodo_sample_n 
1.3 frodo_mul_add_sb_plus_e 

732.09 36.10 2. Shake128 and frodo_sample_n x3 1,410.18 4.07 
3. frodo_mul_add_sb_plus_e 472.16 1.36 
4. frodo_pack 357.58 1.03 2. frodo_pack 357.58 17.63 
5. frodo_unpack 297.73 0.86 3. frodo_unpack 297.73 14.68 
Total 34,608.54 98.15 Total 2,027.91 68.42 

FrodoKEM976 - Encaps without Randombytes() 
1. frodo_mul_add_sa_plus_e 31,430.38 90.82 1.1 frodo_mul_add_sa_plus_e 

1.2 Shake128 and frodo_sample_n 
1.3 frodo_mul_add_sb_plus_e 

732.09 36.14 2. Shake128 and frodo_sample_n x3 1,410.18 4.07 
3. frodo_mul_add_sb_plus_e 472.16 1.36 
4. frodo_pack 357.58 1.03 2. frodo_pack 357.58 17.65 
5. frodo_unpack 297.73 0.86 3. frodo_unpack 297.73 14.70 
Total 34,606.34 98.16 Total 2,025.71 68.49 

FrodoKEM976 - Decaps 
1. frodo_mul_add_sa_plus_e 31,441.14 90.74 1.1 frodo_mul_add_sa_plus_e 

1.2 Shake128 and frodo_sample_n 
1.3 frodo_mul_add_sb_plus_e 

732.58 35.60 2. Shake128 and frodo_sample_n x3 1,410.86 4.07 
3. frodo_unpack x3 594.63 1.72 
4. frodo_mul_add_sb_plus_e 471.29 1.36 2. frodo_unpack x3 594.63 28.90 
5. frodo_mul_bs 368.32 1.06 3. frodo_mul_bs 368.32 17.90 
Total 34,648.58 98.95 Total 2,057.87 82.39 

FrodoKEM1344 - Encaps 
1. frodo_mul_add_sa_plus_e 58,577.48 94.41 1.1 frodo_mul_add_sa_plus_e 

1.2 Shake128 and frodo_sample_n 
1.3 frodo_mul_add_sb_plus_e 

1,298.85 65.71 2. Shake128 and frodo_sample_n x3 1,416.27 2.28 
3. frodo_mul_add_sb_plus_e 654.64 1.06 
4.frodo_pack 386.22 0.62 2. frodo_pack 386.22 19.54 
5.frodo_unpack 276.00 0.44 3. frodo_unpack 276.00 13.96 
Total 62,048.92 98.81 Total 1,976.73 99.21 

FrodoKEM1344 - Encaps without Randombytes() 
1. frodo_mul_add_sa_plus_e 58,577.48 94.41 1.1 frodo_mul_add_sa_plus_e 

1.2 Shake128 and frodo_sample_n 
1.3 frodo_mul_add_sb_plus_e 

1,298.85 65.76 2. Shake128 and frodo_sample_n x3 1,416.27 2.28 
3. frodo_mul_add_sb_plus_e 654.64 1.06 
4. frodo_pack 386.22 0.62 2. frodo_pack 386.22 19.55 
5. frodo_unpack 276.00 0.44 3. frodo_unpack 276.00 13.97 
Total 62,046.72 98.81 Total 1,975.23 99.28 

FrodoKEM1344 - Decaps 
1. frodo_mul_add_sa_plus_e 58,754.02 94.22 1.1 frodo_mul_add_sa_plus_e 

1.2 Shake128 and frodo_sample_n 
1.3 frodo_mul_add_sb_plus_e 

1,298.53 49.79 2. Shake128 and frodo_sample_n x3 883.14 1.42 
3. frodo_unpack x3 765.56 1.23 
4. frodo_mul_add_sb_plus_e 649.68 1.04 2. frodo_unpack x3 765.56 29.36 
5. frodo_mul_bs 507.08 0.81 3. frodo_mul_bs 507.08 19.44 
Total 62,359.42 98.72 Total 2,607.89 98.59 
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Table 8: Results of profling for Round5 

Function 
Time 
[us] 

Time 
[%] Function 

Time 
[us] 

Time 
[%] 

Software Software/Hardware 
R5ND_5PKE_0d - Encapsulation 

1. r5_cpa_pke_encrypt 39,026.95 99.82% 1. hash 68.65 68.46% 
2. hash 68.65 0.1756% 2. r5_cpa_pke_encrypt 30.10 30.02% 
3. randombytes 1.52 0.0039% 3. randombytes 1.52 1.52% 
Total 39,097.13 100.00% Total 100.28 99.99% 

R5ND_5PKE_0d - Encapsulation without randombytes() 
1. r5_cpa_pke_encrypt 39,026.95 99.82% 1. hash 68.65 69.50% 
2. hash 68.65 0.1756% 2. r5_cpa_pke_encrypt 30.10 30.47% 
Total 39,095.61 100.00% Total 98.78 99.97% 

R5ND_5PKE_0d - Decapsulation 
1. r5_cpa_pke_encrypt 39,021.09 66.59% 1. hash_2 35.75 43.42% 
2. r5_cpa_pke_decrypt 19,504.52 33.29% 2.1 r5_cpa_pke_decrypt 

2.2 hash_1 
2.3 r5_cpa_pke_encrypt 

42.56 51.69% 3. hash_2 35.75 0.06% 
4. hash_1 32.80 0.06% 
Total 58,598.19 99.99% Total 82.34 95.11% 

R5ND_3PKE_0d - Encapsulation 
1. r5_cpa_pke_encrypt 20,753.16 99.74% 1. hash 52.87 68.44% 
2. hash 52.87 0.2541% 2. r5_cpa_pke_encrypt 22.92 29.67% 
3. randombytes 1.01 0.0049% 3. randombytes 1.01 1.31% 
Total 20,807.49 100.00% Total 77.25 99.42% 

R5ND_3PKE_0d - Encapsulation without randombytes() 
1. r5_cpa_pke_encrypt 20,753.16 99.74% 1. hash 52.87 69.35% 
2. hash 52.87 0.2541% 2. r5_cpa_pke_encrypt 22.92 30.06% 
Total 20,806.48 100.00% Total 76.24 99.41% 

R5ND_3PKE_0d - Decapsulation 
1. r5_cpa_pke_encrypt 20,748.66 66.55% 1.1 r5_cpa_pke_decrypt 

1.2 hash_1 
1.3 r5_cpa_pke_encrypt 

32.98 52.45% 2. r5_cpa_pke_decrypt 10,373.33 33.27% 
3. hash_2 27.34 0.09% 
4. hash_1 24.59 0.08% 2. hash_2 27.34 43.48% 
Total 31,176.50 99.99% Total 62.88 95.92% 

R5ND_1PKE_0d - Encapsulation 
1. r5_cpa_pke_encrypt 9,861.47 99.62% 1. hash 34.30 62.32% 
2. hash 34.30 0.3465% 2. r5_cpa_pke_encrypt 17.72 32.19% 
3. randombytes 0.99 0.0100% 3. randombytes 0.99 1.80% 
Total 9,898.79 99.98% Total 55.04 96.31% 

R5ND_1PKE_0d - Encapsulation without randombytes() 
1. r5_cpa_pke_encrypt 9,861.47 99.63% 1. hash 34.30 63.46% 
2. hash 34.30 0.3465% 2. r5_cpa_pke_encrypt 17.72 32.78% 
Total 9,897.80 99.98% Total 54.05 96.24% 

R5ND_1PKE_0d - Decapsulation 
1. r5_cpa_pke_encrypt 9,857.37 66.49% 1.1 r5_cpa_pke_decrypt 

1.2 hash_1 
1.3 r5_cpa_pke_encrypt 

23.82 55.28% 2. r5_cpa_pke_decrypt 4,932.58 33.27% 
3. hash_2 17.46 0.12% 
4. hash_1 16.66 0.11% 2. hash_2 17.46 40.51% 
Total 14,825.97 99.99% Total 43.10 95.79% 
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Table 9: Results of profling for Saber 

Function 
Time 
[us] 

Time 
[%] Function 

Time 
[us] 

Time 
[%] 

Software Software/Hardware 

LightSaber - Encaps 
1. MatrixVectorMul 204.70 54.06 1. Hash 28.27 55.03 
2. InnerProduct 102.57 27.09 2.1 MatrixVectorMul 

2.2 InnerProduct 
2.3 GenMatrix 
2.4 GenSecret 

14.443 28.11 3. GenMatrix 23.64 6.24 
4. Hash 28.27 7.47 
5. GenSecret 10.82 2.86 
Total 378.66 97.71 Total 51.37 83.14 

LightSaber - Encaps without Randombytes() 
1. MatrixVectorMul 204.70 54.27 1. Hash 28.27 56.68 
2. InnerProduct 102.57 27.20 2.1 MatrixVectorMul 

2.2 InnerProduct 
2.3 GenMatrix 
2.4 GenSecret 

14.443 28.96 3. GenMatrix 23.64 6.27 
4. Hash 28.27 7.50 
5. GenSecret 10.82 2.87 
Total 377.16 98.10 Total 49.87 85.64 

LightSaber - Decaps 
1. MatrixVectorMul 203.74 43.01 1. Hash 15.49 28.64 
2. InnerProduct x2 204.78 43.23 2.1 MatrixVectorMul 

2.2 InnerProduct x2 
2.3 GenMatrix 
2.4 GenSecret 

23.59 43.61 3. GenMatrix 23.81 5.03 
4. Hash 15.49 3.27 
5. GenSecret 10.84 2.29 
Total 473.67 96.83 Total 54.09 72.25% 

Saber - Encaps 
1. MatrixVectorMul 458.14 63.20 1. Hash 39.05 56.91 
2. InnerProduct 153.34 21.15 2.1 MatrixVectorMul 

2.2 InnerProduct 
2.3 GenMatrix 
2.4 GenSecret 

19.65 28.64 3. GenMatrix 53.46 7.37 
4. Hash 39.05 5.39 
5. GenSecret 10.98 1.51 
Total 724.89 98.63 Total 68.62 85.54 

Saber - Encaps without randombytes() 
1. MatrixVectorMul 458.14 63.33 1. Hash 39.05 58.18 
2. InnerProduct 153.34 21.20 2.1 MatrixVectorMul 

2.2 InnerProduct 
2.3 GenMatrix 
2.4 GenSecret 

19.65 29.28 3. GenMatrix 53.46 7.39 
4. Hash 39.05 5.40 
5. GenSecret 10.98 1.52 
Total 723.39 98.84 Total 67.12 87.46 

Saber - Decaps 
1. MatrixVectorMul 457.70 52.79 1. Hash 20.73 30.21 
2. InnerProduct x2 306.54 35.36 2.1 MatrixVectorMul 

2.2 InnerProduct x2 
2.3 GenMatrix 
2.4 GenSecret 

30.47 44.39 3. GenMatrix 53.56 6.18 
4. Hash 20.73 2.39 
5. GenSecret 10.98 1.27 
Total 866.94 97.99 Total 68.63 74.60 

FireSaber - Encaps 
1. MatrixVectorMul 815.40 68.48 1. Hash 44.82 47.49 
2. InnerProduct 204.60 17.18 2.1 MatrixVectorMul 

2.2 InnerProduct 
2.3 GenMatrix 
2.4 GenSecret 

25.157 26.66 3. GenMatrix 92.58 7.78 
4. Hash 44.82 3.76 
5. GenSecret 12.46 1.05 
Total 1,190.70 98.25 Total 94.38 74.15 

FireSaber - Encaps without randombytes() 
1. MatrixVectorMul 815.40 68.57 1. Hash 44.82 48.26 
2. InnerProduct 204.60 17.20 2.1 MatrixVectorMul 

2.2 InnerProduct 
2.3 GenMatrix 
2.4 GenSecret 

25.157 27.09 3. GenMatrix 92.58 7.79 
4. Hash 44.82 3.77 
5. GenSecret 12.46 1.05 
Total 1,189.20 98.37 Total 92.88 75.34 

FireSaber - Decaps 
1. MatrixVectorMul 815.98 59.29 1. Hash 44.82 51.85 
2. InnerProduct x2 408.96 29.72 2.1 MatrixVectorMul 

2.2 InnerProduct x2 
2.3 GenMatrix 
2.4 GenSecret 

37.24 43.09 3. GenMatrix 92.60 6.73 
4. Hash 24.50 1.78 
5. GenSecret 12.44 0.90 
Total 1,376.14 98.43 Total 86.43 94.94 
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Table 10: Results of profling for NTRU 

Function 
Time 
[us] 

Time 
[%] Function 

Time 
[us] 

Time 
[%] 

Software Software/Hardware 

NTRU-HPS2048677 - Encaps 
1. poly_Rq_mul 2,693.11 87.84 1. owcpa_samplemsg 217.38 56.30 
2. owcpa_samplemsg 217.38 7.09 2. randombytes 112.14 29.05 
3. randombytes 112.14 3.66 3. poly_S3_frombytes x2 25.96 6.72 
4. poly_S3_frombytes x2 25.96 0.85 4. poly_Rq_mul 13.23 3.43 
5. sha3_256 10.45 0.34 5. sha3_256 10.45 2.71 
Total 3,065.84 99.78 Total 386.08 98.21 

NTRU-HPS2048677 - Encaps without randombytes() 
1. poly_Rq_mul 2,693.11 91.18 1. owcpa_samplemsg 217.38 79.35 
2. owcpa_samplemsg 217.38 7.36 2. poly_S3_frombytes x2 25.96 9.48 
3. poly_S3_frombytes x2 25.96 0.88 3. poly_Rq_mul 13.23 4.83 
4. sha3_256 10.45 0.35 4. sha3_256 10.45 3.81 
Total 2,953.70 99.77 Total 273.94 97.47 

NTRU-HPS2048677 - Decaps 
1. poly_S3_mul 2,706.80 33.11 1.1 poly_Z3_to_Zq/poly_Rq_mul 

1.2 poly_Rq_to_S3/poly_S3_mul 
1.3 poly_Sq_mul 

32.25 28.29 2. poly_Sq_mul 2,693.15 32.94 
3. poly_Rq_mul 2,693.12 32.94 
4. poly_S3_frombytes x2 25.86 0.32 2. poly_S3_frombytes x2 25.86 22.68 
5. sha3_256 20.50 0.25 3. sha3_256 20.50 17.98 
Total 8,174.88 99.57 Total 114.02 68.95 

NTRU-HPS4096821 - Encaps 
1. poly_Rq_mul 3,955.45 89.58 1. owcpa_samplemsg 272.44 57.37 
2. owcpa_samplemsg 272.44 6.17 2. randombytes 135.61 28.56 
3. randombytes 135.61 3.07 3. poly_S3_frombytes x2 31.06 6.54 
4. poly_S3_frombytes x2 31.06 0.70 4. poly_Rq_mul 14.57 3.07 
5. sha3_256 10.66 0.24 5. sha3_256 10.66 2.24 
Total 4,415.75 99.76 Total 474.87 97.78 

NTRU-HPS4096821 - Encaps without randombytes() 
1. poly_Rq_mul 3,955.45 92.41 1. owcpa_samplemsg 272.44 80.58 
2. owcpa_samplemsg 272.44 6.37 2. poly_S3_frombytes x2 31.06 9.19 
3. poly_S3_frombytes x2 31.06 0.73 3. poly_Rq_mul 14.57 4.31 
4. sha3_256 10.66 0.25 4. sha3_256 10.66 3.15 
Total 4,280.14 99.75 Total 338.10 97.23 

NTRU-HPS4096821 - Decaps 
1. poly_S3_mul 3,972.12 33.15 1.1 poly_Z3_to_Zq/poly_Rq_mul 

1.2 poly_Rq_to_S3/poly_S3_mul 
1.3 poly_Sq_mul 

37.97 33.92 2. poly_Sq_mul 3,960.27 33.05 
3. poly_Rq_mul 3,955.44 33.01 
4. poly_S3_frombytes x2 31.06 0.26 2. poly_S3_frombytes x2 31.06 18.40 
5. sha3_256 24.07 0.20 3. sha3_256 24.07 14.26 
Total 11,981.69 99.68 Total 111.93 83.18 

NTRU-HRSS - Encaps 
1. poly_Rq_mul 2,886.65 94.83 1. randombytes 48.77 28.70 
2. randombytes 48.77 1.60 2. poly_Rq_mul 13.57 7.99 
3. owcpa_samplemsg 32.96 1.08 3. owcpa_samplemsg 32.96 19.40 
4. poly_lift 27.89 0.92 4. poly_lift 27.89 16.41 
5. poly_S3_frombytes x2 26.83 0.88 5. poly_S3_frombytes x2 26.83 15.79 
Total 3,043.87 99.32 Total 169.93 88.29 

NTRU-HRSS - Encaps without Randombytes() 
1. poly_Rq_mul 2,886.65 96.38 1. owcpa_samplemsg 32.96 27.20 
2. owcpa_samplemsg 32.96 1.10 2. poly_lift 27.89 23.02 
3. poly_lift 27.89 0.93 3. poly_S3_frombytes x2 26.83 22.14 
4. poly_S3_frombytes x2 26.83 0.90 4. poly_Rq_mul 13.76 11.36 
Total 2,995.10 99.31 Total 121.16 72.37 

NTRU-HRSS - Decaps 
1. poly_S3_mul 2,900.79 33.00 1.1 poly_Z3_to_Zq/poly_Rq_mul 

1.2 poly_Rq_to_S3/poly_S3_mul 
1.3 poly_Sq_mul 

33.78 26.32 2. poly_Sq_mul 2,890.74 32.89 

3. poly_Rq_mul 2,886.63 32.84 2. poly_lift 22.33 21.19 
4. poly_lift 27.19 0.31 3. sha3_256 13.29 17.40 
5. sha3_256 22.33 0.25 4. poly_S3_frombytes 13.29 10.36 
Total 8,789.77 99.29 Total 128.33 75.27 
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Table 11: Results of profling for NTRU Prime 

Function 
Time 

[us] 
Time 

[%] Function 
Time 

[us] 
Time 

[%] 
Software Software/Hardware 

NTRU LPRime - Encaps 
1. Rq_mult_small x2 118,433.60 98.06 1. Hash 1,715.70 71.48 
2. Hash 1,715.70 1.42 2. Short_fromlist 343.14 14.30 
3. Short_fromlist 343.14 0.28 3. Round 72.44 3.02 
4. Round 72.44 0.06 4. Rounded_decode 67.03 2.79 
5. Rounded_decode 67.03 0.06 5. Rq_mult_small x2 52.33 2.18 
Total 120,774.96 99.88 Total 2,400.31 93.76 

NTRU LPRime - Encaps without randombytes() 
1.Rq_mult_small x2 118,433.60 98.06 1. Hash 1,715.70 71.52 
2. Hash 1,715.70 1.42 2. Short_fromlist 343.14 14.30 
3. Short_fromlist 343.14 0.28 3. Round 72.44 3.02 
4. Round 72.44 0.06 4. Rounded_decode 67.03 2.79 
5. Rounded_decode 67.03 0.06 5. Rq_mult_small x2 52.33 2.18 
Total 120,773.42 99.88 Total 2,398.77 93.82 

NTRU LPRime - Decaps 
1. Rq_mult_small x3 177,650.43 99.07 1. Hash 947.72 53.62 
2. Hash 947.72 0.53 2. Short_fromlist 326.38 18.46 
3. Short_fromlist 326.38 0.18 3. Rounded_decode x2 134.00 7.58 
4. Rounded_decode x2 134.00 0.07 4. Rq_mult_small x3 95.92 5.43 
5. Round 72.45 0.04 5. Round 72.45 4.10 
Total 179,326.77 99.89 Total 1,767.57 89.19 

Strl NTRU Prime - Encaps 
1. Rq_mult_small 59,216.81 98.81 1. Randombytes 386.86 53.21 
2. Randombytes 386.86 0.65 2. Hash 72.66 9.99 
3. Hash 72.66 0.12 3. Round 72.45 9.96 
4. Round 72.45 0.12 4. Rq_mult_small 43.73 6.01 
5. Rounded_encode 14.76 0.02 5. Rounded_encode 14.76 2.03 
Total 59,929.86 99.72 Total 727.08 81.21 

Strl NTRU Prime - Encaps without randombytes() 
1. Rq_mult_small 59,216.81 99.45 1. Hash 72.66 21.36 
2. Hash 72.66 0.12 2. Round 72.45 21.30 
3. Round 72.45 0.12 3. Rq_mult_small 43.73 12.85 
4. Rounded_encode 14.76 0.02 4. Rounded_encode 14.76 4.34 
Total 59,543.00 99.72 Total 340.22 59.84 

Strl NTRU Prime - Decaps 
1. Rq_mult_small x2 118,433.60 64.33 1. Hash 1,174.55 78.42 
2. R3_mult 64,124.99 34.83 2.1 Rq_mult_small x2 

2.2 R3_mult 
91.63 6.12 3. Hash 1,174.55 0.64 

4. Round 72.46 0.04 3. Round 72.46 4.84 
5. Rounded_decode 67.17 0.04 4. Rounded_decode 67.17 4.48 
Total 184,095.24 99.88 Total 1,497.82 93.86 
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B Pseudocode of investigated algorithms and block diagrams of lower-
level operations 

Algorithm 12 FrodoKEM.KeyGen.

Input: None.
Output: Key pair (pk, sk0) with pk 2 {0, 1}lenseedA

+D·n·n, sk0 2 {0, 1}lens+lenseedA
+D·n·n ⇥ Zn⇥n

q ⇥ {0, 1}lenpkh .

1: Choose uniformly random seeds skseedSEkz $ U({0, 1}lens+lenseedSE
+lenz)

2: Generate pseudorandom seed seedA  SHAKE(z, lenseedA)
3: Generate the matrix A 2 Zn⇥n

q via A Frodo.Gen(seedA)

4: Generate pseudorandom bit string (r(0), r(1), . . . , r(2nn�1))) SHAKE(0x5FkseedSE, 2nn · len�)
5: Sample error matrix S Frodo.SampleMatrix((r(0), r(1), . . . , r(nn�1))), n, n, T�)
6: Sample error matrix E Frodo.SampleMatrix((r(nn), r(nn+1), . . . , r(2nn�1))), n, n, T�)
7: Compute B AS + E
8: Compute b Frodo.Pack(B)
9: Compute pkh SHAKE(seedAkb, lenpkh)

10: return public key pk  seedAkb and secret key sk0  (skseedAkb,S,pkh)

Algorithm 13 FrodoKEM.Encaps.

Input: Public key pk = seedAkb 2 {0, 1}lenseedA
+D·n·n.

Output: Ciphertext c1kc2 2 {0, 1}(m·n+m·n)D and shared secret ss 2 {0, 1}lenss .

1: Choose a uniformly random key µ $ U({0, 1}lenµ)
2: Compute pkh SHAKE(pk, lenpkh)
3: Generate pseudorandom values seedSEkk SHAKE(pkhkµ, lenseedSE

+ lenk)
4: Generate pseudorandom bit string (r(0), r(1), . . . , r(2mn+mn�1))) SHAKE(0x96kseedSE, 2mn+mn·len�)

5: Sample error matrix S0  Frodo.SampleMatrix((r(0), r(1), . . . , r(mn�1))), m, n, T�)
6: Sample error matrix E0  Frodo.SampleMatrix((r(mn), r(mn+1), . . . , r(2mn�1))), m, n, T�)
7: Generate A Frodo.Gen(seedA)
8: Compute B0  S0A + E0

9: Compute c1  Frodo.Pack(B0)
10: Sample error matrix E00  Frodo.SampleMatrix((r(2mn), r(2mn+1), . . . , r(2mn+mn�1))), m, n, T�)
11: Compute B Frodo.Unpack(b, n, n)
12: Compute V S0B + E00

13: Compute C V + Frodo.Encode(µ)
14: Compute c2  Frodo.Pack(C)
15: Compute ss SHAKE(c1kc2kk, lenss)
16: return ciphertext c1kc2 and shared secret ss

20

Algorithm 14 FrodoKEM.Decaps.

Input: Ciphertext c1kc2 2 {0, 1}(m·n+m·n)D, secret key sk0 = (skseedAkb,S,pkh) 2
{0, 1}lens+lenseedA

+D·n·n ⇥ Zn⇥n
q ⇥ {0, 1}lenpkh .

Output: Shared secret ss 2 {0, 1}lenss .

1: B0  Frodo.Unpack(c1)
2: C Frodo.Unpack(c2)
3: Compute M C�B0S
4: Compute µ0  Frodo.Decode(M)
5: Parse pk  seedAkb
6: Generate pseudorandom values seedSE

0kk0  SHAKE(pkhkµ0, lenseedSE
+ lenk)

7: Generate pseudorandom bit string (r(0), r(1), . . . , r(2mn+mn�1)))  SHAKE(0x96kseedSE
0, 2mn + mn ·

len�)
8: Sample error matrix S0  Frodo.SampleMatrix((r(0), r(1), . . . , r(mn�1))), m, n, T�)
9: Sample error matrix E0  Frodo.SampleMatrix((r(mn), r(mn+1), . . . , r(2mn�1))), m, n, T�)

10: Generate A Frodo.Gen(seedA)
11: Compute B00  S0A + E0

12: Sample error matrix E00  Frodo.SampleMatrix((r(2mn), r(2mn+1), . . . , r(2mn+mn�1))), m, n, T�)
13: Compute B Frodo.Unpack(b, n, n)
14: Compute V S0B + E00

15: Compute C0  V + Frodo.Encode(µ0)
16: if B0kC = B00kC0 then
17: return shared secret ss SHAKE(c1kc2kk0, lenss)
18: else
19: return shared secret ss SHAKE(c1kc2ks, lenss)

2.2.10 Correctness of IND-CCA KEM

The failure probability � of FrodoKEM is the same as the failure probability of the underlying FrodoPKE as
computed in Section 2.2.7.

2.2.11 Interconversion to IND-CCA PKE

FrodoKEM can be converted to an IND-CCA-secure public key encryption scheme using standard conversion
techniques as specified by NIST. In particular, shared secret ss can be used as the encryption key in
an appropriate data encapsulation mechanism in the KEM/DEM (key encapsulation mechanism / data
encapsulation mechanism) framework [44].

2.3 Cryptographic primitives

In FrodoKEM we use the following generic cryptographic primitives. We describe their security requirements
and instantiations with NIST-approved cryptographic primitives. In what follows, we use SHAKE128/256 to
denote the use of either SHAKE128 or SHAKE256; which one is used with which parameter set for FrodoKEM
is indicated in Table 3.

• Gen in FrodoKEM.KeyGen: The security requirement on Gen is that it is a public random function
that generates pseudorandom matrices A. Gen is instantiated using either AES128 (as in Algorithm 7)
or SHAKE128 (as in Algorithm 8).

• H, G2, and F in transform FO 6?0: The security requirements on H, G2, and F are that they are
independent random oracles. We instantiate these using SHAKE128/256; see below for an explanation
of domain separation to achieve independence.

• G1 in transform FO 6?0: The security requirement on G1 is that it is a public random function. G1 is
instantiated using SHAKE128/256.

Overall, FrodoKEM has the following uses of SHAKE:

21

Figure 9: Pseudocode of FrodoKEM [34] 
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Figure 10: Pseudocode of Round5 [37] 
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2.5.1 Saber.KEM Key Generation

The Saber key generation is specified by the following algorithm.

Algorithm 4: Saber.KEM.KeyGen()

1 (seedAAA, bbb, sss) = Saber.PKE.KeyGen()
2 pk = (seedAAA, bbb)
3 pkh = F(pk)
4 z = U({0, 1}256)
5 return (pk := (seedAAA, bbb), sk := (sss, z, pkh))

2.5.2 Saber.KEM Key Encapsulation

The Saber key encapsulation is specified by the following algorithm and makes use of
Saber.PKE.Enc as specified in Algorithm 2.

Algorithm 5: Saber.KEM.Encaps(pk = (seedAAA, bbb))

1 m U({0, 1}256)

2 (K̂, r) = G(F(pk), m)
3 c = Saber.PKE.Enc(pk, m; r)

4 K = H(K̂, c)
5 return (c, K)

2.5.3 Saber.KEM Key Decapsulation

The Saber key decapsulation is specified by the following algorithm and makes use of
Saber.PKE.Dec as specified in Algorithm 3.

Algorithm 6: Saber.KEM.Decaps(sk = (sss, z, pkh), pk = (seedAAA, bbb), c)

1 m0 = Saber.PKE.Dec(sss, c)

2 (K̂ 0, r0) = G(pkh, m0)
3 c0 = Saber.PKE.Enc(pk, m0; r0)
4 if c = c0 then

5 return K = H(K̂ 0, c)
6 else
7 return K = H(z, c)
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2.4.1 Saber.PKE Key Generation

The Saber.PKE key generation is specified by the following algorithm.

Algorithm 1: Saber.PKE.KeyGen()

1 seedAAA  U({0, 1}256)
2 AAA = gen(seedAAA) 2 Rl⇥l

q

3 r = U({0, 1}256)
4 sss = �µ(Rl⇥1

q ; r)

5 bbb = ((AAATsss + hhh) mod q)� (✏q � ✏p) 2 Rl⇥1
p

6 return (pk := (seedAAA, bbb), sk := (sss))

2.4.2 Saber.PKE Encryption

The Saber.PKE Encryption is specified by the following algorithm, with optional argument r.

Algorithm 2: Saber.PKE.Enc(pk = (seedAAA, bbb), m 2 R2; r)

1 AAA = gen(seedAAA) 2 Rl⇥l
q

2 if r is not specified then
3 r = U({0, 1}256)

4 s0s0s0 = �µ(Rl⇥1
q ; r)

5 bbb0 = ((AAAsss0 + hhh) mod q)� (✏q � ✏p) 2 Rl⇥1
p

6 v0 = bbbT (sss0 mod p) 2 Rp

7 cm = (v0 + h1 � 2✏p�1m mod p)� (✏p � ✏T ) 2 RT

8 return c := (cm, b0b0b0)

2.4.3 Saber.PKE Decryption

The Saber.PKE Decryption is specified by the following algorithm.

Algorithm 3: Saber.PKE.Dec(sk = sss, c = (cm, b0b0b0))

1 v = bbb0T (sss mod p) 2 Rp

2 m0 = ((v � 2✏p�✏T cm + h2) mod p)� (✏p � 1) 2 R2

3 return m0

2.5 Saber Key-Encapsulation Mechanism

Saber.KEM is the key-encapsulation mechanism consisting of the triplet of algorithms
(Saber.KEM.KeyGen, Saber.KEM.Enc, Saber.KEM.Dec) as described in Algorithms 4, 5
and 6 respectively. The more detailed technical specifications are given in Section 10.
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Figure 11: Pseudocode of SABER [38] 
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Figure 12: Pseudocode of NTRU [36] 
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Figure 13: Block diagram of the unit 4 MACs used in FrodoKEM. 
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Figure 14: MAC used in Saber, NTRU-HPS, and NTRU-HRSS. logq=13 for Saber and NTRU-HRSS, 
logq=11 for NTRU-HPS with the security category 1 (ntruhps2048677) and 12 for NTRU-HPS with the 
security category 3 (ntruhps4096821). 
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Figure 16: Block diagrams for the centered binomial distribution (CBD) samplers of Saber for three di˙erent 
security levels. 
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Figure 17: Block diagrams of LFSRs used in NTRU-HPS and NTRU-HRSS. 
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Figure 18: Block diagrams of LFSRs used in NTRU LPrime and Streamlined NTRU Prime . 
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