
Efficient generation of the public parameter A
in unstructured lattice-based schemes

Hayo Baan, Sauvik Bhattacharya, Oscar Garcia-Morchon, and Ludo Tolhuizen

Royal Philips N.V., Netherlands.

Abstract. Key encapsulation mechanisms and public-key encryption
schemes based on the Learning with Errors or Learning with Rounding
problems use a matrix A as public parameter, that defines the underlying
lattice controlling the security of the scheme. A common technique to
avoid threats such as pre-computation attacks is to refresh A with each
protocol instantiation. However, A is a large matrix of dimension d× d
with elements in Zq. Thus, the generation of A forms a very significant
fraction of the computational overhead of these schemes.
In this manuscript, we analyze different methods for the generation of A
from Round5 and Frodo, unstructured lattice-based submissions to the
NIST PQC project. We discuss how these methods influence the resis-
tance of the resulting scheme to pre-computation and backdoor attacks,
formal proofs of security, exploitable structure in the resulting underlying
lattice, and performance of the scheme. We encourage the community to
study the methods proposed in Round5 since they lead to a considerable
performance speed-up.
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1 Introduction

The NIST Post-Quantum Cryptography (PQC) project [18] is evaluating a
number of post-quantum key encapsulation mechanisms (KEM) and public-
key encryption (PKE) schemes for standardization. In the second round of
the project there are nine schemes remaining in the category of lattice-based
schemes , namely FrodoKEM [2], CRYSTALS-Kyber [4], LAC [16], NewHope [1],
NTRU [10], NTRUPrime [8], Round5 [5], Saber [13], and Threebears [14]. Most
of those schemes belong to the category of structured lattices used to achieve
higher efficiency [17]. Only FrodoKEM (henceforth referred to as “Frodo”) and
Round5 in its non-ring configuration (“n1” parameter sets) offer parameters or
instantiations where the underlying hardness assumptions are based on unstruc-
tured lattice-based problems [21,6]. Although such solutions offer more conser-
vative choices in the case that advances in cryptanalysis lead to attacks on the
structured alternatives [12,11,20], they also involve a higher overhead due to the
absence of structure in the lattice.

In more detail, unstructured lattices bring two main downsides: they lead
to larger key sizes and slower computational performance. Table 1 shows that



Table 1: Bandwidth requirements (in Bytes) in second round NIST PQC can-
didates. Frodo and Round5 n1 are the unstructured solutions analyzed in this
paper and require around 10x more bandwidth than structured solutions.

IND-CPA KEM IND-CCA KEM
Category Scheme Configuration 1 2 3 4 5 1 2 3 4 5

Unstructured
Frodo 19336 - 31376 - 43152

Round5
n1 10450 - 17700 - 28552 11544 - 19393 - 29360

Structured

nd 5 994 - 1639 - 2035 1097 - 1730 - 2279
nd 0 1316 - 1890 - 2452 1432 - 2102 - 2874

Threebears 1721 - 2501 - 3281
Saber 1408 - 2074 - 2784
Kyber 1536 - 2272 - 3136

NewHope 1797 4000 2048 - - - 4032
LAC 1256 - 2244 - 2480

NTRUPrime
st - 1891 2197 2506 -
lpr - 1922 2206 2496 -

NTRU
hps 1398 - 1862 - 2460
hrss - - 2276 - -

Frodo and Round5(n1) have keys that are around 10 times larger than those of
the structured lattice-based alternatives. Computational or CPU performance
is slower because of two reasons: more random data is needed to generate A,
and more operations are needed to compute the public-key and ciphertext com-
ponents. Unstructured lattice-based schemes use a public d× d matrix A. This
is a factor d larger compared with the structured case. For instance, Round5
in its ring configurations only requires a polynomial a containing d elements.
For Frodo and Round5, each coefficient of A fits in two bytes. This results in
matrices A with sizes between 0.75 and 3.6 MBytes. The generation process of
the overall public-key, which has more components in the unstructured case, is
also obviously slower than in the structured case, because more vector-matrix
multiplications are required.

This paper focuses on the step in the protocol of KEM and PKE schemes
that generates the public-parameter A. Specifically, we consider different ways of
carrying out this generation to achieve specific performance and security goals.
We specify the following design goals:

– Formal proofs of security: Public-key encryption schemes are typically
required to show a proof of semantic security of the ciphertext against (at
least) passive adversaries. The common technique of proving indistinguisha-
bility (IND) of lattice-based schemes against a chosen plaintext adversary
(CPA) requires the chosen public parameter, i.e., including the matrix A, to
be indistinguishable from a uniformly generated one [15].

– Avoiding structure in the lattice: A fundamental reason to design schemes
based on unstructured lattice-based problems is to make sure that no ob-
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vious structure in the underlying lattice remains that can be exploited in
attacks, such as those considered in [12,11,20].

– Resistance to pre-computation attacks: In the protocols described in
[19] and [9], the public parameter A remains fixed for all protocol instantia-
tions. However, such a design might make the scheme prone to pre-computation
attacks, as discussed in [3].

– Resistance to backdoor attacks: Similar to the previous point, the gen-
eration of the public parameter A should make it possible to claim that any
exploitable (unknown) structure in the underlying lattice has been avoided.

– Fast generation of A: This is a fundamental goal to facilitate the inte-
gration of schemes into real-world protocols such as TLS or IKEv2. This is
important on the responder side, e.g., a server that has to handle many con-
nections (and must instantiate a fresh A for each) and also on the initiator
side, e.g., a resource-constrained client, since fast generation implies fewer
CPU cycles and hence less power usage.

– Low storage needs: This is also important for both parties of the commu-
nication. A server having to handle many connections should keep memory
needs for storing A as low as possible. Further, resource-constrained clients
have limited memory capabilities, making it also an important goal for them.

The rest of the paper is organized as follows: Section 2 introduces basic nota-
tion. Section 3 describes methods to generate the public-parameter A. Section 4
discusses advantages and disadvantages of the different methods. Section 5 con-
cludes this paper.

2 Notation

A public-key encryption (PKE) scheme is defined as a triple of functions PKE =
(Keygen, Enc, Dec) with message space M, where given a security parameter
λ Keygen returns a secret key sk and public key pk, Enc encrypts a message
m ∈ M using pk to produce a ciphertext ct, and Dec returns an estimate m′ of
m given ct and sk.

The decisional Learning with Errors (LWE) [21] problem involves distin-
guishing the uniform sample (A,U)← U(Zk1×k2

q ×Zk1×m
q ) from the LWE sam-

ple (A,B = 〈AS + E〉q) where A ← U(Zk1×k2
q ) and where the secret key S

and error E are generated from the secret and error distributions χs and χe

respectively. The search problem is to recover S from the LWE sample.
The decisional generalized Learning with Rounding (LWR) [6] problem in-

volves distinguishing the uniform sample (A, bp/q ·Ue) where A ← U(Zk1×k2
q )

and U ← U(Zk1×m
q ) from the generalized LWR sample (A,B =

⌊
p/q · 〈AS〉q

⌉
)

where A ← U(Zk1×k2
q ), and S ← χs(Zk2×m

q ). Analogous to the LWE case, the
search problem is to recover S from the generalized LWR sample.

Algorithm 1 shows the steps required in the key generation when LWR is
used as the underlying problem. Line 1 shows that the first step consists in
obtaining matrix A. Line 2 includes the steps of sampling the secret and error
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vectors. Line 3 computes public-key component B. Line 4 returns both public-
and private-keys.

Algorithm 1: Keygen()

1 A← Sample A()
2 SA ← χs, EA ← χe

3 B =
⌊
p/q · 〈ASA + EA〉q

⌉
4 return (pk = (A,B), sk = SA)

3 Methods

We describe four methods that can be used to determine the public-parameter
A, i.e., to instantiate function Sample A() in Line 1 in Algorithm 1. We assume
that each entry of A can be represented in two bytes.

3.1 Method 0: A defined per protocol instance

This is the method used in all second round NIST candidates based on (R/M)LW(E/R).
The idea is to generate the entries of A by applying a deterministic random bit
generator (DRBG) on a random seed σ unique to and freshly chosen for each
protocol exchange. This means that the initiator generates random seed σ and
sends it to the responder. Both initiator and responder use σ to obtain A by
means of the DRBG, which must be called to obtain 2∗d2 bytes in each protocol
exchange, where d ∈ Z is the main security parameter of the scheme. Typically,
d ≥ 700.

Both Frodo and Round5 make use of this approach, in particular, Round5

denotes this option as f
(0)
d,n. Both schemes rely on instantiations of the DRBG

based on AES or SHAKE. For the first, AES is used in a ”counter-mode” ap-
proach, basically applying AES to a set of pre-defined values dependent on the
row and column of A.

In the case of SHAKE, Round5 generates the elements sequentially; in con-
trast, Frodo can generate several rows in parallel since for each row SHAKE is
called with seed σ prefixed with a counter that depends on the row [2].

3.2 Method 1: Permuting a publicly pre-defined Amaster

This approach consists of generating A by permuting a public and system-wide
matrix Amaster. This means that Amaster is defined a priori, e.g., following
Method 0 discussed in Section 3.1. The permutation is derived from a random
seed σ that is unique to and freshly chosen for each protocol exchange. This
means that the initiator generates a random seed and sends it to the responder.
Both initiator and responder use this seed to obtain the same permutation.

This method is an optional approach in Round5 denoted as f
(1)
d,n. Round5

describes the permutation as a vector p1 ∈ Zd
d and the fresh A is defined as
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A[i, j] = Amaster[i, 〈p1[i] + j〉d]. Here, A[i, j] refers to the jth entry of the ith

row in A and 〈a〉d means a modulo d. This means that row i in A consists of
a rotation – determined by p1[i] – of row i in Amaster. The entries of p1 are
obtained from a DRBG initialized with σ and with uniform output in Zd.

With this approach, the DRBG only needs to deliver 2 ∗ d bytes, a factor d
less compared with Method 0.

3.3 Method 2: Permuting an amaster defined per protocol instance

This approach involves four steps: (1) the initiator obtains a random seed σ
specific to each protocol exchange and sends it to the responder; (2) both initiator
and responder generate a vector amaster ∈ Zlen a master

q by applying a DRBG
on seed σ; (3) both initiator and responder obtain a permutation p2 by applying
a DRBG on the seed σ, and finally (4) both initiator and responder compute A
by permuting amaster according to p2.

This is the default approach in Round5 for its non-ring parameters and it

is denoted as f
(2)
d,n. The entries of the permutation vector p2 are obtained from

a DRBG initialized with σ and with uniform output in Zlen a master; rejection
sampling is used to ensure that the entries of p2 are distinct. The matrix A
is defined as A[i, j] = amaster[〈p2[i] + j〉len a master]. With this approach, it is
possible to efficiently obtain a fresh A without having to compute a significant
amount of pseudorandom data. In particular, this approach only requires ex-
tracting 2 ∗ len a master+ d ∗ log2(len a master)/8 bytes from the DRBG. We
ignored potential additional generation due to rejection sampling. This is justi-
fied if, as in the implementation of Round5, len a master is much larger than
d. Furthermore, this approach does not require the storage of a large matrix
Amaster.

3.4 Method 3: Standard defined Amaster

This method has not been proposed in any NIST PQC submission, but its equiv-
alent has appeared in the literature [19]. This option would consist of fixing a
global public-parameter Amaster that is identical for all protocol instantiations.
In order to avoid backdoor attacks, the entries of Amaster could be generated
by applying a DRBG on a random seed σ as done in Method 0. In order to
avoid any possibility of backdoors, the value of σ could be chosen from different
randomness sources managed by different organizations.

4 Comparison

The following subsections describe how well the different methods described in
Section 3 fulfill the design goals specified in the introduction of this paper, i.e.,
formal (indistinguishability) proofs of security, avoidance of lattice structure,
prevention of backdoor and pre-computation attacks, and performance require-
ments regarding CPU and memory. Regarding the last point, it is important
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to realize that the generation of A and the computations are very interlinked.
This means that Lines 1 and 3 in Algorithm 1 are often mixed together in the
implementations. Thus, it is difficult to give stand-alone values of the different
methods and we present performance values for Keygen, Enc, and Dec. Similarly,
implementations might trade CPU and memory needs depending on the target
application.

4.1 Method 0: A defined per protocol instance

This is the standard approach followed by many NIST proposals, being ini-
tially proposed by NewHope [3] in the context of a structured lattice-based
key-exchange scheme.

Security. Extending to the case of unstructured lattice-based schemes, the main
advantage of this method is that security proofs can be phrased in terms of
indistinguishability of a uniformly generated matrix A and a matrix A generated
by a applying a DRBG on a seed. Hence, security proofs can be provided under
the assumption that the DRBG outputs a uniform symbol string.

However, as recently pointed out in [7, Section 4], since the seed for generating
A is public, the possibility of an attack exploiting the DBRG cannot be ruled
out. Finally, this method defeats both pre-computation and backdoor attacks –
as mentioned in NewHope [3] – since A is specific to each protocol instantiation
and it is generated by means of a DRBG.

Performance. This method requires generating d2 elements in Zq. This is the
main reason of this method incurring a high performance overhead. Tables 2
and 3 summarize the cost in the case of FrodoKEM-640, FrodoKEM-976 and
FrodoKEM-1344. These two tables correspond to the second entries in Table 5
and Table 6 in [2], respectively. The first table includes the performance when
both AVX2 instructions and hardware-specific AES instructions are available.
The second table shows the performance when using a 4-way implementation of
SHAKE and AVX2 instructions. This means that the operations in 4 rows of A
can be performed in parallel.

For comparison, we see the performance of R5N1 1PKE 0d using this same
method in the first column of Table 4. The dimensions of the matrices A instan-
tiated in Frodo640 (640 × 640) and in R5N1 1PKE 0d (636 × 636) are almost
equal. The reason why R5N1 1PKE 0d performs worse is that its specific im-
plementation that is considered here does not use a 4-way implementation of
SHAKE.

We note that this method can be implemented using very low memory re-
quirements, as low as a single element of A that needs to be kept in memory if
A is generated on the fly. However, this usually comes at the price of a higher
CPU overhead since more calls to the DRBG are required.
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Table 2: Optimized (Fast AES) A generation in Frodo us-
ing Method 0. Results obtained when compiling https://
github.com/Microsoft/PQCrypto-LWEKE with make CC=gcc
ARCH=x64 OPT LEVEL=FAST GENERATION A=AES128
USE OPENSSL=TRUE OPENSSL INCLUDE DIR=/path/to/openssl/include
OPENSSL LIB DIR=/path/to/openssl/lib on a MacBookPro15.1 with an Intel
Core i7 2.6GHz, running macOS 10.13.6.

Variants
FrodoKEM-640 FrodoKEM-976 FrodoKEM-1344

Performance: Average elapsed time (ms)

Keygen 0.4 0.8 1.3
Enc 0.6 1.2 1.8
Dec 0.6 1.1 1.8
Total 1.6 3.1 4.9

Performance: Average CPU Clock Cycles

Keygen 1054.9k 2087.1k 3465.2k
Enc 1481.7k 3020.6k 4764.8k
Dec 1471.8k 2898.0k 4680.4k
Total 4008.4k 8985.7k 12910.4k

4.2 Method 1: Permuting a publicly pre-defined Amaster

With this method, the matrix A used in the protocol is derived from a fixed
long-term system-wide matrix Amaster ∈ Zd×d

q . This is done by applying to
Amaster a fresh permutation chosen by the initiator of the protocol at the start
of each protocol exchange.

Security. The permutation consists of random, cyclic shifts of the rows of Amaster.
This prevents any pre-computation attacks since the possible number of per-
muted versions A of Amaster obtained in this way is dd, a number high enough
to make guessing the actual chosen A an infeasible task. Back-doors are avoided
since Amaster itself is derived by means of a pseudo-random function from a
randomly generated seed (Method 0). Since A is created by simply permuting
the row elements of Amaster, which itself was randomly generated, the underly-
ing lattice resulting from A does not have any structure as in ideal lattices, for
example. Proving formal security in terms of indistinguishability is not feasible
if (A,B) is jointly considered as the public key. This is because Amaster is
publicly known and A is just a permuted version of it.

Performance. Computing this permutation is cheap, and thus Method 1 is ef-
ficient in terms of CPU overhead. The computational advantage is clear when
looking at the first and second columns in Table 4 that shows at least a 8x
factor speed up compared with Method 0. Memory-wise, Amaster needs to
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Table 3: Optimized (AVX2) A generation in Frodo using Method 0. Results ob-
tained when compiling https://github.com/Microsoft/PQCrypto-LWEKE
with make CC=gcc ARCH=x64 OPT LEVEL=FAST GENERA-
TION A=SHAKE128 USE OPENSSL=FALSE on a MacBookPro15.1 with an
Intel Core i7 2.6GHz, running macOS 10.13.6.

Variants
FrodoKEM-640 FrodoKEM-976 FrodoKEM-1344

Performance: Average elapsed time (ms)

Keygen 1.1 2.4 4.4
Enc 1.2 2.6 4.7
Dec 1.2 2.5 4.6
Total 3.6 7.5 13.7

Performance: Average CPU Clock Cycles

Keygen 2956.0k 6381.6k 11447.0k
Enc 3182.4k 6685.6k 12252.6k
Dec 3170.9k 6561.0k 11952.3k
Total 9309.3k 19628.2k 35651.9k

be kept in memory and simple permutations of it can be used for connecting
to multiple clients. If keeping Amaster in memory is not feasible, e.g., in a
resource-constrained client, Amaster can be generated on the fly row by row
(following Method 0). However, this will deteriorate the computational perfor-
mance making such an implementation slower than Method 0. This is the reason
that motivated the design of Method 2.

4.3 Method 2: Permuting an amaster defined per protocol instance

The public parameter A is obtained from a vector amaster ∈ Zlen a master
q that

is randomly generated by means of a DBRG using a seed determined by the
initiator in each protocol interaction. Each row in A is obtained from amaster by
means of a random permutation that is also determined by the initiator and is
specific to each protocol interaction, and ensures that A has distinct rows. In
particular, each row of A consists of d consecutive entries of amaster.

Security. The latter is the reason why an indistinguishability proof is not feasi-
ble in Method 2: elements in two different rows of A might have some common
entries of amaster, thus it is easy to distinguish A from random. We argue that
pre-computation and back-door attacks are avoided since the seed that deter-
mines A is new in each protocol interaction, and this approach allows computing
many A’s: A is obtained by permuting – there are a total of

(
len a master

d

)
ways

of picking up d d−element vectors from amaster. amaster is a fresh vector for
which there are qlen a master choices.
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Table 4: Optimized (AVX2) R5N1 1PKE 0d – A generation variants with
cSHAKE128. Results obtained running the code at https://github.com/round5/
code on a MacBookPro15.1 with an Intel Core i7 2.6GHz, running macOS 10.13.6
and using the runSpeedTests application with command ./runSpeedTests -api-
set 15 -avx2 1 -tau x with x={0,1,2} corresponding to Method 0, 1, and 2,
respectively.

Variants
Method 0 Method 1 Method 2

Performance: Elapsed time (ms)

Keygen 1.6 0.1 0.1
Enc 1.7 0.2 0.2
Dec 1.8 0.2 0.2
Total 5.1 0.6 0.5

Performance: CPU Clock Cycles

Keygen 4306.1k 361.7k 360.2k
Enc 4474.0k 529.9k 500.1k
Dec 4549.9k 613.9k 579.6k
Total 13330.8k 1505.4k 1440k

We now analyze this method and how it destroys the circulant-like structure
in the underlying lattice. If len a master = d, then this method, in particular

its definition f
(2)
d,n in Round5, results in a matrix A in which each row is ob-

tained by a cyclic shift of the top row over some positions. Thus, Method 2 with
len a master = d essentially results in a cyclic matrix.

However, len a master is to be chosen greater than d. The most extreme case
occurs when len a master = d + 1. In this case, we can visualize the structure
of A by rotating amaster as in a circular matrix and removing (in red) the row
that is not corresponding to any entry in p2, and the last column.



a0 a1 a2 a3 a4 . . . ad−1 ad
ad a0 a1 a2 a3 . . . ad−2 ad−1
ad−1 ad a0 a1 a2 . . . ad−3 ad−2
ad−2 ad−1 ad a0 a1 . . . ad−4 ad−3

. . .
a2 a3 a4 a5 a6 . . . a0 a1
a1 a2 a3 a4 a5 . . . ad a0


→


a0 a1 a2 a3 a4 . . . ad−1
ad−1 ad a0 a1 a2 . . . ad−3
ad−2 ad−1 ad a0 a1 . . . ad−4

. . .
a2 a3 a4 a5 a6 . . . a0
a1 a2 a3 a4 a5 . . . ad


d×d

For an arbitrary value of len a master > d, matrix A is obtained by first con-
structing the circular matrix using amaster (dimension len a master×len a master
and then keeping the rows that correspond to the entries in p2, and removing
the last len a master − d columns.

We now take a different perspective. We say that two rows of A overlap if they
have at least one entry originating from the same entry of amaster. If a row does
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not overlap with any other row in A, then f
(2)
d,n is equivalent to f

(0)
d,n regarding that

row since all its entries have been obtained by applying a DRBG to a seed. Now
we consider two overlapping rows of A that share d− k elements, namely a(0) =
〈a0, a1, a2, . . . , ad−1〉 and a(k) = 〈aL, aL−k+1, . . . , aL−1, a0, a1, a2, . . . , ad−k−1〉,
where we have denoted len a master as L for conciseness. If we define a(0)(x) ..=
a0+a1x+a2x

2+· · ·+ad−1xd−1 and a(k)(x) ..= aL−k+aL−k+1x+· · ·+aL−1xk−1+
a0x

k + a1x
k+1 + · · · + ad−k−1x

d−1, then we have a(k)(x) = a(x)xk + (aL−k −
ad−k) + (aL−k+1 − ad−k+1)x+ · · ·+ (aL−1 − ad−1)xk−1 mod xd − 1. Effectively,
that is, each row can be seen as using the xd − 1 ring with a random shifting
(due to k) and additional random noises, those corresponding to (aL−k−ad−k)+
(aL−k+1−an−k+1)x+· · ·+(aL−1−ad−1)xk−1. The random shift is due to the the
random permutation and the random noises are due to the random generation
of amaster.

When len a master is small, in the extreme case equal to d, there are no
random-shifts since all rows are just shifted a single position and there are no
noises since there are only d elements. When len a master increases, there are
many ways of choosing d elements (shifts) out of len a master and there are
up to len a master− d random noises. This is the reason why this construction
removes the circular structure in the resulting A and makes it harder to apply
any potential attacks that might exploit this structure in the lattice.

Performance. Since only a few – len a master – elements need to be generated

and kept in memory, f
(2)
d,n is efficient both in terms of memory and CPU con-

sumption. In particular, Round5 sets 211 as the default value for len a master,
the smallest power of two greater than the value of the parameter d for any of
the Round5 configurations.

The computational advantage is clear when looking at the first and third
columns in Table 4 that show a 9x factor speed up compared with Method 0.
Comparing Tables 3 and 5 we observe that this optimization allows Round5 to
achieve a factor 6x faster performance compared with Frodo when SHAKE is
used as the underlying DRBG. This method reduces memory needs for both
initiator and responder, which can be especially useful on small devices, since
only amaster needs to be kept in memory requiring 2∗len a master bytes . This
equals to only 4 KB in the default Round5 parameter choice.

We observe that the choice of len a master, i.e., the length of a master plays
a fundamental role in the security/performance trade-off of this method. A very
small value, say approximately d, leads to a very efficient scheme but preserves
some structure in the lattice that may or may not lead to exploits in future. A
very high value, say close to d2, can lead to a scheme equivalent to Method 0
if the permutation does not allow any overlap in the rows of A. Intermediate
values provide a trade-off between performance and the capability to remove any
(anti-)circulant structure in the underlying lattice.
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Table 5: Optimized (AVX2) R5N1 1PKE 0d – A generation variants with
cSHAKE128. Results obtained running the code at https://github.com/round5/
code on a MacBookPro15.1 with an Intel Core i7 2.6GHz, running macOS
10.13.6 and using the runSpeedTests application with command ./runSpeedTests
-api-set x -avx2 1 -tau 2 with x={15,16,17} corresponding to R5N1 1PKE 0d,
R5N1 3PKE 0d, and R5N1 5PKE 0d, respectively.

Variants
R5N1 1PKE 0d R5N1 3PKE 0d R5N1 5PKE 0d

Performance: Elapsed time (ms)

Keygen 0.1 0.3 0.4
Enc 0.2 0.4 0.5
Dec 0.2 0.6 0.6
Total 0.5 1.3 1.5

Performance: CPU Clock Cycles

Keygen 360.2k 821.0k 1006.1k
Enc 500.1k 1064.8k 1310.3k
Dec 579.6k 1440.4k 1624.7k
Total 1440k 3326.1k 3941.1k

4.4 Method 3: Standard defined Amaster.

Works prior to NewHope [3], like [9] and [19], defined key exchange protocols or
key encapsulation protocols with a fixed public parameter Amaster.

Security. A proof of formal security for such a construction is possible under
the assumption that the matrix Amaster is chosen such that it is indistinguish-
able from uniform. Further, this approach is prone to a pre-computation attack
since an attacker is free to perform lattice reduction on the basis computed
from Amaster over an indefinite period of time. A back-door attack cannot be
mounted if the fixed Amaster is computed by means of a DRBG from a ran-
dom seed (e.g., using Method 0). Further assurances can be provided if multiple
entities independently generate the input random seed, or otherwise provide in-
dependent contributions to the generation of A in a publicly verifiable manner.

Performance. This method allows for the fastest performance since Amaster

could be stored in memory so no computations are required to generate it on
the fly. Alternatively, it could of course be generated on the fly to reduce memory
requirements, but then the CPU performance is reduced to that in Method 0.

5 Conclusions

Table 6 provides a final comparison of the four methods discussed in this paper.
Most NIST proposals use Method 0, however, the performance penalty paid for
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Table 6: Qualitative comparison of the different A generation methods. With
respect to a design goal or criteria, ++ denotes the most desired comparative
performance demonstrated by a method, followed by + and -, with - - denoting
the least.

Design goal Method
0 1 2 3

Formal proofs of security + - - +
Avoidance of structure in the lattice ++ ++ + ++
Backdoor attack resistance ++ ++ ++ ++
Pre-computation attack resistance ++ ++ ++ - -

CPU requirements
Client - - ++ ++ ++
Server - - ++ ++ ++

Memory requirements
Client ++ + ++ ++
Server ++ ++ ++ ++

the generation of A is high in unstructured lattices, especially if the DRBG used
is not optimized in hardware. Methods 1 and 2 provide a significant performance
benefit delivering much faster performance. For instance, NIST level 1 configu-
ration of Round5 R5N1 1PKE 0d using Method 2 with SHAKE128 is 3x (resp.
7x) faster than the optimized implementation Frodo640 using Method 0 with
AES128-specific hardware instructions (resp. AVX2-optimized SHAKE128). Fur-
thermore, these methods remove (anti-) circulant-like structure in the underlying
lattice and also prevent pre-computation and backdoor attacks.

The choice between Method 1 and Method 2 depends on the usage scenario.
Method 1 is good for configurations in which a server has to handle many con-
nections; Method 2 allows for a smaller memory footprint, and thus, it is more
suitable if clients are constrained in their storage capabilities, i.e., have more
stringent memory requirements. The main issue is that Methods 1 and 2 lack an
distinguishability proof and in particular, Method 2, keeps some structure. Still,
the performance benefit offered by Methods 1 and 2 motivated their submission
in Round2, the default usage of Method 2 in the unstructured Round5 parameter
sets, and definitively encourages further cryptanalysis of these constructions.

An important factor to consider with regard to Method 0 is the possibility
of efficient attacks against the DBRG used to expand the seed into the matrix
A [7]. Regarding Method 3, the difficulty of verifying that entries of A are indeed
sampled at random should be taken into account. Furthermore, the risk of pre-
computation attacks in Method 3 seems to be too high compared to the potential
performance benefits.
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de la Piedra, Thomas Pöppelmann, Peter Schwabe, and Douglas Stebila.

12



NewHope, 2019. Version 1.02; Available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-1-submissions.
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Vadim Lyubashevsky, John M. Schanck, Peter Schwabe, Gregor Seiler, and
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