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Abstract. We propose a constant-time implementation of the signature procedure of Falcon. Doing
this boils down to proposing a generic and constant-time Gaussian sampler over the integers. We show
how to do so as efficiently as possibly while preserving correctness. We formally prove that the resulting
sampler is constant-time. Finally, we implement our sampler in Falcon; the efficiency loss in the resulting
implementation is reasonably low compared to the non constant-time, reference implementation, and
even with this penalty, Falcon remains one of the fastest signature scheme candidates.
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1 Introduction

As of the round 2 of NIST’s PQC standardisation process, Falcon is one of the 9 signature schemes still
considered for standardisation. One might note that, in contrast to some other signature schemes (e.g.
Dilithium [LDK+19], LUOV [BPSV19], SPHINCS+ [HBD+19]), the reference implementation of Falcon is cur-
rently not constant-time. While no attack has exploited this fact so far, the cautionary tale of BLISS [DDLL13]
has shown that a lattice-based scheme can be perfectly secure in a black-box model, yet fall prey to numerous
side-channel attacks if unprotected [EFGT17,PBY17,BDE+18,BBE+19]. As a first step, it is therefore highly
desirable to have a constant-time implementation of Falcon.

The goal of this work is move towards a portable and constant-time implementation of Falcon. We focus
our scope on the signature generation, and show that it is constant-time if and only if the Gaussian sampling
over the integers (a building block of Falcon) is constant-time. Therefore, our goal is equivalent to proposing
a constant-time Gaussian sampler.

Since Falcon was first proposed [PFH+17], several works have greatly improved the state of the art
regarding constant-time Gaussian sampling. We consider in particular two of these works, FACCT [ZSS18]
and GALACTICS [BBE+19], for tackling the rejection sampling step. Our contributions are as follows.

– We show that given two algorithms approximating a centered, fixed-deviation Gaussian sampler (the base
sampler) and a rejection sampling algorithm, respectively, one can build a Gaussian sampler with arbi-
trary center and standard deviation in black-box (thus modularly). We show that only mild requirements
are required on the correctness of these two building blocks to ensure the correctness of the complete
sampler. This is coinjointly due to NIST’s limitation on the number of signatures (Qs ≤ 264) and the
use of the Rényi divergence in our security proofs.

– Recent works [ZSS18,KRVV19] have observed that even if the building blocks (base sampler and rejection
sampling) are constant-time, it is still possible that the total number of iterations of the complete sampler
may leak the private key. Whether that was the case in Falcon was left as an open question by both
works. In this work, we answer that question and show that the number of iterations of our sampler
does not leak the private key. Interestingly, our proofs rely extensively on the smoothing parameter.
Originally, this quantity plays an important role in showing that Falcon is secure in a black-box model.
Somewhat surprisingly, it is also crucial in making our sampler constant-time.



– We propose an instantiation of our sampler using a small cumulative distribution table for the base
sampler, and either FACCT [ZSS18] or GALACTICS [BBE+19] for the rejection sampling. A few ob-
servations allow us to use only 70 bits of randomness for the base sampler and (on average) 8 bits
for rejection sampling. We want to emphasize that this instantiation is extremely simple. On the other
hand, since our design is modular, it does leave plenty of room to propose improvements to either of the
building blocks, or to their combination. We describe a few of these potential improvements as well.

– We propose a constant time implementation of Falcon using our constant-time sampler and provide
comparisons with other implementations on an Intel Core i7-6500U CPU (clocked at 2.5 GHz). Compared
to the reference implementation of Falcon (which is not constant-time), ours is slightly slower, but it
still computes thousands of signatures per second. It is also faster than the reference implementation of
Dilithium [LDK+19].

2 Related Works

In the recent years, there has been a surge of works related to Gaussian sampling over the integers. Build-
ing on convolution techniques from [PDG14], Micciancio and Walter [MW17] proposed an arbitrary-center
Gaussian sampler base, as well as a statistical tool (the max-log distance) to analyse it. Prest [Pre17]
revisited techniques based on precomputed tables or polynomial interpolation, along with an improved se-
curity analysis using the Rényi divergence (building upon work by Bai et al. [BLL+15].). Polynomial-based
methods were further studied by Zhao et al. [ZSS18] and Barthe et al.[BBE+19]. Hülsing et al. [HLS18]
proposed the use of rounded Gaussians. Dwarakanath and Galbraith [DG14] proposed to use Knuth-Yao’s
discrete distribution generating (DDG) trees; an optimized and constant-time instantiation of this idea
has recently been proposed by Karmakar et al. [KRVV19]. Ducas and Nguyen [DN12] proposed a variant
of rejection sampling using only standard double precision floating-point numbers in most cases, and this
work was extended in Ducas’ PhD thesis [Duc13]. It is to be noted that techniques first proposed by von
Neumann [von50] allow to generate (continuous) Gaussians simply and elegantly by combining rejection
sampling and finite automata [For72,AD73,Kar16]. While these techniques have been considered in the con-
text of lattice-based cryptography [DDLL13,DWZ18] they are also notoriously hard to make constant-time.
Finally, Walter [Wal19] studied a few of the previously cited techniques with the goal of minimizing their
relative error.

3 Preliminaries

3.1 Gaussians

For σ, µ ∈ R with σ > 0, we call Gaussian function of parameters σ, µ and denote by ρσ,µ the function defined
over R as ρσ,µ(x) = exp

(
− (x−µ)2

2σ2

)
. Note that when µ = 0 we omit it in index notation, e.g. ρσ(x) = ρσ,0(x).

The parameter σ (resp. µ) is often called the standard deviation (resp. center) of the Gaussian. In addition,
for any countable set S ( R we abusively denote by ρσ,µ(S) the sum

∑
z∈S ρσ,µ(z). When

∑
z∈S ρσ,µ(z) is

finite, we denote by DS,σ,µ and call Gaussian distribution of parameters σ, µ the distribution over S defined
by DS,σ,µ(z) = ρσ,µ(z)/ρσ,µ(S).

3.2 Renyi Divergence

We recall the definition of the Rényi divergence, which we will use massively in our security proofs.

Definition 1 (Rényi Divergence). Let P, Q be two distributions such that Supp(P) ⊆ Supp(Q). For
a ∈ (1,+∞), we define the Rényi divergence of order a by

Ra(P,Q) =

 ∑
x∈Supp(P)

P(x)a
Q(x)a−1

 1
a−1

.



In addition, we define the Rényi divergence of order +∞ by

R∞(P,Q) = max
x∈Supp(P)

P(x)
Q(x) .

The Rényi divergence is not a distance; for example, it is neither symmetric nor does it verify the triangle
inequality, which makes it less convenient than the statistical distance. On the other hand, it does verify
a few properties useful for cryptography, including a probability preservation property with dramatically
different implications than the one verified by the statistical distance.

Lemma 1 (Lemma 2.9 of [BLL+15]). For two distributions P,Q and two families of distributions
(Pi)i, (Qi)i, the Rényi divergence verifies the following properties:

– Data processing inequality. For any function f , Ra(f(P), f(Q)) ≤ Ra(P,Q).
– Multiplicativity. Ra(

∏
i Pi,

∏
iQi) =

∏
iRa(Pi,Qi).

– Probability preservation. For any event E ⊆ Supp(Q) and a ∈ (1,+∞),

Q(E) ≥ P(E) a
a−1 /Ra(P,Q), (1)

Q(E) ≥ P(E)/R∞(P,Q). (2)

– Weak triangle inequality. For P1P2, P3 with Supp(Pi) ⊆ Supp(Pi+1):

Ra(P1, P3) ≤
{
Ra(P1, P2) ·R∞(P2, P3),
R∞(P1, P2) a

a−1 ·Ra(P2, P3) if a ∈ (1,+∞).

The following lemma shows that a bound of δ on the relative error between two distributions implies a
bound O(δ2) on the log of the Rényi divergence (as opposed to a bound O(δ) on the statistical distance).

Lemma 2 (Lemma 3 of [Pre17]). Let P,Q be two distributions of same support Ω. Suppose that the
relative error between P and Q is bounded: ∃δ > 0 such that

∣∣P
Q − 1

∣∣ ≤ δ over Ω. Then, for a ∈ (1,+∞):

Ra(P,Q) ≤
(

1 + a(a− 1)δ2

2(1− δ)a+1

) 1
a−1

∼
δ→0

1 + aδ2

2

3.3 Smoothing Parameter

For ε > 0, the smoothing parameter ηε(Λ) of a lattice Λ is the smallest value σ > 0 such that ρ 1
σ
√

2π
(Λ?\0) ≤ ε,

where Λ? denotes the dual of Λ. In the literature, some definitions of the smoothing parameter scale our
definition by a factor

√
2π. The following bound is given by [MR07]:

ηε(Zn) ≤ 1
π

√
1
2 log

(
2n
(

1 + 1
ε

))
. (3)

3.4 Constant-time algorithms

We now give a semi-formal definition of constant-time algorithms.

Definition 2. Let A be an (probabilistic or deterministic) algorithm. A is said to be constant-time if its
execution time is independent of its input and output. In addition, A is still considered to be constant-time
with the following relaxations:

– If a subset I (resp. O) of the input (resp. output) is tagged as sensitive, A is still considered as constant-
time if its running time is independent of the values taken by I (resp. O).

– If there exists a distribution D independent of the (sensitive) input/output such that the running time of
A is negligibly close (for a clearly identified divergence) to D.



In addition, we may extend the notion of being “constant-time” to algorithmic objects such as conditional
loops: if an algorithm contains a conditional loop which loops over a number of time which is independent of
sensitive values, we abusively say that this loop is “constant-time”.

It is clear that the composition of constant-time elements is constant-time:

– If A,B are constant-time, then the successive execution {A;B; } of A then B is constant-time;
– In addition, let loop(·) be the process of executing repeatedly an element a variable number of times, if
A, loop(·) are constant-time, then loop(A) is constant-time.

We observe that saying “A is a constant-time algorithm” is different from saying “the running time of A is
constant”. While the latter certainly implies the former, our definition is sufficient for cryptographic purposes
and is much easier to achieve.

3.5 (Non) Constant-Time Operations in Falcon

We now study which parts of Falcon are constant-time and which are not. Our key takeaway is that Falcon
is constant-time if and only if the Gaussian sampler over Z is constant-time.

Scope
In Falcon as in any signature scheme, two algorithms can leak the secret key: the key generation algorithm
and the signing algorithm. This work focuses on the signing algorithm, as the number of signature queries
per private key can be high (up to 264 as par [NIS16]), whereas the key generation algorithm is typically
only executed once per private key. We note that making the key-gereration constant-time is easy and does
not have a huge impact on performances.

Breakdown of the signing procedure
In Figure 1, we show the call graph of the signing algorithm of Falcon [PFH+19]. The subroutine HashToPoint
involves only the message and is therefore irrelevant to our analysis; similarly, Compress involves only the
signature and can be discarded.

Sign

HashToPoint ffSampling Compress

splitfft DZ,·,· mergefft

Fig. 1. Flowchart of the signature

Putting aside the sampling over Z, all the operations of Sign, ffSampling, splitfft and mergefft involve
only elementary operations over (complex) floating-point numbers: addition, subtraction, multiplication and
division. In all the division operations, the divisor is either a public constant or an element of sk and can
therefore be precomputed at a small cost (naively, this at most doubles the size of sk).

We assume that addition, subtraction and multiplication are constant-time; whether this is the case is a
complex issue (depending on the architecture, the compiler, etc.), we note that this is true for most recent
Intel and ARM processors4. We also note that as per [PFH+19], Falcon does not require the support of
subnormals, infinites and NaNs. This makes it easier to write dedicated, constant-time assembly code if the
target platform does no natively implements constant-time addition, subtraction and multiplication.

4See https://www.agner.org/optimize/instruction_tables.pdf for a comprehensive breakdown.

https://www.agner.org/optimize/instruction_tables.pdf


Falcon’s Gaussian sampler
When signing a message, Falcon calls twice an arbitrary Gaussian sampler over the integers for each leaf

of the LDL tree. Each call should produce a sampler from Dσ,µ. The centers µ change from call to call, and
are dynamically computed based on the message to sign, and the values returned by previous calls to the
sampler. The values of σ depend on the private key, but not on the message. In the Falcon reference code,
rejection sampling with regards to a bimodal Gaussian is used:

1. The target µ is moved into the [0, 1) interval by adding an appropriate integer value, which will be
subtracted from the sampling result at the end. For the rest of this paper, we assume that µ ∈ [0, 1).

2. A non-negative integer z0 is sampled from a half- Gaussian distribution DZ+,σ0 , with σ0 a fixed constant.
3. A random bit b is obtained, to compute z = (2b− 1) · z0 + b. The integer z follows a bimodal Gaussian

distribution GZ,σ0 .5

4. Finally, rejection sampling is applied: z follows the distribution GZ,σ0(z) = ρσ0 (z−b)
ρσ0 (Z) . One thus returns z

with probability proportional to Dσ,µ(z)
GZ,σ0 (z) ; otherwise, one starts over.

The Falcon reference code uses random values obtained from ChaCha20 and standard double precision
floating-point values, which is sufficient to achieve the required security levels from a Rényi argument. It is
worth noting that the Gaussian sampler in the Falcon reference code is not constant time, therefore it may
be a source of leakage for a side-channel attack. In particular, it uses a lazy CDT approach to sample from
the half Gaussian distribution whose execution time is heavily dependent on its output.

4 Our Sampler

We now describe our constant-time sampling algorithm which, given a fixed somewhat small σ0 ∈ R?+,
samples the distribution DZ,σ,µ for any σ ≤ σ0 and any µ ∈ [0, 1]. This is done by instantiating the rejection
sampling method to sample from the target probability distribution DZ,σ,µ, given a source bound to the
bimodal Gaussian proposal distribution GZ,σ0 . At this point we will define the notation:

νσ(x) :=
{
ρσ0(x) if x ≤ 0,
ρσ0(x− 1) if x ≥ 1. (4)

The dominating density GZ,σ0(z) := νσ0 (z)
νσ0 (Z) for all z ∈ Z is proportional to DZ,σ0(z) over the negative integers

and to DZ,σ0,1(z) over the non-zero positive integers. One can notice that due to the second mode of νσ0(x)
which adds a ρσ0(0) = 1 term to the normalizing constant, we have

νσ0(Z) = ρσ0(Z) + 1 = 2 · ρσ0(Z+).

Figure 2 illustrates the proposal distribution GZ,σ0 for σ0 = 2, and some possible target distributions
DZ,σ,µ. We note that for σ close to σ0 the distance between proposal and target curves is small with regard
to the range of µ, which leads to a small rejection rate.
The sampling method works as follows:

1. Generating a sample from a bimodal Gaussian GZ,σ0 which is as close as possible to any target Gaussian
DZ,σ,µ. This is studied in section 4.1 and can be done during an offline phase independent of σ and µ.

2. Performing rejection sampling over the sample generated to obtain DZ,σ,µ. This is studied in section 4.2
and have to be done during the online phase due to the dependence of σ and µ.

Our arbitrary sampler combines the steps 1 and 2 in a sensible way to obtain DZ,σ,µ; this is studied in
section 4.3.

5To be exact, it is an bimodal half-Gaussian.
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Fig. 2. The dominating curve ν2.0 proportional to the proposal density and the target curves for some distributions
DZ,σ∈[1/2,2],µ∈[0,1].
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BaseSampler BerExp

ComputeExp

Fig. 3. Flowchart of our sampler

4.1 Sampling from the Bimodal Gaussian

We sample from the bimodal Gaussian GZ,σ0 by drawing z0 ← DZ+,σ0 , b ← {0, 1} uniformly, and z ←
(2b− 1) · z0. Hence:

GZ,σ0(z) = 1
2

{
DZ+,σ0(−z) if z ≤ 0
DZ+,σ0(z − 1) if z ≥ 1 (5)

In practice, we will sample from DZ+,σ0 using an algorithm BaseSampler. The choice of BaseSampler
depends on many external – and sometimes conflicting – constraints: speed of operations, constant-time,
memory access, randomness, etc. For clarity, we will describe only the requirements on the base sampler
in section 4.3 to maintain the security of our arbitrary sampler. Concrete instantiations of BaseSampler are
proposed in Section 6.

4.2 BerExp: Rejection Sampling

In the rejection sampling step, we accept the proposal sample z = (2b−1) ·z0 +b with a probability Paccept(z)
to obtain the target distribution Dσ,µ. We take Paccept as follows:

Paccept(z) = ρσ,µ(z)
νσ0(z)

=

 exp
(
z2

2σ2
0
− (z−µ)2

2σ2

)
if z ≤ 0

exp
(

(z−1)2

2σ2
0
− (z−µ)2

2σ2

)
if z ≥ 1

= exp
(
z2

0
2σ2

0
− (z − µ)2

2σ2

)
.



We use a Bernoulli sampler BerExpC , presented in Algorithm 1 which samples from the Bernoulli dis-
tribution with parameter C · exp(−x) for any x ∈ R+. The value C is a scaling factor which purpose is
explained in Section 6.3.

Algorithm 1 BerExpC(x)
Require: x > 0, C ∈ (0, 1]
Ensure: b ∼ BC·exp(−x)
1: p← C · ComputeExp(−x)
2: i← 1
3: do
4: i← i · 28

5: u← J0, 28 − 1K uniformly
6: v ← bp · ic & 0xff
7: while u = v
8: return (u < v)

If ComputeExp perfectly computes exp(−x), the correctness of BerExpC(x) directly follows the fact that
for any p ∈ [0, 1] and for u drawn uniformly at random in [0, 1], the probability to have u < p is equal to p.
However, that assumption is not necessarily true in practice, where algorithms perform computations over
real numbers with a high but finite precision. We refer to Section 5 for the quantification of the security loss
induced by the use of an approximate exponential computation.

4.3 SamplerZ: The Full Sampler

Our constant-time sampler, formally described in Algorithm 2, works as follows:

1. Use BaseSampler to generate a sample z0 from DZ+,σ0 .
2. Sample a random bit b, and compute z = (2b− 1) · z0 + b.
3. Call BerExpC to determine if z is returned or rejected, start again if necessary.

Algorithm 2 SamplerZ(σ, µ)
Require: µ ∈ [0, 1), σ ≤ σ0, a scaling factor C = C(σ) ∈ (0, 1]
Ensure: z ∼ DZ,σ,µ
1: while True do
2: z0 ← BaseSampler()
3: b← {0, 1} uniformly
4: z ← (2b− 1) · z0 + b

5: x← (z−µ)2

2σ2 − z2
0

2σ2
0

6: if BerExpC(σ)(x) then
7: return z

Here C actually depends on σ. It is a scaling function mapping σ to a value in (0, 1]. It serves no functional
purpose: the algorithm will be correct for any choice of C (including the simplest case C = 1). However we
will see in Section 6.3 that adequately choosing C makes SamplerZ fully constant-time.

5 Security proof for SamplerZ

In this section, we quantify the security loss incurred when an implementation of Falcon using an ideal sam-
pler algorithm DZ,σ,µ is replaced by an implementation calling the algorithm SamplerZ instead. In order to
do this, we first define requirements on the building blocks ComputeExp and BaseSampler, then we quantify



the bit security loss.

Beforehand, Table 1 gives the considered maximum number of calls to SamplerZ, BaseSampler and Com-
puteExp. Due to the rejection sampling, there will be a (potentially infinite) number of iterations of the while
loop. We note Niter the expected value of the number of iterations. By a classical central limit argument, the
number of calls to BaseSampler and ComputeExp will only be marginally higher than Niter times the number
of calls to SamplerZ. In Section 6, we show that Niter ≤ 2.

Table 1. Number of calls to SamplerZ, BaseSampler and ComputeExp

Notation Value
Calls to Sign (as per NIST) Qs ≤ 264

Calls to SamplerZ QsamplZ Qs · 2 · n ≤ 275

Calls to BaseSampler Qbs Niter ·QsamplZ ≤ 276

Calls to ComputeExp Qexp Qbs ≤ 276

To estimate the security loss with the replacement of DZ,σ,µ by SamplerZ, we introduce an intermediate
case where ComputeExp is a perfect distribution. The 3 cases are defined as follows.

1. (Ideal) The ideal DZ,σ,µ is called.
2. (Inter) A hybrid version of SamplerZ where ComputeExp outputs the exact exp value is called.
3. (Real) SamplerZ is called.

Let λ be the security parameter of the Real case and a := 2λ + 1; the values Ra(Real, Inter) and
Ra(Inter, Ideal) will be used to quantify the distance between each case. In a first step, we compute the
security loss as a function of Ra(Real, Inter) and Ra(Inter, Ideal) in Theorem 1. In a second step, we
define the requirements on ComputeExp and BaseSampler to ensure suitable values for Ra(Real, Inter) and
Ra(Inter, Ideal).

Theorem 1. Let λ be the bit security of the Real case. Then the bit security of the Ideal case is upper
bounded by:

λ+ log2

(√
2

a
a−1 +1 ·Ra(Real, Inter)

aQexp
a−1 ·Ra(Inter, Ideal)Qbs

)
where a = 2λ+ 1.

Proof. Let E be an event breaking the scheme. Let δIdeal (resp. δInter, δReal) be the probability that this
event occurs in the use of the Ideal (resp. Inter, Real) case. By definition, δReal ≥ 2−λ. By Lemma 1, (1):

δIdeal ≥ δ
a
a−1
Inter/Ra(Inter, Ideal)Qbs

δInter ≥ δ
a
a−1
Real/Ra(Real, Inter)Qexp .

Taking a := 2λ+ 1, the second equation can be upper bounded using δ
a
a−1
Real ≥ δReal/

√
2. By combining it,

δInter ≥ δReal/
(√

2 ·Ra(Real, Inter)Qexp
)
.

And thus,
δIdeal ≥ δ

a
a−1
Real ·

(√
2

a
a−1 ·Ra(Real, Inter)

aQexp
a−1 Ra(Inter, Ideal)Qbs

)−1

≥ δReal ·
(√

2
a
a−1 +1 ·Ra(Real, Inter)

aQexp
a−1 Ra(Inter, Ideal)Qbs

)−1

which concludes the proof. ut

The following corollary provides concrete requirements on the Rényi divergence terms.



Corollary 1 (Security loss). If Ra(Real, Inter) ≤ 1 + a−1
4aQexp

and Ra(Inter, Ideal) ≤ 1 + 1
4Qbs

, at most
2 bits of security are lost by using SamplerZ instead of the ideal distribution DZ,σ,µ in Falcon.
Proof. Using the inequality

(
1 + x

n

)n ≤ exp(x) for x, n > 0,

Ra(Real, Inter)
aQexp
a−1 ≤ exp(1/4) ≤

√
2,

Ra(Inter, Ideal)Qbs ≤
√

2.

Thus the security loss is upper bounded by log2

(√
2

a
a−1 +1 · 2

)
=

a
a−1 +3

2 ≤ 2. ut

5.1 Requirements on ComputeExp
In this section, we focus on the first requirement of Corollary 1.
Lemma 3 (Requirement on ComputeExp). Recall that a = 2λ+ 1 where λ is the security parameter in
the Real case. The replacement of ComputeExp by a polynomial P such that

∀x ∈ Supp(ComputeExp),
∣∣∣∣P (x)− exp(x)

exp(x)

∣∣∣∣ ≤
√

a− 1
2 · a2 ·Qexp

(6)

ensures Ra(Real, Inter) ≤ 1 + a−1
4aQexp

.

Proof. Suppose that (6) is true. Then, ∀x ∈ Supp(ComputeExp):

1−
√

a− 1
2 · a2 ·Qexp

≤ P (x)
ComputeExp(x) ≤ 1 +

√
a− 1

2 · a2 ·Qexp
.

A straightforward application of Lemma 2 yields the result. ut
Assuming that 256 bits are claimed in the Ideal case, then λ = 254 and

√
a−1

2·a2·Qexp
≈ 2−43.5. In

the following, we depict possible choices for polynomials to replace ComputeExp that verify Lemma 3. For
efficiency reasons, we reduce the interval of for the polynomial approximation to [0, ln(2)]. Indeed, one can
reduce the parameter x modulo ln 2 such that x = r + s ln 2. Compute the exponential remains to compute
exp(−x) = 2−s exp(−r). Noting that s ≥ 64 happen very rarely, thus s can be saturated at 63 to avoid
overflow without loss in precision.

Floating point version. One can directly replace ComputeExp by the polynomial approximation denoted
Pfp provided in FACCT [ZSS18]. The article [ZSS18] actually provides a polynomial approximation for
x 7→ 2x and not exp(·.). However, the associated implementation files provide a polynomial approximation
Pfacct specially computed for Falcon.6 It verifies:

∀x ∈ [0, ln(2)],
∣∣∣∣Pfacct(x)− exp(x)

exp(x)

∣∣∣∣ ≤ 2−45.

Fixed-point version. For a portable version using fixed precision arithmetics, one could use the tool pro-
vided in GALACTICS [BBE+19]. This tool generates polynomial approximations that allow a computation
in fixed precision with chosen size of coefficients and degree. One can generate a polynomial, denoted Pgal,
to approximate the function exp(·) on [0, ln(2)] that verifies

∀x ∈ [0, ln(2)]
∣∣∣∣Pgal(x)− exp(x)

exp(x)

∣∣∣∣ ≤ 2−44.

As an example, for 32-bit coefficients and a degree 10, GALACTICS tool provides this polynomial:

Pgal(x) =
10∑
i=0

ai · xi,

with:
6https://github.com/raykzhao/gaussian/blob/master/applications/falcon/fpr-double.h

https://github.com/raykzhao/gaussian/blob/master/applications/falcon/fpr-double.h


– a0 = 1;
– a1 = 1;
– a2 = 2−1;
– a3 = 2863311530 · 2−34;
– a4 = 2863311481 · 2−36;
– a5 = 2290647631 · 2−38;

– a6 = 3054141714 · 2−41;
– a7 = 3489252544 · 2−44;
– a8 = 3473028713 · 2−47;
– a9 = 2952269371 · 2−50;
– a10 = 3466184740 · 2−54.

For any x ∈ [0, ln(2)], Pgal verifies
∣∣∣Pgal(x)−exp(x)

exp(x)

∣∣∣ ≤ 2−47, which is sufficient as per Lemma 3 to ensure
security. We now discuss two methods for evaluating efficiently Pgal: Horner’s method and Estrin’s method.

Horner’s form. A natural way to evaluate Pgal efficiently is by writing it in Horner’s form:

Pgal(x) = a0 + x · (a1 + x · (a2 + x · (a3 + x · (a4 + x · (a5 + x · (a6 + x · (a7 + x · (a8 + x · (a9 + x · a10))))))))).

Evaluating Pgal is then done serially as follows:

y← a10
y← a9 + y× x
...

y← a1 + y× x
y← a0 + y× x

Estrin’s form. Some architectures enjoy some level of parallelism, in which case it is desirable to minimise
the depth of the circuit computing Pgal.7 Writing Pgal in Estrin’s form [Est60] is helpful in this regard:

x2 ← x× x
x4 ← x2 × x2
Pgal(x)← (x4 × x4)× ((a8 + a9 × x) + x2 × a10)

+ (((a0 + a1 × x) + x2 × (a2 + a3 × x)) + x4 × ((a4 + a5 × x) + x2 × (a6 + a7 × x)))

We are currently investigating several tradeoffs for Pgal. Distinct platforms may lead to different trade-
offs between size, degree, etc. Adding ad-hoc tweaks like reducing the size of the interval also impacts the
performance. In addition, parallelizability and the size of registers vary between platforms.

5.2 Requirements on BaseSampler

Lemma 4. For D̄ denoting the output distribution of BaseSampler,

Ra(Inter, Ideal) ≤ Ra(D̄,DZ+,σ0).

Proof. Let Ḡ be the distribution of z before rejection sampling (Step 4). All the online phase consists in
multiplying the output distribution by z 7→ exp

(
(z−µ)2

2σ2 − z2
0

2σ2
0

)
. By data processing, we get

Ra(Inter, Ideal) ≤ Ra(Ḡ,GZ,σ0,1/2)

Then, since (considering the distribution of b as perfectly uniform)

Ra(Ḡ,GZ,σ0,1/2) = Ra((2b− 1)D̄ + b, (2b− 1)DZ+,σ0 + b),

we re-apply data processing and obtain Ra(Inter, Ideal) ≤ Ra(D̄,DZ+,σ0). ut

With Lemma 4, we proved that requiring Ra(D̄,DZ+,σ0) ≤ 1 + 1
4Qbs

along with Ra(Real, Inter) ≤
1 + a−1

4aQexp
is enough to satisfy Corollary 1. Thus, we require that Ra(BaseSampler, DZ+,σ0) ≤ 1 + 1

4Qbs
.

7We are thankful to Thomas Pornin for bringing up this fact.



Candidates for BaseSampler In the sequel, we discuss the possible options for BaseSampler that satisfy the
requirements of Lemma 4. Several constant-time samplers exist for centered Gaussians with fixed standard
deviation. We present two choices.

Portable option This simple option relies on a cumulative distribution table (CDT). We precompute a table
of the cumulative distribution function of DZ+,σ0 with a certain precision; then, to produce a sample, we
generate a random value in [0, 1] with the same precision, and return the index of the last entry in the table
that is greater than that value. In variable time, this can be done relatively efficiently with a binary search,
but a constant-time implementation has essentially no choice but to read the entire table each time and carry
out each comparison. This process is summed up in Algorithm 3. The parameters w and θ are respectivelly
the number of elements of the CDT and the precision of its coefficients.

Algorithm 3 BaseSamplerw,θ: full-table access CDT
z ← 0
u← [0, 1) uniformly with θ bits of absolute precision
for 0 ≤ i ≤ w do

b← (CDT[w] ≥ u) . b = 1 if it is true and 0 otherwise
z ← z + b

return z

We use a simple script that, given σ0 and θ as inputs:

1. Compute the smallest tailcut w such that the Renyi divergence Ra between the ideal distribution DZ+,σ0

and its restriction to {0, . . . , w} (noted D[w],σ0) verifies Ra(D[w],σ0 , DZ+,σ0) ≤ 1 + 1
4Qbs

;
2. Rounds the CDT of D[w],σ0 with θ bits of absolute precision. This rounding is done "cleverly":

– for z ≤ 1, the value D[w],σ0(z) is truncated: P (z) = 2−θ
⌊
2θD[w],σ0(z)

⌋
.

– in order to have a probability distribution, P (0) = 1−∑z≥1 P (z).
It is then easy to show that R∞(P,D[w],σ0) = P (0)

D[w],σ0 (0) ≤ 2−θw
D[w],σ0 (0) ≈ 2−θw

σ0
√
π/2+1

.

At that point, one can use the weak triangle inequality of Lemma 1. Interestingly, and for reasons which we
did not pinpoint, some values of σ0 yield in practice even better bounds (by a few bits of security) for the
Rényi divergence than predicted by the theory. Indeed, taking σ0 = 1.8205 and θ = 72, we have:

– P(0) = 2−72 × 1697680241746640300030
– P(1) = 2−72 × 1459943456642912959616
– P(2) = 2−72 × 928488355018011056515
– P(3) = 2−72 × 436693944817054414619
– P(4) = 2−72 × 151893140790369201013
– P(5) = 2−72 × 39071441848292237840
– P(6) = 2−72 × 7432604049020375675
– P(7) = 2−72 × 1045641569992574730
– P(8) = 2−72 × 108788995549429682
– P(9) = 2−72 × 8370422445201343

– P(10) = 2−72 × 476288472308334
– P(11) = 2−72 × 20042553305308
– P(12) = 2−72 × 623729532807
– P(13) = 2−72 × 14354889437
– P(14) = 2−72 × 244322621
– P(15) = 2−72 × 3075302
– P(16) = 2−72 × 28626
– P(17) = 2−72 × 197
– P(18) = 2−72 × 1

One can check that for any a ≤ 513, Ra(P,DZ+,σ0) ≤ 1 + 2−80 ≤ 1 + 1
4Qbs

, which in turn allows to apply
Lemma 4.

Towards a faster option One possible way to improve the efficiency of the previous CDT technique would be
to apply the recent work of Karmakar et al. [KRVV19] to obtain a Knuth-Yao tree from our CDT. Our work
implies that one can apply [KRVV19] with more aggressive parameters (precisely, σ0 = 1.8205 and θ = 72,
instead of σ0 = 2 and θ = 128 in [KRVV19]). As bit generation takes about 80% of the running time of the
sampler of [KRVV19], this should lead to a much greater efficiency.



5.3 Choices for the implementation

We provide an implementation using floating-point arithmetic. It uses Pfacct for computing the exp() and
BaseSampler = BaseSampler19,72.

We are currently working on improving this implementation from two angles. First, we expect to improve
the performance with the use of [KRVV19] for our BaseSampler. Secondly, we expect to provide a portable
version with fixed precision arithmetics by removing all floating points and specialized commands. For this,
we plan to use an adapted polynomial for the exp with [BBE+19] and to change the computation of the
Falcon tree to store the standard deviations and centers with fixed precision.

6 Analysis of resistance against timing attacks

In this section, we show that Algorithm 2 is impervious against timing attacks. We formally prove that it is
constant-time in the sense of Definition 2, with the sensitive values being the inputs σ, µ and the output z.

Attack model. Let µ, σ ∈ R be fixed, with σ > ηε(Z). We suppose that an adversary A can monitor precisely
the execution time of at most QsamplZ executions of SamplerZ(σ, µ). However, A does not know σ, µ, nor
does he know the value z output at each execution. The goal of A is:

A. To estimate σ;
B. To estimate µ;
C. For each execution, to recover the integer z output.

These are the sensitive values for SamplerZ. During the execution of SamplerZ, three elements may leak the
sensitive values:

1. The running time of BaseSampler;
2. The running time of BerExp;
3. The number of iterations of the while loop.

On the other hand, if BaseSampler, BerExp and the number of iterations of the while loop are constant-
time, then SamplerZ is constant-time as a composition of constant-time elements (since the other steps
are a composition of elementary arithmetic operations, which are considered constant-time). To prove that
SamplerZ is constant-time, we prove that each of these elements is constant-time with respect to each sensitive
value σ, µ, z. This requires to verify 3× 3 = 9 conditions, organized in Table 2.

Table 2. Matrix of the conditions required to assess that SamplerZ is constant-time.

σ µ z

BaseSampler 1A 1B 1C
BerExp 2A 2B 2C

# iterations 3A 3B 3C

6.1 Analysis of BaseSampler

We first show that BaseSampler is constant-time.

With respect to σ and µ. BaseSampler takes neither σ nor µ as inputs, so its running time is independent
of them.

With respect to z. The running time of BaseSampler is a fixed constant (see Section 5.2), so it is assumed
constant time.



6.2 Analysis of BerExp

We now show that BerExp is constant-time with respect to σ, µ and z. In BerExp, all the atomic operations
are done in constant time, including the generation of u. Indeed, the polynomial approximation of Section
5.1 is constant time. The number of iterations of the while loop is independent of any secret value: at each
iteration, the probability that the loop stops is 2−8. Thus the running time of BerExp is independent of its
input x and output b (thus of σ, µ and z).

6.3 Number of iterations of the while loop

In this section, we prove that the rejection rate (or equivalently, the number of iterations of the while loop)
leaks no sensitive value (in our case µ, σ, z).

Choice of C. We now make explicit our choice of C in BerExp. For each σ, we take C(σ) = σmin
σ , where

σmin = ηε(Zn) is a lower bound on the possibles values of σ. Clearly, C(σ) ∈ (0, 1) for the considered values
of σ. This scaling factor is independent of µ, z, and we will see that it also makes the number of iterations
independent of σ.

To simplify our argument, we suppose that BaseSampler and BerExp are perfectly correct; leveraging the
same arguments as in Section 5, one can show that our argument hold as well when the real algorithms
BaseSampler and BerExp are used. For fixed inputs σ and µ, the probability that a given z ∈ Z (with a
uniquely associated z0) is output by SamplerZ at an iteration is:

P[SamplerZ→ z] = ρσ0(z0)
ρσ0(Z+)︸ ︷︷ ︸

P[BaseSampler→z0]

· 1
2︸︷︷︸

P[b]

·C(σ) · ρσ,µ(z)
ρσ0(z0)︸ ︷︷ ︸

P[BerExp→true|z]

= C(σ) · ρσ,µ(z)
2 · ρσ0(Z+) .

Let Ptrue denote the probability over an iteration that BerExp→ true. We have:

Ptrue = P[BerExp→ true] =
∑
z

P[SamplerZ→ z] = C(σ) · ρσ,µ(Z)
2 · ρσ0(Z+) , (7)

which is proportional to C(σ) · ρσ,µ(Z), since σ0 is a public constant. For the values of σ0, σ used in Falcon,
it holds that Ptrue ≤ 1/2. Incidentally, this also implies that the average number of iterations Niterverifies
Niter ≤ 2. We now show that the distribution of the number of while loops in SamplerZ is constant-time,
which is equivalent to showing that Ptrue is independent of µ, σ and z.

With respect to µ. Discarding factors independent of µ, the probability Ptrue is proportional to ρσ,µ(Z),
see (7). In Falcon, by construction all the σ’s verify σ ≥ ηε(Zn) ≥ ηε/n(Z), with:

ε ≤ 1√
4λQs

. (8)

From [GPV08, Lemma 2.7], it holds that if σ verifies σ ≥ ηδ(Z) for some δ ∈ (0, 1), then:

ρσ,µ(Z) ∈
[

1− δ
1 + δ

, 1
]
· ρσ(Z). (9)

We note P = BPtrue and Q = B
Ptrue· ρσ(Z)

ρσ,µ(Z)
. The distribution Q is ideal and is independent of µ, but the

one we get in practice is P. Noting δ = ε/n and combining (9) with [Pre17] Lemma 3, the Rényi divergence
Ra(P,Q) verifies:

Ra(P,Q) ≤
(

1 + a(a− 1)δ2

2(1− δ)a+1

) 1
a−1

∼
δ→0

1 + aδ2

2 , (10)

Combining (10), (9), taking a = 2λ+1 and following the same arguments as in Section 5, one can argue that
recovering µ given the number of while loops is as hard as without this information, as long as there are
O(n2Qs) calls to P. In comparison, the actual number of calls to P is smaller by a factor O(n), see Table 1.



With respect to σ. This is where our scaling function plays an important role. We have seen that BerExp
outputs true with a probability essentially proportional to C(σ) ·ρσ(Z). By the Poisson summation formula:

ρσ(Z) = σ
√

2π ·

1 + 2
∑
n≥1

exp(−2n2π2σ2)

 ≈ σ√2π (11)

Thus the probability that BerExp outputs true is essentially proportional to C(σ) · σ = σmin.8 Therefore,
the number of iterations of the while loop is independent of σ.

Impact of the scaling factor. We study the impact of the scaling factor C(σ) on the running time. In Falcon,
each σ verifies σmin ≤ σ ≤ σmax, where σmin = ηε(Zn) and σmax = σmin · maxi ‖b̃i‖

mini ‖b̃i‖
. The b̃i are the Gram-

Schmidt vectors of the secret, short basis B. In Falcon, it holds that:

max
i
‖b̃i‖ ≤ 1.17√q (12)

min
i
‖b̃i‖ ≥

√
q/1.17 (13)

By construction, (12) is true (Falcon enforces this condition). To prove (13), we rely on a peculiar property

of Falcon’s private bases: symplecticity. Let J =
[

0 1
−1 0

]
, and let B =

[
g −f
G −F

]
be a private basis used in

Falcon. It has been observed in [GHN06] that B is q-symplectic, that is, it verifies:

Bt × J×B = q · J. (14)

As per [GHN06, Corollary 1], this implies that for any i, ‖b̃2n+1−i‖ = q/‖b̃i‖. Combining this with (12)
yields (13). Thus C(σ) ≤ σmin

σmax
≤ (1.17)−2 ≈ 0.73, which means a non-negligible but reasonable impact on

the running time of the sampler.

With respect to z. It is immediate from (7) that Ptrue is independent of z. Thus the output z is independent
of the number of iterations of the while loop.

7 Benchmarks

In this section, we first discuss the results of our constant-time implementation of Falcon. Next, we compare
it with the reference implementation running times of Falcon and Dilithium.

7.1 Results

In our constant-time implementation of Falcon, the cost of the signing operation is dominated by the cost
of the fast Fourier sampler as this component accounts for 76% of its total cycle count. In turn, the cost of
the fast Fourier sampler heavily depends on the performance of the Gaussian sampler that is executed 2n
times during the fast Fourier sampling. The 2n calls to the Gaussian sampler account for 58% of the cycle
count of the entire signature generation. Finally, the cost of the fast Gaussian sampler heavily depends on
the performance of the PRNG (a portable implementation of ChaCha20) whose cost accounts for 28% of the
entire signature generation.

8The approximation in (11) is precise enough to make this simplification. Indeed, for the parameters of Falcon, it
has a relative error ≤ 2−44, at which point one can apply the same Rényi arguments as previously.



7.2 Comparison

In Table 3 we present the running times of our constant-time implementation on an Intel Core i7-6500U
CPU (clocked at 2.5 GHz) and compare them with the reference implementation running times of Falcon
and Dilithium.

– The Falcon reference implementation is not constant-time. It uses only standard C code, no inline as-
sembly, intrinsic or 128-bit integer. It uses a standard implementation of ChaCha20 as PRNG.

– The Dilithium reference implementation is constant-time, it does not branch depending on secret data
and does not access memory locations that depend on secret data. The reference implementation we
consider is the non-AVX2 and non-AES one. It uses SHAKE-256 and SHAKE-128 as PRNG.

– Our constant-time Falcon implementation uses only standard C code, no inline assembly, floating-point
division, intrinsic or 128-bit integer, except to compute the exp function by using XMM registers of 128
bit [ZSS18,KRVV19]. The PRNG is unchanged compared to the reference implementation of Falcon.

Table 3. Comparison of our constant-time implementation of Falcon with the reference implementation of Falcon
and the constant-time reference implementation of Dilithium.

NIST Level Scheme Constant-Time sign/s vrfy/s pub length sig length

1 - AES128
Falcon (reference) No 5905 41152 897 618
Falcon (this work) Yes 4027 37952 897 618
Dilithium (reference) Yes 2062 10670 1184 2044

2 - SHA256 Dilithium (reference) Yes 1343 7310 1472 2701
3 - AES192 Dilithium (reference) Yes 1507 5578 1760 3366

5 - AES256 Falcon (reference) No 3093 20085 1793 1234
Falcon (this work) Yes 2097 20260 1793 1234

Signature generation time does not include the Falcon LDL tree building, which is done when the private key
is loaded. Compared to the reference implementation, ours is about 50% slower, but remains very competitive
speed-wise. In addition, one can expect a much closer gap using intrinsics (such as AES-NI) for the PRNG
and replacing the CDT by Knuth-Yao trees as per [KRVV19].
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