
PQDH: A Quantum-Safe Replacement for Diffie-Hellman based on SIDH

Vladimir Soukharev1 and Basil Hess2

1 InfoSec Global, Toronto, Ontario, Canada
Vladimir.Soukharev@infosecglobal.com

2 InfoSec Global, Zurich, Switzerland
Basil.Hess@infosecglobal.com

Abstract. We present a post-quantum key agreement scheme that does not require distinguishing between the
initiator and the responder. This scheme is based on elliptic curve isogenies and can be viewed as a variant of the
well-known SIDH protocol. Then, we present an efficient countermeasure against a side-channel attack that applies
to both static and ephemeral versions of SIDH and our scheme. Finally, we show how to obtain an isogeny-based
password-authenticated key exchange protocol based on our scheme by applying a construction shown in [16].
Security and computational complexities summaries are also presented.

Keywords: isogenies, key agreement, side-channel attack, countermeasure, password-authenticated key exchange,
post-quantum cryptography, elliptic curves, cryptography, authentication

1 Introduction

Recently, NIST has started the frst post-quantum cryptography standardization process [12]. Cryptographers around
the world have submitted in total 82 proposals, of which 69 were accepted for the frst round, then 26 were selected
for the second round. The research and cryptanalysis in this area have been drawing more and more researchers from
academia and industry. One goal of the competition is to fnd a quantum-safe alternative to today’s widely used key
agreement schemes: DH and ECDH. There are many different candidates in the competition, but all of them have one
property in common - they differ from DH-like schemes. The quantum-safe candidates for key establishment are called
Key Encapsulation Mechanisms (KEM), where one party generates a shared secret, encrypts it and transmits it to the
other party. In such a case a user of the KEM needs to know who initiates the exchange and who responds to it. A
portion of those KEMs are based on key agreement schemes, which all still have the property that the initiator and the
responder must be distinguished. In DH-like schemes, both parties contribute to the shared secret and from the user
perspective, there is no difference between the initiator and the responder. This might seem like a small difference,
however, from an adoption and migration point of view, it will cause difficulties.

Among the NIST candidates, there is one that resembles DH-like schemes more than the others: SIKE [10]. SIKE
is a KEM, which is based on SIDH [9, 7] where both parties contribute to the shared secret in an equal manner.
However, even though SIDH is the scheme that resembles DH-type schemes, it still requires to distinguish between
the initiator and the responder. In this paper, we improve upon SIDH and propose one of the frst post-quantum key
agreement schemes, PQDH (Post-Quantum Diffie-Hellman), that behaves exactly as DH-type schemes and thus allows
an easier migration. The only other known scheme that has this property is CSIDH (commutative SIDH) [5], which is
also based on supersingular isogenies, but conceptually different from SIDH.

Furthermore, we look at other use cases of key agreement schemes in the industry where the NIST candidates do
not offer a direct solution. Specifcally, we looked at password-authenticated key exchange (PAKE) schemes which
are heavily used in the payment industry. We demonstrate how PQDH can be used to construct a post-quantum PAKE
scheme by using the construction methods presented in [16].

As we move towards such systems, we need to be especially careful with regards to side-channel attacks. Al-
though side-channel attacks are a general concern, in payment systems they are even a bigger threat. Recently, a
fault attack [17] has been published applicable to isogeny-based schemes, like SIDH and PQDH. In this paper, we
demonstrate an efficient countermeasure against these fault attacks, which can be applied not only to PQDH but to all
isogeny-based schemes.

http:industry.We
mailto:Basil.Hess@infosecglobal.com
mailto:Vladimir.Soukharev@infosecglobal.com

The paper is structured as follows. In Section 2, we highlight our main contributions. In Section 3, we provide an
overview of isogeny-based cryptography. In Section 4 we present PQDH followed by the side-channel attack coun-
termeasures in Section 5. Post-quantum PAKE based on PQDH is presented in Section 6. The evaluation results are
shown in Section 7, and we conclude in Section 8. A list of explicit algorithms can be found in Appendix A.

2 Main Contributions

In this work, we present our three main contributions to this feld. First, we demonstrate an improved evolution of the
SIDH scheme, which we named PQDH (Post-Quantum Diffie-Hellman) and which can be used as a direct drop-in
replacement for the conventional Diffie-Hellman-type schemes. Second, we contribute an efficient countermeasure
against a side-channel fault attack on isogeny-based schemes, which applies to both static and ephemeral versions.
Finally, we present a PAKE (password-authenticated key exchange) scheme based on PQDH.

2.1 Post-Quantum Diffie-Hellman

SIDH is one of the most promising candidates for a quantum-resistant key agreement scheme. We focus on the
ephemeral version as the most frequently used in practice, but it is possible to extend the results to the static version.
We have found that although the SIDH scheme resembles the fow of a Diffie-Hellman protocol, it lacks compatibility
with the existing IT infrastructure, which is a characteristic shared among all post-quantum key agreement schemes
submitted to the NIST PQC standardization. The lack of such compatibility occurs because the computational actions
of the initiator and the responder in a communication session differ from each other, making it problematic to use
SIDH with the existing cryptographic APIs, as we need to constantly distinguish between the two types of users. One
option would be to send extra information about the basis used or the user type. However, this is not an option as we
still would need to change the APIs and users are still performing different actions. We found a way to overcome the
obstacle of differentiating between the initiator and the responder and will present a scheme, named PQDH, which is
fully based on SIDH, but works with the existing Diffie-Hellman APIs.

2.2 Fault Attack Countermeasure

A cryptographic scheme may be secure from the theoretical point of view, however, there is more to consider to
ensure full protection. The attacker could be listening, monitoring, and/or capturing radio-frequency waves, electricity
consumption, or other emissions or behaviour data of the computational device performing cryptographic operations.
The obtained information and its analysis can be used to recover part of or the entire secret key. These kinds of
attacks are known as side-channel attacks. There are different categories of such attacks, including simple side-channel
attacks, differential side-channel attacks, fault attacks, and others. If a protocol is vulnerable to such attacks, then either
software or hardware countermeasures need to be implemented. Given that we are living in an era where software is
expected to work on multiple platforms, the software countermeasures are the preferred option to provide the desired
fexibility.

Fault attacks are categorized as active attacks and occur when the attacker either modifes the input data for cryp-
tographic computations or inserts some faults on purpose. The attacker can then make use of the resulting computation
with faults to recover some private information.

For isogeny-based schemes, one possible attack is a fault attack that enables one to compute an isogeny value for a
random point. The attack is unique as it is currently the only known side-channel and fault attack specifc to isogeny-
based cryptosystems that could be applied to both static and ephemeral versions of the schemes, while all the other
known attacks apply only to static versions of the schemes. Thus, switching to an ephemeral version will not help to
prevent this attack. Hence, a countermeasure for this attack is needed in any case. The attack has been discovered by
Ti [17].

In general, a secret isogeny can be computed and return the resulting values only for the other party’s basis points.
Otherwise, if we know the isogeny value for any other points, which lie outside the corresponding torsion subgroup,
we can, with high probability, recover the secret isogeny. The attacker tries to get the party A to compute their isogeny

2

http:actions.We
http:cryptography.In

φA for points from E[`eA]. This is done by providing a random point instead of a proper point from E[`eB]. The A B
random point can be decomposed with respect to all the basis, and the E[`eA] related point can be isolated, using A

· `eB scalar multiplication of order f B . Having obtained this information, with high probability, the secret isogeny can
be recovered. As here, the parties A and B are generic, we can symmetrically switch all A’s and B’s in our description.

2.3 Password-Authenticated Key Exchange

Password-Authenticated Key Exchange (PAKE) is a protocol where parties establish a common cryptographic key
based on the knowledge of the common password. In practice, it is a key agreement with an added password. The
password should be computationally infeasible to guess. The password is also used to mask the public key information
sent over an insecure channel.

The frst PAKE protocol was designed by Bellovin and Merritt in 1992 [1]. One of its main advantages is allowing
the usage of low-entropy passwords. Today, many protocols of this type exist. Most of them are based on either a
multiplicative group Z∗ or on a group of points of elliptic curves. There are only lattice-based and isogeny-based p
schemes that are post-quantum PAKE-type protocols [8, 19] and [16]. The frst isogeny-based PAKE protocol was
proposed by Taraskin et al. [16], which is based on SIDH. We propose a PAKE protocol that builds on top of PQDH,
using the same construction as the one by Taraskin et al. Given that PQDH truly resembles Diffie-Hellman-type
schemes, building other protocols from it makes them less complex. The main advantage of our protocol is that, once
again, both parties are performing the same actions and we do not need to distinguish between the initiator and the
responder. It is roughly two times slower, hence a trade-off between the speed and convenience of use in today’s
infrastructure.

2.4 Applications

As a key agreement scheme, PQDH has many possible applications. Today, most commonly used key agreements
are Diffie-Hellman-type schemes based either on a multiplicative group of integers modulo a prime or on an elliptic
curve group (ECDH). The exposure to side-channel attacks leads to the need for countermeasures implemented in an
efficient way to avoid performance trade-offs.

One of the most natural applications of PAKE is establishing a common session secret key for mutual authentica-
tion between a smartcard and a terminal that provides PIN entry. Another highly important application is using it in
the IEEE 802.11 WLAN standard. There are several other applications of PAKE, including its usage in client-server
networks.

3 Background

In this section, we provide a brief overview of post-quantum elliptic-curve cryptography, also often referred to as
“isogeny-based cryptography”.

3.1 Isogenies

We provide a brief background review on isogenies between elliptic curves. For further details on the mathematical
foundations of isogenies, we refer the reader to [9, 14].

Given two elliptic curves E1 and E2 defned over fnite feld Fq of size q, an isogeny φ is an algebraic morphism
from E1 to E2 of the form !

f1(x, y) f2(x, y)
φ(x, y) = , ,

g1(x, y) g2(x, y)

such that φ(∞) = ∞ (here f1, f2, g1, g2 are polynomials in two variables, and ∞ denotes the identity element on an
elliptic curve). Isogeny is an algebraic morphism which is a group homomorphism. The degree of a given isogeny φ,
deg(φ), is its degree as an algebraic morphism.

3

http:password.In

Given an isogeny φ : E1 → E2 of degree n, there exists a related isogeny φ̂ : E2 → E1 of the same degree, which is
called the dual isogeny. Two elliptic curves are called isogenous if there exists an isogeny between them.

Let n be any natural number; we defne E[n] to be the n-torsion subgroup of E, namely

E[n] = {P ∈ E(F̄q) : nP = ∞}.

Thus, E[n] is the kernel of the multiplication by n map over the algebraic closure F̄q of Fq. It is important to note that
the group E[n] is isomorphic to (Z/nZ)2 as a group whenever n and q are relatively prime [14].

We defne End(E) to be the endomorphism ring, which is a set of all isogenies from an elliptic curve E to itself,
defned over the algebraic closure Fq of Fq. End(E) is a ring under the operations of pointwise addition and functional ¯
composition. If dimZ(End(E)) = 2, then we say that the curve E is ordinary; otherwise, dimZ(End(E)) = 4, in which
case we say that the curve E is supersingular. An important property relating isogenies and types of curves is that two
isogenous curves are either both ordinary or both supersingular. All elliptic curves used in this work are supersingular.
The isogeny φ : E1 → E2 is separable if the extension Fq(E1)/φ∗(Fq(E2)) is separable. We will only consider separable
isogenies. The size of the kernel of that isogeny is equal to the degree of that isogeny [14, III.4.10(c)].

Up to isomorphism, an isogeny is uniquely defned by the kernel. Various methods, complementing each other,
for computing and evaluating isogenies are given in [4, 9, 11, 18]. We use the isogenies whose kernels are cyclic
groups. Knowledge of the kernel, or any single generator of the kernel, allows us to perform an efficient evaluation of
the isogeny (up to isomorphism). Conversely, the ability to evaluate the isogeny via a black box allows for efficient
determination of the kernel. Thus, in our application, the following are equivalent:

· knowledge of the isogeny,
· knowledge of the kernel,
· knowledge of any generator of the kernel.

3.2 Isogeny-Based Key Agreement

The term ECC (elliptic-curve cryptography) typically refers to cryptographic primitives and protocols whose security
is based on the hardness of the discrete logarithm problem on elliptic curves. This hardness assumption is invalid
against quantum computers [13]. Hence, traditional elliptic-curve cryptography is not a viable foundation for con-
structing quantum-resistant cryptosystems. As a result, alternative elliptic-curve cryptosystems based on hardness as-
sumptions other than discrete logarithms have been proposed for use in settings where quantum resistance is desired.
One early proposal by Stolbunov [15], based on isogenies between ordinary elliptic curves, was subsequently shown
by Childs, Jao, and Soukharev [6] to offer only subexponential difficulty against quantum computers. The algorithm
has recently been further improved by Bonnetain [2].

In response to these developments, Jao, Plût and De Feo [9] proposed a new collection of quantum-resistant
public-key cryptographic protocols for entity authentication, key exchange, and public-key cryptography, based on the
difficulty of computing isogenies between supersingular elliptic curves. We review here the most fundamental protocol
in the collection - key exchange protocol, which forms the main building block for our proposed schemes.

Fix a prime p of the form
p = `eA `eB · f ± 1, A B

where ` A and ` B are small primes, eA and eB are positive integers, and f is some (typically very small) cofactor.
Then, fx a supersingular curve E defned over Fp2 , and bases {PA, QA} and {PB, QB} which generate E[`eA] and E[`eB] A B
respectively, so that hPA, QAi = E[`eA] and hPB, QBi = E[`eB]. Alice chooses two random elements mA, nA ∈R Z/`

eA
A B A Z,

not both divisible by ` A, and computes an isogeny φA : E → EA with kernel KA := h[mA]PA + [nA]QAi. Alice also
computes the points {φA(PB), φA(QB)} ⊂ EA(Fp2) obtained by applying her secret isogeny φA to the basis {PB, QB}
for E[`eB], which are called auxiliary points, and sends these points to Bob together with EA. Similarly, Bob selects B
random elements mB, nB ∈R Z/`

e
B

B Z, not both divisible by ` B, and computes an isogeny φB : E → EB having kernel
KB := h[mB]PB + [nB]QBi, along with the auxiliary points {φB(PA), φB(QA)}. Upon receipt of EB and φB(PA), φB(QA) ∈
EB(Fp2) from Bob, Alice computes an isogeny φ0 A : EB → EAB having kernel equal to h[mA]φB(PA) + [nA]φB(QA)i; Bob
proceeds symmetrically. Alice and Bob can then use the common j-invariant of

EAB = φ0 B(φA(E)) = φ0 A(φB(E)) = E/h[mA]PA + [nA]QA, [mB]PB + [nB]QBi

4

http:aregivenin[4,9,11,18].We

A B
Input: A, B, sID Input: B
mA, nA ∈R Z/`

e
A

A Z mB, nB ∈R Z/`
e
B

B Z
φA : E → EA = φB : E → EB =
E/h[mA]PA + [nA]QAi E/h[mB]PB + [nB]QBi

A,sID,φA (PB),φA(QB),EA
−−−−−−−−−−−−−−−−−→

B,sID,φB(PA),φB(QA),EB
←−−−−−−−−−−−−−−−−−

EAB := EBA :=
EB/h[mA]φB(PA)+[nA]φB(QA)i EA/h[mB]φA(PB)+[nB]φA(QB)i

Output: j(EAB), sID Output: j(EBA), sID

Fig. 1: Key Agreement protocol using isogenies on supersingular curves.

to form a secret shared key.
The protocol is presented in Figure 1. We denote by A and B the identifers of Alice and Bob, and use sID to denote

the unique session identifer.
It is important to note that Alice and Bob operate on different bases, one set for the initiator and a different one for

the responder. As a result, besides bases, different spaces are selected for scalars. Hence, one must always distinguish
between the two roles, otherwise, the protocol will fail.

Remark 1. Alice’s auxiliary points {φA(PB), φA(QB)} allow Bob, or any eavesdropper, to compute Alice’s isogeny φA

on any point in E[`eB]. This ability is necessary for the scheme to function since Bob needs to compute φA(KB) as part B
of the scheme. However, Alice must never disclose φA(PA) or φA(QA), or more generally any information that allows
an adversary to evaluate φA on E[`eA], since disclosing this information would allow the adversary to solve a system A
of discrete logarithms in E[`eA], which are easy since E[`eA] has a smooth order, to recover KA. The same applies to A A
Bob. The side-channel attack presented in [17] tries to force the user to compute their isogeny on their basis points.

Remark 2. The textbook version of the SIDH protocol assumes that the secret scalars m and n, which are not both
divisible by `, where basis points P, Q are of order `e. In practice, following the explanations in Section 4.2.1 of [9]
and Section 4 of [7], we may assume m = 1 and compute the kernel point as P + [n]Q.

3.3 CSIDH

The only other post-quantum scheme, besides the one presented in this paper, that achieves the property that there is
no need to distinguish between the initiator and the responder is CSIDH (commutative SIDH) [5]. This scheme has
similar principles as SIDH but works over Fp, which means that the resulting Fp-endomorphism ring is commutative.
It is an interesting solution. One thing to note is that due to its commutativity, the same quantum subexponential attack
applies as for the ordinary curves [6]. The authors have shown that the proposed scheme provides 64 quantum bit
security. Recently, the scheme was further studied in [3], where the authors show that it provides 35 bit of quantum
security. Hence, the scheme is worth looking into and continuing the development, but one must be careful with
security parameters and expect less efficiency, but at the same time a “fully commutative” scheme.

4 PQDH - Post-Quantum Diffie-Hellman

The operations performed by the initiator and the responder differ in the original SIDH protocol. This can be incon-
venient, as we want the key generation and key derivation steps to be identical on both sides to provide a true drop-in
replacement for ephemeral Diffie-Hellman-like protocols used today. In this section, we propose a protocol PQDH
(Post-Quantum Diffie-Hellman), the improved version of SIDH which resolves the initiator-responder difference is-
sue.

5

4.1 Our Protocol

The main idea of our protocol is to generate own (private, public) key pair using both sets of bases. Then each user
matches them with the opposite parameters of the other user and computes two common values, which are then
combined in a commutative manner.

Key Generation: Each party performs the following steps:

1. Randomly select nA ∈ Z` and nB ∈ Z`eA eB .
2. Compute KA = PA + [nA]

A
QA.

B

3. Compute KB = PB + [nB]QB.
4. Obtain EA using the kernel hKAi for the isogeny φA : E → EA = E/hKAi.
5. Obtain EB using the kernel hKBi for the isogeny φB : E → EB = E/hKBi.
6. Compute the images of the values PB and QB under φA, namely φA(PB) and φA(QB).
7. Compute the images of the values PA and QA under φB, namely φB(PA) and φB(QA).

The private key is: {nA, nB}. The public key is: {EA, EB, φA(PB), φA(QB), φB(PA), φB(QA)}. The party either sends or
publishes eathe public key. In practice, since we are in concentrating on the ephemeral version, we work in the context
of sending public key.

Key Derivation: After obtaining the other party’s public key, {E1, E2, P00, P01, P10, P11}, the user performs the fol-
lowing steps to derive the common key:

1. Using their own private key value nA and the other user’s auxiliary points P10, P11 computes KA2 = P10 + [nA]P11.
2. Using their own private key value nB and the other user’s auxiliary points P00, P01 computes KB1 = P00 + [nB]P01.
3. Using KA2 as the generator point for the kernel computes EA2 = E2/hKA2i.
4. Using KB1 as the generator point for the kernel computes EB1 = E1/hKB1i.
5. Computes the j-invariants of the resulting curves: j1 = j(EA2) and j2 = j(EB1).
6. Combines j1 and j2 in a commutative manner to obtain j
7. Obtains a common key k = KDF(j).

Remark 3. For the step where the user combines j1 and j2 to obtain j, the method would be predefned in the protocol.
The two most practical approaches are either to add them as feld elements or to XOR them as binary elements,
component by component.

Diagram We present the diagram of the protocol.

EA0 B0 EB0 EAB0

EA0 E EA

EA0 B EB EAB

Fig. 2: PQDH Diagram

In the diagram, the densely dotted edges represent the secret isogenies of one party and the loosely dashed edges
represent the secret isogenies of the other party. The red curves are the common derived secret used for the common
secret key. The yellow edges and curves are possible to compute but are not computed or used.

Complexity The computational complexity of this protocol is about double compared to SIDH, as each user is simul-
taneously operating on both bases. The same is true for the overhead, we have exactly a double amount of data sent in
comparison to SIDH. The private key size is also doubled.

For the global parameters nothing is changed; they are the same as in the SIDH case. This property allows users to
choose between SIDH or PQDH, operating on the same set of parameters.

6

http:publickey.In

Security The security of the scheme relies on the same assumptions as SIDH, which is defned and discussed in [9].
We can see that breaking the PQDH scheme is equivalent to breaking two instances of SIDH to get both j-invariants.
On the other hand, we are combining the two j-invariants, which causes dependencies between the fnal key and both
of them, and hence we might not get quite the double effort to break the scheme. This means that the security of
the scheme is about the same as the one of SIDH. In fact, its security level is slightly higher than that of SIDH, but
less than two times higher compared to SIDH. (Note: by two times, we mean the complexity of attack, i.e., which is
equivalent to one bit of security.) Thus, we claim that the PQDH security level is at least equivalent to that of SIDH
with the same parameters for both classical and post-quantum security.

5 Efficient Countermeasure

The only known side-channel attack that applies to the ephemeral version of SIDH and PQDH is the fault attack
described in Section 2.2. A direct countermeasure to this attack is to check the order of the other party’s basis points.
Order-checking computation, although polynomial in running time, is expensive and could cost 100 percent running
time per point. Given that there are two basis pointss, we could have a cost of 200 percent. In this section, we propose
a more efficient approach to providing such countermeasure.

5.1 Efficient Approach for SIDH

In the case of the SIDH protocol, we assume that we obtain or receive the other party’s basis points P and Q whose
expected order is `e .
Let φ be the current party’s secret isogeny, S be either P or φ(P), and T be either Q or φ(Q). Note: this choice must
match the choice for S .

Remark 4. In this case, we recommend choosing φ(P), φ(Q) as values of S and T , respectively. This would also prevent
a fault-injection attack that could happen during the course of the computation.

Before we proceed, we prove the following claim.

Claim. Let S , T ∈ E(Fp2) be non-identity points, where E is supersingular and p = `e · `0e
0

· f ± 1 (where ` and `0 are
small primes). If S + T ∈ E[`e], then either both S and T are in E[`e] or both are in E \ E[`e].

Proof. We can express S = S 1 + S 2, such that S 1 ∈ E[`e] and S 2 ∈ E[`0e
0
f]. Similarly, we can express T = T1 + T2,

such that T1 ∈ E[`e] and T2 ∈ E[`0e
0
f]. Given the fact that S + T ∈ E[`e] and so are S 1 and T1,

∞ = [`e](S + T) = [`e](S 1 + S 2 + T1 + T2)
= [`e]S 1 + [`e]S 2 + [`e]T1 + [`e]T2

= [`e]S 2 + [`e]T2

= [`e](S 2 + T2).

It follows that
[`e](S 2 + T2) = ∞,

which means that S 2 + T2 ∈ E[`e]. At the same time, S 2 + T2 ∈ E[`0e
0
f]. Since E[`e] ∩ E[`0e

0
f] = {∞}, we obtain that

S 2 + T2 = ∞.

Hence, either S 2 = T2 = ∞, meaning that S , T ∈ E[`e] or S 2 = −T2 , ∞, meaning that S , T ∈ E \ E[`e]. �

The above claim is a standard group theory result. It shows that if the sum (or in fact a linear combination) of the
two points is checked, then we only need to check one of the two points in the case that their sum verifes. This is
an alternative to checking each point separately, as in the case of someone trying to forge the basis points, we will be
able to catch that faster, as most likely S + T provided will not verify if there is a forgery. Another application of this
approach is when using Montgomery curves, we could already be provided with S , T, S − T , so that we can choose to
verify S − T and either of S or T , which provides a speed-up as well.

Perform the following:

7

1. Compute R = S + T .
2. Compute O = [`e]R.
3. If the resulting value of O is the point at infnity (∞), continue, otherwise abort the session.
4. Compute OS = [`e]S .
5. If the resulting value of OS is the point at infnity (∞), continue, otherwise abort the session.

Compared to the general countermeasure approach (i.e. computing the orders of points), the proposed one is
expected to be about 10 times faster, depending on the curve format. We avoid expensive computations of a point-
order fnding algorithm and, instead, perform one special scalar multiplication. In practice, the value of ` is either 2 or
3. Given that our scalar is in the form of `e, we only need to compute DOUBLE or TRIPLE elliptic curve arithmetic
operation e times. The results in Section 7.1 show that the cost of this countermeasure is approximately 22%-24%.

Step 2 of our approach is ensuring that R ∈ E[`e]. It is computationally more efficient than fnding the exact order.
At the same time, this suffices for our purposes, as the attack only works when we have some point in E \ E[`e] that is
of order other than `i for i ∈ {0, 1, . . . , e}.

5.2 Efficient Approach for PQDH

In this section, we will present the countermeasure against the described fault attack for the PQDH protocol.
We frst describe how to properly perform a check of the order of the basis points used for the kernel that is being

used to compute the isogeny and the image curve.
Assume that the basis points used for computation of our isogeny are P, Q. The expected order of each point is

`e. Let (m, n) be the private key (where m = 1 in practice). Hence, the kernel point is K = [m]P + [n]Q. Our frst
observation is that we only need to make sure that K is of order `e instead of just P and Q, as n is random each time
and hence chances of picking P0 , Q0 of different order, which would still result K of the correct order are equivalent
to guessing the actual private key. Also, we enforce that K is not just an element of E[`e] to ensure that our resulting
isogeny is of full-span degree.

Throughout the execution of computing and evaluating our isogeny with kernel K, we observe that we are com-
puting and obtaining values of the following format [`i]φ j(K), where φ j is and isogeny of degree ` j for some i’s and
j’s in {0, . . . , e − 1}.

We also note that [`i]φ j(K) = φ j([`i]K). We choose such available value with the highest value of i + j available.
In practice, since we use isogenies with ` = 2, 3, we could be either one or two steps away from i + j = e. Namely, we
will be able to fnd i + j = e − 2 or e − 1, depending whether we are using a multiplication-based, an isogeny-based, or
an optimal strategy. These three strategies are described in detail in [9, 7]

If we are using a multiplication-based or an isogeny-based strategy, then we know that in the process of the isogeny
computation, we will obtain R = [`i]φ j(K) such that i + j = e − 1. In this case, we perform the following:

1. Check that R , ∞, otherwise, abort.
2. Compute F = [`]R.
3. If F = ∞, return ‘valid’, otherwise, abort.

For step 2, if ` = 2, perform a DOUBLE operation; if ` = 3, perform a TRIPLE operation.
When we are using the optimal strategy, we might obtain R = [`i]φ j(K) such that i + j = e − 2. In this case, we

perform the following:

1. Compute F1 = [`]R.
2. Check that F1 , ∞, otherwise, abort.
3. Compute F2 = [`]F1.
4. If F2 = ∞, return ‘valid’, otherwise, abort.

For each of the steps 1 and 3, if ` = 2, perform a DOUBLE operation; if ` = 3, perform a TRIPLE operation.
This approach implicitly checks and ensures that K is exactly of order `e .
The above approach can be applied to PQDH. We note that each party uses both bases {PA, QA} and {PB, QB} to

compute isogenies. Hence, while computing isogenies with the corresponding kernels, a user can verify at the same
time the correct order of these points.

8

http:�j([`i]K).We

The cost of this countermeasure for PQDH is less than one percent. In practice, each user needs to compute at most
four extra DOUBLE operations and two TRIPLE operations, which is negligible compared to the entire computation.

As a result, the proposed countermeasure for this fault attack by an active adversary at a nearly free cost of
computation.

6 PQDH-Based PAKE

In this section, we present a password-authenticated key exchange protocol based on isogenies, namely a PQDH-based
PAKE. The only other known isogeny-based PAKE protocol is one by Taraskin et al. [16], which is based on SIDH.
Our PAKE protocol uses the same construction, but the underlying key agreement is PQDH. It is an alternative, rather
than an improvement, which provides a protocol that is symmetric in terms of actions of the initiator and the responder,
though this comes at a computational cost.

6.1 Protocol

We adapt the main isogeny-based PAKE protocol construction presented in [16] to PQDH.
Suppose parties U1 and U2 share a common password pwd. The global parameters are defned as before. Let HA

and HB be random oracles mapping inputs to masking functions, and let KDF be a key derivation function.

Remark 5. The resulting masking functions Ψ are not explicitly described here. The reader may refer to [16] for
details on masking function construction. For this paper, we note that to mask, we apply the corresponding matrix to
the auxiliary points and to unmask, it is enough to apply the unmasking scalar multiplication operation to the second
auxiliary point.

Each party performs the following steps:

eA
A

1. Choose nA ∈ Z` uniformly and set KA = PA + nAQA.
eB
B

2. Choose nB ∈ Z` uniformly and set KB = PB + nBQB.
3. Obtain EA using the kernel hKAi for the isogeny φA : E → EA = E/hKAi.
4. Obtain EB using the kernel hKBi for the isogeny φB : E → EB = E/hKBi.
5. Compute the images of the values PB and QB under φA, namely φA(PB) and φA(QB).
6. Compute the images of the values PA and QA under φB, namely φB(PA) and φB(QA).
7. Compute ΨA = HA(j(EA)||pwd) and set h i h i

XA φA(PB)
= ΨA · . YA φA(QB)

8. Compute ΨB = HB(j(EB)||pwdA) and set h i h i
XB = ΨB ·

φB(PA) . YB φB(QA)

9. Send {EA, XA, YA, EB, XB, YB} to the other party.

Upon receiving {E1, X1, Y1, E2, X2, Y2} from the party, does the following steps:

A 1. Check that eE1 (X1, Y1) = eE (PB, QB)`
eA

—if not, abort.
B 2. Check that eE2 (X2, Y2) = eE (PA, QA)`
eB

—if not, abort.
3. Compute Ψ1 = HA(j(E1)||pwd).
4. Compute Ψ2 = HB(j(E2)||pwd).

1 5. Compute j1 = j(E1/hX1 + n
Ψ−1

Y1i). B

6. Compute j2 = j(E2/hX2 + n
Ψ

A
2
−1

Y2i).
7. Construct the key K, given by

K = KDF((EA, XA, YA, EB, XB, YB) ⊕ (E1, X1, Y1, E2, X2, Y2)|| j1 ⊕ j2||(ΨA, ΨB) ⊕ (Ψ1, Ψ2)).

9

Complexity We compare the complexity of the given approach to that of the original isogeny-based PAKE protocol,
which is based on SIDH. Given that each party in phase one and phase two performs about twice the number of
operations in PQDH-based PAKE, the complexity is about double.

Security For security purposes, one can break the protocol into two separate instances, except the last step, frst
running the odd steps and then running the even steps and combining the two results to obtain the key. Thus, we get
the same security arguments with slight modifcations that on one side it might be harder to attack the given protocol
because there is a double amount of weight, but on the other hand due to the fact that we are symmetrically combing
the secret results, it will make the advantage negligible and hence provide us with about the same security as that of
the original PAKE protocol.

7 Implementation

We implemented PQDH including the fault attack countermeasures. The implementations are based on the optimized
implementation of the SIKE submission to the NIST post-quantum standardization process3 [10]. Our additions apply
to both the version in portable C, as well as to the ASM optimized versions for ARM and Intel x86-64. The supported
primes are:

· 3159 − 1 · p503 = 2250

· 3239 − 1 · p751 = 2372

.
3 The implementation uses Montgomery curves EA,B over Fq that satisfy the curve equation By2 = x + Ax2 + x.

Arithmetic on the elliptic curves is done efficiently using projective coordinates. Isogeny computations are done using
an optimal tree traversal strategy as described in [10]. Multi-precision arithmetic is optimized using ARMv8 and Intel
x86-64 assembly.

Our additions and modifcations are the following: PQDH is added as defned in Algorithm 1. For a detailed
specifcation of the underlying algorithms, we refer to the SIKE specifcation ([10], Alg. 3-22). The detailed explicit
algorithms for implementing the countermeasures are defned in Appendix A.

Algorithm 1: PQDH = (PQDHGen, PQDHDer)

1 function PQDHGen 5 function PQDHDer
Input: ()
Output: (sk, pk)

2 (sk2, sk3) ←R (K2, K3) 6

3 (pk2, pk3) ← (isogen2(sk2), isogen3(sk3)) 7

4 return ((sk2, sk3), (pk2, pk3)) 8

9

Input: (sk, pk) = ((sk2, sk3), (pk2, pk3))
Output: (K)
j2 ← isoex2(pk3, sk2)
j3 ← isoex3(pk2, sk3)
K ← j2 ⊕ j3

return K

7.1 Evaluation Results

The performance of PQDH and the countermeasures were evaluated on an Intel Core i7-8559U 2.7 GHz (Coffee Lake)
CPU, on CentOS 7. Hyperthreading and Turbo Boost were disabled as a standard practice. The software was compiled
using GCC version 4.8.5 with ”-O3” optimization level.

We denote the instantiations for the schemes as SIDHp503, SIDHp751, PQDHp503, PQDHp751.
Table 1 shows the performance of SIDH and PQDH. All schemes are evaluated using (a) no countermeasures, (b)

the countermeasure from Sec. 5.1 is applied to the KeyDer phase of all schemes, and (c) the countermeasure from
Sec. 5.2 is applied to PQDH.

3 https://github.com/Microsoft/PQCrypto-SIDH

10

https://github.com/Microsoft/PQCrypto-SIDH

Performance In absolute terms on our test platform, PQDH KeyGen is performed in 8 msec. and 22.3 msec. for P503
and P751, respectively. PQDH KeyGen in 6.7 msec. and 18.6 msec., respectively.

The performance of PQDH KeyGen is equivalent to SIDH KeyGen A and SIDH KeyGen B added up. The same
holds for The PQDH KeyDer phase, with a performance of SIDH KeyDer A and SIDH KeyDer B added up.

All countermeasures are applied to the KeyDer phases. The frst countermeasure version shows a 22% − 24%
increase of cycles in the schemes. Compared to that, the second countermeasure version applied to PQDH shows a
negligible overhead that lies within the measurement tolerance. It can be seen as a rare case of a countermeasure
without a performance impact and applies therefore even for very performance-constrained environments.

Scheme KeyGen A KeyGen B KeyDer A KeyDer B

No countermeasures

SIDHp503 10’165 11’302 8’284 9’513
SIDHp751 28’342 31’769 23’043 27’679
PQDHp503 21’466 17’779
PQDHp751 60’254 50’155

Efficient countermeasure for SIDH (Sec. 5.1)
SIDHp503 - 10’134 11’815
SIDHp751 - 28’566 34’444
PQDHp503 - 21’945
PQDHp751 - 62’187

Efficient countermeasure for PQDH (Sec. 5.2)
PQDHp503 - 18’060
PQDHp751 - 50’234

Table 1: Performance of SIDH and PQDH, in thousands of cycles. Evaluation of three versions: No countermeasures,
optimal countermeasure for SIDH, and an efficient countermeasure for PQDH. On Core i7-8559U 2.7 GHz.

Key sizes The sizes of the PQDH private and public keys are double the size of the SIDH keys. Note that the net size
of the 2-torsion private key of SIDHp751 is 372 bit and would ft in 47 bytes. To match the size of the 3-torsion keys,
we zero-pad it to 48 bytes. All sizes are depicted in Table 2.

8 Conclusion

Isogeny-based cryptography continues to be researched and developed. The schemes are being optimized, more crypt-
analysis is being performed, new variants of schemes are being created for various applications, and new protocols are
being designed. As cryptography is an integral part of today’s IT infrastructure, we also need to fnd methods allowing
for an efficient migration to new schemes.

In this paper, we have presented PQDH, a variant of SIDH, which removes the requirement to distinguish be-
tween the initiator and the responder. This scheme is not only one of the frst isogeny-based, but also one of the frst

11

http:bytes.To

Scheme
private key

sk

public key

pk

shared secret
ss

SIDHp503 32 378 126
SIDHp751 48 564 188
PQDHp503 64 756 126
PQDHp751 96 1128 188

Table 2: Private/public key, and shared secret sizes of SIDH and PQDH in bytes.

quantum-resistant schemes with such property. This will be very helpful in transitioning from conventional to post-
quantum cryptography. Also, we have presented an efficient countermeasure against the side-channel fault attack. The
attack applies not only to the static version of SIDH and PQDH, but also to the ephemeral one, which makes this coun-
termeasure highly desirable. Finally, we have shown that same isogeny-based PAKE construction, as shown in [16],
applies to the PQDH scheme.

12

References

1. Steven M. Bellovin and Michael Merritt. Encrypted Key Exchange: Password-Based Protocols Secure Against Dictionary
Attacks. In IEEE SYMPOSIUM ON RESEARCH IN SECURITY AND PRIVACY, pages 72–84, 1992.

2. Xavier Bonnetain. Improved Low-qubit Hidden Shift Algorithms. CoRR, abs/1901.11428, 2019.
3. Xavier Bonnetain and André Schrottenloher. Quantum Security Analysis of CSIDH and Ordinary Isogeny-based Schemes.

IACR Cryptology ePrint Archive, 2018:537, 2018.
4. Reinier Bröker, Denis Charles, and Kristin Lauter. Evaluating Large Degree Isogenies and Applications to Pairing Based

Cryptography. In Pairing ’08: Proceedings of the 2nd International Conference on Pairing-Based Cryptography, pages 100–
112, 2008.

5. Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, and Joost Renes. CSIDH: An Efficient Post-Quantum Com-
mutative Group Action. In ASIACRYPT, 2018.

6. Andrew Childs, David Jao, and Vladimir Soukharev. Constructing elliptic curve isogenies in quantum subexponential time. J.
Math. Cryptol., 8(1):1–29, 2014.

7. Craig Costello, Patrick Longa, and Michael Naehrig. Efficient Algorithms for Supersingular Isogeny Diffie-Hellman. In
Matthew Robshaw and Jonathan Katz, editors, Advances in Cryptology – CRYPTO 2016: 36th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 14-18, 2016, Proceedings, Part I, pages 572–601, Berlin, Heidelberg, 2016.
Springer Berlin Heidelberg.

8. Jintai Ding, Saed Alsayigh, Jean Lancrenon, Saraswathy RV, and Michael Snook. Provably Secure Password Authenticated
Key Exchange Based on RLWE for the Post-Quantum World. In Helena Handschuh, editor, Topics in Cryptology – CT-RSA
2017, pages 183–204, Cham, 2017. Springer International Publishing.

9. Luca De Feo, David Jao, and Jérôme Plût. Towards quantum-resistant cryptosystems from supersingular elliptic curve isoge-
nies. J. Mathematical Cryptology, 8:209–247, 2014.

10. David Jao, Reza Azarderakhsh, Matthew Campagna, Craig Costello, Luca De Feo, Basil Hess, Amir Jalali, Brian Koziel, Brian
LaMacchia, Patrick Longa, Michael Naehrig, Joost Renes, Vladimir Soukharev, and David Urbanik. Supersingular Isogeny
Key Encapsulation. 2017. Submission to Post-Quantum Cryptography Standardization Process.

11. David Jao and Vladimir Soukharev. A subexponential algorithm for evaluating large degree isogenies. In Algorithmic number
theory, volume 6197 of Lecture Notes in Comput. Sci., pages 219–233. Springer, Berlin, 2010.

12. National Institute of Standards and Technology. Post-Quantum Cryptography Standardization Process, 2017. https://csrc.
nist.gov/Projects/Post-Quantum-Cryptography.

13. Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J.
Comput., 26(5):1484–1509, 1997. Preliminary version in FOCS ’94. arXiv:quant-ph/9508027v2.

14. Joseph H. Silverman. The arithmetic of elliptic curves, volume 106 of Graduate Texts in Mathematics. Springer-Verlag, New
York, 1992. Corrected reprint of the 1986 original.

15. Anton Stolbunov. Constructing public-key cryptographic schemes based on class group action on a set of isogenous elliptic
curves. Adv. Math. Commun., 4(2):215–235, 2010.

16. Oleg Taraskin, Vladimir Soukharev, David Jao, and Jason LeGrow. An Isogeny-Based Password-Authenticated Key Establish-
ment Protocol. IACR Cryptology ePrint Archive, 2018:886, 2018.

17. Yan Bo Ti. Fault Attack on Supersingular Isogeny Cryptosystems. In Tanja Lange and Tsuyoshi Takagi, editors, Post-Quantum
Cryptography, pages 107–122, Cham, 2017. Springer International Publishing.

18. Jacques Vélu. Isogénies entre courbes elliptiques. C. R. Acad. Sci. Paris Sér. A-B, 273:A238–A241, 1971.
19. Jiang Zhang and Yu Yu. Two-Round PAKE from Approximate SPH and Instantiations from Lattices. In Tsuyoshi Takagi

and Thomas Peyrin, editors, Advances in Cryptology – ASIACRYPT 2017, pages 37–67, Cham, 2017. Springer International
Publishing.

13

https://csrc

A Explicit algorithms

We provide a collection of explicit algorithms used for the fault attack countermeasures: Differential addition xADD is
used for the SIDH fault attack countermeasure from Sec. 5.1 is added as in Algorithm 2. The optimal countermeasures
for SIDH from Sec. 5.1 are integrated to isoex2 and isoex3. They are defned in Algorithms 5-6. For the PQDH
countermeasure from Sec. 5.2, the optimal tree traversal strategies for computing isogenies are modifed as defned in
Algorithms 3-4.

Algorithm 2: Differential addition
function xADD

Input: P = (XP : 1), Q = (XQ : 1), PQ = (XQ−P : 1)
Output: (XP+Q : ZP+Q)

1 t0 ← XP + 1 5 t0 ← XP+Q · t0 9 ZP+Q ← Z2
P+Q

2 t1 ← XP − 1 6 t1 ← ZP+Q · t1

3 XP+Q ← XQ − 1 7 ZP+Q ← t0 − t1

4 ZP+Q ← XQ + 1 8 XP+Q ← t0 + t1

10

11

12

XP+Q ← X2
P+Q

ZP+Q ← XQ−P · ZP+Q

return (XP+Q : ZP+Q)

14

Algorithm 3: Computing and evaluating a 2e-isogeny, with the countermeasure for PQDH

function 2 e iso pqdh
Static parameters: Integer e2 from the public parameters, a strategy (s1, . . . , se2/2−1) ∈ (N+)e2 /2−1

Input: Constants (A+ on EA/C 24 : C24) corresponding to a curve EA/C , (XS : ZS) where S has exact order 2e2

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Optional input: (X1 : Z1), (X2 : Z2) and (X3 : Z3) on EA/C
0 Output: (A+ : C0) corresponding to the curve EA0/C0 = E/hS i 24 24

Optional output: (X1
0 : Z0), (X2

0 : Z0) and (X3
0 : Z0) on EA0/C0 1 2 3

Initialize empty deque S
push

�
S, (e2/2, (XS : ZS))

�
i ← 1, j ← 0
while S not empty do

(h, (X : Z)) ← pop(S)
if h = 1 then

if j = 0 then � �

�

(Xd : Zd) ← xDBL (X : Z), (A+
24 : C24)

if Zd = 0 then
Error: Potential fault attack � �

(Xd : Zd) ← xDBL (Xd : Zd), (A+
24 : C24)

if Zd , 0 then
Error: Potential fault attack �

(A+ ← 4 iso curve ((X : Z)) 24 : C24), (K1, K2, K3)
Initialize empty deque S0
while S not empty do

(h, (X : Z)) ← pull(S)
(X : Z) ← 4 iso eval ((K1, K2, K3), (X : Z)) � �
push S0 , (h − 1, (X : Z))

S ← S0
for (Xj : Zj) in optional input � do �

(Xj : Zj) ← 4 iso eval (K1, K2, K3), (Xj : Zj)

j ← 1
else if 0 < si < h then � �
push S, (h, (X : Z�)) �
(X : Z) ← xDBLe (X : Z), (A+ · si � � 24 : C24), 2
push S, (h − si, (X : Z))
i ← i + 1

else
Error: Invalid strategy � �

return (A+ (X1 : Z1), (X2 : Z2), (X3 : Z3)24 : C24),

// Alg.3 [10]

// Alg.3 [10]

// Alg.11 [10]

// Alg.12 [10]

// Alg.12 [10]

// Alg.4 [10]

15

Algorithm 4: Computing and evaluating a 3e-isogeny, with the countermeasure for PQDH

function 3 e iso pqdh
Static parameters: Integer e3 from the public parameters, a strategy (s1, . . . , se3−1) ∈ (N+)e3−1

Input: Constants (A+) corresponding to a curve EA/C , (XS : ZS) where S has exact order 3e3 on EA/C 24 : A−
24

Optional input: (X1 : Z1), (X2 : Z2) and (X3 : Z3) on EA/C
0 Output: (A+ : A− 0) corresponding to the curve EA0 /C0 = E/hS i 24 24

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

Optional output: (X1
0 : Z0), (X2

0 : Z0) and (X3
0 : Z0) on EA0/C0 1 2 3

Initialize empty deque S
push

�
S, (e3, (XS : ZS))

�
i ← 1, j ← 0
while S not empty do

(h, (X : Z)) ← pop(S)
if h = 1 then

if j = 0 then
if Z = 0 then

Error: Potential fault attack � �
(Xd : Zd) ← xTPL (X : Z), (A+

24) 24 : A−

if Zd , 0 then
Error: Potential fault attack � �

(A+
24), (K1, K2) ← 3 iso curve ((X : Z)) 24 : A−

Initialize empty deque S0
while S not empty do

(h, (X : Z)) ← pull(S)
(X : Z�) ← 3 iso eval (� (K1, K2), (X : Z))
push S0 , (h − 1, (X : Z))

S ← S0
for (Xj : Zj) in optional input � do �

(Xj : Zj) ← 3 iso eval (K1, K2), (Xj : Zj)

j ← 1
else if 0 < si < h then
push

�
S, (h, (X : Z))

� � �
(X : Z) ← xTPLe (X : Z), (A+

24), si 24 : A−

push
�
S, (h − si, (X : Z))

�
i ← i + 1

else
Error: invalid strategy � �

return (A+
24), (X1 : Z1), (X2 : Z2), (X3 : Z3)24 : A−

// Alg. 6 [10]

// Alg. 13 [10]

// Alg. 14 [10]

// Alg. 14 [10]

// Alg. 7 [10]

16

Algorithm 5: Establishing shared keys in the 2-torsion, with the fault attack countermeasure for SIDH.

function isoex2
Input: Secret key sk2 ∈ Z, public key pk3 = (x1, x2, x3) ∈ (Fp2)3, and parameter e2
Output: A j-invariant j2

1 (A : C) ← (get A(x1, x2, x3) : 1)
2 (A24

+ : C24) ← (A + 2: 4)
3 Q ← xADD(x1, x2, x3)
4 Q ← xDBLe(Q, (A+

24 : C24), e2 − 1)
5 if ZQ = 0 then
6 Error: Potential fault attack
7 Q ← xDBL(Q, (A+

24 : C24))
8 if ZQ , 0 then
9 Error: Potential fault attack

10 Q ← xDBLe((x1 : 1), (A+
24 : C24), e2 − 1)

11 if ZQ = 0 then
12 Error: Potential fault attack
13 Q ← xDBL(Q, (A+

24 : C24))
14 if ZQ , 0 then
15 Error: Potential fault attack
16 (XS : ZS) ← Ladder3pt(sk2, (x1, x2, x3), (A : C)) � �
17 (A24

+ : C24) ← 2 e iso (A+
24 : C24), (XS : ZS)

18 (A : C) ← (4A+
24 − 2C24 : C24)

19 j = j inv((A : C))
20 return j

// Alg. 10 [10]

// Alg. 2
// Alg. 4 [10]

// Alg. 3 [10]

// Alg. 4 [10]

// Alg. 3 [10]

// Alg. 8 [10]

// Alg. 15 [10]

// Alg. 9 [10]

17

Algorithm 6: Establishing shared keys in the 3-torsion, with the fault attack countermeasure for SIDH

function isoex3
Input: Secret key sk3 ∈ Z, public key pk2 = (x1, x2, x3) ∈ (Fp2)3, and parameter e3
Output: A j-invariant j3

1 (A : C) ← (get A(x1, x2, x3) : 1)
2 (A+

24) ← (A + 2: A − 2) 24 : A−

3 Q ← xADD(x1, x2, x3)
4 Q ← xTPLe(Q, (A+

24), e3 − 1) 24 : A−

5 if ZQ = 0 then
6 Error: Potential fault attack
7 Q ← xTPL(Q, (A+

24)) 24 : A−

8 if ZQ , 0 then
9 Error: Potential fault attack

10 Q ← xTPLe((x1 : 1), (A+
24), e3 − 1) 24 : A−

11 if ZQ = 0 then
12 Error: Potential fault attack
13 Q ← xTPL(Q, (A+

24)) 24 : A−

14 if ZQ , 0 then
15 Error: Potential fault attack
16 (XS : ZS) ← Ladder3pt(sk3, (x1, x2, x3), (A : C)) � �
17 (A+

24) ← 3 e iso (A+
24 : A−

24 : A24), (XS : ZS)
18 (A : C) ← (2 · (A−) : A+ − A−) 24 + A+

24 24 24
19 j = j inv((A : C))
20 return j

// Alg. 10 [10]

// Alg. 2
// Alg. 7 [10]

// Alg. 6 [10]

// Alg. 7 [10]

// Alg. 6 [10]

// Alg. 8 [10]

// Alg. 16 [10]

// Alg. 9 [10]

18

