

Serialized Keccak

Architecture for Lightweight

Applications

Elif Bilge Kavun, Begül Bilgin, Tolga Yalcin

Department of Cryptography,

Institute of Applied Mathematics,

Middle East Technical University,

Ankara, Turkey

Outline

• Introduction

• RFID
• RFID-Hash

• SHA-3 Competition and Lightweight Cryptography

• SHA-3 Candidates
• High-Speed Comparison
• Lightweight Comparison
• Results

• Keccak
• Implementation
• Data Flow
• Block Diagram
• Implementation Results

• Conclusion

RFID (Radio-Frequency IDentication)

•	 The use of an object (RFID tag) for identification and
tracking purposes using radio waves

•	 Consists of (at least) 2 parts
•	 Integrated Circuit: for storing and processing information, modulation

and demodulation of an RF signal and specialized functions

•	 Antenna: for receiving and transmitting signal

•	 Various areas of RFID applications

•	 RFID requirements:
•	 Extremely low-power consumption

•	 Compactness (4-5K gates for security modules)

•	 Speed/throughput not so important

RFID (cont’d)

•	 As a result of the increase in RFID usage, security and
identification problems arise

•	 There exists several protocols using hash functions for the
privacy of consumers

•	 There is no RFID security standard yet

•	 Need of a standard for RFIDs with cryptographic module
technical specifications
•	 Area

•	 Power consumption

•	 Throughput

•	 Security issues

•	 Present assumption: 64/128 bits sufficient for block ciphers
and hash functions

SHA-3 Candidates

•	 Question: Are SHA-3 candidates suitable for
RFID applications?

•	 Answer: Yes, some of them - JH, Keccak, Luffa

•	 How: After application of lightweight tweaks
(and tricks) on the original algorithms

Previous Work on High-Speed Implementations

Blake-32 512

Block
(bits)

22

Latency
(cycles)

45,640

Area
(GE)

170.64

Clock Freq
(MHz)

3.971

TP
(Gbps)

BMW-256 512 1 169,737 10.46 5.358

CubeHash16/32-h 256 8 58,872 145.77 4.665

ECHO-256 1,536 97 141,489 141.84 2.246

Fugue-256 32 2 46,257 255.75 4.092

Groestl-256 512 22 58,402 270.27 6.290

Hamsi-256 32 1 58,661 173.91 5.565

JH-256 512 39 58,832 380.22 4.992

Keccak(-256) 1,088 25 56,316 487.80 21.229

Luffa-224/256 256 9 44,972 483.09 13.741

Shabal-256 512 50 54,186 320.51 3.282

SHAvite-3(256) 512 37 57,388 227.79 3.152

SIMD-256 512 36 104,166 64.93 0.924

Skein-256-256 256 10 58,611 73.52 1.882

Skein-512-512

SHA-256

512

512

10

66

102,039

19,144

48.87

302.11

2.502

2.344

Estimated Lightweight Comparison

Blake 10x8=80

Rounds

256

Message
Block (bits)

512

State Regs
(bits)

3.2

Throughput
(bits/cycle)

0.006

Efficiency
(bpc/regs)

BMW* 16 128 528 8 0.015

CubeHash 16 128 1024 8 0.007

ECHO 8 1792 2048 224 0.1

Fugue 2 32 768 16 0.016

Groestl 10 256 768 25.6 0.05

Hamsi** 3 16 256 5.3 0.02

JH 24 128 384 5.33 0.013

Keccak-f [400]-128 20 144 400 7.2 0.018

Keccak-f [200]-64 18 72 200 4 0.02

Luffa 9 128 256 14.2 0.05

Shabal 50 128 352 2.56 0.007

SHAvite 42 512 1088 12.19 0.011

SIMD 36 128 1024 3.55 0.0035

Skein 72 256 512 3.55 0.007

* : Additions and Subtractions ** : S-boxes and Expansion

Area Issues

Number of registers, hence the area is too
high to be considered for a lightweight
application:

• Blake • Fugue

• BMW • Groestl

• CubeHash • SHAvite

• ECHO • SIMD

Throughput Issues

Throughput is too low for the occupied
area:

• Blake

• Shabal

• Skein

S-box, Expansion, Add/Sub Operations

The area of S-boxes and message

expansion block is too large:

• Hamsi

The delay of add/sub operations is too high:

• BMW

• Hamsi

Why Keccak?

•	 JH, Keccak and Luffa have similar
performances in terms of area and
throughput

•	 Keccak and Luffa are sponge functions
which are original in design

•	 For lightweight purposes we investigated
Keccak200, Keccak400 and Luffa(w=2)

•	 Keccak has simpler functions which yield
to shorter delays and smaller area

Parallel Keccak Implementation

•	 Fully parallel straight forward implementation
•	 r-bit I/O register for fast data transfer
•	 Optimized for area
•	 Keccak-f[1600]-256, f[400]-128, f[200]-64

implemented in parallel for comparison with the
target lightweight architecture

Lightweight Keccak Implementation

•	 A serial datapath design is favoured
•	 Data blocks processed in words
•	 All the step functions (except π-step) reduced to w-bits

•	 Operation explained for a 3×3 state matrix (instead of

regular 5×5 Keccak matrix)

Lightweight Keccak Data Flow

•	 Each round divided into 2 half rounds

•	 The 0th half round is for the absorption of the first
data block and initialization of row sums for θ step

•	 It is followed by regular rounds

•	 The 1st half round of each round is for θ and ρ steps

•	 The 2nd half round is for π, χ and ι steps

•	 Initialization of row sums for θ step of the next round
also takes place in the second half round

Lightweight Keccak Data Flow (cont’d)

Lightweight Keccak Data Flow (cont’d)

Lightweight Keccak Data Flow (cont’d)

•	 Each half round takes 25 cycles to complete

•	 Number of rounds depends on the Keccak
permutation

•	 The second half round of every last round is also
used for absorption of the next data block

•	 Data squeezing occurs at the second half of the last
round of the last data block

Lightweight Keccak Block Diagram

Lightweight vs. Parallel

Parallel Implementations

Lightweight Implementations

27.6 0.204 4.9K 1000 18 72 864
Keccak-f

[200]-64

78.1 0.170 10.56K 1800 20 144 16 128
Keccak-f
[400]-128

315.1 0.238 47.63K 11333 24 1088 64 256
Keccak-f
[1600]-256

Power
Cons.

(µW/MHz)
Efficiency
(Mbps/GE)

Area
(GE)

Throughput
@250 MHz

(Mbps)

Cycles
per

Block

Input
Data
Size

Data
path
Size

Hash
Output

Size

Keccak-f
[1600]-256 256

Hash
Output

Size

64

Data
path
Size

1088

Input
Data
Size

1200

Cycles
per

Block

90.66

Throughput
@100 KHz

(Kbps)

20.79K

Area
(GE)

4.36

Efficiency
(bps/GE)

44.9

Power
Cons.

(µW/MHz)

Keccak-f
[800]-128 128 32 544 1100 49.45 13K 3.8 28.2

Keccak-f
[400]-128 128 16 144 1000 14.4 5.09K 2.83 11.5

Keccak-f
[200]-64 64 8 72 900 8 2.52K 3.17 5.6

Keccak vs. Others

MD-5

Function

128

Hash
Output

Size

83.66

Throughput
@100 KHz

(Kbps)

8.4K

Area
(GE)

10

Efficiency
(bps/GE)

SHA-256 256 45.39 10.9K 4.2

MAME 256 266.67 8.1K 32.9

DM-Present-128 64 387.88 1.6K 26.91

H-Present-128 128 200 4.3K 47

C-Present-128 192 59.26 8.0K 7.4

Keccak-f [400]-128 128 14.4 5.09 2.83

Keccak-f [200]-64 64 8 2.52 3.17

Randomness Test Results for Keccak-f[400]

Frequency 0.000000

1-Round

0.294749

2-Rounds

0.911874

3-Rounds

0.662486

4-Rounds

0.234682

5-Rounds

B.Frequency 0.000000 0.519962 0.000920 0.834166 0.553189

of Runs 0.000000 0.000494 0.089943 0.373540 0.738698

Longest Run 0.000000 0.306412 0.592643 0.490267 0.926211

App. Entropy 0.000000 0.217282 0.461494 0.176800 0.103087

Cum. Sum1 0.000000 0.406529 0.298847 0.160818 0.451807

Cum. Sum2 0.000000 0.000215 0.635253 0.145432 0.067465

Serial-1 0.000000 0.264770 0.465440 0.065450 0.184705

Conclusion

• Lightweight Keccak is a feasible candidate for RFID

tags and other applications with limited resources

•	 Area and throughput comparable to lightweight
specific compression and block cipher based
authentication functions (MAME, Present-MAC, etc.)

•	 Lightweight Keccak security seems to be adequate
for target applications

•	 Throughput improvement still possible through row
or column based processing instead of word-based
processing at the cost of increased gate count and
power consumption

Future Work

•	 Lightweight implementation of Luffa and JH
for a fair comparison

•	 Investigation of sponge functions for
lightweight applications is an open research
area

•	 Combined architectures for multi-standart
support (i.e. Keccak + Luffa)

References

•	 Andrey Bogdanov, Gregor Leander, Christof Paar, Axel Poschmann,
M.J.B. Robshaw, Yannick Seurin, Hash Functions and RFID Tags :
Mind The Gap, CHES 2008, LNCS, Springer-Verlag, 2008.

•	 S. Tillich et al, High-Speed Hardware Implementations of BLAKE,
BMW, CubeHash, ECHO, Fugue, Grostl, Hamsi, JH, Keccak, Luffa,
Shabal, SHAvite-3, SIMD, and Skein, In Cryptography ePrint,
November 2009.

•	 G. Bertoni, J. Daemen, M. Peeters and G. Van Assche, Keccak
specifications, version 2, submission to NIST, 2009.

•	 G. Bertoni, J. Daemen, M. Peeters and G. Van Assche, Keccak sponge
function family main document, submission to NIST, 2009.

•	 H. Yoshida, D. Watanabe, K. Okeya, J. Kitahara, H. Wu, O. Kucuk, B.
Preneel, MAME: A compression function with reduced hardware
requirements, LNCS, volume 4727, pages 148-165. Springer, August
2007.

•	 M. Feldhofer, C. Rechberger, A Case Against Currently Used Hash
Functions in RFID Protocols, LNCS, Volume 4277, pages 372-381.
Springer, Nov 2006.

THANKS FOR LISTENING…

QUESTIONS?

