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The structure of K allows a fair amount of diversity in the way it can be implemented. How-
ever, it is o en not trivial to select the optimal options in given circumstances, and sometimes one
may even not be aware of all of K ’s implementation techniques. We here briefly present differ-
ent techniques, referring to external documents for the details.

K defines a family of sponge functions with seven different permutations and most imple-
mentation techniques work on all of them. For clarity, however, we take as example K - f [1600],
the permutation used in the proposed SHA-3 hash function candidates [5].

1 How to cut a state

A hardware circuit can be built to compute the round function within a clock cycle, hence processing
the state as a whole. This is what several hardware implementations do, including our high-speed
core [6, Section 4.2]. However, this simple solution is not possible in so ware on standard CPUs and
is not always affordable in hardware implementations. The state of K - f [1600] is organized as a
three-dimensional array, which suggests several ways to partition the bits. So we here describe several
ways to serialize the round function that exploit this structure. We assume that the reader is familiar
with the naming conventions (column, lane, plane, slice) depicted in Figure 1.

How to cut a lane: bit interleaving The bit interleaving technique is fairly general, can be combined
with most other ideas, applies to both so ware and hardware, and provides an area-speed trade-off
in some classes of implementations.

The state of K - f [1600] can be expressed as 25 lanes of 64 bits each. In so ware, this calls for
an implementation using 64-bit words. While this is an optimal choice on so ware platforms actually
offering 64-bit operations, the bit interleaving technique allows efficient implementations on systems
with smaller word sizes and can also be used to target compact hardware circuits.

In its simplest form, namely factor-2 interleaving, it splits the odd and even bits of each lane. The
state of K - f [1600] is then represented as 50 words of 32 bits. The rotations in θ and ρ are per-
formed as cyclic shi s on 32-bit words, making them efficient on a 32-bit processor. There is a cost
associated to the conversion of the input message into this representation, but this cost remains small
compared to the evaluation of the permutation itself. Note that the use of modular addition would
have prevented the bit interleaving technique.

In general an interleaving factor of s maps each lane to s words of 64
s bits. For instance, factor-8

interleaving expresses the round function of K - f [1600] in terms of operations on bytes. Further
details and examples can be found in [6, Section 2.1].

Processing planes A plane is a set of 5 lanes that can be combined in χ. So doing plane-per-plane pro-
cessing nicely fits in χ. The dispersion step π just before χ can be implemented implicitly by fetching
the lanes from appropriate locations, and the rotations ρ can be done individually on each lane to-
gether with π. The step θ can be done on the fly (see Section 3). Detailed scheduling of the operations
can be found in [6, Section 2.4].



Bit interleaving can also be used to process fractions of planes. For an interleaving factor of s, 5
words of 64/s bits are processed together. Currently, the fastest so ware implementations are or-
ganized to process each plane at a time. This includes both implementations optimized for 64-bit
platforms (s = 1, no interleaving) and those for 32-bit ones (s = 2).

Processing consecutive slices While the state of K - f [1600] can be seen as an array of 25 lanes
of 64 bits, the transposed view is to see it as an array of 64 slices of 25 bits each. The function of ρ
is to disperse bits across different slices, but all the other operations work in a slice-oriented way.
More precisely, π and χ work in each slice independently, and for θ the output slice z depends on the
input slices z − 1 and z. Hence, a way to cut the state is to make groups of n slices with consecutive z
coordinates, where n divides 64.

The idea of processing consecutive slices in a hardware circuit comes from Jungk and Apfelbeck
[7]. They implemented K - f [1600] using n = 8 consecutive slices, with extra registers to manage
the fact that θ makes the last slice of a group interact with the first slice of the next group. Inter-slice
dispersion ρ is implemented in part by an appropriate addressing of RAM and in part by extra regis-
ters. This resulted in a compact implementation on aVirtex-5 FPGAusing 393 sliceswith a throughput
of 864 MBit/sec for a rate of r = 1088 [7].

The number n of consecutive slices can serve as a parameter for speed-area trade-offs. We have
explored the effects on area and throughput when n takes the values 2, 4, 8, 16 and 32. The round
function is computed in 64

n + 1 clock cycles, while the complete permutation requires 25 ∗ 64
n + 24

clock cycles. The most convenient configurations, in term of area-throughput ratio, are obtained with
n equal to 16 or 32. Implementations in VHDL are available in [4].

Processing interleaved slices An alternative to the idea of consecutive slices is to group slices in an
interleaved way. For a given interleaving factor s, the slices are grouped with constant coordinate z
modulo s. Here again π and χ work in each slice independently. However, compared to the case of
consecutive slices, ρ can be partly donewithin a group of slices. And if some extramemory is dedicated
to the parity (see Section 3), θ can be implementedwithout interdependencies between groups of slices.

This idea allows similar speed-area trade-offs in hardware implementations, as the number of
slices to be grouped can be chosen. However, an actual implementation is needed to determine which
one of consecutive or interleaved slices works best on which platforms.

2 Minimizing the memory footprint

In terms ofmemory usage, K has no feedforward loop and the state can serve as amessage queue
without the need for additional memory dedicated specifically to that purpose. Hence, the memory
footprint of K is determined solely by that of the underlying permutation. We here describe a
technique to minimize the memory needed by K - f [1600] without sacrificing speed.

Efficient in-place processing A typical speed-optimized so ware implementation reserves twomem-
ory areas, each with the size of the state (200 bytes). The computation of a round takes the state in
one area and stores the result in the other, alternatively. In [6, Section 2.5], we propose a way to store
processed data back into the same memory location it was taken from. Hence a single instance of the
state must be reserved, plus some extra memory to store the parity and/or the θ-effect (see Section 3).
As π moves lanes to different coordinates, this requires to define a mapping between the lane coordi-
nates (x, y) and the memory location that depends on the round number. The mapping has a cycle of
4 rounds, so a er the 24 nominal rounds the memory area returns to its original configuration.

This technique can be combined with bit interleaving. In that case, the mapping between the lane
coordinates and memory location must be adapted. E.g., with factor-2 interleaving the mapping still
has a cycle of 4 rounds. For instance, the currently fastest implementation on the 32-bit processor ARM

2



Cortex-M3 makes use of the in-place processing with 4 rounds unrolled and requires only 272 bytes
on the stack [6, Section 3.2.1].

Detailed algorithms using efficient in-place processing, with and without bit interleaving, can be
found in [6, Section 2.5].

3 Additional techniques

In this section, we give optimization techniques for the evaluation of χ and of θ.

Lane complementing The mapping χ of K - f [1600] consists in 5 XOR, 5 AND and 5 NOT opera-
tions. Some platforms support instructions that combine a AND and aNOT, but not all do. In the la er
case, the lane complementing technique aims at removing 4 out of 5 NOT operations by representing
some of the lanes by their complement. This makes simple use of the DeMorgan laws, replacing some
logical ANDs by ORs. We explain how this can be done in [6, Section 2.2].

Extending the state to compute θ on the fly The θ operation consists in XORing a pa ern in the entire
state that depends only on the parity of the columns before θ. The pa ern to XOR is called the θ-effect
and is constant over each column. If the implementation can afford some extra memory, one can use
5 lanes:

– to accumulate the parity of the columns as the output of χ in the previous round is being com-
puted, and/or

– to store the θ-effect to be able to XOR it as the current round is being processed.

Further details and examples can be found in [6, Section 2.3] and in [6, Section 2.4.1].

4 Protecting against side-channel a acks

When the input of K contains a secret key, e.g., to compute a MAC or to do (authenticated)
encryption, protection against side-channel a acks may be appropriate. Regarding timing a acks,
all the implementations described here make use of a fixed sequence of operations without the need
for look-up tables. To help protect against differential power analysis and its variants, we provide
techniques in [6, Chapter 5] and in [2].

So ware: two-share masking To decorrelate the data being processed to the native value of the state,
a simple technique consists in working on two randomized shares a and b chosen such that their XOR
a ⊕ b is the native value. The linear operations of the round function θ, ρ and π can be performed on
each share independently. Details on how to do implement χ with li le overhead can be found in [6,
Section 5.3].

Hardware: three-share masking In hardware, an additional source of side-channel information for
an a acker is the presence of glitches. In this case, we turn ourselves to three-share implementations,
i.e., with three randomized shares a, b and c chosen such that their XOR a ⊕ b ⊕ c is the native value
[8]. The operations on the shares are such that any logical block never processes more than two shares
together. Hence, glitches cannot be correlated to the native value. More details can be found in [6,
Section 5.4].
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5 Taking best advantage of high-end platforms

In the evaluation of hardware performances, a popular measure is the throughput-to-area ratio. The
reason is that it says more about efficiency than speed or area alone.

In so ware, high-end platforms provide an ever increasing computational bandwidth, not only
by embedding more cores, but also by widening single-instruction multiple-data (SIMD) registers
and associated operations. For instance, the new AVX and upcoming AVX2 instruction sets from Intel
provide 256-bit SIMD operations, in addition to the 128-bit ones from the previous architectures. A
so ware equivalent to the throughput-to-area ratio would be the throughput-per-core ratio or equiva-
lently the number of cycles per byte per core. Faster hash functions exploiting this parallelism can be
built in a scalable way using tree hashing techniques and in particular with leaf interleaving [1].

Throughput per core on Sandy Bridge Processors based on the Sandy Bridge architecture from Intel
provide a fast processing of 128-bit SIMD instructions. Evaluating two instances of K - f [1600] in
parallel using these instructions takes about the same number of cycles as evaluating a single instance
using regular 64-bit instructions. Hence, a tree hashing mode with two parallel branches on top of
K can provide a hash function provably as secure as K itself [1], only twice as fast.Wemea-
sured the two parallel evaluations at 1660 cycles, hence providing an estimated 6.5 cycles/byte/core
with default r = 1024 and leaf interleaving (G = LI, H = 1, D = 2, B = 64, C = c = 576) [1].

Extending the instruction set We can imagine several ways to extend future processors with instruc-
tions enabling faster implementations of K . A very simple way seems to be the introduction of
cyclic-shi instructions. The AVX and SSE instruction sets provide shi s over 64-bit words but not
cyclic shi s. Hence, in the exercise above we implemented the rotations of θ and ρ using two shi s
and a bitwise OR. With a cyclic shi instruction, we estimate¹ the two parallel evaluations would take
about 1150 cycles, or 4.5 cycles/byte/core with default r = 1024. And further assuming that the future
processors are as fast with 256-bit SIMD as with 128-bit SIMD, four parallel evaluations would yield
about 2.25 cycles/byte/core.

6 More information

For more information, the central documentation on implementation techniques is [6]. For so ware
implementations, one can find many examples of optimized code in [4]. In addition, K T [3]
provides functions to generate optimized code based on most of the techniques mentioned here.
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Fig. 1. Naming conventions for parts of the K - f state
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