
A Comprehensive Framework for Fair and Eÿcient 
Benchmarking of Hardware Implementations of 

Lightweight Cryptography� 

Jens-Peter Kaps1, William Diehl2, Michael Tempelmeier3, Farnoud Farahmand1, 
Ekawat Homsirikamol4 and Kris Gaj1 

1 Cryptographic Engineering Research Group 
George Mason University, Fairfax, Virginia 22030, USA 

email: {jkaps, ̇ arahma, kgaj}@gmu.edu 
2 Signatures Analysis Lab 

Virginia Tech, Blacksburg, Virginia 24061, USA 
email: wdiehl@vt.edu 

3 Lehrstuhl für Sicherheit in der Informationstechnik 
Technische Universität München, 80333 München, Germany 

email: michael.tempelmeier@tum.de 
4 Independent Researcher 
email: ekawat@gmail.com 

Abstract. In this paper, we propose a comprehensive framework for fair and eÿcient benchmarking of 
hardware implementations of lightweight cryptography (LWC). Our framework is centered around the 
hardware API (Application Programming Interface) for the implementations of lightweight authenticated 
ciphers, hash functions, and cores combining both functionalities. The major parts of our API include the 
minimum compliance criteria, interface, and communication protocol supported by the LWC core. The 
proposed API is intended to meet the requirements of all candidates submitted to the NIST Lightweight 
Cryptography standardization process, as well as all CAESAR candidates and current authenticated 
cipher and hash function standards. In order to speed-up the development of hardware implementations 
compliant with this API, we are making available the LWC Development Package and the corresponding 
Implementer’s Guide. Equipped with these resources, hardware designers can focus on implementing 
only a core functionality of a given algorithm. The development package facilitates the communication 
with external modules, full verifcation of the LWC core using simulation, and generation of optimized 
results. The proposed API for lightweight cryptography is a superset of the CAESAR Hardware API, 
endorsed by the organizers of the CAESAR competition, which was successfully used in the development 
of over 50 implementations of Round 2 and Round 3 CAESAR candidates. The primary extensions include 
support for optional hash functionality and the development of cores resistant against side-channel attacks. 
Similarly, the LWC Development Package is a superset of the part of the CAESAR Development Package 
responsible for support of Use Case 1 (lightweight) CAESAR candidates. The primary extensions include 
support for hash functionality, increasing the fexibility of the code shared among all candidates, as well as 
extended support for the detection of errors preventing the correct operation of cores during experimental 
testing. Overall, our framework supports (a) fair ranking of candidates in the NIST LWC standardization 
process from the point of view of their eÿciency in hardware before and after the implementation of 
countermeasures against side-channel attacks, (b) ability to perform benchmarking within the limited 
time devoted to Round 2 and any subsequent rounds of the NIST LWC standardization process, (c) 
compatibility among implementations of the same algorithm by di˙erent designers and (d) fast deployment 
of the best algorithms in real-life applications. 

Keywords: Lightweight cryptography · Authenticated cipher · Hash function · Hardware · API · Side-
Channel Analysis 

�This work is supported by the Department of Commerce (NIST) Grant no. 70NANB18H219 

mailto:ekawat@gmail.com
mailto:michael.tempelmeier@tum.de
mailto:wdiehl@vt.edu
mailto:kgaj}@gmu.edu


2 A Comprehensive Framework for Fair and Eÿcient Benchmarking of Hardware Implementations 

1 Introduction 
Among the major cryptographic competitions, the frst attempt at defning a hardware API (Application 
Programming Interface) took place during the SHA-3 contest [1], [2]. In the area of high-speed implementations, 
all 14 Round 2 candidates, all 5 Round 3 candidates, and the previous standard SHA-2 were implemented 
using the proposed interface and communication protocol by the group from George Mason University 
(GMU) [1]–[3]. This interface and protocol were then extended to the case of lightweight applications and 
applied to the implementations of 13 Round 2 and 5 Round 3 SHA-3 candidates [4]. Alternative interfaces of 
hash function cores were proposed in [5], [6]. No specifc interface was endorsed by NIST as a requirement for 
all implementations. 

During the subsequent CAESAR contest (Competition for Authenticated Encryption: Security, Applica-
bility, and Robustness), conducted in the period 2013-2019, all major decisions were made by the CAESAR 
Committee, composed of 18 renowned cryptographers, representing multiple institutions worldwide [7]. 

The frst version of the proposed hardware API for CAESAR was reported in [8]. This version was later 
substantially revised, endorsed by the CAESAR Committee in May 2016, and published as a Cryptology 
ePrint Archive in June 2016 [9]. A relatively minor addendum was proposed in the same month, and endorsed 
by the CAESAR Committee in November 2016 [10]. 

The commonly accepted CAESAR Hardware API provided the foundation for the GMU Development 
Package, released in May and June 2016 [11]. This package included in particular: a) VHDL code of a 
generic PreProcessor, PostProcessor, and CMD FIFO, common for all Round 2 and Round 3 CAESAR 
Candidates (except Keyak), as well as AES-GCM, b) Universal testbench common for all API-compliant 
designs (aead_tb), c) Python app used to automatically generate test vectors (aeadtvgen), and d) Reference 
implementations of several dummy authenticated ciphers. 

This package was accompanied by the Implementer’s Guide to Hardware Implementations Compliant with 
the CAESAR Hardware API, v1.0, published at the same time [12]. A few relatively minor weaknesses of this 
version of the package, discovered when performing experimental testing using general-purpose prototyping 
boards, were reported in [13], [14]. 

In December 2017, a substantially revised version of the Development Package (v.2.0) and the corresponding 
Implementer’s Guide were published by the GMU Benchmarking Team [11], [15]. The main revisions included 
a) Support for the development of lightweight implementations of authenticated ciphers, b) Improved support 
for the development of high-speed implementations of authenticated ciphers, and c) Improved support for 
experimental testing using FPGA boards, in applications with intermittent availability of input sources and 
output destinations. 

It should be stressed that at no point was the use of the Development Package required for compliance with 
the CAESAR Hardware API. To the contrary, [12] clearly stated that the implementations of authenticated 
ciphers compliant with the CAESAR Hardware API could also be developed without using any resources 
belonging to the package [11], by just following the specifcation [9] directly. 

In spite of being non-mandatory and the lack of oÿcial endorsement by the CAESAR Committee, 
the CAESAR Development Package played a signifcant role in increasing the number of implementations 
developed during Round 2 of the CAESAR contest. Out of 43 implementations reported before the end of 
Round 2, 32 were fully compliant, and one partially compliant with the CAESAR Hardware API. All fully 
compliant code used the GMU Development Package. The fully and partially compliant implementations 
covered 28 out of 29 Round 2 candidates (all except Tiaoxin) [11]. In Round 3, the submission of the hardware 
description language code (VHDL or Verilog) was made obligatory by the CAESAR Committee. As a result, 
the total number of designs reached 27 for 15 Round 3 candidates. Out of these 27 designs, 23 were fully 
compliant and 1 partially compliant with the CAESAR Hardware API [11]. Overall, publishing the CAESAR 
Hardware API, as well as its endorsement by the organizers of the contest, had a major infuence on the 
fairness and the comprehensive nature of the hardware benchmarking during the CAESAR competition. 

Several optimized lightweight implementations compliant with the CAESAR API, and based on v.2.0 of the 
Development Package, were reported in [16]. In [17]–[20], several other implementations were enhanced with 
countermeasures against Di˙erential Power Analysis. In order to facilitate this enhancement, an additional 
Random Data Input (RDI) port was added to the CAESAR Hardware API. 

In this paper, we propose leveraging all resources developed and experiences gained during the CAESAR 
competition, and applying them toward the development of a comprehensive framework for fair and eÿcient 



3 J.-P. Kaps, W. Diehl, M. Tempelmeier, F. Farahmand, E. Homsirikamol, and K. Gaj 

hardware benchmarking of candidates during Round 2 and any subsequent rounds of the NIST Lightweight 
Cryptography standardization process. In Section 2, we describe the proposed hardware API for lightweight 
cryptography, with a special focus on extensions compared to the CAESAR Hardware API [9], [10]. In 
Section 3, we summarize the features of the LWC Development Package, including all extensions compared 
to the corresponding parts of the CAESAR Development Package. In Section 4, we provide the suggested 
timeline for the comprehensive hardware benchmarking e˙ort focused on candidates qualifed to Round 2 of 
the NIST Lightweight Cryptography standardization process. 

2 Hardware API for Lightweight Cryptography 

2.1 Minimum Compliance Criteria 
The main reasons for defning a common API for all hardware implementations of candidates submitted 
to the NIST Lightweight Cryptography standardization project [21] are: a) Fairness of benchmarking, 
b) Compatibility among implementations of the same algorithm by di˙erent designers, and c) Ease of creating 
the supporting development package, aimed at simplifying and speeding up the design process. The 
recommended minimum compliance criteria, supporting all the aforementioned objectives, are listed below. 

Authenticated encryption and decryption should be implemented within one core, but only one of these 
two operations should be executed at a time (half-duplex). If a given algorithm supports hashing, then 
designers should develop two versions of the LWC core, capable of performing a) encryption, decryption, and 
hashing, and b) encryption and decryption only. 

Key scheduling of authenticated ciphers should be fully implemented within the LWC core. The LWC core 
should properly handle incomplete blocks in associated data (AD), plaintext, hash message, and ciphertext. 
In particular, padding should be implemented in hardware, and any unused portions of the last block released 
to the output should be cleared (flled with zeros). 

The decrypted plaintext blocks should be released immediately, without waiting for the result of authenti-
cation. We assume that the delayed release of decrypted data, dependent on the result of authentication, 
will be handled by an external circuit, which is FIFO-based and similar for each candidate. Storing a 
decrypted plaintext internally, until the result of the verifcation is known would a) complicate the design and 
benchmarking, and b) make the calculation of the output latency and throughput dependent on the output 
bu˙er size and implementation details (e.g., support for simultaneous reading and writing). 

The LWC core should support only inputs composed of full bytes. The core should support empty 
AD, plaintext, hash message, ciphertext, and any meaningful combination thereof. For the purpose of 
benchmarking, the LWC core should support at least the following maximum sizes of associated data, plaintext, 
and hash messages: 
For single-pass algorithms: 
Sa) 216 − 1 : default; used for comparison with implementations of two-pass algorithms 
Sb) 232 − 1 : kept for compatibility with the CAESAR API; practical only for single-pass algorithms 
Sc) 250 − 1 : minimum limit established by NIST for algorithms submitted to the Lightweight Cryptography 
standardization process. 
For two-pass algorithms: 
Ta) 216 − 1 : default; used for comparison with implementations of single-pass algorithms 
Tb) 211 − 1 : kept for compatibility with the CAESAR API 
Tc) 250 − 1 : minimum limit established by NIST for algorithms submitted to the Lightweight Cryptography 
standardization process. 

The core should also support the corresponding ciphertext sizes. However, the size limit 216 − 1 should be 
treated as default, and the implementers should do their best to eliminate (or at least minimize to negligible) 
the infuence of the remaining size limits on the a) maximum clock frequency, b) total number of clock cycles 
for short messages, c) throughput for long messages. 

The use of external memory is allowed only for two-pass algorithms, and only for results of the frst pass. 
For single-pass algorithms, no external memory should be used. Two-pass algorithms can typically beneft 
from external memory, used to store intermediate values utilized as inputs to the second pass. An alternative 
is to provide an entire input for the second time to the data inputs of the LWC core. However, doing that is 



4 A Comprehensive Framework for Fair and Eÿcient Benchmarking of Hardware Implementations 

Public Data Input

Ports

PDI

Secret Data Input

Ports

SDI

clk rst

LWC

rstclk

pdi_valid

pdi_ready

w

Data Output

Ports

DO
w

do_ready

do_valid

sdi_valid

sdi_ready

sw
sdi_data

pdi_data do_data

do_last

Public Data Input

Ports

PDI

clk rst

do_last

Secret Data Input

Ports

SDI

sdi_ready

sw
sdi_data

sdi_valid

fdi_ready

fw
fdi_data

fdi_validData Input

Ports

TWO−PASS FIFO

fdo_ready

fw

Data Output

Ports

TWO−PASS FIFO

do_ready

Data Output

Ports

DO
w

do_data

LWC

rstclk

pdi_valid

pdi_ready

pdi_data

fdo_valid

fdo_data

do_valid

w

(a) LWC interface for single-pass algorithms (b) LWC interface for two-pass algorithms 

Figure 1: LWC interface options 

typically less eÿcient in terms of throughput. Additionally, providing the same input twice through the same 
port complicates the input circuit, e.g., by requiring two costly DMA transfers, or placing external memory 
and the associated control logic before the data input ports. 

The core should have only one clock input and one internal clock signal. The implementation should be 
able to operate at the maximum clock frequency determined by the critical path located entirely inside of the 
LWC core. Using a single clock domain simplifes static timing analysis, generation of post-place and route 
results, and optimization of FPGA tool options. 

Parts of the data inputs that are not changed by encryption or decryption operations, respectively, should 
not be passed to the output. In particular, Npub and AD should not be a part of the output from either 
encryption or decryption (see Fig. 4). This assumption removes the need for any bypass FIFO necessary 
to pass any unchanged data to the output. Any formatting of output from encryption/decryption, for the 
purpose of transmission through the network or subsequent decryption/encryption, respectively, is assumed 
to be performed outside of the LWC core. 

The permitted widths of the data buses for the Public Data Input (PDI), Secret Data Input (SDI), and 
Data Output (DO) ports are as follows: PDI and DO: w = 8, 16, or 32; SDI: sw = 8, 16, or 32. 8-bit, 
32-bit, and 16-bit processors are among the most popular processors used in embedded systems, especially in 
resource constrained environments. An LWC core needs to be able to communicate with at least one of these 
processors. Hardware architectures of lightweight ciphers and hash functions often use the internal datapath 
width equal to 8, 16, or 32 bits. It is quite natural (although not required) for an external data bus width to 
match the internal datapath width. The permitted widths of external data buses also match those defned in 
the CAESAR Hardware API [9]. This feature makes all existing lightweight implementations of CAESAR 
candidates compatible with the proposed hardware API, which provides many helpful reference points for the 
comparison of results, as well as many helpful open-source examples. 

2.2 Interface 
The proposed interface of the LWC core for single-pass algorithms is shown in Fig. 1a. This interface includes 
three major data buses: PDI, SDI, and DO, as well as the corresponding handshaking control signals, named 
valid and ready. The valid signal indicates that the data is ready at the source, and the ready signal 
indicates that the destination is ready to receive it. The signal do_last is an optional signal which simplifes 
the connection to an AXI4-Stream Slave (see Fig. 2). The physical separation of Public Data Inputs (such as 
the plaintext, AD, public message number, etc.) from Secret Data Inputs (such as the key) is dictated by the 
resistance against any potential attacks aimed at accepting public data, manipulated by an adversary, as a 
new key. 

The handshaking signals are a subset of major signals used in the AXI4-Stream interface [22]. As a result, 

http:notbepassedtotheoutput.In


5 J.-P. Kaps, W. Diehl, M. Tempelmeier, F. Farahmand, E. Homsirikamol, and K. Gaj 

clk rst

s_axis_tdata

s_axis_tvalid

s_axis_tready

ww

sw
dout

empty

read

m_axis_tdata

m_axis_tvalid

m_axis_tready

Master

AXI4−Stream

clk rst

LWC

clk rst

pdi_valid

pdi_ready do_ready

do_valid

sdi_valid

sdi_ready

sdi_data

pdi_data do_data

AXI4−Stream

Slave

rstclk

SDI

FIFO

do_last do_last

Figure 2: Typical external circuits: AXI4-Stream IPs 

clk rst

sw

w

rstclk rd_clk
wr_clk =

w

dout

empty

read

dout

empty

read

rst clkwr_clk
rd_clk =

SDI

FIFO

FIFO

PDI

rd_clk =rstwr_clk
clk

LWC

rstclk

sdi_valid

sdi_ready

do_ready

do_valid

do_data

sdi_data

pdi_valid

pdi_ready

pdi_data

FIFO

DO
din

write

full

Figure 3: Typical external circuits: FIFOs 

LWC can communicate directly with the AXI4-Stream Master through the Public Data Input, and with the 
AXI4-Stream Slave through the Data Output, as shown in Fig. 2. At the same time, LWC is also capable of 
communicating with much simpler external circuits, such as FIFOs, as shown in Fig. 3. An advantage of 
using FIFOs at all data ports is their potential role as suitable boundaries between two clock domains, one 
used for communication and one for computation. This role is facilitated by the use of separate read and 
write clocks, shown in Fig. 3 as rd_clk and wr_clk, respectively. 

The reset input can be either synchronous or asynchronous, and either active-high or active-low, depending 
on the conventions used in a given technology (e.g., FPGA vs. ASIC), as well as the personal preference of 
the designers. 

The recommended interface of two-pass algorithms is shown in Fig. 1b. Compared to the interface of 
single-pass algorithms, shown in Fig. 1a, additional ports used for communication with the external Two-Pass 
FIFO have been added. The width of the data buses of these ports is defned by a constant, denoted in Fig. 1b 
as fw. The value of this constant can be selected freely by the designers, depending on the specifc feature of 
each two-pass algorithm and its implementation. In modern FPGAs, the Two-Pass FIFO will be implemented 
using block memories (such as BRAMs of Xilinx FPGAs and embedded memory blocks of Intel FPGAs). A 
FIFO with a capacity of 216 bytes can be built using a relatively small percentage of the total size of on-chip 
block memories. Thus, the two-pass algorithms are not in any signifcant way disadvantaged compared to 
single-pass algorithms. Additionally, even for single-pass algorithms, a NIST compliant implementation of 
authenticated decryption is expected to store the deciphered plaintexts until the authenticity of the plaintext 
is verifed. Only then, the plaintext is allowed to be released. Implementing this feature in hardware would 
require the memory approximately equal in size to the two-pass FIFO. Taking these considerations into 
account, the two-pass FIFO is treated as an external circuit, located outside of the LWC core, and, as such, 
should not a˙ect either the resource utilization or the maximum clock frequency of the LWC core. 



6 A Comprehensive Framework for Fair and Eÿcient Benchmarking of Hardware Implementations 

KeyKey

AD PlaintextNpub

StatusCiphertext Tag

TagAD CiphertextNpub

Status

Hash Message

Hash

Hash Value Status

DecryptionEncryption

Plaintext

Figure 4: Input and Output of an Authenticated Cipher and a Hash Function. Notation: Npub - Public 
Message Number, AD - Associated Data 

seg_0_header

seg_0 = Key

instruction = LDKEY

Figure 5: Format of Secret Data Input for loading the key 

2.3 Communication Protocol 
All parts of a typical input and a typical output of an authenticated cipher and a hash function are shown 
in Fig. 4. The proposed format of the Secret Data Input is shown in Fig. 5. The entire input starts with 
an instruction, which in the case of SDI is limited to Load Key (LDKEY). The instruction is followed by 
segments. Each segment begins with a separate header, describing its type and size. In the case of SDI, 
the only segment type necessary to meet the minimum compliance criteria is: Key, denoting a string of bits 
carrying an authenticated cipher key. 

The proposed format of the Public Data Input is shown in Figs. 6(a)(c) and 7(a)(c). The allowed 
instruction types are Activate Key (ACTKEY), Authenticated Encryption (ENC), Authenticated Decryption 
(DEC), and Hash. The Activate Key instruction, typically directly precedes the Authenticated Encryption or 
Authenticated Decryption instruction. Public Data Input (PDI) is divided into segments. Each segment 
starts from the segment header, describing its type and length. If no data is to be sent to the LWC core for a 
segment, in case of AD, Plaintext, Ciphertext, and Hash Message segments, the segment header still has to 
be sent with the Segment Length feld of the respective header set to 0. 

The AD, Plaintext, and Hash Message can be (but do not have to be) divided into multiple segments 
(as shown in Fig. 7(c)). The maximum size of each segment is assumed to be 216 − 1 bytes. The primary 
reason for dividing AD, Plaintext, and Hash Message into multiple segments is that the full input size may 
be unknown when the authenticated encryption or hashing starts. Npub can only use one segment, as its size 
is typically quite small (in the range of 16 bytes). 

Figures 6 and 7 present the typical format of input (PDI) and output (DO) of authenticated encryption, 
decryption, and hash operation, respectively, for the ciphers that do not use Nsec. The order of segment 
types that can be processed by a given core is a feature of the implemented algorithm and needs to be clearly 
documented. 

2.4 Side-channel Resistant Implementations 
The NIST LWC Standardization Process does not mandate, but does encourage, algorithms and implementa-
tions that support e˙ective and eÿcient side-channel countermeasures [21]. This includes implementations 
secure against power analysis side-channel attacks (SCA), such as Simple Power Analysis (SPA) and Di˙erential 
Power Analysis (DPA). 

One common requirement for nearly all algorithmic power analysis countermeasures, e.g., Boolean Masking 
and Threshold Implementations (TI), is the consumption of randomness during cipher operations. An example 
is the necessity of meeting the TI uniformity property, which often requires so-called refreshing randomness 
[23], [24]. To facilitate side-channel resistant implementations that require refreshing randomness, we propose 
an additional Random Data Input (RDI) bus, comprised of the signals rdi_data (of user selectable width 



7 J.-P. Kaps, W. Diehl, M. Tempelmeier, F. Farahmand, E. Homsirikamol, and K. Gaj 

instruction = ACTKEY

seg_3_header

seg_3 = Tag

seg_0_header

seg_0 = Npub

seg_1_header

seg_2_header

seg_1 = AD

(a)

instruction = ENC

seg_2 = Plaintext
(b)

seg_1_header

seg_1 = Tag

seg_0_header

seg_0 = Ciphertext

Status

seg_1_header

seg_1 = AD

seg_2_header

seg_2 = Ciphertext

(c)

seg_0_header

seg_0 = Npub

instruction = ACTKEY

instruction = DEC

seg_0_header

Status

(d)

seg_0 = Plaintext

Figure 6: Format of Public Data Input (PDI) and Data Output (DO) for authenticated encryption a) PDI, 
b) DO and authenticated decryption c) PDI, d) DO 

(a)

seg_0_header

Status

(b)

seg_0_header

seg_0 = Hash Message

instruction = Hash

seg_0 = Hash Value seg_1_header

seg_1 = Hash Message1

(c)

seg_0_header

Status

(d)

seg_0 = Hash Value

instruction = Hash

seg_0_header

seg_0 = Hash Message0

Figure 7: Format of Public Data Input (PDI) and Data Output (DO) for hashing with one segment for the 
Hash Message a) PDI, b) DO and with multiple segments for the Hash Message c) PDI, d) DO 

rw), rdi_ready and rdi_valid (see Fig. 8a). No protocol support is provided for this optional interface. 
The protected LWC core simply asserts the rdi_ready signal, checks rdi_valid and then reads rw bits of 
random data. 

The LWC API makes no assumptions on which kind of SCA protection is being implemented. However, if 
data has to be separated into shares, this task should be performed in software. All shares should be sent to 
the LWC cipher through the regular inputs, i.e., all public data should still arrive via PDI, and depart via DO. 
For an n-share implementation, the Plaintext segments should then contain shares 1 through n, w bits each, 
followed by the next w bits of each share, and so on. In the same fashion, separated data should leave the 
core. Fig. 8b shows how a m · w/8-byte Plaintext, split into n shares, should arrive at PDI. 

Share separation in software facilitates verifcation of countermeasures in hardware using leakage detection 
techniques (e.g., t-test or ˜2-test), for which false-positive results could occur if share separation were 
performed in hardware. The implementation designer should provide two scripts, one that takes as input 
the test vectors of an unprotected implementation and outputs the share separated data, and one that 
combines share separated outputs back, so that they can be compared to the test vectors for the output of an 
unprotected implementation. 

2.5 Di˙erences Compared to the CAESAR Hardware API 
Major di˙erences between the proposed Lightweight Cryptography Hardware API and the CAESAR Hardware 
API, defned in [9], [10], are as follows: 
In terms of the Minimum Compliance Criteria: a) One additional confguration, encryption/decryption/hash-
ing, has been added on top of the previously supported confguration: encryption/decryption. b) On top 
of the maximum sizes of AD/plaintext/ciphertext already supported in the CAESAR Hardware API, two 
additional maximum sizes, 216 − 1 and 250 − 1, have been added. 
In terms of the Interface: An additional optional output, do_last, has been added to the Data Output ports. 
In terms of the Communication Protocol: a) In the Instruction/Status, an additional opcode value, repre-



8 A Comprehensive Framework for Fair and Eÿcient Benchmarking of Hardware Implementations 

clk rst

Random Data Input

Ports

RDI

Secret Data Input

Ports

SDI

Public Data Input

Ports

PDI

LWC

rstclk

pdi_valid

pdi_ready

w

Data Output

Ports

DO
w

do_ready

do_valid

pdi_data do_data

do_last

rdi_valid

rdi_ready

rw
rdi_data

sdi_valid

sdi_ready

sw
sdi_data

w−bit

Share n

Share 2

Share 1

Share n

Share 1

Share 2

Share n

Share 1

Share 2

S
h

a
re

s
 o

f

w
o

rd
 0

S
h

a
re

s
 o

f

w
o

rd
 m

−
1

S
h

a
re

s
 o

f

w
o

rd
 1

(a) LWC interface for the single-pass algorithms with random data input (b) Plaintext/Ciphertext of m · w/8 bytes split 
into n shares 

Figure 8: Support for side-channel resistant implementations 

Manual
Design

HDL Code

Automated Optimization
FPGA Tools

Preliminary Post
Place & Route

Results
(Resource Utilization,

Max. Clock Frequency)

Functional 
Verification

Specification

Test Vectors

Reference 
C Code

Development 
Package
LWCsrc

Development 
Package

cryptotvgen

Development 
Package
LWC_TB

Pass/
Fail

Formulas 
for the 

Execution Time
& Throughput

Figure 9: The API-Compliant Code Development using the Development Package 

senting a hash function, has been added. b) In the Segment Header word, two additional Segment Type 
values, representing Hash Message and Hash Value, have been added. 
In terms of Support for Side-Channel Resistant Implementations: No support for side-channel resistant hard-
ware implementations was provided in the CAESAR Hardware API. This specifcation addresses this issue in 
Section 2.4, by defning a) An extended interface, shown in Fig. 8a, b) The requirement for the generation 
and merging of shares outside of the LWC core, and c) The mechanism for passing the input shares to the 
core and the output shares from the core, as shown in Fig. 8b. 

3 Development Package and Implementer’s Guide 
To make our framework more eÿcient in terms of the hardware development time, the designers are provided 
with the following important resources, compliant with the use of the proposed LWC Hardware API: 
a) VHDL code supporting the API protocol, common to all Lightweight Cryptography standardization 
process candidates, as well as all CAESAR candidates and AES-GCM (LWCsrc) 
b) Universal testbench, common for all API-compliant designs (LWC_TB) 
c) Python app used to automatically generate test vectors (cryptotvgen) 



9 J.-P. Kaps, W. Diehl, M. Tempelmeier, F. Farahmand, E. Homsirikamol, and K. Gaj 

w

FIFO

Two−Pass

d
in

_
re

a
d
y

d
in

_
v
a
lid

d
in

d
o
u
t_

re
a
d
y

d
o
u
t_

v
a
lid

d
o
u
t

fw fw

4

w

4

w

pdi_valid

pdi_readypdi_ready

pdi_valid

pdi_data pdi_data

sw

sdi_valid

sdi_readysdi_ready

sdi_valid

sdi_data sdi_data

do_ready do_ready

w

do_valid do_valid

do_datado_data

do_last do_last

ccw/8+1

ccw/8

ccw

ccsw

ccw/8

ccw/8

ccw
bdi

bdi_valid

bdi_ready

din_valid

din_ready

din

CryptoCore

Header

FIFO
dout_valid

dout_ready

dout

fd
i_

re
a
d
y

fd
i_

v
a
lid

fd
i_

d
a
ta

fd
o
_
v
a
lid

fd
o
_
d
a
ta

fd
o
_
re

a
d
y

key

key_valid

key_ready

bdi_type

bdi_eot

bdi_eoi

bdi_valid_bytes

bdi_pad_loc

bdi_partial

bdi_size

decrypt_in

key_update

msg_auth_ready

msg_auth_valid

msg_auth

end_of_block

bdo_valid_bytes

bdo_type

bdo_valid

bdo_ready

bdobdi

bdi_ready

bdi_valid

cmd_valid

cmd_ready

cmd

LWC

Processor

Pre

key_valid

key_ready

key

bdi_type

bdi_eot

bdi_eoi

bdi_valid_bytes

bdi_pad_loc

bdi_partial

bdi_size

decrypt

key_update

cmd_valid

cmd_ready

cmd

Processor

Post

msg_auth_ready

msg_auth_valid

msg_auth

end_of_block

bdo_valid_bytes

bdo_type

bdo_ready

bdo_valid

bdo

hash hash_in

Figure 10: Top-level block diagram of the LWC core 

d) Reference implementations of a dummy authenticated cipher and a dummy hash function 
e) Implementer’s Guide, describing all steps of the development and benchmarking process, including 
verifcation, experimental testing, and generation of results. 

It should be stressed that the implementations of authenticated ciphers (with an optional hash functionality), 
compliant with the LWC Hardware API, can also be developed without using any of the aforementioned resources, 
by just following the specifcation of the LWC Hardware API directly. However, the necessary development 
time would be most-likely signifcantly longer, and the obtained results very comparable. 

The major phases of the API-compliant code development process are summarized in Fig. 9. The manual 
design process is based on the specifcation and the reference C code of a given algorithm. The HDL code 
specifc for a given algorithm is combined with the code shared among all algorithms, provided in the folder 
LWCsrc of the Development Package. Comprehensive test vectors are generated automatically by cryptotvgen 
based on the reference C code. These vectors are used together with the universal testbench, LWC_TB, to 
verify the HDL code using simulation. The verifcation is used to confrm the required functionality as well as 
formulas for the execution time and throughput derived during the design process. Automated optimization 
tools, such as Minerva [25], combined with FPGA tools, such as Vivado, are then used to generate post-place 
and route results, to be entered into the results database. 

3.1 Block Diagram and Design Methodology 
Fig. 10 shows the proposed top-level block diagram of the lightweight architecture of an authenticated cipher 
compliant with the LWC Hardware API. The top-level unit is made of four lower-level units called the 
PreProcessor, CryptoCore, Header FIFO, and PostProcessor. 

The PreProcessor is responsible for the following tasks: a) parsing segment headers, b) loading keys, 
c) passing input blocks to the CryptoCore, along with information required for padding, and d) keeping 
track of the number of data bytes left to process. The PostProcessor is responsible for the following tasks: 
a) clearing any portions of output words not belonging to the ciphertext or plaintext, b) generating the header 
for the output data blocks, and c) generating the status block with the result of authentication. The Header 
FIFO is a small FIFO that temporarily stores all segment headers that need to be passed to the output. 

Our Development Package supports the following dependencies between the data bus widths shown in 
Fig. 10: a) sw = w (for w=8, 16, 32), b) Values of (w, ccw) pairs, where ccw is the bdi and bdo data bus 



10 A Comprehensive Framework for Fair and Eÿcient Benchmarking of Hardware Implementations 

width, equal to (8, 8), (16, 16), (32, 32), as was the case in the CAESAR Development Package v.2.0, and 
(32, 8) and (32, 16), as two new variants. In general, when comparing the following variants: (32, 8) vs. (8, 
8) and (32, 16) vs. (16, 16), we expect (a) negligible di˙erences in throughput and latencies, especially for 
medium to long messages, and (b) minimal di˙erences in area. 

The code of the PreProcessor, PostProcessor, and Header FIFO is provided as a part of the Development 
Package. A designer only needs to develop the CryptoCore. The development of this module is left to 
individual designers and can be performed using their own preferred design methodology. An example design 
of the lightweight CryptoCore for a dummy authenticated cipher and a dummy hash function is provided as a 
part of our distribution. The corresponding code is developed to work correctly with ccw = ccsw = 8, 16, and 
32. Multiple examples of full designs developed during the CAESAR competition are also available at [11]. 

3.2 Test Vector Generator (cryptotvgen) and Universal Testbench (LWC_TB) 
The Python script called cryptotvgen and accompanying examples provide a framework to generate test 
vectors for any authenticated cipher, with optional hash functionality, based on the user’s specifed parameters. 
The framework relies on the reference implementations of the respective algorithms. The arguments of 
cryptotvgen are the function of the a) algorithm, b) parameters of the algorithm (e.g., key size, block size), 
and c) phase of verifcation. While it is possible to generate test vectors using pure shell command syntax, 
this process is likely to be error-prone due to a large number of available options. Instead, we recommend that 
the user creates a Python script that utilizes cryptotvgen as a third party library in Python, and then calls it 
using cryptotvgen(args). Various examples of such Python scripts are provided as a part of the Development 
Package. 

A typical process of verifying the functionality of an authenticated cipher module includes several phases, 
devoted to the verifcation of: a) a Single AD/Plaintext/Ciphertext/Hash Message block, b) Random inputs 
with custom selected sizes, c) Empty AD/Plaintext/Ciphertext/Hash Message, and d) randomly generated 
test vectors with varying AD, Plaintext, Ciphertext, and Hash Message lengths. The designer has the 
fexibility of generating his/her own verifcation strategy, based on the detailed knowledge and understanding 
of options of cryptotvgen. Test vectors should be selected in such a way that all corner cases specifc to a 
given algorithm are covered. Particular attention should be paid to the generation of inputs with partial 
blocks. 

Once test vectors are generated, they should be copied to the simulation folder. The simulation is 
performed using the universal testbench (LWC_TB) until the end-of-fle is reached or a mismatch between 
expected output and actual output occurs. The testbench can also be confgured to ignore errors and allow 
the simulation to run until the specifed time. 

In practical applications, there is no guarantee that the input source will be ready with the new data 
whenever the LWC core attempts to read it. Similarly, the destination circuit may not always be ready 
to receive a new output. These conditions must be comprehensively verifed using simulation before the 
experimental testing is attempted. The provided testbench can be confgured with specifc values of the 
intervals at which the source or destination are not ready to exchange data with the LWC core, expressed in 
clock cycles. 

3.3 Generation and Publication of Results 
The generation of results is possible for the LWC core and the CryptoCore. We recommend generating results 
primarily for the LWC cores. Benchmarking and reporting results for FPGAs should be performed using the 
most-recent low-cost families of FPGA devices from at least two major vendors, Intel and Xilinx. For Intel, 
such families include Cyclone V and Cyclone 10 FPGAs, and Cyclone V SoC FPGAs; for Xilinx Artix-7 
and Spartan-7 FPGAs, and Zynq-7000 All Programmable SoCs. The most recent versions of tools from the 
respective vendors should be used. Only the fnal results obtained after placing and routing should be reported. 
In terms of optimization of tool options, for Xilinx FPGAs and SoCs, we recommend generating results using 
Minerva [25]. In the case of ASICs, state-of-the-art libraries of standard cells should be used. Comprehensive 
results, generated after the respective submission deadlines for the hardware description language code, are 
expected to be made publicly available in the ATHENa Database of Results for Authenticated Ciphers [26] 
or an equivalent or extended database of results, focused on LWC candidates. 

http:CryptoCore.We
http:individualdesignersandcanbeperformedusingtheirownpreferreddesignmethodology.An
http:newvariants.In


11 J.-P. Kaps, W. Diehl, M. Tempelmeier, F. Farahmand, E. Homsirikamol, and K. Gaj 

3.4 Experimental Testing 
The framework from [13] and its extended version from [14] can be used for hardware testing. This framework 
is based on the use of the Xilinx PYNQ board, including the Zynq-7000 All Programmable SoC. This 
open-source project provides a hardware testbed for authenticated ciphers. It uses the Processing System 
(PS) of Zynq SoC to generate test vectors. It then sends these test vectors to the Programmable Logic (PL) 
and reads the results back, with the use of the Xilinx Direct Memory Access (DMA) to AXI4-Stream (AXIS) 
controllers. Additionally, it features two hardware timers to measure the time needed in the core itself and 
the overhead required to send data to and from the authenticated cipher core through DMA. It supports 
on-chip power measurements and determining the maximum clock frequency using experimental testing. 

This framework has been used successfully to locate errors in the HDL code of CAESAR candidates [13], 
[14], preventing the corresponding implementations from running properly on the board. Even though 
the generation of primary timing and resource utilization results does not require experimental testing, 
the detected errors and the follow-up changes in the code may infuence the fnal results. Additionally, 
experimental measurements of power consumption and maximum clock frequency can be used to verify the 
accuracy of the respective FPGA tools and the validity of assumptions used by these tools. 

4 Proposed Timeline and Future Work 
The initial version of the Hardware API for Lightweight Cryptography was submitted for discussion at 
the lwc-forum on July 17, 2019. The received comments were addressed through direct responses sent to 
the lwc-forum, as well as changes incorporated into the LWC Hardware API, Development Package, and 
Implementer’s Guide. All the aforementioned resources were made publicly available on October 14, 2019. 

For the maximum e˙ectiveness of the hardware benchmarking process, we highly recommend that NIST 
endorses the fnal version of the proposed API, refecting the consensus of the cryptographic engineering 
community. The authors also suggest that NIST enforces the submission of the hardware description language 
code, compliant with this Hardware API, for all candidates qualifed to Round 2. The deadline for such 
submissions could be set in the middle of Round 2, e.g., to January 31, 2020. This frst deadline should 
concern only implementations unprotected against side-channel attacks, supported by the Development 
Package released on October 14, 2019. 

The GMU team is planning to a) support all Round 2 submission teams with their hardware implemen-
tation e˙orts, by providing technical support regarding the aforementioned Development Package and its 
documentation, b) take responsibility for the uniform implementation of a signifcant subset of all Round 2 
candidates. After the deadline for submitting unprotected hardware implementations passes, e.g., in February 
2020, our team would be happy to perform the comprehensive benchmarking of all submitted codes, publish 
the obtained results in an online database, and develop the corresponding written report with the thorough 
analysis of the obtained results. Shortly after, our team will also review any comments received from NIST 
and the entire cryptographic community and release the revised and extended version of the Development 
Package and the corresponding Implementer’s Guide, supporting the design of implementations protected 
against side-channel attacks. The deadline for submitting such implementations could be then set to the date 
coinciding with the deadline for the complete Round 3 submissions. 

References 
[1] K. Gaj, E. Homsirikamol, and M. Rogawski, “Fair and Comprehensive Methodology for Comparing

Hardware Performance of Fourteen Round Two SHA-3 Candidates Using FPGAs,” in Cryptographic 
Hardware and Embedded Systems, CHES 2010, ser. LNCS, vol. 6225, Santa Barbara, CA, Aug. 2010, 
pp. 264–278. 

[2] E. Homsirikamol, M. Rogawski, and K. Gaj, “Comparing Hardware Performance of Fourteen Round
Two SHA-3 Candidates Using FPGAs,” Cryptology ePrint Archive 2010/445, 2010. 

[3] K. Gaj, E. Homsirikamol, M. Rogawski, R. Shahid, and M. U. Sharif, “Comprehensive Evaluation
of High-Speed and Medium-Speed Implementations of Five SHA-3 Finalists Using Xilinx and Altera
FPGAs,” Cryptology ePrint Archive 2012/368, 2012. 



12 A Comprehensive Framework for Fair and Eÿcient Benchmarking of Hardware Implementations 

[4] J.-P. Kaps, K. K. Surapathi, B. Habib, S. Vadlamudi, S. Gurung, and J. Pham, “Lightweight Imple-
mentations of SHA-3 Candidates on FPGAs,” in 12th International Conference on Cryptology in India, 
Indocrypt 2011, ser. LNCS, vol. 7107, Chennai, India, Dec. 2011, pp. 270–289. 

[5] B. Baldwin, A. Byrne, L. Lu, M. Hamilton, N. Hanley, M. O’Neill, and W. P. Marnane, “FPGA
Implementations of the Round Two SHA-3 Candidates,” in 2010 International Conference on Field 
Programmable Logic and Applications, FPL 2010, Milan, Italy, Aug. 2010, pp. 400–407. 

[6] M. Knezevic, K. Kobayashi, J. Ikegami, S. Matsuo, A. Satoh, Ü. Kocabas, J. Fan, T. Katashita, T.
Sugawara, K. Sakiyama, I. Verbauwhede, K. Ohta, N. Homma, and T. Aoki, “Fair and Consistent
Hardware Evaluation of Fourteen Round Two SHA-3 Candidates,” IEEE Transactions on Very Large 
Scale Integration (VLSI) Systems, vol. 20, no. 5, pp. 827–840, May 2012. 

[7] CAESAR: Competition for Authenticated Encryption: Security, Applicability, and Robustness - web 
page, https://competitions.cr.yp.to/caesar.html, 2019. 

[8] E. Homsirikamol, W. Diehl, A. Ferozpuri, F. Farahmand, M. U. Sharif, and K. Gaj, “A universal hardware
API for authenticated ciphers,” in 2015 International Conference on ReConFigurable Computing and 
FPGAs, ReConFig 2015, Riviera Maya, Mexico, Dec. 2015. 

[9] E. Homsirikamol, W. Diehl, A. Ferozpuri, F. Farahmand, P. Yalla, J.-P. Kaps, and K. Gaj, “CAESAR 
Hardware API,” Cryptology ePrint Archive 2016/626, 2016. 

[10] ——, “Addendum to the CAESAR Hardware API v1.0,” George Mason University, Fairfax, VA, GMU
Report, Jun. 2016. 

[11] Cryptographic Engineering Research Group (CERG) at George Mason University, Hardware Bench-
marking of CAESAR Candidates, https://cryptography.gmu.edu/athena/index.php?id=CAESAR, 2019. 

[12] E. Homsirikamol, P. Yalla, F. Farahmand, W. Diehl, A. Ferozpuri, J.-P. Kaps, and K. Gaj, “Implementer’s
Guide to Hardware Implementations Compliant with the CAESAR Hardware API,” George Mason
University, Fairfax, VA, GMU Report, 2016. 

[13] M. Tempelmeier, F. De Santis, G. Sigl, and J.-P. Kaps, “The CAESAR-API in the real world — 
Towards a fair evaluation of hardware CAESAR candidates,” in 2018 IEEE International Symposium 
on Hardware Oriented Security and Trust, HOST 2018, Washington, DC, Apr. 2018, pp. 73–80. 

[14] M. Tempelmeier, G. Sigl, and J.-P. Kaps, “Experimental Power and Performance Evaluation of CAESAR 
Hardware Finalists,” in 2018 International Conference on ReConFigurable Computing and FPGAs, 
ReConFig 2018, Cancun, Mexico, Dec. 2018, pp. 1–6. 

[15] P. Yalla and J.-P. Kaps, “Evaluation of the CAESAR hardware API for lightweight implementations,” 
in 2017 International Conference on ReConFigurable Computing and FPGAs, ReConFig 2017, Cancun, 
Mexico, Dec. 2017. 

[16] F. Farahmand, W. Diehl, A. Abdulgadir, J.-P. Kaps, and K. Gaj, “Improved Lightweight Implementa-
tions of CAESAR Authenticated Ciphers,” in 2018 IEEE 26th Annual International Symposium on
Field-Programmable Custom Computing Machines, FCCM 2018, Boulder, CO, Apr. 2018, pp. 29–36. 

[17] W. Diehl, A. Abdulgadir, F. Farahmand, J.-P. Kaps, and K. Gaj, “Comparison of cost of protection
against di˙erential power analysis of selected authenticated ciphers,” in 2018 IEEE International 
Symposium on Hardware Oriented Security and Trust, HOST 2018, Washington, DC, Apr. 2018, 
pp. 147–152. 

[18] ——, “Comparison of Cost of Protection against Di˙erential Power Analysis of Selected Authenticated
Ciphers,” Cryptography, vol. 2, no. 3, p. 26, Sep. 2018. 

[19] W. Diehl, F. Farahmand, A. Abdulgadir, J.-P. Kaps, and K. Gaj, “Face-o˙ between the CAESAR
Lightweight Finalists: ACORN vs. Ascon,” in 2018 International Conference on Field Programmable 
Technology, FPT 2018, Naha, Okinawa, Japan, Dec. 2018. 

[20] ——, “Face-o˙ between the CAESAR Lightweight Finalists: ACORN vs. Ascon,” Cryptology ePrint
Archive 2019/184, 2019. 

[21] NIST, Lightweight Cryptography: Project Overview, https://csrc.nist.gov/projects/lightweight-cryptography, 
2019. 

[22] ARM, AMBA: The Standard for On-Chip Communication, https://www.arm.com/products/silicon-ip-
system/embedded-system-design/amba-specifcations, 2019. 

[23] E. Trichina, “Combinational Logic Design for AES SubByte Transformation on Masked Data,” Cryptol-
ogy ePrint Archive 2003/236, Nov. 2003. 

[24] S. Nikova, C. Rechberger, and V. Rijmen, “Threshold Implementations Against Side-Channel Attacks
and Glitches,” in Information and Communications Security, ICICS 2006, ser. LNCS, vol. 4307, Springer 
Berlin Heidelberg, 2006, pp. 529–545. 

[25] F. Farahmand, A. Ferozpuri, W. Diehl, and K. Gaj, “Minerva: Automated hardware optimization tool,”
in 2017 International Conference on ReConFigurable Computing and FPGAs, ReConFig 2017, Cancun: 
IEEE, Dec. 2017, pp. 1–8. 

[26] Cryptographic Engineering Research Group (CERG) at George Mason University, Authenticated En-
cryption FPGA Ranking, https://cryptography.gmu.edu/athenadb/fpga_auth_cipher/rankings_view, 
2019. 

http:M.Tempelmeier,F.De

	Introduction
	Hardware API for Lightweight Cryptography
	Minimum Compliance Criteria
	Interface
	Communication Protocol
	Side-channel Resistant Implementations
	Differences Compared to the CAESAR Hardware API

	Development Package and Implementer's Guide
	Block Diagram and Design Methodology
	Test Vector Generator (cryptotvgen) and Universal Testbench (LWC_TB)
	Generation and Publication of Results
	Experimental Testing

	Proposed Timeline and Future Work



