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Abstract 

This paper introduces a custom framework for benchmarking software 
implementations from the National Institute of Standards and Technology 
(NIST) Lightweight Cryptography (LWC) project on embedded devices. 
We present the design and core functions of the framework and apply it to 
various NIST LWC authenticated encryption with associated data (AEAD) 
ciphers. Altogether, we evaluate the speed of 213 submitted algorithm vari-
ants on four different microcontroller units (MCUs), including 32 bit ARM 
and 8 bit AVR architectures. To allow a more meaningful comparison, we 
also conduct code size tests on all four boards and RAM utilization tests on 
one test platform. 

1 Introduction 

In the era of rising numbers of interconnected computing devices and highly 
frequent cyber attacks, an increased need for secure communication exists. 
Standard cryptosystems often cannot be applied in areas like sensor networks, 
since the here used devices typically consist of low-performance hardware 
components. To aid in the process of development, evaluation and standard-
ization of suitable lightweight cryptography algorithms, the NIST has initi-
ated the Lightweight Cryptography Project with the fnal goal to standardize 
lightweight hash functions and cryptosystems, which support authenticated 
encryption with associated data. NIST received and published 56 algorithm 
proposals, which include more than 200 AEAD cipher implementation vari-
ants. 

In this paper, we focus on benchmarking speed, ROM and RAM usage of 
software implementations of at least one variant of each cipher on different mi-
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crocontroller platforms. The goal of this work is to provide a broad overview 
over the ciphers’ ”weight”. The following section will describe related work in 
the feld of performance evaluations of cryptosystems. In section 3, we present 
a custom NIST LWC benchmarking framework and its features. Furthermore, 
the test setup, test cases and evaluated MCUs are shown. Section 4 introduces 
the benchmarking results, before we conclude the evaluation outcome in sec-
tion 5 and end with a paragraph on possible future work. 

2 Related Work 

This work is about software performance analysis of the NIST LWC project 
candidates. Ankele et al. published software benchmarks of 2nd round sub-
missions of the CAESAR AEAD competition on Intel desktop processors [1][2]. 
Cazorla et al. compared implementations of 17 block ciphers on a 16 bit MCU 
from Texas Instruments [3]. Similar research was conducted by Hyncica et 
al. in 2011. They evaluate 15 symmetric cryptographic primitives regarding 
throughput, code size and storage utilization on three different embedded plat-
forms [4]. Tschofenig et al. analyzed the performance of cryptographic algo-
rithms, also on MCUs. Their work focuses on asymmetric elliptic curve ciphers 
executed on ARM Cortex-M cores [5]. An evaluation of 19 block and stream 
ciphers was published by Dinu et al. in 2015. A previous paper written by the 
same authors, introduces a benchmark framework for cryptographic ciphers, 
which focuses on fair performance testing [6] [7]. The frameworks eBacs and 
SUPERCOP are additional examples for popular software written for evaluat-
ing implementations of cryptographic algorithms [8]. Built to extend SUPER-
COP, XBX and XXBX enhance the testing framework to support the evaluation 
of hash functions and AEAD ciphers on embedded devices [9] [10]. 

The research presented in this paper focuses on the evaluation of 1st round 
candidates of the NIST LWC project. The software implementations are bench-
marked on multiple different MCU platforms and architectures. We test the 
performance (speed), RAM and ROM utilizations for each one of the 56 sub-
mitted ciphers and provide results for 213 software variants obtained on four 
different evaluation boards for the frst test case. Furthermore, we introduce a 
fexible and highly automated test framework and methodology for evaluating 
the NIST LWC ciphers. 

3 Methodology 

The NIST stated the delivery of a software implementation to be mandatory for 
each submitted AEAD cipher in its call for submissions. Besides requirements 
concerning the cryptographic primitive itself, the set of guidelines included 
some formal regulations. For example, the static directory structure within 
submissions and the use of a predefned software Application Programming 
Interface (API) for cryptographic functions are mentioned. Before developing 
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the methodology and test procedures for the software benchmarks, an analysis 
of these formal requirements was conducted. The goal was to extract the basic 
guidelines for the creation of a test setup, which is completely compliant to the 
defnes of NIST and yet fexible in terms of expandability. 

3.1 Framework 

After reviewing existing performance benchmark frameworks for AEAD ci-
phers, a decision was made towards the development of a custom test tool. 
That was because our focus regarding the hardware architecture was set on 
various instruction sets, typically found on microcontrollers. Since an inten-
sive study of an existing framework and probably programming a manual ex-
tension would have been necessary to execute our test cases on the selected 
MCUs, the decision to built test routines from scratch was considered to be 
more suitable in our case. 

Our framework consists of a couple of C, Python and Bash scripts, which 
are communicating with each other in a mostly automated manner. The com 
pile all.py script is responsible for compiling each cipher implementation 
available from the NIST website for the target platform. Note, that our rou-
tine always tries to compile each submitted cipher (variant) as it was pro-
vided in the ZIP fle; no changes are made to the reference implementation. 
compile all.py fetches the source fles of the crypto aead directories and 
merges them into the target template structure one after the other. The MCU-
specifc template implements a basic runtime environment and utilizes the 
NIST API when calling the encryption/decryption functions. The compile 
all.py script merges the sources of each cipher into a ftting C(++)/Arduino 
template depending on the desired target. For each cipher, it outputs binary 
fles ready to be fashed onto the MCU. Moreover, a test all.sh fle is gener-
ated, which can later be used to start the performance benchmarks. 

After the compilation has terminated, calling test all.sh starts the perfor-
mance benchmark for each successfully compiled implementation on the MCU 
under test. For each cipher test, the generic benchmark script test.py is called. 
test.py is responsible for preparing the message buffers and coordinating the 
execution of the core encrypt/decrypt functions. The script implements a small 
message passing protocol which standardizes the communication in between 
the test software and the target board. test.py represents the generic test 
wrapper to be used in each performance benchmark, independent from the 
target platform. It sends the test vector input data to adapter.py via stdin. 
The adapter.py script is different for each MCU platform. It connects to the 
target via a serial interface and exchanges data with test.py over stdin and 
stdout. adapter.py can basically be seen as an abstract middleware, which 
receives and forwards data from both the host (over std*) and the target (over 
serial). 

To perform the speed benchmarks of the NIST LWC submissions, the test 
all.sh script needs to be executed. It contains one command line chunk for 
each successfully compiled cipher variant. Since the prepared binary images 
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for the target platform are of course unique for every algorithm, they need to be 
fashed and tested sequentially on the MCU. test all.sh creates an instance of 
test.py, which gets tied to an instance of the adapter.py script. Moreover, the 
binary to be fashed and the corresponding test vectors are passed as command 
line arguments. With such a setup, fully automated fash and performance test 
procedures can be conducted. test.py frst connects to adapter.py, which 
is then fashing the target frmware. Afterwards, the frst test vector is sent 
from the host to a serial line connected to the device under test. In parallel, 
test.py starts up and confgures an instance of the Saleae Logic measurement 
software. One GPIO pin and the reset line of the MCU are being monitored 
using a Saleae logic analyzer during the encryption/decryption routines and 
the refashing of new frmware. The GPIO pin gets toggled before and after a 
cryptographic function is executed. test.py monitors the processing of each 
test vector and saves and closes the Logic capture upon the termination of the 
test of one cipher. test all.sh then automatically starts the fash and test 
procedures for the next pre-compiled algorithm variant. The test results can 
later be interpreted by parsing the high and low states of the GPIO and reset 
pin, which were captured with the logic analyzer. 

The architecture of the performance evaluation framework allows testing 
all compiled cipher variants in a completely automated manner. Once the 
compilation has fnished, calling the test all.sh scripts starts the sequential 
fashing, testing and result collection for each binary. Writing basic log fles 
of the processing of the test vectors hereby ensures an easier traceability in 
case of communication or cryptographic errors. When all cipher variants for 
one target have been tested, the results can be interpreted and put into con-
text using a parser script. The test procedure is the same for any supported 
MCU, only the template which interacts with the NIST API and the MCU’s 
hardware and the adapter.py script need to be adjusted. The main test script 
remains unchanged regardless of the test platform and solely connects to the 
adapter script via stdin and stdout. The communication from adapter.py to 
the MCU could for example also be implemented using a non-serial interface 
like Ethernet, if it is available on the MCU under test and the execution time 
of the complete test procedure wants to be reduced. Moreover, the integration 
of new target devices requires little effort and no generic test routines need to 
be reconfgured – only a specifc adapter.py and the runtime environment for 
the encrypt/decrypt functions on the MCU have to be provided. 

The software design of the framework satisfes some common requirements 
regarding test automation. Test data is provided and collected through a stan-
dard interface, which communicates with exchangeable and modular scripts. 
Once the performance test has been started, no user intervention is necessary 
until all suitable cipher variants have been evaluated. Moreover, a basic log-
ging functionality is included, continuous checks of the transmitted data en-
sure the recognition and reporting of communication errors. 

To conlude the introduction to the test framework, Figure 1 visualizes its 
communication model and its previously described parts. 
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Figure 1: Core components and data fow of the test framework 

3.2 Test Setup 

Performing the speed benchmarks on the selected ciphers requires some hard-
ware besides the actual MCU board. For our measurements, a Saleae logic 
analyser was used to probe the states of the necessary pins. In general, any 
other logic analyzer or an oscilloscope can be used to obtain this data. How-
ever, the automated test program starts the Saleae logic software, which ex-
pects a ftting logic analyzer connected via USB. Using a different device would 
require some modifcations of the test software. As a fashing device, a SEG-
GER J-Link debugger is attached to the target MCU via a JTAG/SWD header. 
The J-Link has the advantage of supporting a broad range of MCUs, so a simi-
lar script for fashing different targets can be used. However, as with the logic 
analyzer, other hardware to fash the target could be appointed. To complete 
the hardware setup, a USB-to-serial cable needs to be attached to the confg-
ured UART pins in the MCU template. The 5V line from the USB connection 
can sometimes directly be used to power the test board. As mentioned in the 
previous section, the target-to-host communication can also be realized using 
a solution other than UART. This has to be planned and taken into account, 
when the template and the adapter script are developed for the MCU. 

The appropriate software to compile and run the performance tests, includ-
ing its underlying functions, concludes the test environment. Table 1 briefy 
shows the tools which have been used. The makefles for the building of the 
MCU frmwares specify the recommended compiler fags from NIST. 
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Software type Tool Version 
Compiler arm-none-eabi-gcc 9.1.0 
IDE PlatformIO 4.0.0 
IDE STM32CubeMX 5.2.1 
Interpreter Python 3.7.3 
Measurement utility Saleae Logic 1.2.18 
MCU fasher SEGGER J-Link Commander 6.30 

Table 1: Overview of used software tools 

3.3 Test Cases 

In this work, we introduce three different basic test cases, which are of rele-
vance when assessing how lightweight a software implementation of a cipher 
is, the performance (speed), the size of the binary and the utilization of RAM. 
Of course, the test results of each cipher variant can be compared to its com-
petitors within the NIST LWC project. However, we decided to include two 
more test candidates: A what we call nocrypt algorithm, which simply does 
a memcpy operation in its encrypt and decrypt functions and an implementa-
tion of one of the current state-of-the-art AEAD algorithms, AES-GCM. The 
results of the nocrypt benchmarks deliver an approximate minimal, respec-
tively best case value for all test cases. This allows us to give a statement on for 
example the code size or execution time of the generated MCU template, even 
without integrating any cryptographic algorithm. AES-GCM implementations 
represent the state-of-the-art in the feld of symmetric AEAD ciphers. It is a 
well-tested and standardized cipher. Comparing the candidates from the NIST 
LWC project to GCM shows how they perform against the actual standard in 
the different test cases. We stripped the GCM implementation inside mbed 
TLS to ft into our project environment and added wrapper encrypt/decrypt 
functions according to the NIST API. mbed TLS (formally known as PolarSSL) 
is part of the popular IoT operating system mbed OS and is compliant to NIST 
SP800-38D [11]. The fags MBEDTLS AES ROM TABLES and MBEDTLS AES 
FEWER TABLES were added to the confguration of mbed TLS since they are 
commonly used fags on embedded devices with a small amount of RAM and 
ROM. MBEDTLS AES ROM TABLES places the SBOX and RCON tables and 
their inverses in the ROM instead of initializing them in the RAM on the frst 
utilization of the AES algorithm. The MBEDTLS AES FEWER TABLES re-
duces the binary size by avoiding the inclusion of some optimizations, bringing 
it closer to the one from other LWC entries. 

When conducting the benchmarks, we aimed on including as many cipher 
variants per platform as possible. The reference implementations were treated 
with highest priority, however, also multiple variations of the cipher or op-
timized implementations have been included, when possible. Of course, an 
AVR-optimized program would not run on an ARM-based processor and vice 
versa, but on average more than one cipher variant has been tested on every 
test platform. In the performance test case, we ended up having results for 213 
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variants on at least one of the four test boards. Our tests refer to the code base 
available at NIST’s LWC webpage in the beginning of July 2019. We did not 
change any of the submitted implementations, so every cipher can be judged 
solely on its reference code. To evaluate the performance of each cipher, the 
soft- and hardware setup was prepared as explained in the previous sections. 
The tests included processing the test vectors available in the submitted ZIP 
archive. The vectors for AES-GCM have been created using the genkat aead.c 
fle to ensure a fair evaluation. 

The speed benchmark measures the time for the encryption and decryption 
of the message per test vector. If the vector contains associated data, its signing 
and verifcation is also taken into consideration. The time span is determined 
directly on the target, to avoid high latency, e.g. on the serial line. The logic an-
alyzer gathers each encryption/decryption cycle from the GPIO pin toggle and 
saves the captured data to a text fle upon the processing of the last test vec-
tor. The correct behavior of the cipher is checked by comparing the calculated 
plain- and ciphertext to the values in the test vector fle. All measurements are 
later processed by a dedicated parser (parse logic.py). This script does some 
basic checks to verify the input measurements and generates various textual 
reports and plots. 

To compare the code size of the cipher variants, the GCM implementation 
and the nocrypt routine have also been included in the ROM usage test case. 
We integrated each implementation into the template sources and compiled 
a fashable binary for each cipher and test platform. The size of the nocrypt 
image can be seen as the minimal code size, when the template projects are ap-
plied. The compilation of each algorithm included the use of NIST’s provided 
fags. After the compile all.py script fnished, the code size of the binaries 
was determined with a small bash script utilizing the du system command on 
Linux. 

The volatile memory (SRAM) utilization was only measured on the STM32 
F746ZG chip. To measure the RAM usage, the memory of the chip was flled 
with a known pattern, the test vectors were run, and the memory was dumped 
afterwards. By checking the differences between the memory dumps before 
and after the algorithm has been executed, it is possible to determine how 
many memory locations have been written during the execution of the encryp-
tion and decryption algorithms. The largest number of consecutive untouched 
memory locations between the end of the BSS segment and the beginning of 
the stack is considered the ”unused memory”. The number of additional bytes 
used by each algorithm when compared to the nocrypt implementation is con-
sidered to be the memory utilization of the examined algorithm. 

3.4 Tested Platforms 

The benchmarking framework currently supports four different platforms, fea-
turing one 8 bit- and three 32 bit-MCUs and three different architectures. By 
choosing this initial set of supported boards, we aim to cover a wide range 
of microcontrollers, which are frequently used in IoT development. Also, the 
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afterwards described platforms are real-world low-cost-targets for the NIST 
LWC candidates. Directly providing templates for different architectures should 
show the simple expansion of the framework on the one hand. On the other 
hand, the diversity of the test platforms amplifes a fair evaluation of various 
cipher optimizations for low-performance MCUs. The following paragraphs 
introduce the key features of each test platform briefy. 

Arduino Uno R3 The Arduino Uno features an 8 bit ATmega328P MCU from 
Atmel/Mircochip. The AVR-based controller has a clock speed of 16 MHz and 
provides 32 KB fash. The ATmega chip represents a simple low-end/low-cost 
processor, which is very popular in the community. 

STM32F1 “bluepill” The “bluepill” or “blackpill” boards are cheap 32 bit 
evaluation platforms based on a STM32F103C8T6 MCU. The ARM Cortex-M3 
core provides a clock frequency of 72 MHz and 64 KB of fash memory. 

STM32 NUCLEO-F746ZG The F746ZG NUCLEO board is considered a high-
power 32 bit device. It features 1 MB of fash memory and an ARM Cortex-M7 
core which clocks at a frequency of up to 216 MHz. In contrast to the “bluepill”, 
this chip is already better suited for more resource-intensive IoT products. 

Espressif ESP32 WROOM The Espressif ESP32 WROOM evaluation kit is 
based on a dual-core 32 bit Xtensa LX6 MCU. With a maximum clock frequency 
of 240 MHz and a fash memory size of 4 MB, it is currently the most power-
ful platform supported in the test framework. The ESP32 and its predecessor 
ESP8266 are widely used for various IoT and automation projects. 

4 Results 

In this section, we provide visualizations of the test results. Since the data set 
for each test case contains measurements for 140-200+ ciphers, depending on 
the evaluation platform, extensive statistics are moved to the appendix section 
of this paper. The focus of the results paragraph is to provide a quick and 
brief overview over the best performing ciphers on each MCU and for each 
metric. To visualize the output of the performance (speed) measurements, as 
described in section 3, box plots of the test data of the ten average fastest cipher 
implementations per platform are shown (see fgures 2, 4, 6 and 9). Note, that 
we also tried to obtain results for as many implementations as possible and the 
plots show the top ten cipher variants in ascending order, regardless of their 
relation to a specifc candidate. That means, multiple variants of one candidate 
can be present in the ranking. 

The results of the code size measurements are also presented per platform. 
As explained beforehand, the nocrypt “algorithm” is used as a reference size 
for the MCU template. To determine the actual needed storage for the cipher, 
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the reference size can be subtracted from the compiled fashable binary. Again, 
the ten best NIST LWC candidates are extracted into a diagram, this time in a 
simple bar plot (see fgures 3, 5, 7 and 10). 

The RAM utilization measurements have only been conducted on the STM32 
F746ZG MCU (see fgure 8). We expect similar results for this use case on ev-
ery platform, that is why these tests have only been executed on one out of four 
chips. However, with this approach, we of course only obtain results for the 
cipher variants, that have been managed to be fashed onto the specifc MCU. 

In the following, we plot the average results for the respective top ten ci-
pher variants for each test case and platform. To gather information about 
other implementations, see the provided table in the appendix. Due to vari-
ous limitations, which can for example be linked to the cipher implementation 
itself, the (number of) test vectors or the hardware platform, not all variants 
could be evaluated. We have observed, that the code size of some algorithms 
exceeds the size of the fash memory on some of the tested boards. Moreover, 
optimized variants for specifc Intel architectures or Single Instruction Multiple 
Data (Single Instruction Multiple Data) extensions can often not be supported 
on embedded platforms. Also, the reasons for the failure of a couple of test 
cases for some ciphers is still to be determined. 

However, the vast majority of the available cipher implementations was 
evaluated and the full results are shown in the appendix. 
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Figure 2: Ten fastest implementations on the Arduino Uno 
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Figure 3: Ten smallest implementations on the Arduino Uno 
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Figure 4: Ten fastest implementations on the “bluepill” 
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Figure 5: Ten smallest implementations on the “bluepill” 
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Figure 6: Ten fastest implementations on the STM32 F746ZG 
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Figure 7: Ten smallest implementations on the STM32 F746ZG 
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Figure 8: Ten least RAM-intensive implementations on the STM32 F746ZG 
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Figure 9: Ten fastest implementations on the Espressif ESP32 
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Figure 10: Ten smallest implementations on the Espressif ESP32 
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To provide a graphic representation of the best cipher variant in each test 
case, we pick the number one implementation from the speed, ROM and ROM 
test results on the STM32 F746ZG platform. Figure 11 shows how these candi-
dates perform in comparison to the particularly best cipher in the other test cat-
egories. Unfortunately, we could not acquire speed results for knot128v1.opt 
on the MCU, that’s why the radar chart uses the speed value of knot128v1.ref. 
Moreover, knot128v1.opt might be optimized regarding the performance ac-
cording to its good test results on the Atmel chip. This could explain the less 
optimal results in the ROM test case. 

Note, that the radar plot shows the speed values in milliseconds, the RAM 
values in kilobytes and the ROM values in 10 kilobyte blocks in order to sup-
port easier reading. 

Figure 11: Test results for top ciphers per test case on the STM32 F746ZG 
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5 Conclusion 

In this paper, we introduced a framework for benchmarking cipher software 
implementations of the NIST LWC project on various MCUs. We gave an 
overview over the its architecture, the core components and the communi-
cation channels. Multiple test cases and the corresponding methodology to 
gather results have been described. 

Moreover, test data for more than 200 cipher variants was presented, fea-
turing at least one variant from the 56 1st round candidates on at least one 
out of four supported MCU platforms. This work can be used as a reference 
when looking for performance fgures of software implementations of NIST 
LWC candidates and should help in evaluating the ftness of AEAD ciphers for 
lightweight applications. Furthermore, the results can be viewed in compari-
son to other benchmarks in the context of the NIST LWC project, which aids in 
validating the test results and can contribute to the decision making process, 
e.g. for 2nd round candidates. 

Our results show that multiple NIST LWC candidates perform better than 
the benchmarked AES-GCM implementation (aes128k96n.ref) stripped out of 
mbed TLS. On the one hand, this encourages the further effort in standardiz-
ing one or several candidates, as some of them seem to be more suitable for 
embedded devices regarding the performance test cases. However, additional 
criteria like security against side-channel attacks need to be taken into account 
when comparing the ciphers to each other. Moreover, it could be argued that 
the LWC submissions are mostly build to deliver good performance fgures in 
resource-constrained environments and that there exist far more effcient GCM 
implementations than the standard mbed TLS variant. 

6 Future Work 

Besides the already conducted tests, more extensive test cases apart from pro-
cessing e.g. the NIST test vectors for the performance test could be integrated 
in the test framework. Also, adding support for different MCUs is a sane and 
feasible approach for future research. By implementing more test platforms, 
the number of untested cipher variants (ca. 20) could maybe be reduced. In 
this context, the causes for the failure of these algorithms could be evaluated 
by debugging the compiling and test process. Lastly, the extension of the test 
framework such that it also supports the evaluation of the corresponding hash 
functions submitted to the NIST LWC project might be a reasonable research 
goal for the future. 
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A Extended result table 

Cipher F7 avg. time ESP32 avg. F1 avg. time Uno avg. F7 ESP32 F1 Uno F7 
[µs] time [µs] [µs] time [µs] ROM ROM ROM ROM RAM 

[B] [B] [B] [B] [B] 

aceae128v1.ref 7043.028 17169.360 12154.701 109074.672 2756 3216 3084 4398 516 
aes128k96n.ref 142.316 55.314 383.474 7284 9216 7460 9968 908 
ascon128av12.bi16 284.207 9099.200 152900 241296 292 
ascon128av12.bi32 1353.355 34052 55280 32844 59538 104 
ascon128av12.bi32 arm 30696 30968 76 
ascon128av12.bi32 lowreg 1262.480 31892 53072 32760 60412 104 
ascon128av12.bi8 752.251 337376 480 
ascon128av12.opt64 2250.001 43876 69216 63576 116 
ascon128av12.ref 74.831 2432.839 7129.782 43444 74704 60016 8432 148 
ascon128v12.bi16 328.641 8367.572 128984 200432 236 
ascon128v12.bi32 1411.887 27536 44000 25968 50304 104 
ascon128v12.bi32 arm 24896 25076 76 
ascon128v12.bi32 lowreg 1336.083 25436 43360 26272 51078 104 
ascon128v12.bi8 877.510 287400 460 
ascon128v12.opt64 1951.799 37860 57008 54080 112 
ascon128v12.ref 83.480 2584.507 8402.332 39320 67424 55228 6980 124 
ascon80pqv12.opt64 1949.223 38028 57024 55032 124 
ascon80pqv12.ref 84.052 2686.555 8507.308 39380 69280 56572 7968 140 
bleep64.ref 2.882 3172 2336 3188 6418 
cilipadi128v1extrahot.ref 36002.369 11490.202 56410.952 327408.155 2916 3264 3336 7460 548 
cilipadi128v1hot.ref 35413.662 12068.194 59374.403 343928.942 3704 3344 4160 7194 548 
cilipadi128v1medium.ref 28650.856 9005.136 38666.609 256616.182 3524 3168 3988 6756 484 



19 

Cipher F7 avg. time ESP32 avg. F1 avg. time Uno avg. F7 ESP32 F1 Uno F7 
[µs] time [µs] [µs] time [µs] ROM ROM ROM ROM RAM 

[B] [B] [B] [B] [B] 
cilipadi128v1mild.ref 29819.911 10030.453 49181.859 285771.829 2672 3088 3136 6288 468 
clae128v1.ref 142.246 83.672 329.775 5076.378 2400 2656 2908 5480 180 
clx128.opt 62.541 47.502 117.966 1240 1376 1112 2224 104 
clx128.ref 86.110 46.817 139.627 1092 1200 972 1978 104 
clx128h.opt 77.519 44.202 170.090 1488 1616 1384 2470 124 
clx128h.ref 237.619 104.345 434.414 1104 1200 1000 2004 112 
clx128q.opt 66.325 37.284 142.313 1492 1616 1388 2470 124 
clx128q.ref 197.847 86.480 360.577 1108 1200 1004 2004 112 
clx192h.opt 74.856 47.048 143.229 1312 1424 1180 2214 144 
clx192h.ref 520.535 136.294 570.491 1116 1200 1012 1966 120 
clx192q.opt 65.672 40.614 124.963 1316 1424 1184 2214 144 
clx192q.ref 442.384 115.836 485.224 1120 1200 1016 1966 120 
clx256h.opt 103.401 62.564 205.733 1488 1648 1344 2450 176 
clx256h.ref 324.405 171.855 720.935 1124 1216 1016 1966 136 
clx256q.opt 97.536 57.365 192.175 1492 1648 1348 2450 176 
clx256q.ref 282.468 149.102 626.238 1128 1216 1020 1966 136 
comet128aesv1.ref 219.047 118.647 529.351 7280 8096 7792 7214 571 
comet128chamv1.ref 2400.781 915.416 2926.009 20299.364 2964 3680 3452 6010 416 
comet64chamv1.ref 1013.083 505.276 1534.297 13398.122 2620 3632 3168 5846 372 
comet64speckv1.ref 817.311 417.836 1824.362 11504.740 2668 3488 3240 5808 576 
drygascon128.le32 542.165 212.386 66777.671 6564 10864 15056 5494 352 
drygascon128.ref 1926.271 762.502 3148.628 114483.205 5072 2704 7356 5606 364 
drygascon256.le32 669.085 331.173 101699.133 5916 14512 18080 6070 380 
drygascon256.ref 3130.675 1237.274 5927.809 176608.901 5212 3072 7708 6970 476 
elephant160v1.ref 20909.156 11075.056 39345.962 1504155.272 3916 3488 3700 8274 1396 
elephant176v1.ref 22714.283 13009.892 44010.036 1761403.177 3984 3552 3728 8388 1432 
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Cipher F7 avg. time ESP32 avg. F1 avg. time Uno avg. F7 ESP32 F1 Uno F7 
[µs] time [µs] [µs] time [µs] ROM ROM ROM ROM RAM 

[B] [B] [B] [B] [B] 
elephant200v1.ref 2531.479 1187.344 4437.237 130712.124 3236 2752 3072 8116 452 
estatetweaes128v1.ref 377.285 155.710 644.732 3524.408 2840 3184 2512 5824 436 
estatetwegift128v1.ref 19129.064 6936.047 34897.136 2888 3376 2664 6388 1820 
fexaead128b064v1.ref 947.754 326.396 1506.920 38912.561 10724 12288 10676 16784 316 
fexaead128b128v1.ref 1583.428 538.362 2611.327 67167.777 10792 12384 10788 17846 436 
fexaead256b256v1.ref 3339.996 983.778 5261.696 130341.935 10868 12448 10792 18090 716 
Fountain128v1.ref 21242.796 4278.897 37542.719 235287.741 3120 3632 2984 6222 804 
giftcofb128v1.ref 1846.168 802.828 3495.506 316451.027 1880 2384 1788 2934 192 
gimli24v1.littleendian 56.094 198.699 11552.569 1280 1252 3260 
gimli24v1.ref 152.467 547.546 16766.448 1936 1692 3380 
grain128aead.opt32 130.788 289.246 3056 3440 3696 11740 8521 
grain128aead.ref 16633.033 7340.962 35956.574 171825.031 3244 3600 3800 10540 705 
hern128v1.ref 54626.940 14197.733 47872.160 1328 1616 1292 1776 348 
hyenav1.ref 10356.078 5042.519 25426.377 2968 3552 2844 6276 1720 
ingage1k128n096c224r008.ref 18131.577 12871.094 48753.118 1764995.870 1488 1808 1448 2260 144 
ingage1k128n096c224r016.ref 9931.223 7788.460 26533.425 1015137.899 2300 2560 2196 3262 176 
ingage1k128n096c224r032.ref 6018.361 2534.505 10875.638 89522.925 2136 2480 2072 3490 152 
ingage1k128n128c256r064.ref 5315.357 3521.188 13211.554 542680.743 2224 2688 2208 4184 196 
ingage1k256n096c448r064.ref 7135.222 3337.617 15018.068 118839.111 2196 2512 2160 4202 232 
ingage1k256n128c448r064.ref 7263.414 3337.933 15017.772 118837.610 2188 2512 2108 4202 236 
isapa128av20.ref 4426.059 2254.737 9554.568 240035.998 5352 3728 7636 5438 372 
isapa128v20.ref 7665.641 6298.894 22817.292 791234.642 5352 3728 7636 5334 372 
isapk128av20.ref 10451.679 4681.281 18508.977 621471.148 5608 2784 7660 3484 408 
isapk128v20.ref 87341.875 38963.683 154443.122 5612 2784 7660 3484 408 
knot128v1.opt 61.494 7352.878 3788 6144 4416 11652 60 
knot128v1.ref 158.999 90.480 412.492 9626.300 1884 2048 1908 3412 212 
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Cipher F7 avg. time ESP32 avg. F1 avg. time Uno avg. F7 ESP32 F1 Uno F7 
[µs] time [µs] [µs] time [µs] ROM ROM ROM ROM RAM 

[B] [B] [B] [B] [B] 
knot128v2.opt 95.050 6148 10896 7296 19028 204 
knot128v2.ref 171.477 115.009 498.147 3092 2672 3160 4768 348 
knot192.opt 140.547 5164 9104 6124 17112 216 
knot192.ref 251.881 170.777 731.390 3308 2928 3408 6274 348 
knot256.opt 249.563 7396 14640 10228 32158 144 
knot256.ref 478.119 281.495 1456.351 67656.377 3008 3376 3180 8764 444 
laemsimon128v1.ref 271.938 494.904 597.329 11684 14352 13164 41574 728 
laemsimon192v1.ref 273.293 496.912 601.856 11748 14368 13220 41580 744 
laemsimon256v1.ref 293.464 500.929 644.603 11764 14384 13252 41724 760 
lilliputaei128v1.add felicsref 1386.624 523.586 2581.831 14150.531 2616 3280 2556 3822 540 
lilliputaei128v1.add tweakeyloop 1780.566 627.962 2864.693 19904.161 2888 3584 2828 4056 572 
lilliputaei128v1.ref 1759.047 633.841 2782.727 17488.023 2856 3632 2800 4342 556 
lilliputaei192v1.add felicsref 1946.347 643.157 3066.085 17277.658 2728 3376 2680 3916 592 
lilliputaei192v1.add tweakeyloop 2206.565 794.368 3499.348 25774.090 2904 3600 2848 4058 624 
lilliputaei192v1.ref 2205.845 807.014 3576.489 22045.678 2872 3632 2820 4344 604 
lilliputaei256v1.add felicsref 2172.646 837.917 4103.997 21923.028 2860 3536 2804 4044 668 
lilliputaei256v1.add tweakeyloop 3017.399 1036.652 4644.923 35004.687 2920 3584 2860 4062 688 
lilliputaei256v1.ref 2963.059 1054.081 4480.594 28661.233 2888 3632 2832 4348 672 
lilliputaeii128v1.add felicsref 2001.667 631.969 3182.153 19742.594 2372 2928 2256 3454 564 
lilliputaeii128v1.add tweakeyloop 2170.776 749.157 3563.199 24735.962 2720 3344 2616 3370 596 
lilliputaeii128v1.ref 2135.359 758.002 3411.995 21420.795 2688 3392 2588 3656 580 
lilliputaeii192v1.add felicsref 2867.808 802.351 3812.611 24670.591 2464 3056 2352 3646 612 
lilliputaeii192v1.add tweakeyloop 2359.150 963.406 4289.756 30918.083 2736 3360 2624 3374 644 
lilliputaeii192v1.ref 2346.207 972.953 4376.689 27175.153 2704 3408 2596 3660 628 
lilliputaeii256v1.add felicsref 2705.196 1021.793 5103.570 31886.921 2576 3136 2468 3864 680 
lilliputaeii256v1.add tweakeyloop 3526.443 1264.759 5711.381 41582.334 2752 3360 2636 3374 712 
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Cipher F7 avg. time ESP32 avg. F1 avg. time Uno avg. F7 ESP32 F1 Uno F7 
[µs] time [µs] [µs] time [µs] ROM ROM ROM ROM RAM 

[B] [B] [B] [B] [B] 
lilliputaeii256v1.ref 3451.389 1285.108 5550.820 35589.623 2720 3392 2608 3660 692 
limdolen128v1.ref 243.757 117.167 443.012 3573.647 1460 1552 1332 3542 292 
limdolen256v1.ref 556.976 222.193 982.636 5831.568 1592 1648 1456 4680 460 
mixfeed.ref 1150.036 447.074 2008.397 12872.813 2492 2704 2404 4034 452 
nocrypt.ref 1.148 0.484 5.080 14.687 0 0 0 0 0 
orangezestv1.ref 17504.825 5824.106 24355.806 3656 3952 3580 4644 264 
oribatida192v11.ref 18380.310 6787.658 30071.750 776284.449 5096 4848 5604 10210 904 
oribatida256v11.ref 25412.086 11112.096 47023.975 1265930.986 5136 4912 5652 10192 912 
paefforkskinnyb128t192n48v1.ref 3571.160 1180.759 5810.102 38592.654 7432 6112 8540 14728 460 
paefforkskinnyb128t256n112v1.ref 3572.702 1181.510 5683.577 38590.783 7420 6112 8500 14676 468 
paefforkskinnyb128t288n104v1.ref 5947.970 1968.977 9232.277 61641.124 7388 6256 8452 15300 532 
paefforkskinnyb64t192n48v1.ref 7245.789 2397.866 11716.134 73602.829 6984 5792 8016 14642 444 
photonbeetleaead128rate128v1.ref 25746.004 7196.612 40575.950 355116.438 4928 2816 6872 3712 280 
photonbeetleaead128rate32v1.ref 66774.791 17899.066 87720.702 883322.814 4888 2736 6844 3608 280 
pyjamask128aeadv1.ref 2000.806 735.478 3153.497 148612.689 2548 3024 2408 3890 604 
pyjamask96aeadv1.ref 1255.104 665.301 2976.854 131952.916 2404 2816 2264 3624 536 
qameleon128128128tcgpv1.ref 2544.762 1086.633 4509.733 7280 8208 7408 12254 1176 
qameleon12812864gpv1.ref 2536.231 1028.097 4375.957 5984 6944 6076 11302 1064 
qameleon12812896gpv1.ref 2495.770 1029.175 4375.997 6552 7568 6392 11552 1108 
qameleon1286464mev1.ref 4900 5808 4868 7352 
qameleon6464nnmev1.ref 4116 4864 4160 6746 
qameleon6464tcmev1.ref 5248 6048 5272 7818 
Quartet128v1.ref 113.157 73.063 344.835 3160 3696 3912 9198 188 
remusm1v1.ref 3701.481 1284.638 5714.744 38416.497 3932 4704 3688 5446 432 
remusm2v1.ref 4366.065 1526.519 6689.271 45612.362 4216 4880 3940 5864 471 
remusn1v1.ref 2684.551 940.644 4181.677 28047.692 3528 4064 3272 3246 368 
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Cipher F7 avg. time ESP32 avg. F1 avg. time Uno avg. F7 ESP32 F1 Uno F7 
[µs] time [µs] [µs] time [µs] ROM ROM ROM ROM RAM 

[B] [B] [B] [B] [B] 
remusn2v1.ref 3372.022 1180.632 5228.450 35186.766 3732 4208 3436 3568 424 
remusn3v1.ref 4358.761 1468.448 6906.212 43666.916 3492 3952 3228 3420 332 
romulusm1v1.ref 6783.511 2192.651 10134.507 84618.714 5216 5520 4920 7882 528 
romulusm2v1.ref 6814.861 2276.410 10257.003 87851.608 5972 6128 5780 8130 524 
romulusm3v1.ref 4515.148 1521.942 6903.088 42393.937 6116 6304 5916 7976 524 
romulusn1v1.ref 5436.593 1764.565 8015.440 68023.202 4164 4528 3828 4176 496 
romulusn2v1.ref 4732.402 1765.100 8152.434 68020.708 4148 4576 3896 4198 476 
romulusn3v1.ref 3195.939 1178.074 5347.701 32732.699 4168 4576 3924 4078 460 
saeaes128a120t128v1.ref 117.800 35.522 180.444 7932 8624 7908 13070 312 
saeaes128a120t64v1.ref 118.838 35.286 179.499 7928 8640 7912 13070 312 
saeaes128a64t128v1.ref 137.596 41.186 209.096 8020 8736 8016 13070 336 
saeaes128a64t64v1.ref 135.789 40.980 207.832 8016 8752 8020 13070 336 
saeaes192a120t128v1.ref 136.813 40.706 209.073 8636 9328 8532 14930 352 
saeaes192a64t128v1.ref 158.538 47.301 240.697 8724 9424 8640 14930 376 
saeaes192a64t64v1.ref 158.953 47.251 239.753 8720 9440 8644 14930 376 
saeaes256a120t128v1.ref 159.668 46.904 248.851 9248 9952 9068 16490 392 
saeaes256a64t128v1.ref 182.645 54.406 288.894 9336 10048 9176 16490 416 
saeaes256a64t64v1.ref 181.855 54.356 287.839 9332 10096 9180 16490 416 
saefforkskinnyb128t192n56v1.ref 3351.887 1181.417 5687.258 38490.654 5280 5792 5296 13018 476 
saefforkskinnyb128t256n120v1.ref 3560.404 1182.093 5690.846 38515.224 5300 5856 5344 13018 484 
saturninctrcascadev2.bs32 157.524 99.515 320.447 9834.233 3440 4592 3644 10558 480 
saturninctrcascadev2.bs32x 344.648 180.624 587.491 16402.347 11612 15088 11544 27722 972 
saturninctrcascadev2.bs64 634.912 326.670 2032.773 28795.123 10456 13952 17632 26870 984 
saturninctrcascadev2.ref 559.485 228.980 880.751 8484.003 2304 2464 2240 3210 512 
saturninshortv2.ref 2680 2912 2580 3808 324 
schwaemm128128v1.opt 122.009 46.685 248.978 2472 2576 2364 4734 120 
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Cipher F7 avg. time ESP32 avg. F1 avg. time Uno avg. F7 ESP32 F1 Uno F7 
[µs] time [µs] [µs] time [µs] ROM ROM ROM ROM RAM 

[B] [B] [B] [B] [B] 
schwaemm128128v1.ref 173.971 64.153 268.205 5408 2960 7440 4968 220 
schwaemm192192v1.opt 203.037 65.055 359.055 2904 2240 2804 4002 168 
schwaemm192192v1.ref 197.555 85.908 353.307 5840 2608 7880 4308 268 
schwaemm256128v1.opt 166.211 58.600 328.541 2548 2528 2436 5760 184 
schwaemm256128v1.ref 179.176 77.291 321.097 5484 2912 7512 6066 284 
schwaemm256256v1.opt 227.445 79.985 446.923 2336 2352 2336 5412 208 
schwaemm256256v1.ref 263.317 104.040 404.160 5276 2736 7412 5758 308 
sestatetweaes128v1.ref 341.770 127.214 594.986 3174.513 2884 3216 2592 5788 436 
shamashv1.opt64 133.900 88.778 371.430 13252 16320 17200 42218 140 
shamashv1.ref 157.255 85.185 384.596 7950.752 4012 4496 4716 9584 156 
simple128aes10.ref 333.066 127.319 676.862 7000 7488 7472 6722 619 
simple128gift.ref 40272.066 13744.350 52398.740 445537.719 2868 3248 3348 5708 864 
simple128speck.ref 1721.942 898.552 4281.735 27911.181 2368 2752 2868 5148 904 
simple64gift.ref 26572.177 11271.329 44377.340 351339.646 2956 3408 3504 5780 692 
simple64present.ref 21708.020 6724.769 30421.479 224531.057 2692 3200 3208 5526 1064 
simple64speck.ref 1966.768 796.116 3539.544 23794.035 2544 2992 3048 5304 576 
sivrijndael256aead128v1.ref 1621.036 874.424 2803.449 3096 1648 
sivtemphotonaeadv1.ref 27586.642 9296.271 45904.922 342048.845 5072 3072 7068 2538 368 
skinnyaeadtk296128v1.ref 3964.238 1519.284 7004.319 42884.681 5420 5744 5452 10694 456 
skinnyaeadtk29664v1.ref 3985.951 1519.344 7002.497 42877.123 5436 5776 5452 10702 456 
skinnyaeadtk3128128v1.ref 6331.048 2258.720 10006.620 65270.758 5716 6304 5680 10216 460 
skinnyaeadtk312864v1.ref 6332.436 2258.105 10536.461 65263.320 5728 6320 5692 10230 460 
skinnyaeadtk396128v1.ref 5846.707 2258.399 10129.828 65268.957 5724 6304 5704 10220 456 
skinnyaeadtk39664v1.ref 5820.733 2258.092 10009.874 65261.571 5740 6320 5712 10234 456 
sneiken128.arm 67.754 1276 
sneiken128.avr 1350.041 1390 



25 

Cipher F7 avg. time ESP32 avg. F1 avg. time Uno avg. F7 ESP32 F1 Uno F7 
[µs] time [µs] [µs] time [µs] ROM ROM ROM ROM RAM 

[B] [B] [B] [B] [B] 
sneiken128.opt 35.786 30.388 78.218 14373.459 1492 1824 1464 5756 196 
sneiken128.ref 62.679 41.485 127.839 14981.479 1780 2304 1700 6612 268 
sneiken192.arm 76.772 1308 
sneiken192.avr 1557.860 1394 
sneiken192.opt 41.242 34.529 87.548 16731.597 1528 1824 1496 5760 204 
sneiken192.ref 67.342 46.231 141.645 17376.493 1808 2304 1728 6618 276 
sneiken256.arm 86.483 1404 
sneiken256.avr 1786.968 1496 
sneiken256.opt 45.042 38.759 98.557 19286.015 1620 1920 1592 5862 220 
sneiken256.ref 78.314 51.378 152.561 19968.699 1816 2304 1732 6618 284 
spix128v1.ref 4529.562 9763.821 7404.409 63942.546 2964 3616 3340 4842 444 
spoc128sliscplight256v1.ref 2247.954 5056.624 3794.102 33292.171 2372 2864 2832 4022 428 
spoc64sliscplight192v1.ref 2941.583 8670.760 5396.709 39682.020 2360 2928 2820 4032 412 
spook128mu384v1.ref 739.610 259.851 987.533 41278.285 3140 3264 3040 6464 468 
spook128mu512v1.ref 739.610 259.995 987.533 41278.284 3140 3264 3040 6464 468 
spook128su384v1.ref 684.107 259.661 991.980 41275.597 3080 3248 2984 6396 452 
spook128su512v1.ref 684.107 259.651 991.979 41275.597 3080 3248 2984 6396 452 
subterraneanv1.add mem compact 940.932 521.063 1380.673 12629.421 9108 11760 8584 12378 496 
subterraneanv1.ref 3647.831 1687.627 6350.099 36530.360 4284 5056 4336 5620 884 
sundaegift0v1.ref 2407.938 1086.074 4658.570 430499.917 2440 2992 2916 4304 376 
sundaegift128v1.ref 2921.141 1288.033 5528.094 510744.040 2460 3008 2924 4366 408 
sundaegift64v1.ref 2673.655 1190.956 5106.517 471840.387 2472 3008 2932 4370 392 
sundaegift96v1.ref 2353.894 1239.887 5317.298 491292.066 2476 3008 2936 4370 404 
syconaer64128v1.ref 8051.422 2657.666 12888.710 108264.248 4512 5664 4736 6256 300 
syconaer96128v1.ref 7835.576 2615.087 12331.872 106560.268 5496 5840 8308 6610 308 
tgifm1128v1.ref 409.503 197.940 954.543 4316 5472 4156 6192 640 



26 

Cipher F7 avg. time ESP32 avg. F1 avg. time Uno avg. F7 ESP32 F1 Uno F7 
[µs] time [µs] [µs] time [µs] ROM ROM ROM ROM RAM 

[B] [B] [B] [B] [B] 
tgifm2128v1.ref 505.697 239.750 1180.245 4600 5632 4408 6610 680 
tgifn1128v1.ref 309.606 144.558 697.955 3912 4816 3740 3992 576 
tgifn2128v1.ref 422.515 184.453 907.182 4116 4960 3904 4314 632 
tinyjambu128.opt 59.421 34.026 127.869 1232 1424 1248 2124 96 
tinyjambu128.ref 96.105 54.527 163.764 1064 1248 1084 1964 100 
tinyjambu192.opt 59.894 35.186 125.577 1364 1536 1344 2224 108 
tinyjambu192.ref 127.328 68.450 218.971 1092 1280 1120 2042 108 
tinyjambu256.opt 73.820 45.089 150.111 1280 1456 1276 2170 116 
tinyjambu256.ref 88.360 63.000 188.512 1080 1248 1100 1964 116 
triadaev1.ref 46748.111 19094.936 118120.957 581589.825 4164 5072 4108 8994 756 
trifev1.ref 36894.092 13101.582 63284.362 2960 3504 2704 6336 2140 
twegift64locusaeadv1.ref 13318.046 6485.124 27400.572 4240 4880 6554 1332 
twegift64lotusaeadv1.ref 15648.897 6483.968 27741.335 4908 5872 8458 1332 
wageae128v1.ref 1733.381 1880.893 7538.703 40367.267 6612 5792 7720 6862 313 
xoodyakv1.ref 472.481 252.050 890.169 41096.504 5068 2848 7128 2820 340 
yarara128v1.opt64 121.562 4637.719 62360 109632 95884 108 
yarara128v1.ref 247.856 141.179 619.524 17209.393 2228 2672 2576 5910 272 


