
Breaking REMUS and TGIF in the light of NIST
Lightweight Cryptography Standardization

Project

Nilanjan Datta1, Ashwin Jha1, Alexandre Mège2 and Mridul Nandi1

1 Indian Statistical Institute, Kolkata, India
2 Airbus Defence and Space, Elancourt, France

nilanjan_isi_jrf@yahoo.com,ashwin.jha1991@gmail.com,alexandre.mege@airbus.com,
mridul.nandi@gmail.com

Abstract. In this paper, we propose forgery attacks on REMUS-N1, REMUS-M1,
REMUS-N3, TGIF-N1, and TGIF-M1 in D ˇ 243.6 bytes and T ˇ 297.5 . Further we
show a key recovery attack on REMUS-N3 in D ˇ 243.6 bytes and T ˇ 297.5 .
Keywords: REMUS · TGIF · lightweight · generic attack

1 Introduction

Authenticated encryption or AEAD1 schemes are symmetric-key primitives, which can
simultaneously achieve two information security goals: confdentiality and authentic-
ity/integrity. In recent years, the cryptographic community has shown a lot of interest
in the design and analysis of AEAD schemes. Cryptographic competitions such as the
recently concluded CAESAR competition [3], and the recently started NIST lightweight
cryptography standardization project [18], henceforth referred as “NIST LwC”, have given
new impetus to the research and development of highly eÿcient and secure AEAD schemes.
While CAESAR was aimed to identify a portfolio of AEAD schemes designed for general
purpose usages, the NIST LwC is focused on standardizing lightweight AEAD schemes for
resource constrained environments such as sensor networks and IoT devices.

The frst round of NIST LwC has 56 candidates, including REMUS [12] and TGIF [13].
REMUS o˙ers three variants for nonce-respecting scenario, namely, REMUS-N1, REMUS-N2,
and REMUS-N3, and two variants for nonce-misusing scenario, namely, REMUS-M1 and
REMUS-M2. Of these fve variants, REMUS-N1 is the primary submission to NIST LwC.
Similarly, TGIF o˙ers two variants for nonce-respecting scenario, namely, TGIF-N1, and
TGIF-N2, and two variants for nonce-msiusing scenario, namely, TGIF-M1, and TGIF-M2.
Of these TGIF-N1 is the primary submission to NIST LwC.

1.1 NIST LwC Security Requirements from AE Schemes

In the call for submission document [19], it is clearly mentioned that

Cryptanalytic attacks on the AEAD algorithm shall require at least 2112

computations on a classical computer in a single-key setting.

Further, the document puts a restriction on the limit on maximum input size (plaintext,
associated data, and the amount of data processed under one key). It states that

1Here AD represents Associated Data. Traditional AE setting requires integrity security for AD.

mailto:nilanjan_isi_jrf@yahoo.com, ashwin.jha1991@gmail.com, alexandre.mege@airbus.com, mridul.nandi@gmail.com
mailto:nilanjan_isi_jrf@yahoo.com, ashwin.jha1991@gmail.com, alexandre.mege@airbus.com, mridul.nandi@gmail.com

	

	

	

	

2
Breaking REMUS and TGIF in the light of NIST Lightweight Cryptography

Standardization Project

The limits on the input sizes (plaintext, associated data, and the amount of
data that can be processed under one key) for this member shall not be smaller
than 250 − 1 bytes.

Let T and D denote the number of computations and the maximum amount of data
processed under one key. One can clearly infer that the minimum security requirements
from an AEAD scheme is as follows:

If D < 250 bytes and T < 2112, then is secure.

There are several notions of security for AEAD, including key recovery, message recovery,
privacy, and authenticity. For each such notion there is a well-defned notion of attacker’s
advantage, which encapsulates the success probability, and hence lies in the interval [0, 1].
An advantage value of at least 0.5 indicates that the attack succeeds with high probability.
In general a fxed constant value , say � 2 (0, 1], is chosen as the desired tolerance level,
and we say that a scheme is insecure if some attack succeeds with at least � advantage.
Although, NIST LwC has not specifed any tolerance level, however for analysis purposes,
� = 0.5 could be a very generous choice. Clearly, an attack X violates under NIST LwC
requirements when:

D(X) < 250 bytes and T (X) < 2112, and X attacks with at least 0.5 advantage,

where T (X) and D(X) denote the computation time and data complexity of the attack X.

1.1.1 Data Limit

The meaning of parameter D is quite clear from the document. D denotes the data
complexity of the attack. This parameter quantifes the online (queries to the AEAD
scheme) resource requirements, and includes the total number of blocks (among all
messages/ciphertexts and associated data) processed through the underlying primitive for
a fxed master key.

1.1.2 Computation Time Limit

The computation time T of an attack refers to the time complexity of the attack. This
parameter quantifes the o˜ine resource requirements, and includes the total time required
to process the o˜ine evaluations of the underlying block cipher. Since one call of the block
cipher can be assumed to take a constant amount of time,2 it is generally ignored, and the
number of primitive evaluations is taken as the time complexity of evaluations.

We remark that, the direct evaluations of the primitives have been considered within
time complexity in multiple papers and in di˙erent scenarios: For instance, the time-
memory trade-o˙ attack by Hellman [11] and related-key attacks on AES-256 [2], attacks
on hash functions [15, 14, 9, 1], attacks on HMAC and NMAC [20, 16, 21, 10, 6], attacks on
Even-Mansour ciphers [7, 4, 5, 8], and multi-key attacks on Even-Mansour cipher [17]. In
fact, this also makes sense in real scenario, where the adversary can actually make block
cipher evaluations on its own by devoting suÿcient time.

In this regard, we note that REMUS-N1, REMUS-N3, REMUS-M1, TGIF-N1, and TGIF-
M1 restrict the number of o˜ine evaluations of the underlying block cipher (the primitive)
to less than 264. In light of the above discussion, it is clear that this violates the NIST
LwC requirements as stated above, as the adversary is allowed make beyond 264 (anything
below 2112 is valid) block cipher evaluations. This is especially required from REMUS-N1
and TGIF-N1, which are the primary variants in their respective submissions.

2A rigorous analysis assumes that the time complexity of one evaluation of the primitive is O(nk),
where n is the input size of the primitive, and k 2 N is a constant.

3 Nilanjan Datta1, Ashwin Jha1, Alexandre Mège2 and Mridul Nandi1

1.2 Our Contributions

In this paper, we propose forgery attacks on REMUS-N1, REMUS-M1, REMUS-N3, TGIF-N1,
and TGIF-M1, where D ̌ 250 bytes and T < 2100 and the attack advantage is close to 1.
We further show a key recovery attack on REMUS-N3 with D < 250 bytes and T < 2100,
and the attack advantage is close to 1.

2 Forgery and Key Recovery against REMUS and TGIF

Throughout we use n = 128 as block size and key size of the underlying block cipher. We
denote nonce size by r. For N1 and M1 variants r = 128, and for the N3 variant r = 96.
Our forgery and key recovery utilize an underlying state recovery attack. We frst describe
the state recovery attack and then give the forgery and key recovery attacks.

2.1 Recovering the Nonce-based Key L

The key derivation function KDFK takes a nonce value N as input and outputs a nonce-
based key L. In case of the N1 and M1 variants, KDFK (N) := EK (N), and in case of the
N3 variant, KDFK (N) := K �Nk032.
We employ the following algorithm to fnd the nonce-based key corresponding to one nonce
value:
Algorithm 1:

1. Let t � 32 be a parameter of the algorithm, and d = n − t.

2. For i = 0 to 2t − 1:

• Set Li = 0dkhiit, where hiit denotes the t-bit representation of integer i.
• Simulate the encryption of (A, M) using Li as the nonce-based key, where
|A| = |M | = n. Response: (Ci, ˝ i). Store (Li, Ci, ˝ i) in a list H.

3. Sort entries in H on second and third coordinates, i.e. (C, ˝).

4. For j = 0 to 2d − 1:

• Set N̂ j = hjidk0r−d. Note that r − d � 0 due to t � 32.
• Query (N̂ j , A, M) to the encryption oracle of AEAD. Response: (Ĉj , ˝̂ j).
• Search (Ĉj , ˝̂ j) in H (binary search would suÿce). Suppose there exist index

i 2 H such that (Ĉj , ˝̂ j) = (Ci, ˝ i) then it would mean that L̂j = Li with
very high probability. Matching both ciphertext and tag helps in avoiding
false positives. This is because such matchings happen in the ideal world with
probability ̌ 2−2n, whereas for the real schemes this happens with probability
1 when L̂j = Li.

Note that, we could have mounted a slightly more simple attack on N1 and M1 (choose
2t Li’s in without replacement manner and use 2d distinct nonces in encryption queries).
But, to give a combined attack on N1, M1, and N3, we have to use the above strategy.

2.2 Key Recovery Attack against REMUS-N3

In REMUS-N3, the key can be directly recovered from a valid nonce and nonce-based key
pair (N 0, L0) obtained using Algorithm 1 of subsection 2.1. The master key K is computed
as

= L0 �N 0k032 K .

Once the master key K is recovered any other attack is easily possible.

http:attack.We
http:cipher.We

4
Breaking REMUS and TGIF in the light of NIST Lightweight Cryptography

Standardization Project

2.3 Forgery against REMUS -N1/N3/M1 and TGIF -N1/M1

One can also construct nonce-respecting3 forgery attacks on REMUS-N1 (primary version),
REMUS-N3, and REMUS-M1, given the nonce-based key recovered in Algorithm 1. On a
closer inspection, we found that the same attack also works on TGIF-N1 (primary version)
and TGIF-M1 as well. Basically, the attack recovers some valid nonce and nonce-based
key pair (N 0, L0) using Algorithm 1 of subsection 2.1, which can then be used trivially
to construct valid forgeries of the form (N 0, A0, C 0, T 0), where A0 and C 0 can be chosen
arbitrarily, and the tag is computed using L0, A0 and C 0.

2.4 Complexity of the Attack

It is easy to see that Algorithm 1 has the following complexity:

1. Data complexity, D ̌ 2d+5.6 bytes. The factor of 5.6 is due to the fact that each
encryption query consists of 3 ˇ 21.6 blocks of data and each block contains 24 bytes.

2. Total time complexity, T ̌ 2t+5.6 + t · 2t + t · 2n−t.

Here the frst, second, and third terms in the time complexity correspond to time complexity
of step 2, 3, and 4, respectively, of Algorithm 1 in subsection 2.1.

The time complexity of key recovery and forgeries can be made negligible given the
nonce based key L recovered in Algorithm 1.

Algorithm 1 works for all choices of t � 32, as d + t = 128. Specifcally, to reduce the
data complexity below the NIST LwC requirement, we set t = 90, which gives d = 38. For
this choice of t, we get D ̌ 243.6 bytes and T ̌ 297.5, which clearly falls within the NIST
LwC minimum data and time limit.

Remark 1. We remark that there is a scope of improvement in time complexity of Algorithm
1 by using a hash table instead of a list. Similarly, one can improve data complexity by
using empty message and empty AD. However, this may lead to some false positives which
can be eliminated by making constant number of checking queries. We do not use the
empty message and AD case, as such inputs seldom occur in real scenario.

2.5 Inherent Weakness of REMUS-N1/N3/M1 and TGIF-N1/M1

We would like to point out that the N1/N3/M1 variants of REMUS (and N1/M1 variants of
TGIF) have an inherent weakness: insuÿcient randomness in the initial state (key,input).
Although the key is derived using nonce for each encryption query, the adversary can
easily fx a constant value as the initial input. So, to create an initial state collision the
adversary just needs to collide the initial key.

In summary, it seems that REMUS-N1/N3/M1 and TGIF-N1/M1 do not satisfy the minimum
security requirements of NIST LwC.

References

[1] Elena Andreeva, Charles Bouillaguet, Orr Dunkelman, Pierre-Alain Fouque,
Jonathan J. Hoch, John Kelsey, Adi Shamir, and Sébastien Zimmer. New second-
preimage attacks on hash functions. J. Cryptology, 29(4):657–696, 2016.

[2] Alex Biryukov, Dmitry Khovratovich, and Ivica Nikolic. Distinguisher and related-key
attack on the full AES-256 (extended version). IACR Cryptology ePrint Archive,
2009:241, 2009.

3Nonce is not repeated in encryption queries to the AEAD. But it can be repeated in forge queries.

5 Nilanjan Datta1, Ashwin Jha1, Alexandre Mège2 and Mridul Nandi1

Figure 1: REMUS-N1 N1 Authenticated Encryption Mode

Figure 2: TGIF-N1 Authenticated Encryption Mode

[3] CAESAR. CAESAR: competition for authenticated encryption: Security, applicabil-
ity, and robustness, 2015. Online: https://competitions.cr.yp.to/caesar.html.
Accessed: August 01, 2019.

[4] Itai Dinur, Orr Dunkelman, Nathan Keller, and Adi Shamir. Key recovery attacks

https://competitions.cr.yp.to/caesar.html

6
Breaking REMUS and TGIF in the light of NIST Lightweight Cryptography

Standardization Project

on 3-round even-mansour, 8-step led-128, and full AES2. In Advances in Cryptology
- ASIACRYPT 2013 - 19th International Conference on the Theory and Applica-
tion of Cryptology and Information Security, Bengaluru, India, December 1-5, 2013,
Proceedings, Part I, pages 337–356, 2013.

[5] Itai Dinur, Orr Dunkelman, Nathan Keller, and Adi Shamir. Cryptanalysis of iterated
even-mansour schemes with two keys. In Advances in Cryptology - ASIACRYPT 2014
- 20th International Conference on the Theory and Application of Cryptology and
Information Security, Kaoshiung, Taiwan, R.O.C., December 7-11, 2014. Proceedings,
Part I, pages 439–457, 2014.

[6] Itai Dinur and Gaëtan Leurent. Improved generic attacks against hash-based macs
and HAIFA. Algorithmica, 79(4):1161–1195, 2017.

[7] Orr Dunkelman, Nathan Keller, and Adi Shamir. Minimalism in cryptography: The
even-mansour scheme revisited. In Advances in Cryptology - EUROCRYPT 2012 -
31st Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Cambridge, UK, April 15-19, 2012. Proceedings, pages 336–354, 2012.

[8] Orr Dunkelman, Nathan Keller, and Adi Shamir. Slidex attacks on the even-mansour
encryption scheme. J. Cryptology, 28(1):1–28, 2015.

[9] Jian Guo, Jérémy Jean, Gaëtan Leurent, Thomas Peyrin, and Lei Wang. The
usage of counter revisited: Second-preimage attack on new russian standardized
hash function. In Selected Areas in Cryptography - SAC 2014 - 21st International
Conference, Montreal, QC, Canada, August 14-15, 2014, Revised Selected Papers,
pages 195–211, 2014.

[10] Jian Guo, Thomas Peyrin, Yu Sasaki, and Lei Wang. Updates on generic attacks
against HMAC and NMAC. In Advances in Cryptology - CRYPTO 2014 - 34th Annual
Cryptology Conference, Santa Barbara, CA, USA, August 17-21, 2014, Proceedings,
Part I, pages 131–148, 2014.

[11] Martin E. Hellman. A cryptanalytic time-memory trade-o˙. IEEE Trans. Information
Theory, 26(4):401–406, 1980.

[12] Tetsu Iwata, Mustafa Khairallah, Kazuhiko Minematsu, and Thomas Peyrin. REMUS
v1.0. Submission to NIST LwC Standardization Process (Round 1), 2019. Online:
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/
documents/round-1/spec-doc/Remus-spec.pdf. Access: August 01, 2019.

[13] Tetsu Iwata, Mustafa Khairallah, Kazuhiko Minematsu, Thomas Peyrin,
Yu Sasaki, Siang Meng Sim, and Ling Sun. Thank Goodness It’s Fri-
day (TGIF) v1.0. Submission to NIST LwC Standardization Process
(Round 1), 2019. Online: https://csrc.nist.gov/CSRC/media/Projects/
Lightweight-Cryptography/documents/round-1/spec-doc/TGIF-spec.pdf. Ac-
cess: August 01, 2019.

[14] John Kelsey and Tadayoshi Kohno. Herding hash functions and the nostradamus
attack. In Advances in Cryptology - EUROCRYPT 2006, 25th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques, St.
Petersburg, Russia, May 28 - June 1, 2006, Proceedings, pages 183–200, 2006.

[15] John Kelsey and Bruce Schneier. Second preimages on n-bit hash functions for much
less than 2n work. In Advances in Cryptology - EUROCRYPT 2005, 24th Annual
International Conference on the Theory and Applications of Cryptographic Techniques,
Aarhus, Denmark, May 22-26, 2005, Proceedings, pages 474–490, 2005.

https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/Remus-spec.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/Remus-spec.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/TGIF-spec.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/TGIF-spec.pdf

7 Nilanjan Datta1, Ashwin Jha1, Alexandre Mège2 and Mridul Nandi1

[16] Gaëtan Leurent, Thomas Peyrin, and Lei Wang. New generic attacks against hash-
based macs. In Advances in Cryptology - ASIACRYPT 2013 - 19th International
Conference on the Theory and Application of Cryptology and Information Security,
Bengaluru, India, December 1-5, 2013, Proceedings, Part II, pages 1–20, 2013.

[17] Nicky Mouha and Atul Luykx. Multi-key security: The even-mansour construction
revisited. In Advances in Cryptology - CRYPTO 2015 - 35th Annual Cryptology
Conference, Santa Barbara, CA, USA, August 16-20, 2015, Proceedings, Part I, pages
209–223, 2015.

[18] NIST. Lightweight cryptography, 2018. Online: https://csrc.nist.gov/Projects/
Lightweight-Cryptography. Accessed: August 01, 2019.

[19] NIST. Submission requirements and evaluation criteria for the lightweight
cryptography standardization process, 2018. Online: https://csrc.
nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/
final-lwc-submission-requirements-august2018.pdf. Accessed: August
01, 2019.

[20] Thomas Peyrin, Yu Sasaki, and Lei Wang. Generic related-key attacks for HMAC.
In Advances in Cryptology - ASIACRYPT 2012 - 18th International Conference on
the Theory and Application of Cryptology and Information Security, Beijing, China,
December 2-6, 2012. Proceedings, pages 580–597, 2012.

[21] Thomas Peyrin and Lei Wang. Generic universal forgery attack on iterative hash-based
macs. In Advances in Cryptology - EUROCRYPT 2014 - 33rd Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Copenhagen,
Denmark, May 11-15, 2014. Proceedings, pages 147–164, 2014.

https://csrc.nist.gov/Projects/Lightweight-Cryptography
https://csrc.nist.gov/Projects/Lightweight-Cryptography
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-requirements-august2018.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-requirements-august2018.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-requirements-august2018.pdf

	Introduction
	NIST LwC Security Requirements from AE Schemes
	Our Contributions

	Forgery and Key Recovery against and
	Recovering the Nonce-based Key L
	Key Recovery Attack against [N3]
	Forgery against -N1/N3/M1 and -N1/M1
	Complexity of the Attack
	Inherent Weakness of REMUS-N1/N3/M1 and TGIF-N1/M1

