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Abstract. In this paper, we propose forgery attacks on REMUS-N1, REMUS-M1, 
REMUS-N3, TGIF-N1, and TGIF-M1 in D ˇ 243.6 bytes and T ˇ 297.5 . Further we 
show a key recovery attack on REMUS-N3 in D ˇ 243.6 bytes and T ˇ 297.5 . 
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1 Introduction 

Authenticated encryption or AEAD1 schemes are symmetric-key primitives, which can 
simultaneously achieve two information security goals: confdentiality and authentic-
ity/integrity. In recent years, the cryptographic community has shown a lot of interest 
in the design and analysis of AEAD schemes. Cryptographic competitions such as the 
recently concluded CAESAR competition [3], and the recently started NIST lightweight 
cryptography standardization project [18], henceforth referred as “NIST LwC”, have given 
new impetus to the research and development of highly eÿcient and secure AEAD schemes. 
While CAESAR was aimed to identify a portfolio of AEAD schemes designed for general 
purpose usages, the NIST LwC is focused on standardizing lightweight AEAD schemes for 
resource constrained environments such as sensor networks and IoT devices. 

The frst round of NIST LwC has 56 candidates, including REMUS [12] and TGIF [13]. 
REMUS o˙ers three variants for nonce-respecting scenario, namely, REMUS-N1, REMUS-N2, 
and REMUS-N3, and two variants for nonce-misusing scenario, namely, REMUS-M1 and 
REMUS-M2. Of these fve variants, REMUS-N1 is the primary submission to NIST LwC. 
Similarly, TGIF o˙ers two variants for nonce-respecting scenario, namely, TGIF-N1, and 
TGIF-N2, and two variants for nonce-msiusing scenario, namely, TGIF-M1, and TGIF-M2. 
Of these TGIF-N1 is the primary submission to NIST LwC. 

1.1 NIST LwC Security Requirements from AE Schemes 

In the call for submission document [19], it is clearly mentioned that 

Cryptanalytic attacks on the AEAD algorithm shall require at least 2112 

computations on a classical computer in a single-key setting. 

Further, the document puts a restriction on the limit on maximum input size (plaintext, 
associated data, and the amount of data processed under one key). It states that 

1Here AD represents Associated Data. Traditional AE setting requires integrity security for AD. 
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The limits on the input sizes (plaintext, associated data, and the amount of 
data that can be processed under one key) for this member shall not be smaller 
than 250 − 1 bytes. 

Let T and D denote the number of computations and the maximum amount of data 
processed under one key. One can clearly infer that the minimum security requirements 
from an AEAD scheme is as follows: 

If D < 250 bytes and T < 2112, then is secure. 

There are several notions of security for AEAD, including key recovery, message recovery, 
privacy, and authenticity. For each such notion there is a well-defned notion of attacker’s 
advantage, which encapsulates the success probability, and hence lies in the interval [0, 1]. 
An advantage value of at least 0.5 indicates that the attack succeeds with high probability. 
In general a fxed constant value , say � 2 (0, 1], is chosen as the desired tolerance level, 
and we say that a scheme is insecure if some attack succeeds with at least � advantage. 
Although, NIST LwC has not specifed any tolerance level, however for analysis purposes, 
� = 0.5 could be a very generous choice. Clearly, an attack X violates under NIST LwC 
requirements when: 

D(X) < 250 bytes and T (X) < 2112, and X attacks with at least 0.5 advantage, 

where T (X) and D(X) denote the computation time and data complexity of the attack X. 

1.1.1 Data Limit 

The meaning of parameter D is quite clear from the document. D denotes the data 
complexity of the attack. This parameter quantifes the online (queries to the AEAD 
scheme) resource requirements, and includes the total number of blocks (among all 
messages/ciphertexts and associated data) processed through the underlying primitive for 
a fxed master key. 

1.1.2 Computation Time Limit 

The computation time T of an attack refers to the time complexity of the attack. This 
parameter quantifes the o˜ine resource requirements, and includes the total time required 
to process the o˜ine evaluations of the underlying block cipher. Since one call of the block 
cipher can be assumed to take a constant amount of time,2 it is generally ignored, and the 
number of primitive evaluations is taken as the time complexity of evaluations. 

We remark that, the direct evaluations of the primitives have been considered within 
time complexity in multiple papers and in di˙erent scenarios: For instance, the time-
memory trade-o˙ attack by Hellman [11] and related-key attacks on AES-256 [2], attacks 
on hash functions [15, 14, 9, 1], attacks on HMAC and NMAC [20, 16, 21, 10, 6], attacks on 
Even-Mansour ciphers [7, 4, 5, 8], and multi-key attacks on Even-Mansour cipher [17]. In 
fact, this also makes sense in real scenario, where the adversary can actually make block 
cipher evaluations on its own by devoting suÿcient time. 

In this regard, we note that REMUS-N1, REMUS-N3, REMUS-M1, TGIF-N1, and TGIF-
M1 restrict the number of o˜ine evaluations of the underlying block cipher (the primitive) 
to less than 264. In light of the above discussion, it is clear that this violates the NIST 
LwC requirements as stated above, as the adversary is allowed make beyond 264 (anything 
below 2112 is valid) block cipher evaluations. This is especially required from REMUS-N1 
and TGIF-N1, which are the primary variants in their respective submissions. 

2A rigorous analysis assumes that the time complexity of one evaluation of the primitive is O(nk), 
where n is the input size of the primitive, and k 2 N is a constant. 
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1.2 Our Contributions 

In this paper, we propose forgery attacks on REMUS-N1, REMUS-M1, REMUS-N3, TGIF-N1, 
and TGIF-M1, where D ̌  250 bytes and T < 2100 and the attack advantage is close to 1. 
We further show a key recovery attack on REMUS-N3 with D < 250 bytes and T < 2100, 
and the attack advantage is close to 1. 

2 Forgery and Key Recovery against REMUS and TGIF 

Throughout we use n = 128 as block size and key size of the underlying block cipher. We 
denote nonce size by r. For N1 and M1 variants r = 128, and for the N3 variant r = 96. 
Our forgery and key recovery utilize an underlying state recovery attack. We frst describe 
the state recovery attack and then give the forgery and key recovery attacks. 

2.1 Recovering the Nonce-based Key L 

The key derivation function KDFK takes a nonce value N as input and outputs a nonce-
based key L. In case of the N1 and M1 variants, KDFK (N) := EK (N), and in case of the 
N3 variant, KDFK (N) := K �Nk032. 
We employ the following algorithm to fnd the nonce-based key corresponding to one nonce 
value: 
Algorithm 1: 

1. Let t � 32 be a parameter of the algorithm, and d = n − t. 

2. For i = 0 to 2t − 1: 

• Set Li = 0dkhiit, where hiit denotes the t-bit representation of integer i. 
• Simulate the encryption of (A, M) using Li as the nonce-based key, where 
|A| = |M | = n. Response: (Ci, ˝ i). Store (Li, Ci, ˝ i) in a list H. 

3. Sort entries in H on second and third coordinates, i.e. (C, ˝). 

4. For j = 0 to 2d − 1: 

• Set N̂ j = hjidk0r−d. Note that r − d � 0 due to t � 32. 
• Query ( N̂ j , A, M) to the encryption oracle of AEAD. Response: ( Ĉj , ˝̂ j ). 
• Search ( Ĉj , ˝̂ j ) in H (binary search would suÿce). Suppose there exist index 

i 2 H such that ( Ĉj , ˝̂ j ) = (Ci, ˝ i) then it would mean that L̂j = Li with 
very high probability. Matching both ciphertext and tag helps in avoiding 
false positives. This is because such matchings happen in the ideal world with 
probability ̌  2−2n, whereas for the real schemes this happens with probability 
1 when L̂j = Li. 

Note that, we could have mounted a slightly more simple attack on N1 and M1 (choose 
2t Li’s in without replacement manner and use 2d distinct nonces in encryption queries). 
But, to give a combined attack on N1, M1, and N3, we have to use the above strategy. 

2.2 Key Recovery Attack against REMUS-N3 

In REMUS-N3, the key can be directly recovered from a valid nonce and nonce-based key 
pair (N 0, L0) obtained using Algorithm 1 of subsection 2.1. The master key K is computed 
as 

= L0 �N 0k032 K . 

Once the master key K is recovered any other attack is easily possible. 

http:attack.We
http:cipher.We
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2.3 Forgery against REMUS -N1/N3/M1 and TGIF -N1/M1 

One can also construct nonce-respecting3 forgery attacks on REMUS-N1 (primary version), 
REMUS-N3, and REMUS-M1, given the nonce-based key recovered in Algorithm 1. On a 
closer inspection, we found that the same attack also works on TGIF-N1 (primary version) 
and TGIF-M1 as well. Basically, the attack recovers some valid nonce and nonce-based 
key pair (N 0, L0) using Algorithm 1 of subsection 2.1, which can then be used trivially 
to construct valid forgeries of the form (N 0, A0, C 0, T 0), where A0 and C 0 can be chosen 
arbitrarily, and the tag is computed using L0, A0 and C 0. 

2.4 Complexity of the Attack 

It is easy to see that Algorithm 1 has the following complexity: 

1. Data complexity, D ̌  2d+5.6 bytes. The factor of 5.6 is due to the fact that each 
encryption query consists of 3 ˇ 21.6 blocks of data and each block contains 24 bytes. 

2. Total time complexity, T ̌  2t+5.6 + t · 2t + t · 2n−t. 

Here the frst, second, and third terms in the time complexity correspond to time complexity 
of step 2, 3, and 4, respectively, of Algorithm 1 in subsection 2.1. 

The time complexity of key recovery and forgeries can be made negligible given the 
nonce based key L recovered in Algorithm 1. 

Algorithm 1 works for all choices of t � 32, as d + t = 128. Specifcally, to reduce the 
data complexity below the NIST LwC requirement, we set t = 90, which gives d = 38. For 
this choice of t, we get D ̌  243.6 bytes and T ̌  297.5, which clearly falls within the NIST 
LwC minimum data and time limit. 

Remark 1. We remark that there is a scope of improvement in time complexity of Algorithm 
1 by using a hash table instead of a list. Similarly, one can improve data complexity by 
using empty message and empty AD. However, this may lead to some false positives which 
can be eliminated by making constant number of checking queries. We do not use the 
empty message and AD case, as such inputs seldom occur in real scenario. 

2.5 Inherent Weakness of REMUS-N1/N3/M1 and TGIF-N1/M1 

We would like to point out that the N1/N3/M1 variants of REMUS (and N1/M1 variants of 
TGIF) have an inherent weakness: insuÿcient randomness in the initial state (key,input). 
Although the key is derived using nonce for each encryption query, the adversary can 
easily fx a constant value as the initial input. So, to create an initial state collision the 
adversary just needs to collide the initial key. 

In summary, it seems that REMUS-N1/N3/M1 and TGIF-N1/M1 do not satisfy the minimum 
security requirements of NIST LwC. 
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