
Cryptanalysis of Internal Keyed Permutation of
FlexAEAD

Mostafizar Rahman1, Dhiman Saha2, Goutam Paul1

1Cryptology and Security Research Unit (CSRU), R. C. Bose Centre for Cryptology
and Security, Indian Statistical Institute, Kolkata 700108, India

mrahman454@gmail.com, goutam.paul@isical.ac.in
2Department of Electrical Engineering & Computer Science,

Indian Institute of Technology, Bhilai 492015, India
dhiman@iitbhilai.ac.in

Abstract. In this paper, the internal keyed permutation of FlexAEAD
is analyzed. In our analysis, we report an iterated truncated differential
for one round which holds with a probability of 2−7 and can penetrate
the same number of rounds as claimed by the designers with much less
complexity and can be easily converted to a key-recovery attack. We
further report a Super-Sbox construction in the internal permutation,
which is exploited using the Yoyo game to devise a 6-round determinis-
tic distinguisher and a 7-round key recovery attack for 128-bit internal
permutation. Similar attacks can be mounted for the 64-bit and 256-bit
variants. Success probabilities of all the reported distinguishing attacks
are shown to be high. All practical attacks are experimentally verified.

Keywords: Distinguisher, FlexAEAD, Iterated Differential, Key Re-
covery, NIST lightweight cryptography competition, Yoyo

1 Introduction

In modern era, the aim is to connect each of the physical devices, even the
miniature ones, with internet so that they can be monitored and controlled re-
motely for maximum utilization. These devices are powered with the ability of
communicating among themselves. Such a huge interconnected system, consist-
ing of numerous tiny devices, is not free from vulnerabilities. Moreover, security
breach in such systems can be catastrophic. So, a major concern in the world of
internet-of-things is how to provide security and privacy to each system with the
constraints of limited power and area. NIST LightWeight Cryptography (LWC)
competition [NIS] is major step towards addressing these issues. There are total
of 57 submissions in this competition. Apart from authenticated encryption al-
gorithms in lightweight environment, some of the designs also comprise of hash
functions. Some of them have also provided new primitives for block cipher de-
sign.

FlexAEAD is one of the round 1 candidates proposed by Nascimento and
Xexo [dNX19]. For authenticated encryption it has three variants-

mailto:dhiman@iitbhilai.ac.in
mailto:goutam.paul@isical.ac.in
mailto:mrahman454@gmail.com

1. FlexAEAD 128b064 128-bit key, 64-bit block, 64-bit nonce and 64-bit tag
2. FlexAEAD 128b128 128-bit key, 128-bit block, 128-bit nonce and 128-bit

tag
3. FlexAEAD 256b256 256-bit key, 256-bit block, 256-bit nonce and 256-bit

tag

It has its own primitive; internal keyed permutation (PFk) of 64-bit, 128-bit
and 256-bit. We have analyzed the PFk function and reported several results.
The internal keyed permutation of FlexAEAD with x-bit state is refer to as
Flex-x.

1.1 Existing Security Claims

The designers have claimed that mounting an attack on Flex-x based on dif-
ferential and linear characteristics is more difficult than the brute force attack.
According to their analysis, the probability of best differential characteristic
for Flex-64, Flex-128 and Flex-256 is 2−168, 2−204 and 2240 respectively. The
number of chosen plaintext pairs required for a linear trail in Flex-64, Flex-128
and Flex-256 are 2272, 2326 and 2380 respectively [dNX19]. Eichlseder et al. have
claimed several forgery attacks on FlexAEAD with complexities less than those
given by the designers. For forging attacks they have followed several different
approaches; like changing associated data, truncating ciphertexts and reordering
ciphertexts. They have reported differential characteristics for 5-round Flex-64,
6-round Flex-128 and 7-round Flex-256 with probability 2−66, 2−79 and 2−108

respectively. They have also reported clustered characteristics for all variants of
PFk [EKS19a,EKS19b]. Length extension attack based on associated data have
also been shown [M‘e19].

1.2 Our Contributions

First of all, we report an iterated truncated differential for all the variants of
PFk using the property of AES Difference Distribution Table (DDT) where the
output difference of a byte is confined to either upper or lower nibble. These
differentials are further exploited to recover the subkeys.

Next, a deterministic Yoyo distinguisher of 4, 6 and 8 rounds for Flex-64,
Flex-128 and Flex-256 respectively are devised. All these distinguishers are
used for mounting key recovery attacks for one more extra round. The key re-
covery attacks with their computed complexities are summarized in table 1.
For the iterated truncated differential, the maximum number of rounds that is
penetrable for a Flex-x variant are enlisted in the table.

Outline The necessary details about internal keyed permutation of FlexAEAD
can be found in [dNX19]. Rest of the paper is organized as follows. Section 2

Table 1: Comparison of Key Recovery Attacks. Encs, Decs, MAs refers to encryption
queries, decryption queries and Memory Accesses respectively. For uniformity, memory
accesses and memory complexity has been provided in terms of Flex-128 state. 1 MA
for Flex-128 corresponds to 2 MA in Flex-64 and 0.5 MA in Flex-256. Memory
complexity is also normalized by the same ratio.

Block

Size
rounds

Data

Complexity

Time

Complexity
Memory

Complexity

Attack

Type

Section No. of

Current Work
Encs Decs MAs

64
7 230.5 234.5 218.5 Iterated Truncated

Differential
2.4

5 210 216.5 215.5 210 Yoyo

Attack
3.3

128
16 293.5 2108.5 220.5 Iterated Truncated

Differential
2.4

7 210.5 216.5 216.5 211.5 Yoyo

Attack
3.3

256
21 2109.5 2125.5 222.5 Iterated Truncated

Differential
2.4

9 211 216.5 217.5 213 Yoyo

Attack
3.3

describes the key-recovery attacks based on Iterated Truncated Differential. Sec-
tion 3 details the attacks based on Yoyo game. The success probabilities of distin-
guishing attacks and their experimental verification are illustrated in Section 4.
Finally, the concluding remarks are furnished.

2 Iterated Truncated Differential Attacks on PFk

Differential of iterative characteristics can be easily exploited to penetrate full
rounds of a cipher. The fundamental strategy behind devising an iterated differ-
ential is to choose the output differential in a way such that after some operations
the input differential can be produced easily. Recently, a deterministic iterated
differential has been reported for SNEIK permutation [Per19]. Earlier, Alkhzaimi
et al. have reported such differentials for SIMON family of block ciphers [AL13].
In this work, iterated differential in truncated form have been considered. First
of all, a particular property of AES Sbox which have been exploited needs to be
discussed.

2.1 Property of AES DDT Table

From AES DDT table it has been observed that the number of randomly chosen
input differences that map to output differences, such that the non-zero bits in
each output difference are confined to the upper nibble is 4096. Same is true if
they are confined to the lower nibble. In other words,

	
	

�

�
= 4096

= 4096

S(x1) ⊕ S(x2) & 0xf0 = 0, ∀x1, x2 ∈ F28

S(x1) ⊕ S(x2) & 0x0f = 0, ∀x1, x2 ∈ F28

(x1, x2)

(x1, x2)

S is the AES Sbox. Therefore, with probability 4096 = 2−4 a random input dif-216

ference transits to upper nibble in the output difference. With same probability,
random input difference transits to lower nibble.

2.2 One Round Probabilistic Iterated Truncated Differential

Refer to Fig. 1 for the iterated differential of Flex-128. In X1, keeping the differ-
ence in B[0] ensures that in Y1 difference are in B[0] and B[8]. With probability
2−7 both differences are confined in either upper nibble or lower nibble in those
bytes. Therefore, after BlockShuffle only one byte is active in X2. In X2 the
active byte can be either B[0] or B[1], depending on whether the upper or lower
nibbles in Y1 are active. Similar kinds of iterated truncated differential with same
probability exists for Flex-64 and Flex-256.

Fig. 1: Iterated Truncated Differential with One-round probability of 2−7 . Note that
the key-addition is not shown, since it has no effect on the trail

���� ��� ��� ���� ��� ���

2.3 Application to Variants of FlexAEAD Permutation

The one round iterated truncated differential can be applied to all the versions
of internal keyed permutation PFk. The iterated differential occurs with proba-
bility 2−7. Depending on the block size, last few rounds can be made free as no
byte to nibble transition is needed for those rounds.
Let, the iterated truncated differential is kept free for last f rounds for Flex-x.
Then the probability of the trail is 2−7×(r−f). For uniform random discrete dis-

−2f)tribution, the same event will occur with probability 2−8×(x
8) = 2−(x−8∗2f

.
For devising a distinguisher for x-bit flex,

2−7×(r−f) > 2−(x−8∗2f)

(x − 8 ∗ 2f)
=⇒ r < + f (1)

7
Then, probability of the iterated truncated differential trail for r-round Flex-
x is 2−7×(r−f). Table 2 shows the trail probabilities for different Flex-x. rmax

denotes the maximum number of rounds reachable under the constraints of fixed
f . Table 3 compares the differential probabilities claim of the designers with our
claim using the iterated differential. PD denotes the designers claim whereas QD

denotes our claim.

Table 2: Iterated Differential Trails

Block Size f rmax Trail Probability

64
1 7 2−42

2 6 2−28

1 16 2−105

128 2 15 2−91

3 12 2−63

1 21 2−140

256
2 21 2−123

3 21 2−126

4 21 2−119

Another aspect of such kind of trails is the position of active byte in each round.
As mentioned in 2.2, if B[0] is active in X0, then either B[0] or B[1] is active in
X2. If B[1] is active in X2, then either B[2] or B[3] is active in X3. In general,

x for Flex-x if B[m] or B[+m] is active in Xi, then either B[2m] or B[2m+1] 2×8
is active in X(i+1).

2.4 Key Recovery Using Iterated Truncated Differential

At the end of each round, difference in a pair of symmetric bytes after S-box
transits to same nibble with probability 2−7. Symmetric bytes refer to the byte

Table 3: Comparison of Differential Probabilities

Block Size Rounds r Active S-boxes P†
D Q ∗

D

64 15 28 2−168 2−98

128 18 34 2−204 2−119

256 21 40 2−240 2−119

† Probability of the classical differential trail claimed by the designers

∗ Probability of the iterated truncated differential trail

pair in identical positions in left half and right half of the state. In same way,
symmetric nibbles are defined. This has been used as a filtering technique to
eliminate wrong key bytes. Let, the first subkey, K0 for Flex-128 is being re-
covered. Using iterated truncated differential for r rounds a right pair can be
identified with probability 2−7×(r−f), where f is number free rounds. Suppose,
in the right pair the initial difference is in B[i] and B[i+8]. So, we guess key byte
K[i] and K[i + 8]. There are 216 possible guesses and these are used to verify
whether at the end of first round byte to nibble transition occur. Out of 216, 29

key-byte candidates remain. For further filtering, two more right pairs are used.
The second right pair reduces the candidate numbers to 22. After filtering using
three different right pairs, it is expected only one candidate should remain for � �
the key byte pair 216 × (2−7)3 = 2−5 < 1 . For the remaining symmetric key
bytes, the procedure is repeated for 7 more times. At the end, it is expected that
only one key candidate should pass the test. The other subkeys can be recovered
in same way (After recovering the first subkey, the value of plaintexts are exactly
known till second subkey whitening). Same key recovery attacks are applicable
for Flex-64 and Flex-256.

2.5 Complexity Evaluation

Distinguisher To distinguish iterated truncated differential for r rounds, 27×(r−f)

number of plaintext pairs are required, where f is the number of free rounds at
the end. In devising the distinguishers, difference can be kept in 2 bytes only �

216 �
≈ 231 in X1, which yields pairs of plaintexts. For distinguishers requiring 2

more than 231 pairs, a different set of states is needed. So, the data complexity is
27×(r−f) 27×(r−f)

× 216
231 = 215 encryption queries. Time complexity involves the mem-

ory accesses required to compute the specified collisions, which is the number of
plaintext pairs needed, i. e., 27×(r−f). Memory complexity is 216 Flex-x states,
which is the memory required for storing different states.
Consider a particular case for 21-round Flex-256. According to inequality 1,
the value of f can be set to 4. For this case

1. Data Complexity is 2
7×17

= 2104 encryption queries.. 215

2. Time Complexity is 2119 memory accesses.
3. Memory Complexity is 216 Flex-256 states = 217 Flex-128 states.

Key Recovery Complexities of key recovery attack of Flex-x depends on
distinguisher. To recover each pair of key-byte, three different right pairs are

x required. This procedure also needs to be repeated times for recovering the 16
full key. Therefore, data complexity, time complexity and memory complexity of

x distinguisher needs to be multiplied by a factor of 3 × . Moreover, candidate 16
key-byte recovery for each pair of byte can be computed in parallel. To recover � �
the other subkey, a plaintext, ciphertext pair p1, c1 is chosen and PFk round
functions till the second subkey whitening is computed offline and XOR-ed with
c1. So, the complexities of r-round Flex-x with f free rounds are-

× 2
7×(r−f) x 1. Data Complexity is 3 × 215 encryption queries. 16

x × 27×(r−f) 2. Time Complexity is 3 × memory accesses. 16
x 3. Memory Complexity is 3 × × 216 Flex-x states. 16

The complexities of particular cases for 7-round Flex-64 with f=1, 16-round
Flex-128 with f=1 and 21-round Flex-256 with f=4 have been listed in table 1.

2.6 Experimental Verification

The key recovery attack using iterated differentials have been experimentally
verified for 8 rounds Flex-128 with f=3. The attack initiates after a key is
chosen randomly. The number of key candidates after using the first right pairs
for each pair of symmetric bytes (from (K[0],K[8]) to (K[7],K[15])) are 316,
520, 632, 448, 568, 484, 368 and 356 respectively. It conforms to the theoretical
analysis, which states that the number of candidates should be around 29. After
using the second right pairs, the number of candidates is reduced to 2, 12, 4, 4,
6, 5, 2 and 5 respectively which is close to the theoretical value of 22. The third
right pair reduces the number for all pair of bytes to 1. The key recovery attack
correctly recovers the subkeys.

3 Yoyo Attacks on PFk

Details about Yoyo game can be found in [RBH17]. The result of Yoyo game on 2-� �
generic Substitution-Permutation (SP) rounds Theorem 2, [RBH17] have been
applied for devising r-round Flex-x deterministic distinguisher. Then cipher
specific properties have been exploited to penetrate one more extra round and
recover the key. Here, r is 4, 6 and 8 for Flex-64, Flex-128 and Flex-256
respectively.

3.1 Super-Sbox

Refer to Fig. 2 for the Super-Sbox construction in Flex-128 block cipher. Con-
sider the bytes {B[0], B[2], · · · B[nb − 2]} at X1. Due to round function, only
the symmetric bytes affect each other. So, in Y1 every symmetric bytes depends
on every symmetric bytes at X1. Due to BS2 , B[2i], B[2i + 8] (0 ≤ i ≤ 3)

�

Fig. 2: Super-Sbox of Flex-128 Block Cipher

from Y1 constitutes the B[4i], B[4i + 1] (0 ≥ i ≤ 3) at X2. Due to applica-
tion of BS3 , {B[2i], B[2i + 1], B[2i + 8], B[2i + 9]}, (0 ≤ i ≤ 1) at Y2 affects
{B[8i], B[8i + 1], B[8i + 2], B[8i + 3]}, (0 ≤ i ≤ 1) at X3. This constitutes a
Super-Sbox which spans over 2.5 rounds (omitting the initial Byte Shuffle). There
are two 64-bit Super-Sbox in the Flex-128 state. In similar way, Flex-64 and
Flex-256 has 32-bit and 128-bit Super-Sbox which span over 1.5 and 3.5 rounds
respectively.

3.2 Deterministic Distinguisher for r-round Flex-x

In devising this distinguisher, generalized result for 2-generic SP rounds Theorem �
2, [RBH17] have been used directly. For this purpose, the S ◦ L ◦ S layers need
to be identified in this construction. The S here corresponds to Super-Sbox de-
scribed in 3.1 whereas the L corresponds to the BlockShuffle layer. A pair of
plaintexts is chosen such that only one of the Super-Sbox is active at X1. Yoyo
game is played using these two plaintexts to obtain new pair of texts. The same
Super-Sbox should be active in the new pair of texts and the other should be
inactive. For a uniform random discrete distribution, this occurs with probabil-

1 ity . In attack procedure, steps pertaining to Flex-128 has been described. x
2 2

Same attack strategy follows for Flex-64 and Flex-256.

�

Attack Procedure

1. Choose two 128-bit plaintexts p1, p2 such that, wt1(ν2(p1 ⊕ p2)) = 1. Inverse
BlockShuffle is applied to p1, p2 and then they are queried to encryption
oracle to obtain c1, c2.

2. As there is two Super-Sboxes, so only one swapping3 is possible. One of the
0 0 Super-Sbox is swapped between c1 and c2 to form c1, c2, which are queried

0 0 to decryption oracle and p1, p2 is obtained.
0 0 3. Check whether wt(ν(BS(p1)⊕BS(p2))) = 1 or not. If it is 1, then distinguish

it as Flex-128; otherwise it is a random permutation.

Complexity Evaluation The attack needs 2 encryption queries and 2 decryp-
tion queries; its time complexity is 2 BlockShuffle , 2 inverse BlockShuffle
operation and 2 Flex-128 state XOR, and the memory complexity is negligible.

3.3 Key Recovery for (r + 1)-round Flex-x

For attacking (r + 1)-round Flex-x, Yoyo distinguishing attack on r-round is
composed with the one round trail of iterated truncated differential 2.2. The
attack for Flex-128 is shown in Fig 3. With probability 2−7 only one Super-
Sbox is active at X2. By virtue of Yoyo game, only one Super-Sbox should be
active in W2. Due to inverse BlockShuffle , the differences should be confined
to either upper nibbles or lower nibbles in Z1; the other half should be free.
With probability 2−8, two symmetric bytes becomes free at Z1. There are 8
(4 and 16 for Flex-64 and Flex-256 respectively) choices for symmetric byte
positions which increases the probability to 2−5 2−6 and 2−4 for Flex-64 and �
Flex-256 . Therefore, at the cost of 2−12, two symmetric bytes become free for
the 7-round Flex-128. The probability of same event for 5-round Flex-64 and
9-round Flex-256 is 2−13 and 2−11 respectively.

Attack Procedure

1. Choose 26 plaintexts such that they differ only in B[0] and B[8]. Apply in-
verse BlockShuffle on them and query them to encryption oracle to obtain
corresponding ciphertexts. Consider all ciphertext pairs, swap bytes between
them according to the Super-Sbox output and query them to the decryption
oracle to obtain new pairs of plaintexts. Check whether the pair has a pair
of free symmetric bytes. At least one such pair is expected.

2. Repeat step 1 two more times to obtain two more right pairs. Let, (c1, c2),
(c3, c4) and (c5, c6) be such pairs and their corresponding plaintexts are
(p1, p2), (p3, p4) and (p5, p6). After byte swapping, (c1, c2), (c3, c4) and (c5, c6)

1 wt calculates the number of inactive words
2 ν is Zero Difference Pattern which denotes the position of inactive words [RBH17].
3 For details on swapping mechanism, refer [RBH17]

Fig. 3: 7-round Yoyo Distinguisher for Flex-128

becomes (c1, c
0

0 0 0 0

0 0
2), (c3, c4) and (c5, c6). BlockShuffle is applied on the de-

crypted value of these modified ciphertexts to obtain (p1, p2), (p3, p4) and

0 0 0

5, p6).
3. Guess key bytes 0 and 8 for K0, run one round encryption for p

0 0 (p
0
1, p

observe whether same nibble in B[0] and B[8] remains free or not for the
pair. Using nibble transition, out of 216 candidates, 27 are filtered out. Then
the remaining two right pairs subsequently reduces the number of candidates
for K[0] and K[8] to 22 and 1 respectively.

4. For the remaining 7 symmetric pairs of bytes, step 3 is repeated 7 more
times. At, the end 1 key candidates are expected for K0. For each K0, K1

is computed by using a plaintext-ciphertext pair. If there are more than one
K0, K1 pair, they are exhaustively tried for finding the right key candidate.

Complexity Evaluation Let, probability of the event that “two symmetric

0 and 2

bytes become free” is 2−p. So, for retrieving a right pair, 2 2
p
encryption queries

and 2p decryption queries are required. For guessing each pair of key byte, 3 such
x right pairs are needed and to recover the key, this process need to be repeated 16

3×x times. Therefore, data complexity of the attack is × 216
2
p
encryption queries

and 3×x × 2p decryption queries. 16
3×x Time complexity is × 2p memory accesses for retrieving the stored cipher-16

texts.
Memory complexity is 3×x

16 × 2 2
p +1 Flex-x states for storing the plaintexts and

ciphertexts.
The complexities of 7-round Flex-128 key recovery attack are-

1. Data Complexity is 24 × 26 ≈ 210.5 encryption queries and 24 × 212 ≈ 216.5

decryption queries.
2. Time Complexity is 216.5 memory accesses.
3. Memory Complexity is 211.5 Flex-128 states.

Experimental Verification The Yoyo attack for 7-round Flex-128 has been
experimentally verified. Initially the oracle chooses a master key randomly and
computes the subkeys. Adversarial algorithm queries according to 3.3 and re-
trieves right pairs. The number of key candidates corresponding to each sym-� �
metric bytes from (K[0],K[8]) to (K[7],K[15]) after filtering with first right
pairs are 502, 618, 546, 496, 510, 486, 552 and 538 respectively. The second right
pairs further reduces it to 6, 7 6, 7, 7, 3, 3 and 5. The third pairs reduces all these
values to 1. These reduction in the number of key candidates using right pairs
conforms to the theoretical analysis. At last, the algorithm successfully recovers
the subkeys.

4 Success Probability

To deduce the theoretical estimation of success probability, the following theorem
from [PR18] has been applied.

Theorem 1. [PR18] Suppose, the event e happens in uniform random bitstream
with probability p and in keystream of a stream cipher with probability p(1 +
q). Then the data complexity of the distinguisher with false positive and false
negative rates α and β is given by � q� ��2 √ ��

κ1 1 − p + κ2 1 + q 1 − p(1 + q)
n > (2)

pq2

where Φ(−κ1) = α and Φ(κ2) = 1 − β.

For computing success probability, we consider κ1 = κ2 in theorem 1, which gives
us α = β. Then the success probability is given by (1 − β). Table 4 lists success
probabilities of different distinguishers presented in this paper. The success prob-
abilities of distinguishers with practical complexities have been experimentally
verified.

Table 4: Success Probabilities of Various Distinguishers

Distinguisher

Type

Block

Size
f Rounds p × (1 + q) p

Success

Prob

64 1 7 2−42 2−48 0.8

Iterated 128 1 16 2−105 2−112 0.82

256 4 21 2−119 2−192 0.84

64 n/a 5 2−13 2−14 0.61

Yoyo 128 n/a 7 2−12 2−13 0.61

256 n/a 9 2−11 2−12 0.61

5 Conclusion

In this work, we have shown several key recovery attacks on internal permuta-
tion of FlexAEAD , which are applicable across all variants. All these attacks
are based on either iterated truncated differential or Yoyo game. The iterated
truncated differential based attacks on round-reduced versions and Yoyo attacks
have been experimentally verified (the code of all practical attacks are available
online4). Although, the attacks immediately do not pose a threat to authenti-
cated encryption modes; but forgery or key recovery based on this results might
exists.

References

[AL13] Hoda A. Alkhzaimi and Martin M. Lauridsen. Cryptanalysis of the SIMON
Family of Block Ciphers. Cryptology ePrint Archive, Report 2013/543, 2013.
https://eprint.iacr.org/2013/543.

[dNX19] Eduardo Marsola do Nascimento and José Antônio Moreira Xexéo.
FlexAEAD -A Lightweight Cipher with Integrated Authentica-
tion. “https://csrc.nist.gov/CSRC/media/Projects/Lightweight-
Cryptography/documents/round-1/spec-doc/FlexAEAD-spec.pdf”, 2019.

[EKS19a] Maria Eichlseder, Daniel Kales, and Markus Schofnegger. Forgery Attacks
on FlexAE and FlexAEAD. Cryptology ePrint Archive, Report 2019/679,
2019. https://eprint.iacr.org/2019/679.

[EKS19b] Maria Eichlseder, Daniel Kales, and Markus Schofnegger. OFFI-
CIAL COMMENT: FlexAEAD. Posting on the NIST LWC mail-
ing list. “https://groups.google.com/a/list.nist. gov/d/msg/lwc-
forum/cRjs9x43G2I/KsBQLdDODAAJ”, 2019.

[M‘e19] A M‘ege. OFFICIAL COMMENT: FlexAEAD. Posting on the NIST LWC
mailing list. “https://groups.google.com/a/list.nist.gov/d/msg/lwc-forum/
DPQVEJ5oBeU/YXW0QjfjBQAJ”, 2019.

[NIS] National Institute of Standards and Technology (NIST): Lightweight cryp-
tography standardization process (2019). “https://csrc.nist.gov/projects/
lightweight-cryptography”.

[Per19] Lo Perrin. Probability 1 Iterated Differential in the SNEIK
Permutation. Cryptology ePrint Archive, Report 2019/374, 2019.
https://eprint.iacr.org/2019/374.

[PR18] Goutam Paul and Souvik Ray. On data complexity of distinguishing attacks
versus message recovery attacks on stream ciphers. Des. Codes Cryptogr.,
86(6):1211–1247, 2018.

[RBH17] Sondre Rønjom, Navid Ghaedi Bardeh, and Tor Helleseth. Yoyo Tricks with
AES. In Tsuyoshi Takagi and Thomas Peyrin, editors, Advances in Cryptol-
ogy – ASIACRYPT 2017, pages 217–243, Cham, 2017. Springer International
Publishing.

4 https://drive.google.com/open?id=1GiIIAY5AoeMwW7OAh3nSAVsmtx1h5Qix

https://drive.google.com/open?id=1GiIIAY5AoeMwW7OAh3nSAVsmtx1h5Qix
https://eprint.iacr.org/2019/374
https://csrc.nist.gov/projects
https://groups.google.com/a/list.nist.gov/d/msg/lwc-forum
https://groups.google.com/a/list.nist
https://eprint.iacr.org/2019/679

