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Abstract 

Logical metrics such as gate count have been extensively used in estimating the hardware quality of cryp-
tographic functions. Mapping a logical representation onto hardware is a trade-off driven process that depends 
on the standard cell technology and desired performance, among other things. This work aims to investigate the 
effectiveness of logical metrics in predicting hardware effciency of cryptographic primitives. We will compare 
circuits optimized by a new class of logic minimization techniques that aim at reducing gate count with circuits 
of the same functionality that have not optimized for gate count. We provide a comprehensive evaluation of these 
designs in terms of area and power consumption over a wide range of frequencies at multiple levels of abstraction 
and system integration. Our goal is to identify different regions in the design space where such logic minimization 
techniques are effective. Our observations indicate that the logic-minimized circuits are much smaller than the 
reference designs only at low speeds. Moreover, we observe that in most cases, the logical compactness of these 
circuits does not translate into power-effciency. 

I. INTRODUCTION 

One of the advantages of representing cryptographic functions as Boolean expressions is that such a rep-
resentation provides an estimate of the complexity of the circuit by means of the number of logic operations 
required to express it. Furthermore, such a representation facilitates logic-minimization through Boolean algebraic 
simplifcations such as factoring out sub-expressions. Due to the lack of an accurate estimate of the size of a 
logical representation on hardware, it makes sense for optimization techniques to focus on reducing a circuit’s 
complexity by expressing the function using as few logic gates as possible. Understandably, there has been 
signifcant research on lightweight cryptographic hardware that has made extensive use of logic gate count as a 
metric to quantify the compactness of new designs and to compare them with existing solutions [1], [2], [3], [4], 
[5], [6]. Moreover, optimization tools have been developed for different classes of functions, driven primarily by 
gate count and/or logical depth as their cost functions [7], [8], [9], [10], [11]. Few works discuss the expected 
circuit speed by means of its logical depth before hardware synthesis [12], [13], [14], [15], [16], or as an estimate 
obtained from a library, depending on logical complexity [17]. 

While such logical metrics provide a preliminary estimate of the circuit’s size on hardware, they do not account 
for the fact that converting a Boolean expression onto hardware is not a trivial task. It involves mapping a logical 
representation to a set of physical “standard cells” provided by a technology vendor. This logical-to-physical 
mapping is not straightforward due to the diversity in the size and functionality of standard cells. Commercial 
tools for this logic mapping and synthesis are governed by trade-offs between area, power, and performance 
of circuits. What this means is that a given Boolean function can be realized using many different hardware 
representations, and synthesis tools leverage the fexibility offered by standard cells to achieve a trade-off between 
area, performance, and power of the circuit, even if it entails logic modifcation. 

The aforementioned dependence on standard cell technology necessitates an assessment of logic-minimized 
circuits that captures different corners of the design space. Techniques that reduce gate count might result in greater 
diffculty to optimize the circuit for speed, or consume more power. This eventually brings us to the question 
of whether the estimate of hardware effciency provided by logical metrics remains accurate over a range of 
constraints. Many existing optimizations of circuits [18], [19], [9], [20] include synthesis results obtained for a 
particular frequency to validate their compactness. While this establishes their area effciency at that particular 
frequency, we believe that a comprehensive analysis of the area, delay, and power of a more diverse group of 
circuits minimized by similar techniques would go a long way in providing designers a clearer picture of how 
they are transformed along the hardware implementation fow. 

*This work was supported by NIST 



In this work, we systematically evaluate the hardware quality of cryptographic primitives reduced by a new 
class of record-setting circuit-minimization techniques optimized for reducing gate-count [7], [8], [21]. This Low 
Gate-Count (LGC) tool reduces multiplicative complexity, minimizes the number of XOR operations, and is also 
capable of reducing the depth of combinatorial circuits. These techniques have generated circuits of the least 
known gate count [1], [2]. Our aim is to perform a comprehensive hardware effciency analysis of these circuits 
covering a range of constraints on the design trajectory. Since these tools have been optimized for a large class of 
combinatorial cryptographic circuits, we believe this analysis provides signifcant insight into the overall hardware 
effciency of such methodologies, and helps identify specifc regions in the design space where these circuits are 
effcient. Specifcally, we attempt to address the following points: 
• Trade-off regions: The conficting nature of hardware quality metrics makes it conceivable that synthesis 

methods that are superior in one metric are inferior in another. Identifying these regions of the solution 
space provides a sound assessment of when LGC tools are preferable over other alternatives. 

• Suitability towards wide range of functions: It is possible that one synthesis method outperforms another 
for a particular class of logic functions, and not so for a different class. Structural properties of functions 
determine how they are affected by hardware optimization strategies. Since the LGC tool is applicable to a 
wide range of circuits, we analyze the consistency of hardware effciency over different logic functions. 

• Scaling of hardware metrics: Logic synthesis being a constraint-driven process, it is possible that a circuit 
that is better at one operating frequency can be worse at a higher frequency. We wish to observe how area 
and power scale with design constraints and complexity. 

The rest of the paper is organized as follows. Section II briefy provides the required background on the 
aforementioned logic minimization techniques. Section III presents the analysis methodology adopted in our 
evaluation. This is followed by a discussion of important results of hardware synthesis, impact of physical 
design, and an integrated design example in Section IV. Section V concludes the paper. 

II. BACKGROUND 

A. Digital Logic synthesis 

As there is no unique mapping of a logical description of function to a standard cell netlist, selecting the best 
hardware implementation is driven by trade-offs between technology cost factors. One of them is the delay of 
a cell, which simply refers to the time taken for a change in its inputs to be refected at its output. Another 
property of a standard cell is its ability to drive logic at its output, referred to as its “drive strength”. A cell of 
higher drive strength is naturally faster, but also bigger in size. This behavior is instrumental in an important 
fundamental trade-off between the area and performance of combinatorial circuits after synthesis. 

Fig. 1: A typical area-delay curve depicting trade-off points. 

Figure 1 shows a typical area-delay curve obtained after hardware synthesis. The fgure shows two regions in 
the plot. At low speeds (large circuit delays), the lack of tight performance constraints lets standard cells be weak 
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and slow, and consequently as small as possible. This is referred to as the “Minimal-Area” region. As the speed 
increases, standard cells in the circuit need to operate faster, and hence stronger cells are used. As a result, the 
circuit now incurs a sharp increase in its area in this region, referred to as the “High-Speed” region. The fnal 
solution on hardware is not always guaranteed to be one that optimizes both area and delay equally. Rather, it is 
one that minimizes area for given speed constraints. 

Impact of standard cells: One of the challenges to logic synthesis tools is to fnd a sweet spot between the 
designer’s requirement in terms of area, delay, and power, and what the technology library offers along with 
its design rules. Synthesis cost functions include all these constraints, and tools constantly evaluate trade-offs 
between them. An important point that needs mention is that there are variations in standard cells with respect 
to their hardware properties that cannot be overlooked. For example, Figure 2 shows a simple example of the 
area of commonly used standard cells from two different libraries, normalized to that of a 2-input NAND gate 
of the same technology. It is easy to see that XOR and XNOR gates are signifcantly bigger than other cells 
of an equivalent drive strength. Similar observations can be made for delay and power consumption - they are 
different for different cells, and depend on input signal transition and output load. 
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Fig. 2: Area comparison of common 2-input standard cells from (a) TSMC 180 nm, and (b) Synopsys SAED 
32/28 nm standard cell libraries. 

This highlights the fact that a cryptographic LGC circuit that is generally dominated by XOR gates cannot be 
directly assumed to occupy smaller area on hardware, just by virtue of having fewer gates. The differences on 
hardware depend on heuristics used by synthesis tools to fnd an optimal mapping and sizing of cells to meet 
timing. While the logical starting point could be the smallest possible representation of a circuit, it is conceivable 
that the tool replaces certain logic gates with more complex cells in the library that are faster or have a higher 
ratio of drive strength to area. These effects become pronounced only when evaluation covers a range of speeds, 
which is the focus of this work. 

B. Low gate-count (LGC) logic minimization techniques 

This section discusses the important properties of circuit minimization techniques proposed by Peralta et al. 
[7], [8], [21]. Cryptographic logic primitives are optimized for low gate-count by partitioning the circuit into its 
linear (XOR) and non-linear (AND) parts. The non-linear portion is frst reduced by techniques such as automatic 
theorem proving, resulting in a representation with fewer AND gates than the original. The linear portion of the 
circuit is now reduced using a greedy algorithm factoring out commonly used sub-expressions. The set of variables 
required to represent the function is initially flled with all the input variables, and gradually “grows” as it is 
flled in with sub-expressions that minimize the total number of XOR gates required. This process is performed 
repeatedly with random combinations of variables from the set, until a target number of XOR gates or a predefned 



maximum time is reached. This technique was used with the addition of greedy depth-minimization heuristics to 
obtain a very compact circuit for AES SBox [2]. These algorithms have also been used to obtain some of the 
smallest known circuits for Galois Field arithmetic [1] and polynomial multiplication [22]. 

III. ANALYSIS METHODOLOGY 

A. Area and Power Analysis 

To evaluate the LGC tool, we compare the quality of designs it creates, against those produced by commercial 
tools for other representations of the same logic functions. These comparisons are performed at different levels 
of abstraction in the implementation fow of an Application Specifc Integrated Circuit (ASIC). In addition to 
evaluating the quality of combinatorial primitives as standalone blocks, we include analysis of an overall system 
design incorporating these primitives. This is aimed at demonstrating their suitability in a practical setting. The 
overall evaluation fow adopted is shown in Fig. 3. 
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Fig. 3: Analysis methodology for evaluation of LGC circuits. 

Logic synthesis of each design is performed at multiple frequencies using Synopsys Design Compiler (DC). 
This is continued till the point where the design fails to meet timing. Area analysis makes use of elaborate reports 
generated by DC. Moving further down the ASIC design fow, the effects of physical design are observed after 
placement and routing of these circuits using Synopsys IC Compiler. Power analysis is performed after both 
synthesis and layout, by frst running a gate-level simulation of the netlists obtained at different frequencies, 
along with delays annotated through a Standard Delay Format (SDF) fle. We feed 216 random inputs to each of 
the design alternatives and obtain the switching activity in a Value Change Dump (VCD) fle from ModelSim. 
For combinatorial blocks with 8-bit inputs such as the SBox and GF (28) inverter, the test set is created in such 
a way that it covers all 216 possible 8-bit transitions. The VCD fles generated are then provided to Synopsys 
PrimeTime, which computes the power consumption of the circuits averaged over the simulation duration. 



B. Cryptographic Benchmarks 

We specifcally focus on cryptographic circuits that are used as building blocks in bigger designs. To evaluate 
the effectiveness of optimization on different types of representations, we choose two types of benchmark designs 
where possible - (i) an abstract representation of the input-output relation with minimal external logic reduction, 
and (ii) a design that has been minimized by exploiting the computational properties of the circuit. In this section, 
we discuss the benchmark designs for two of the functions shown in Fig. 3 - AES SBox and Binary polynomial 
multiplier - as they highlight key shortcomings of using logical metrics to indicate hardware effciency. The 
complete list of benchmarks can be found in [23]. The LGC tool provides minimized circuits in SLP format. To 
seamlessly insert these designs into a standard synthesis fow, these SLPs are frst converted to datafow Verilog 
that can be input to DC for logic synthesis. These Verilog designs are parameterized for each benchmark design, 
and for the multipliers, they are additionally parameterized for each input size. We obtained some of the LGC 
SLPs from [22], and the rest were provided to us by the designers. 

1) AES SBox: The AES SBox has been extensively studied and several implementations have been proposed 
in literature [24], [25], [26], [2], [20] targeting various metrics for hardware effciency. 
• The AES SBox at its highest level is an 8X8 look-up table whose gate-level realization is left completely 

to the logic synthesis tool. This reference design is denoted as sbox lut. 
• The computational properties of the SBox have been exploited to produce very compact designs in literature. 

The SBox by Wolkerstorfer et al. [24] decomposes elements in GF (28) into two-term polynomials with 
coeffcients in the sub-feld GF (24), owing to its simpler hardware implementation. Canright’s design 
[25] further reduces gate-count by using a representation over the composite feld GF (((22)2)2), and the 
introduction of normal bases. These designs are denoted as sbox wolkerstorfer and sbox canright respectively. 
They are implemented in datafow Verilog from the expressions used in their construction [24], [27]. 

• Another way of describing an SBox is using a Sum-of-Products or a Product-of-Sums form derived from 
its truth table. This gives a single-stage Positive Polarity Reed-Muller (PPRM) representation [28], denoted 
here by sbox pprm1. Further, Morioka and Satoh proposed an architecture [29] which restricts the PPRM 
representations to three different stages of the SBox, leveraging both the PPRM structure and composite 
feld representation (denoted by sbox pprm3). Verilog models of these designs were obtained from [30]. 

• The LGC version used here is the low gate-count SBox proposed by Peralta et al. [2], denoted as sbox lgc. 
This circuit was minimized by the LGC and depth-reduction techniques discussed in [7], [2]. 

2) Binary Polynomial Multiplication: This can be viewed as multiplication of two polynomials of degree n over 
n−1 n−2 GF (2). A polynomial a(x) = x +an−2 ·x +· · ·+a1·x+a0 is represented as an n−bit vector whose bits are 

the coeffcients of a(x). Polynomial multiplication is generally performed as the frst step of feld multiplication, 
and is followed by polynomial reduction. For multiplication in a feld F2n , the arithmetic complexity of reduction 
is O(n), while that of multiplication is O(nω), where 1 < ω ≤ 2 [3]. It is therefore worthwhile to look at 
circuits for polynomial multiplication alone, which has been an old and much-studied problem. The benchmarks 
used are listed below. Since the complexity of binary multiplication grows quadratically with n, we perform 
comparison for a range of widths from 8 to 22 bits to evaluate how the effciency of these designs scales with 
design complexity. 
• The frst benchmark is a bit-parallel matrix-based multiplier as described in [16]. It is referred to as 

polymult mat, and is realized entirely as combinatorial logic employing GF (2) addition and multiplication. 
• The LGC versions of polynomial multipliers, denoted by polymult lgc, are available at [22]. Many of them 

are designs that use the aforementioned computational versions as starting points for further logic reduction. 

IV. EVALUATION OF THE HARDWARE IMPLEMENTATION OF LOGIC-MINIMIZED CIRCUITS 

As mentioned in the previous section, we present and discuss important results of AES SBox and polynomial 
multiplier, in order to highlight different properties of LGC designs that can affect their hardware quality. Results 
for the complete set of benchmarks can be found in [23]. 
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A. Experimental Results - AES SBox 
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Fig. 4: Technology-independent comparison of SBox designs 

At frst, a technology-independent comparison of the generic gate count and logical depth of the different SBox 
alternatives is shown in Fig. 4. From this fgure, the logical complexity of sbox lut appears to be extremely high, 
with over 10× more gates and 16 extra levels of logic as compared to sbox lgc. A comparison of the expected 
hardware effciency at this point would automatically declare sbox lut to be not just bigger, but also signifcantly 
slower than sbox lgc owing to all the additional levels of gates. However, as will become clear in the rest of this 
section, without more comprehensive evaluation, this estimate does not present the complete picture. 
Fig. 5 shows the area (in K Gate Equivalents) of different SBox circuits plotted against the circuit delay, after 
logic synthesis using TSMC 180 nm technology library. The frst point to be noted is that the compactness 
properties of sbox lgc holds at large delays (10 ns), where it is upto 50% smaller than sbox lut. The reason for 
this is that in the minimal-area region, there is little or no requirement for cell sizing and logic modifcation 
of sbox lgc. Also, it becomes clear that commercial synthesis tools do not perform the type of rigorous logic 
reduction that the LGC tools do, which keeps the area of sbox lut signifcantly larger than that of sbox lgc. 
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Fig. 5: Area-delay comparison of SBox designs, using TSMC 180 nm technology. 

It is also clear from Fig. 5 ref that with increase in speed, the logic-minimized designs incur a sharp increase 
in area to the point where sbox lgc becomes about 40% larger than sbox lut (at 5-6 ns delay). Furthermore, in 
this delay-range, the area plot of sbox lut remains largely fat, indicating greater ease to meet delay requirements. 
The reason for this is that sbox lut offers greater fexibility for optimization with a particular target technology 



library [31]. Owing to its abstract high-level representation, it is easily collapsed from 33 levels of gates before 
synthesis (Fig. 4(b)) to as few as 14 after synthesis. This is in sharp contrast to sbox lgc, which is more restricted 
in its representation and hence does not allow such a reduction in depth - in fact, synthesis increases its depth 
from 17 to 18-19 levels of cells. Consequently, the critical path of sbox lgc comprises more cells, each of which 
needs to be of higher strength than those of sbox lut to meet delay requirements. 

A second reason for the large area of sbox lgc is that it is dominated by XOR gates, which is a natural result 
of its Boolean representation. In case of sbox lut, its fexibility for optimization by mixing and matching different 
cells in the library results in zero XOR cells after synthesis, as opposed to over 80 XOR cells in sbox lgc after 
synthesis. As was seen in Fig. 2, an XOR cell is much larger than other common cells of similar drive strength. 
This point, combined with the frst observation of higher drive strength of cells in sbox lgc, indicates an important 
property - in spite of sbox lgc consisting of fewer cells overall than sbox lut, a majority of these cells are both 
XOR and of a higher drive strength, making them 4-5× bigger than those of sbox lut. 

As a result of its ability to be collapsed onto fewer levels of cells, sbox lut is naturally capable of reaching 
much higher speeds, as seen from Fig. 5. An optimization strategy to enable sbox lgc to attain similar speeds, 
involves inserting a pipeline stage. This shortens the critical paths, and hence it is reasonable to expect the fewer 
cells to meet timing even in spite of being smaller and slower. Pipeline registers were therefore added at the 
inputs of logic-minimized SBoxes, and automatic retiming by DC was enabled, to push these registers through 
the combinatorial logic. The area-delay curve after pipelining is shown in Fig. 5(b). It is evident that this keeps 
the area-increase of sbox lgc in check and enables it to achieve smaller delays, while occupying an area that is 
within ± 15% of the area of sbox lut. 

We now evaluate the power consumption of SBox designs. Fig. 6(a) shows that although sbox lgc is upto 50% 
smaller in the minimal-area region, similar improvements are not seen for power. It consumes about 15-20% less 
power at very high delays (8-10 ns), but for speeds higher than that, power consumed by sbox lut stays lower. 
Contrary to the observations noted in case of area, pipelining does not improve the power of sbox lgc (shown in 
Fig. 6(b)), in spite of reducing cell sizes. 
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Fig. 6: Power consumption of SBox designs, using TSMC 180 nm technology 

One of the reasons for the high power-effciency of sbox lut is that by virtue of its ROM-structure, it has 
separate paths to each output from its inputs. As a result, not all of its cells are active for each combination of 
input bits. On the other hand, LGC designs involve greater signal activity for each SBox computation due to 
their algebraic re-computation of the outputs for every bit-fip at the input [31]. In addition, XOR gates propagate 
dynamic hazards with a probability of 1 [29]. Hence, the high XOR-dominance of sbox lgc is another reason 
results in high switching. In spite of comprising fewer cells, sbox lgc involves almost the same number of toggles 
as sbox lut, with each toggle being more expensive due to the high drive strengths of cells in sbox lgc. This 
makes it abundantly clear that fewer logic gates alone do not automatically imply power effciency of LGC designs. 
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We conclude this analysis with Table I, where of sbox lgc is compared with the two best benchmark designs. 
In the table, - indicates smaller area (or lower power), while + indicates higher area/power of sbox lgc over its 
alternatives. The compactness of sbox lgc is well-refected in hardware at low speeds. Achieving higher speeds 
comes at the cost of an increase in both area and power over an abstract LUT-based design. 

Benchmark Design Region Area Power 
Comparison of sbox lgc Min-Area - 54% - 11-20% 

with sbox lut High-Speed + 2-13% +12-40% 
Comparison of sbox lgc Min-Area - 17-24% - 4-36% 

with sbox canright High-Speed + 4-22% + 3-23% 

TABLE I: Summary of analysis results for sbox lgc with TSMC 180 nm technology library. 

B. Experimental Results - Polynomial Multiplier 

For the polynomial multiplier designs, we point out some of the key differences in properties from the SBox 
observations discussed in Section IV-A. In order to best observe a trend in the area and power, we present values 
for three different multiplier sizes. Fig. 7(a) shows the comparison in area between polymult lgc and polymult mat 
for input widths of 8, 16, and 22 bits. It is evident that in the minimal-area region, polymult lgc gets better and 
better than polymult mat with increase in multiplier width - from being only 6% smaller for an 8×8 multiplier, 
to being 25% smaller for a 22×22 multiplier. In the high-speed region, however, polymult lgc gets more and 
more inferior to polymult mat, to the point of being over 40% bigger for a 22×22 multiplier. 
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Fig. 7: Power consumption of Polynomial Multipliers, using TSMC 180 nm technology 

In case of power, Fig. 7(b) shows that a small improvement of 14% due to polymult lgc is seen only for an 
8×8 multiplier in the minimal-area region. Everywhere else, we see polymult mat to be more power-effcient. 
Moreover, this discrepancy widens with the increase in both speed and input width. From these area and power 
results, it is clear that a matrix-based multiplier certainly “scales” better with speed and input size than the LGC 
designs. Although the matrix-based design is not as abstract and high-level as an LUT-based BOX, it is still very 
high-level and symmetrical which makes it conducive to various optimizations by the synthesis tool resulting in 
better area effciency in high speeds when compared to LGC design. The power effciency of polymult mat is also 
due to its balanced structure. In spite of its XOR-dominance, majority of the XOR gates have their inputs coming 
from gates at the same depth from the inputs. As a result, there is a far less likelihood of their input delays being 
mismatched [29]. In case of polymult lgc, such a balance is much harder to achieve due to its minimization by 
aggressive removal of redundancies. As a result, it involves higher toggling due to dynamic hazard propagation 
and consequently higher power consumption. 



In summary, logical compactness is susceptible to be lost at high speeds due to the impact of logic synthesis 
and even in low speeds it may not translate into power effciency. 

C. Impact of physical design 

The physical design stage in the ASIC implementation fow involves placement and routing on a die area. 
These steps can further modify cell sizes due to the effects of the physical locations and interconnects between 
cells of the circuit. Hence, it is important to observe if this signifcantly changes the post-synthesis results. Taking 
the AES SBox as an example, our results show that the effects of physical design are minimal for circuits that 
have a large difference in their logical gate count. For example, sbox lgc has about 10× fewer logic gates than 
sbox lut. As a result, its area-delay curve after placement and routing follows a similar pattern as the post-synthesis 
values, and sbox lgc remains 40% smaller than sbox lut in the minimal-area region. However, for circuits whose 
logical representations differ by few tens of gates or less, such as sbox lgc and sbox canright, or 8×8 polynomial 
multipliers, the area advantages in post-synthesis might not extend to post-layout. In Fig. 8, it is clearly seen that 
while sbox lgc is 20% smaller than sbox canright after synthesis, it gets 20% bigger after layout. This underlines 
the point that minute differences in gate count are overshadowed by the heuristics of physical design and the 
impact of cells’ locations, making them susceptible to variations in post-synthesis and post-layout size. 

After Synthesis - sbox_lgc 20% smaller than sbox_canright After layout - sbox_lgc 20% larger than sbox_canright

(a) SBox Area after synthesis (b) SBox Area after layout 

Fig. 8: Effect of physical design on SBox area 

D. Relation between logical and technology-dependent quality metrics 

Having looked at results and comparisons for specifc benchmark circuits, we take a broader view of how well 
abstract logical quality metrics relate to hardware quality metrics. In this regard, we analyze the correlation of 
hardware area and power to these circuits’ logical gate count. Owing to the large differences in properties of 
designs, such an analysis needs to be performed separately for each circuit. Fig. 9 shows the correlation of gate 
count to the area of both the SBox and polynomial multipliers. 

Logical gate count has a high correlation of over 80% in the minimal-area region, and falls to lower values with 
increase in speed. In case of polynomial multipliers, this drop is faster for bigger multipliers due to their increased 
complexity. These fgures corroborate the utility of gate count as a good predictor of hardware size only at low 
speeds. The greater complexity involved in power consumption is depicted by a lack of meaningful correlation 
of gate count to the power of SBox and multipliers in Fig. 10. Except for very small multipliers, the correlation 
of gate count stays less than 60%, indicating its inability to provide a useful refection of power-effciency. 

E. Integrated Design Example 

The analyses performed so far considered the combinatorial blocks as standalone primitives. The primary 
reason for having chosen these benchmarks is that they have practical utility in bigger designs. We believe that 
it is important to assess the effectiveness of combinatorial optimization towards minimizing the area or power 
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Fig. 9: Correlation of gate count to area. 

Delay (ns)

Co
rr

el
at

io
n 

to
 A

re
a

-1

-0.5

0

0.5

1

3 4 5 6 7

SBox - Correlation of Logical Gate Count to Power

Delay (ns)

Co
rr

el
at

io
n

-1

-0.5

0

0.5

1

2 3 4 5

N=8 N=12 N=16 N=20 N=22

Polynomial Multiplier - Correlation of Logical Gate Count to Power

(a) Gate Count correlation to SBox Power (b) Gate Count correlation to Multiplier Power 

Fig. 10: Correlation of gate count to power. 

of the complete system they are a part of. In this sub-section, we analyze the logic synthesis results of AES 
designs making use of different SBox circuits. The aim of this study is to highlight the fact that the total impact 
on a system is affected by the contribution of the primitive to the bigger design’s area, and also the optimization 
performed by combining these primitives with external logic that is part of the design. Three different AES 
designs are analyzed here: 
• Standard AES: An AES design with one SBox per each byte of the state and the key. There are 20 SBox 

circuits in total, and each encryption operation is completed in 10 clock cycles, i.e. one round per cycle. 
• High-throughput AES: Computes two AES rounds in one cycle. There are 40 SBox circuits in total. 
• Lightweight AES: Resource-shared design, with 4 SBoxes in total, with multiplexed inputs and outputs. 

Fig. 11(a) shows the correlation of the SBox gate count to that of the total AES area. It can be clearly seen 
that while this correlation is high for the standard and high-throughput designs, it is around 50% for lightweight 
AES at low frequencies. The correlation increases at higher frequencies due to the effects of pipelining. The 
improvement in AES area obtained by using LGC SBox is shown in Fig. 11(b). It is evident that benefts of a 
smaller SBox are diminished when integrated with a lightweight AES design. 



Indicates pipelining of LGC designs

(a) Correlation of SBox Gate count to AES area 

(b) Improvement in AES area obtained by using sbox lgc 

Fig. 11: Analysis of SBox integrated into AES designs. 

V. CONCLUSION 

The analysis in this work has made it clear that conversion of a logical circuit representation to hardware is 
not trivial. Area and power effciency of a combinatorial circuit are determined by standard cell library, how 
conducive the circuit structure is for optimization, delay requirements, and surrounding logic when it is part of a 
bigger design. Effciency with respect to one metric does not imply that with respect to another. This reiterates 
the point that while logical metrics provide a reasonable initial estimate, comparing logical designs solely based 
on minute differences in gate count or logical depth is not an accurate comparison of their expected hardware 
quality. The more prudent question is under what conditions logical metrics and hardware quality have high 
correlations. In this regard, we conclude this paper by showing Table II. This table summarizes the correlation 
analysis for the benchmark designs studied in this paper and in [23]. In summary, the gate count is only a good 
representative of the design area in low speeds (low performance) and it is never a proper indicator for power 
consumption. When it comes to logical depth, the results are mixed and there is no clear pattern on its usability 
for predicting area or power. The future work of this research includes establishing methodologies and metrics 
that can outperform gate count and logical depth in predicting the post-synthesis quality of a circuit design. 

Logical Design Min-area Region High-speed Region 
Metric Area Power Area Power 

Gate 
Count 

SBox H M M L 
Polynomial 
Multiplier 

N≤14 H H L L 
N>14 H L L L 

GF Multiplier M M L L 
GF Inverter M M L L 

AES 
Standard H L L→M H→L 
High-throughput H L L→M M 
Lightweight M L L→H H 

Logical 
Depth 

SBox M L L L 
Polynomial 
Multiplier 

N≤14 L L H H 
N>14 L H H H 

GF Multiplier H H H H 
GF Inverter L L M L→M 

AES 
Standard H L L→M H →L 
High-throughput H L L→M M 
Lightweight M L L→H H 

TABLE II: Correlation of abstract metrics to hardware quality metrics. H-High (Correlation > 0.8), L-Low 
(Correlation < 0.5), M-Moderate (0.5 ≤ Correlation ≤ 0.8). 
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