
1 

FELICS-AE: a framework to benchmark 
lightweight authenticated block ciphers 

Kévin Le Gouguec* 

* Airbus CyberSecurity - ZA Clef Saint-Pierre, 1 Bd Jean Moulin,
CS 40001, MetaPole, 78996 ÉLANCOURT Cedex - France -

kevin.legouguec@airbus.com 

October 18, 2019 

Introduction 

The CAESAR competition [4] and the NIST Lightweight Cryptography Stan-
dardization Process [12] have brought to light several new Authenticated En-
cryption with Associated Data (AEAD) algorithms dedicated to “lightweight” 
use-cases. In these use-cases, target devices are strongly constrained in terms 
of computing resources: they have limited volatile memory (RAM) and non-
volatile memory (ROM), their processors operate at low frequencies and feature 
few registers, they may only be able to draw power from a battery that can 
neither be recharged nor replaced, etc. 

These devices thus have very few resources to spare on security. This implies 
that the aforementioned algorithms must be selected not only for their robust-
ness, but also according to their eÿciency. Given two encryption schemes with 
equivalent security, the scheme which leaves the target device more resources to 
perform its designed function will be preferred. 

Thus measuring the performance of these algorithms is an integral part of 
the selection process carried out in [12]. In this paper, we present FELICS-AE, 
an adaptation of the FELICS framework [5] dedicated to AEAD schemes, which 
we use to assess the performance of our candidate Lilliput-AE [1]. We have 
released this framework on a public Git repository[6]. 

First, in section 2, we will present the original FELICS framework. We 
will then present FELICS-AE in section 3, going over our work to adapt the 
framework and explaining how to use it. We will present the results we obtained 
in section 4. To conclude, we will mention possible improvements for FELICS-
AE in section 5. 

1 

mailto:kevin.legouguec@airbus.com


2 Background: the FELICS framework 

The FELICS framework [5] includes a collection of implementations of encryp-
tion algorithms in C and assembly, as well as a set of shell scripts which measure 
the performance of these algorithms on various microcontrollers representative 
of “Internet of Things” (IoT) devices. 

2.1 Supported devices 

FELICS supports the following microcontrollers (bold words denote the code-
names used within the framework): 

• 8-bit AVR ATmega128, 

• 16-bit MSP430F1611, 

• 32-bit ARM Cortex-M3. 

The AVR and MSP platforms are entirely simulated, which allows one to 
measure algorithm performance on these microcontrollers without physically 
owning them. To measure performance on ARM, however, FELICS requires 
an Arduino Due board, as well as a J-Link probe. Algorithms can also be 
benchmarked on the implementer’s x86 platform, codenamed PC. 

2.2 Metrics 

Code size: FELICS adds up the text and data sections of an implementation’s 
compiled object code, as reported by the GNU size program, to measure 
the algorithm’s footprint on non-volatile memory. 

RAM: to measure the working memory needed by an algorithm, the framework 
runs the implementation through a debugger, spraying a known pattern 
on the stack before execution and counting how many bytes were modifed 
after execution. This fgure is added to the object code’s data section. 

Execution time: for simulated devices, FELICS relies on the simulator to keep 
track of the number of clock cycles spent on encryption. For other devices, 
FELICS uses specialized assembly instructions to get this information. 

2.3 Distribution 

The CryptoLUX wiki [8] hosts an archive containing FELICS’s source code (al-
gorithm implementations and benchmarking scripts). The wiki also provides 
detailed instructions to install the dependencies FELICS needs to compile im-
plementations and measure their performance on every platform. 

The wiki also hosts a virtual machine (32-bit Ubuntu 14.04) where all de-
pendencies are pre-installed. This makes it easier to use the framework since 
one then does not need to track down all of its dependencies. 

2 



2.4 Algorithm instrumentation 

Algorithm implementations must comply with a number of requirements in order 
to work with FELICS. This section presents some of these constraints. 

Algorithm entry points must conform to a specifc API. FELICS fea-
tures multiple scenarios, implemented as C fles which defne the main function 
that will call the cipher implementation. Each scenario calls the cipher with dif-
ferent parameter sizes, which allows observing the evolution of the algorithm’s 
performance as its input grows. 

Each main function is generic with respect to the algorithm under test: it 
is expected that each implementation defnes high-level encryption and decryp-
tion functions with specifc signatures, so that scenarios can be applied to all 
algorithms included in FELICS. 

Encryption and decryption code must be split across distinct fles. 
When measuring an algorithm’s code size, FELICS outputs three distinct tallies: 
encryption code size, decryption code size, and total code size. To achieve this, 
FELICS requires integrators to fll in metadata fles, spelling out which object 
fles are used for encryption, and which are used for decryption. 

This means that if an implementation originally had one fle featuring both 
encryption and decryption functions, an integrator must split it into two fles 
and tell FELICS which fle serves which purpose. If the original fle contained 
code used by both encryption and decryption functions, the integrator must 
further create a third fle to move the common code to. 

Array declarations must be annotated. FELICS defnes a set of macros 
that annotate integer types for two purposes: 

• They specify optimal memory alignment for integer arrays: this ensures 
that implementations aliasing byte arrays as e.g. 32-bit integer arrays do 
not accidentally access an array member at an address which is not aligned 
for a 32-bit variable, which can degrade performance or cause undefned 
behaviour. 

• They add the platform-dependent keywords necessary to tell the com-
piler whether arrays should be stored in ROM or RAM: e.g. for AVR 
ROM_DATA_BYTE expands to const uint8_t PROGMEM aligned, where 
PROGMEM instructs gcc to move the variable to Program Memory; 
READ_ROM_DATA_BYTE expands to pgm_read_byte, which performs the op-
erations needed to read from this specifc memory region. 

An integrator must therefore go over each array declaration in an implemen-
tation and change its type using the correct macro. 

3 



3 FELICS for Authenticated Encryption 

FELICS was initially developed to measure the performance of block ciphers 
and stream ciphers. In this section, we describe the changes we made to adapt 
the framework to AEAD algorithms; we then describe how we use it. 

3.1 Changes from FELICS 

We began our work with release 1.1.0 of the FELICS framework. Our goals 
were to support AEAD algorithms, simplify the algorithm integration process, 
and improve the feedback given to implementers while they optimize their code. 

3.1.1 AEAD support 

Authenticated encryption primitives have specifc signatures: their inputs in-
clude the associated data to authenticate, a nonce to achieve semantic secu-
rity [16]; encryption produces an authentication tag which is consumed by de-
cryption. 

The common C API we chose for cipher implementations is inspired by the 
crypto_aead API described in the call for submissions of the CAESAR compe-
tition [3], which has been re-used in the NIST standardization process [13]. Our 
API di˙ers in minor ways: 

• It does not include the nsec parameter, which is unused in the context of 
the NIST standardization process. Removing this unused variable reduces 
the number of compiler warnings, which helps implementers spot actual 
errors in their code. 

• Arrays are passed as pointers to uint8_t rather unsigned char. Array 
sizes are passed as size_t rather than unsigned long long. The latter 
is unnecessarily large on some platforms: e.g. on AVR, an unsigned long 
long variable takes 8 bytes, while size_t is only 2 bytes. 

3.1.2 Tools for implementation optimization 

The original FELICS framework o˙ers multiple entry points: 

• one makefle for each implementation, which compiles a scenario for any 
platform, or runs a scenario on the development PC, 

• one script per metric, which runs the relevant tools (e.g. simulators, de-
buggers) for a given device and algorithm, and either displays the results 
in a human-readable table or serializes them in an unspecifed format, 

• collect_ciphers_metrics.sh, a more complex script which iterates over 
algorithms, architectures, platforms, scenarios, and compiler options, and 
calls on the aforementioned scripts and makefles to run a comprehensive 
measurement campaign. 

4 



While developing optimized implementations of Lilliput-AE, we found 
that our main tasks were: 

• running a full measurement campaign for a set of algorithms, 

• comparing a set of results against a previous set, 

• comparing two implementations of the same algorithm (e.g. reference vs. 
threshold, reference vs. optimized for a specifc architecture), 

• exporting a set or a subset of results into various formats. 

We developed a new set of scripts to perform these tasks, which we present 
in section 3.2. We chose to implement these tools in Python, which we found 
more convenient than Bash for multiple reasons: e.g. a rich library ecosystem, 
reduced boilerplate (the argparse library, for example, produces detailed usage 
messages automatically, whereas the usage messages for the original shell scripts 
must be maintained manually). 

While adapting FELICS to AEAD algorithms and integrating Lilliput-
AE, Ascon and ACORN, we also stumbled on several issues related to the 
poor error-reporting capabilities of shell scripts: 

• None of the framework’s scripts uses the errexit shell option: command 
errors are only detected when they are followed by ad hoc checks. 

• These checks do not necessarily stop the script, which means that some 
failures cannot be detected unless the user either carefully watches the 
framework’s output, or surveys the results closely enough to notice suspi-
cious patterns (e.g. metrics set to zero). 

• Simply setting the errexit option only marginally improves the situa-
tion, since it does not produce a backtrace when an error happens: track-
ing down a failed command which produces no output involves a certain 
amount of manual work. The situation is aggravated by the framework’s 
error-checking convention, where commands writing to the standard error 
stream are assumed to have failed: naively setting the xtrace shell option 
in sub-scripts then causes spurious failures in the parent scripts. 

Python exceptions interrupt the program fow immediately, include precise 
backtraces, and may be enriched with arbitrary information by the developer. 
We found these properties to make error-handling more ergonomic. 

3.1.3 Distribution 

In order to make it easier to setup FELICS-AE, we wrote scripts to fetch and 
install the framework’s dependencies. Building on those scripts, we produced 
a ready-to-use Docker image bundling FELICS-AE with its dependencies; the 
generation of this image is itself fully scripted. 

5 



3.1.4 Miscellaneous 

We made several changes that aimed at simplifying the framework, removing 
degrees of freedom which we did not need. For example, we removed the “sce-
nario” parameter; measurement campaigns now always begin by checking the 
implementation against a test vector, then measure the performance of encrypt-
ing 16 bytes of plaintext with 16 bytes of associated data. 

We also removed collect_ciphers_metrics.sh’s support for multiple out-
put formats: we settled on JSON as a unique format for the results of a mea-
surement campaign. All tools presented in section 3.2 use this format as their 
input, and a specifc script is used to convert them to other formats. 

Beyond encryption and decryption, FELICS further distinguished metrics 
for key schedule (for block ciphers) and setup phase (for stream ciphers). Some 
AEAD algorithms call the underlying block cipher and its key schedule repeat-
edly for every block of input; there was no obvious way to adapt the framework 
to preserve this distinction, so FELICS-AE only provides metrics for the whole 
encryption process. 

While adapting the cycle-counting assembly code for x86_64 architectures, 
we observed considerable variance in our fgures for execution time. A lot of CPU 
features of modern workstations contribute to this variance: to mitigate these 
factors, we implemented several countermeasures, following Intel’s guidelines for 
benchmarking on IA-64 architectures [14]: 

• Use the cpuid instruction to ensure that all instructions are serialized 
correctly, otherwise out-of-order execution may move part of the code we 
want to benchmark out of the scope of the timestamp-measuring instruc-
tions, or even move unrelated code inside this scope. 

• Use the taskset command to pin the benchmark program to a single core, 
otherwise the code may be moved to other cores while it runs, and the 
timestamp counters of these cores may not be synchronized. 

• If the user is privileged enough, set the CPU frequency scaling governor 
for this core to “performance” to ensure a fxed frequency. 

• Run the scenario multiple times and take the median cycle count, to ac-
count for the remaining variance. 

3.2 Usage 

In this section, we will present some of the tools we developed while adding 
support for AEAD algorithms to FELICS. 

3.2.1 felics-run 

This script expects a list of algorithms (each element of the list can include 
wildcards to designate multiple algorithms), an optional set of architectures (all 

6 



supported platforms are selected by default), and an optional list of compiler 
fags (only -O3 is used by default). 

For every combination of the requested parameters, this script checks the 
implementation’s test vector, then measures the implementation’s code size, 
RAM usage and cycle count when encrypting 16 bytes of plaintext with 16 
bytes of associated data. 

The metrics are serialized in a JSON fle, along with some metadata to 
identify the framework revision. 

3.2.2 felics-publish 

This script either prints every setup (i.e. a given set of algorithm, architecture, 
and compiler options) from a results fle to the user’s console, or exports these 
setups into a new output format. The supported formats are HTML table, 
LATEX table, OOXML spreadsheet or ODF spreadsheet. 

Several options allow the user to control the output: 

--sort-by: how setups are ordered, 

--filter: which setups are included, 

--info: which metadata and metrics are displayed, 

--table-label: anchor for documents supporting cross-references, 

--table-caption: additional text to describe the data set. 

Sample console output: 

On AVR 
Lilliput-I-128 (felicsref, -O3): 6100 266 129093 
Lilliput-II-128 (felicsref, -O3): 6062 243 132650 

On MSP 
Lilliput-I-128 (felicsref, -O3): 5760 300 121646 
Lilliput-II-128 (felicsref, -O3): 4932 272 144399 

On ARM 
Lilliput-I-128 (felicsref, -O3): 4656 444 86293 
Lilliput-II-128 (felicsref, -O3): 4684 420 89390 

On PC 
Lilliput-I-128 (felicsref, -O3): 6880 528 10030 
Lilliput-II-128 (felicsref, -O3): 6783 528 11816 

7 



3.2.3 felics-compare 

This script iterates over every setup found in one results fle, computes the 
performance ratio with respect to the same setups in a second results fle, and 
highlights these ratios so that the implementer can judge at a glance whether a 
code change had a positive or negative impact on performance. 

Sample output: 

Comparing 
foo.json 
(master) 1234567 Commit summary foo 

against 
bar.json 
(master) 89abcde Commit summary bar 

Lilliput-I-128 on AVR (vfelicsref with -Os) 
code_size: -12.19% (3166 & 2780) 
code_ram: -49.22% (514 & 261) 
code_time: +32.05% (189818 % 250657) 

Lilliput-I-192 on AVR (vfelicsref with -Os) 
code_size: -10.47% (3268 & 2926) 
code_ram: -50.71% (562 & 277) 
code_time: +36.73% (230309 % 314893) 

Lilliput-I-256 on AVR (vfelicsref with -Os) 
code_size: -8.25% (3392 & 3112) 
code_ram: -53.19% (626 & 293) 
code_time: +40.83% (290363 % 408907) 

The user can choose to ignore minor di˙erences by providing a --threshold 
argument; ratios lower than this threshold will be hidden. 

Other scripts perform similar comparisons: if the FELICS-AE directory 
is version-controlled, felics-compare-revisions automatically checks out 
two revisions, runs the requested benchmarks, and compares their results 
fles. felics-compare-implementations pairs comparable setups (architec-
ture, compiler options) for two implementations in the same results fle, and 
compares their metrics. 

Results 

This section comments on our measurements of the performance of Lilliput-
AE and the members of the fnal portfolio of the CAESAR competition for the 
“lightweight” use-case [4], Ascon and ACORN. 

8 

4 



4.1 Setup 

The measurements were performed on an Ubuntu 16.04 64-bit desktop with 
4 3.5GHz CPUs and 8GB RAM. The software versions for platform-specifc 
compilers, debuggers and other such utilities correspond to those distributed by 
Ubuntu, with the exception of software listed in table 1. 

Platform Software Version Origin 

AVR simavr 
Avrora 

v1.6 
1.7.117-patched 

Developer release [15] 
Cf. FELICS documentation [7] 

MSP MSP430-GCC 
MSPDebug 

7.3.2.154 
v0.25 

Texas Instruments [11] 
Developer release [2] 

ARM J-Link Software V6.42f SEGGER [9] 

Table 1: Software versions for the FELICS-AE framework. 

We considered two compilation options: 

• -03, to minimize computation time and decrease power consumption, 

• -Os, to reduce code size and thus optimize for low memory footprint. 

4.2 Implementations 

The source code for the CAESAR algorithms was adapted from the SUPER-
COP [17] framework. In order to provide a fair assessment of each algorithm’s 
performance, we looked for implementations that performed well (i.e. better 
than the reference version) for each FELICS platform. Table 2 sums up which 
implementations were considered for each platform. 

Algorithm Platform Implementations 

Ascon 

AVR 
MSP 
ARM 
PC 

ref 
ref 
ref, opt32 
ref, opt64 

ACORN 

AVR 
MSP 
ARM 
PC 

8bitfast 
8bitfast 
opt1 
opt1 

Table 2: Algorithm implementations for each platform. 

For Lilliput-AE, we used the same implementation on all platforms. This 
implementation, called felicsref, closely resembles the reference implementa-
tion, except for a few tweaks documented in each source fle’s header comments. 

9 



5 

4.3 Discussion 

We published our measurements in our submission to the frst round of the LWC 
standardization process [1]. We also published these fgures on the Lilliput-AE 
website [10], where we intend to add results for optimized versions of Lilliput-
AE, as well as for other candidates to the standardization process. 

First, we compare the performance of Ascon and ACORN to the 128-bit 
key variants of Lilliput-AE: 

On 8-bit AVR, when compiled for speed, both variants of Lilliput-AE com-
pare favorably to Ascon and ACORN, even in terms of code size and 
RAM usage: the only unfavorable comparison is ACORN’s lower code 
size. When compiled with -Os, Lilliput-AE variants achieve the lowest 
code size, though Ascon and ACORN become faster. 

On 16-bit MSP, when compiled for speed, Lilliput-AE variants come well 
ahead in terms of cycle count, though again ACORN has a lower code size. 
When compiled with -Os, Lilliput-AE variants are the lightest and the 
fastest, though ACORN has a slightly smaller RAM footprint. 

On 32-bit ARM and 64-bit PC, whichever compilation option we consider, 
Lilliput-AE variants are the slowest algorithms; in terms of code size, 
they compare unfavorably to the reference version of Ascon. 

Next, we study the impact of the choice of key length (128, 192 or 256) and 
AE mode (�CB3 for Lilliput-I, SCT-2 for Lilliput-II) on the performance 
of Lilliput-AE: 

• Longer keys imply more tweakey lanes (64-bit words). The key schedule 
updates each lane with a di˙erent matrix multiplication, therefore longer 
keys lead to a higher memory footprint, as well as more cycles. This may 
explain why SCT-2 variants have the smallest memory footprint: they use 
128-bit tweaks, whereas �CB3 variants use 192-bit tweaks. 

• �CB3 variants, on the other hand, are consistently faster than SCT-2 
variants. This may be due to �CB3 making fewer calls to the underlying 
block cipher EK : for an l-block plaintext, �CB3 calls EK l times, while 
SCT-2 calls EK 2l times. 

Future work 

In this section, we identify ways in which FELICS-AE could be improved: 
new benchmarking features, simplifcations to make extensions easier, struc-
tural cleanups, etc. 

10 



Simplify the addition of new devices. The plumbing required to support 
a microcontroller architecture is scattered across several fles: e.g. shell and 
debugger scripts to measure metrics, makefles to handle compilation, C code to 
provide device-specifc functions. Adding a new platform is very much a trial-
and-error process; re-organizing this infrastructure code would go a long way 
toward smoothing the steps out. 

Simplify the addition of new algorithms. For example, no source fle can 
contain both encryption-specifc and decryption-specifc code: since FELICS-
AE only measures the size of whole object fles, the size of the decryption-specifc 
code will be added to the tally for encryption, and vice versa. 

To remove this restriction, user-supplied metadata could be enriched to spec-
ify symbols (functions or data) that are specifc to one operation; the size of 
these symbols would be subtracted from the irrelevant tallies. Alternatively, 
such symbols could be annotated with the compiler attribute section: code-
size measurement scripts could then assume that symbols in a specifc ELF 
section are only used for one operation. 

Allow multiple scenarios. The original FELICS framework allowed met-
rics to be collected for various use-cases. Adding this capability back could 
be as simple as adding --plaintext-size and --adata-size parameters to 
felics-run, and recording the value of these parameters in the results fle. 

Allow multiple test vectors. AEAD algorithms may contain branching 
code paths, e.g. to handle padding. A single test vector cannot cover both 
sides of a branch; implementers may therefore have no way to realize that their 
optimizations break the code for some inputs. 

Add profling The original FELICS framework allowed the user to profle 
an algorithm in some limited way, by hooking into specifc functions such as a 
block cipher’s key schedule. It may be possible to generalize this feature using 
traditional profling tools such as gprof. 

References 

[1] Alexandre Adomnicai, Thierry P. Berger, Christophe Clavier, Julien 
Francq, Paul Huynh, Virginie Lallemand, Kévin Le Gouguec, Marine 
Minier, Léo Reynaud, and Gaël Thomas. Lilliput-AE: a New Lightweight 
Tweakable Block Cipher for Authenticated Encryption with Associated 
Data. NIST LWC Standardization Process Round 1 Candidates. 

[2] Daniel Beer. mspdebug. https://github.com/dlbeer/mspdebug, 2019. 
Accessed: 2019-03-07. 

11 

https://github.com/dlbeer/mspdebug


[3] Crypto competitions: CAESAR call for submissions. https:// 
competitions.cr.yp.to/caesar-call.html. Accessed: 2019-07-24. 

[4] Crypto competitions: CAESAR submissions. https://competitions.cr. 
yp.to/caesar-submissions.html. Accessed: 2019-07-23. 

[5] Dumitru-Daniel Dinu, Alex Biryukov, Johann Groszschaedl, Dmitry 
Khovratovich, Yann Le Corre, and Léo Paul Perrin. FELICS - Fair Evalu-
ation of LIghtweight Cryptographic Systems, 2015. 

[6] FELICS-AE · GitLab. https://gitlab.inria.fr/minier/felics-ae. 
Accessed: 2019-10-04. 

[7] CryptoLUX > FELICS Avrora patch. https://www.cryptolux.org/ 
index.php/FELICS_Avrora_patch, 2019. Accessed: 2019-03-07. 

[8] Fair Evaluation of LIghtweight Cryptographic Systems. https://www. 
cryptolux.org/index.php/FELICS. Accessed: 2019-07-24. 

[9] J-Link Software and Documentation Pack. https://www.segger.com/ 
downloads/jlink/#J-LinkSoftwareAndDocumentationPack, 2019. Ac-
cessed: 2019-02-26. 

[10] Lilliput-AE implementations. https://paclido.fr/lilliput-ae/ 
implementation/. Accessed: 2019-07-30. 

[11] MSP430-GCC-OPENSOURCE GCC - Open Source Compiler fro MSP Mi-
crocontrollers. http://www.ti.com/tool/msp430-gcc-opensource, 2019. 
Accessed: 2019-03-07. 

[12] Lightweight Cryptography | CSRC. https://csrc.nist.gov/Projects/ 
Lightweight-Cryptography. Accessed: 2019-07-23. 

[13] Submission requirements and evaluation criteria for the lightweight 
cryptography standardization process. https://csrc.nist.gov/ 
CSRC/media/Projects/Lightweight-Cryptography/documents/ 
final-lwc-submission-requirements-august2018.pdf. Accessed: 
2019-07-24. 

[14] Gabriele Paoloni. How to benchmark code execution times on Intel R IA-32 
and IA-64 instruction set architectures. Technical report, Intel Corporation, 
2010. 

[15] Michel Pollet. simavr. https://github.com/buserror/simavr, 2019. Ac-
cessed: 2019-03-07. 

[16] Phillip Rogaway. Authenticated-encryption with associated-data. In Pro-
ceedings of the 9th ACM Conference on Computer and Communications 
Security, CCS ’02, pages 98–107, New York, NY, USA, 2002. ACM. 

[17] SUPERCOP. https://bench.cr.yp.to/supercop.html. Accessed: 2019-
02-21. 

12 

https://competitions.cr.yp.to/caesar-call.html
https://competitions.cr.yp.to/caesar-call.html
https://competitions.cr.yp.to/caesar-submissions.html
https://competitions.cr.yp.to/caesar-submissions.html
https://gitlab.inria.fr/minier/felics-ae
https://www.cryptolux.org/index.php/FELICS_Avrora_patch
https://www.cryptolux.org/index.php/FELICS_Avrora_patch
https://www.cryptolux.org/index.php/FELICS
https://www.cryptolux.org/index.php/FELICS
https://www.segger.com/downloads/jlink/#J-LinkSoftwareAndDocumentationPack
https://www.segger.com/downloads/jlink/#J-LinkSoftwareAndDocumentationPack
https://paclido.fr/lilliput-ae/implementation/
https://paclido.fr/lilliput-ae/implementation/
http://www.ti.com/tool/msp430-gcc-opensource
https://csrc.nist.gov/Projects/Lightweight-Cryptography
https://csrc.nist.gov/Projects/Lightweight-Cryptography
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-requirements-august2018.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-requirements-august2018.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-requirements-august2018.pdf
https://github.com/buserror/simavr
https://bench.cr.yp.to/supercop.html

	Introduction
	Background: the FELICS framework
	Supported devices
	Metrics
	Distribution
	Algorithm instrumentation

	FELICS for Authenticated Encryption
	Changes from FELICS
	AEAD support
	Tools for implementation optimization
	Distribution
	Miscellaneous

	Usage
	felics-run
	felics-publish
	felics-compare


	Results
	Setup
	Implementations
	Discussion

	Future work

