
Hardware Implementations of NIST Lightweight
Cryptographic Candidates: A First Look

Behnaz Rezvani and William Diehl

Virginia Tech, Blacksburg, VA 24061, USA
email: {behnaz, wdiehl}@vt.edu

Abstract. The U.S. National Institute of Standards and Technology
(NIST) has embarked on a multi-year effort called the lightweight cryp-
tography (LWC) standardization process to evaluate lightweight (LW)
authenticated encryption with associated data (AEAD) and optional
hash algorithms for inclusion in U.S. federal standards. As candidates
are evaluated for many characteristics including hardware resources and
performance, obtaining results of hardware implementations as early as
possible is preferable. In this research, we implement three NIST LWC
Round 2 candidate ciphers, SpoC, Spook, and GIFT-COFB, in the Artix-
7 FPGA. Implementations are compliant with the previously-validated
CAESAR hardware applications programming interface (CAESAR HW
API) for authenticated ciphers and are tested in actual hardware. Results
indicate that SpoC is the smallest in terms of area, requiring 1344 look-up
tables (LUTs), while GIFT-COFB has the highest throughput-to-area
(TPA) ratio at 0.154 Mbps/LUT. The results also illustrate the hard-
ware implementation challenges of integrating multiple cryptographic
primitives into one design, as well as complexities due to padding and
truncation.

Keywords: Lightweight cryptography · FPGA · Authenticated cipher ·
Encryption

1 Introduction

Devices in the Internet of things (IoT) are vulnerable to theft of privacy infor-
mation, and are subject to potentially more destructive attacks such as replay
or man-in-the-middle attacks. To guard against the range of such attacks, cryp-
tographic solutions should ensure confidentiality, integrity, and authenticity.
Authenticated encryption with associated data (AEAD) can ensure all of the
above services in a single algorithm, while realizing savings in cost and perfor-
mance, and by avoiding security pitfalls of interactions with separately-designed
ciphers and hashes.

In August 2018, the U.S. National Institute of Standards and Technology
(NIST) issued a call for specifications for lightweight AEAD and optional hashes,
to be subjected to several rounds of evaluation as part of the lightweight cryp-
tography (LWC) standardization process, and eventually incorporated into U.S.

mailto:wdiehl}@vt.edu

2 B. Rezvani and W. Diehl

federal information processing standards (FIPS) [17]. Submissions of specifica-
tions were permitted until February 2019, and 56 qualified Round 1 candidates
were publicized in April 2019. In August 2019, 32 candidates were selected for
Round 2, which is expected to last one year.

NIST LWC candidates are evaluated on several criteria, including cost (e.g.,
area) and performance (e.g., throughput (TP)) in resource-constrained environ-
ments representative of emerging IoT devices. All submissions were required to
include software reference implementations. While several submissions included
synthesis or implementation results from the authors’ own hardware submissions
in ASIC or FPGA, the NIST LWC evaluation process specifically assigns higher
weight to 3rd-party implementations.

In this research, we provide an early evaluation of selected NIST LWC AEAD
candidate submissions through hardware implementations; optional hash algo-
rithms are not considered in this research. Given the large number of qualified
submissions and the short period of time between initial publication of specifi-
cations and Round 2 selection, we selected three ciphers for evaluation: SpoC,
Spook, and GIFT-COFB. These ciphers are representative of a large number of
NIST LWC Round 1 submissions, since: at least 47 submissions are composed
of block- or block-like primitives, out of which at least 20 are sponge-based;
at least 22 ciphers (both block and stream) use 4-bit S-boxes, and at least 9
ciphers use a logical AND or multiplication for non-linear transformations; SpoC
and Spook are sponge-based, while Spook and GIFT-COFB use 4-bit S-boxes,
and SpoC uses a logical AND for non-linear transformations [18]. Further, none
of the chosen ciphers included author FPGA implementations in their initial
submissions.

We implemented candidate authors’ primary recommended versions of selected
ciphers using register transfer level (RTL) methodology in Verilog or VHDL
and basic-iterative (i.e., round-based) architecture. Since each round of the
ciphers is executed in one clock cycle, this implementation offers a reasonable
latency and throughput with a medium area. Although latency and energy
consumption are also important considerations in LWC, [2], there are certain
trade-offs between them. As discussed in [2, 4], basic-iterative implementation is
an efficient architecture and a good candidate for applications with low energy
consumption.

All implementations are fully compliant with the existing CAESAR hard-
ware applications programming interface (CAESAR HW API) [15], and use the
CAESAR hardware developer’s package (CAESAR HW DP) at [13]. We used
CAESAR HW API and DP since a corresponding NIST LWC API and DP were
not available at time of implementation. Artix-7 FPGA implementations were
compared according to maximum frequency, area (look-up tables (LUTs)), TP
(Mbps), and throughput-to-area (TPA) ratios.

Our contributions in this work are as follows: 1) We offer fully-functional
3rd-party hardware implementations of selected NIST LWC AEAD candidates,
still early in Round 2; 2) We provide a comparison with selected past and present
authenticated cipher implementations, in order to bridge the space between

3 HW Implementations of NIST LWC Candidates

CAESAR and NIST LWC processes, as well as API-compliant and API-non-
compliant implementations; and 3) We show examples of features of cipher
implementations which may be resource-intensive and reduce performance, in
order to illustrate design pitfalls and help guide later-round tweaks.

2 Background

2.1 Authenticated encryption with associated data

In both CAESAR and the NIST LWC standardization process, two operations
are defined on AEAD, authenticated encryption and authenticated decryption.
In encryption, inputs consist of a public message number Npub usually defined
as a “number used once” (nonce), a secret key K, plaintext PT, and associated
data AD. The outputs of authenticated encryption include Npub, AD, ciphertext
CT, and Tag, which provides for integrity and authenticity of all transmitted
data. In authenticated decryption, the inputs are Npub, AD, K, CT, and Tag.
CT is internally decrypted into PT, however, an internal T ag0 is computed and
checked against Tag prior to releasing PT, in a step called “tag verification.”

2.2 Hardware API and developer’s package

Since a hardware API has not yet been approved for the NIST LWC standard-
ization process, we implemented ciphers using the CAESAR HW API. As NIST
LWC AEAD software function prototypes are identical to those used in CAESAR,
we expect similar compatibility with hardware implementations. Of note, an API
definition of hash was not included in the CAESAR HW API, but is expected to
be included in a NIST LWC HW API.

To facilitate the hardware designer’s task of meeting CAESAR HW API
requirements, a hardware developer’s package is provided at [13]. The package in-
cludes an input processor (Pre-Processor) and output processor (Post-Processor),
which are encapsulated in a top-level module called AEAD. A designer can place
a custom design in a subordinate module called CipherCore, and use standard-
ized interfaces to communicate with Pre- and Post-Processors. A set of Python
scripts called aeadtvgen is used to generate representative test vectors directly
from the software reference implementation, and an accompanying HDL test
bench (AEAD TB) automatically verifies test vectors against expected results.
An implementer’s guide to assist in using the CAESAR HW DP is also available
at [14]. In this research, we use the CAESAR HW DP (v2.0), and develop RTL
implementations inside CipherCore. The definitions of AEAD and subordinate
modules, as well as internal signals are defined in [14].

3 Ciphers implemented in this research

3.1 SpoC

SpoC, described in [1], refers to “sponge with a masked capacity.” In SpoC,
capacity is masked with data blocks instead of rate which improves the security

4 B. Rezvani and W. Diehl

and allows larger rate value per permutation call. We implement one of the
authors’ primary recommendations, SpoC-64, with capacity c = 128 bits, state
size b = 192 bits, nonce size n = 128 bits, and tag size t = 64 bits. In a sponge-
based cipher, the rate refers to the number of keystream bits generated per
permutation call, and the capacity c = b − r.

This cipher is based around the sLiSCP-light[192] permutation, which uses
a combination of a Type II Generalized Feistel Structure (GFS) and Simeck
box (SB), and consists of 18 steps of 6 rounds each. Each step consists of three
transformations, namely, SubstituteSubblocks (SSb), AddStepconstants (ASc),
and MixSubblocks (MSb). The non-linear operations are applied in the SSb or
SB. SBs consist of XORs, bitwise rotations, and a 48-bit logical AND.

The duplex sponge construction of SpoC is shown in Fig. 1. At each point in
time, the state can be divided into a c-bit Y and r-bit Z, and represented as Y k Z.
The initial state Y0 k Z0 is formed by interleaving Nonce and Key (f(N0,K)),
and performing a permutation. The tag is generated using an interleaved set of
bytes extracted from across the entire 192-bit state. Control bits ctrl are 4-bit
constants used for domain separation (i.e., to distinguish between authenticated
encryption or decryption phases), such as AD, PT, and Tag, and to differentiate
between full and partial blocks.

b=192

c=128

r=64

f(N0,K)

N1 Aa-1 Mm-1

ctrlAD ctrlPT ctrlTAG
Mm-1

Cm-1

Perm Perm Perm Perm
64

tag

Fig. 1. SpoC duplex sponge construction.

We implement a basic-iterative architecture based on the sLiSCP permutation,
where one round of the SSb transformation executes in a single clock cycle. This
requires 108 clock cycles for the permutation. Our implementation of SpoC-64 is
shown in Fig. 2.

3.2 Spook

Spook uses sponge-one-pass (S1P), and is based on duplex sponge construction [5].
The Spook AEAD algorithm uses two primitives, the Clyde-128 tweakable block
cipher (TBC) and the Shadow-512 permutation. The Shadow-512 permutation
uses the same definitions for L-boxes and S-boxes, and similar definition for
round constants, as the TBC. However, it is performed across a b-bit state (e.g.,
b = 512 in our implementation), and employs encryption only, i.e., there are no
inverse L-boxes or S-boxes. Additionally, there is a diffusion function, adapted
from the Midori cipher, which acts across all b-bits of state, and is implemented
in 32-bit words according to [5].

5 HW Implementations of NIST LWC Candidates

key

State(S)

Load-SpoC64init

SLiSCP

rc0

rc1

sc0

sc1

ctr

pad

0

bdi
npub key

4
4

bdi

= =

msg auth

bdo

mask

Y Z
128 64

PW

SW

S63..0

S63..48 S15..0

S41..16

bdipad

bdipad

S191

S190..64

ctrl

192

192

128 128

S191..188

S187..144

bdipad63..32
S143..112

S111..64

192

PW

1

tag

bdi

128

Fig. 2. Block diagram for SpoC-64.

We implement the authors’ primary recommendation, Spook[128; 512; su],
with parameters block size n = 128, rate r = 256, capacity c = 256, tag size
τ = 128, and state size b = 512. The “su” denotes “single user.” We also used
the recommended parameters for the TBC and Shadow-512, which consist of
6 steps of 2 rounds each. Since the rate determines the amount of plaintext
converted to ciphertext in every block, we use an external block size of 256
bits for generation of test vectors and computation of throughput. There are m
blocks of plaintext (or message) M, and a blocks of associated data A. There is
a τ -bit nonce N (128 bits), a key = K k P , which consists long term secret K
(128 bits), and public tweak P . Following conventions in the software reference
implementation, P = 0 in this hardware implementation. Of note, the authors’
primary recommendation achieves Ciphertext Integrity and Misuse with Leakage
in encryption and decryption (CIML2), which is an extension of ciphertext
integrity in the presence of nonce misuse and side-channel leakages [6].

In TLS cipher constructions, linear transformations are computed using linear
L-boxes consisting of rotations and XORs, and non-linear S-boxes. The L-box is
an interleaved transformation applying jointly to pairs of 32-bit words, i.e., half
of the 128-bit state is processed in each L-box. L-boxes can be implemented using
look-up tables or by arithmetic calculations. We follow the authors’ formula for
L-box calculations described in [5]. The S-boxes are a variant of the 4-bit S-box
used in the Skinny block cipher [4], and are implemented with look-up tables in
this research.

The duplex sponge-based computational flow for authenticated encryption is
shown in Fig. 3. The TBC is used twice – during initialization and tag generation.
Initialization consists of loading the upper 256 bits of the state variable with
P k 0∗ k N k 0∗, and computing B = EP (N), where N is a 128-bit nonce. Upon K

6 B. Rezvani and W. Diehl

TBC completion, the lower 256 bits of the state are loaded with 0 k B. Tag is
V ||1

formed as Z = E (U), where U is the upper 128 bits of state after the last K
permutation, and V is the next highest 127 bits of state. During authenticated

V 0||1
decryption, the supplied tag Z 0 must be decrypted as U 0 = D (Z 0), and K
compared to U (i.e., U == U 0) for tag verification. Inverse L-boxes Lbox−1 and
S-boxes Sbox−1 are required for decryption.

In between the initial and final TBC operations, the Shadow-512 permutation
is computed once to initialize the state, and once following the processing of each
block of A or M. 10∗ padding pad is applied to each final partial block of A, but
padding is not directly applied to a final partial block of M. In this case, the
resulting upper 256 bits of state are loaded as Cm−1 k {State512−|Cm−1|−1..256}⊕
01 k 0∗. State truncation is performed by remembering the number of valid bytes
loaded in the last block of plaintext and by applying variable masks to Cm−1

and {State512−|Cm−1|−1..256} ⊕ 01 k 0∗ .

tag
r=256

c=256

Aa-1||10*

Perm Perm

n=128

128

128

128
N
0*

0*

TBC

P=0

N

K

01||0*

M0 Mm-1

Perm

C0

10||0*

Perm

1

Cm-1

|Mm-1|

10||0*

256-|Mm-1|

01||0*

128
TBC

K

127

Z

B

Fig. 3. Spook duplex sponge construction.

Domain separation between blocks of A and M is accomplished by State255..0⊕
{01, 10, 11} k 0∗, where the two-bit combination depends on whether the block is
processing A or M, and whether or not the last block is partial or full.

We base our design strategy on an attempt to reuse components such as L-
boxes, S-boxes, and internal state registers, and construct the equivalent of TBC
or permutation calls using an arithmetic logic unit (ALU)-like microarchitecture
approach. We use a basic-iterative architecture with reference to the TBC. This
means that one round of TBC (encryption or decryption) will execute in one
clock cycle, including one set of 128-bit L-boxes, 128-bit S-boxes, and round
constants. The tweakey is updated at the end of each step, or every other round.
This results in 12 clock cycles per TBC.

However, our target implementation is not strictly basic-iterative with respect
to the permutation, since we instantiate only 128-bit L-boxes and S-boxes, but
must call each module 4 times across a 512-bit state. This results in a total of
144 clock cycles per permutation. Our implementation is shown in Fig. 4.

3.3 GIFT-COFB

GIFT-COFB is based on the combined feedback (COFB) mode of operation
with GIFT-128 as the underlying block cipher [3]. COFB mode is single-pass

7 HW Implementations of NIST LWC Candidates

r0 r1 r2 r3

LBox SBox Diffuser Round

Constant

Lbox
-1

Sbox
-1

TBC

Round

Constant 0

r0 r1 r2 r3 r0 r1 r2 r3

r0 r1 r2 r3 r0 r1 r2 r3

bdi

pad bdi

r0 r3

r0 P N
{00, 01, 10, 11}

0

N r0 P||0 V||1

tk
t

key

keytweak

==

msg auth bdo

mask

Mask

C*

C*C*

msg tag

PW
SW

PW1

256

256

512
Round

Constant 0

Fig. 4. Block diagram for Spook[128;512;su]. Bus widths are 128 bits unless indicated.

(one block cipher call per data block) and inverse-free (no need for block cipher
decryption). The GIFT-COFB recommendations are data block size n = 128
bits, nonce size |N | = 128 bits, and tag size |T | = 128 bits.

GIFT-128 is a substitution-permutation network (SPN) with a 128-bit key
length and a 128-bit cipher state length. This iterative block cipher has 40 rounds
and each round consists of 3 transformations, namely, SubCells, PermBits, and
AddRoundKey. The cipher state divides into four 32-bit words and the key state
divides into eight 16-bit segments. In SubCells, 32 4-bit bitslice S-boxes are
applied to every nibble of the state. Then, a 32-bit permutation is applied to
every word of the state. In AddRoundKey, the round key is XORed to the second
and third words of the state, and a round constant is added to the last word of
the state. The round constants are generated by a 6-bit LFSR.

In Fig. 5, a simplified version of the encryption construction of GIFT-COFB
is depicted. At the beginning of the encryption, the state is loaded by a nonce
N and then, the upper 64 bits of the first EK output L are considered as the
delta state. Except for the last block of AD and M, the delta state is multiplied
by 2 in GF(264) for every block of AD and M. For the last block of AD or M,
the delta state is multiplied by 3i or 3j−i, where i, j − i ≤ 4. The G function is
defined as G(Y) = (Y [2], Y [1] <<< 1) [3].

8 B. Rezvani and W. Diehl

EkN G

Trunc

L

A1 2L||0n/2

...Ek G

Aa 2a-13iL||0n/2

Y[a]

Y[a]
G

M1 2a3iL||0n/2

... Ek

2a+m-23jL||0n/2

TagEk

Ek

CT1

G

Mm

CTm

Fig. 5. GIFT-COFB encryption construc-
tion.

bdi

GIFT128

key

SW PW

bdi'

G

Pad

key'

Y
||

x2x3

64 64 64

Y[127:64]

delta

64

64

64

64

64
00...0}

64

= = Trunc

PW
bdo

msg auth

1
out

Fig. 6. Block diagram for GIFT-COFB.
Bus widths are 128 bits unless indicated.

A basic-iterative (i.e., round-based) architecture is used here, i.e., every round
of the GIFT round function is executed in one clock cycle. The GIFT-COFB
authors also used a round-based design which is implemented in ASIC. GIFT
has 40 rounds, thus it requires 40 clock cycles to process a block of the input
data. However, for processing AD and M, we need additional clock cycles due to
the delta state. As presented in [3], 4 clock cycles are required for the delta state.
In this work, we use 4 clock cycles for processing an AD block, but 2 clock cycles
in our finite state machine for processing the message blocks. The reason that
we reduce the clock cycles for M is that the exponent in 3j−i does not exceed 2
for an M block. As a result, we have 40, 44, and 42 clock cycles for processing
nonce, an AD block, and a block of message, respectively. Note that these are
the number of cycles that GIFT needs to process one block of data.

4 Results

4.1 Implementations in this work

FPGA implementations in this research are developed in Verilog or VHDL
using RTL design methodology and based on a basic-iterative architecture.
They are compliant with the CAESAR HW API and include modules in the
CAESAR HW DP (v2.0). Results are implemented in Xilinx Vivado 2018.3 for
the Xilinx Artix-7 FPGA (xc7a100tcsg324-3), and optimized for throughput-
to-area (TPA) ratio using the Minerva automated hardware optimization tool
[11]. Our implementations are also verified in actual hardware (xc7a100tftg256-3)
using FOBOS [8]. All implemented ciphers have nonce and key size of 128 bits.
Post-optimization results of implementations in this work (TW) are shown in
Table 1. Additionally, cipher implementations are available for inspection at [19].

Results indicate that SpoC has the highest maximum frequency of 265 MHz
(1.9× greater than Spook), i.e., lowest sum of logic and routing delays, followed

9 HW Implementations of NIST LWC Candidates

by GIFT-COFB at 172 MHz (1.2× greater than Spook) and Spook at 141 MHz.
In terms of area in FPGA LUTs, SpoC is the smallest with 1344 LUTs (19%
of area of Spook), followed by GIFT-COFB with 2695 LUTs (39% of area of
Spook), and Spook with 7082 LUTs. GIFT-COFB has the highest TP at 415.4
Mbps (2.7× greater than SpoC), followed by Spook at 248.9 Mbps (1.6× greater
than SpoC) and SpoC at 152.8 Mbps. In terms of TPA ratio, GIFT-COFB is
the highest at 0.154 Mbps/LUT (4.4× greater than Spook), followed by SpoC at
0.114 Mbps/LUT (3.3× greater than Spook), and Spook at 0.035 Mbps/LUT.
Additionally, the latency of our GIFT-COFB implementation is only 50% of the
latency of our SpoC implementation. This provides GIFT-COFB an advantage
for the processing of very short messages, which is a desirable characteristic for
LWC candidates as discussed in [17].

4.2 Comparison with selected previous authenticated cipher
implementations

Previous hardware implementations during CAESAR and those provided as
part of NIST LWC submissions provide some basis for comparison with cipher
implementations in this research. However, most CAESAR implementations,
even those that were compliant with the CAESAR HW API, used an earlier
version of the CAESAR HW DP designed for high speed (HS) implementations.
The HS package included functionality not used by many ciphers, and exacted
a larger toll on area overhead. The CAESAR HW DP for LW implementations
only appeared at the end of 2017, and thus there are fewer available examples.
Some CAESAR API-compliant examples from [21, 12, 10], implemented using
the LW CAESAR HW DP, are included in Table 1 for purpose of comparison.

A full-scale comparison with NIST LWC candidate author implementations is
premature, since authors reported results for implementations not compliant with
the CAESAR API, and using a variety of FPGA platforms. Some representative
examples of block and sponge cipher FPGA implementations, e.g., ESTATE
(ESTATE-TweGIFT-128), SAEAES, and Oribatida (Oribatida-256-64), as well
as a non-CIML2 author implementation of Spook, are included in Table 1.

All CAESAR and NIST LWC implementations provided for comparison use
a 128-bit key; TP is computed based on the processing rate of a large number of
blocks of plaintext into ciphertext. The range of TPA ratios (0.017 to 0.088) for
the CAESAR candidates, all Round 3 contenders or better, is somewhat analogous
to the range of TPA ratios for our implementations (0.035 to 0.154). In contrast,
the range of TPA ratios of sampled NIST LWC candidates (0.547 to 1.028) is
noticeably higher. A judgement as to whether or not these implementations are
“better” than either our implementations, or previous CAESAR implementations,
is premature, since no uniform standards have been established for benchmarking
of hardware implementations in the NIST LWC standardization process. For
instance, our implementations of the AEAD top-level module, incorporating
the required features in the CAESAR HW DP, were an average of 11% larger
than basic CipherCore implementations of respective ciphers. Additionally, an
implementation “compliant with the CAESAR API” is required to include

10 B. Rezvani and W. Diehl

hardware necessary for input and output of AEAD data in specified protocol, and
must realize “corner cases” (e.g., null blocks, partial blocks, padding, truncating,
etc.) which often involve significant resources.

Table 1. Results of implementations in this work (TW), and comparison with CAESAR
lightweight and NIST LWC candidates. The units of Freq, Area, TP, and TPA are MHz,
LUTs, Mbps, and Mbps/LUT, respectively.

Cipher Type FPGA Freq Area TP TPA Ref
CAESAR

Ascon-128 Sponge Spartan-6 216.0 684 60.1 0.088 [21]
Ascon-small Sponge Spartan-6 146.1 1640 114.0 0.070 [10]
CLOC-AES Block Spartan-6 101.9 1604 68.7 0.043 [12]
SILC-AES Block Spartan-6 115.1 872 15.1 0.017 [12]

NIST LWC (AEAD)
SpoC Sponge Artix-7 265.0 1344 152.8 0.114 TW
Spook Sponge Artix-7 141.0 7082 248.9 0.035 TW
Spook Sponge Artix-7 181.8 3771 3878.4 1.028 [20]
GIFT-COFB Block Artix-7 172.0 2695 415.4 0.154 TW
ESTATE Block Virtex-7 580.1 1413 928.3 0.657 [9]
SAEAES Block Virtex-7 145.9 348 263.3 0.757 [16]
Oribatida Sponge Virtex-7 554.2 940 514 0.547 [7]

4.3 Observations

The use of two primitives in Spook, i.e., the Clyde-128 TBC and the Shadow-512
primitive, increases the area of our Spook FPGA implementation. While we have
employed a strategy to reuse shared components among the primitives, such as
S-box and L-box, the increased use of control structures necessary to tie together
all components likely outweighs any advantages gained over the use of separate
TBC and Shadow permutation primitives in a “black box” approach. The fact
that the TBC requires encryption and decryption in the CIML2 case adds again
to implementation complexity. Results in [20] show that significant improvements
in area and performance are possible when a fully reversable TBC is not required.

The necessity of applying one-zero (10∗) padding to input words of AD and
PT is a known factor in increasing complexity. However, cipher algorithms which
can make padding application features as similar as possible for both AD and PT
can reduce hardware complexity. While this is the case in SpoC and GIFT-COFB,
it is not the case in Spook, since the padding in Spook occurs on words of state
vice words of input when processing PT.

Additionally, truncation is also a well-known feature in cryptographic algo-
rithms, where |CT | should equal |PT | in order to assure invertibility and not
leak information. While truncation in software looks innocuous enough, it often
catches cryptographers by surprise in hardware. We employed a non-resource
intensive method in SpoC, to remove one unwanted byte at a time from ciphertext
output in a serial fashion. However, in Spook, truncated ciphertext is required to
be passed to the state input for subsequent permutations, in addition to being
routed directly to cipher output, which increases implementation complexity.

11 HW Implementations of NIST LWC Candidates

5 Conclusion

We provided an early look at fully-functional FPGA implementations of selected
NIST LWC standardization process Round 2 candidates. Candidates examined in
this research, SpoC, Spook, and GIFT-COFB, are representative of many NIST
LWC candidates. Implementations are fully-compliant with the existing CAESAR
HW API for authenticated ciphers, use the associated CAESAR HW developer’s
package, are optimized using the Minerva automated hardware optimization tool,
and are verified to operate in actual hardware using the FOBOS test bench.

Our results show that SpoC has the highest maximum frequency of 265 MHz,
and has the lowest area, in terms of LUTs, with 1344 LUTs. GIFT-COFB has
the highest throughput (TP) at 415.4 Mbps, and the highest throughput-to-area
(TPA) ratio. However, differences in security assumptions among authors’ primary
recommendations (e.g., nonce misuse or leakage resistance) can heavily influence
results. The TPA ratio results of the implemented ciphers are similar to results
reported for CAESAR HW API compliant late-round CAESAR candidates, but
have TPA ratios which are significantly less than TPA ratios reported for a
selected group of NIST LWC submission author implementations of ciphers of
similar construction. However, no conclusion can be drawn regarding the relative
hardware merits of candidates implemented according to different compliance
standards, which reinvigorates the need for a standardized hardware API and
minimum compliance criteria for the NIST LWC standardization process.

Finally, we show that implementation complexities resulting from the need to
integrate two cryptographic primitives (e.g., a block cipher and sponge permuta-
tion) into one authenticated cipher, as well as padding and truncation strategies,
can affect area and performance of resulting implementations, and should be
considered by algorithm designers.

6 Acknowledgements

The authors would like to thank the Spook Team for their comments and insights.

References

1. AlTawy, R., Gong, G., He, M., Jha, A., Mandal, K., Nandi, M., Rohit, R.: SpoC:
An Authenticated Cipher Submission to the NIST LWC Competition (Feb 2019),
https://csrc.nist.gov/Projects/Lightweight-Cryptography/Round-1-Candidates

2. Andres Lara-Nino, C., Daz-Prez, A., Morales-Sandoval, M.: FPGA-Based Assess-
ment of Midori and Gift Lightweight Block Ciphers: 20th International Conference,
ICICS 2018, Lille, France, October 29-31, 2018, pp. 745–755 (10 2018)

3. Banik, S., Chakraborti, A., Iwata, T., Minematsu, K., Nandi, M., Peyrin, T.,
Sasaki, Y., Sim, S.M., Todo, Y.: GIFT-COFB: An Authenticated Encryption
and Hash Algorithm Submission to the NIST LWC Competition (Mar 2019),
https://csrc.nist.gov/Projects/Lightweight-Cryptography/Round-1-Candidates

https://csrc.nist.gov/Projects/Lightweight-Cryptography/Round-1-Candidates
https://csrc.nist.gov/Projects/Lightweight-Cryptography/Round-1-Candidates

12 B. Rezvani and W. Diehl

4. Beierle, C., Jean, J., Kölbl, S., Leander, G., Moradi, A., Peyrin, T., Sasaki, Y.,
Sasdrich, P., Sim, S.M.: The skinny family of block ciphers and its low-latency
variant mantis. In: CRYPTO 2016. pp. 123–153

5. Bellizia, D., Berti, F., Bronchain, O., Cassiers, G., Duval, S., Guo, C., Leander, G.,
Leurent, G., Levi, I., Momin, C., Pereira, O., Peters, T., Standaert, F.X., Wiemer, F.:
Spook: Sponge-Based Leakage-Resilient Authenticated Encryption with a Masked
Tweakable Block Cipher (Mar 2019), https://csrc.nist.gov/Projects/Lightweight-
Cryptography/Round-1-Candidates

6. Berti, F., Pereira, O., Standaert, F.X.: Reducing the cost of authenticity with
leakages: a ciml2-secure ae scheme with one call to a strongly protected tweakable
block cipher. In: AFRICACRYPT 2019. pp. 229–249

7. Bhattacharjee, A., List, E., Lpez, C.M., Nandi, M.: The Oribatida
Family of Lightweight Authenticated Encryption Schemes (Mar 2019),
https://csrc.nist.gov/Projects/Lightweight-Cryptography/Round-1-Candidates

8. CERG: Flexible Open-source workBench fOr Side-channel analysis (FOBOS) (Oct
2016), https://cryptography.gmu.edu/fobos/

9. Chakraborti, A., Datta, N., Jha, A., Lopez, C.M., Nandi, M., Sasaki, Y.: ESTATE
(Mar 2019), https://csrc.nist.gov/Projects/Lightweight-Cryptography/Round-1-
Candidates

10. Diehl, W., Farahmand, F., Abdulgadir, A., Kaps, J.P., Gaj, K.: Face-off between
the caesar lightweight finalists: Acorn vs. ascon. 2018 International Conference on
Field-Programmable Technology (Dec 2018)

11. Farahmand, F., Ferozpuri, A., Diehl, W., Gaj, K.: Minerva: Automated Hard-
ware Optimization Tool. In: 2017 International Conference on ReConFigurable
Computing and FPGAs (ReConFig)

12. Farahmand, F., Diehl, W., Abdulgadir, A., Kaps, J.P., Gaj, K.: Improved lightweight
implementations of caesar authenticated ciphers. pp. 29–36 (04 2018)

13. George Mason University: Development Package for the CAESAR Hardware API,
v2.0 (Dec 2017), https://cryptography.gmu.edu/athena/index.php?id=CAESAR

14. Homsirikamol, E., Diehl, W., Ferozpuri, A., Farahmand, F., Gaj, K.: Implementer’s
Guide to the CAESAR Hardware API v2.0 (Dec 2017)

15. Homsirikamol, E., Diehl, W., Ferozpuri, A., Farahmand, F., Yalla, P., Kaps, J.P.,
Gaj, K.: CAESAR Hardware API. Cryptology ePrint Archive, Report 2016/626

16. Naito, Y., Matsui, M., Sakai, Y., Suzuki, D., Sakiyama, K., Sugawara, T.: SAEAES
(Feb 2019), https://csrc.nist.gov/Projects/Lightweight-Cryptography/Round-1-
Candidates

17. National Institute of Standards and Technology: Submission Requirements and
Evaluation Criteria for the Lightweight Cryptography Standardization Process
(Aug 2018), https://csrc.nist.gov/projects/lightweightcryptography

18. Rezvani, B., Diehl, W.: Detailed Characteristics of NIST Lightweight Cryptography
Project Round 1 Submissions (v2) (Jul 2019), https://rijndael.ece.vt.edu/wdiehl/

19. SAL: NIST Lightweight Cryptography Project (Jul 2019),
https://rijndael.ece.vt.edu/wdiehl/

20. Spook Team: Spook (unprotected) implementation of encryption. email of Jul. 30,
2019

21. Yalla, P., Kaps, J.P.: Evaluation of the CAESAR Hardware API for Lightweight Im-
plementations. In: International Conference on Reconfigurable Hardware (ReConFig
2017). pp. 1–6 (Dec 2017)

https://rijndael.ece.vt.edu/wdiehl
https://rijndael.ece.vt.edu/wdiehl
https://csrc.nist.gov/projects/lightweightcryptography
https://csrc.nist.gov/Projects/Lightweight-Cryptography/Round-1
https://cryptography.gmu.edu/athena/index.php?id=CAESAR
https://csrc.nist.gov/Projects/Lightweight-Cryptography/Round-1
https://cryptography.gmu.edu/fobos
https://csrc.nist.gov/Projects/Lightweight-Cryptography/Round-1-Candidates
https://csrc.nist.gov/Projects/Lightweight

