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Abstract. The U.S. National Institute of Standards and Technology 
(NIST) has embarked on a multi-year effort called the lightweight cryp-
tography (LWC) standardization process to evaluate lightweight (LW) 
authenticated encryption with associated data (AEAD) and optional 
hash algorithms for inclusion in U.S. federal standards. As candidates 
are evaluated for many characteristics including hardware resources and 
performance, obtaining results of hardware implementations as early as 
possible is preferable. In this research, we implement three NIST LWC 
Round 2 candidate ciphers, SpoC, Spook, and GIFT-COFB, in the Artix-
7 FPGA. Implementations are compliant with the previously-validated 
CAESAR hardware applications programming interface (CAESAR HW 
API) for authenticated ciphers and are tested in actual hardware. Results 
indicate that SpoC is the smallest in terms of area, requiring 1344 look-up 
tables (LUTs), while GIFT-COFB has the highest throughput-to-area 
(TPA) ratio at 0.154 Mbps/LUT. The results also illustrate the hard-
ware implementation challenges of integrating multiple cryptographic 
primitives into one design, as well as complexities due to padding and 
truncation. 

Keywords: Lightweight cryptography · FPGA · Authenticated cipher · 
Encryption 

1 Introduction 

Devices in the Internet of things (IoT) are vulnerable to theft of privacy infor-
mation, and are subject to potentially more destructive attacks such as replay 
or man-in-the-middle attacks. To guard against the range of such attacks, cryp-
tographic solutions should ensure confidentiality, integrity, and authenticity. 
Authenticated encryption with associated data (AEAD) can ensure all of the 
above services in a single algorithm, while realizing savings in cost and perfor-
mance, and by avoiding security pitfalls of interactions with separately-designed 
ciphers and hashes. 

In August 2018, the U.S. National Institute of Standards and Technology 
(NIST) issued a call for specifications for lightweight AEAD and optional hashes, 
to be subjected to several rounds of evaluation as part of the lightweight cryp-
tography (LWC) standardization process, and eventually incorporated into U.S. 
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federal information processing standards (FIPS) [17]. Submissions of specifica-
tions were permitted until February 2019, and 56 qualified Round 1 candidates 
were publicized in April 2019. In August 2019, 32 candidates were selected for 
Round 2, which is expected to last one year. 

NIST LWC candidates are evaluated on several criteria, including cost (e.g., 
area) and performance (e.g., throughput (TP)) in resource-constrained environ-
ments representative of emerging IoT devices. All submissions were required to 
include software reference implementations. While several submissions included 
synthesis or implementation results from the authors’ own hardware submissions 
in ASIC or FPGA, the NIST LWC evaluation process specifically assigns higher 
weight to 3rd-party implementations. 

In this research, we provide an early evaluation of selected NIST LWC AEAD 
candidate submissions through hardware implementations; optional hash algo-
rithms are not considered in this research. Given the large number of qualified 
submissions and the short period of time between initial publication of specifi-
cations and Round 2 selection, we selected three ciphers for evaluation: SpoC, 
Spook, and GIFT-COFB. These ciphers are representative of a large number of 
NIST LWC Round 1 submissions, since: at least 47 submissions are composed 
of block- or block-like primitives, out of which at least 20 are sponge-based; 
at least 22 ciphers (both block and stream) use 4-bit S-boxes, and at least 9 
ciphers use a logical AND or multiplication for non-linear transformations; SpoC 
and Spook are sponge-based, while Spook and GIFT-COFB use 4-bit S-boxes, 
and SpoC uses a logical AND for non-linear transformations [18]. Further, none 
of the chosen ciphers included author FPGA implementations in their initial 
submissions. 

We implemented candidate authors’ primary recommended versions of selected 
ciphers using register transfer level (RTL) methodology in Verilog or VHDL 
and basic-iterative (i.e., round-based) architecture. Since each round of the 
ciphers is executed in one clock cycle, this implementation offers a reasonable 
latency and throughput with a medium area. Although latency and energy 
consumption are also important considerations in LWC, [2], there are certain 
trade-offs between them. As discussed in [2, 4], basic-iterative implementation is 
an efficient architecture and a good candidate for applications with low energy 
consumption. 

All implementations are fully compliant with the existing CAESAR hard-
ware applications programming interface (CAESAR HW API) [15], and use the 
CAESAR hardware developer’s package (CAESAR HW DP) at [13]. We used 
CAESAR HW API and DP since a corresponding NIST LWC API and DP were 
not available at time of implementation. Artix-7 FPGA implementations were 
compared according to maximum frequency, area (look-up tables (LUTs)), TP 
(Mbps), and throughput-to-area (TPA) ratios. 

Our contributions in this work are as follows: 1) We offer fully-functional 
3rd-party hardware implementations of selected NIST LWC AEAD candidates, 
still early in Round 2; 2) We provide a comparison with selected past and present 
authenticated cipher implementations, in order to bridge the space between 
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CAESAR and NIST LWC processes, as well as API-compliant and API-non-
compliant implementations; and 3) We show examples of features of cipher 
implementations which may be resource-intensive and reduce performance, in 
order to illustrate design pitfalls and help guide later-round tweaks. 

2 Background 

2.1 Authenticated encryption with associated data 

In both CAESAR and the NIST LWC standardization process, two operations 
are defined on AEAD, authenticated encryption and authenticated decryption. 
In encryption, inputs consist of a public message number Npub usually defined 
as a “number used once” (nonce), a secret key K, plaintext PT, and associated 
data AD. The outputs of authenticated encryption include Npub, AD, ciphertext 
CT, and Tag, which provides for integrity and authenticity of all transmitted 
data. In authenticated decryption, the inputs are Npub, AD, K, CT, and Tag. 
CT is internally decrypted into PT, however, an internal T ag0 is computed and 
checked against Tag prior to releasing PT, in a step called “tag verification.” 

2.2 Hardware API and developer’s package 

Since a hardware API has not yet been approved for the NIST LWC standard-
ization process, we implemented ciphers using the CAESAR HW API. As NIST 
LWC AEAD software function prototypes are identical to those used in CAESAR, 
we expect similar compatibility with hardware implementations. Of note, an API 
definition of hash was not included in the CAESAR HW API, but is expected to 
be included in a NIST LWC HW API. 

To facilitate the hardware designer’s task of meeting CAESAR HW API 
requirements, a hardware developer’s package is provided at [13]. The package in-
cludes an input processor (Pre-Processor) and output processor (Post-Processor), 
which are encapsulated in a top-level module called AEAD. A designer can place 
a custom design in a subordinate module called CipherCore, and use standard-
ized interfaces to communicate with Pre- and Post-Processors. A set of Python 
scripts called aeadtvgen is used to generate representative test vectors directly 
from the software reference implementation, and an accompanying HDL test 
bench (AEAD TB) automatically verifies test vectors against expected results. 
An implementer’s guide to assist in using the CAESAR HW DP is also available 
at [14]. In this research, we use the CAESAR HW DP (v2.0), and develop RTL 
implementations inside CipherCore. The definitions of AEAD and subordinate 
modules, as well as internal signals are defined in [14]. 

3 Ciphers implemented in this research 

3.1 SpoC 

SpoC, described in [1], refers to “sponge with a masked capacity.” In SpoC, 
capacity is masked with data blocks instead of rate which improves the security 



4 B. Rezvani and W. Diehl 

and allows larger rate value per permutation call. We implement one of the 
authors’ primary recommendations, SpoC-64, with capacity c = 128 bits, state 
size b = 192 bits, nonce size n = 128 bits, and tag size t = 64 bits. In a sponge-
based cipher, the rate refers to the number of keystream bits generated per 
permutation call, and the capacity c = b − r. 

This cipher is based around the sLiSCP-light[192] permutation, which uses 
a combination of a Type II Generalized Feistel Structure (GFS) and Simeck 
box (SB), and consists of 18 steps of 6 rounds each. Each step consists of three 
transformations, namely, SubstituteSubblocks (SSb), AddStepconstants (ASc), 
and MixSubblocks (MSb). The non-linear operations are applied in the SSb or 
SB. SBs consist of XORs, bitwise rotations, and a 48-bit logical AND. 

The duplex sponge construction of SpoC is shown in Fig. 1. At each point in 
time, the state can be divided into a c-bit Y and r-bit Z, and represented as Y k Z. 
The initial state Y0 k Z0 is formed by interleaving Nonce and Key (f(N0,K)), 
and performing a permutation. The tag is generated using an interleaved set of 
bytes extracted from across the entire 192-bit state. Control bits ctrl are 4-bit 
constants used for domain separation (i.e., to distinguish between authenticated 
encryption or decryption phases), such as AD, PT, and Tag, and to differentiate 
between full and partial blocks. 

b=192

c=128

r=64

f(N0,K)

N1 Aa-1 Mm-1

ctrlAD ctrlPT ctrlTAG
Mm-1

Cm-1

Perm Perm Perm Perm
64

tag

Fig. 1. SpoC duplex sponge construction. 

We implement a basic-iterative architecture based on the sLiSCP permutation, 
where one round of the SSb transformation executes in a single clock cycle. This 
requires 108 clock cycles for the permutation. Our implementation of SpoC-64 is 
shown in Fig. 2. 

3.2 Spook 

Spook uses sponge-one-pass (S1P), and is based on duplex sponge construction [5]. 
The Spook AEAD algorithm uses two primitives, the Clyde-128 tweakable block 
cipher (TBC) and the Shadow-512 permutation. The Shadow-512 permutation 
uses the same definitions for L-boxes and S-boxes, and similar definition for 
round constants, as the TBC. However, it is performed across a b-bit state (e.g., 
b = 512 in our implementation), and employs encryption only, i.e., there are no 
inverse L-boxes or S-boxes. Additionally, there is a diffusion function, adapted 
from the Midori cipher, which acts across all b-bits of state, and is implemented 
in 32-bit words according to [5]. 
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Fig. 2. Block diagram for SpoC-64. 

We implement the authors’ primary recommendation, Spook[128; 512; su], 
with parameters block size n = 128, rate r = 256, capacity c = 256, tag size 
τ = 128, and state size b = 512. The “su” denotes “single user.” We also used 
the recommended parameters for the TBC and Shadow-512, which consist of 
6 steps of 2 rounds each. Since the rate determines the amount of plaintext 
converted to ciphertext in every block, we use an external block size of 256 
bits for generation of test vectors and computation of throughput. There are m 
blocks of plaintext (or message) M, and a blocks of associated data A. There is 
a τ -bit nonce N (128 bits), a key = K k P , which consists long term secret K 
(128 bits), and public tweak P . Following conventions in the software reference 
implementation, P = 0 in this hardware implementation. Of note, the authors’ 
primary recommendation achieves Ciphertext Integrity and Misuse with Leakage 
in encryption and decryption (CIML2), which is an extension of ciphertext 
integrity in the presence of nonce misuse and side-channel leakages [6]. 

In TLS cipher constructions, linear transformations are computed using linear 
L-boxes consisting of rotations and XORs, and non-linear S-boxes. The L-box is 
an interleaved transformation applying jointly to pairs of 32-bit words, i.e., half 
of the 128-bit state is processed in each L-box. L-boxes can be implemented using 
look-up tables or by arithmetic calculations. We follow the authors’ formula for 
L-box calculations described in [5]. The S-boxes are a variant of the 4-bit S-box 
used in the Skinny block cipher [4], and are implemented with look-up tables in 
this research. 

The duplex sponge-based computational flow for authenticated encryption is 
shown in Fig. 3. The TBC is used twice – during initialization and tag generation. 
Initialization consists of loading the upper 256 bits of the state variable with 
P k 0∗ k N k 0∗, and computing B = EP (N), where N is a 128-bit nonce. Upon K 
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TBC completion, the lower 256 bits of the state are loaded with 0 k B. Tag is 
V ||1 

formed as Z = E (U), where U is the upper 128 bits of state after the last K 
permutation, and V is the next highest 127 bits of state. During authenticated 

V 0||1 
decryption, the supplied tag Z 0 must be decrypted as U 0 = D (Z 0), and K 
compared to U (i.e., U == U 0) for tag verification. Inverse L-boxes Lbox−1 and 
S-boxes Sbox−1 are required for decryption. 

In between the initial and final TBC operations, the Shadow-512 permutation 
is computed once to initialize the state, and once following the processing of each 
block of A or M. 10∗ padding pad is applied to each final partial block of A, but 
padding is not directly applied to a final partial block of M. In this case, the 
resulting upper 256 bits of state are loaded as Cm−1 k {State512−|Cm−1|−1..256}⊕ 
01 k 0∗. State truncation is performed by remembering the number of valid bytes 
loaded in the last block of plaintext and by applying variable masks to Cm−1 

and {State512−|Cm−1|−1..256} ⊕ 01 k 0∗ . 

tag
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Fig. 3. Spook duplex sponge construction. 

Domain separation between blocks of A and M is accomplished by State255..0⊕ 
{01, 10, 11} k 0∗, where the two-bit combination depends on whether the block is 
processing A or M, and whether or not the last block is partial or full. 

We base our design strategy on an attempt to reuse components such as L-
boxes, S-boxes, and internal state registers, and construct the equivalent of TBC 
or permutation calls using an arithmetic logic unit (ALU)-like microarchitecture 
approach. We use a basic-iterative architecture with reference to the TBC. This 
means that one round of TBC (encryption or decryption) will execute in one 
clock cycle, including one set of 128-bit L-boxes, 128-bit S-boxes, and round 
constants. The tweakey is updated at the end of each step, or every other round. 
This results in 12 clock cycles per TBC. 

However, our target implementation is not strictly basic-iterative with respect 
to the permutation, since we instantiate only 128-bit L-boxes and S-boxes, but 
must call each module 4 times across a 512-bit state. This results in a total of 
144 clock cycles per permutation. Our implementation is shown in Fig. 4. 

3.3 GIFT-COFB 

GIFT-COFB is based on the combined feedback (COFB) mode of operation 
with GIFT-128 as the underlying block cipher [3]. COFB mode is single-pass 
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Fig. 4. Block diagram for Spook[128;512;su]. Bus widths are 128 bits unless indicated. 

(one block cipher call per data block) and inverse-free (no need for block cipher 
decryption). The GIFT-COFB recommendations are data block size n = 128 
bits, nonce size |N | = 128 bits, and tag size |T | = 128 bits. 

GIFT-128 is a substitution-permutation network (SPN) with a 128-bit key 
length and a 128-bit cipher state length. This iterative block cipher has 40 rounds 
and each round consists of 3 transformations, namely, SubCells, PermBits, and 
AddRoundKey. The cipher state divides into four 32-bit words and the key state 
divides into eight 16-bit segments. In SubCells, 32 4-bit bitslice S-boxes are 
applied to every nibble of the state. Then, a 32-bit permutation is applied to 
every word of the state. In AddRoundKey, the round key is XORed to the second 
and third words of the state, and a round constant is added to the last word of 
the state. The round constants are generated by a 6-bit LFSR. 

In Fig. 5, a simplified version of the encryption construction of GIFT-COFB 
is depicted. At the beginning of the encryption, the state is loaded by a nonce 
N and then, the upper 64 bits of the first EK output L are considered as the 
delta state. Except for the last block of AD and M, the delta state is multiplied 
by 2 in GF(264) for every block of AD and M. For the last block of AD or M, 
the delta state is multiplied by 3i or 3j−i, where i, j − i ≤ 4. The G function is 
defined as G(Y ) = (Y [2], Y [1] <<< 1) [3]. 
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A basic-iterative (i.e., round-based) architecture is used here, i.e., every round 
of the GIFT round function is executed in one clock cycle. The GIFT-COFB 
authors also used a round-based design which is implemented in ASIC. GIFT 
has 40 rounds, thus it requires 40 clock cycles to process a block of the input 
data. However, for processing AD and M, we need additional clock cycles due to 
the delta state. As presented in [3], 4 clock cycles are required for the delta state. 
In this work, we use 4 clock cycles for processing an AD block, but 2 clock cycles 
in our finite state machine for processing the message blocks. The reason that 
we reduce the clock cycles for M is that the exponent in 3j−i does not exceed 2 
for an M block. As a result, we have 40, 44, and 42 clock cycles for processing 
nonce, an AD block, and a block of message, respectively. Note that these are 
the number of cycles that GIFT needs to process one block of data. 

4 Results 

4.1 Implementations in this work 

FPGA implementations in this research are developed in Verilog or VHDL 
using RTL design methodology and based on a basic-iterative architecture. 
They are compliant with the CAESAR HW API and include modules in the 
CAESAR HW DP (v2.0). Results are implemented in Xilinx Vivado 2018.3 for 
the Xilinx Artix-7 FPGA (xc7a100tcsg324-3), and optimized for throughput-
to-area (TPA) ratio using the Minerva automated hardware optimization tool 
[11]. Our implementations are also verified in actual hardware (xc7a100tftg256-3) 
using FOBOS [8]. All implemented ciphers have nonce and key size of 128 bits. 
Post-optimization results of implementations in this work (TW) are shown in 
Table 1. Additionally, cipher implementations are available for inspection at [19]. 

Results indicate that SpoC has the highest maximum frequency of 265 MHz 
(1.9× greater than Spook), i.e., lowest sum of logic and routing delays, followed 
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by GIFT-COFB at 172 MHz (1.2× greater than Spook) and Spook at 141 MHz. 
In terms of area in FPGA LUTs, SpoC is the smallest with 1344 LUTs (19% 
of area of Spook), followed by GIFT-COFB with 2695 LUTs (39% of area of 
Spook), and Spook with 7082 LUTs. GIFT-COFB has the highest TP at 415.4 
Mbps (2.7× greater than SpoC), followed by Spook at 248.9 Mbps (1.6× greater 
than SpoC) and SpoC at 152.8 Mbps. In terms of TPA ratio, GIFT-COFB is 
the highest at 0.154 Mbps/LUT (4.4× greater than Spook), followed by SpoC at 
0.114 Mbps/LUT (3.3× greater than Spook), and Spook at 0.035 Mbps/LUT. 
Additionally, the latency of our GIFT-COFB implementation is only 50% of the 
latency of our SpoC implementation. This provides GIFT-COFB an advantage 
for the processing of very short messages, which is a desirable characteristic for 
LWC candidates as discussed in [17]. 

4.2 Comparison with selected previous authenticated cipher 
implementations 

Previous hardware implementations during CAESAR and those provided as 
part of NIST LWC submissions provide some basis for comparison with cipher 
implementations in this research. However, most CAESAR implementations, 
even those that were compliant with the CAESAR HW API, used an earlier 
version of the CAESAR HW DP designed for high speed (HS) implementations. 
The HS package included functionality not used by many ciphers, and exacted 
a larger toll on area overhead. The CAESAR HW DP for LW implementations 
only appeared at the end of 2017, and thus there are fewer available examples. 
Some CAESAR API-compliant examples from [21, 12, 10], implemented using 
the LW CAESAR HW DP, are included in Table 1 for purpose of comparison. 

A full-scale comparison with NIST LWC candidate author implementations is 
premature, since authors reported results for implementations not compliant with 
the CAESAR API, and using a variety of FPGA platforms. Some representative 
examples of block and sponge cipher FPGA implementations, e.g., ESTATE 
(ESTATE-TweGIFT-128), SAEAES, and Oribatida (Oribatida-256-64), as well 
as a non-CIML2 author implementation of Spook, are included in Table 1. 

All CAESAR and NIST LWC implementations provided for comparison use 
a 128-bit key; TP is computed based on the processing rate of a large number of 
blocks of plaintext into ciphertext. The range of TPA ratios (0.017 to 0.088) for 
the CAESAR candidates, all Round 3 contenders or better, is somewhat analogous 
to the range of TPA ratios for our implementations (0.035 to 0.154). In contrast, 
the range of TPA ratios of sampled NIST LWC candidates (0.547 to 1.028) is 
noticeably higher. A judgement as to whether or not these implementations are 
“better” than either our implementations, or previous CAESAR implementations, 
is premature, since no uniform standards have been established for benchmarking 
of hardware implementations in the NIST LWC standardization process. For 
instance, our implementations of the AEAD top-level module, incorporating 
the required features in the CAESAR HW DP, were an average of 11% larger 
than basic CipherCore implementations of respective ciphers. Additionally, an 
implementation “compliant with the CAESAR API” is required to include 
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hardware necessary for input and output of AEAD data in specified protocol, and 
must realize “corner cases” (e.g., null blocks, partial blocks, padding, truncating, 
etc.) which often involve significant resources. 

Table 1. Results of implementations in this work (TW), and comparison with CAESAR 
lightweight and NIST LWC candidates. The units of Freq, Area, TP, and TPA are MHz, 
LUTs, Mbps, and Mbps/LUT, respectively. 

Cipher Type FPGA Freq Area TP TPA Ref 
CAESAR 

Ascon-128 Sponge Spartan-6 216.0 684 60.1 0.088 [21] 
Ascon-small Sponge Spartan-6 146.1 1640 114.0 0.070 [10] 
CLOC-AES Block Spartan-6 101.9 1604 68.7 0.043 [12] 
SILC-AES Block Spartan-6 115.1 872 15.1 0.017 [12] 

NIST LWC (AEAD) 
SpoC Sponge Artix-7 265.0 1344 152.8 0.114 TW 
Spook Sponge Artix-7 141.0 7082 248.9 0.035 TW 
Spook Sponge Artix-7 181.8 3771 3878.4 1.028 [20] 
GIFT-COFB Block Artix-7 172.0 2695 415.4 0.154 TW 
ESTATE Block Virtex-7 580.1 1413 928.3 0.657 [9] 
SAEAES Block Virtex-7 145.9 348 263.3 0.757 [16] 
Oribatida Sponge Virtex-7 554.2 940 514 0.547 [7] 

4.3 Observations 

The use of two primitives in Spook, i.e., the Clyde-128 TBC and the Shadow-512 
primitive, increases the area of our Spook FPGA implementation. While we have 
employed a strategy to reuse shared components among the primitives, such as 
S-box and L-box, the increased use of control structures necessary to tie together 
all components likely outweighs any advantages gained over the use of separate 
TBC and Shadow permutation primitives in a “black box” approach. The fact 
that the TBC requires encryption and decryption in the CIML2 case adds again 
to implementation complexity. Results in [20] show that significant improvements 
in area and performance are possible when a fully reversable TBC is not required. 

The necessity of applying one-zero (10∗) padding to input words of AD and 
PT is a known factor in increasing complexity. However, cipher algorithms which 
can make padding application features as similar as possible for both AD and PT 
can reduce hardware complexity. While this is the case in SpoC and GIFT-COFB, 
it is not the case in Spook, since the padding in Spook occurs on words of state 
vice words of input when processing PT. 

Additionally, truncation is also a well-known feature in cryptographic algo-
rithms, where |CT | should equal |PT | in order to assure invertibility and not 
leak information. While truncation in software looks innocuous enough, it often 
catches cryptographers by surprise in hardware. We employed a non-resource 
intensive method in SpoC, to remove one unwanted byte at a time from ciphertext 
output in a serial fashion. However, in Spook, truncated ciphertext is required to 
be passed to the state input for subsequent permutations, in addition to being 
routed directly to cipher output, which increases implementation complexity. 
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5 Conclusion 

We provided an early look at fully-functional FPGA implementations of selected 
NIST LWC standardization process Round 2 candidates. Candidates examined in 
this research, SpoC, Spook, and GIFT-COFB, are representative of many NIST 
LWC candidates. Implementations are fully-compliant with the existing CAESAR 
HW API for authenticated ciphers, use the associated CAESAR HW developer’s 
package, are optimized using the Minerva automated hardware optimization tool, 
and are verified to operate in actual hardware using the FOBOS test bench. 

Our results show that SpoC has the highest maximum frequency of 265 MHz, 
and has the lowest area, in terms of LUTs, with 1344 LUTs. GIFT-COFB has 
the highest throughput (TP) at 415.4 Mbps, and the highest throughput-to-area 
(TPA) ratio. However, differences in security assumptions among authors’ primary 
recommendations (e.g., nonce misuse or leakage resistance) can heavily influence 
results. The TPA ratio results of the implemented ciphers are similar to results 
reported for CAESAR HW API compliant late-round CAESAR candidates, but 
have TPA ratios which are significantly less than TPA ratios reported for a 
selected group of NIST LWC submission author implementations of ciphers of 
similar construction. However, no conclusion can be drawn regarding the relative 
hardware merits of candidates implemented according to different compliance 
standards, which reinvigorates the need for a standardized hardware API and 
minimum compliance criteria for the NIST LWC standardization process. 

Finally, we show that implementation complexities resulting from the need to 
integrate two cryptographic primitives (e.g., a block cipher and sponge permuta-
tion) into one authenticated cipher, as well as padding and truncation strategies, 
can affect area and performance of resulting implementations, and should be 
considered by algorithm designers. 
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