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Abstract. ORANGE is a Round 1 candidate in the NIST LwC competi-
tion. The authenticated encription mode in ORANGE is called ORANGE-
Zest. This AEAD scheme is important in the sense that it has rate 1
which is highest among all other Sponge based submissions. In this pa-
per, we give a security bound on ORANGE-Zest. Our security bounds
show that it is secure within NIST prescribed Data complexity of 250

bytes and Time complexity 2112.

1 Introduction

In recent years the popularity and requirement of lightweight cryptographic de-
signs has increased immensely. The switching of modern computing from desktop
computers to small devices has created a restrain in the availability of resources
as such the classical schemes are not always efficient or in some cases not even
implementable. In all those cases lightweight schemes must be used to provide
security. Hence, to increase the research interest of the scientific community,
NIST has initiated a Light Weight Cryptography competition.

For sponge based authenticated encryption scheme the best known adversar-
ial advantage for forgery is DT

2c where c is the capacity, D is the data complexity
and T is the time complexity. ORANGE-Zest [3] is a round 1 candidate in the
NIST-LwC competition. In many ways it is similar to the Beetle [2] type con-
struction other than the fact that it uses an external state and it has full rate
message absorption. In comparison to other submissions ORANGE-Zest has the
major advantage that it is the only submission that has rate 1 i.e. at the cost of
this small additional state, it has full state message absorption and as such max-
imum among all other NIST round 1 candidates which are based on Sponge[1].

In this paper we give a security proof of ORANGE-Zest in the Ideal Cipher
Model. We note that we make a minor revision of the original submission. The
details of the changes and the complete algorothm are given in Section 3. Our
main result is the following.

Theorem 1. (Main Result) For any adversary A making at most qp many
primitive queires, qe many encryption queries with total σe many blocks and qv
decryption queries with total σv many blocks,
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AdvaeadORANGE-Zest(A ) ≤ qp
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+

4σvqp
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2qv
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2b
+

4σeσv
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+
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where κ is the key size, τ is the tag size and b = r + c is the state size.

According to NIST requirement qp ≤ 2112 and σe + σv ≤ 245. ORANGE-Zest
uses PHOTON-256[4] as the underlying permutation which has a state size of
256-bit. The Nonce size, Key size and capacity size of ORANGE-Zest is 128-
bit. Plugging the appropriate values in Theorem 1, the dominating terms are
qp
2κ ≤

1
216 and

4σvqp
2b
≤ 1

236 , which are all well within the NIST requirements. All

other terms are bounded by 1
280 and hence negligible. Thus, we can conclude

that ORANGE-Zest is secure with respect to the NIST requirement.

2 Priliminaries

2.1 H-coefficient Technique

Consider a computationally unbounded and deterministic adversary A that tries
to distinguish the real oracle, say O1, from the ideal oracle, say O0. We denote
the query-response tuple of A ’s interaction with its oracle by a transcript ω.
Sometimes, this may also include any additional information that the oracle
chooses to reveal to the distinguisher at the end of the query-response phase
of the game. We will consider this extended definition of transcript. We denote
by Θ1 (res. Θ0) the random transcript variable when A interacts with O1 (res.
O0). The probability of realizing a given transcript ω in the security game with
an oracle O is known as the interpolation probability of ω with respect to O.
Since A is deterministic, this probability depends only on the oracle O and the
transcript ω. A transcript ω is said to be attainable if Pr [Θ0 = ω] > 0. In this
paper, O1 = (encK, decK, f

±), O0 = (Γ,⊥, f±), and the adversary is trying to
distinguish O1 from O0 in AEAD sense. Now we state a simple yet powerful tool
due to Patarin, known as the H-coefficient technique (or simply the H-technique).

Theorem 2 (H-coefficient technique [5]). Let Ω be the set of all realizable
transcripts. For some εbad, εratio > 0, suppose there is a set Ωbad ⊆ Ω satisfying
the following:

– Pr [Θ0 ∈ Ωbad] ≤ εbad;
– For any ω /∈ Ωbad,

Pr [Θ1 = ω]

Pr [Θ0 = ω]
≥ 1− εratio.

Then for any adversary A we have the following bound on its AEAD distin-
guishing advantage:

AdvaeadO1
(A ) ≤ εbad + εratio.

A proof of this theorem is available in multiple papers including [5].
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3 The ORANGE-Zest Mode

Let P : {0, 1}n → {0, 1}n be any permutation function. Let α be any primitive
polynomial. Then the ORANGE-Zest mode can be best understood from the
diagrams given in 1 2.

Note, that there are two minor revisions from the original ORANGE proposal.

1. While processing the first message block state output of the last associate
data block is used as the value of the additional state instead of the key.
The reason behind this is that in this scenario it will be similar to the other
message blocks processing and hence will require less number of multiplexers
which would be efficient from the hardware designing point of view.

2. To make the above change go through for empty associated data encryption
we consider empty associated data as an incomplete associated data block
and do 0∗1 padding to it. Formally,

pad(A) =


02n−11 if |A| = 0

A if 2n | |A|
02n−r−11‖A if |A| = r mod 2n, r 6= 0.

Due to this new consideration the empty associated data case will not be
treated differently as in the case of the submitted version of ORANGE and hence
will use less number of multiplexers in hardware implementation. For the sake
of completeness, we give the complete algorithm following these changes.
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Fig. 1: Feedback process for ORANGE-Zest. the black dot represents αδM multiplica-
tion to the MSB n

2
-bits of Y where δM = 0/1/2 depending on whether the message

block is a intermediate/last and full or last and partial block. The gray dot represents
α multiplication.
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1: function ORANGE-Zest[P].enc(K,N,A,M)

2: (Aa−1, . . . , A0)
n← A

3: (Mm−1, . . . ,M0)
n←M

4: if a = 0,m = 0 then

5: (T, ∗)← P((K ⊕ 2)‖N)

6: return (λ, T )

7: (U, S)← proc hash(K‖N,A, 1, 2)
8: if m 6= 0 then

9: (C,U)← proc txt(S, U,M,+)

10: return (C, proc tg(U))

11: function ORANGISH(D)

12: if |D| = 0 then

13: Z1 ← P(02n)

14: else

15: (Dd−1, . . . , D0)
n← D

16: Dd ← (n - |Dd−1|)? 0n−210 : 0n−11

17: Dd−1 ← pad(Dd−1)

18: X ← (0n||D0)

19: for i = 0 to d− 1 do

20: Ai ← (Di‖Di+1)

21: A← (Ad−1‖ . . . ‖, A0)

22: (Z, ?)← proc hash(X,A, 0, 0)

23: Z1 ← P(Z)

24: Z2 ← P(Z1)

25: return bZ2cn‖bZ1cn

26: function proc txt(S0, U0, D, dir)

27: (Dd−1, . . . , D0)
2n← D

28: for i = 0 to d− 1 do

29: Vi ← P(Ui)

30: if i = d− 1 then

31: c← (2n | |Dd−1|)?1 : 2

32: Vi ← mult(c, Vi)

33: KSi ← ρ(Si, Vi)

34: D′i ← Di ⊕ bKSic|Di|
35: if dir = ” + ” then Di ← D′i

36: Si+1 ← dVien
37: Ui+1 ← Vi ⊕ pad(Di)

38: return (D′, Ud)

1: function

ORANGE-Zest[P].dec(K,N,A,C, T )

2: (Aa−1, . . . , A0)
n← A

3: (Cm−1, . . . , C0)
n← C, M ← λ

(U, S)← proc hash(N‖K,A, 1, 2)
4: if m 6= 0 then

5: (M,U)← proc txt(S, U,C,−)
6: T ′ ← proc tg(U)

7: if T 6= T ′ then

8: return ⊥
9: else

10: return (M,>)

11: function proc hash(X,D, c0, c1)

12: c← (|D| 6= 0 ∩ 2n | |D|)?c0 : c1

13: (Dd−1, . . . , D0)
2n← pad(D)

14: X0 ← X

15: for i = 0 to d− 2 do

16: Yi ← P(Xi)

17: Xi+1 ← Yi ⊕Di
18: Yd−1 ← P(Xd−1)

19: S ← dYd−1en
20: Yd−1 ← mult(c, Yd−1)

21: Xd ← Yd−1 ⊕Dd−1

22: return (Xd, S)

23: function ρ(S, Y )

24: (Y b, Y t)
n← Y

25: Z ← (Y b ⊕ αS)‖(Y t ≪ 1)

26: return Z

27: function mult(c, V )

28: (V b, V t)
n← V

29: return αc · V b ‖ V t

30: function proc tg(U)

31: (Ub, Ut)
n← U

32: return P(Ut‖Ub)

4 Multichain Security game

Let L = ((u1, v1), . . . , (ut, vt)) be a list of pairs of b-bit elements such that
∀i 6= j, ui 6= uj , vi 6= vj . For any such list we define domain(L) = {u1, . . . , ut}
and range(L) = {v1, . . . , vt}.

Given a list L we define a directed graph GL as follows: range(L) is the set
of vertices of GL. There are to types of edges:

Given any i, j ∈ [t], there exist a directed edge vi
x−→ vj where x = vi ⊕ uj .
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Fig. 2: The ORANGE-Zest Mode of AEAD

Given any i, j ∈ [t] there exist a directed edge vi −→
x
vj ⇐⇒ uj = (bxcr ⊕

bvicr)‖(dxec⊕αδx ·dviec) similarly we can extend this definition to define a labled
walk W from ω0 to ωk by

W : ω0
x1−→ ω1

x2−→ ω2 · · ·ωk−1
xk−→ ωk

We simple denote this by ω0
x−→ ωk where x = (x1, . . . , xk). k is the length of

the walk. Similary by w0
x−→
y
wk+1 we denote the walk ω0

x−→ ωk −→
y
ωk+1.

4.1 Multichain Structure

Definition 1 (multi-chain Structure). Let r, τ ≤ b be some parameters. We
say that a set of labled walks {W1, . . . ,Wp} forms a multi-chain of a given lable

x = (x1, x2, . . . , xk) in the graph GL if ∀1 ≤ i ≤ p We have Wi : vi0
(x1,...,xk−1)−−−−−−−−→

xk

vik such that ∀1 ≤ i, j ≤ p; bui0cr = buj0cr; bvikcτ = bvjkcτ . We call it a multi-chain
of length k.

Let Wk denote the maximum size of a multi-chain of length k (of a given
lable x) induced by L. Now consider an adversary A interacting at most t times
with f±. Let (xi, diri) denote ith query where xi ∈ {0, 1}b and diri is either
+ or − (representing forward or inverse query). If diri = +, it gets response
yi as f(xi), else the response yi is set as f−1(xi). After t many interactions,
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we define a list L of pairs (ui, vi)i where (ui, vi) = (xi, yi) if diri = +, and
(ui, vi) = (yi, xi) otherwise. So we have f(ui) = vi for all i. We call the tuple
of triples θ := ((u1, v1, dir1), . . . , (ut, vt, dirt)) the transcript of the adversary A
interacting with f±. We also write θ′ = ((u1, v1), . . . , (ut, vt)) which only stores
the information about the random permutation. We write

µk,A := Ex [Wk].

Here Wk is defined for the labeled graph induced by the list θ′ as defined above
and expectation is defined over the randomness of the random permutation f
and the random coin of the adversary A . Finally, we define µk,t = maxA µk,A
where maximum is taken over all adversaries making at most t queries.

5 Security Analysis of ORANGE-Zest

We fix a deterministic non-repeating query making distinguisher A that interacts
with either (1) the real oracle (Of , f) or (2) the ideal oracle ($f , f) making at
most,

1. qe encryption queries (N i, Ai,M i)i∈(qe] with an aggregate of total σe many
blocks.

2. qf offline or direct forward queries (U i, V i,+)i∈(qf ] to f .

3. qb direct backward queries (U i, V i,−)i∈(qb] to f .
4. attempts to forge with qv many queries (N?i, A?i, C?i, T ?i)i∈(qv] having a

total of σv many blocks.

We assume qp = qf + qb to be the total number of offline or direct queries
to f . Also for simplicity assume that, ∀i,M i and Ai have mi and 0 many
blocks respectively and C?i and A?i have mi and 0 many blocks respectively. Let
X?, Y ?, Z?,W ? corresponds to the imtermidiate variables of the forging queries.
Let E ,D denotes the sets of indices of the encryption and decryption queries.

Theorem 3. Let us assume that r ≥ 16 . Then for any (qp, qe, qv, σe, σv)−
adversary A we have

AdvaeadORANGE-Zest(A ) ≤ qp
2κ

+
5σeqp

2b
+

4σvqp
2b

+
2qv
2τ

+
2rqpσe

2b
+

4σeσv
2c

+
∑
i∈D

µmi,qp
2c

+
rqpσvσe

2b+c
.

5.1 Attack transcript

The Ideal World In the ideal world there are three types of oracle queries,
namely primitive query, encryption query and decryption query.

Primitive Queries The ideal world simulates Q± queries honestly and main-
tain a list ωp of the query responce of Q as a partial injective list. More precisely
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ωp = ((U1, V 1, dir1), (U2, V 2, dir2), . . . )

where diri = +1 for a direct forward query and −1 for a direct backward
query. We keep ωp as a list of direct forward queries. i.e. f(U i) = V i for all i.
Let ωp′ = (((U1, V 1), (U2, V 2), . . . ) i.e. ωp without considering the sign of the
query.

Encryption Queries When the i-th query is an encryption query (N i,M i)

where and M i = M i
mi‖ · · · ‖M

i
2‖M i

1 it first defines

δij =


0 for j < mi

1 for j = mi, |M i
mi | = b

2 otherwise

Then it samples (Y i−1, Y
i
0 , . . . , Y

i
mi)

$←− {0, 1}r and (Zi−1, Z
i
0, . . . , Z

i
mi)

$←− {0, 1}c
, and returns T = bZimi‖Y

i
micτ and Ci = Cimi‖ · · · ‖C

i
2‖Ci1 where for 1 ≤ j ≤ m

Cirj = M i
rj ⊕ lRot(Y

i
j−1);

Cicj = M i
cj ⊕ α

δij · Zij−1 ⊕ α · Zij−2
Cij = Cicj‖C

i
rj

The intermidiate values Xi
j ,W

i
j are calculated as follows:

Xi
j =


bK‖Ncr for j = −1

Y i−1 ⊕ 1 for j = 0

Y ij−1 ⊕ Cirj for 1 < j < mi

αδ
i
miZimi−1 ⊕ C

i
cmi

for j = mi

W i
j =


dK‖Nec for j = −1

α2.Zi−1 for j = 0

Zij−1 ⊕ Cicj for j < mi

Y imi−1 ⊕ C
i
rmi

for j = mi

Decryption Queries When the i-th query is a decryption query of the form

(N∗i, C∗i, T ∗i) it always returns M∗i =⊥. The decryption transcript ωd =
(M∗i)i∈D where M∗i =⊥ for all i ∈ D

Offline Queries After all the above queries, finally the oracle returns all the

X,Y, Z,W values defined above. Let ωe := (Xi
j , Y

i
j , Z

i
j ,W

i
j )i∈E,j∈[mi] . The tran-

script of the ideal oracle is (ωp, ωe, ωd).
Intermediate Values of the decryption queries Given the i-th decryption query

(N∗i, C∗i, T ∗i), i ∈ D we define pi as follows.

pi =


−1 if N∗i 6= N i′∀i′ ∈ E
li if ∃i′ ∈ E 3 N∗i = N i′ ;C∗ij = Ci

′

j ∀1 ≤ j ≤ li < mi;C
∗i
li+1 6= Ci

′

li+1

li − 1 otherwise
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Given a statement P let

χ(P ) =

{
1 if P is true

0 otherwise

Let

xij = χ(j 6= mi)Y
∗i
j−1 ⊕ χ(j = mi)α

δimiZ∗ij−1.

wij = χ(j = mi)Y
∗i
j−1 ⊕ χ(j 6= mi)Z

∗i
j−1.

For any i ∈ D we define, ∀0 ≤ j ≤ pi

X∗ij = Xi′

j ;Y ∗ij = Y i
′

j ;Z∗ij = Zi
′

j ;W ∗ij = W i′

j

Now we further extend X,Y, Z,W values using primitive transript wherever
possible. For notational simplicity let cij := χ(j 6= mi)C

∗i
j ⊕χ(j = mi)bC∗ij cr‖dC∗ij ec,

∀pi < j ≤ mi. If there exist a labeled walk in the labled directed graph induced
by ωp from Z∗ipi‖Y

∗i
pi with lable (cipi+1, . . . , c

i
j), j < mi, then we denote the end

node as Z∗ij ‖Y ∗ij .

Z∗ipi‖Y
∗i
pi

(cipi+1,...,c
i
j)−−−−−−−−→ Z∗ij ‖Y ∗ij

given i ∈ D let p′i < mi be the maximum possible value of such j.
For all such i ∈ D and pi < j ≤ p′i + 1 define

X∗ij = xij ⊕ bcijcr

W ∗ij = wij ⊕ dcijec

5.2 Identifying bad events

We say that an ideal world transcript ω = (ωp, ωe, ωd) is bad if any one of the
following conditions holds:

Bad events due to encryption and primitive transcript:
B1: For some (U, V ) ∈ ωp, K = dUeκ.
B2: For some i ∈ E , j ∈ [mi], Z

i
j‖Y ij ∈ range(ωp), (in other words, range(ωe) ∩

range(ωp) 6= ∅)
B3: For some i ∈ E , j ∈ [mi],W

i
j‖Xi

j ∈ domain(ωp), (in other words, domain(ωe)∩
domain(ωp) 6= ∅)

B4: For some (i ∈ E , j ∈ [mi]) 6= (i′ ∈ E , j′ ∈ [mi′ ]), Z
i
j‖Y ij = Zi

′

j′‖Y i
′

j′ ,

B5: For some (i ∈ E , j ∈ [mi]) 6= (i′ ∈ E , j′ ∈ [mi′ ]), W
i
j‖Xi

j = W i′

j′ ‖Xi′

j′ ,

Bad events due to decryption transcript:
B6: For some i ∈ D 3 pi ≤ mi − 1, (i′ ∈ E , j′ ∈ [mi′ ]), W

∗i
pi+1‖X∗ipi+1 = W i′

j′ ‖Xi′

j′ ,

B7: For some i ∈ D with pi ≥ 0, p′i = mi − 1 and (W ∗imi‖X
∗i
mi , ∗‖T

∗i) ∈ ωp,
B8: For some i ∈ D with pi ≥ 0 and p′i ≥ pi + 1, W ∗ip′i+1‖X∗ip′i+1 ∈ domain(ωe).
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We write BAD to denote the event that the ideal world transcript Θ0 is bad.
Then, with a slight abuse of notations, we have

BAD = ∪8i=1Bi

Lemma 1.

Pr [BAD] ≤ qp
2κ

+
5σeqp

2b
+

2rqpσe
2b

+
4σeσv

2c
+
∑
i∈D

µmi,qp
2c

+
rqpσvσe

2b+c

Proof. Due to constrain of space the proof of Lemma 1 has been moved to
Appendix B.

The real World The real world has the oracle f±. The AE encryption and
decryption queries and direct primitive queries are faithfully responded based
on f±. Like the ideal, after completion of interaction, the ideal oracle returns all
Y,Z -values corresponding to the encryption queries only. Note that a decryption
query may return M i which is not ⊥.

Now consider a good transcript ω = (ωp, ωe, ωd). The understanding of the
bad events will become clear from understanding of the good transcript. Suppose
for all 1 ≤ j ≤ p′i, Y ∗ij , Z∗ij and X∗ij+1,W

∗i
j+1 have been defined as described above.

Then observe the following:

1. The tuple ωe is permutation compatible and disjoint from ωp. So union of
tuples ωe ∪ ωp is also permutation compatible.

2. For all i ∈ D we have either p′i = mi − 1 and (W ∗imi‖X
∗i
mi , ?‖T

∗i) ∈ ωp ∪ ωe
(Type-1 decryption query) or p′i < mi−1 but (W ∗ip′i+1‖X∗ip′i+1 /∈ ωp∪ωe(Type-

2 decryption query). Type-1 decryption queries would be straightaway re-
jected. Type-2 decryption query can be computed based on ωp ∪ ωe until
(W ∗ip′i+1‖X∗ip′i+1 which is fresh. So f(W ∗ip′i+1‖X∗ip′i+1) is random over a large set.

This would ensure with high probability we reject those decryption queries
also.

Based on the above observations we perform our analysis of the good tran-
scripts.

Good Transcript Analysis: Now fix a good transcript ω. Let Θ0 and Θ1 denote
the transcript random variable obtained in the ideal world and real world respec-
tively. As noted before, all the input-output pairs for the underlying permutation
are compatible. In the ideal world, all the Y, Z values are sampled uniform at
random; the list ωp is just the partial representation of f ; and all the decryption
queries are degenerately aborted; whence we get

Pr [Θ0 = w] ≤ 1

2bσe(2b)qp

Here σe denotes the total number of blocks present in all encryption queries
including nonce. In notation σe = qe +

∑
imi.
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In the real world, for ω we denote the encryption query, decryption query,
and primitive query tuples by ωe, ωd and ωp, respectively. Then, we have

Pr[Θ1 = ω] = Pr[Θ1 = (ωe, ωp, ωd)]

= Pr[ωe, ωp] · Pr[ωd | ωe, ωp]
= Pr[ωe, ωp] · (1− Pr[¬ωd | ωe, ωp])

≤ Pr[ωe, ωp] ·

(
1−

∑
i∈D

Pr[¬ωd,i | ωe, ωp]

)
(1)

Here we have slightly abused the notation to use ¬ωd,i to denote the event
that the i-th decryption query successfully decrypts and and ¬ωd is the union
∪i∈D¬ωd,i (i.e. at least one decryption query successfully decrypts). The encryp-
tion and primitive queries are mutually permutation compatible, so we have

Pr
Θ1

[ωe, ωp] = 1/(2b)σe+qp ≥ Pr
Θ0

[ωe, ωp].

Now we show an upper bound PrΘ1 [¬ωd,i | ωe, ωp] ≤ mi(σe+qp)
2b−σe−qp + 1

2τ for every

type-2 decryption query. Recall that W ∗ip′i+1‖X∗ip′i+1 is fresh. If W ∗ij ‖X∗ij is the last

input block then f(W ∗ij ‖X∗ij ) = ∗‖T ∗i with probability at most 2/2τ (provided

σe+qp ≤ 2b−1 which can be assumed, since otherwise our bound is trivially true).
Suppose W ∗ij ‖X∗ij is not the last block, then the next input block may collide

with some encryption or primitive input block with probability at most
σe+qp

2b
.

Applying this same argument for all the successive blocks till the last one, we

get the probability at most
mi(σe+qp)
2b−σe−qp , the last block input would be fresh. Hence

the probability that the tag matches is at most 2/2τ . Now, by union bound we
have

Pr[¬ωd | ωe, ωp] ≤
∑
i∈D

mi(σe + qp)

2b − σe − qp
+

2

2τ

≤ 2σv(σe + qp)

2b
+

2qv
2τ

≤ 4σvqp
2b

+
2qv
2τ

.

We have Theorem 3 follows from Equation 1, Lemma 1 and Theorem 2.

6 Bounding Multichain

Theorem 4. We have,

µk,t ≤ mcoll(t, 2τ ) + mcoll(t, 2r) + k ·mcoll′(t2, 2b)

Observation We have if vi
x−→ vj and vi

x−→ vk then vj = vk. Similarly if

vi −→
x
vj and vi −→

x
vk then vj = vk. and hence if vi

x−→
y
vj and vi

x−→
y
vk then



Security Proof of ORANGE-Zest 11

vj = vk.

More Notations: Let W fwd,a denote the size of the set {i : diri = +, bvicτ =
a} and W fwd = maxaW

fwd,a. This denotes the maximum number of multicol-
lision in the τ - least significant bits of forward query responses.

Similarly defineW bck,a = |{i : diri = −, buicr = a}| andW bck = maxaW
bck,a.

This denotes the maximum number of multicollisions in the r- least significant
bits of backward query responses.

Now LetWmitm,a = |{(i, j) : vi
a−→ vj or vi −⇀

a
vj}| andWmitm = maxaW

mitm,a.

Lemma 2.
Wk ≤W fwd + wbck + k.Wmitm

Proof. Let p = Wk and {W1, . . . ,Wp} be k-chains such that:

∀1 ≤ i ≤ pWi : vi0
(x1,...,xk−1)−−−−−−−−→

xk
vik and

∀1 ≤ i ≤ p; bvi0cr = u; bvikcτ = v.

Define
ω0
p = |{Wi ∈ {W1, . . . ,Wp} | (ui0, v

i
0,−) ∈ θ}|

ωk+1
p = |{Wi ∈ {W1, . . . ,Wp} | (uik, v

i
k,+) ∈ θ}|

ωjp = |{Wi ∈ {W1, . . . ,Wp} | (uij−1, vij−1,+) ∈ θ and (uij , v
i
j ,−) ∈ θ}| ∀1 ≤ j <≤ k

Then clearly By union bound ;

Wk ≤ ω0
p + ωk+1

p +

k∑
j=1

ωjp

Now by defininition of W fwd,W bck,Wmitm we have ω0
p ≤ W fwd;ωk+1

p ≤
W bck, ωjp ≤Wmitm∀1 ≤ j ≤ k. ut

Proof. (Theorem 4)

Ex
[
W bck

]
= Ex [mct,2r ] ≤ mcoll(t, 2r) ≤ rt

2r

Ex
[
W fwd

]
= Ex [mct,2τ ] ≤ mcoll(t, 2τ ) ≤ τt

2τ

Ex
[
Wmitm

]
= Ex

[
mct2,2b

]
≤ mcoll′(t2, 2b) ≤ bt2

2b
.

ut
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A Multicollision results

A.1 Expected multicollition in an uniform sample

Let X1, . . . ,Xq ←$D where |D| = N . For notational simplicity, we write log2N
as n. We denote the maximum multicollision random variable for the sample as
mcq,N . More precisely, mcq,N = maxa |{i : Xi = a}|. For any integer ρ ≥ 2,

Pr[mcq,N ≥ ρ] ≤
∑
a∈D

Pr[|{i : Xi = a}| ≥ ρ]

≤ N ·
(
q
ρ

)
Nρ

≤ N · qρ

Nρρ!

≤ N ·
(
qe

ρN

)ρ
We justify the inequalities in the following way: The first inequality is due to
the union bound. If there are at least ρ indices for which Xi takes value a, we
can choose the first ρ indices in

(
q
ρ

)
ways. This justifies the second inequality.

The last inequality follows from the simple observation that eρ ≥ ρρ/ρ!. Thus,
we have

Pr[mcq,N ≥ ρ] ≤ N ·
(
qe

ρN

)ρ
. (2)

https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/orange-spec.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/orange-spec.pdf
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For any positive integer valued random variable Y bounded by q:

Ex [Y] ≤
q∑
i=0

Pr[Y ≥ i]

≤ (ρ− 1) +

q∑
i=ρ

Pr[Y ≥ i]

≤ (ρ− 1) + ρ

d qρ e∑
j=1

Pr[Y ≥ j · ρ]

≤ (ρ− 1) + ρ

d qρ e∑
j=1

N ·
(

qe

j · ρN

)j·ρ
substituting Eq (2)

≤ (ρ− 1) + ρN

d qρ e∑
j=1

(
qe

ρN

)j·ρ
Now if

(
qe
ρN

)
< 1 then we have

d qρ e∑
j=1

(
qe

ρN

)j·ρ
≤
∞∑
j=1

(
qe

ρN

)j·ρ
≤

(
qe
ρN

)ρ
1−

(
qe
ρN

)ρ
Hence if

(
qe
ρN

)
< 1

Ex [Y] ≤ (ρ− 1) + ρN ·

(
qe
ρN

)ρ
1−

(
qe
ρN

)ρ (3)

Using Eq. (2), and Eq. (3) we can prove the following results for the expected
value of maximum multicollision. We write mcoll(q,N) to denote Ex [mcq,N ].

Proposition 1. mcoll(q,N) <


4n

logn if q = N,n ≥ 16

4n if q = nN, n ≥ 4

4nd q
nN e if q ≥ nN, n ≥ 4

4 log q if q < N, n ≥ 16

Proof. First let q = N. Substituting q in Eq. 3 we have

Ex [Y ] ≤ (ρ− 1) + ρN ·

(
e
ρ

)ρ
1−

(
e
ρ

)ρ
Now Let ρ = 4n

logn , n ≥ 16 Then e
ρ <

1
2 and Hence 1−

(
e
ρ

)ρ
> e

ρ . Hence

Ex [Y ] < (ρ− 1) + ρN ·
(
e

ρ

)ρ−1
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Now by substituting the value of ρ in ρN ·
(
e
ρ

)ρ−1
and by taking logarithm

it can be easily shown that ρN ·
(
e
ρ

)ρ−1
≤ 1 and hence Ex [Y ] < 4n

logn , n ≥ 16.

Let q = nN, ρ = 4n. Substituting q, ρ in Eq. 3 we have

Ex [Y ] ≤ (4n− 1) + 4nN ·
(
e
4

)4n
1−

(
e
4

)4n
Now let n ≥ 4 then we have 4n ≤ N and hence

4nN ·
(
e
4

)4n
1−

(
e
4

)4n ≤ N2 ·
(
e
4

)4n
1−

(
e
4

)4n
Notice that for n ≥ 2 we have(

e
4

)4n
1−

(
e
4

)4n < (e4) 18
5 n

=

[(e
4

) 18
5

]n
≤
(

1

4

)n
=

1

N2

The first ineqality follows from the facts that for n ≥ 2

1−
(e

4

)4n
≥ 1−

(e
4

)8
> 9/10 and

(e
4

) 2
5n ≤

(e
4

) 4
5

<
3

4
=⇒ 1−

(e
4

)4n
>
(e

4

) 2
5n

Hence Ex [Y ] < 4n, n ≥ 4.
When q ≥ nN , we can group them into dq/nNe samples each of size exactly

nN (we can add more samples if required). This would prove the result when
q ≥ nN .

Finally, when q < N , we can simply bound Ex [mcq,N ] < 4 log q.

When n ≥ 16, for all q, we can write the bounds into one single form:

mcoll(q,N) < nq/N (4)

A.2 Expected Maximum Multicollision in a Non-uniform Random
Sample

Now we bound expectation of maximum multicollision in a sample X1, . . . ,Xq
(can be arbitrarily dependent) which is not completely uniform random. How-
ever, it satisfies the following property for all distinct i1, . . . , iρ for any integer
ρ ≥ 2:

Pr(Xi1 = a, · · ·Xiρ = a) ≤ 1

N ′r
(5)

Then, we can actually perform the same analysis as before. For any integer ρ ≥ 2,
it can be shown that

Pr[mcq,N ≥ ρ] ≤ N ·
(
qe

ρN ′

)ρ
(6)

Using it, we can prove the following results for expected value of maximum
multicollision.
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Proposition 2. Ex [mcq,N ] <


4 log q if q < N ′

4n
logn if N ′ ≤ q < N ′n
4q
N ′ if q ≥ N ′n

In the non-random case, we denote Ex [mcq,N ] by mcoll′(q,N) As before, when
n ≥ 16, we have

mcoll′(q,N) ≤ nq/N ′ (7)

B Bounding bad events(Proof of Lemma 1)

bounding Pr [B1] : Fix i ∈ (qp].SinceK is randomly chosen, probability of (U i, V i) ∈
ωp s.t. bU icκ = K is bounded by 1

2κ . Hence bounding over all i, we have

Pr [B1]] ≤ qp
2κ

.
bounding Pr [B2] : This event can be analysed by dividing into the following
cases
Case 1. ∃i, j, a;Zij‖Y ij = Va. Encryption after primitive query : This case can be

bounded by probability at most 1
2b

. Running over qp many primitive queries and
σe many blocks we have

Pr [Case1] ≤ qp · σe
2b

Case 2. ∃i, j, a;Zij‖Y ij = Va, dira = +. Encryption before primitive query This can

be bounded by probability at most 1
2b−a+1

Running over σe many encryption
blocks and qf many a indices we have

Pr [Case2] ≤ qf · σe
2b − a+ 1

Case 3. ∃i, j, a;Zij‖Y ij = Va, dira = −. Encryption before primitive query Here the

adversary has access to Y ij as it has already been released. Let Φout denote the

number of multi-collisions in Y ij .

Pr [Case3] =
∑
Φout

Pr [Case3 ∧ Φout]

=
∑
Φout

Pr [Case3|Φout] · Pr [Φout]

≤
∑
Φout

Φout.qb
2c

Pr [Φout]

≤ qp
2c

∑
Φout

ΦoutPr [Φout]

≤ Ex[Φout] ·
qp
2c

=
qp ·mcoll(σe, 2

r)

2c
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Since the three Cases are mutually exclusive, we have,

Pr [B2] ≤ 2 · qp · σe
2b

+
qp ·mcoll(σe, 2

r)

2c

bounding Pr [B3¬B1] : Case 1: ∃i, j, a, W i
j‖Xi

j = Ua, encryption after primitive:

This case can be bounded by probability at most 1/2b, as Y ij−1 and Zij−1 are

chosen uniformly at random and hence Xi
j and W i

j are determined randomly .
We have at most σe many (i, j) pairs and qp many a indices. Thus this can be
bounded by at most σeqp/2

b.
Case 2: ∃i, j, a, W i

j‖Xi
j = Ua, dira = −, encryption before primitive: This case can

be bounded by probability at most 1/(2b−a+1). We have at most σe many (i, j)
pairs and qb many a indices. Thus this can be bounded by at most σeqb/(2

b −
a+ 1).
Case 3: ∃i, j, a, W i

j‖Xi
j = Ua, dira = +, encryption before primitive: Let Φin de-

note the number of multicollisions on Xi
j .

With a similar analysis on the multicollision of output values, we have
Pr [Case 3] ≤ Ex [Φ]in

qb
2c . Since the three cases are mutually exclusive, we have

Pr[B3¬B1] ≤ 2σeqp
2b

+
qpmcoll(σe, 2

r)

2c
.

Bounding Pr[B4]: The probability of this event can be bounded in a straight-
forward manner by at most σe(σe − 1)/2b+1.
Bounding Pr[B5]: This event is similar to B4, and the probability is bounded
by at most σe(σe − 1)/2b+1.
Bounding Pr[B6]: Note that after the i-th online query the adversary knows
the following values;
Y ij−1, X

i
j , Z

i
j−1 ⊕ αZij−2 = Zij−1 ⊕ αjZi−1 ∀1 ≤ j ≤ mi − 1;Y imi−1,W

i
mi−1,

αδ
i
miZmi−1 ⊕ αZmi−2 = αδ

i
miZmi−1 ⊕ αmiZi−1, T.

Case 1. pi = mi − 1, j′ = mi′ ;W
i
mi‖X

i
mi = W i′

mi′
‖Xi′

mi′
: The values ofW i

mi‖X
i
mi

and W i′

mi′
‖Xi′

mi′
upto r-most significant bits can be matched by adjusting

bC∗ipi+1cr = bCi′mi′ cr⊕Y
∗i
mi−1⊕Y

i′

mi′−1 Now We have bW i
mi‖X

i
micc = αδ

i
miZimi−1⊕

dC∗imiec and bW i′

mi′
‖Xi′

mi′
cc = α

δi
′
m
i′Zi

′

mi′−1 ⊕ dC
i′

mi′
ec. Hence Case 1 happens if

and only if

dCi
′

mi′
ec = α

δi
′
m
i′Zi

′

mi′−1⊕α
δimiZimi−1⊕dC

∗i
miec == αmiZi−1⊕αmi′Zi

′

−1⊕dC∗imiec⊕A

Where A is some known value. Now if N∗i 6= N i′ we have Zi
′

−1, Z
i
−1 are chosen

independently at uniformly random, hence, we have probability that the above
holds is at most 1

2c . If N∗i = N i′ then we must have mi 6= mi′ and hence since
Zi−1 is chosen at uniformly random, we have αmiZi−1 ⊕ αmi′Zi−1 is uniformly
random. Hence the probability is again at most 1

2c . Varying over all i ∈ D and
i′ ∈ E we have

Pr [Case 1] ≤ qvqe
2c



Security Proof of ORANGE-Zest 17

Case 2. pi = mi − 1, j′ < mi′ ;W
i
mi‖X

i
mi = W i′

j′ ‖Xi′

j′ :

We have W i
mi‖X

i
mi = (bC∗ipi+1cr ⊕ Y ∗imi−1)‖(αmiZi−1 ⊕ dC∗imiec ⊕A)

W i′

j′ ‖Xi′

j′ = (αj
′
Zi
′

−1 ⊕ dCi
′

j′ec ⊕ B)‖(bCi′j′cr ⊕ Y i
′

j′−1). Where A and B are
known values.

If r = c = b
2 it can be seen that Case 2 holds iff (αmiZi−1 ⊕ dC∗imiec) =

(bCi′j′cr ⊕ Y i
′

j′−1) and (bC∗ipi+1cr ⊕ Y ∗imi−1) = (αj
′
Zi
′

−1 ⊕ dCi
′

j′ec) both holds. If

N∗i 6= N i′ we have Zi
′

j′−1, Z
i
mi−1 are chosen independently uniformly at random,

we have for fix i, i′, j′ the probablity is bounded by 1
22c .

If N∗i = N i′ , We have since Zi−1 is chosen uniformly at random and since
both the equations need to hold independently we have again the probability is
bounded by 1

22c .
Now varying over all i ∈ D, i′ ∈ E , j′ ∈ (m′i] we have

Pr [case 2] ≤ qvσe
22c

Case 3. pi < mi − 1, j′ = mi′ ;W
i
mi‖X

i
mi = W i′

j′ ‖Xi′

j′ : This can be bounded in

the same way as in Case 2. by

Pr [case 3] ≤ qvqe
22c

Case 4. pi < mi − 1, j′ < mi′ ;W
i
pi+1‖Xi

pi+1 = W i′

j′ ‖Xi′

j′ :

Xi
mi and Xi′

j′ can be matched by adjusting bC∗ipi+1cr = bCi′j′cr ⊕ Y ∗ipi ⊕ Y
i′

j′−1
Now W i

mi and W i′

j′ matches iff

dCi
′

j′ec = Zipi ⊕ Z
i′

j′−1 ⊕ dC∗ipi+1ec = αpi+1Zi−1 ⊕ αj
′
Zi
′

−1 ⊕ dC∗ipi+1ec ⊕A

Where A is some known value.
Now We have if N∗i 6= N i′ then Zi−1 and Zi

′

−1 are independent and chosen

uniformly at random. If N∗i = N i′ then we must have pi + 1 6= j′ and hence
αpi+1Zi−1 ⊕ αj

′
Zi−1 is uniformly random. Hence, the probability that the above

happens in the i-th query can be bounded by σe
2c and hence,

Pr [ Case 4] ≤ qvσe
2c

Since all the above cases are mutually exclusive we have

Pr [B6] ≤ 4σeσv
2c

Bounding Pr[B7]: Let Wk(ωp′) denote the k-length multi-chain induced by

ωp. Suppose the event holds for the i-th decryption query and N∗i = N i′ . So

Zi
′

pi‖Y
i′

pi must be the starting node of the multi-chain. Since Zi
′

pi can be chosen
randomly and independent of ωp we have the probability to hold B7 in the i-th

decryption query is at most
Wmi

2c . So by union bound Pr [B7|ωp] ≤
∑
i∈D

Wmi

2c .
Hence
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Pr [B7] ≤
∑
i∈D

µmi,qp
2c

Bounding Pr [B8]: This event corresponds to the case when the first non-
trivial decryption query block matches a primitive query and after following
some partial chain matches an encryption query block. The probability of this

event happening in the i-th decryption query is at most
qp
2c ×

m∗iΦin
2c . Taking

expectation we obtain

Pr [B8] ≤ qpσvmcoll(σe, 2
r)

22c

Lemma 1 can be proved by adding all the probabilities and bounding mcoll(σe, 2
r)

by rσe
2r ,∀r ≥ 16.

Theorem 1 can be proved by using the bound on µσv,qp from Theorem 4 (See
Appendix) and plugging it in Theorem 3.


	Security Proof of ORANGE-Zest

