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Abstract. mixFeed is a round 1 candidate in NIST LwC competition. It
is important in the sense that it uses a state size as small as the block size
of the underlying block cipher primitive. In this paper we define a new
AEAD mode called mF which can viewed as a generalization of mixFeed.
We give a security bound on mF and then comparing it with mixFeed
we finally give a security bound of mixFeed. We conclude that mixFeed
in secure within the NIST prescribed Data complexity of 250 bytes and
time complexity of 2112.

1 Introduction

In recent years lightweight cryptography has been immensely popular in the
sense that the modern computing is switching from desktop computers to small
devices. due to the resource restrain in these small devices, lightweight schemes
must be used to provide security . In this respect, to increase the research interest
of the scientific community, NIST has initiated a Light Weight Cryptography
competition. mixFeed [1] is a round one candidate in the NIST-LwC competition.
In comparison to other submissions mixFeed has the major advantage that it
is the only submission that has a state size as small as the block size of the
underlying cipher along with other advantages like it uses minimal number of
xor counts, it is inverse free and uses dynamic nonce dependent key.

Our Contribution

1. In Section 2 we define a new mode of light weight AEAD called mF, which
can be viewed as a more generalized version of mixFeed.

2. In Section 3 we define different security notions of mF and in Section 4-5
we give the complete security proof of mF. The Main Results being For
any adversary running in time t and making atmost q many encryption and
decryption(in case of forgery) query with total of at most σ many blocks,

Theorem 1.

AdvprivmF (q, σ, t) ≤ t+ σ

2n
+

σ2
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+
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+
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Theorem 2.

AdvforgemF (q, σ, t) ≤ σ
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+
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+
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where n is the state size and µ is the number of multi collisions allowed
in the input of the tweakable blockcipher(explained later in details).For all
calculation purposes take µ ≥ 5.

Note that According to NIST requirement σ ≤ 246 and t ≤ 2112. Following

mixFeed we take n = 128 and µ = 5. Then We have σ

(
1 + µ2

2n

)(
σ

2
n
2

)µ−1
<

1
225 . And Hence the dominating term is 2µt

2n < 1
212 in both Theorem 1 and

Theorem 2. Hence we conclude that mF is well secured within the complexity
bounds specification of NIST.

3. Finally in Section 6 we compare the design difference between mF and
mixFeed and as a consequence give the security proof of mixFeed. We show
that the difference in adversarial advantage is much less than that of the
overall dominating term and hence following the security argument of mF we
conclude that mixFeed is well secured within the complexity bounds specified
by NIST.

2 The mF Mode of AEAD

Let Ẽ be an n-bit tweakable block cipher[2] with tweak space {0, 1}n−8 × [L]
where L is a reasonably large positive integer. We define an encoding method
to encode a triple (N,A,M) of bit strings where N ∈ {0, 1}n−8. Let us assume

that both A and M are not empty. Let N̄ =

{
071‖N if |A| = 0

08‖N otherwise.
. We encode

associate data by a prefix-free function Fmt1(A, |M | =? 0) = Ā = (A1, . . . , Aa) ∈
({0, 1}n)a (for some positive integer a) and message by possibly another prefix-
free function Fmt2(M) = M̄ = (M1, . . . ,Mm) ∈ ({0, 1}n)m (for some nonnega-
tive m). For empty message M , we encode to empty bit string (i.e. m is zero).
We now define the mF mode encryption scheme as shown in figure :
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Fig. 1: mF mode of AEAD with tweakable block cipher Ẽ. Here the i-th block tweak
twi := (N, i). The Feedback function FB is presented in the diagram below.

⊕

⊕
Y X

M0

M1C0

C1

≡Y XFB

M=M1‖M0

C=C1‖C0

3 Security Definitions

Here we define the Different security notions of mF and the tweakable block
cipher Ẽ.

3.1 Security Definitions of mF

Let EncK ,DecK respectively denote the encryption and decryption algorithms
of mF with key K.

Privacy Given an adversary A we define the privacy advantage of A against mF
as AdvprivmF (A ) = |Pr

[
A EncK = 1

]
− Pr

[
A $ = 1

]
|, where $ returns a random

output string of same length as EncK . The privacy advantage of mF is defined
as

AdvprivmF (q, σ, t) = max
A

AdvprivmF (A )

where the maximum is taken over all the nonce respecting adversaries A running
in time t and making at most q many encryption queries with total number of
blocks in all the queries being σ.
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Forgery We say that a nonce respecting oracle adversary A EncK ,DecK forges mF
if A is able to make a fresh query (N,A,C, T ) toDK such thatDK(N,A,C, T ) 6=⊥.
By fresh query we mean that the adversary does not make any previous query
(N,A,M) to EncK such that EncK(N,A,M) = (C, T ). We say a decryption
query valid if DK(N,A,C, T ) 6=⊥. The forging advantage of an adversary A is
written as

AdvforgemF (A ) = Pr
[
A EncK ,DecK forges

]
and we write

AdvforgemF (q, σ, t) = max
A

AdvforgemF (A )

where the maximum is taken over all adversary A running in time t, making
at most qe many nonce respecting encryption queries with maximum σe many
blocks and making at most qd many decryption queries with maximum σd many
blocks. Define q = qe + qd, σ = σe + σd. Note that the decryption queries
are not necessarily nonce respecting i.e. nonce can be repeated in the decryption
queries and an encryption query and a decryption query can use the same nonce.
However, all nonces used in encryption queries are distinct.

3.2 Security Definitions of Tweakable block cipher

TPRP-security Let Ẽ be an n-bit tweakable block cipher with tweak space
T . The TPRP-advantage of Ẽ against an oracle adversary A is defined as

AdvTPRP
Ẽ

(A ) = |Pr
[
A ẼK = 1

]
− Pr

[
A Π̃ = 1

]
| where Π̃ is chosen uniformly

from the set of all functions π̃ : T × {0, 1}n → {0, 1}n where for every tw ∈ T ,
π̃(tw, ·) is a permutation on {0, 1}n. We call Π̃ a tweakable random permutation.
We write,

AdvTPRP
Ẽ

(q, t) = max
A

AdvTPRP
Ẽ

(A )

where maximum is taken over all adversaries A running in time t making q
many tweak-input queries of the form (tw,X). We define µ-TPRP advantage of
Ẽ to be

Advµ-TPRP
Ẽ

(q, t) = max
A

AdvTPRP
Ẽ

(A )

where the maximum is taken over all the adversaries A as defined above with the
additional restriction that it is µ-respecting i.e. the number of queries by A with
same input X is at most µ. When the tweakable block cipher is instantiated in
the ideal cipher model, the time parameter t denotes the number of ideal cipher
calls.

Multi-Commitment Prediction Let Ẽ be a tweakable block cipher. Let A
be an adversary with oracle access to Ẽ, i.e. it can make queries of the form
(tw,X) to Ẽ to receive ẼK(tw,X). Given Such an adversary A consider the
following game between A and Ẽ

Phase 1 : A makes queries of the form (tw,X) and receives Y = ẼK(tw,X).
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Phase 2 : After all the queries of Phase 1 is done,
(a) For some k ≤ λ, adversary makes k many commitments of the form

(twi, xi, yi) where xi, yi ∈ {0, 1}
n
2 .

(b) A makes at most λ many queries to produce at most λ many predic-
tion tuples of the form (twj , Xj)j∈[1,λ] such that (twj , Xj) are fresh i.e.
∀j, (twj , Xj) has never been queried before predicting it.

We say that any adversary A wins the λ-multi-commitment-prediction game if
for some prediction tuple (twj , Xj) there exist a commitment tuple (twi, xi, yi)
such that

twi = twj ;xi = dXjen2 ; bẼK(twj , Xj)cn2 = yi.

The λ-multi-commitment-predicting advantage of an adversary A is defined
as

Advλ-mcp

Ẽ
(A ) = Pr

[
A Ẽwins the λ-multi-commitment-prediction game

]
and we write,

Advλ-mcp

Ẽ
(q, t) = max

A
Advλ-mcp

Ẽ
(A )

where maximum is taken over all adversaries A running in time t making at
most q many queries.

We define (µ, λ)-mcp advantage of A to be

Adv
(µ,λ)-mcp

Ẽ
(q, t) = max

A
Advλ-mcp

Ẽ
(A )

where the maximum is taken over all adversaries as defined above with the
additional restriction that they make µ-respecting queries in Phase 1 of the
game.

In the ideal cipher model the (λ, µ)-multi commitment prediction security
is defined in the same way as above with an additional restriction that the
adversary doesn’t make any primitive calls to E in Phase 2.

Multi-Collision Let Ẽ be a tweakable block cipher. Define an oracle OẼ which
takes a query input of the form (tw,X,C) and returns X ′ = C ⊕ 0

n
2 ‖bY cn

2

where Y = ẼK(tw,X).We say that an adversary A with oracle access to O
produces a µ-multicollision if it can produce µ many trascripts of the form
(twi, Xi, Ci, X

′
i)i∈[1,µ] such thatX ′i = X ′j for all i, j ∈ [1, µ]. The µ-multicollision-

advantage of the adversary A is defined as

Advµ-mcoll

Ẽ
(A ) = Pr

[
A OẼ produces µ-multicollision

]
and we write

Advµ-mcoll

Ẽ
(q) = max

A
Advµ-mcoll

Ẽ
(A )

where maximum is taken over all adversaries A making at most q many queries.
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4 Security Proof of mF

Here we give upper bounds on the privacy advantage and forging advantage of
mF against any adversary B.

4.1 Privacy

Let B be any adversary which successfully breaks the privacy security of mF.
We construct a µ-respecting adversary A which uses B to break the µ-TPRP
security of Ẽ.

Let CH be a µ-TPRP challenger. A acts as a privacy challenger for B as
follows:

1. CH randomly chooses a bit b ∈ {0, 1}. if b = 1, CH computes using Ẽ.
Otherwise CH chooses a random function P : T × {0, 1}n → {0, 1}n such
that for all twi ∈ T , P (twi, ?) are independent random permutations from
{0, 1}n → {0, 1}n and computes using P .

2. on receiving encryption queries from B, of the form (N,A,M),

(a) A computes Fmt(N,A,M) = (N̄ , (A1, . . . , Aa), (M1, . . . ,Mm)).

(b) For all 0 ≤ j ≤ l, A defines twj = (N, j).

(c) If number of previous queries to CH of the form (?, N̄) is less than µ
then A queries (tw0, N̄) to CH to receive Y0.Else it aborts.

(d) For all 1 ≤ j ≤ a,
i. A computes Xj = dAj ⊕ Yj−1en2 ‖bAjcn2 .

ii. If number of previous queries to CH of the form (?,Xj) is less than
µ then it queries (twj , Xj) to CH to receive Yj . Else it aborts.

(e) For 1 ≤ j ≤ m,
i. A computes Cj = Mj⊕Ya+j−1 and Xa+j = dCjen2 ‖bCj⊕Ya+j−1cn2 .

ii. If number of previous queries to CH of the form (?,Xa+j) is less than
µ then it queries (twa+j , Xa+j) to CH to receive Ya+j . Else it aborts.

(f) Finally if A doesn’t abort in any of the previous steps, then it defines
C := Cm‖ · · · ‖C1 and T := Ya+m and sends (C, T ) to B.

3. If B produces the distinguishing bit b′ then A also produces the same dis-
tinguishing bit b′.
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Theorem 3. For any privacy breaking adversary B of mF any µ-TPRP adver-
sary A of Ẽ and any µ+ 1-multicollision adversary C of Ẽ, we have

AdvprivmF (B) ≤ Advµ-TPRP
Ẽ

(A ) + Advµ+1-mcoll
P (C ).

Proof. See Appendix.

4.2 Forgery

Let B be any forging adversary of mF. Suppose B makes qd many forging at-
tempts with σd many encryption blocks. We construct a (µ−1, σd)-mcp adversary
A which uses B to win the (µ−1, σd)-multi-commitment-prediction game of Ẽ.

Let CH be a (µ− 1, λ)-mcp challenger. A acts as a forgery challenger for B
as follows:

Phase 1:

1. Whenever B sends an encryption query of the form (N i, Ai,M i)i∈E ,

(a) A responds to the query by computing (Ci, T i) by making the required
ẼK queries to CH.

(b) In the previous step, A always follows the restriction that no more than
µ− 1 queries to Ẽ have the same input. Else it aborts.

2. For each j ∈ [1, qd], on receiving decryption queries of the form (N∗j , A∗j , C∗j , T ∗j)
from B, A responds it with ⊥, and does the following:

(a) A checks if B has previously made any encryption query (N i, Ai,M i)
and received output of the form (Ci, T i) such that T i = T ∗j and does
the following:

i. if there doesn’t exist any encryption query (N i, Ai,M i) from B such
that T i = T ∗j , then A sets pj = 0.

ii. Else if ∃(N i, Ai,M i) such that T i = T ∗j but N i 6= N∗j or ai+mi 6=
a∗j +m∗j or dCimien2 6= dC

∗j
m∗j
en

2
, then A sets pj = 0.

iii. Else if p′j ∈ N be such that C∗jm∗j−k
= Cimi−k,∀k ∈ [0, p′j) and

C∗jm∗j−p′j
6= Cimi−p′j

but dC∗jm∗j−p′jen2 = dCimi−p′jen2 then define pj =

p′j + 1.

iv. Else let p′j ∈ N be such that C∗jm∗j−k
= Cimi−k,∀k ∈ [0, pj) and

dC∗jm∗j−p′jen2 6= dC
i
mi−p′j

en
2

then define pj = p′j .
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(b) A computes Y ∗jk for all k ∈ [0, a∗j + m∗j − pj − 1] with the help of CH
following the restriction that no more than µ− 1 queries to Ẽ have the
same input. In that case A aborts.

(c) Note that, if there exist a common prefix between (N i, Ai, Ci) and
(N∗j , A∗j , C∗j) then A already have computed upto the common prefix
length during encryption query and thus need not send any new encryp-
tion query to CH for computation up to that point.

Phase 2:

1. For each j ∈ [1, qd],and for each k ∈ [1, pj ] A defines ∆j
k = bC∗jm∗j−kcn2 ⊕

bCimi−kcn2 .

2. For each j ∈ [1, qd],and for each k ∈ [0, pj ] A makes commitments of the

form (tw∗jk , x
∗j
k , y

∗j
k ) where,

tw∗jk = (N∗j , a∗j +m∗j − k);x∗jk = dC∗jm∗j−ken2

y∗jk =

{
bT ∗jcn

2
if k = 0

bCimi−k+1 ⊕M i
mi−k+1cn2 ⊕∆

j
k if k 6= 0 and N i = N∗j .

3. For each j ∈ [1, qd], A proceeds as follows:

(a) Note that, A knows Y ∗ja∗j+m∗j−pj−1
from Phase 1.

(b) for k = pj to 0,

i. A knows the value of Y ∗ja∗j+m∗j−k−1
.

ii. A then sets X∗ja∗j+m∗j−k
= (0

n
2 ‖bY ∗ja∗j+m∗j−k−1cn2 )⊕ C∗jm∗j−k.

iii. It sets (tw∗jk , X
∗j
a∗j+m

∗
j−k

, y∗jk ) as a prediction tuple, where tw∗jk , y
∗j
k

are as defined above.

iv. finally it queries (tw∗jk , X
∗j
a∗j+m

∗
j−k

) to CH and receives Y ∗ja∗j+m∗j−k
.

Theorem 4. For any forging adversary B of mF making qe many encryption
queries with σe many encryption query blocks, qd many decryption queries with
σd many decryption query blocks , any (µ − 1, σd)-mcp adversary A of Ẽ, and
any µ+ 1-multicollision adversary C of Ẽ, we have

AdvforgemF (B) ≤ Adv
(µ−1,σd)-mcp
Ẽ

(A ) + Adv
(µ+1)-mcoll

Ẽ
(C ).

Proof. See Appendix.
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5 Bounding security of Ẽ

Here we bound the advantages of an adversary playing in different security games
as defined in Section 3.2. The tweakable block cipher Ẽ can be best understood
from the following diagram.

(N, i)

X

Ẽ

Y

K

≡
N

K

E

KN

αi

αi ·KN

X

E

Y

5.1 Bounding µ-TPRP Security

For a detailed discussion see Appendix. The main result is,

Theorem 5.

Advµ-TPRP
Ẽ

(d, t, µ) ≤ t+ d

2n
+

d2

2n+1
+

2µt

2n
+

(
d

µ+1

)
(2n)µ

.

5.2 Bounding (µ, λ)-mcp Security

For a detailed discussion see Appendix. The main result is,

Theorem 6.

Adv
(µ,λ)-mcp

Ẽ
(d, t) ≤ λ

2
n
2

+
t+ d

2n
+

d2

2n+1
+

2µt

2n
+

(
d

µ+1

)
(2n)µ

+
λd

2n+1
+

λt

2
3n
2

.

5.3 Bounding µ-multi collision

For a detailed discussion see Appendix. The main results are

Theorem 7.

Advµ-mcoll

Ẽ
(d) ≤ d

(
1 +

µ2

2n

)(
d

2
n
2

)µ−1
+

d2

2n+1

.
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Theorem 8.

Advµ-mcoll
P (d) ≤ d

(
1 +

µ2

2n

)(
d

2
n
2

)µ−1
.

Theorem 1 can be derived from Theorem 3, Theorem 5 and Theorem 8.

Theorem 2 can be derived from Theorem 4 , Theorem 6 and Theorem 7.

6 Security Proof of mixFeed

6.1 Comparision of mixFeed and mF

In this section we compare the mixFeed construction with our more general mF
construction. There are two major differences.

First notice that for mF the properties of Fmt1,Fmt2 are required to prevent
length extension or length reduction type attacks. In case of mixFeed this kind
of attacks are prevented by using an extra call to the block cipher. Hence we can
consider mixFeed to be a variation of mF with no Fmt1 and Fmt2 property and
two extra block cipher calls.

Now the last associated data/message block processing of mixfeed can be
best understood from the diagram bellow. since both are essentially same with
different δ values as described in [1] we only draw the diagram for last message
block.

dCmen2

bMmcn2

E

Kl

⊕

δM

E

Kl+1

T

Yl Xl+1

Observe that since no value is leaked during this last block processing hence
there is no adversarial advantage of the adversary in the sense of privacy.

In case of forgery, the only difference comes from the absence of the proper-
ties of the Fmt1 and Fmt2 functions.

Consider the following events due to the difference in the last block processing.
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BAD1 : For i-th encryption query and j-th decryption query we have
(x∗jl∗j+1,K

∗j
l∗j+1) 6= (xili+1,K

i
li+1) but T i = T ∗j .

BAD2 : For i-th encryption query and j-th decryption query we have
(x∗jl∗j+1,K

∗j
l∗j+1) = (xili+1,K

i
li+1).

The second difference between mF and mixFeed comes through the tweakable
block cipher representations. The tweakable block cipher representation corre-
sponding to mixFeed can be best understood from the diagram bellow.

(N, i)

X

Ẽ
Y

K

≡
N

K

E
KN

ρi

ρi(KN )

X

E
Y

The tweable block cipher in mixFeed. Here ρ is the 11-th round key function in AES[3]
key scheduling algorithm. ρi denotes i-many consecutive applications of ρ.

The difference of security in mixFeed and mF comes from the periodicity of α
multiplication and the ρ function. In mF, since α is a primitive element of degree
n, the periodicity of multiplication by α is 2n − 1 which is very large and hence
doesn’t create any problem. In case of mixFeed the periodicity of ρ depends on
the input and is not a constant value i.e. it may vary for different keys.
Note that, this difference in periodicity only effects the probability of occurrence
of the event
BAD3 : For some i1 6= i2 ∈ E we have (N i1 , ji1) 6= (N i2 , ji2) but Ki1 = Ki2 .
Rest of the analysis for mF can be applied for mixFeed as it is.

To bound BAD3 in case of mixFeed we make the following assumption on
ρ.

Assumption 1 For any K ∈ {0, 1}n chosen uniformly at random, probability
that K has a period at most l is at most l

2
n
2
.

Note that our assumption is weak in the sense that for an ideal permu-
tation the above probability is at most l

2n . Recently Mustafa Khairallah has
observed that there are at least 233.77 keys with a period of 230.08 in the AES
Key scheduling algorithm. Note that the probability that one of these keys are

used is 233.77

2128 = 2−94.23. Whereas by our assumption the probability is at most
230.08

264 = 2−33.92. So, we conclude that his observation does not violate our as-
sumption.
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Define BAD = ∪3i=1BADi. Then given the above assumption we have,

Lemma 1.

Pr [BAD] ≤ 3σ2

2n+1
+

σ

2
n
2
.

Proof. For a detailed proof see Appendix F

Plugging in Lemma 1 properly in Theorems 5,6,7 we have from Theorem 3,
Theorem 5 and Theorem 8

Theorem 9.

AdvprivmixFeed(q, σ, t) ≤
t+ σ

2n
+

σ2

2n+1
+

σ

2
n
2

+
2µt

2n
+

(
σ
µ+1

)
(2n)µ

+σ

(
1 +

µ2

2n

)(
σ

2
n
2

)µ−1
.

And From Theorem 4, Theorem 6 and Theorem 7

Theorem 10.

AdvforgemixFeed(q, σ, t) ≤
3σ

2
n
2

+
t+ σ

2n
+

5σ2

2n+1
+

2µt

2n
+

(
σ
µ+1

)
(2n)µ

+ σ

(
1 +

µ2

2n

)(
σ

2
n
2

)µ−1
.

Now comparing Theorem 1 and 9 we have,

AdvprivmixFeed(q, σ, t) ≤ AdvprivmF (q, σ, t) +
σ

2
n
2

+
2σ2

2n+1
.

Now as discussed in the introduction, with NIST specified complexity bounds
the dominating term in the advantage of mF is bounded by 1

212 and σ

2
n
2
≤ 1

218 .

Hence if AdvprivmF (q, σ, t) is of order 1
212 then so is AdvprivmixFeed(q, σ, t).

From Theorem 2 and 10 similar argument follows for the forgery security of
mixFeed and mF.
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A Proof of Theorem 3

Proof. Suppose CH output the bit b ∈ {0, 1}. If b = 1 then CHb(tw,X) =
P (tw,X) and if b = 0 then CHb(tw,X) = ẼK(tw,X). We define the event
(CH → b) ∩ (A Aborts) as A b Aborts.

Note that at any stage of the game between A and B, if while comput-
ing the encryption query responses for B, A needs to make a new query of
the form (tw

iµ+1

jµ+1
, X

iµ+1

jµ+1
) and it has already queried µ many queries of the form

(twi1j1 , X
i1
j1

), . . . , (tw
iµ
jµ
, X

iµ
jµ

) to CH such that Xil
jl

= Xik
jk

for all l, k ∈ [1, µ + 1]
then A aborts.

Let Dil
jl

=

{
Ailjl if jl ≤ ai
Ciljl−aiotherwise.

In this case, adversary C can produce µ+ 1 many tuples of the form
(twiljl−1, X

il
jl−1, D

il
jl
, Xil

jl
) such that 0

n
2 ‖bY iljl−1cn2 ⊕D

il
jl

= Xil
jl

where

CHb(twiljl−1, Xiljl−1) = Y iljl−1 for all l ∈ [1, µ+ 1]. Thus C wins the
µ+ 1-multicollision game.

Hence we have

Pr
[
A b Aborts

]
≤ Pr

[
C produces µ+ 1-multicollisions in the CHb game

]
= Advµ+1-mcoll

CHb (C )

Now suppose the adversary A never aborts i.e never had to violate the µ + 1-
multicollision restriction.

Notice that A playing the above game, perfectly simulates as a privacy chal-
lenger for B. Suppose the TPRP - challenger CH randomly chooses a bit b = 1.
Then all the CH queries are responded through P . Suppose B makes a query of
the form (N,A,M). Then it is clear from the game that ∀0 ≤ j ≤ a+m, twj are
distinct and hence we have Yj are independent and uniformly random outputs
from P (twj , ?). Then since M is known we have Cj = Ya+j−1⊕Mj are uniformly
random and T = Ya+m is uniformly random. Hence the (C, T ) response from A
is uniformly random. Hence A acts as a privacy challenger which responds to
the encryption queries uniformly randomly and we have,

Pr
[
B$ = 1 ∩A doesn’t Abort

]
≤ Pr

[
A P = 1

]
.

Similarly if b = 0. Then CH responds to the queries of A correctly with
respect to Ẽ and thus the (C, T ) response from A to a (N,A,M) query by B
is correctly computed with respect to Ẽ. Hence A acts as a privacy challenger
which responds to the encryption queries correctly with respect to Ẽ an we have

Pr
[
BEnc = 1 ∩A doesn’t Abort

]
≤ Pr

[
A Ẽ = 1

]
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Now without loss of generality assume Pr
[
B$ = 1

]
≥ Pr

[
BEnc = 1

]
else

we consider the adversary BC which is compliment of B in the sense that it
follows the same security game as B with the difference that whenever B outputs
guessing bit b, BC outputs guessing bit b̄.

Then we have,

Pr
[
B$ = 1

]
− Pr

[
BEnc = 1

]
≤ Pr

[
B$ = 1 ∩A doesn’t Abort

]
+ Pr

[
B$ = 1 ∩A Aborts

]
− Pr

[
BEnc = 1 ∩A doesn’t Abort

]
− Pr

[
BEnc = 1 ∩A Aborts

]
≤ Pr

[
A P = 1

]
− Pr

[
A Ẽ = 1

]
+ Pr

[
A P = 1 ∩A Aborts

]
≤ Pr

[
A P = 1

]
− Pr

[
A Ẽ = 1

]
+ Pr

[
A 1 Aborts

]

Hence, we have,

∣∣∣∣Pr
[
B$ = 1

]
− Pr

[
BEnc = 1

]∣∣∣∣ ≤ ∣∣∣∣Pr
[
A P = 1

]
− Pr

[
A Ẽ = 1

]∣∣∣∣
+ Advµ+1-mcoll

P (C )

B Proof of Theorem 4

Claim. Suppose A never Aborts. If (N∗i, A∗i, C∗i, T ∗i) is a valid forgery,for some
i ∈ [1, qd] then for some k ∈ [0, pi] we have (tw∗ik , 0

n
2 ‖bY ∗a∗i+m∗i−k−1cn2 ⊕C

∗
m∗i−k

)

is a successful prediction query tuple.

Proof. (Claim B) Let(N∗j , A∗j , C∗j , T ∗j) is a valid forgery. If there doesn’t exist
any encryption query (N i, Ai,M i) from B such that T i = T ∗j or ∃(N i, Ai,M i)
such that T i = T ∗j but N i 6= N∗j or m∗j 6= mi or dCimien2 6= dC

∗j
m∗j
en

2
, then we

have pj = 0.

In the commitment phase the adversary A commits (tw∗j0 , x
∗j
0 , y

∗j
0 ) as de-

fined above.
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Now we have if any of the above condition is satisfied then (tw∗j0 , X
∗j
a∗j+m

∗
j
)

is fresh i.e. (tw∗j0 , X
∗j
a∗j+m

∗
j
) has never been queried before by A to CH, and

ẼK(tw∗j , X∗ja∗j+m∗j
) = T ∗j . Hence we see that (tw∗j0 , X

∗j
a∗j+m

∗
j
, bT ∗jcn

2
) is a valid

prediction with respect to the commitment (tw∗j0 , x
∗j
0 , y

∗j
0 ) .

Now let (N∗j , A∗j , C∗j , T ∗j) is a valid forgery. and let pj 6= 0 is as defined
before. Hence there exist a i ∈ [1, qe] such that N∗j = N i, a∗j +m∗j = ai +mi =
lj(say).

First let p′j ∈ N be such that C∗jm∗j−k
= Cimi−k,∀k ∈ [0, p′j) and C∗jm∗j−p′j

6=
Cimi−p′j

but dC∗jm∗j−p′jen2 = dCimi−p′jen2 . In this case pj = p′j+1. We have by suffix

property Y ∗jlj−pj = Y ilj−pj ⊕∆
j
m∗j−pj+1. and ∆j

m∗j−pj+1 6= 0. Since tw∗jpj = twipj we

must have X∗jlj−pj 6= Xi
lj−pj . And hence (tw∗jpj , X

∗j
lj−pj , y

∗j
pj ) is fresh.

Now let p′j ∈ N be such that C∗jm∗j−k
= Cimi−k,∀k ∈ [0, pj) and dC∗jm∗j−p′jen2 6=

dCimi−p′jen2 . Then we have pj = p′j and by the suffix property we must have

bY ∗jlj−pj−1cn2 = bY ilj−pj−1cn2 . Since dC∗jm∗j−pjen2 6= dC
i
mi−pjen2 we have, X∗jlj−pj 6=

Xi
lj−pj and hence (tw∗jpj , X

∗j
lj−pj , y

∗j
pj ) is fresh where tw∗j = (N∗j , lj − pj).

In the commitment phase the adversary commits (tw∗jk , x
∗j
k , y

∗j
k ) for all k ∈

[0, pj ].

Hence if (tw∗jpj , X
∗j
lj−pj , y

∗j
pj ) is a valid prediction with respect to (tw∗jpj , x

∗j
pj , y

∗j
pj )

we are done.

If not then we have bY ∗jlj−pjcn2 6= bY
i
lj−pjcn2 ⊕∆

j
m∗j−pj+1. Hence X∗jlj−pj+1 6=

Xi
lj−pj+1 as C∗jm∗j−pj+1 ⊕ Cimi−pi+1 = 0

n
2 ‖∆j

m∗j−pj+1.

For k = pj − 1to1, we have if (tw∗jk , X
∗j
lj−k, y

∗j
k ) is a valid prediction with re-

spect to the commitment (tw∗kk , x
∗j
k , y

∗j
k ) then we are done. Otherwise, we have

bY ∗jlj−kcn2 6= bY
i
lj−kcn2 . Hence X∗jlj−k+1 6= Xi

lj−k+1 as C∗jm∗j−k+1 = Cimi−k+1 and

tw∗jk−1 = (N∗j , lj − k + 1). Hence (tw∗jk−1, X
∗j
lj−k+1) is fresh.

Finally if k = 0 and we have bY ∗jlj−1cn2 6= bY
i
lj−1cn2 then X∗jlj 6= Xi

lj
as C∗jm∗j

=

Cimi and tw∗j0 = (N∗j , lj). Hence (tw∗j0 , X
∗j
lj

) is fresh. Now since (N∗j , A∗j , C∗j , T ∗j)

is a valid forgery we must have ẼK(tw∗j0 , X
∗j
lj

) = T ∗j . Hence (tw∗j0 , X
∗j
lj
, bT ∗jcn

2
)

is a valid prediction with respect to (tw∗j0 , x
∗j
0 , y

∗j
0 ).
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Proof. Theorem 4. For all encryption query of the form (N i, Ai,M i), A can
correctly simulate EncK as it has access to ẼK .

Suppose while computing the encryption query responses for B, A needs to
make a new query of the form (tw

iµ
jµ
, X

iµ
jµ

) and it has already queried µ−1 many

queries of the form (twi1j1 , X
i1
j1

), . . . , (tw
iµ
jµ
, X

iµ
jµ

) to CH such that Xil
jl

= Xik
jk

for

all l, k ∈ [1, µ] then A aborts.

Let Di
j =

{
Aij if j ≤ ai
Cij−aiotherwise.

Note that in this case, adversary C can produce µ many tuples of the form
(twiljl−1, X

il
jl−1, D

il
jl
, Xil

jl
) such that 0

n
2 ‖bY iljl−1cn2 ⊕D

il
jl

= Xil
jl

where

ẼK(twiljl−1, Xiljl−1) = Y iljl−1 for all l ∈ [1, µ].
Let p′j be the maximum length of the common prefix between a the decryption

query (N∗j , A∗j , C∗j , T ∗j) and any encryption response (N i, Ai, Ci, T i). Since
the value of Y ∗jp′j

is know from the encryption transcript, C can set D∗jp′j+1 in such

a way that X∗jpj+1 = X
iµ
jµ

. Then (twiljl−1, X
il
jl−1, D

il
jl
, Xil

jl
)l∈[1,µ] and

(tw∗jp′j
, X∗jp′j

, D∗jpj+1, X
∗j
pj+1) produces µ+ 1- multicollision tuple. Thus C wins the

multicollision game.

Hence Pr [A Aborts] ≤ Pr [C produces µ+ 1-multicollision].

Note that, pi < m∗i for all i-th decryption query. Hence A makes at most∑
i pi ≤

∑
imi ≤ σd many commitments and makes at most σd many queries in

Phase 2 to produce at most σd many prediction tuples.

Hence by the claim B we have,

Pr [A wins (µ− 1, σd)-mcp game]

≥ Pr [B Forges i-th query for some i ∈ [1, qd]|A doesn’t Abort]

Pr [B Forges] ≤ Pr [B Forges i-th query for some i ∈ [1, qd]|A doesn’t Abort]

+ Pr [A Aborts]

≤ Pr [A wins (µ, σd)-mcp game] + Advµ+1-mcoll

Ẽ
(C )

= Adv
(µ−1,σd)-mcp
Ẽ

(A ) + +Advµ+1-mcoll

Ẽ
(C ).
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C Bounding µ-TPRP Security

Here we try to bound the µ-TPRP -security of the tweakable block cipher Ẽ.
Let A be any µ-respecting adversary playing the µ-TPRP game and makes at
most t many primitive queries and d many online queries.
We assume that the adversary doesn’t make repetitive or redundant queries.

C.1 The Ideal world and Analysis of Bad events

Let P and E denote the index set of primitive queries and encryption queries
respectively.

In ideal world the oracle chooses random functions P : {0, 1}n × {0, 1}n →
{0, 1}n and Q : T × {0, 1}n → {0, 1}n such that for all K ∈ {0, 1}n we have
P (K, ?) is a random permutation and for all tw ∈ T we have Q(tw, ?) is a ran-
dom permutation.

Primitive Query: In the Ideal world for the i-th primitive query of the form
(Ki, Xi) it computes Y i = P (Ki, Xi) and sends it as a response.

Define ωt = (Ki, Xi, Y i)i∈P to be the primitive transcript.

Online Query: On receiving the i-th input query of the form ((N i, ji), Xi) it
computes Y i = Q((N i, ji), Xi) and sends it as the response.

Offline Computation : Oracle Chooses K ∈ {0, 1}n uniformly at random. It
then chooses a permutation Π : {0, 1}n → {0, 1}n uniformly at random from
the set of all permutations over {0, 1}n. It then defines KNi := Π(N i) and

Ki = αj
i ·KNi .

Define ωd = (K, ((N i, ji), Xi, Y i,Ki)i∈E , ) to be the online transcript.

Define ω = (ωt, ωd) be the transcript for the adversary in the ideal world.

Bad Events Consider the following events due to ω,

BAD1: For some i ∈ E ∪ P we have Ki = K.

BAD2: For some i1 6= i2 ∈ E we have (N i1 , ji1) 6= (N i2 , ji2) but Ki1 = Ki2 .

BAD3: For some i ∈ E and i′ ∈ P we have (Ki, Xi) = (Ki′ , Xi′).

BAD4: ∃i1, . . . iµ+1 ∈ E s.t. Y ik = Y il ∀k, l ∈ [1, µ+ 1].

BAD5: For some i ∈ E and i′ ∈ P we have (Ki, Y i) = (Ki′ , Y i
′
).
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Definition 1.
BAD = ∪5i=1BADi.

Lemma 2.

Pr [BAD] ≤ t+ d

2n
+

d2

2n+1
+

2µt

2n
+

(
d

µ+1

)
(2n)µ

.

Proof. Here we try to bound the distinct bad events defined above.

Bounding BAD1: Fix i ∈ P ∪ E , since K is chosen uniformly at random we
have probabilty that Ki = K is at most 1

2n . similar Varying over all i,

Pr [BAD1] ≤ d+ t

2n

.
Bounding BAD2: This event can be divided into the following cases.

Case 1: (N i1 6= N i2) In this case since Π is a random permutation, KNi1 6=
KNi2 are distinct and independent. Hence probability that Ki1 = Ki2 is atmost
1
2n . Varying over all i1, i2 ∈ E we have,

Pr [Case 1] ≤ d2

2n+1
.

Case 2: (N i1 = N i2 ; ji1 6= ji2) In this case we have KNi1 = KNi2 . Now since
α is a primitive polynomial hence we have Ki1 6= Ki2 .

Hence

Pr [BAD2] ≤ d2

2n+1
.

Bounding BAD3: For a given i′ ∈ P, let the adversary makes the primitive
query (Ki′ , Xi′). Then there can be at most µ-many encryption query of the
form ((N ik , jik), Xi′)k∈[1,µ],ik∈E and hence at most µ-many (Kik , Xi′)k∈[1,µ],ik∈E
tuples. now since Kik are chosen uniformly at random during encryption query
we have for a given ik ∈ E , probability that Kik = Ki′ is at most 1

2n . Hence for

a given i′ ∈ P probability that ∃i ∈ E s.t. (Ki, Xi) = (Ki′ , Xi′) is at most µ
2n .

Varying over all i′, we have

Pr [BAD3] ≤ µt

2n
.

Bounding BAD4: Since for each i ∈ E , Y i is chosen uniformly at random.
given i1, . . . , iµ+1 ∈ E probability that Y ij = Y ij for all j ∈ [1, µ+ 1] is at most

1
(2n)µ . Hence varying over all choices of i1, . . . , iµ+1 we have
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Pr [BAD4] ≤
(
d

µ+1

)
(2n)µ

.

Bounding BAD5|BAD4 : For a given i′ ∈ P, let the adversary’s primi-
tive transcript be (Ki′ , ?, Y i

′
). Then there can be at most µ-many encryp-

tion transcript of the form ((N ik , jik), ?, Y i
′
)k∈[1,µ],ik∈E and hence at most µ-

many (Kik , Y i
′
)k∈[1,µ],ik∈E tuples. now since Kik are chosen uniformly at ran-

dom during encryption query we have for a given ik ∈ E , probability that
Kik = Ki′ is at most 1

2n . Hence for a given i′ ∈ P probability that ∃i ∈ E
s.t. (Ki, Y i) = (Ki′ , Y i

′
) is atmost µ

2n . Varying over all i′, we have

Pr
[
BAD5|BAD4

]
≤ µt

2n
.

Adding all the probabilities we get the Lemma.

C.2 Real World and Good transcript analysis

The real world has oracle EK . All the primitive queries and the encryption
queries are responded based on the responses of EK .

By good transcript we mean any transcript which is not bad. Now consider a
good transcript ω = (ωt, ωd). Let Θ0 and Θ1 be the transcript random variable
obtained in the ideal world and real world respectively.

Then we have Pr [Θ0 = ω] =
∏
ti

1
(2n)ti

× 1
2n ×

1
(2n)d

× 1
(2n)d

.

Where ti denotes the number of primitive Queries with the key K ′i ∈ {0, 1}κ.
i.e
∑
i ti = t.

Now note that in the real world the primitive queries and online queries are
permutation compatible.

Hence we have Pr [Θ1 = ω] =
∏
ki

1
(2n)ki

× 1
2n ×

1
(2n)d

. Where ki = di + ti such

that ti denotes the number of primitive queries with key Ki and di denotes the
number of encryption queries of the form (N l, jl, X) such that Kl = Ki. Note
that

∑
i ki = d+ t.
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Hence

Pr [Θ1]

Pr [Θ0]
=

∏
ti

(2n)ti × 2n × (2n)d × (2n)d∏
ki

(2n)ki × 2n × (2n)d

=

∏
i

(2n)ti × (2n)d∏
i

(2n)ti+di

=
(2n)d∏

i

(2n − ti)di
> 1.

Hence by H-coefficient technique we have, Theorem 5.

D Bounding (µ, λ)-mcp Security

Here we try to bound the advantage of a µ-respecting adversary A making t-
many primitive queries and d-many online queries playing the (µ, λ)-multi com-
mitment prediction game with a challenger CH .

We assume that the adversary doesn’t make repetitive or redundant queries.
Primitive Queries: Whenever A makes a primitive query of the form (Ki, Xi)
for some i ∈ P the CH responds with Yi = EKi(Xi).Let ωt = (Ki, Xi, Y i)i∈P
be the primitive transcript of the adversary A .

Online Queries: Whenever A makes an online query of the form ((N i, ji), Xi)
for some i ∈ E , CH checks that the query is µ-respecting. If not, then it
aborts. Else, CH computes KNi = EK(N i), Ki = αj

i · KNi and finally out-
puts Y i = EKi(X) as response.

Let ωd = ((N i, ji),Ki, Xi, Y i)i∈E be the online transcript of the adversary.

Define ω = (ωt, ωd) as the transcript of A .
Bad Events

Consider the following events depending on the transcript ω of the adversary
A .

Bad Events due to primitive and encryption query.

BAD1: For some i ∈ E ∪ P we have Ki = K.

BAD2: For some i1 6= i2 ∈ E we have (N i1 , ji1) 6= (N i2 , ji2) but Ki1 = Ki2 .
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BAD3: For some i ∈ E and i′ ∈ P we have (Ki, Xi) = (Ki′ , Xi′).

BAD4: ∃i1, . . . iµ+1 ∈ E s.t. Y ik = Y il ∀k, l ∈ [1, µ+ 1].

BAD5: For some i ∈ E and i′ ∈ P we have (Ki, Y i) = (Ki′ , Y i
′
).

Bad event due to multi-commitment prediction game.
BAD 6 : For some i ∈ [1, λ] and k ∈ E , we have a commitment ((N i, ji), xi, yi)

is such that, (N i, ji) 6= (Nk, jk) but Ki = Kk where Ki = αj
i · EK(N i).

BAD7: For some i ∈ [1, λ] and k ∈ P, we have a commitment ((N i, ji), xi, yi)

is such that, (Ki, xi) = (Kk, bXkcn
2

) where Ki = αj
i · EK(N i).

Definition 2.
BAD = ∪7i=1BADi.

Lemma 3.

Pr [BAD] ≤ t+ d

2n
+

d2

2n+1
+

2µt

2n
+

(
d

µ+1

)
(2n)µ

+
λd

2n+1
+

λt

2
3n
2

.

Proof. Here we try to bound the distinct bad events defined above.

Bounds of events BAD1 to BAD5 has been found while bounding µ-TPRP
security of Ẽ.

Bounding BAD6: This event can be divided into the following cases.

Case 1: (N i 6= Nk) In this case KNi 6= KNk are distinct. Hence probability
that Ki = Kk is at most 1

2n . Varying over all i ∈ E and j ∈ [1, λ] we have,

Pr [Case 1] ≤ λd

2n+1
.

Case 2: (N i = Nk; ji 6= jk) In this case we have KNi = KNj . Now since α is
a primitive polynomial hence we have Ki 6= Kk.

Hence

Pr [BAD6] ≤ λd

2n+1
.

Bounding BAD7: Fix i ∈ [1, λ] and k ∈ P. Since KNi is distributed uni-
formly at random, and there is no primitive query after commitment, we have
probability that (Ki, xi) = (Kk, bXkcn

2
) is at most 1

2
3n
2

. varying over all i, k we

have,
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Pr [BAD7] ≤ λt

2
3n
2

.

Adding all the probabilities we get the Lemma.

Good Transcript Analysis
By good transcript we mean any transcript which is not bad. Now consider

a good transcript ω = (ωt, ωd).

Then we have (twi, Xi)i∈[1,λ] is fresh. Hence for a fix i, probability that

bẼ(twi, Xi)cn
2

= yi is bounded by at most 1

2
n
2

. Hence varying over all i ∈ [1, λ]

we have,

Pr
[
A Ẽwins the (λ, µ)-mcp game

]
≤ λ

2
n
2
.

Combining the results we have Theorem 6.

E Bounding µ-multi collision

E.1 Bounding µ-multi collision for Ẽ

We model E as a random permutation. We assume that the adversary doesn’t
make repetitive or redundant queries.

O Queries: Whenever A makes an online query of the form ((N i, ji), Xi, Ci)

for some i ∈ E , O computes KNi = EK(N i), Ki = αj
i · KNi and finally

outputszi = bY i ⊕ Cicn
2

as response where Y i = EKi(Xi).

Let ωd = ((N i, ji),Ki, Xi, zi)i∈E be the online transcript of the adversary.

We have the µ- multi collision occurs if ∃i1, . . . , iµ ∈ [1, d] such that zik = zil

for all k, l ∈ [1, µ].
Consider the following event

BAD: For some ik 6= il ∈ [1, d] we have twik 6= twil but Kik = Kil . As shown

earlier, probability of this can be bounded by d2

2n+1 .

Now suppose ∀k, l ∈ [1, d] we have BAD doesn’t occur. Then Note that
the probability of µ-multi collision is highest when the tweak is same for all the
queries.

In that case for a given x ∈ {0, 1}n2 , and fixed ∃i1, . . . , iµ ∈ [1, d] number of
possible tuples of ((Y i, Ci) such that zi = bY ik ⊕Cikcn

2
= x is bounded by 2

nµ
2 .

Varying over all x ∈ {0, 1}n2 and for all combination of i1, . . . , iµ ∈ [1, d] we have

number of ways i which µ-multi collision occurs is at most
(
d
µ

)
2

(µ+1)n
2 .
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Hence we have

Pr
[
µ-mcoll|BAD

]
≤
(
d
µ

)
2

(µ+1)n
2

(2n)µ

≤ d
(

1 +
µ2

2n

)(
d

2
n
2

)µ−1
.

Combining the results of this section we have Theorem 7.

E.2 Bounding µ-multi collision for P

Let P : T × {0, 1}n → {0, 1}n be a random function such that we have P (tw, ?)
is a random permutation for all tw ∈ T .

We assume that the adversary doesn’t make repetitive or redundant queries.

O Queries: Whenever A makes an online query of the form ((N i, ji), Xi, Ci)
for some i ∈ E , O computes zi = bY i⊕Cicn

2
as response where Y i = P (twi, Xi).

Let ωd = ((N i, ji), Xi, zi)i∈E be the online transcript of the adversary.

We have the µ- multi collision occurs if ∃i1, . . . , iµ ∈ [1, d] such that zik = zil

for all k, l ∈ [1, µ].

Note that the probability of µ-multi collision is highest when the tweak is
same for all the queries.

In that case for a given x ∈ {0, 1}n2 , and fixed ∃i1, . . . , iµ ∈ [1, d] number of
possible tuples of (Y i, Ci) such that zi = bY ik ⊕Cikcn

2
= x is bounded by 2

nµ
2 .

Varying over all x ∈ {0, 1}n2 and for all combination of i1, . . . , iµ ∈ [1, d] we have

number of ways i which µ-multi collision occurs is at most
(
d
µ

)
2

(µ+1)n
2 .

Hence we have

Pr [µ-mcoll] ≤
(
d
µ

)
2

(µ+1)n
2

(2n)µ

≤ d
(

1 +
µ2

2n

)(
d

2
n
2

)µ−1
.

Combining the results of this section we have Theorem 8.
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F Bounding BAD for mixFeed

Bounding BAD1 : Note that since we model E as an ideal keyed permutation
and the total number of encryption and decryption queries are bounded by σ we
have,

Pr [BAD1] ≤ σ2

2n+1
.

Bounding BAD2 : We postpone the probability bound of Ki
li+1 = K∗jl∗j+1 to

BAD3 . Suppose BAD3 occurs. if (N i, Ai,M i) 6= (N∗j , A∗j ,M∗j) Then Let k
be the smallest positive integer such that Di

k 6= D∗jk where for any (N,A,M) we

define Dk =


N̄ if k = 0

Ak if k ≤ a
Mk−l if k > a.

Then we must have Xi
k+1 6= X∗jk+1. And hence

Y ik+1, Y
∗j
k+1 are independent. Consequently Y ili and Y ∗jl∗j

are independent. Now

the event BAD2|BAD3 can be divided into two subcases.
Case 1: δiMi = δ∗jM∗j . In this case we must have Y ik+1 = Y ∗jk+1. Hence,

Pr [Case 1] ≤ σ2

2n+1
.

Case 2: δiMi 6= δ∗jM∗j . In this case we must have Y ik+1 ⊕ δiMi = Y ∗jk+1 ⊕ δ
∗j
M∗j .

Hence,

Pr [Case 2] ≤ σ2

2n+1
.

Since this cases are mutually exclusive and exhaustive we have,

Pr [BAD2|BAD3] ≤ σ2

2n+1
.

Bounding BAD3: Note that this event already occur as BAD2 in the analysis
of µ-TPRP (Appendix C.1) and (µ, λ)-mcp (Appendix D) security and as BAD
in the analysis of µ-multicollision security of Ẽ(Appendix E.1) for mF and is

bounded by d2

2n+1 .

In case of mixFeed, under Assumption 1 this event can be divided into the
following cases.

Case 1: (N i1 6= N i2) In this case we have KNi1 6= KNi2 and Hence probability
that Ki1 = Ki2 is atmost 1

2n . Varying over all i1, i2 ∈ E we have,

Pr [Case 1] ≤ d2

2n+1
.

Case 2: (N i1 = N i2 = N i(say ); ji1 6= ji2) In this case we have KNi1 = KNi2 .
This event occurs if and only if, ri | (ji1−ji2) where ri is the periodicity of KNi .
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Note that queries of this form arise due to the encryption query of B with
nonce N i.

Let li denote the number of blocks in the encryption query of B with nonce
N i. Then for all ii, i2 such that N i1 = N i2 = N i, we have |ji1 − ji2 | ≤ li.

Hence we have ri ≤ li and by our assumption probability that this event
holds is at most li

2
n
2

.

Now varying over all possible i and from the observation that
∑
i li ≤ d we

have,

Pr [Case 2] ≤
∑
i

li
2
n
2
≤ d

2
n
2
.

Since the above two cases are mutually exclusive we have,

Pr [BAD3] ≤ d2

2n+1
+

d

2
n
2
.

Hence combining the bounds for all the events we have Lemma 1.
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