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I. INTRODUCTION 

With the ubiquity of the Internet and the proliferation of 
Internet of Things (IoT), the need for securing the commu-
nication amongst IoT and other similar devices has become 
extremely important. The National Institute of Standards and 
Technology (NIST) initiated the Lightweight Cryptography 
(LWC) project with the aim of standardizing cryptographic 
algorithms that are especially designed for such resource-
constrained environments [1]. As candidate algorithms are 
submitted for consideration, it is important to test their im-
plementations for potential bugs, which can be challenging. 

Cryptographic algorithms are generally more complex, and 
their code is usually highly compact with intricate bit-
manipulations. Moreover, there is often no easy-to-develop 
test oracle present to determine whether the outputs of the 
programs are correct or not. Together these attributes make 
it extremely challenging to run tests and to discover bugs in 
them. Structural coverage based testing approaches such as 
statement or branch coverage are typically not very effective 
in discovering bugs in these types of programs. 

Building on our earlier work of systematically testing dif-
ferent cryptographic algorithms, we study the applicability of 
our test design approach over the LWC candidates’ implemen-
tations. 

II. APPROACH 

Since cryptographic programs are sometimes labeled as 
“non-testable” due to the lack of easy-to-develop test oracles, 
designing effective test cases for them becomes a major 
source of diffculty. We have had previous success [2] in 
designing test cases based on the properties of the underlying 
algorithms that must be true under all circumstances. We 
apply similar strategies in designing the following tests for 
the LWC submissions. 

1) Bit Contribution for Plaintext Test: Hash functions 
and Authenticated Encryption with Associated Data (AEAD) 
schemes are required to be second-preimage resistant. That is, 
given a message m and cryptographic function f , it should 
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0 be extremely diffcult to fnd a second preimage m 6= m 
such that f(m0) = f(m). Thus we can infer that every bit of 
the message must contribute towards the hash or encryption; 
otherwise, it would be easy to fip a bit and generate an 
encrypted message or message digest that produces the same 
hash or encryption. The Bit Contribution for Plaintext test is 
designed on this idea. For HASH algorithms, we generate a 
fxed message m. Then we compute the hash h(m). Next we 

0 systematically fip a single bit at a time of m, producing m , 
then compute the hash h(m0). We store all the hashes in a 
table and search for collisions. If no collisions are found, then 
the test is passed. This test can also be applied to AEAD 
algorithms. For AEAD algorithms, we follow the same steps 
as for hash algorithms and just keep the associated data, nonce, 
and key constant for all encryptions. 

A. Bit Contribution for Nonce Test 

AEAD algorithms are expected to be secure when a nonce 
is not repeated under the same key. Hence the encryption of a 
message given two different nonces should be very different. 
The Bit Contribution for Nonce test observes what happens to 
the ciphertext as bits in the nonce change. For this test we aim 
to produce a matrix of dimensions nonce-bits by ciphertext-
bits. Each value in the matrix tells you, out of x trials, how 

ith many times when you change the bit of the nonce the 
jth bit of the ciphertext changes. To fll the matrix we do the 
following. We generate a random plaintext pt, associated data 
ad, nonce n, and key k. Then we encrypt pt with ad, n, and 
k producing ciphertext ct. Then for each bit i = 0...8 ∗ |n|, we 
fip bit i of n, re-encrypt pt, then increment all matrix values 
mij such that the jth bit of ct and ct0 are different, We repeat 
this 10,000 times (i.e., 10,000 trials). 

For a random cipher, we expect matrix values to be close 
to x/2. Statistically, we expect to see a binomial distribution, 
Binomial(x, 1/2). We can approximate this with a normal 
distribution as it is easier to calculate, Normal(x/2, x/4). 
For x = 10, 000 trials we expect matrix values to be in 
the interval 4750 < mij < 5250 with high confdence. We 
expect a few matrix values to fall outside the interval with 
low probability, so matrix values close to the interval bounds 
are fagged but not considered as failures. However, if any 
mi,j falls signifcantly far outside of the interval, we call this 
a test failure. 

B. Bit Contribution for Key Test 

The Bit Contribution for Key test is designed the exact same 
as the Bit Contribution for Nonce test, except instead we look 
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at how the ciphertext changes as the key bits are changed. 
Hence our matrix is now of dimensions key-bits by ciphertext-
bits. Each value in the matrix tells you out of x trials, how 
many times when you change the ith bit of the key the jth 

bit of the ciphertext changes. The procedure for flling the 
matrix is the same but we systematically fip each bit of the 
key i = 0...8∗|k| and keep the nonce constant. Similarly to Bit 
Contribution for Nonce, a matrix value that falls signifcantly 
far outside the interval 4750 < mij < 5250 indicates a test 
failure. 

C. Bit Exclusion Test 

For HASH and AEAD algorithms, only the precise length 
of the message should be used by the cryptographic function. 
Thus, bits beyond the specifed message length should be 
ignored. The Bit Exclusion test is designed to verify this prop-
erty. For HASH algorithms, we generate a random message 
m of length n bytes. Then we compute the hash h(m). Next, 
we systematically fip a single bit of m at a time in the four 
bytes after n (i.e., the (n + 1)th , (n + 2)th , (n + 3)th, and 
(n + 4)th byte) and re-generate the hash, h(m)0. Since no 
bit hash been changed within the specifed length of m, the 
hash should remain the same. If we fnd that h(m) 6 , = h(m)0 

then the test is failed. This test can also be applied to AEAD 
algorithms, for which we follow the same procedure as for 
hash algorithms and just keep the associated data, nonce, and 
key constant for all encryptions. 

D. Buffer Check Test 

In the case that a ciphertext is invalid, the decryption-
verifcation function of and AEAD algorithm should fail to 
return the plaintext. Therefore we can infer that every bit in the 
ciphertext should be considered by the decryption-verifcation 
function. Otherwise, it would be easy to fip a single bit in the 
ciphertext and deceitfully retrieve the plaintext. The Buffer 
Check test utilizes this idea. We generate a random plaintext 
pt, associated data ad, nonce n, and key k. Then we encrypt 
pt with ad, n, and k to produce a ciphertext ct. Now we 

0 systematically fip a single bit of ct at a time, producing ct , 
and then attempt to decrypt and verify ct0 with ad, n, and 
k. If the decryption-verifcation function claims ct0 is valid 
(i.e., function returns zero), then the test is failed. Also, if the 
plaintext buffer of the decryption-verifcation function contains 
a ten byte consecutive match to pt anywhere in the buffer, then 
the test is failed. 

E. Ciphertext Length Check Test 

The Ciphertext Length Check test verifes that the ci-
phertexts produced by an AEAD algorithm are of appro-
priate length. The API for the LWC competition specifes 
that algorithm implementations must contain a defnition 
of variable CRY PTO ABY TES which indicates that the 
ciphertext is at most CRY PTO ABY TES bytes longer 
than the plaintext. Thus we derive a relation such that the 
length of any ciphertext must be longer than the plaintext 
length and shorter than the sum of the plaintext length and 

CRY PTO ABY TES. The test design is as follows. We 
generate a random plaintext pt, associated data ad, nonce 
n, and key k. Then we encrypt pt with ad, n, and k to 
produce a ciphertext ct. Then we check if |ct| > |pt| and 
|ct| < |pt| + CRY PTO ABY TES. If true, then the test is 
passed. For this test, we vary the plaintext length from 0 to 
256 bytes. 

III. RESULTS 

A. AEAD Algorithms 

For the AEAD algorithms we ran six tests: Bit Contribution 
for Plaintext, Bit Contribution for Nonce, Bit Contribution 
for Key, Bit Exclusion, Buffer Check, and Ciphertext Length 
Check. 57 algorithms were submitted to the LWC competition, 
and 56 of those submissions were considered complete enough 
to advance to round one. All 56 round one candidates provided 
an AEAD algorithm. Some candidates provided more than 
one implementation of their algorithm. 157 total reference 
implementations were considered in our testing experiment. 
Out of the 157 implementations, 0% failed the Bit Contribution 
for Plaintext test, 5.09% failed the Bit Contribution for Nonce 
test, 3.82% failed the Bit Contribution for Key test, 0% failed 
the Bit Exclusion test, 64.97% failed the Buffer Check test, 
and 1.91% failed the Ciphertext Length Check test. 

B. HASH Algorithms 

For the HASH algorithms we ran two tests: Bit Contribution 
for Plaintext and Bit Exclusion. Of the 56 round one candidates 
mentioned previously, 22 of those provided a hash algorithm. 
A total of 39 reference implementations were considered in our 
testing experiment. Out of the 39 implementations, none failed 
the Bit Contribution for Plaintext test or the Bit Exclusion test. 

IV. DISCUSSION 

In this research, we have applied a systematic testing 
approach to lightweight cryptographic algorithm implementa-
tions. Since cryptographic code is often diffcult to test due to 
code complexity and lack of a test oracle, we designed our test 
cases based on cryptographic properties that these implementa-
tions should satisfy. We have observed several test failures; and 
consequently, have identifed bugs in some implementations. 
Our results suggest that this testing approach is effective at 
uncovering implementation failures in cryptographic code. 
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