
1

Systematic Testing of Lightweight Cryptographic
Implementations [Extended Abstract]

Sydney Pugh, M S Raunak, D. Richard Kuhn, and Raghu Kacker

Index Terms—Cryptographic Algorithm, Lightweigh Cryptog-
raphy, Metamorphic Testing.

I. INTRODUCTION

With the ubiquity of the Internet and the proliferation of
Internet of Things (IoT), the need for securing the commu-
nication amongst IoT and other similar devices has become
extremely important. The National Institute of Standards and
Technology (NIST) initiated the Lightweight Cryptography
(LWC) project with the aim of standardizing cryptographic
algorithms that are especially designed for such resource-
constrained environments [1]. As candidate algorithms are
submitted for consideration, it is important to test their im-
plementations for potential bugs, which can be challenging.

Cryptographic algorithms are generally more complex, and
their code is usually highly compact with intricate bit-
manipulations. Moreover, there is often no easy-to-develop
test oracle present to determine whether the outputs of the
programs are correct or not. Together these attributes make
it extremely challenging to run tests and to discover bugs in
them. Structural coverage based testing approaches such as
statement or branch coverage are typically not very effective
in discovering bugs in these types of programs.

Building on our earlier work of systematically testing dif-
ferent cryptographic algorithms, we study the applicability of
our test design approach over the LWC candidates’ implemen-
tations.

II. APPROACH

Since cryptographic programs are sometimes labeled as
“non-testable” due to the lack of easy-to-develop test oracles,
designing effective test cases for them becomes a major
source of diffculty. We have had previous success [2] in
designing test cases based on the properties of the underlying
algorithms that must be true under all circumstances. We
apply similar strategies in designing the following tests for
the LWC submissions.

1) Bit Contribution for Plaintext Test: Hash functions
and Authenticated Encryption with Associated Data (AEAD)
schemes are required to be second-preimage resistant. That is,
given a message m and cryptographic function f , it should

S. Pugh and M. Raunak are with the Department of Computer Science, Loy-
ola University Maryland, Baltimore, MD 21210. E-mail: sfpugh@loyola.edu,
raunak@loyola.edu

R. Kuhn and R. Kacker are with the National Institute of Standards and
Technology. E-mail: kuhn@nist.gov, raghu.kacker@nist.gov

0 be extremely diffcult to fnd a second preimage m 6= m
such that f(m0) = f(m). Thus we can infer that every bit of
the message must contribute towards the hash or encryption;
otherwise, it would be easy to fip a bit and generate an
encrypted message or message digest that produces the same
hash or encryption. The Bit Contribution for Plaintext test is
designed on this idea. For HASH algorithms, we generate a
fxed message m. Then we compute the hash h(m). Next we

0 systematically fip a single bit at a time of m, producing m ,
then compute the hash h(m0). We store all the hashes in a
table and search for collisions. If no collisions are found, then
the test is passed. This test can also be applied to AEAD
algorithms. For AEAD algorithms, we follow the same steps
as for hash algorithms and just keep the associated data, nonce,
and key constant for all encryptions.

A. Bit Contribution for Nonce Test

AEAD algorithms are expected to be secure when a nonce
is not repeated under the same key. Hence the encryption of a
message given two different nonces should be very different.
The Bit Contribution for Nonce test observes what happens to
the ciphertext as bits in the nonce change. For this test we aim
to produce a matrix of dimensions nonce-bits by ciphertext-
bits. Each value in the matrix tells you, out of x trials, how

ith many times when you change the bit of the nonce the
jth bit of the ciphertext changes. To fll the matrix we do the
following. We generate a random plaintext pt, associated data
ad, nonce n, and key k. Then we encrypt pt with ad, n, and
k producing ciphertext ct. Then for each bit i = 0...8 ∗ |n|, we
fip bit i of n, re-encrypt pt, then increment all matrix values
mij such that the jth bit of ct and ct0 are different, We repeat
this 10,000 times (i.e., 10,000 trials).

For a random cipher, we expect matrix values to be close
to x/2. Statistically, we expect to see a binomial distribution,
Binomial(x, 1/2). We can approximate this with a normal
distribution as it is easier to calculate, Normal(x/2, x/4).
For x = 10, 000 trials we expect matrix values to be in
the interval 4750 < mij < 5250 with high confdence. We
expect a few matrix values to fall outside the interval with
low probability, so matrix values close to the interval bounds
are fagged but not considered as failures. However, if any
mi,j falls signifcantly far outside of the interval, we call this
a test failure.

B. Bit Contribution for Key Test

The Bit Contribution for Key test is designed the exact same
as the Bit Contribution for Nonce test, except instead we look

http:following.We
http:changes.To
mailto:raghu.kacker@nist.gov
mailto:kuhn@nist.gov
mailto:raunak@loyola.edu
mailto:sfpugh@loyola.edu

2

at how the ciphertext changes as the key bits are changed.
Hence our matrix is now of dimensions key-bits by ciphertext-
bits. Each value in the matrix tells you out of x trials, how
many times when you change the ith bit of the key the jth

bit of the ciphertext changes. The procedure for flling the
matrix is the same but we systematically fip each bit of the
key i = 0...8∗|k| and keep the nonce constant. Similarly to Bit
Contribution for Nonce, a matrix value that falls signifcantly
far outside the interval 4750 < mij < 5250 indicates a test
failure.

C. Bit Exclusion Test

For HASH and AEAD algorithms, only the precise length
of the message should be used by the cryptographic function.
Thus, bits beyond the specifed message length should be
ignored. The Bit Exclusion test is designed to verify this prop-
erty. For HASH algorithms, we generate a random message
m of length n bytes. Then we compute the hash h(m). Next,
we systematically fip a single bit of m at a time in the four
bytes after n (i.e., the (n + 1)th , (n + 2)th , (n + 3)th, and
(n + 4)th byte) and re-generate the hash, h(m)0. Since no
bit hash been changed within the specifed length of m, the
hash should remain the same. If we fnd that h(m) 6 , = h(m)0

then the test is failed. This test can also be applied to AEAD
algorithms, for which we follow the same procedure as for
hash algorithms and just keep the associated data, nonce, and
key constant for all encryptions.

D. Buffer Check Test

In the case that a ciphertext is invalid, the decryption-
verifcation function of and AEAD algorithm should fail to
return the plaintext. Therefore we can infer that every bit in the
ciphertext should be considered by the decryption-verifcation
function. Otherwise, it would be easy to fip a single bit in the
ciphertext and deceitfully retrieve the plaintext. The Buffer
Check test utilizes this idea. We generate a random plaintext
pt, associated data ad, nonce n, and key k. Then we encrypt
pt with ad, n, and k to produce a ciphertext ct. Now we

0 systematically fip a single bit of ct at a time, producing ct ,
and then attempt to decrypt and verify ct0 with ad, n, and
k. If the decryption-verifcation function claims ct0 is valid
(i.e., function returns zero), then the test is failed. Also, if the
plaintext buffer of the decryption-verifcation function contains
a ten byte consecutive match to pt anywhere in the buffer, then
the test is failed.

E. Ciphertext Length Check Test

The Ciphertext Length Check test verifes that the ci-
phertexts produced by an AEAD algorithm are of appro-
priate length. The API for the LWC competition specifes
that algorithm implementations must contain a defnition
of variable CRY PTO ABY TES which indicates that the
ciphertext is at most CRY PTO ABY TES bytes longer
than the plaintext. Thus we derive a relation such that the
length of any ciphertext must be longer than the plaintext
length and shorter than the sum of the plaintext length and

CRY PTO ABY TES. The test design is as follows. We
generate a random plaintext pt, associated data ad, nonce
n, and key k. Then we encrypt pt with ad, n, and k to
produce a ciphertext ct. Then we check if |ct| > |pt| and
|ct| < |pt| + CRY PTO ABY TES. If true, then the test is
passed. For this test, we vary the plaintext length from 0 to
256 bytes.

III. RESULTS

A. AEAD Algorithms

For the AEAD algorithms we ran six tests: Bit Contribution
for Plaintext, Bit Contribution for Nonce, Bit Contribution
for Key, Bit Exclusion, Buffer Check, and Ciphertext Length
Check. 57 algorithms were submitted to the LWC competition,
and 56 of those submissions were considered complete enough
to advance to round one. All 56 round one candidates provided
an AEAD algorithm. Some candidates provided more than
one implementation of their algorithm. 157 total reference
implementations were considered in our testing experiment.
Out of the 157 implementations, 0% failed the Bit Contribution
for Plaintext test, 5.09% failed the Bit Contribution for Nonce
test, 3.82% failed the Bit Contribution for Key test, 0% failed
the Bit Exclusion test, 64.97% failed the Buffer Check test,
and 1.91% failed the Ciphertext Length Check test.

B. HASH Algorithms

For the HASH algorithms we ran two tests: Bit Contribution
for Plaintext and Bit Exclusion. Of the 56 round one candidates
mentioned previously, 22 of those provided a hash algorithm.
A total of 39 reference implementations were considered in our
testing experiment. Out of the 39 implementations, none failed
the Bit Contribution for Plaintext test or the Bit Exclusion test.

IV. DISCUSSION

In this research, we have applied a systematic testing
approach to lightweight cryptographic algorithm implementa-
tions. Since cryptographic code is often diffcult to test due to
code complexity and lack of a test oracle, we designed our test
cases based on cryptographic properties that these implementa-
tions should satisfy. We have observed several test failures; and
consequently, have identifed bugs in some implementations.
Our results suggest that this testing approach is effective at
uncovering implementation failures in cryptographic code.

REFERENCES

[1] NIST, “Submission requirements and evaluation
criteria for the lightweight cryptography standard-
ization process,” August 2018. [Online]. Available:
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/
documents/fnal-lwc-submission-requirements-august2018.pdf

[2] N. Mouha, M. Raunak, R. Kuhn, and R. Kacker, “Finding bugs in
cryptographic hash function implementations,” IEEE Transactions on
Reliability, vol. 67, no. 3, pp. 870–884, July 2018.

https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography
http:Check.57

