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Abstract. Lightweight cryptography refers to cryptographic designs that are heavily op-
timized to minimize resources, such as computational complexity, latency, energy/power 
consumption, hardware area, code size, and RAM, or to be very efficient in a particular 
application scenario, where the “conventional” cryptography would not suffice. Prompted by 
the growing demand for such designs, NIST launched the Lightweight Cryptography project 
which is supposed to identify and possibly standardize suitable lightweight authenticated 
encryption (AE) and hashing algorithms in a well established open competition framework. 
One of these submissions is ForkAE. ForkAE proposes a new primitive ForkSkinny and AE 
modes optimized for applications where very short messages dominate the communication. In 
this paper, we investigate multiple implementation/trade-off strategies for ForkAE, bench-
mark the synthesized hardware and compare it with several other lightweight AE primitives, 
and give performance and area estimates for the implementation of the ForkAE modes, as 
well as some selected competitors. 

1 Introduction 

Lightweight cryptography (LWC) is the general term used for cryptography tailored for 
resource-constrained devices and applications [23], where the computational complexity, 
latency, energy and/or power consumption, hardware area, code size, or RAM usage of 
“conventional” cryptography simply does not fit in the budget. For example, a lightweight 
blockcipher may be designed to have a tiny hardware implementation but be slower than 
average [16], or very fast but to require larger hardware area and power [15], or be especially 
suitable for hardware [14]. Viewed from another perspective, lightweight cryptography can 
be understood as a set of designs that occupy the more extreme axes in the design/trade-
off space. Unlike the “conventional” cryptography, which usually aims to cover a wide 
variety of platforms and applications, LWC is targeting narrower classes of applications 
with (very) particular constraints [13]. The need for specialized and highly optimized 
cryptography is evidenced both by the massive growth of the application markets (such 
as the “Internet of Things”) and by the recent NIST Lightweight Cryptography project, 
which attracted 56 candidate designs [24] in round one. 

Short messages. An important class of LWC applications which is of interest for the 
design of authenticated encryption with associated data (AEAD or AE) are applications 
where the majority of messages is of short length (e.g., 8 bytes). This class covers a wide 
range of practical scenarios. 
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The Secure Onboard Communication in the automotive industry [4] are expected to handle 
short messages with stringent latency requirements. Critical communication and massive 
IoT domains of 5G will have to process frequent bursts of very short messages [1]. Nar-
rowband IoT allows a minimum payload size of 16 bits [3, 2], which will dominate the 
communication in applications such as smart parking lots that need to transmit infor-
mation encoded on a few bits (e.g., “free” or “occupied” status). Most medical implant 
devices, such as pacemakers, transmit messages of length at most 16 bytes to and from 
the device programmer. Advanced robotic prosthetics wirelessly transmit bursts of short 
messages with stringent latency requirements, as well as 1-byte temporal synchronization 
messages [5]. Wireless aircraft tyre pressure monitoring systems usually transmit payloads 
of ≤ 10 bytes [25]. 

AE for short messages. Most of the modern AE schemes (e.g., CCM [28], GCM [22], 
OCB [21] and of the CAESAR candidates [11]) are constructed as modes of operation for 
a low-level cryptographic primitive, such as a (tweakable) blockcipher or a cryptographic 
permutation. When processing a nonce-associated data (AD)-plaintext tuple, virtually 
every such AE scheme makes a few calls to the primitive that are in addition to and 
independent of (a + m), the lengths of the associated data (AD) a and the message m. 
These additional calls serve different purposes, typically they perform a nonce-based setup, 
or a computation of a key-dependent ciphertext redundancy. Such fixed-cost computation 
is well amortized on long inputs. However, for short inputs where the message processing 
may entail as little as a single primitive call, the extra calls result in a significant overhead. 

Recently, Andreeva et al. [6] proposed the new symmetric primitive forkcipher. When 
forkcipher is coupled together with the appropriate AEAD mode of operation it achieves 
optimal (a+m) primitive calls for the shortest messages [6]. This is achieved at the cost of 
constructing an expanding forkcipher primitive and utilizing its inverse in decryption (else 
additional primitive calls are always incurred). More precisely, a forkcipher is a tweakable 
expanding primitive; it produces two redundant output blocks. This allows for building 
modes that have a zero fixed cost and are able to completely process the shortest mes-
sages with a single primitive call while still being able to process longer inputs, albeit 
somewhat less efficiently. The proposed forkcipher instance ForkSkinny is an iterated 
design that follows the TWEAKEY framework [20]. Roughly speaking, ForkSkinny is 
like the tweakable blockcipher Skinny [10] except that halfway through the encryption, 
its state is duplicated (or else forked), and each fork is further encrypted with indepen-
dent round keys with a total computational complexity of ≈ 1.6 of Skinny. Intuitively, 
ForkSkinny modes should outperform any modes of Skinny for the shortest queries. 

Implementing ForkSkinny. The authors of the ForkAE submission [7] give results 
for a preliminary hardware (HW) implementation. In this paper, we investigate further 
the HW implementation aspects of ForkSkinny and its AE modes. More specifically, 
we (1) explore the HW implementation strategies and trade-offs that are available for an 
iterated forkcipher, (2) benchmark the obtained implementations and compare them with 
other lightweight (tweakable) blockciphers and permutations submitted to the NIST LW 
competition, and (3) estimate the resource costs of ForkSkinny modes and compare 
them to those of other similar lightweight AE schemes. 

Contributions. In this work we describe several implementation strategies for 
the newly proposed ForkSkinny. Those can be additionally generalized to any it-



erated forkcipher. Our optimizations are targeting: (1) Post-fork parallelism; we show 
how to exploit the almost-independent processing of the two ForkSkinny branches after 
the forking point. (2) Recomputation; for small area constraints, we describe an efficient 
rewind/restart mechanism for serialization of the forkcipher branching. (3) Unrolling: for 
low latency, we describe different unrolled forkcipher implementations. 
We further compare the performance and area of the synthesized implemen-
tation of ForkSkinny in its modes with a suitable and manageable subset of 
NIST LWC candidates: Skinny-AEAD [9], Romulus [19] and Ascon [18]. We employ 
a methodology that allows us to swiftly and reproducibly compile a meaningful compar-
ison. In that effort: (1) We use or provide a full implementation for each involved lower 
level primitive, and synthesize with a freely available technology library. (2) We give a fair 
comparison by estimating the overall implementation cost and performance of each mode 
under the same assumptions. Moreover, we provide configurable ForkSkinny imple-
mentations in the public domain§. Finally, we identify promising future research 
directions and applications for the forkcipher primitive. 

2 ForkSkinny Specification 

A forkcipher is a function F : {0, 1}κ ×{0, 1}t ×{0, 1}n ×{0, 1, b} → {0, 1}n ∪{0, 1}2n which 
takes a tweakey ∈ {0, 1}t+κ, a message ∈ {0, 1}n as and an output-switch as input and 
produces the “left”, the “right” or “both” n-bit output blocks according to the output-
switch. κ and t denotes the length (in bits) of the secret key and tweak respectively. 

Andreeva et al. have recently proposed an instantiation of forkcipher called ForkSkinny. 
ForkSkinny is constructed following the iterate-fork-iterate (IFI) paradigm using the 
tweakable block cipher Skinny[10]. The outline of the ForkSkinny construction is de-
picted in Figure 1. 
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Fig. 1: The structure of ForkSkinny. TKS denote the round tweakey schedule 
function and RF denotes the round function (output-switch omitted) 

The round function of ForkSkinny is almost identical to the round function of Skinny. 
Each round can be described as 

Ri = Mixcolumn ◦ Addconstants ◦ Addroundtweakey ◦ Shiftrow ◦ Subcell 

§All current and future ForkAE implementations are available at https://github.com/byt3bit/forkae 
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where the Mixcolumn, Shiftrow, Subcell and Addroundtweakey functions are same as 
in Skinny. Note that the Addroundtweakey function is used in ForkSkinny to generate 
round tweakeys for rinit + r0 + r1 rounds, where r1 and r0 denote the number of rounds 
in the left and right branch of ForkSkinny and rinit denotes the number of rounds 
before forking. The Addconstants function in ForkSkinny differs from Skinny. Unlike 
Skinny (which has 6 bit round constants), the Addconstants in ForkSkinny gener-
ates 7 bit round constants using an LFSR. ForkSkinny always have a key size κ = 128 
(bits) and for each instance r0 = r1. We will denote an instance of ForkSkinny as 
ForkSkinny-n-t + κ-(rinit, r0). Following this notation there instances of ForkSkinny 
are: ForkSkinny64-192-(17, 23), ForkSkinny-128-192-(21, 27), ForkSkinny-128-256-
(21, 27) and ForkSkinny-128-288-(25, 31). For a more detailed description of the Fork-
Skinny algorithm we refer the readers to the article [6]. 

3 Forkcipher Modes 

Andreeva et al. proposed two modes for ForkAE, the parallelizable mode PAEF and the 
sequential mode SAEF [6]. Both are provably secure nonce-based AE schemes [26] (we skip 
the syntax of AE schemes for brevity). The former achieves optimal quantitative security 
(thus allowing for secure instances with a small block size) while the latter is secure up to 
the birthday bound but requires a smaller internal state. Both these modes are designed 
to be most efficient for the shortest queries (with 1 or 2 blocks input data), and their 
performance deteriorates for longer inputs. 

PAEF. PAEF processes blocks of AD and message with single call to F each, using tweaks 
composed of the nonce (with length 0 < ν ≤ t − 4), a domain separation constant and a 
counter. See Figure 2. 

Fig. 2: The encryption algorithm of PAEF[F] mode. The picture illustrates the processing of AD when 
length of AD is a multiple of n (top left) and when the length of AD is not a multiple of n (top right), 
and the processing of the message when length of the message is a multiple of n (bottom left) and when 
the length of message is not a multiple of n (bottom right). The white hatching denotes that an output 
block is not computed. If |M | = 0, the tag is equal to TA; else if |A| = 0, the AD processing is skipped. 

SAEF. SAEF processes blocks of AD and message with single call to F each, using tweaks 
composed of the either a padded nonce (of length t − 4) or a string of n − 3 zeros, and a 
domain separation constant. See Figure 3. 



Fig. 3: The encryption algorithm of SAEF[F] mode. The bit noM = 1 iff |M | = 0. The picture illustrates 
the processing of AD when length of AD is a multiple of n (top left) and when the length of AD is not 
a multiple of n (top right), and the processing of the message when length of the message is a multiple 
of n (bottom left) and when the length of message is not a multiple of n (bottom right). The white 
hatching denotes that an output block is not computed. If |M | = 0, the tag is equal to TA; else if |A| = 0, 
the AD processing is skipped. 

4 Trade-offs and implementation strategies 

This section describes suitable hardware implementation strategies for the forkcipher prim-
itive both in a more general sense (based on the IFI approach) and concretely for the 
ForkSkinny instantiation of IFI. Our work largely focuses on round-based implementa-
tions, as they are often the most suitable choice in practice. Furthermore, we establish 
strategies for serialized, unrolled and pipelined implementations, as well as illustrate both 
extremes of the speed-area trade-off space. 

4.1 Round-based implementations 

Hardware architecture. Figure 4a presents a round-based ForkSkinny hardware ar-
chitecture, where combined encryption-decryption functionality can be enabled. The IS 
and TK registers respectively store internal cipher state and tweakey, and computations 
occur directly in these registers. The L register stores the state at the forking point, RC 
denotes the round constant, and BC is a combinational implementation of the branch 
constant. Decryption requires computing the decryption tweakey with TKSrinit+r1 (·). 

Internal parallelism. The (almost) independent nature of the two branches after the 
forking step in ForkSkinny gives rise to internal primitive parallelism, allowing to de-
crease the computational time beyond lowering the number of rounds. Inherent to an 
iterate-fork-iterate forkcipher, and regardless of the particular instantiation, the paral-
lelism is always available, both in hardware and software. Note however, that for a key 
schedule where there is a function f that describes the tweakey of the C0 branch as a func-
tion of the tweakey of the C1 branch, the parallelism can be exploited at a very little cost 
in hardware. In the current ForkSkinny key schedule, such a function is: f = TKSr0 (·). 
Figure 4b depicts a simplified version of the resulting architecture, revealing that the only 
overhead is a second instance of the round function and the function f itself (which is 
cheap, owing to Skinny’s lightweight key schedule). As the natural way to implement a 



forkcipher in hardware, it allows to compute a forkcipher call at the latency of a conven-
tional tweakable block cipher †. In what follows, we refer to this strategy as fast-forwarding 
and we let (//) denote an implementation that makes use of the parallelism. 

(a) 

(b) 

Fig. 4: Hardware architecture diagrams of (a) regular encryption/decryption 
architecture, (the optional decryption functionality is shaded) 

(b) fast-forwarding the tweakey for efficient parallelism after forking 

Decryption can also exploit this kind of parallelism, albeit at the cost of duplicating the 
key storage. Indeed, there currently exists no such f that captures the relation between 
the tweakey in the decryption and reconstruction branch (it changes every round). The 
attractiveness of the forkcipher can hence be further enhanced by designing a fork-friendly 
key schedule for efficient parallel decryption. 

Instance-specific optimizations and features. For the sake of clarity, the architectures 
in Figure 4 abstract away the low-level, instance-dependent optimizations. For instance, 
setting the decryption key for ForkSkinny-128-192 and ForkSkinny-128-256 is much 
cheaper, because TKS48(·) = TKS0(·) for a large part of the tweakey state. Moreover, 
since ForkSkinny-128-192 and ForkSkinny-128-288 do not utilize all of the available 
tweakey, storage of the unused cells can be replaced with conditional AND gates (zeroizing 
these cells every other round). Finally, all ForkSkinny instances can optionally rewind 
key and nonce from the computation registers, removing the need for additional storage. 

Hardware implementations. Following the submission of this document, we will place 
the VHDL hardware description of the round-based architectures in the public domain. 
These implementations are highly configurable in terms of family members, encryption-
only and encryption-decryption instances, and the exploitation of post-fork parallelism. In 
doing so, we hope to reduce the friction of including ForkAE in third-party benchmarking. 
Indeed, implementing a novel primitive requires considerably more exploration than a 
block cipher or stream cipher, for which the implementation trade-offs are already firmly 
established. 

†Assuming, of course, that rinit + r0 = rinit + r1 is equal to the original number of TBC rounds. 



4.2 Unrolled and high-throughput implementations 

Unrolling strategies. Unrolling the rounds of a cryptographic primitive is a useful tech-
nique to reduce the latency of the primitive by amortizing the set-up and hold-times of 
sequential logic, or to maintain a high speed even when the design is to be clocked at a much 
lower frequency. Fully unrolled implementations are the most extreme and yield the output 
in a single cycle by instantiating all rinit +r0 +r1 in hardware. Another, seemingly natural, 
strategy for an IFI forkcipher is three-fold unrolling, in which one implements an instance 
of max(rinit, r0, r1) unrolled rounds with output taps at rinit, r0, r1 to compute resp. the 
rounds before forking, the C0 branch and the C1 branch. Figure 5 presents the synthesis re-
sults for the fully unrolled and three-fold unrolled strategies. In case encryption-decryption 
functionality is required, the combinational logic should approximately be doubled, while 
the sequential logic can be shared by introducing multiplexers. Like other cryptographic 
primitives, forkciphers can also be unrolled less aggressively (e.g. two or three rounds). 

Fully unrolled Area Critical path 
(1 cycle) [GE] [ns] 

ForkSkinny-64-192 34167 26 
ForkSkinny-128-192 62387 37 

Three-fold unrolled 
(3 cycles) 

Area 
[GE] 

Critical path 
[ns] 

ForkSkinny-64-192 
ForkSkinny-128-192 

16221 
29666 

14 
20 

Fig. 5: Unrolled implementations (encryption) in Nangate 45nm 

High-throughput implementations. As demonstrated by the designers, the low circuit 
depth of the Skinny round function makes it extremely well-suited for high-throughput, 
pipelined implementations [10]. While serial AE modes like Saef, Romulus or Ascon can 
only benefit from pipelining when considering a relatively high-end device (e.g., a server) 
that can interleave the messages of many communicating nodes, parallel modes like Paef 
can exploit a large pipeline depth to the fullest. Using the fast-forwarding approach from 
Section 4.1, it is relatively straightforward to construct pipelined ForkSkinny from the 
publicly available Skinny implementations [27], with a similar critical path. As another 
motivating example, high-throughput implementations are a common strategy for FPGA 
platforms [10], because the necessary pipelining registers come “for free” in an FPGA slice. 

4.3 Reducing the area requirements 

For highly serialized implementations, storage elements and multiplexers constitute the 
dominant resource utilization. Forkciphers are flexible in the sense that they allow to re-
trieve the forking state rather than to store it, either by rewinding from C1 or by restarting 
from M . This flexibility allows to compute the a + m forkcipher calls as a + 2m BC calls, 
bearing similarity with two-pass schemes (e.g. Sundae [8] with a + 2m + 2 BC calls). 

5 Synthesis results and comparison 

Synthesis flow. For reproducing the results in this article, we fully describe the synthesis 
parameters. We allow the use of Scan Flip-Flops. Synthesis occurs with exactly the same 



parameters for all designs: Synopsys Design Compiler 2017.N3 using compile, using 
the Nangate 45nm open cell technology library in typical operating conditions. 

ForkSkinny results. Figure 6 presents the synthesis results for Skinny and Fork-
Skinny (already with write enable for the tweakey state). We can observe that the area 
requirements of a forkcipher are not that much larger than for a block cipher, and that the 
critical path only slightly increases. Moreover, as conjectured in Section 4.1, the internal 
forkcipher parallelism comes at a relatively low cost. 

Area [GE] Maximal frequency [MHz] 

Primitive 
Enc-only Enc+Dec 

Primitive 
Enc-only Enc+Dec 

Regular Parallel Regular Parallel 

Skinny-64-192 3003 / 4522 / 
Skinny-128-256 4992 / 6355 / 
Skinny-128-384 5914 / 8311 / 

ForkSkinny-64-192 3692 4307 5362 6229 
ForkSkinny-128-192 5299 6113 7305 8608 
ForkSkinny-128-256 5842 6688 8101 9450 
ForkSkinny-128-288 6751 7917 9182 10876 

Regular Parallel Regular Parallel 

Skinny-64-192 1351 / 1087 / 
Skinny-128-256 1087 / 1020 / 
Skinny-128-384 1020 / 962 / 

ForkSkinny-64-192 1282 1253 980 952 
ForkSkinny-128-192 1064 1020 877 877 
ForkSkinny-128-256 1064 1020 917 884 
ForkSkinny-128-288 990 962 862 820 

Fig. 6: Synthesis results for Skinny and ForkSkinny primitives (in Nangate 45nm) 

Comparison targets. In the remainder of this section, we compare round-based imple-
mentations of the ForkSkinny modes with a subset of NIST LWC candidates in simi-
lar categories: Skinny-AEAD [9] (Skinny-based, parallel, full security), Romulus [19] 
(Skinny-based, serial, short message performance) and Ascon [18] (short message per-
formance). 

Mode estimation methodology. We acknowledge the engineering effort and added 
value of fairly benchmarking hardware implementations on different platforms. Given the 
current timeline, we provide a hybrid estimate of the area of the compared designs, in our 
effort to provide timely feedback before the announcement of the second round candidates. 
As a first-order estimate, we synthesize the underlying primitives (see Figure 6) under 
identical conditions and estimate the area of a straightforward implementation of the 
modes (using the Nangate 45nm numbers: 7.67GE for Scan flip-flops (SFF), 2.33GE 
for multiplexers (MUX), 2GE for XOR/XNOR and 1GE for NAND). In our estimates, we 
consider a bus interface of n/4 bits. While we do not count the area of interfaces (e.g. 
FIFOs at input and output), a reasonably-sized bus implies that it will not be possible to 
write all inputs in a single go, requiring write enable for all registers that store inputs. 
Importantly for AEAD schemes, we count either the storage for key, nonce (if applicable) 
and counter (if applicable), or the logic required to recompute them (the latter approach 
is best for Skinny-based designs). Although some multiplexers are possibly added by 
implementing a mode on top of a primitive, we assume for this very coarse estimation 
that the critical path of the primitive is unchanged. 

Exemplifying this estimate framework, for encryption-only implementations, the PAEF 
mode (with l-bit counter) requires n SFF, n + t + l MUX (t + l MUX for the parallel 
128-bit versions as recomputing TK1 happens automatically), 5n/4 XOR/XNOR and 
n NAND, on top of the primitive as synthesized in Figure 6. Similarly, the SAEF mode 
requires n SFF, 2n MUX (n MUX for the parallel 128-bit versions) and 5n/4 XOR/XNOR 



for encryption. The numbers for encryption-decryption ForkSkinny are obtained in a 
similar fashion. 

We estimate Skinny-AEAD in the same way, also using the primitives of Figure 6. For 
Romulus, we consider the architecture suggested by the designers [19], adding 128 MUX 
for write enable of the internal state. For Ascon, we resynthesize the publicly available 
Asconv1.1 implementations [17] (no performance changes w.r.t Asconv1.2), yielding 
8125GE with a critical path of 1.71 ns for Ascon128 and 8338 GE with a critical path of 
2.06 ns for Ascon128a. To match the assumptions of the other targets, we add key storage 
(982GE) but subtract 100GE for control, which is not included for the other schemes. 

Comparison with Skinny-based AE schemes. For the Skinny-based designs, Fig-
ure 7 compares round-based implementations that encrypt a blocks of associated data and 
m blocks of message. The modes are partitioned first on tag sizes, then on the underly-
ing Skinny‡and on properties of the mode; Saef and Romulus are serial modes with 
birthday-bounded security, whereas Skinny-AEAD and Paef are parallel modes with full 
n-bit security. When the input consists of a single message block, the ForkSkinny modes 
are up to twice as fast as the competition. From the visual presentation in Figure 8, one 
can identify from which input sizes ForkSkinny performance reduces. 
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Fig. 7: Nangate 45nm area and cycle counts for round-based implementations of Skinny-
based authenticated encryption, considering a blocks of associated data and m blocks 
message. As established earlier, the area is partly synthesized and partly estimated. 

General speed-area investigation of NIST candidates. Comparing with NIST can-
didates that are based on other (T)BC or even permutations (like Ascon) is more com-

‡Although having equal tag sizes, Skinny-AEAD M6 and PAEF-64-192 are not a perfect match. Of all 
Skinny-based designs, they are the closest competitor when tiny messages (≤8 bytes) are predominant. 
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Fig. 8: Number of cycles for round-based implementations as a function of input 
size (a = 0, m variable) for 64-bit blocks (left) and 128-bit blocks (right) 

plicated. Admitting that we cannot cover every implementation strategy for every scheme 
with limited resources, we attempt to approximate the speed-area positions of these candi-
dates in the trade-off space using the aforementioned conservative estimation methodology. 
The speed metric (execution time per message) incorporates both the number of cycles (cf. 
Figure 7) and the critical path of the design (cf. Figure 6) to account for the difference in 
circuit depth between the primitives. Figure 9 plots some interesting comparison targets 
in a speed-area graph in four configurations, two of which with 64-bit input blocks and 
two with 128-bit input blocks. We can observe that for very short messages (≤ 8 bytes), 
the PAEF-64-192 instances have excellent properties, either outperforming Ascon or 
providing a similar latency with smaller area. Considering messages of 128 bits or longer, 
while the encryption-decryption ForkSkinny architectures are no longer the absolute 
best in class, they are capable of occupying several good positions in the speed-area plane, 
while the encryption-only architectures still have excellent performance. 
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6 Conclusion and future work 

Forkcipher and its instantiation ForkSkinny are novel constructions which come with 
new implementation challenges and possibilities. In this work we explore those. We describe 
multiple implementation strategies for ForkSkinny that allow us to fine-tune the desired 
performance-area trade-off. Some of these strategies are standard (round-based, serial, 
unrolled) but others are using the intrinsic properties of ForkSkinny (internal parallelism 
through fast forwarding, and restarting/rewinding). The latter strategies can be directly 
applied to any iterate-fork-iterate forckcipher. We note that these strategies cannot be 
exploited by the existing fixed-input length primitives (although similar strategies are 
pertinent for recent variable-input length primitives such as Farfalle [12]). 
Furthermore, we design a set of highly configurable implementations of ForkSkinny 
that allow to mix-and-match the desired instance together with a set of implementation 
strategies. We also release these implementations in the public domain. 
Finally, we provide a comparison of the performance and area of a subset of the NIST 
LWC candidates targeting the short message scenario. The data for the comparison is 
obtained by a hybrid, reproducible method that combines an actual implementation of 
the primitive, and a conservative estimation of the mode. 

Future work. Our results highlight several future research avenues. The ForkSkinny 
decryption cannot benefit from the same optimizations as the encryption because of the 
post-fork key schedules going in opposite direction. One idea in that direction is to con-
struct a key schedule for efficient parallel decryption, which would allow also for an efficient 
switching between the subkeys of the two forks both in encryption and decryption. 
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[20] Jean, J., Nikolić, I., Peyrin, T.: Tweaks and Keys for Block Ciphers: The TWEAKEY Framework. 
In: Sarkar, P., Iwata, T. (eds.) Advances in Cryptology – ASIACRYPT 2014. pp. 274–288. Springer 
Berlin Heidelberg, Berlin, Heidelberg (2014) 

[21] Krovetz, T., Rogaway, P.: The Software Performance of Authenticated-Encryption Modes. In: Joux, 
A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 306–327. Springer (2011) 

[22] McGrew, D.A., Viega, J.: The Security and Performance of the Galois/Counter Mode (GCM) of 
Operation. In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT 2004. LNCS, vol. 3348, pp. 343– 
355. Springer (2004) 

[23] Mouha, N.: The Design Space of Lightweight Cryptography. IACR Cryptology ePrint Archive 2015, 
303 (2015), http://eprint.iacr.org/2015/303 

[24] NIST: Ligthweight Cryptography. https://csrc.nist.gov/projects/lightweight-cryptography 
[25] PLC, M.: Wireless Tyre Pressure Monitoring (wTPMS). https://www.meggitt.com/products-

services/tyre-pressure-monitoring/ 
[26] Rogaway, P.: Authenticated-encryption with associated-data. In: Atluri, V. (ed.) Proceedings of 

the 9th ACM Conference on Computer and Communications Security, CCS 2002, Washington, 
DC, USA, November 18-22, 2002. pp. 98–107. ACM (2002). https://doi.org/10.1145/586110.586125, 
https://doi.org/10.1145/586110.586125 

[27] Skinny: Skinny Hardware Implementations - Application-Specific Integrated Circuits (ASIC). 
https://sites.google.com/site/skinnycipher/implementation 

[28] Whiting, D., Housley, R., Ferguson, N.: Counter with CBC-MAC (CCM). IETF RFC 3610 (Infor-
mational) (Sep 2003), http://www.ietf.org/rfc/rfc3610.txt 

http://www.ietf.org/rfc/rfc3610.txt
https://sites.google.com/site/skinnycipher/implementation
https://doi.org/10.1145/586110.586125
https://doi.org/10.1145/586110.586125
https://www.meggitt.com/products
https://csrc.nist.gov/projects/lightweight-cryptography
http://eprint.iacr.org/2015/303
https://github.com/IAIK/ascon
https://doi.org/10.1007/978-3-642-04138-9
https://doi.org/10.1007/978-3-642-04138-9
https://doi.org/10.1007/978-3-642-34961-4
https://doi.org/10.1007/978-3-642-34961-4
https://doi.org/10.1007/978-3
https://doi.org/10.1007/978-3-540-74735-2
http://eprint.iacr.org/2017/511
https://tosc.iacr.org/index.php/ToSC/article/view/801
http:http://competitions.cr.yp.to
https://doi.org/10.1007/978-3



