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Abstract. Motivated by a number of applications of lightweight ciphers in privacy-
enhancing cryptography (PEC) techniques such as secure multiparty computation (SMPC) 
and fully homomorphic encryption (FHE), we investigate the Boolean circuit complexity of 
the core primitives of NIST lightweight cryptography (LWC) round 2 candidates. In PEC, 
the functionalities (e.g., ciphers) are often required to express as Boolean or arithmetic cir-
cuits before applying PEC techniques, and the size of the circuit is one of the efficiency 
factors. As use cases, we consider secure evaluation of the core AE circuits in the two-party 
computation (2PC) setting using Yao garbled circuit, and homomorphic evaluation of the 
core AE circuits in the cloud-outsourcing setting using the TFHE scheme. The performance 
results for both cases are presented. 

Introduction 

Pervasive and ubiquitous computing has been integrating the physical world into the digital 
world where billions of physical devices such as smart devices, sensors and actuators are de-
ployed at different applications for operational, monitoring and data collection. The collected 
data are processed at backend servers/cloud for operation, automation, and optimizing costs. 
Despite the use of lightweight cryptographic algorithms such as authenticated encryption (AE) 
for protecting communication in resource-constrained applications, it may be used for secure 
storage of data from constrained applications. Such stored data will not solely be used for 
storage or backup (securing while at rest) purposes, but also be used for performing analyt-
ics computations for extracting useful information for operational, automation, and optimizing 
cost purposes. To enable computation on encrypted data by a lightweight cipher, a friendly 
(computationally-efficient) interface of the lightweight cipher with privacy-enhancing cryptogra-
phy (PEC) techniques such as secure multiparty computation (SMPC) and fully homomorphic 
encryption (FHE) is required. 

The idea of friendliness of a symmetric-key algorithm with SMPC protocols or FHE schemes 
or bridging the gap between a symmetric-key algorithm and a public-key algorithm using 
key/data encapsulation mechanisms is not new [GRR+16, MJSC16, AGR+16, DEG+18, CS03, 

∗ A preliminary result is submitted to the NIST Lightweight Cryptography Workshop 2020 from an ongoing 
work. 
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CCF+18]. In the literature of SMPC, FHE and zero-knowledge (ZK) proof, AES has not only 
been widely used as a benchmarking cipher, but also used to develop privacy-preserving ap-
plications using secure computation techniques [DK10, DKL+12, KOR+17, LR15, PSSW09, 
NNOB12, GHS12, LTW13, KMR12]. Block ciphers namely Triple-DES and Simon are also 
used as benchmarking ciphers for SMPC and FHE applications [LN14, KOR+17]. Symmetric-
key primitives are also used in cryptocurrency and blockchain applications along with zero-
knowledge proof techniques. For example, Zcash [SCG+14], the latest version (2019) adopted 
CHACHA20 POLY1305 [Hou17] for authenticated encryption, and the BLAKE2 hash function 
(the top 2 finalist in the NIST SHA3 competition for hash). Hawk [KMS+16] uses lightweight 
block cipher Speck [BSS+15] for encryption in the CBC mode, and SHA-256 for pseudorandom 
functions (PRFs) and commitments, and achieves only 80-bit security. 

The ongoing NIST lightweight cryptography (LWC) standardization competition has aimed 
at standardizing lightweight authenticated cipher(s) and hash function(s) [BCC+19]. Although 
lightweight authenticated ciphers have aimed at providing security in constrained environments, 
their real-world deployment would not only be limited to resource-constrained environments, 
rather be used at heterogeneous computing environments, depending upon their efficiencies. 
Therefore, the friendliness of lightweight ciphers with PEC techniques should be evaluated. In 
this work, we consider secure evaluation of lightweight ciphers in privacy-enhancing crypto-
graphic applications. 

1.1 Applications of Lightweight AE in Privacy-enhancing Cryptography 

In this section, we mention some applications where privacy-enhancing aspects of lightweight 
authenticated ciphers are required to consider. We use the Internet of Things (IoT) as an 
application to explain the usages. 

1.1.1 Cloud-IoT Outsourcing Data and Computation for Analytics 

Smart IoT devices are deployed for operational and automation at various applications. Consider 
a scenario where a smarthome thermostat sends temperature readings of a house in every an 
hour basis to a cloud, who processes the temperature readings and instruct the thermostat to 
automate the heating in the house. Note that cleartext temperature readings leaks information 
about individuals’ presence or absence in the house. Cloud can do the profiling of houses 
from temperature readings, which invades privacy. This can be prevented by a conjunction of 
lightweight AE algorithms with FHE algorithms. Assume the thermostat has implemented a 
lightweight AE scheme. For each day, it uses a nonce that can be a time stamp of the day and 
encrypt each hour’s temperature reading using a block of AE encryption where a temperature 
reading can be represented using a 32, 64 or 128 bit number. Thus, for each day 24 readings are 
sent to the cloud, and by the end of the day, it converts to AE ciphertexts to HE ciphertexts, 
and then performs statistical/analytical computations on encrypted readings. One of the key 
consideration is an efficient integration of AE and FHE algorithms (see Section 2.3 for details). 

1.1.2 Sharing of Data from Constrained Applications to the MPC System 

In an MPC system, data from multiple sources are secret-shared among a set of MPC servers, 
denoted by Si, who jointly conduct the computation over secret-shared data to obtain the result. 
Assume there are ` MPC servers in an MPC system. We consider a new constrained-environment 
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application scenario where data is encrypted by an IoT device and the ciphertext is denoted 
by c = AEnc(k, m) and the encryption key k is secret-shared among the MPC servers, i.e.,L` k = To optimize the cost, the IoT device encrypts the data only once and sends iti=1 ki. 
to the MPC system. To create secret-shares of the data m, the MPC servers jointly need to 
evaluate the decryption algorithm, and this functionality is described as follows: 

Inputs of Si: Server Si holds a share of the key ki and randomly generates ri for 1 ≤ i ≤ `−1. 
S` gives no random input. 

Jointly generate the share of data: (m1,m2, · · · ,m`) ← f((k1, r1), · · · , (k`−1, r`−1), (kn), ADec, c)P` L 
such that = m, which consists of the following steps: a) Compute m = ADec( ki, c),i=1 mi L 
b) Compute m` = m ⊕ ( ri). By the end of the computation, for the servers’ Si, 1 ≤ i ≤ 
` − 1, the share is mi = ri,, and the server S`’s share is m`. 

This requires the distributed decryption of an AE scheme which saves (` − 1) encryption opera-
tions for the IoT device, over encrypting and sending individual ciphertexts of mi, 1 ≤ i ≤ ` by 
the device. After the secret-sharing of data m, the servers’ can perform computations on data 
using the prescribed MPC protocol. As mentioned in [ARS+15], the MPC server can jointly 
encrypt secret information to send it to the IoT device. This motivates us to consider the circuit 
complexity of the lightweight AE schemes. The ideas about jointly encrypting by the MPC 
servers for AES or other PRF-based AE have appeared in [RSS17, ARS+15]. 

1.1.3 Secure Password Storage, IoT Database Operation and More 

A number of applications for secure evaluation of AES such as one-time passwords [ARS+15], 
secure database join operations [LTW13], and private set intersection [PSSW09] have been 
proposed. For more collected applications of AES, the reader is referred to [ARS+15]. When a 
lightweight cipher is standardized, it is likely that the lightweight cipher would also be used for 
various applications. Many of these privacy-preserving applications may be directly adapted to 
resource-constrained applications such as IoT databases 12 . 

1.2 Related Work 

Lightweight cryptography and NIST LWC standardization competition. The ad-
vent of lightweight cryptography is due to providing security in resource-constrained environ-
ments such as RFID and sensors where traditional ciphers for computer/internet may be heavy 
[BKL+07]. Lightweight cryptography exists for more than a decade. There have been numerous 
symmetric-key ciphers such as block ciphers, stream ciphers, authenticated encryption and hash 
functions developed in the past years targeting to hardware efficiency. Some notable examples 
are PRESENT, CLEFIA, and LEA in the ISO/IEC standards [Sta19], Grain and Trivium from 
the eStream project [ECR], and ASCON and ACORN from the CAESAR competition [CAE]. 
In response to the call for proposal of the NIST LWC standardization competition, there were 
56 proposals for authenticated encryption (many with both AE and hash) accepted as round 1 
candidates, and 32 candidates were moved to round 2 [BCC+19]. The design of lightweight AE 
schemes can be classified as four main types namely permutation, block cipher, tweakable block 
cipher, stream cipher and some other designs [STMÇ +19]. 

1https://www.ibm.com/downloads/cas/G6BONV4B 
2https://crate.io 
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Symmetric-key ciphers for privacy-enhancing cryptography. There is a growing inter-
est in the development of symmetric-key ciphers dedicated to privacy-enhancing cryptographic 
applications such as secure multiparty computation, fully homomorphic encryption and zero-
knowledge proofs. Some examples of stream ciphers designed for FHE applications are FILP 
[MJSC16], Kreyvium [CCF+18], and Rasta [DEG+18], the block cipher examples for MPC, FHE 
and ZK proof applications include LowMC [ARS+15], MiMC [AGR+16], GMiMC [AGP+19], and 
MARVELlous [AD18, AABS+19]. Examples of hash functions for MPC and ZK proofs appli-
cations include GMiMC [AGP+19], MARVELlous [AD18, AABS+19], and Poseidon [GKR+19]. 
[RSS17] presents the constructions of parallel nonce-based authenticated encryption based on 
the MiMC and Legendre symbol PRFs for MPC applications. To the best of our knowledge, 
the suitability of these primitives, especially block ciphers and stream ciphers have not been 
investigated for resource-constrained applications where the hardware efficiency is a major con-
sideration. 

For blockchain and cryptocurrency applications, Boolean circuits of LWC also has very im-
portant applications in privacy of blockchain systems, especially the zero-knowledge Succinct 
Non-interactive Argument of Knowledge (zkSNARK) for blockchain privacy [GGPR13]. Even 
for most advanced servers, it is harder to perform these computations in practice at an ade-
quate security level. In fact, a few years ago, only a few blockchain and cryptocurrency systems 
have implemented privacy protection mechanisms by zkSNARKs (e.g., Zcash [SCG+14], Hawk 
[KMS+16] and Ligero [AHIV17]), but at security levels below 128 bits. These applications point 
out that there is a gap between the efficient interface of lightweight cryptography and privacy-
enhancing cryptography as the applications of lightweight ciphers may go beyond traditional 
encryption and authentication due to increasing privacy concerns. 

1.3 Our Contribution 

This work focuses on engineering and real-world application aspects of lightweight ciphers when 
conjunct with privacy-enhancing/preserving cryptographic techniques such as SMPC and FHE. 
First, we generate the Boolean circuits of core primitives of the NIST LWC AE schemes, and 
present some empirical circuit complexity statistics. The reason for studying the circuit com-
plexity is that in PEC, the functionalities (e.g., ciphers) are often required to express as Boolean 
or arithmetic circuits before applying PEC techniques, and the running time (efficiency) of the 
privacy-preserving scheme relies on the size of the circuit. Due to the heterogeneity of the AE 
modes in the NIST LWC round 2 candidates, we consider the core underlying primitives of the 
AE schemes, which are the nonlinear components that are the bottleneck in PEC. Next, we 
consider the secure evaluation of core primitives in the standard 2PC computation setting using 
Yao garbled circuit (GC) [Yao86] and the homomorphic evaluation of AE core primitives in 
the computation-outsourcing setting. We developed two implementations in C++ on top of the 
EMP-toolkit [WMK16] for 2PC evaluation where the GC scheme is instantiated the half-gates 
garbling scheme [ZRE15] and the TFHE scheme [CGGI16a, CGGI16b] for homomorphic evalua-
tion. Finally, we present the experimental results on the performance of the core AE primitives 
for both cases. 
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2 Preliminaries 

2.1 Authenticated Encryption 

An authenticated encryption with associated data (AEAD) scheme is a tuple of algorithms 
AEAD = (AKeyGen, AEnc, ADec). The key generation AKeyGen outputs a key, i.e., K ← 
AKeyGen(1λ) for security parameter λ, AEnc accepts a key K, a nonce N , an associated data 
AD and a message M and produces a ciphertext and a tag, i.e., (C, T ) ← AEnc(K, N, AD, M). 
Similarly, ADec accepts a key, a nonce, an associated data, a ciphertext and a tag and pro-
duces a message if the tag verification is successful, i.e., {M, ⊥} ← ADec(K, N, AD, C, T ). The 
encryption algorithm AEnc has four phases, namely an initialization phase, an associated data 
processing phase, an encryption phase and a tag generation phase, and similarly for the decryp-
tion phase where the encryption phase is replaced by a decryption phase. 

2.2 Two-party Computation Protocol and Garbled Circuit 

Secure multiparty computation (SMPC) protocol allows a set of mutually distrusting parties to 
jointly compute a function on their private inputs without revealing anything information about 
the private inputs, except what directly leaks from the output. Secure 2-party computation 
(2PC) protocol is a special case of an SMPC protocol which is between two parties. Yao garbled 
circuit (GC) [Yao86] is a popular 2PC protocol where the functionality to be evaluated on the 
private inputs is represented as a Boolean circuit. For the details, the reader is referred to 
[Yao86, HL10, BHR12]. 

2.3 Fully Homomorphic Encryption and Outsourcing Protocol 

Fully homomorphic encryption. Fully homomorphic encryption (FHE) is a public-key en-
cryption scheme that enables to perform (in principle) an unlimited number computation over 
encrypted data for any arbitrary function represented using a circuit. An FHE scheme consists 
of a tuple of four probabilistic polynomial-time algorithms FHE = (HKeyGen, HEnc, HDec, HEval) 
[Gen09]. The key generation algorithm HKeyGen generates secret, public, and evaluation keys, 
i.e., (pk, sk, evk) ← HKeyGen(1λ) for a security parameter λ, HEnc encrypts a plaintext message 
(m) using the public key, i.e., c ← HEnc(pk,m), HDec decrypts a ciphertext (c) using the pri-
vate key, i.e., m ← HEnc(sk, c), and HEval evaluates a function f (typically represented using a 
circuit) on a set of ciphertexts ({ci} `−1) using the evaluation key (evk), and produces a singlei=0 
ciphertext HEnc(f(m0, · · · ,m`−1)) ← HEval(evk, f, {ci} `−1) which is the encrypted output of fi=0 
on plaintext messages ({mi} `−1).i=0 

Homomorphic encryption security standard. Recent years have evidenced a promising 
advancement of FHE schemes, open-source implementations and applications and growing de-
mands from industry. There is a homomorphic encryption standard initiated to standardize 
FHE scheme(s) to have a unified and simplified API, and clear and understandable security 
properties for use by non-experts as well as experts. For the details about the standard and the 
list of FHE candidates, the reader is referred to [ACC+18, ea18b, ea18a]. 

Hybrid-encryption based outsourcing protocol. Figure 1 shows a computation and data 
outsourcing protocol combining a symmetric-key encryption scheme and a fully homomor-
phic encryption scheme. It follows the paradigm of key and data encapsulation mechanisms 
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(KEM/DEM) for hybrid encryption where the data is encrypted using a symmetric encryption 
and the key of the symmetric-key encryption is encrypted using a public key scheme (FHE), i.e., 
KEMkDEM = HEnc(pk, K)kAEnc(K, Data) [CS03]. Note that the client generates the keys for 
both homomorphic encryption and authenticated encryption schemes. The ciphertext conver-
sion step from a symmetric-key to a HE ciphertext, denoted by CTC, needs the homomorphic 
evaluation of the symmetric-key decryption algorithm. In this work, our main focus is on the 
ciphertext conversion algorithm when the symmetric-key encryption algorithm is a lightweight 
AE scheme. 

Client Cloud/Server 
(pk, sk) ← HKeyGen(1λ) 

K ← AKeyGen(1λ) 

Ch(K) ← HEnc(pk, K) 
pk,Ch(K)−−−−−→ pk, Ch(K) 

Ca(Mi) ← AEnc(K, Mi) 
Ca(Mi)−−−−→ Ca(Mi)� � 

f 

f(M0, · · · , M`−1) = 
HDec(sk, Ch(f(M0, · · · , M`−1))) 

f −−−→ 
Ch(f (M0,··· ,M`−1))←−−−−−−−−−−−− 

Ch(Mi) = CTC evk, ADec, Ch(K), Ca(Mi) 

Ch(f(M0, · · · , M`−1)) = HEval(f, evk, Ch(Mi)) 

Figure 1: An FHE-based client-server computation and data outsourcing protocol using 
symmetric-key encryption [MJSC16]. 

Circuit Complexity of NIST LWC Round 2 Candidates 

In this section, we generate and report the Boolean circuits of the core primitives of the NIST 
LWC round 2 candidates. The reason for this is that, in many privacy-enhancing applications, 
the functionalities are required to represent as a Boolean circuit before applying the privacy-
enhancing techniques. 

Classification of round 2 AE candidates into core primitives. We call a component of 
an AE scheme a core primitive if it is the nonlinear component of the AE scheme. For instance, 
for a permutation-based AE scheme, the core primitive is the permutation as it provides the 
nonlinearity and the mode part involves linear operations. The underlying core primitives of 
the AE schemes can be classified according to the main primitives as shown in Table 1. Note 
that, for example, the block cipher GIFT-128 has been used as a core primitive in multiple 
submissions, we consider only the GIFT-128 block cipher as it is the core nonlinear component 
of the schemes. As there are various types of modes in the NIST LWC candidates, we consider 
only the core primitives in the AE schemes. 

Generating Boolean circuits of core primitives. We generate the circuits for the under-
lying permutations, block ciphers or state update functions of the AE or hash modes. We use 
the CBMC-GC compiler [FHK+14] to generate the circuits where each LWC cipher’s circuit is 
represented using XOR, AND and NOT gates in the Bristol fashion [bri]. Table 2 summarizes 
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Table 1: Classification of the MIST round 2 candidates based on the underlying core primitives 
Candidates Core-primitive Type 
ACE ACE Permutation 
COMET, ESTATE, mixFeed, 
SAEAES 

AES Block cipher, Tweak-
able Block cipher 

ASCON, ISAP ASCON Permutation 
COMET CHAM Block cipher 
DryGASCON DryGASCON Permutation 
ESTATE, GIFT-COFB, 
HyENA, LOTUS-AEAD, 
LOCUS-AEAD, SUNDAE-
GIFT 

GIFT-64/128 Block cipher, Tweak-
able block cipher 

Gimli Gimli Permutation 
Grain-128AEAD Grain Stream cipher 
ISAP, Elephant Keccak Permutation 
KNOT Knot Permutation 
ORANGE, PHOTON-Beetle Photon Permutation 
Oribatida SimP-n-θ Block cipher 
Pyjamask Pyjamask Block cipher 
Saturnin Saturnin Block cipher 
SPIX, SpoC sLiSCP-light-192/256 Permutation 
Sparkle Sparkle Permutation 
COMET Speck Block cipher 
Elephant Spongent Permutation 
Spook Clyde-128 and Shadow-512 Tweakable block cipher, 

Permutation 
ForkAE, Romulus, SKINNY-
AEAD, 

Skinny Block cipher 

Subterranean Subterranean Permutation 
TinyJambu TinyJambu Stream cipher 
WAGE WAGE Permutation 
Xoodyak Xoodyak Permutation 

the list of circuits with the numbers of XOR, AND and NOT gates3 . The multiplicative depth 
and the total depth of the LWC circuits are also reported. The description of the circuits can 
be found in [Man20]. We do not claim that the circuit sizes are minimal. 

Multiplicative depth. The multiplicative depth of a Boolean circuit is the maximum number 
of sequential multiplications (AND operations) in the circuit. As the construction of the core 
primitive is iterative and based on a round function consisting of linear and nonlinear functions, 
the multiplicative depth of the primitive can be easily seen from the number of rounds and the 
multiplicative depth of the round function (Proposition 1). For instance, for ACE, the Feistel 

3The table does not contain the details of all round 2 candidates. The work of the remaining candidates is in 
progress. 
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round function in the Simeck-box is a quadratic function of an AND depth 1 and the total of 
rounds is 128, the multiplicative depth is 128, which can be seen in the AND depth column 
of Table 2. Similarly, for ASCON, the round is quadratic, thus the multiplicative depth for 
the 12-round permutation is 12. The multiplicative depth of the Boolean circuits of the core 
primitives is an important consideration for the FHE applications where for some FHE scheme, 
the key setup parameters are chosen based on this information. Moreover, the noise growth 
due to the multiplication operation is larger than the noise growth due to that of the addition 
operation. 

Proposition 1. Let d be the multiplicative depth of a Boolean circuit of a round function 
composed of a substitution-permutation network (SPN) or Feistel network based cipher. The 
multiplicative depth of a r-round cipher is rd where r is the number of rounds. 

Proof. The proof is straightforward. 

Table 2: Summary of the circuit complexity of some NIST LWC core primitives in round 2. 
Cipher State Size Total Gates Individual Gates 

AND XOR NOT 
AND Depth Total Depth % AND 

AES [TS] 128 33616 6800 25124 1692 – – 20.23 
ACE 320 46182 12288 27648 6246 128 475 26.61 
Ascon 
Ascon(r6) 
Ascon(r8) 

320 
320 
320 

25466 
12408 
16760 

3712 
1792 
2432 

15932 
7868 
10556 

5822 
2748 
3772 

12 
6 
8 

93 
47 
62 

14.58 
14.58 
14.58 

Gimli 320 35427 8640 17760 9027 24 75 24.39 
GIFT-128 
TweGIFT-64 
TweGIFT-64-inv 

128 
64 
64 

20657 
20298 
19846 

5120 
10315 
10315 

10240 
8166 
7718 

5297 
1817 
1813 

160 
56 
56 

449 
196 
196 

24.79 
50.82 
51.98 

Keccak-200 
Keccak-400 

200 
400 

19985 
44394 

3600 
8000 

10800 
24000 

5585 
12394 

18 
20 

174 
192 

18.01 
18.02 

Knot-256 
Knot-384 
Knot-512 

256 
384 
512 

49770 
109140 
191665 

13312 
29184 
51200 

23296 
51041 
89600 

13162 
28980 
50865 

104 
152 
200 

260 
380 
500 

26.75 
26.74 
26.71 

Photon 256 62652 17940 41640 3072 24 179 28.63 
Saturnin 256 45643 7680 22465 15627 120 331 16.83 
Skinny-enc-128-384†† 

Skinny-dec-128-384†† 
128 
128 

207506 
139699 

65344 
41936 

129215 
80573 

12947 
17190 

392 
286 

1462 
1095 

31.49 
30.02 

sLiSCP-light-192 
sLiSCP-light-256 
sLiSCP-light-256 (r9) 

192 
256 
256 

20366 
34588 
17324 

5184 
9216 
4608 

12096 
20736 
10368 

3086 
4636 
2348 

108 
144 
72 

437 
542 
271 

25.45 
26.65 
26.65 

Sparkle-256 
Sparkle-384 
Sparkle-512 

256 
384 
512 

59588 
98422 
143524 

25440 
41976 
61056 

31360 
51920 
75648 

2788 
4526 
6820 

200 
220 
240 

554 
613 
703 

42.69 
42.65 
42.54 

Spongent-160 
Spongent-176 

160 
176 

72890 
93429 

20211 
26702 

41321 
52396 

11358 
14331 

160 
180 

534 
646 

27.73 
28.58 

Spook: Shadow-512 
Clyde-128-Enc 
Clyde-128-Dec 

512 
128 
128 

35420 
13655 
13655 

6144 
1536 
1536 

29184 
12096 
12096 

92 
23 
23 

19 
24 
37 

94 
132 
161 

17.35 
11.25 
11.25 

Subterranean 257 1319 265 772 290 2 7 20.09 
TinyJambu-init† 128 11696 2118 8422 1156 50 276 18.11 
TinyJambu (P1024)

† 128 5638 1024 4096 518 24 134 18.16 
WAGE 259 105739 37745 62121 5873 333 2220 35.70 
Xoodoo 384 25275 4608 13824 6843 12 93 18.23 

† = 112-bit security, †† = reduced # of gates, not low AND-depth circuits. 
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4 Secure 2PC Evaluation of Core AE Circuits 

Motivated by applications of the lightweight AE schemes in MPC in Section 1.1, we evalu-
ate the performance of lightweight core primitives using Yao garbled circuit, and present the 
experimental results in the semi-honest adversarial settings. 

Securely evaluating core AE circuits. We consider the problem of securely evaluating the 
core primitive of an AE scheme, which is the main computationally-expensive component. The 
total evaluation time of the mode of an AE scheme can be estimated from the core primitive 
evaluation time by including the cost of oblivious transfer operations to compute each block of 
the messages. For now, we restrict ourselves to the evaluation of the core primitives. For a 
core AE circuit C, we evaluate C(K1 ⊕ K2,M1 ⊕ M2) using the garbled circuit where one party 
holds the input (K1,M1), another party holds (K1,M1), and K = K1 ⊕ K2 and M = M1 ⊕ M2, 
which are Boolean sharings of K and M , respectively. For instance, for a block cipher circuit C, 
AEnc(K1 ⊕ K2,M1 ⊕ M2) = C(K1 ⊕ K2,M1 ⊕ M2). 

Implementation details. We develop a generic implementation in C++ on top of the EMP-
toolkit libraries [WMK16] that implemented the oblivious transfer (OT) protocol and the half-
gates garbling scheme [ZRE15]. We consider the garbled circuit scheme that is secure against 
semi-honest adversaries. In our implementation, we feed the circuits generated in Section 3 and 
obtain the computational time for both garbling and evaluation of the core circuits. Note that 
no network communication was involved during the execution of the protocol as both the garbler 
and evaluator were running on the same machine. 

Performance. The experiments were conducted on a desktop with 3.00GHz Intel Core i7-
9700 CPU and 32 GB RAM running on Ubuntu 18.04. Table 3 presents the wall-clock time to 
evaluate one execution of the core primitive circuit. Note that the garbler and the evaluator’s 
time are similar. Thus we present only the evaluator time in the table. 

5 Homomorphic Evaluation of Core AE Circuits 

As shown in Section 2.3, converting an AE ciphertext to an FHE ciphertext involves the ho-
momorphic evaluation of the core AE circuits. In this section, we perform the homomorphic 
evaluation of the core AE circuits of the NIST LWC AE schemes and present experimental re-
sults. Before we present the experimental evaluation results, we explain the process of converting 
a ciphertext produced by an AE scheme to a ciphertext of an FHE scheme. 

5.1 Conversion of AE Ciphertexts to FHE Ciphertexts 

We use a sponge-based AEAD as an example to explain the process and focus only on the 
encryption and decryption process. Let S be the state of the permutation π after initialization 
and associated data processing phases. Assume the encryption of a message is performed, like 
a stream cipher encryption, as Ci = Mi ⊕ Ki where Ki is served as a keystream block that is 
obtained from the rate part of the state of the permutation after processing previous (i − 1) 
message blocks, i.e., Ki ← bπi(S)cr where b·cr denotes the contents from the rate part. Assume 
that a cloud receives ciphertexts C = (C0, · · · , C`−1) and the encrypted key of the AE scheme, 
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i.e., HEnc(KkN) where C = AEnc(K, N, M). The cloud performs the following steps to obtain 
HEnc(M) as follows: 

Step 1: Compute an FHE ciphertext from an AE ciphertext: It first computes the 
FHE ciphertexts of all Ci’s using the public key of the FHE scheme as 

HEnc(C) = (HEnc(C0), HEnc(C1), · · · , HEnc(C`−1)). 

Step 2: Homomorphically evaluate the permutation circuit Cπ: Using the encrypted 
key HEnc(KkN) of the AEnc scheme, it evaluates the permutation circuit Cπ sequentially 
for each ciphertext block and obtain � � 

HEnc(Ki) ← bHEnc πi(S) cr 

and then computes the FHE ciphertext of Mi from HEnc(Ki) and HEnc(Ci) as 

HEnc(Mi) = HEnc(Ki ⊕ Ci) ← HEval(XOR, HEnc(Ki), HEnc(Ci)). 

In the above steps, the most expensive operation is the homomorphic evaluation of the per-
mutation. As we have considered the binary circuit, the choice of the FHE scheme determines 
the ciphertext HEnc(Ci) whether it is a single ciphertext (packed using SIMD) or r ciphertexts 
where each ciphertext is an FHE encryption of one-bit of AE ciphertexts. 

Cπ Cπ Cπ Cπ 

HEnc(KkN) 

Init + AD 
HEnc(K0) HEnc(C0) 

HEnc(K1) 
HEnc(C1) 

Figure 2: Homomorphic evaluation of the sponge mode in the decryption phase. Two blocks of 
decryption are shown where Cπ is the circuit for the permutation π. 

Note that for the permutation-based AE schemes such as ACE and ASCON, the same 
underlying permutation is required to evaluate for both encryption and decryption operations. 
Figure 2 presents a high-level description of the homomorphic evaluation of the sponge mode 
(without subtle details). On the other hand, for block ciphers based AE schemes, the decryption 
algorithm may have a different circuit from an encryption one depending upon the scheme. Note 
that to convert an AE ciphertext to an FHE ciphertext to enable homomorphic computation, 
the decryption circuit needs to be evaluated. In the following section, we focus only on the 
homomorphic evaluation of the core primitives of the AE schemes. 

5.2 Experimental Evaluation 

Experimental setup. We have developed a generic implementation of homomorphic eval-
uation of core-AE circuits in C++ on top of the TFHE scheme [CGGI16a, CGGI16b], which 
is a candidate in the HE standard [ACC+18]. The TFHE supports homomorphic evaluations 
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of binary gates and does not required to know the depth of the circuit during the parameter 
generation phase. As the circuit is represented using only XOR, AND and NOT gates, our im-
plementation uses homomorphic computations of only these three gates. In our implementation, 
we feed the core circuit of an AE scheme and an encrypted state of the primitive, and obtain 
the encrypted output through its homomorphic evaluation. For instance, for a permutation, 
we provide the FHE encrypted key and nonce, and homomorphically evaluate the permutation 
circuit and obtain the encrypted output. We use the default parameters of TFHE providing 
110-bit security. We conduct the experiments on a desktop with a 3.00GHz Intel Core i7-9700 
CPU and 32 GB RAM running on Ubuntu 18.04. Note that the homomorphic evaluation is 
done using a single thread (no parallelism is exploited). 

Performance. We now present the Wall-clock running time for homomorphically evaluating 
the core-AE circuits in Table 2. We micro-benchmark the timings of homomorphic computation 
of XOR, AND and NOT gates in TFHE in Table 5. For instance, in TFHE, the homomorphic 
XOR computation time for 128 ciphertexts is about 4.96 seconds. The micro-benchmarking 
results show that the homomorphic operations for XOR and AND takes almost the same amount 
of time. Table 4 reports the computation time (in second) of the homomorphic evaluation of 
core AE circuits given in Table 2. 

Table 5: Benchmarking homomorphic XOR, AND and NOT operations in TFHE on our machine. 
Time is given in second (s). 

Number of ciphertexts 
Operation 64 128 256 
TFHE.Enc 0.002457 s 0.00490 s 0.010055 s 
TFHE.Dec 0.000065 s 0.00013 s 0.000266 s 
TFHE.XOR 2.502675 s 4.959481 s 10.04321 s 
TFHE.AND 2.476224 s 4.964595 s 9.981702 s 
TFHE.NOT 0.000058 s 0.000118 s 0.000231 s 

Estimating time for individual modes. Note that Table 4 presents the homomorphic 
evaluation time only for the core primitives of the AE schemes. The modes of operation for 
different ciphers are different. Also, different AE schemes process different number of message 
blocks in each call of a core primitive. The homomorphic evaluation time of a particular AE 
mode using TFHE can be estimated based on the number of invocations of the core primitive 
and the homomorphic operation cost of the mode using Table 5. 

Conclusions and Future Work 

In this work we considered secure evaluation of lightweight authenticated ciphers for privacy-
enhancing cryptographic applications and presented some preliminary results from our ongoing 
work. To our knowledge, this work is the first that reports the Boolean circuits of the core 
primitives of NIST lightweight cryptography round 2 candidates. Two implementations of se-
cure 2PC evaluation and homomorphic evaluation of the lightweight AE schemes using existing 
garbled circuit and FHE libraries are developed. We presented the performance results for both 
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privacy-preserving evaluations. We are currently working on specialized secure computation 
and homomorphic evaluation techniques for lightweight ciphers and also applying for blockchain 
applications. 
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