
1

Can LWC and PEC be Friends?: Evaluating
Lightweight Ciphers in Privacy-enhancing

Cryptography∗

Kalikinkar Mandal1 and Guang Gong2

1Faculty of Computer Science, University of New Brunswick, Fredericton, NB, E3B 5A3,
CANADA

2Department of Electrical and Computer Engineering, University of Waterloo, Waterloo,
ON, N2L 3G1, CANADA

Abstract. Motivated by a number of applications of lightweight ciphers in privacy-
enhancing cryptography (PEC) techniques such as secure multiparty computation (SMPC)
and fully homomorphic encryption (FHE), we investigate the Boolean circuit complexity of
the core primitives of NIST lightweight cryptography (LWC) round 2 candidates. In PEC,
the functionalities (e.g., ciphers) are often required to express as Boolean or arithmetic cir-
cuits before applying PEC techniques, and the size of the circuit is one of the efficiency
factors. As use cases, we consider secure evaluation of the core AE circuits in the two-party
computation (2PC) setting using Yao garbled circuit, and homomorphic evaluation of the
core AE circuits in the cloud-outsourcing setting using the TFHE scheme. The performance
results for both cases are presented.

Introduction

Pervasive and ubiquitous computing has been integrating the physical world into the digital
world where billions of physical devices such as smart devices, sensors and actuators are de-
ployed at different applications for operational, monitoring and data collection. The collected
data are processed at backend servers/cloud for operation, automation, and optimizing costs.
Despite the use of lightweight cryptographic algorithms such as authenticated encryption (AE)
for protecting communication in resource-constrained applications, it may be used for secure
storage of data from constrained applications. Such stored data will not solely be used for
storage or backup (securing while at rest) purposes, but also be used for performing analyt-
ics computations for extracting useful information for operational, automation, and optimizing
cost purposes. To enable computation on encrypted data by a lightweight cipher, a friendly
(computationally-efficient) interface of the lightweight cipher with privacy-enhancing cryptogra-
phy (PEC) techniques such as secure multiparty computation (SMPC) and fully homomorphic
encryption (FHE) is required.

The idea of friendliness of a symmetric-key algorithm with SMPC protocols or FHE schemes
or bridging the gap between a symmetric-key algorithm and a public-key algorithm using
key/data encapsulation mechanisms is not new [GRR+16, MJSC16, AGR+16, DEG+18, CS03,

∗ A preliminary result is submitted to the NIST Lightweight Cryptography Workshop 2020 from an ongoing
work.

1

CCF+18]. In the literature of SMPC, FHE and zero-knowledge (ZK) proof, AES has not only
been widely used as a benchmarking cipher, but also used to develop privacy-preserving ap-
plications using secure computation techniques [DK10, DKL+12, KOR+17, LR15, PSSW09,
NNOB12, GHS12, LTW13, KMR12]. Block ciphers namely Triple-DES and Simon are also
used as benchmarking ciphers for SMPC and FHE applications [LN14, KOR+17]. Symmetric-
key primitives are also used in cryptocurrency and blockchain applications along with zero-
knowledge proof techniques. For example, Zcash [SCG+14], the latest version (2019) adopted
CHACHA20 POLY1305 [Hou17] for authenticated encryption, and the BLAKE2 hash function
(the top 2 finalist in the NIST SHA3 competition for hash). Hawk [KMS+16] uses lightweight
block cipher Speck [BSS+15] for encryption in the CBC mode, and SHA-256 for pseudorandom
functions (PRFs) and commitments, and achieves only 80-bit security.

The ongoing NIST lightweight cryptography (LWC) standardization competition has aimed
at standardizing lightweight authenticated cipher(s) and hash function(s) [BCC+19]. Although
lightweight authenticated ciphers have aimed at providing security in constrained environments,
their real-world deployment would not only be limited to resource-constrained environments,
rather be used at heterogeneous computing environments, depending upon their efficiencies.
Therefore, the friendliness of lightweight ciphers with PEC techniques should be evaluated. In
this work, we consider secure evaluation of lightweight ciphers in privacy-enhancing crypto-
graphic applications.

1.1 Applications of Lightweight AE in Privacy-enhancing Cryptography

In this section, we mention some applications where privacy-enhancing aspects of lightweight
authenticated ciphers are required to consider. We use the Internet of Things (IoT) as an
application to explain the usages.

1.1.1 Cloud-IoT Outsourcing Data and Computation for Analytics

Smart IoT devices are deployed for operational and automation at various applications. Consider
a scenario where a smarthome thermostat sends temperature readings of a house in every an
hour basis to a cloud, who processes the temperature readings and instruct the thermostat to
automate the heating in the house. Note that cleartext temperature readings leaks information
about individuals’ presence or absence in the house. Cloud can do the profiling of houses
from temperature readings, which invades privacy. This can be prevented by a conjunction of
lightweight AE algorithms with FHE algorithms. Assume the thermostat has implemented a
lightweight AE scheme. For each day, it uses a nonce that can be a time stamp of the day and
encrypt each hour’s temperature reading using a block of AE encryption where a temperature
reading can be represented using a 32, 64 or 128 bit number. Thus, for each day 24 readings are
sent to the cloud, and by the end of the day, it converts to AE ciphertexts to HE ciphertexts,
and then performs statistical/analytical computations on encrypted readings. One of the key
consideration is an efficient integration of AE and FHE algorithms (see Section 2.3 for details).

1.1.2 Sharing of Data from Constrained Applications to the MPC System

In an MPC system, data from multiple sources are secret-shared among a set of MPC servers,
denoted by Si, who jointly conduct the computation over secret-shared data to obtain the result.
Assume there are ` MPC servers in an MPC system. We consider a new constrained-environment

2

application scenario where data is encrypted by an IoT device and the ciphertext is denoted
by c = AEnc(k, m) and the encryption key k is secret-shared among the MPC servers, i.e.,L` k = To optimize the cost, the IoT device encrypts the data only once and sends iti=1 ki.
to the MPC system. To create secret-shares of the data m, the MPC servers jointly need to
evaluate the decryption algorithm, and this functionality is described as follows:

Inputs of Si: Server Si holds a share of the key ki and randomly generates ri for 1 ≤ i ≤ `−1.
S` gives no random input.

Jointly generate the share of data: (m1,m2, · · · ,m`) ← f((k1, r1), · · · , (k`−1, r`−1), (kn), ADec, c)P` L
such that = m, which consists of the following steps: a) Compute m = ADec(ki, c),i=1 mi L
b) Compute m` = m ⊕ (ri). By the end of the computation, for the servers’ Si, 1 ≤ i ≤
` − 1, the share is mi = ri,, and the server S`’s share is m`.

This requires the distributed decryption of an AE scheme which saves (` − 1) encryption opera-
tions for the IoT device, over encrypting and sending individual ciphertexts of mi, 1 ≤ i ≤ ` by
the device. After the secret-sharing of data m, the servers’ can perform computations on data
using the prescribed MPC protocol. As mentioned in [ARS+15], the MPC server can jointly
encrypt secret information to send it to the IoT device. This motivates us to consider the circuit
complexity of the lightweight AE schemes. The ideas about jointly encrypting by the MPC
servers for AES or other PRF-based AE have appeared in [RSS17, ARS+15].

1.1.3 Secure Password Storage, IoT Database Operation and More

A number of applications for secure evaluation of AES such as one-time passwords [ARS+15],
secure database join operations [LTW13], and private set intersection [PSSW09] have been
proposed. For more collected applications of AES, the reader is referred to [ARS+15]. When a
lightweight cipher is standardized, it is likely that the lightweight cipher would also be used for
various applications. Many of these privacy-preserving applications may be directly adapted to
resource-constrained applications such as IoT databases 12 .

1.2 Related Work

Lightweight cryptography and NIST LWC standardization competition. The ad-
vent of lightweight cryptography is due to providing security in resource-constrained environ-
ments such as RFID and sensors where traditional ciphers for computer/internet may be heavy
[BKL+07]. Lightweight cryptography exists for more than a decade. There have been numerous
symmetric-key ciphers such as block ciphers, stream ciphers, authenticated encryption and hash
functions developed in the past years targeting to hardware efficiency. Some notable examples
are PRESENT, CLEFIA, and LEA in the ISO/IEC standards [Sta19], Grain and Trivium from
the eStream project [ECR], and ASCON and ACORN from the CAESAR competition [CAE].
In response to the call for proposal of the NIST LWC standardization competition, there were
56 proposals for authenticated encryption (many with both AE and hash) accepted as round 1
candidates, and 32 candidates were moved to round 2 [BCC+19]. The design of lightweight AE
schemes can be classified as four main types namely permutation, block cipher, tweakable block
cipher, stream cipher and some other designs [STMÇ +19].

1https://www.ibm.com/downloads/cas/G6BONV4B
2https://crate.io

3

https://www.ibm.com/downloads/cas/G6BONV4B
https://crate.io

Symmetric-key ciphers for privacy-enhancing cryptography. There is a growing inter-
est in the development of symmetric-key ciphers dedicated to privacy-enhancing cryptographic
applications such as secure multiparty computation, fully homomorphic encryption and zero-
knowledge proofs. Some examples of stream ciphers designed for FHE applications are FILP
[MJSC16], Kreyvium [CCF+18], and Rasta [DEG+18], the block cipher examples for MPC, FHE
and ZK proof applications include LowMC [ARS+15], MiMC [AGR+16], GMiMC [AGP+19], and
MARVELlous [AD18, AABS+19]. Examples of hash functions for MPC and ZK proofs appli-
cations include GMiMC [AGP+19], MARVELlous [AD18, AABS+19], and Poseidon [GKR+19].
[RSS17] presents the constructions of parallel nonce-based authenticated encryption based on
the MiMC and Legendre symbol PRFs for MPC applications. To the best of our knowledge,
the suitability of these primitives, especially block ciphers and stream ciphers have not been
investigated for resource-constrained applications where the hardware efficiency is a major con-
sideration.

For blockchain and cryptocurrency applications, Boolean circuits of LWC also has very im-
portant applications in privacy of blockchain systems, especially the zero-knowledge Succinct
Non-interactive Argument of Knowledge (zkSNARK) for blockchain privacy [GGPR13]. Even
for most advanced servers, it is harder to perform these computations in practice at an ade-
quate security level. In fact, a few years ago, only a few blockchain and cryptocurrency systems
have implemented privacy protection mechanisms by zkSNARKs (e.g., Zcash [SCG+14], Hawk
[KMS+16] and Ligero [AHIV17]), but at security levels below 128 bits. These applications point
out that there is a gap between the efficient interface of lightweight cryptography and privacy-
enhancing cryptography as the applications of lightweight ciphers may go beyond traditional
encryption and authentication due to increasing privacy concerns.

1.3 Our Contribution

This work focuses on engineering and real-world application aspects of lightweight ciphers when
conjunct with privacy-enhancing/preserving cryptographic techniques such as SMPC and FHE.
First, we generate the Boolean circuits of core primitives of the NIST LWC AE schemes, and
present some empirical circuit complexity statistics. The reason for studying the circuit com-
plexity is that in PEC, the functionalities (e.g., ciphers) are often required to express as Boolean
or arithmetic circuits before applying PEC techniques, and the running time (efficiency) of the
privacy-preserving scheme relies on the size of the circuit. Due to the heterogeneity of the AE
modes in the NIST LWC round 2 candidates, we consider the core underlying primitives of the
AE schemes, which are the nonlinear components that are the bottleneck in PEC. Next, we
consider the secure evaluation of core primitives in the standard 2PC computation setting using
Yao garbled circuit (GC) [Yao86] and the homomorphic evaluation of AE core primitives in
the computation-outsourcing setting. We developed two implementations in C++ on top of the
EMP-toolkit [WMK16] for 2PC evaluation where the GC scheme is instantiated the half-gates
garbling scheme [ZRE15] and the TFHE scheme [CGGI16a, CGGI16b] for homomorphic evalua-
tion. Finally, we present the experimental results on the performance of the core AE primitives
for both cases.

4

2 Preliminaries

2.1 Authenticated Encryption

An authenticated encryption with associated data (AEAD) scheme is a tuple of algorithms
AEAD = (AKeyGen, AEnc, ADec). The key generation AKeyGen outputs a key, i.e., K ←
AKeyGen(1λ) for security parameter λ, AEnc accepts a key K, a nonce N , an associated data
AD and a message M and produces a ciphertext and a tag, i.e., (C, T) ← AEnc(K, N, AD, M).
Similarly, ADec accepts a key, a nonce, an associated data, a ciphertext and a tag and pro-
duces a message if the tag verification is successful, i.e., {M, ⊥} ← ADec(K, N, AD, C, T). The
encryption algorithm AEnc has four phases, namely an initialization phase, an associated data
processing phase, an encryption phase and a tag generation phase, and similarly for the decryp-
tion phase where the encryption phase is replaced by a decryption phase.

2.2 Two-party Computation Protocol and Garbled Circuit

Secure multiparty computation (SMPC) protocol allows a set of mutually distrusting parties to
jointly compute a function on their private inputs without revealing anything information about
the private inputs, except what directly leaks from the output. Secure 2-party computation
(2PC) protocol is a special case of an SMPC protocol which is between two parties. Yao garbled
circuit (GC) [Yao86] is a popular 2PC protocol where the functionality to be evaluated on the
private inputs is represented as a Boolean circuit. For the details, the reader is referred to
[Yao86, HL10, BHR12].

2.3 Fully Homomorphic Encryption and Outsourcing Protocol

Fully homomorphic encryption. Fully homomorphic encryption (FHE) is a public-key en-
cryption scheme that enables to perform (in principle) an unlimited number computation over
encrypted data for any arbitrary function represented using a circuit. An FHE scheme consists
of a tuple of four probabilistic polynomial-time algorithms FHE = (HKeyGen, HEnc, HDec, HEval)
[Gen09]. The key generation algorithm HKeyGen generates secret, public, and evaluation keys,
i.e., (pk, sk, evk) ← HKeyGen(1λ) for a security parameter λ, HEnc encrypts a plaintext message
(m) using the public key, i.e., c ← HEnc(pk,m), HDec decrypts a ciphertext (c) using the pri-
vate key, i.e., m ← HEnc(sk, c), and HEval evaluates a function f (typically represented using a
circuit) on a set of ciphertexts ({ci} `−1) using the evaluation key (evk), and produces a singlei=0
ciphertext HEnc(f(m0, · · · ,m`−1)) ← HEval(evk, f, {ci} `−1) which is the encrypted output of fi=0
on plaintext messages ({mi} `−1).i=0

Homomorphic encryption security standard. Recent years have evidenced a promising
advancement of FHE schemes, open-source implementations and applications and growing de-
mands from industry. There is a homomorphic encryption standard initiated to standardize
FHE scheme(s) to have a unified and simplified API, and clear and understandable security
properties for use by non-experts as well as experts. For the details about the standard and the
list of FHE candidates, the reader is referred to [ACC+18, ea18b, ea18a].

Hybrid-encryption based outsourcing protocol. Figure 1 shows a computation and data
outsourcing protocol combining a symmetric-key encryption scheme and a fully homomor-
phic encryption scheme. It follows the paradigm of key and data encapsulation mechanisms

5

−

−

3

(KEM/DEM) for hybrid encryption where the data is encrypted using a symmetric encryption
and the key of the symmetric-key encryption is encrypted using a public key scheme (FHE), i.e.,
KEMkDEM = HEnc(pk, K)kAEnc(K, Data) [CS03]. Note that the client generates the keys for
both homomorphic encryption and authenticated encryption schemes. The ciphertext conver-
sion step from a symmetric-key to a HE ciphertext, denoted by CTC, needs the homomorphic
evaluation of the symmetric-key decryption algorithm. In this work, our main focus is on the
ciphertext conversion algorithm when the symmetric-key encryption algorithm is a lightweight
AE scheme.

Client Cloud/Server
(pk, sk) ← HKeyGen(1λ)

K ← AKeyGen(1λ)

Ch(K) ← HEnc(pk, K)
pk,Ch(K)−−−−−→ pk, Ch(K)

Ca(Mi) ← AEnc(K, Mi)
Ca(Mi)−−−−→ Ca(Mi)� �

f

f(M0, · · · , M`−1) =
HDec(sk, Ch(f(M0, · · · , M`−1)))

f −−−→
Ch(f (M0,··· ,M`−1))←−−−−−−−−−−−−

Ch(Mi) = CTC evk, ADec, Ch(K), Ca(Mi)

Ch(f(M0, · · · , M`−1)) = HEval(f, evk, Ch(Mi))

Figure 1: An FHE-based client-server computation and data outsourcing protocol using
symmetric-key encryption [MJSC16].

Circuit Complexity of NIST LWC Round 2 Candidates

In this section, we generate and report the Boolean circuits of the core primitives of the NIST
LWC round 2 candidates. The reason for this is that, in many privacy-enhancing applications,
the functionalities are required to represent as a Boolean circuit before applying the privacy-
enhancing techniques.

Classification of round 2 AE candidates into core primitives. We call a component of
an AE scheme a core primitive if it is the nonlinear component of the AE scheme. For instance,
for a permutation-based AE scheme, the core primitive is the permutation as it provides the
nonlinearity and the mode part involves linear operations. The underlying core primitives of
the AE schemes can be classified according to the main primitives as shown in Table 1. Note
that, for example, the block cipher GIFT-128 has been used as a core primitive in multiple
submissions, we consider only the GIFT-128 block cipher as it is the core nonlinear component
of the schemes. As there are various types of modes in the NIST LWC candidates, we consider
only the core primitives in the AE schemes.

Generating Boolean circuits of core primitives. We generate the circuits for the under-
lying permutations, block ciphers or state update functions of the AE or hash modes. We use
the CBMC-GC compiler [FHK+14] to generate the circuits where each LWC cipher’s circuit is
represented using XOR, AND and NOT gates in the Bristol fashion [bri]. Table 2 summarizes

6

Table 1: Classification of the MIST round 2 candidates based on the underlying core primitives
Candidates Core-primitive Type
ACE ACE Permutation
COMET, ESTATE, mixFeed,
SAEAES

AES Block cipher, Tweak-
able Block cipher

ASCON, ISAP ASCON Permutation
COMET CHAM Block cipher
DryGASCON DryGASCON Permutation
ESTATE, GIFT-COFB,
HyENA, LOTUS-AEAD,
LOCUS-AEAD, SUNDAE-
GIFT

GIFT-64/128 Block cipher, Tweak-
able block cipher

Gimli Gimli Permutation
Grain-128AEAD Grain Stream cipher
ISAP, Elephant Keccak Permutation
KNOT Knot Permutation
ORANGE, PHOTON-Beetle Photon Permutation
Oribatida SimP-n-θ Block cipher
Pyjamask Pyjamask Block cipher
Saturnin Saturnin Block cipher
SPIX, SpoC sLiSCP-light-192/256 Permutation
Sparkle Sparkle Permutation
COMET Speck Block cipher
Elephant Spongent Permutation
Spook Clyde-128 and Shadow-512 Tweakable block cipher,

Permutation
ForkAE, Romulus, SKINNY-
AEAD,

Skinny Block cipher

Subterranean Subterranean Permutation
TinyJambu TinyJambu Stream cipher
WAGE WAGE Permutation
Xoodyak Xoodyak Permutation

the list of circuits with the numbers of XOR, AND and NOT gates3 . The multiplicative depth
and the total depth of the LWC circuits are also reported. The description of the circuits can
be found in [Man20]. We do not claim that the circuit sizes are minimal.

Multiplicative depth. The multiplicative depth of a Boolean circuit is the maximum number
of sequential multiplications (AND operations) in the circuit. As the construction of the core
primitive is iterative and based on a round function consisting of linear and nonlinear functions,
the multiplicative depth of the primitive can be easily seen from the number of rounds and the
multiplicative depth of the round function (Proposition 1). For instance, for ACE, the Feistel

3The table does not contain the details of all round 2 candidates. The work of the remaining candidates is in
progress.

7

round function in the Simeck-box is a quadratic function of an AND depth 1 and the total of
rounds is 128, the multiplicative depth is 128, which can be seen in the AND depth column
of Table 2. Similarly, for ASCON, the round is quadratic, thus the multiplicative depth for
the 12-round permutation is 12. The multiplicative depth of the Boolean circuits of the core
primitives is an important consideration for the FHE applications where for some FHE scheme,
the key setup parameters are chosen based on this information. Moreover, the noise growth
due to the multiplication operation is larger than the noise growth due to that of the addition
operation.

Proposition 1. Let d be the multiplicative depth of a Boolean circuit of a round function
composed of a substitution-permutation network (SPN) or Feistel network based cipher. The
multiplicative depth of a r-round cipher is rd where r is the number of rounds.

Proof. The proof is straightforward.

Table 2: Summary of the circuit complexity of some NIST LWC core primitives in round 2.
Cipher State Size Total Gates Individual Gates

AND XOR NOT
AND Depth Total Depth % AND

AES [TS] 128 33616 6800 25124 1692 – – 20.23
ACE 320 46182 12288 27648 6246 128 475 26.61
Ascon
Ascon(r6)
Ascon(r8)

320
320
320

25466
12408
16760

3712
1792
2432

15932
7868
10556

5822
2748
3772

12
6
8

93
47
62

14.58
14.58
14.58

Gimli 320 35427 8640 17760 9027 24 75 24.39
GIFT-128
TweGIFT-64
TweGIFT-64-inv

128
64
64

20657
20298
19846

5120
10315
10315

10240
8166
7718

5297
1817
1813

160
56
56

449
196
196

24.79
50.82
51.98

Keccak-200
Keccak-400

200
400

19985
44394

3600
8000

10800
24000

5585
12394

18
20

174
192

18.01
18.02

Knot-256
Knot-384
Knot-512

256
384
512

49770
109140
191665

13312
29184
51200

23296
51041
89600

13162
28980
50865

104
152
200

260
380
500

26.75
26.74
26.71

Photon 256 62652 17940 41640 3072 24 179 28.63
Saturnin 256 45643 7680 22465 15627 120 331 16.83
Skinny-enc-128-384††

Skinny-dec-128-384††
128
128

207506
139699

65344
41936

129215
80573

12947
17190

392
286

1462
1095

31.49
30.02

sLiSCP-light-192
sLiSCP-light-256
sLiSCP-light-256 (r9)

192
256
256

20366
34588
17324

5184
9216
4608

12096
20736
10368

3086
4636
2348

108
144
72

437
542
271

25.45
26.65
26.65

Sparkle-256
Sparkle-384
Sparkle-512

256
384
512

59588
98422
143524

25440
41976
61056

31360
51920
75648

2788
4526
6820

200
220
240

554
613
703

42.69
42.65
42.54

Spongent-160
Spongent-176

160
176

72890
93429

20211
26702

41321
52396

11358
14331

160
180

534
646

27.73
28.58

Spook: Shadow-512
Clyde-128-Enc
Clyde-128-Dec

512
128
128

35420
13655
13655

6144
1536
1536

29184
12096
12096

92
23
23

19
24
37

94
132
161

17.35
11.25
11.25

Subterranean 257 1319 265 772 290 2 7 20.09
TinyJambu-init† 128 11696 2118 8422 1156 50 276 18.11
TinyJambu (P1024)

† 128 5638 1024 4096 518 24 134 18.16
WAGE 259 105739 37745 62121 5873 333 2220 35.70
Xoodoo 384 25275 4608 13824 6843 12 93 18.23

† = 112-bit security, †† = reduced # of gates, not low AND-depth circuits.

8

4 Secure 2PC Evaluation of Core AE Circuits

Motivated by applications of the lightweight AE schemes in MPC in Section 1.1, we evalu-
ate the performance of lightweight core primitives using Yao garbled circuit, and present the
experimental results in the semi-honest adversarial settings.

Securely evaluating core AE circuits. We consider the problem of securely evaluating the
core primitive of an AE scheme, which is the main computationally-expensive component. The
total evaluation time of the mode of an AE scheme can be estimated from the core primitive
evaluation time by including the cost of oblivious transfer operations to compute each block of
the messages. For now, we restrict ourselves to the evaluation of the core primitives. For a
core AE circuit C, we evaluate C(K1 ⊕ K2,M1 ⊕ M2) using the garbled circuit where one party
holds the input (K1,M1), another party holds (K1,M1), and K = K1 ⊕ K2 and M = M1 ⊕ M2,
which are Boolean sharings of K and M , respectively. For instance, for a block cipher circuit C,
AEnc(K1 ⊕ K2,M1 ⊕ M2) = C(K1 ⊕ K2,M1 ⊕ M2).

Implementation details. We develop a generic implementation in C++ on top of the EMP-
toolkit libraries [WMK16] that implemented the oblivious transfer (OT) protocol and the half-
gates garbling scheme [ZRE15]. We consider the garbled circuit scheme that is secure against
semi-honest adversaries. In our implementation, we feed the circuits generated in Section 3 and
obtain the computational time for both garbling and evaluation of the core circuits. Note that
no network communication was involved during the execution of the protocol as both the garbler
and evaluator were running on the same machine.

Performance. The experiments were conducted on a desktop with 3.00GHz Intel Core i7-
9700 CPU and 32 GB RAM running on Ubuntu 18.04. Table 3 presents the wall-clock time to
evaluate one execution of the core primitive circuit. Note that the garbler and the evaluator’s
time are similar. Thus we present only the evaluator time in the table.

5 Homomorphic Evaluation of Core AE Circuits

As shown in Section 2.3, converting an AE ciphertext to an FHE ciphertext involves the ho-
momorphic evaluation of the core AE circuits. In this section, we perform the homomorphic
evaluation of the core AE circuits of the NIST LWC AE schemes and present experimental re-
sults. Before we present the experimental evaluation results, we explain the process of converting
a ciphertext produced by an AE scheme to a ciphertext of an FHE scheme.

5.1 Conversion of AE Ciphertexts to FHE Ciphertexts

We use a sponge-based AEAD as an example to explain the process and focus only on the
encryption and decryption process. Let S be the state of the permutation π after initialization
and associated data processing phases. Assume the encryption of a message is performed, like
a stream cipher encryption, as Ci = Mi ⊕ Ki where Ki is served as a keystream block that is
obtained from the rate part of the state of the permutation after processing previous (i − 1)
message blocks, i.e., Ki ← bπi(S)cr where b·cr denotes the contents from the rate part. Assume
that a cloud receives ciphertexts C = (C0, · · · , C`−1) and the encrypted key of the AE scheme,

9

10

T
ab

le
 3
:
T
im

in
g
is

 f
or

 t
h
e
ev
al
u
at
or
’s

 r
u
n
n
in
g
ti
m
e.

 T
im

in
gs

 a
re

 i
n

 m
il
li
se
co
n
d

 (
m
s)
.

A
C
E

A
E
S

A
sc

o
n

G
im

l
i

G
IF

T
-1
2
8

T
w
e
G
IF

T
-6
4

T
w
e
G
IF

T
-6
4
-i
n
v

T
ot
al

 T
im

e
0.
75
8
m
s

0.
44
9
m
s

0.
29
5
m
s

0.
57
6
m
s

0.
32
7
m
s

0
.5
6
5
 m

s
0
.5
5
8
 m

s

K
e
c
c
a
k
-2
00

K
e
c
c
a
k
-4
00

K
n
o
t
-2
56

K
n
o
t
-3
84

K
n
o
t
-5
12

P
h
o
t
o
n

S
a
t
u
r
n
in

T
ot
al

 T
im

e
0.
27
1
m
s

0.
60
6
m
s

0.
82
0
m
s

1.
86
7
m
s

3.
14
0
m
s

1
.1
2
7
 m

s
0
.5
4
8
 m

s

S
k
in
n
y
-e
n
c

S
k
in
n
y
-d

e
c

sL

iS
C
P
-l
ig
h
t
-1
92

sL

iS
C
P
-l
ig
h
t
-2
56

S
pa

r
k
l
e
-2
5
6

S
pa

r
k
l
e
-3
8
4

S
pa

r
k
l
e
-5
1
2

T
ot
al

 T
im

e
3.
76
4
m
s

2.
51
0
m
s

0.
34
1
m
s

0.
58
3
m
s

1.
48
0
m
s

2
.4
6
1
 m

s
3
.6
1
1
 m

s

S
p
o
n
g
e
n
t
-1
60

S
p
o
n
g
e
n
t
-1
76

S
h
a
d
o
w
-5
1
2

C
ly

d
e
-1
2
8
-E

n
c

C
ly

d
e
-1
2
8
-D

e
c

S
u
b
t
e
r
r
a
n
e
a
n

T
in
y
J
a
m
b
u
-i
n
it

T
or
al

 t
im

e
1.
23
9
m
s

1.
59
7
m
s

0.
42
7
m
s

0.
12
1
m
s

0.
12
1
m
s

0
.0
1
6
 m

s
0
.1
4
8
 m

s

T
in
y
J
a
m
b
u

 (
P
1
0
2
4
)

W
A
G
E

X
o
o
d
o
o

A
sc

o
n

 (
r6
)

A
sc

o
n

 (
r8
)

sL
iS
C
P
-l
ig
h
t
-2
5
6
 (
r9
)

T
ot
al

 T
im

e
0.
07
0
m
s

2.
19
3
m
s

0.
38
9
m
s

0.
14
1
m
s

0.
19
0
m
s

0
.2
8
7
 m

s

T
ab

le
 4
:
H
om

om
o
rp
h
ic

 e
va
lu
at
io
n

 t
im

es
 o
f
co
re

 A
E

 c
ir
cu

it
s
u
si
n
g
T
F
H
E

 w
it
h

 s
ec
u
ri
ty

 1
10

 b
it
s.

T
im

in
gs

 a
re

 g
iv
en

 i
n

 s
ec
on

d
 (
s)
,

an
d

 t
h
e
fr
a
ct
io
n
al

 p
ar
t
is

 o
m
it
te
d
.

A
C
E

A
E
S

A
sc

o
n

G
im

l
i

G
IF

T
-1
2
8

T
w
e
G
IF

T
-6
4

T
w
e
G
IF

T
-6
4
-i
n
v

T
ot
al

 T
im

e
15
62

 s

12
57

 s

77
5
s

10
47

 s

60
5
s

7
3
2
 s

7
1
6
 s

K
e
c
c
a
k
-2
00

K
e
c
c
a
k
-4
00

K
n
o
t
-2
56

K
n
o
t
-3
84

K
n
o
t
-5
12

P
h
o
t
o
n

S
a
t
u
r
n
in

T
ot
al

 T
im

e
56
6
s

12
56

 s

14
37

 s

31
44

 s

55
33

 s

2
3
3
6
 s

1
1
7
8
 s

S
k
in
n
y
-e
n
c

S
k
in
n
y
-d

e
c

sL

iS
C
P
-l
ig
h
t
-1
92

sL

iS
C
P
-l
ig
h
t
-2
56

S
pa

r
k
l
e
-2
5
6

S
pa

r
k
l
e
-3
8
4

S
pa

r
k
l
e
-5
1
2

T
ot
al

 T
im

e
79
36

 s

51
13

 s

67
5
s

11
80

 s

22
55

 s

3
6
6
3
 s

5
3
4
6
 s

S
p
o
n
g
e
n
t
-1
60

S
p
o
n
g
e
n
t
-1
76

S
h
a
d
o
w
-5
1
2

C
ly

d
e
-1
2
8
-E

n
c

C
ly

d
e
-1
2
8
-D

e
c

S
u
b
t
e
r
r
a
n
e
a
n

T
in
y
J
a
m
b
u
-i
n
it

T
or
al

 t
im

e
26
88

 s

34
25

 s

14
00

 s

54
2
s

54
2
s

4
1
 s

4
1
7
 s

T
in
y
J
a
m
b
u

 (
P
1
0
2
4
)

W
A
G
E

X
o
o
d
o
o

A
sc

o
n

 (
r6
)

A
sc

o
n

 (
r8
)

sL
iS
C
P
-l
ig
h
t
-2
5
6
 (
r9
)

T
ot
al

 T
im

e
20
3
s

38
92

 s

73
0
s

38
1
s

50
7
s

5
8
8
 s

i.e., HEnc(KkN) where C = AEnc(K, N, M). The cloud performs the following steps to obtain
HEnc(M) as follows:

Step 1: Compute an FHE ciphertext from an AE ciphertext: It first computes the
FHE ciphertexts of all Ci’s using the public key of the FHE scheme as

HEnc(C) = (HEnc(C0), HEnc(C1), · · · , HEnc(C`−1)).

Step 2: Homomorphically evaluate the permutation circuit Cπ: Using the encrypted
key HEnc(KkN) of the AEnc scheme, it evaluates the permutation circuit Cπ sequentially
for each ciphertext block and obtain � �

HEnc(Ki) ← bHEnc πi(S) cr

and then computes the FHE ciphertext of Mi from HEnc(Ki) and HEnc(Ci) as

HEnc(Mi) = HEnc(Ki ⊕ Ci) ← HEval(XOR, HEnc(Ki), HEnc(Ci)).

In the above steps, the most expensive operation is the homomorphic evaluation of the per-
mutation. As we have considered the binary circuit, the choice of the FHE scheme determines
the ciphertext HEnc(Ci) whether it is a single ciphertext (packed using SIMD) or r ciphertexts
where each ciphertext is an FHE encryption of one-bit of AE ciphertexts.

Cπ Cπ Cπ Cπ

HEnc(KkN)

Init + AD
HEnc(K0) HEnc(C0)

HEnc(K1)
HEnc(C1)

Figure 2: Homomorphic evaluation of the sponge mode in the decryption phase. Two blocks of
decryption are shown where Cπ is the circuit for the permutation π.

Note that for the permutation-based AE schemes such as ACE and ASCON, the same
underlying permutation is required to evaluate for both encryption and decryption operations.
Figure 2 presents a high-level description of the homomorphic evaluation of the sponge mode
(without subtle details). On the other hand, for block ciphers based AE schemes, the decryption
algorithm may have a different circuit from an encryption one depending upon the scheme. Note
that to convert an AE ciphertext to an FHE ciphertext to enable homomorphic computation,
the decryption circuit needs to be evaluated. In the following section, we focus only on the
homomorphic evaluation of the core primitives of the AE schemes.

5.2 Experimental Evaluation

Experimental setup. We have developed a generic implementation of homomorphic eval-
uation of core-AE circuits in C++ on top of the TFHE scheme [CGGI16a, CGGI16b], which
is a candidate in the HE standard [ACC+18]. The TFHE supports homomorphic evaluations

11

of binary gates and does not required to know the depth of the circuit during the parameter
generation phase. As the circuit is represented using only XOR, AND and NOT gates, our im-
plementation uses homomorphic computations of only these three gates. In our implementation,
we feed the core circuit of an AE scheme and an encrypted state of the primitive, and obtain
the encrypted output through its homomorphic evaluation. For instance, for a permutation,
we provide the FHE encrypted key and nonce, and homomorphically evaluate the permutation
circuit and obtain the encrypted output. We use the default parameters of TFHE providing
110-bit security. We conduct the experiments on a desktop with a 3.00GHz Intel Core i7-9700
CPU and 32 GB RAM running on Ubuntu 18.04. Note that the homomorphic evaluation is
done using a single thread (no parallelism is exploited).

Performance. We now present the Wall-clock running time for homomorphically evaluating
the core-AE circuits in Table 2. We micro-benchmark the timings of homomorphic computation
of XOR, AND and NOT gates in TFHE in Table 5. For instance, in TFHE, the homomorphic
XOR computation time for 128 ciphertexts is about 4.96 seconds. The micro-benchmarking
results show that the homomorphic operations for XOR and AND takes almost the same amount
of time. Table 4 reports the computation time (in second) of the homomorphic evaluation of
core AE circuits given in Table 2.

Table 5: Benchmarking homomorphic XOR, AND and NOT operations in TFHE on our machine.
Time is given in second (s).

Number of ciphertexts
Operation 64 128 256
TFHE.Enc 0.002457 s 0.00490 s 0.010055 s
TFHE.Dec 0.000065 s 0.00013 s 0.000266 s
TFHE.XOR 2.502675 s 4.959481 s 10.04321 s
TFHE.AND 2.476224 s 4.964595 s 9.981702 s
TFHE.NOT 0.000058 s 0.000118 s 0.000231 s

Estimating time for individual modes. Note that Table 4 presents the homomorphic
evaluation time only for the core primitives of the AE schemes. The modes of operation for
different ciphers are different. Also, different AE schemes process different number of message
blocks in each call of a core primitive. The homomorphic evaluation time of a particular AE
mode using TFHE can be estimated based on the number of invocations of the core primitive
and the homomorphic operation cost of the mode using Table 5.

Conclusions and Future Work

In this work we considered secure evaluation of lightweight authenticated ciphers for privacy-
enhancing cryptographic applications and presented some preliminary results from our ongoing
work. To our knowledge, this work is the first that reports the Boolean circuits of the core
primitives of NIST lightweight cryptography round 2 candidates. Two implementations of se-
cure 2PC evaluation and homomorphic evaluation of the lightweight AE schemes using existing
garbled circuit and FHE libraries are developed. We presented the performance results for both

12

6

privacy-preserving evaluations. We are currently working on specialized secure computation
and homomorphic evaluation techniques for lightweight ciphers and also applying for blockchain
applications.

References

[AABS+19] Abdelrahaman Aly, Tomer Ashur, Eli Ben-Sasson, Siemen Dhooghe, and Alan
Szepieniec. Design of symmetric-key primitives for advanced cryptographic proto-
cols. Cryptology ePrint Archive, Report 2019/426, 2019. https://eprint.iacr.
org/2019/426.

[ACC+18] Martin Albrecht, Melissa Chase, Hao Chen, Jintai Ding, Shafi Goldwasser, Sergey
Gorbunov, Shai Halevi, Jeffrey Hoffstein, Kim Laine, Kristin Lauter, Satya Lokam,
Daniele Micciancio, Dustin Moody, Travis Morrison, Amit Sahai, and Vinod
Vaikuntanathan. Homomorphic encryption security standard. Technical report,
HomomorphicEncryption.org, Toronto, Canada, November 2018.

[AD18] Tomer Ashur and Siemen Dhooghe. Marvellous: a stark-friendly family of crypto-
graphic primitives. Cryptology ePrint Archive, Report 2018/1098, 2018. https:
//eprint.iacr.org/2018/1098.

[AGP+19] Martin R. Albrecht, Lorenzo Grassi, Léo Perrin, Sebastian Ramacher, Christian
Rechberger, Dragos Rotaru, Arnab Roy, and Markus Schofnegger. Feistel struc-
tures for mpc, and more. In Kazue Sako, Steve Schneider, and Peter Y. A. Ryan,
editors, Computer Security – ESORICS 2019, pages 151–171, Cham, 2019. Springer
International Publishing.

[AGR+16] Martin Albrecht, Lorenzo Grassi, Christian Rechberger, Arnab Roy, and Tyge
Tiessen. Mimc: Efficient encryption and cryptographic hashing with minimal multi-
plicative complexity. In Jung Hee Cheon and Tsuyoshi Takagi, editors, Advances in
Cryptology – ASIACRYPT 2016, pages 191–219, Berlin, Heidelberg, 2016. Springer
Berlin Heidelberg.

[AHIV17] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubra-
maniam. Ligero: Lightweight sublinear arguments without a trusted setup. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communica-
tions Security, CCS ’17, page 2087?2104, New York, NY, USA, 2017. Association
for Computing Machinery.

[ARS+15] Martin R. Albrecht, Christian Rechberger, Thomas Schneider, Tyge Tiessen, and
Michael Zohner. Ciphers for mpc and fhe. In Elisabeth Oswald and Marc Fischlin,
editors, Advances in Cryptology – EUROCRYPT 2015, pages 430–454, Berlin, Hei-
delberg, 2015. Springer Berlin Heidelberg.

[BCC+19] Lawrence Bassham, Cagdas Calik, Donghoon Chang, Jinkeon Kang, Kerry
McKay, and Meltem Sonmez Turan. Lightweight cryptography: Round 2 can-
didates, 2019. https://csrc.nist.gov/Projects/lightweight-cryptography/
round-2-candidates.

[BHR12] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled
circuits. In Proceedings of the 2012 ACM Conference on Computer and Communi-

13

https://eprint.iacr.org/2019/426
https://eprint.iacr.org/2019/426
https://eprint.iacr.org/2018/1098
https://eprint.iacr.org/2018/1098
https://csrc.nist.gov/Projects/lightweight-cryptography/round-2-candidates
https://csrc.nist.gov/Projects/lightweight-cryptography/round-2-candidates
https://HomomorphicEncryption.org

cations Security, CCS ’12, page 784?796, New York, NY, USA, 2012. Association
for Computing Machinery.

[BKL+07] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J. B. Rob-
shaw, Y. Seurin, and C. Vikkelsoe. Present: An ultra-lightweight block cipher.
In Pascal Paillier and Ingrid Verbauwhede, editors, Cryptographic Hardware and
Embedded Systems - CHES 2007, pages 450–466, Berlin, Heidelberg, 2007. Springer
Berlin Heidelberg.

[bri] Bristol fashion mpc circuits. https://homes.esat.kuleuven.be/~nsmart/MPC/
old-circuits.html.

[BSS+15] Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan Weeks,
and Louis Wingers. The simon and speck lightweight block ciphers. In Proceedings
of the 52nd Annual Design Automation Conference, DAC ’15, New York, NY, USA,
2015. Association for Computing Machinery.

[CAE] CAESAR: Competition for Authenticated Encryption: Security, Applicability, and
Robustness. https://competitions.cr.yp.to/caesar.html.

[CCF+18] Anne Canteaut, Sergiu Carpov, Caroline Fontaine, Tancrède Lepoint, Maŕıa Naya-
Plasencia, Pascal Paillier, and Renaud Sirdey. Stream ciphers: A practical so-
lution for efficient homomorphic-ciphertext compression. Journal of Cryptology,
31(3):885–916, 2018.

[CGGI16a] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. Faster
fully homomorphic encryption: Bootstrapping in less than 0.1 seconds. In Jung Hee
Cheon and Tsuyoshi Takagi, editors, Advances in Cryptology – ASIACRYPT 2016,
pages 3–33, Berlin, Heidelberg, 2016. Springer Berlin Heidelberg.

[CGGI16b] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Iz-
abachène. TFHE: Fast fully homomorphic encryption library, August 2016.
https://tfhe.github.io/tfhe/.

[CS03] Ronald Cramer and Victor Shoup. Design and analysis of practical public-key
encryption schemes secure against adaptive chosen ciphertext attack. SIAM Journal
on Computing, 33(1):167–226, 2003.

[DEG+18] Christoph Dobraunig, Maria Eichlseder, Lorenzo Grassi, Virginie Lallemand, Gre-
gor Leander, Eik List, Florian Mendel, and Christian Rechberger. Rasta: A ci-
pher with low anddepth and few ands per bit. In Hovav Shacham and Alexan-
dra Boldyreva, editors, Advances in Cryptology – CRYPTO 2018, pages 662–692,
Cham, 2018. Springer International Publishing.

[DK10] Ivan Damg̊ard and Marcel Keller. Secure multiparty aes. In Radu Sion, editor,
Financial Cryptography and Data Security, pages 367–374, Berlin, Heidelberg, 2010.
Springer Berlin Heidelberg.

[DKL+12] Ivan Damg̊ard, Marcel Keller, Enrique Larraia, Christian Miles, and Nigel P. Smart.
Implementing aes via an actively/covertly secure dishonest-majority mpc protocol.
In Ivan Visconti and Roberto De Prisco, editors, Security and Cryptography for
Networks, pages 241–263, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[ea18a] Martin Albrecht et al. Homomorphic encryption standards meeting 2018,
2018. http://homomorphicencryption.org/wp-content/uploads/2018/11/
HomomorphicEncryptionStandardv1.1.pdf.

14

https://homes.esat.kuleuven.be/~nsmart/MPC/old-circuits.html
https://homes.esat.kuleuven.be/~nsmart/MPC/old-circuits.html
https://competitions.cr.yp.to/caesar.html
http://homomorphicencryption.org/wp-content/uploads/2018/11/HomomorphicEncryptionStandardv1.1.pdf
http://homomorphicencryption.org/wp-content/uploads/2018/11/HomomorphicEncryptionStandardv1.1.pdf

[ea18b] Martin Albrecht et al. Homomorphic encryption standards
meeting 2019, 2018. http://homomorphicencryption.org/
aug-17-2019-homomorphicencryption-org-standards-meeting/.

[ECR] eSTREAM: the ecrypt stream cipher project. http://www.ecrypt.eu.org/
stream/.

[FHK+14] Martin Franz, Andreas Holzer, Stefan Katzenbeisser, Christian Schallhart, and
Helmut Veith. Cbmc-gc: An ansi c compiler for secure two-party computations. In
Albert Cohen, editor, Compiler Construction, pages 244–249, Berlin, Heidelberg,
2014. Springer Berlin Heidelberg.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings
of the forty-first annual ACM symposium on Theory of computing, pages 169–178,
2009.

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic
span programs and succinct nizks without pcps. In Thomas Johansson and
Phong Q. Nguyen, editors, Advances in Cryptology – EUROCRYPT 2013, pages
626–645, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[GHS12] Craig Gentry, Shai Halevi, and Nigel P. Smart. Homomorphic evaluation of the aes
circuit. In Proceedings of the 32nd Annual Cryptology Conference on Advances in
Cryptology — CRYPTO 2012 - Volume 7417, pages 850–867, Berlin, Heidelberg,
2012. Springer-Verlag.

[GKR+19] Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger, Arnab Roy, and
Markus Schofnegger. Poseidon: A new hash function for zero-knowledge proof
systems. Cryptology ePrint Archive, Report 2019/458, 2019. https://eprint.
iacr.org/2019/458.

[GRR+16] Lorenzo Grassi, Christian Rechberger, Dragos Rotaru, Peter Scholl, and Nigel P.
Smart. Mpc-friendly symmetric key primitives. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, CCS 16, page
430443, New York, NY, USA, 2016. Association for Computing Machinery.

[HL10] Carmit Hazay and Yehuda Lindell. Efficient Secure Two-Party Protocols: Tech-
niques and Constructions. Springer-Verlag, Berlin, Heidelberg, 1st edition, 2010.

[Hou17] R Housley. Using chacha20-poly1305 authenticated encryption in the cryptographic
message syntax (cms). Technical report, RFC 8103, 2017.

[KMR12] Seny Kamara, Payman Mohassel, and Ben Riva. Salus: A system for server-aided
secure function evaluation. In Proceedings of the 2012 ACM Conference on Com-
puter and Communications Security, CCS ’12, pages 797–808, New York, NY, USA,
2012. Association for Computing Machinery.

[KMS+16] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou. Hawk: The blockchain
model of cryptography and privacy-preserving smart contracts. In 2016 IEEE
Symposium on Security and Privacy (SP), pages 839–858, 2016.

[KOR+17] Marcel Keller, Emmanuela Orsini, Dragos Rotaru, Peter Scholl, Eduardo Soria-
Vazquez, and Srinivas Vivek. Faster secure multi-party computation of aes and
des using lookup tables. In Dieter Gollmann, Atsuko Miyaji, and Hiroaki Kikuchi,
editors, Applied Cryptography and Network Security, pages 229–249, Cham, 2017.
Springer International Publishing.

15

http://homomorphicencryption.org/aug-17-2019-homomorphicencryption-org-standards-meeting/
http://homomorphicencryption.org/aug-17-2019-homomorphicencryption-org-standards-meeting/
http://www.ecrypt.eu.org/stream/
http://www.ecrypt.eu.org/stream/
https://eprint.iacr.org/2019/458
https://eprint.iacr.org/2019/458

[LN14] Tancrède Lepoint and Michael Naehrig. A comparison of the homomorphic en-
cryption schemes fv and yashe. In David Pointcheval and Damien Vergnaud, edi-
tors, Progress in Cryptology – AFRICACRYPT 2014, pages 318–335, Cham, 2014.
Springer International Publishing.

[LR15] Yehuda Lindell and Ben Riva. Blazing fast 2pc in the offline/online setting with
security for malicious adversaries. In Proceedings of the 22nd ACM SIGSAC Con-
ference on Computer and Communications Security, CCS ’15, page 579?590, New
York, NY, USA, 2015. Association for Computing Machinery.

[LTW13] Sven Laur, Riivo Talviste, and Jan Willemson. From oblivious aes to efficient
and secure database join in the multiparty setting. In Michael Jacobson, Michael
Locasto, Payman Mohassel, and Reihaneh Safavi-Naini, editors, Applied Cryptogra-
phy and Network Security, pages 84–101, Berlin, Heidelberg, 2013. Springer Berlin
Heidelberg.

[Man20] Kalikinkar Mandal. Boolean circuits of lightweight authenticated ciphers, 2020.
http://www.cs.unb.ca/~kmandal/nistlwc/circuit.html.

[MJSC16] Pierrick Méaux, Anthony Journault, François-Xavier Standaert, and Claude Carlet.
Towards stream ciphers for efficient fhe with low-noise ciphertexts. In Marc Fischlin
and Jean-Sébastien Coron, editors, Advances in Cryptology – EUROCRYPT 2016,
pages 311–343, Berlin, Heidelberg, 2016. Springer Berlin Heidelberg.

[NNOB12] Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai Sheshank
Burra. A new approach to practical active-secure two-party computation. In Rei-
haneh Safavi-Naini and Ran Canetti, editors, Advances in Cryptology – CRYPTO
2012, pages 681–700, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[PSSW09] Benny Pinkas, Thomas Schneider, Nigel P. Smart, and Stephen C. Williams. Se-
cure two-party computation is practical. In Mitsuru Matsui, editor, Advances in
Cryptology – ASIACRYPT 2009, pages 250–267, Berlin, Heidelberg, 2009. Springer
Berlin Heidelberg.

[RSS17] Dragos Rotaru, Nigel P. Smart, and Martijn Stam. Modes of operation suitable
for computing on encrypted data. IACR Transactions on Symmetric Cryptology,
2017(3):294–324, Sep. 2017.

[SCG+14] E. B. Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and M. Virza.
Zerocash: Decentralized anonymous payments from bitcoin. In 2014 IEEE Sympo-
sium on Security and Privacy, pages 459–474, 2014.

[Sta19] ISO/IEC 29192-2:2019 Standards. Information security – lightweight cryptography
– part 2: Block ciphers, 2019. https://www.iso.org/standard/78477.html.

[STMÇ +19] Meltem Sönmez Turan, Kerry McKay, Ç ağdaş Ç alık, Donghoon Chang, and
Lawrence Bassham. Status report on the first round of the nist lightweight cryptog-
raphy standardization process. Technical report, National Institute of Standards
and Technology, 2019.

[TS] Stefan Tillich and Nigel Smart. Aes circuit. https://homes.esat.kuleuven.be/

~nsmart/MPC/AES-non-expanded.txt.

[WMK16] Xiao Wang, Alex J. Malozemoff, and Jonathan Katz. EMP-toolkit: Efficient Mul-
tiParty computation toolkit. https://github.com/emp-toolkit, 2016.

16

http://www.cs.unb.ca/~kmandal/nistlwc/circuit.html
https://www.iso.org/standard/78477.html
https://homes.esat.kuleuven.be/~nsmart/MPC/AES-non-expanded.txt
https://homes.esat.kuleuven.be/~nsmart/MPC/AES-non-expanded.txt
https://github.com/emp-toolkit

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets. In 27th Annual
Symposium on Foundations of Computer Science (sfcs 1986), pages 162–167. IEEE,
1986.

[ZRE15] Samee Zahur, Mike Rosulek, and David Evans. Two halves make a whole. In Elis-
abeth Oswald and Marc Fischlin, editors, Advances in Cryptology - EUROCRYPT
2015, pages 220–250, Berlin, Heidelberg, 2015. Springer Berlin Heidelberg.

17

	Introduction
	Applications of Lightweight AE in Privacy-enhancing Cryptography
	Cloud-IoT Outsourcing Data and Computation for Analytics
	Sharing of Data from Constrained Applications to the MPC System
	Secure Password Storage, IoT Database Operation and More

	Related Work
	Our Contribution

	Preliminaries
	Authenticated Encryption
	Two-party Computation Protocol and Garbled Circuit
	Fully Homomorphic Encryption and Outsourcing Protocol

	Circuit Complexity of NIST LWC Round 2 Candidates
	Secure 2PC Evaluation of Core AE Circuits
	Homomorphic Evaluation of Core AE Circuits
	Conversion of AE Ciphertexts to FHE Ciphertexts
	Experimental Evaluation

	Conclusions and Future Work

