LWC use cases

External memory encryption

September 13, 2020
Secure IC with external NVM memory

- Typical secure element/smart card: internal flash memory (everything on single chip)
- Our goals:
 - Use external (flash) memory
 - Achieve same security level
What’s wrong with embedded NVM*?

- IC is more expensive
 - Embedded NVM requires additional process steps and test time
 - Additional yield loss
- No flexibility on memory size
 - Supporting several memory size means designing several ICs
 - It takes about 1 year to support a new memory size
- Not available on latest technology nodes

* Embedded NVM: here we mean “Multiple Time Programmable NVMs” such as EEPROM, flash and MRAM. Strictly speaking ROM and OTP are “NVMs”. In this document we use “NVM” as a short hand for “Multiple Time Programmable NVMs”.
What could go wrong?

- On the fly traffic analysis
- Replay attacks

Clear need for:
- Confidentiality
- Integrity
- Data freshness

→ We need an Authenticated Encryption scheme.
Use case definition

- **Same chip is doing encryption and decryption**
 - Key is unique for each chip
 - Key can be generated on-chip, nobody needs to know it
 - Key can be stored in internal OTP (or may be output of a PUF)

- **Memory divided in “chunks”**
 - Typical chunk size between 64 and 256 bytes
 - Each chunk is a message to protect using AEAD
 - So each chunk needs a NONCE and has a TAG

- **NONCE generated on-chip, stored in external memory**

- **Ciphertext and TAG also stored in external memory**

- **Associated data:**
 - Typically none or just few bytes
 - Typically computed on-chip, so available for pre computation before getting external memory content
Market expectations

- AEAD “approved” by ANSSI, BSI, NIST
- 256 bits security for confidentiality (GSMA requirement for SIM applications)
- Secure against “logical attacks”
 - On the fly traffic analysis
 - Replay attacks
- Secure against “physical attacks”
 - Side channel attacks (power analysis, EM analysis)
 - Fault attacks (laser fault injection)
- Read as fast as the external memory:
 - Around 100Mbytes/s for QSPI flash
 - Much higher for RAMs

→ Need fast decryption protected against physical attacks
Threat model

- Encryption (write to external memory):
 - Attacker controls plaintext (in practice only some part)
 - Attacker observes NONCE, ciphertext, TAG
 - NONCE is never reused

- Decryption (read from external memory):
 - Attacker controls NONCE, ciphertext, TAG
 - Attacker observes the outcome of decryption and plaintext (when TAG ok)
 - Unlimited trials
 - Decryption has to be fast due to market requirements
 - The chip cannot count anything as NVM is external

→ Both strongly exposed to side channel and fault attacks
Why not AES-xxx?

- No matter xxx, AES is difficult to protect against physical attacks and then it is power hungry, huge and slow.

- GCM:
 - GCM hardware enlarge the attack surface
 - GCM does not protect the integrity of the plaintext!
 - TAG is computed from the ciphertext
 - Fault injected during AES computation is not detected by TAG check
 - Two-pass needed in the end

- CCM:
 - Two-pass algorithm

- OCB:
 - Remains patented as far as semiconductor are concerned
 - Not “NIST approved”, show stopper for our customers
Preferred LWC candidates

- Tiempo point of view as a semiconductor manufacturer / IP vendor
- DryGASCON (using “fast” profile):
 - Minimize the product “Power x Area x Latency”
 - Cheap to develop and maintain: avoid to protect a crypto primitive against side channels and fault attacks
- SAEAES
 - Allows full reuse of EAL5+ certified AES implementation
- Candidates based on AES round or AES sbox AND supporting 256 bit security
- Candidates based on Keccak variants AND supporting 256 bit security
 - Allow to focus design efforts on that permutation (as it is in SHA3, people have to work on it anyway)
- *ISAP would be at second place if it supported 256 bit security
- *COMET would be at same level as SAEAES if it supported 256 bit security
Reaction to LWC winner

Tiempo point of view as a semiconductor manufacturer / IP vendor

<table>
<thead>
<tr>
<th></th>
<th>DryGASCON</th>
<th>ISAP</th>
<th>SAEAES</th>
<th>Others</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dev effort (man.month)</td>
<td>1</td>
<td>1</td>
<td>1(^1)</td>
<td>9</td>
</tr>
<tr>
<td>Test chip needed</td>
<td>No</td>
<td>No</td>
<td>No(^1)</td>
<td>Yes</td>
</tr>
<tr>
<td>Security eval. effort</td>
<td>Low</td>
<td>Low</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>P.A.L. product*</td>
<td>Lowest</td>
<td>Low</td>
<td>High</td>
<td>Medium</td>
</tr>
<tr>
<td>Replace AES-CCM</td>
<td>Yes</td>
<td>Yes(^2)</td>
<td>Yes</td>
<td>after test chip evaluation(^3)</td>
</tr>
</tbody>
</table>

*Power x Area x Latency of fully protected implementation.

Note 1: only because Tiempo already has an EAL5+ certified AES IP.

Note 2: only on projects in which:
- 128 bit security is acceptable
- AND with sufficient volumes to justify a dedicated development

Note 3: test chip dev. and eval. cost and time maybe a show stopper